The University of Adelaide
You are here
Text size: S | M | L
Printer Friendly Version
December 2018
MTWTFSS
     12
3456789
10111213141516
17181920212223
24252627282930
31      

Search the School of Mathematical Sciences

Find in People Courses Events News Publications

People matching "The Einstein equations with torsion, reduction and"

Associate Professor Sanjeeva Balasuriya
Senior Lecturer in Applied Mathematics


More about Sanjeeva Balasuriya...
Professor Robert Elliott
Adjunct Professor


More about Robert Elliott...

Courses matching "The Einstein equations with torsion, reduction and"

Differential Equations

Most "real life" systems that are described mathematically, be they physical, financial, economic or some other kind, are described by means of differential equations. Our ability to predict the way in which these systems evolve or behave is determined by our ability to find solutions of these equations explicitly or to be able to approximate solutions as accurately as we need. Every differential equation presents its own challenges, but there are various classes of differential equations, and for some of these there are established approaches and methods for solving them. This course presents some of the most important such methods. Topics covered are: first order ordinary differential equations (ODEs), higher order ODEs, numerical techniques for solving ODEs, systems of ODEs, series solutions of ODEs, Laplace transforms, Fourier analysis, solution of linear partial differential equations using the method of separation of variables, and D'Alembert's solution of the wave equation.

More about this course...

Differential Equations III

Differential equations describe a wide range of practical problems in areas such as biology, engineering, physical sciences, economics and finance. This course aims to provide students with techniques required to solve classes of ordinary and partial differential equations that commonly occur in applications. Topics covered are: methods for the solution of systems of linear and non-linear ordinary differential equations; techniques for the solution of two point boundary value problems for second order linear ordinary differential equations with variable coefficients; classification of partial differential equations and the solution of boundary value problems for these equations using the methods of reduction to ordinary differential equations by use of separation of variables, integral transforms, and characteristics.

More about this course...

Events matching "The Einstein equations with torsion, reduction and"

Stability of time-periodic flows
15:10 Fri 10 Mar, 2006 :: G08 Mathematics Building University of Adelaide :: Prof. Andrew Bassom, School of Mathematics and Statistics, University of Western Australia

Time-periodic shear layers occur naturally in a wide range of applications from engineering to physiology. Transition to turbulence in such flows is of practical interest and there have been several papers dealing with the stability of flows composed of a steady component plus an oscillatory part with zero mean. In such flows a possible instability mechanism is associated with the mean component so that the stability of the flow can be examined using some sort of perturbation-type analysis. This strategy fails when the mean part of the flow is small compared with the oscillatory component which, of course, includes the case when the mean part is precisely zero.

This difficulty with analytical studies has meant that the stability of purely oscillatory flows has relied on various numerical methods. Until very recently such techniques have only ever predicted that the flow is stable, even though experiments suggest that they do become unstable at high enough speeds. In this talk I shall expand on this discrepancy with emphasis on the particular case of the so-called flat Stokes layer. This flow, which is generated in a deep layer of incompressible fluid lying above a flat plate which is oscillated in its own plane, represents one of the few exact solutions of the Navier-Stokes equations. We show theoretically that the flow does become unstable to waves which propagate relative to the basic motion although the theory predicts that this occurs much later than has been found in experiments. Reasons for this discrepancy are examined by reference to calculations for oscillatory flows in pipes and channels. Finally, we propose some new experiments that might reduce this disagreement between the theoretical predictions of instability and practical realisations of breakdown in oscillatory flows.
Similarity solutions for surface-tension driven flows
15:10 Fri 14 Mar, 2008 :: LG29 Napier Building University of Adelaide :: Prof John Lister :: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK

The breakup of a mass of fluid into drops is a ubiquitous phenomenon in daily life, the natural environment and technology, with common examples including a dripping tap, ocean spray and ink-jet printing. It is a feature of many generic industrial processes such as spraying, emulsification, aeration, mixing and atomisation, and is an undesirable feature in coating and fibre spinning. Surface-tension driven pinch-off and the subsequent recoil are examples of finite-time singularities in which the interfacial curvature becomes infinite at the point of disconnection. As a result, the flow near the point of disconnection becomes self-similar and independent of initial and far-field conditions. Similarity solutions will be presented for the cases of inviscid and very viscous flow, along with comparison to experiments. In each case, a boundary-integral representation can be used both to examine the time-dependent behaviour and as the basis of a modified Newton scheme for direct solution of the similarity equations.
The Mathematics of String Theory
15:10 Fri 2 May, 2008 :: LG29 Napier Building University of Adelaide :: Prof. Peter Bouwknegt :: Department of Mathematics, ANU

String Theory has had, and continues to have, a profound impact on many areas of mathematics and vice versa. In this talk I want to address some relatively recent developments. In particular I will argue, following Witten and others, that D-brane charges take values in the K-theory of spacetime, rather than in integral cohomology as one might have expected. I will also explore the mathematical consequences of a particular symmetry, called T-duality, in this context. I will give an intuitive introduction into D-branes and K-theory. No prior knowledge about either String Theory, D-branes or K-theory is required.
Computational Methods for Phase Response Analysis of Circadian Clocks
15:10 Fri 18 Jul, 2008 :: G04 Napier Building University of Adelaide. :: Prof. Linda Petzold :: Dept. of Mechanical and Environmental Engineering, University of California, Santa Barbara

Circadian clocks govern daily behaviors of organisms in all kingdoms of life. In mammals, the master clock resides in the suprachiasmatic nucleus (SCN) of the hypothalamus. It is composed of thousands of neurons, each of which contains a sloppy oscillator - a molecular clock governed by a transcriptional feedback network. Via intercellular signaling, the cell population synchronizes spontaneously, forming a coherent oscillation. This multi-oscillator is then entrained to its environment by the daily light/dark cycle.

Both at the cellular and tissular levels, the most important feature of the clock is its ability not simply to keep time, but to adjust its time, or phase, to signals. We present the parametric impulse phase response curve (pIPRC), an analytical analog to the phase response curve (PRC) used experimentally. We use the pIPRC to understand both the consequences of intercellular signaling and the light entrainment process. Further, we determine which model components determine the phase response behavior of a single oscillator by using a novel model reduction technique. We reduce the number of model components while preserving the pIPRC and then incorporate the resultant model into a couple SCN tissue model. Emergent properties, including the ability of the population to synchronize spontaneously are preserved in the reduction. Finally, we present some mathematical tools for the study of synchronization in a network of coupled, noisy oscillators.

Betti's Reciprocal Theorem for Inclusion and Contact Problems
15:10 Fri 1 Aug, 2008 :: G03 Napier Building University of Adelaide :: Prof. Patrick Selvadurai :: Department of Civil Engineering and Applied Mechanics, McGill University

Enrico Betti (1823-1892) is recognized in the mathematics community for his pioneering contributions to topology. An equally important contribution is his formulation of the reciprocity theorem applicable to elastic bodies that satisfy the classical equations of linear elasticity. Although James Clerk Maxwell (1831-1879) proposed a law of reciprocal displacements and rotations in 1864, the contribution of Betti is acknowledged for its underlying formal mathematical basis and generality. The purpose of this lecture is to illustrate how Betti's reciprocal theorem can be used to full advantage to develop compact analytical results for certain contact and inclusion problems in the classical theory of elasticity. Inclusion problems are encountered in number of areas in applied mechanics ranging from composite materials to geomechanics. In composite materials, the inclusion represents an inhomogeneity that is introduced to increase either the strength or the deformability characteristics of resulting material. In geomechanics, the inclusion represents a constructed material region, such as a ground anchor, that is introduced to provide load transfer from structural systems. Similarly, contact problems have applications to the modelling of the behaviour of indentors used in materials testing to the study of foundations used to distribute loads transmitted from structures. In the study of conventional problems the inclusions and the contact regions are directly loaded and this makes their analysis quite straightforward. When the interaction is induced by loads that are placed exterior to the indentor or inclusion, the direct analysis of the problem becomes inordinately complicated both in terns of formulation of the integral equations and their numerical solution. It is shown by a set of selected examples that the application of Betti's reciprocal theorem leads to the development of exact closed form solutions to what would otherwise be approximate solutions achievable only through the numerical solution of a set of coupled integral equations.
Elliptic equation for diffusion-advection flows
15:10 Fri 15 Aug, 2008 :: G03 Napier Building University of Adelaide :: Prof. Pavel Bedrikovsetsky :: Australian School of Petroleum Science, University of Adelaide.

The standard diffusion equation is obtained by Einstein's method and its generalisation, Fokker-Plank-Kolmogorov-Feller theory. The time between jumps in Einstein derivation is constant.

We discuss random walks with residence time distribution, which occurs for flows of solutes and suspensions/colloids in porous media, CO2 sequestration in coal mines, several processes in chemical, petroleum and environmental engineering. The rigorous application of the Einstein's method results in new equation, containing the time and the mixed dispersion terms expressing the dispersion of the particle time steps.

Usually, adding the second time derivative results in additional initial data. For the equation derived, the condition of limited solution when time tends to infinity provides with uniqueness of the Caushy problem solution.

The solution of the pulse injection problem describing a common tracer injection experiment is studied in greater detail. The new theory predicts delay of the maximum of the tracer, compared to the velocity of the flow, while its forward "tail" contains much more particles than in the solution of the classical parabolic (advection-dispersion) equation. This is in agreement with the experimental observations and predictions of the direct simulation.

Mathematical modelling of blood flow in curved arteries
15:10 Fri 12 Sep, 2008 :: G03 Napier Building University of Adelaide :: Dr Jennifer Siggers :: Imperial College London

Atherosclerosis, characterised by plaques, is the most common arterial disease. Plaques tend to develop in regions of low mean wall shear stress, and regions where the wall shear stress changes direction during the course of the cardiac cycle. To investigate the effect of the arterial geometry and driving pressure gradient on the wall shear stress distribution we consider an idealised model of a curved artery with uniform curvature. We assume that the flow is fully-developed and seek solutions of the governing equations, finding the effect of the parameters on the flow and wall shear stress distribution. Most previous work assumes the curvature ratio is asymptotically small; however, many arteries have significant curvature (e.g. the aortic arch has curvature ratio approx 0.25), and in this work we consider in particular the effect of finite curvature.

We present an extensive analysis of curved-pipe flow driven by a steady and unsteady pressure gradients. Increasing the curvature causes the shear stress on the inside of the bend to rise, indicating that the risk of plaque development would be overestimated by considering only the weak curvature limit.

Symmetry-breaking and the Origin of Species
15:10 Fri 24 Oct, 2008 :: G03 Napier Building University of Adelaide :: Toby Elmhirst :: ARC Centre of Excellence for Coral Reef Studies, James Cook University

The theory of partial differential equations can say much about generic bifurcations from spatially homogeneous steady states, but relatively little about generic bifurcations from unimodal steady states. In many applications, spatially homogeneous steady states correspond to low-energy physical states that are destabilized as energy is fed into the system, and in these cases standard PDE theory can yield some impressive and elegant results. However, for many macroscopic biological systems such results are less useful because low-energy states do not hold the same priviledged position as they do in physical and chemical systems. For example, speciation -- the evolutionary process by which new species are formed -- can be seen as the destabilization of a unimodal density distribution over phenotype space. Given the diversity of species and environments, generic results are clearly needed, but cannot be gained from PDE theory. Indeed, such questions cannot even be adequately formulated in terms of PDEs. In this talk I will introduce 'Pod Systems' which can provide an answer to the question; 'What happens, generically, when a unimodal steady state loses stability?' In the pod system formalization, the answer involves elements of equivariant bifurcation theory and suggests that new species can arise as the result of broken symmetries.
Direct "delay" reductions of the Toda equation
13:10 Fri 23 Jan, 2009 :: School Board Room :: Prof Nalini Joshi :: University of Sydney

A new direct method of obtaining reductions of the Toda equation is described. We find a canonical and complete class of all possible reductions under certain assumptions. The resulting equations are ordinary differential-difference equations, sometimes referred to as delay-differential equations. The representative equation of this class is hypothesized to be a new version of one of the classical Painleve equations. The Lax pair associated to this equation is obtained, also by reduction.
Hunting Non-linear Mathematical Butterflies
15:10 Fri 23 Jan, 2009 :: Napier LG29 :: Prof Nalini Joshi :: University of Sydney

The utility of mathematical models relies on their ability to predict the future from a known set of initial states. But there are non-linear systems, like the weather, where future behaviours are unpredictable unless their initial state is known to infinite precision. This is the butterfly effect. I will show how to analyse functions to overcome this problem for the classical Painleve equations, differential equations that provide archetypical non-linear models of modern physics.
Boltzmann's Equations for Suspension Flow in Porous Media and Correction of the Classical Model
15:10 Fri 13 Mar, 2009 :: Napier LG29 :: Prof Pavel Bedrikovetsky :: University of Adelaide

Suspension/colloid transport in porous media is a basic phenomenon in environmental, petroleum and chemical engineering. Suspension of particles moves through porous media and particles are captured by straining or attraction. We revise the classical equations for particle mass balance and particle capture kinetics and show its non-realistic behaviour in cases of large dispersion and of flow-free filtration. In order to resolve the paradoxes, the pore-scale model is derived. The model can be transformed to Boltzmann equation with particle distribution over pores. Introduction of sink-source terms into Boltzmann equation results in much more simple calculations if compared with the traditional Chapman-Enskog averaging procedure. Technique of projecting operators in Hilbert space of Fourier images is used. The projection subspace is constructed in a way to avoid dependency of averaged equations on sink-source terms. The averaging results in explicit expressions for particle flux and capture rate. The particle flux expression describes the effect of advective particle velocity decrease if compared with the carrier water velocity due to preferential capture of "slow" particles in small pores. The capture rate kinetics describes capture from either advective or diffusive fluxes. The equations derived exhibit positive advection velocity for any dispersion and particle capture in immobile fluid that resolves the above-mentioned paradox. Finally, we discuss validation of the model for propagation of contaminants in aquifers, for filtration, for potable water production by artesian wells, for formation damage in oilfields.
Multi-scale tools for interpreting cell biology data
15:10 Fri 17 Apr, 2009 :: Napier LG29 :: Dr Matthew Simpson :: University of Melbourne

Trajectory data from observations of a random walk process are often used to characterize macroscopic transport coefficients and to infer motility mechanisms in cell biology. New continuum equations describing the average moments of the position of an individual agent in a population of interacting agents are derived and validated. Unlike standard noninteracting random walks, the new moment equations explicitly represent the interactions between agents as they are coupled to the macroscopic agent density. Key issues associated with the validity of the new continuum equations and the interpretation of experimental data will be explored.
Wall turbulence: from the laboratory to the atmosphere
15:00 Fri 29 May, 2009 :: Napier LG29 :: Prof Ivan Marusic :: The University of Melbourne

The study of wall-bounded turbulent flows has received great attention over the past few years as a result of high Reynolds number experiments conducted in new high Reynolds number facilities such as the Princeton "superpipe", the NDF facility in Chicago and the HRNBLWT at the University of Melbourne. These experiments have brought into question the fundamental scaling laws of the turbulence and mean flow quantities as well as revealed high Reynolds number phenomena, which make extrapolation of low Reynolds number results highly questionable. In this talk these issues will be reviewed and new results from the HRNBLWT and atmospheric surface layer on the salt-flats of Utah will be presented documenting unique high Reynolds number phenomena. The implications for skin-friction drag reduction technologies and improved near-wall models for large-eddy simulation will be discussed.
Averaging reduction for stochastic PDEs
15:10 Fri 5 Jun, 2009 :: LG29 :: Dr Wei Wang :: University of Adelaide

In this talk, I introduce recent work on macroscopic reduction for stochastic PDEs by an averaging method. Furthermore by using a special coupling boundary conditions, a macroscopic discrete approximation model can be derived.
Strong Predictor-Corrector Euler Methods for Stochastic Differential Equations
15:10 Fri 19 Jun, 2009 :: LG29 :: Prof. Eckhard Platen :: University of Technology, Sydney

This paper introduces a new class of numerical schemes for the pathwise approximation of solutions of stochastic differential equations (SDEs). The proposed family of strong predictor-corrector Euler methods are designed to handle scenario simulation of solutions of SDEs. It has the potential to overcome some of the numerical instabilities that are often experienced when using the explicit Euler method. This is of importance, for instance, in finance where martingale dynamics arise for solutions of SDEs with multiplicative diffusion coefficients. Numerical experiments demonstrate the improved asymptotic stability properties of the proposed symmetric predictor-corrector Euler methods.
Dispersing and settling populations in biology
15:10 Tue 23 Jun, 2009 :: Napier G03 :: Prof Kerry Landman :: University of Melbourne

Partial differential equations are used to model populations (such as cells, animals or molecules) consisting of individuals that undergo two important processes: dispersal and settling. I will describe some general characteristics of these systems, as well as some of our recent projects.
Lagrangian fibrations on holomorphic symplectic manifolds III: Holomorphic coisotropic reduction
13:10 Fri 26 Jun, 2009 :: School Board Room :: Dr Justin Sawon :: Colorado State University

Given a certain kind of submanifold $Y$ of a symplectic manifold $(X,\omega)$ we can form its coisotropic reduction as follows. The null directions of $\omega|_Y$ define the characteristic foliation $F$ on $Y$. The space of leaves $Y/F$ then admits a symplectic form, descended from $\omega|_Y$. Locally, the coisotropic reduction $Y/F$ looks just like a symplectic quotient. This construction also work for holomorphic symplectic manifolds, though one of the main difficulties in practice is ensuring that the leaves of the foliation are compact. We will describe a criterion for compactness, and apply coisotropic reduction to produce a classification result for Lagrangian fibrations by Jacobians.
Predicting turbulence
12:10 Wed 12 Aug, 2009 :: Napier 210 :: Dr Trent Mattner :: University of Adelaide

Media...
Turbulence is characterised by three-dimensional unsteady fluid motion over a wide range of spatial and temporal scales. It is important in many problems of technological and scientific interest, such as drag reduction, energy production and climate prediction. In this talk, I will explain why turbulent flows are difficult to predict and describe a modern mathematical model of turbulence based on a random collection of fluid vortices.
Analytic torsion for twisted de Rham complexes
13:10 Fri 30 Oct, 2009 :: School Board Room :: Prof Mathai Varghese :: University of Adelaide

We define analytic torsion for the twisted de Rham complex, consisting of differential forms on a compact Riemannian manifold X with coefficients in a flat vector bundle E, with a differential given by a flat connection on E plus a closed odd degree differential form on X. The definition in our case is more complicated than in the case discussed by Ray-Singer, as it uses pseudodifferential operators. We show that this analytic torsion is independent of the choice of metrics on X and E, establish some basic functorial properties, and compute it in many examples. We also establish the relationship of an invariant version of analytic torsion for T-dual circle bundles with closed 3-form flux. This is joint work with Siye Wu.
Conformal geometry of differential equations
13:10 Fri 12 Feb, 2010 :: School Board Room :: Dr Pawel Nurowski :: University of Warsaw

Convolution equations in A^{-\infty} for convex domains
13:10 Fri 5 Mar, 2010 :: School Board Room :: Dr Le Hai Khoi :: Nanyang Technological University, Singapore

Some unusual uses of usual symmetries and some usual uses of unusual symmetries
12:10 Wed 10 Mar, 2010 :: School board room :: Prof Phil Broadbridge :: La Trobe University

Ever since Sophus Lie around 1880, continuous groups of invariance transformations have been used to reduce variables and to construct special solutions of PDEs. I will outline the general ideas, then show some variations on the usual reduction algorithm that I have used to solve some practical nonlinear boundary value problems. Applications include soil-water flow, metal surface evolution and population genetics.
The caloron transform
13:10 Fri 7 May, 2010 :: School Board Room :: Prof Michael Murray :: University of Adelaide

The caloron transform is a `fake' dimensional reduction which transforms a G-bundle over certain manifolds to a loop group of G bundle over a manifold of one lower dimension. This talk will review the caloron transform and show how it can be best understood using the language of pseudo-isomorphisms from category theory as well as considering its application to Bogomolny monopoles and string structures.
On the uniqueness of almost-Kahler structures
13:10 Fri 28 May, 2010 :: School Board Room :: Dr Paul-Andi Nagy :: University of Auckland

We show uniqueness up to sign of positive, orthogonal almost-Kahler structures on any non-scalar flat Kahler-Einstein surface. This is joint work with A. J. di Scala.
Vertex algebras and variational calculus I
13:10 Fri 4 Jun, 2010 :: School Board Room :: Dr Pedram Hekmati :: University of Adelaide

A basic operation in calculus of variations is the Euler-Lagrange variational derivative, whose kernel determines the extremals of functionals. There exists a natural resolution of this operator, called the variational complex. In this talk, I shall explain how to use tools from the theory of vertex algebras to explicitly construct the variational complex. This also provides a very convenient language for classifying and constructing integrable Hamiltonian evolution equations.
Adjoint methods for adaptive error control, optimization, and uncertainty quantification
15:10 Fri 16 Jul, 2010 :: Napier G03 :: Dr Varis Carey :: Colorado State University

We give an introduction to the use of adjoint equations (and solutions) for numerical error control and solution enhancement of PDEs. In addition, the same equations can be used for optimization routines and uncertainty quantification. We discuss the modification of these methods in the context of operator splitting and to non-variational (e.g. finite volume) methods. Finally, we conclude with an application of the method to the shallow water equations and discuss some of the hurdles that need to be overcome when extending adjoint methodologies to ocean and atmospheric modeling.
Principal Component Analysis Revisited
15:10 Fri 15 Oct, 2010 :: Napier G04 :: Assoc. Prof Inge Koch :: University of Adelaide

Since the beginning of the 20th century, Principal Component Analysis (PCA) has been an important tool in the analysis of multivariate data. The principal components summarise data in fewer than the original number of variables without losing essential information, and thus allow a split of the data into signal and noise components. PCA is a linear method, based on elegant mathematical theory. The increasing complexity of data together with the emergence of fast computers in the later parts of the 20th century has led to a renaissance of PCA. The growing numbers of variables (in particular, high-dimensional low sample size problems), non-Gaussian data, and functional data (where the data are curves) are posing exciting challenges to statisticians, and have resulted in new research which extends the classical theory. I begin with the classical PCA methodology and illustrate the challenges presented by the complex data that we are now able to collect. The main part of the talk focuses on extensions of PCA: the duality of PCA and the Principal Coordinates of Multidimensional Scaling, Sparse PCA, and consistency results relating to principal components, as the dimension grows. We will also look at newer developments such as Principal Component Regression and Supervised PCA, nonlinear PCA and Functional PCA.
How are weather forecasts made?... and what role does mathematics play?
12:10 Mon 7 Mar, 2011 :: 5.57 Ingkarni Wardli :: Mika Peace :: University of Adelaide

Have you ever wondered where the weather forecast for the next seven days comes from? Come and find out! We will look at the basic laws of meteorology, leading in to the primitive equations, which are solved on supercomputers to produce the weather forecasts we see every day. We will finish by using the current numerical weather prediction charts to forecast our weather for the next few days.
How to value risk
12:10 Mon 11 Apr, 2011 :: 5.57 Ingkarni Wardli :: Leo Shen :: University of Adelaide

A key question in mathematical finance is: given a future random payoff X, what is its value today? If X represents a loss, one can ask how risky is X. To mitigate risk it must be modelled and quantified. The finance industry has used Value-at-Risk and conditional Value-at-Risk as measures. However, these measures are not time consistent and Value-at-Risk can penalize diversification. A modern theory of risk measures is being developed which is related to solutions of backward stochastic differential equations in continuous time and stochastic difference equations in discrete time. I first review risk measures used in mathematical finance, including static and dynamic risk measures. I recall results relating to backward stochastic difference equations (BSDEs) associated with a single jump process. Then I evaluate some numerical examples of the solutions of the backward stochastic difference equations and related risk measures. These concepts are new. I hope the examples will indicate how they might be used.
The Extended-Domain-Eigenfunction Method: making old mathematics work for new problems
15:10 Fri 13 May, 2011 :: 7.15 Ingkarni Wardli :: Prof Stan Miklavcic :: University of South Australia

Media...
Standard analytical solutions to elliptic boundary value problems on asymmetric domains are rarely, if ever, obtainable. Several years ago I proposed a solution technique to cope with such complicated domains. It involves the embedding of the original domain into one with simple boundaries where the classical eigenfunction solution approach can be used. The solution in the larger domain, when restricted to the original domain is then the solution of the original boundary value problem. In this talk I will present supporting theory for this idea, some numerical results for the particular case of the Laplace equation and the Stokes flow equations in two-dimensions and discuss advantages and limitations of the proposal.
Permeability of heterogeneous porous media - experiments, mathematics and computations
15:10 Fri 27 May, 2011 :: B.21 Ingkarni Wardli :: Prof Patrick Selvadurai :: Department of Civil Engineering and Applied Mechanics, McGill University

Permeability is a key parameter important to a variety of applications in geological engineering and in the environmental geosciences. The conventional definition of Darcy flow enables the estimation of permeability at different levels of detail. This lecture will focus on the measurement of surface permeability characteristics of a large cuboidal block of Indiana Limestone, using a surface permeameter. The paper discusses the theoretical developments, the solution of the resulting triple integral equations and associated computational treatments that enable the mapping of the near surface permeability of the cuboidal region. This data combined with a kriging procedure is used to develop results for the permeability distribution at the interior of the cuboidal region. Upon verification of the absence of dominant pathways for fluid flow through the cuboidal region, estimates are obtained for the "Effective Permeability" of the cuboid using estimates proposed by Wiener, Landau and Lifschitz, King, Matheron, Journel et al., Dagan and others. The results of these estimates are compared with the geometric mean, derived form the computational estimates.
Priority queueing systems with random switchover times and generalisations of the Kendall-Takacs equation
16:00 Wed 1 Jun, 2011 :: 7.15 Ingkarni Wardli :: Dr Andrei Bejan :: The University of Cambridge

In this talk I will review existing analytical results for priority queueing systems with Poisson incoming flows, general service times and a single server which needs some (random) time to switch between requests of different priority. Specifically, I will discuss analytical results for the busy period and workload of such systems with a special structure of switchover times. The results related to the busy period can be seen as generalisations of the famous Kendall-Tak\'{a}cs functional equation for $M|G|1$: being formulated in terms of Laplace-Stieltjes transform, they represent systems of functional recurrent equations. I will present a methodology and algorithms of their numerical solution; the efficiency of these algorithms is achieved by acceleration of the numerical procedure of solving the classical Kendall-Tak\'{a}cs equation. At the end I will identify open problems with regard to such systems; these open problems are mainly related to the modelling of switchover times.
Probability density estimation by diffusion
15:10 Fri 10 Jun, 2011 :: 7.15 Ingkarni Wardli :: Prof Dirk Kroese :: University of Queensland

Media...
One of the beautiful aspects of Mathematics is that seemingly disparate areas can often have deep connections. This talk is about the fundamental connection between probability density estimation, diffusion processes, and partial differential equations. Specifically, we show how to obtain efficient probability density estimators by solving partial differential equations related to diffusion processes. This new perspective leads, in combination with Fast Fourier techniques, to very fast and accurate algorithms for density estimation. Moreover, the diffusion formulation unifies most of the existing adaptive smoothing algorithms and provides a natural solution to the boundary bias of classical kernel density estimators. This talk covers topics in Statistics, Probability, Applied Mathematics, and Numerical Mathematics, with a surprise appearance of the theta function. This is joint work with Zdravko Botev and Joe Grotowski.
There are no magnetically charged particle-like solutions of the Einstein-Yang-Mills equations for models with Abelian residual groups
13:10 Fri 19 Aug, 2011 :: B.19 Ingkarni Wardli :: Dr Todd Oliynyk :: Monash University

According to a conjecture from the 90's, globally regular, static, spherically symmetric (i.e. particle-like) solutions with nonzero total magnetic charge are not expected to exist in Einstein-Yang-Mills theory. In this talk, I will describe recent work done in collaboration with M. Fisher where we establish the validity of this conjecture under certain restrictions on the residual gauge group. Of particular interest is that our non-existence results apply to the most widely studied models with Abelian residual groups.
Comparing Einstein to Newton via the post-Newtonian expansions
15:10 Fri 19 Aug, 2011 :: 7.15 Ingkarni Wardli :: Dr Todd Oliynyk :: Monash University

Media...
Einstein's general relativity is presently the most accurate theory of gravity. To completely determine the gravitational field, the Einstein field equations must be solved. These equations are extremely complex and outside of a small set of idealized situations, they are impossible to solve directly. However, to make physical predictions or understand physical phenomena, it is often enough to find approximate solutions that are governed by a simpler set of equations. For example, Newtonian gravity approximates general relativity very well in regimes where the typical velocity of the gravitating matter is small compared to the speed of light. Indeed, Newtonian gravity successfully explains much of the behaviour of our solar system and is a simpler theory of gravity. However, for many situations of interest ranging from binary star systems to GPS satellites, the Newtonian approximation is not accurate enough; general relativistic effects must be included. This desire to include relativistic corrections to Newtonian gravity lead to the development of the post-Newtonian expansions.
Laplace's equation on multiply-connected domains
12:10 Mon 29 Aug, 2011 :: 5.57 Ingkarni Wardli :: Mr Hayden Tronnolone :: University of Adelaide

Various physical processes take place on multiply-connected domains (domains with some number of 'holes'), such as the stirring of a fluid with paddles or the extrusion of material from a die. These systems may be described by partial differential equations (PDEs). However, standard numerical methods for solving PDEs are not well-suited to such examples: finite difference methods are difficult to implement on multiply-connected domains, especially when the boundaries are irregular or moving, while finite element methods are computationally expensive. In this talk I will describe a fast and accurate numerical method for solving certain PDEs on two-dimensional multiply-connected domains, considering Laplace's equation as an example. This method takes advantage of complex variable techniques which allow the solution to be found with spectral accuracy provided the boundary data is smooth. Other advantages over traditional numerical methods will also be discussed.
T-duality via bundle gerbes I
13:10 Fri 23 Sep, 2011 :: B.19 Ingkarni Wardli :: Dr Raymond Vozzo :: University of Adelaide

In physics T-duality is a phenomenon which relates certain types of string theories to one another. From a topological point of view, one can view string theory as a duality between line bundles carrying a degree three cohomology class (the H-flux). In this talk we will use bundle gerbes to give a geometric realisation of the H-flux and explain how to construct the T-dual of a line bundle together with its T-dual bundle gerbe.
T-duality via bundle gerbes II
13:10 Fri 21 Oct, 2011 :: B.19 Ingkarni Wardli :: Dr Raymond Vozzo :: University of Adelaide

In physics T-duality is a phenomenon which relates certain types of string theories to one another. From a topological point of view, one can view string theory as a duality between line bundles carrying a degree three cohomology class (the H-flux). In this talk we will use bundle gerbes to give a geometric realisation of the H-flux and explain how to construct the T-dual of a line bundle together with its T-dual bundle gerbe.
Stability analysis of nonparallel unsteady flows via separation of variables
15:30 Fri 18 Nov, 2011 :: 7.15 Ingkarni Wardli :: Prof Georgy Burde :: Ben-Gurion University

Media...
The problem of variables separation in the linear stability equations, which govern the disturbance behavior in viscous incompressible fluid flows, is discussed. Stability of some unsteady nonparallel three-dimensional flows (exact solutions of the Navier-Stokes equations) is studied via separation of variables using a semi-analytical, semi-numerical approach. In this approach, a solution with separated variables is defined in a new coordinate system which is sought together with the solution form. As the result, the linear stability problems are reduced to eigenvalue problems for ordinary differential equations which can be solved numerically. In some specific cases, the eigenvalue problems can be solved analytically. Those unique examples of exact (explicit) solution of the nonparallel unsteady flow stability problems provide a very useful test for methods used in the hydrodynamic stability theory. Exact solutions of the stability problems for some stagnation-type flows are presented.
Space of 2D shapes and the Weil-Petersson metric: shapes, ideal fluid and Alzheimer's disease
13:10 Fri 25 Nov, 2011 :: B.19 Ingkarni Wardli :: Dr Sergey Kushnarev :: National University of Singapore

The Weil-Petersson metric is an exciting metric on a space of simple plane curves. In this talk the speaker will introduce the shape space and demonstrate the connection with the Euler-Poincare equations on the group of diffeomorphisms (EPDiff). A numerical method for finding geodesics between two shapes will be demonstrated and applied to the surface of the hippocampus to study the effects of Alzheimer's disease. As another application the speaker will discuss how to do statistics on the shape space and what should be done to improve it.
String Theory and the Quest for Quantum Spacetime
15:10 Fri 9 Mar, 2012 :: Ligertwood 333 Law Lecture Theatre 2 :: Prof Rajesh Gopakumar :: Harish-Chandra Research Institute

Media...
Space and time together constitute one of the most basic elements of physical reality. Since Einstein spacetime has become an active participant in the dynamics of the gravitational force. However, our notion of a quantum spacetime is still rudimentary. String theory, building upon hints provided from the physics of black holes, seems to be suggesting a very novel, "holographic" picture of what quantum spacetime might be. This relies on some very surprising connections of gravity with quantum field theories (which provide the framework for the description of the other fundamental interactions of nature). In this talk, I will try and convey some of the flavour of these connections as well as its significance.
The Lorentzian conformal analogue of Calabi-Yau manifolds
13:10 Fri 16 Mar, 2012 :: B.20 Ingkarni Wardli :: Prof Helga Baum :: Humboldt University

Calabi-Yau manifolds are Riemannian manifolds with holonomy group SU(m). They are Ricci-flat and Kahler and admit a 2-parameter family of parallel spinors. In the talk we will discuss the Lorentzian conformal analogue of this situation. If on a manifold a class of conformally equivalent metrics [g] is given, then one can consider the holonomy group of the conformal manifold (M,[g]), which is a subgroup of O(p+1,q+1) if the metric g has signature (p,q). There is a close relation between algebraic properties of the conformal holonomy group and the existence of Einstein metrics in the conformal class as well as to the existence of conformal Killing spinors. In the talk I will explain classification results for conformal holonomy groups of Lorentzian manifolds. In particular, I will describe Lorentzian manifolds (M,g) with conformal holonomy group SU(1,m), which can be viewed as the conformal analogue of Calabi-Yau manifolds. Such Lorentzian metrics g, known as Fefferman metrics, appear on S^1-bundles over strictly pseudoconvex CR spin manifolds and admit a 2-parameter family of conformal Killing spinors.
Fluid mechanics: what's maths got to do with it?
13:10 Tue 20 Mar, 2012 :: 7.15 Ingkarni Wardli :: A/Prof Jim Denier :: School of Mathematical Sciences

Media...
We've all heard about the grand challenges in mathematics. There was the Poincare Conjecture, which has now been resolved. There is the Riemann Hypothesis which many are seeking to prove. But one of the most intriguing is the so called "Navier-Stokes Equations" problem, intriguing because it not only involves some wickedly difficult mathematics but also involves questions about our deep understanding of nature as encountered in the flow of fluids. This talk will introduce the problem (without the wickedly difficult mathematics) and discuss some of the consequences of its resolution.
Financial risk measures - the theory and applications of backward stochastic difference/differential equations with respect to the single jump process
12:10 Mon 26 Mar, 2012 :: 5.57 Ingkarni Wardli :: Mr Bin Shen :: University of Adelaide

Media...
This is my PhD thesis submitted one month ago. Chapter 1 introduces the backgrounds of the research fields. Then each chapter is a published or an accepted paper. Chapter 2, to appear in Methodology and Computing in Applied Probability, establishes the theory of Backward Stochastic Difference Equations with respect to the single jump process in discrete time. Chapter 3, published in Stochastic Analysis and Applications, establishes the theory of Backward Stochastic Differential Equations with respect to the single jump process in continuous time. Chapter 2 and 3 consist of Part I Theory. Chapter 4, published in Expert Systems With Applications, gives some examples about how to measure financial risks by the theory established in Chapter 2. Chapter 5, accepted by Journal of Applied Probability, considers the question of an optimal transaction between two investors to minimize their risks. It's the applications of the theory established in Chapter 3. Chapter 4 and 5 consist of Part II Applications.
Instability in standing waves in inhomogeneous nonlinear Schrodinger equations
13:10 Fri 30 Mar, 2012 :: B.17 Ingkarni Wardli :: Dr Robert Marangell :: The University of Sydney

Media...
In this talk, I will describe a mechanism for determining instability of standing wave solutions to a class of inhomogeneous nonlinear Schrodinger (NLS) equations. The inhomogeneity in this case means that the equations will spatially alternate between NLS and the so-called Gross-Pitaevskii equation. Such equations are useful in 1-D models of Bose-Einstein Condensates (BECs). The mechanism is inherently topological and therefore robust, leading to its application to a number of different soliton solutions, such as gap solitons, surface gap solitons, and dark soliton among others.
Model turbulent floods based upon the Smagorinski large eddy closure
12:10 Mon 4 Jun, 2012 :: 5.57 Ingkarni Wardli :: Mr Meng Cao :: University of Adelaide

Media...
Rivers, floods and tsunamis are often very turbulent. Conventional models of such environmental fluids are typically based on depth-averaged inviscid irrotational flow equations. We explore changing such a base to the turbulent Smagorinski large eddy closure. The aim is to more appropriately model the fluid dynamics of such complex environmental fluids by using such a turbulent closure. Large changes in fluid depth are allowed. Computer algebra constructs the slow manifold of the flow in terms of the fluid depth h and the mean turbulent lateral velocities u and v. The major challenge is to deal with the nonlinear stress tensor in the Smagorinski closure. The model integrates the effects of inertia, self-advection, bed drag, gravitational forcing and turbulent dissipation with minimal assumptions. Although the resultant model is close to established models, the real outcome is creating a sound basis for the modelling so others, in their modelling of more complex situations, can systematically include more complex physical processes.
The motivic logarithm and its realisations
13:10 Fri 3 Aug, 2012 :: Engineering North 218 :: Dr James Borger :: Australian National University

When a complex manifold is defined by polynomial equations, its cohomology groups inherit extra structure. This was discovered by Hodge in the 1920s and 30s. When the defining polynomials have rational coefficients, there is some additional, arithmetic structure on the cohomology. This was discovered by Grothendieck and others in the 1960s. But here the situation is still quite mysterious because each cohomology group has infinitely many different arithmetic structures and while they are not directly comparable, they share many properties---with each other and with the Hodge structure. All written accounts of this that I'm aware of treat arbitrary varieties. They are beautifully abstract and non-explicit. In this talk, I'll take the opposite approach and try to give a flavour of the subject by working out a perhaps the simplest nontrivial example, the cohomology of C* relative to a subset of two points, in beautifully concrete and explicit detail. Here the common motif is the logarithm. In Hodge theory, it is realised as the complex logarithm; in the crystalline theory, it's as the p-adic logarithm; and in the etale theory, it's as Kummer theory. I'll assume you have some familiarity with usual, singular cohomology of topological spaces, but I won't assume that you know anything about these non-topological cohomology theories.
Geometry - algebraic to arithmetic to absolute
15:10 Fri 3 Aug, 2012 :: B.21 Ingkarni Wardli :: Dr James Borger :: Australian National University

Media...
Classical algebraic geometry is about studying solutions to systems of polynomial equations with complex coefficients. In arithmetic algebraic geometry, one digs deeper and studies the arithmetic properties of the solutions when the coefficients are rational, or even integral. From the usual point of view, it's impossible to go deeper than this for the simple reason that no smaller rings are available - the integers have no proper subrings. In this talk, I will explain how an emerging subject, lambda-algebraic geometry, allows one to do just this and why one might care.
Continuous random walk models for solute transport in porous media
15:10 Fri 17 Aug, 2012 :: B.21 Ingkarni Wardli :: Prof Pavel Bedrikovetski :: The University of Adelaide

Media...
The classical diffusion (thermal conductivity) equation was derived from the Master random walk equation and is parabolic. The main assumption was a probabilistic distribution of the jump length while the jump time is constant. Distribution of the jump time along with the jump length adds the second time derivative into the averaged equations, but the equation becomes ... elliptic! Where from to take an extra initial condition? We discuss how to pose the well-posed flow problem, exact 1d solution and numerous engineering applications. This is joint work with A. Shapiro and H. Yuan.
Principal Component Analysis (PCA)
12:30 Mon 3 Sep, 2012 :: B.21 Ingkarni Wardli :: Mr Lyron Winderbaum :: University of Adelaide

Media...
Principal Component Analysis (PCA) has become something of a buzzword recently in a number of disciplines including the gene expression and facial recognition. It is a classical, and fundamentally simple, concept that has been around since the early 1900's, its recent popularity largely due to the need for dimension reduction techniques in analyzing high dimensional data that has become more common in the last decade, and the availability of computing power to implement this. I will explain the concept, prove a result, and give a couple of examples. The talk should be accessible to all disciplines as it (should?) only assume first year linear algebra, the concept of a random variable, and covariance.
The Wonderful World of Interval Arithmetic
12:30 Mon 10 Sep, 2012 :: B.21 Ingkarni Wardli :: Ms Mingmei Teo :: University of Adelaide

Media...
There are many situations where we round off answers or give approximations to solutions to equations. Are we happy to do so or are there ways we can overcome this problem? What about providing intervals in which the true solution lies? An example of this is when Archimedes was able to contain \pi by taking a circle between inscribed and circumscribed polygons and take an increasing number of sides of the polygons. In this talk, I will explain a variety of things to do with interval arithmetic. These range from why interval arithmetic is useful to us, some basics of interval arithmetic and also some interesting and cool properties of intervals. I will also discuss briefly how I use it in my project.
Geometric quantisation in the noncompact setting
13:10 Fri 14 Sep, 2012 :: Engineering North 218 :: Dr Peter Hochs :: Leibniz University, Hannover

Traditionally, the geometric quantisation of an action by a compact Lie group on a compact symplectic manifold is defined as the equivariant index of a certain Dirac operator. This index is a well-defined formal difference of finite-dimensional representations, since the Dirac operator is elliptic and the manifold and the group in question are compact. From a mathematical and physical point of view however, it is very desirable to extend geometric quantisation to noncompact groups and manifolds. Defining a suitable index is much harder in the noncompact setting, but several interesting results in this direction have been obtained. I will review the difficulties connected to noncompact geometric quantisation, and some of the solutions that have been proposed so far, mainly in connection to the "quantisation commutes with reduction" principle. (An introduction to this principle will be given in my talk at the Colloquium on the same day.)
Quantisation commutes with reduction
15:10 Fri 14 Sep, 2012 :: B.20 Ingkarni Wardli :: Dr Peter Hochs :: Leibniz University Hannover

Media...
The "Quantisation commutes with reduction" principle is an idea from physics, which has powerful applications in mathematics. It basically states that the ways in which symmetry can be used to simplify a physical system in classical and quantum mechanics, are compatible. This provides a strong link between the areas in mathematics used to describe symmetry in classical and quantum mechanics: symplectic geometry and representation theory, respectively. It has been proved in the 1990s that quantisation indeed commutes with reduction, under the important assumption that all spaces and symmetry groups involved are compact. This talk is an introduction to this principle and, if time permits, its mathematical relevance.
Krylov Subspace Methods or: How I Learned to Stop Worrying and Love GMRes
12:10 Mon 17 Sep, 2012 :: B.21 Ingkarni Wardli :: Mr David Wilke :: University of Adelaide

Media...
Many problems within applied mathematics require the solution of a linear system of equations. For instance, models of arterial umbilical blood flow are obtained through a finite element approximation, resulting in a linear, n x n system. For small systems the solution is (almost) trivial, but what happens when n is large? Say, n ~ 10^6? In this case matrix inversion is expensive (read: completely impractical) and we seek approximate solutions in a reasonable time. In this talk I will discuss the basic theory underlying Krylov subspace methods; a class of non-stationary iterative methods which are currently the methods-of-choice for large, sparse, linear systems. In particular I will focus on the method of Generalised Minimum RESiduals (GMRes), which is of the most popular for nonsymmetric systems. It is hoped that through this presentation I will convince you that a) solving linear systems is not necessarily trivial, and that b) my lack of any tangible results is not (entirely) a result of my own incompetence.
The advection-diffusion-reaction equation on the surface of the sphere
12:10 Mon 24 Sep, 2012 :: B.21 Ingkarni Wardli :: Mr Kale Davies :: University of Adelaide

Media...
We aim to solve the advection-diffusion-reaction equation on the surface of a sphere. In order to do this we will be required to utilise spherical harmonics, a set of solutions to Laplace's equation in spherical coordinates. Upon solving the equations, we aim to find a set of parameters that cause a localised concentration to be maintained in the flow, referred to as a hotspot. In this talk I will discuss the techniques that are required to numerically solve this problem and the issues that occur/how to deal with these issues when searching for hotspot solutions.
Thin-film flow in helically-wound channels with small torsion
15:10 Fri 26 Oct, 2012 :: B.21 Ingkarni Wardli :: Dr Yvonne Stokes :: University of Adelaide

The study of flow in open helically-wound channels has application to many natural and industrial flows. We will consider laminar flow down helically-wound channels of rectangular cross section and with small torsion, in which the fluid depth is small. Assuming a steady-state flow that is independent of position along the axis of the channel, the flow solution may be determined in the two-dimensional cross section of the channel. A thin-film approximation yields explicit expressions for the fluid velocity in terms of the free-surface shape. The latter satisfies an interesting non-linear ordinary differential equation that, for a channel of rectangular cross section, has an analytical solution. The predictions of the thin-film model are shown to be in good agreement with much more computationally intensive solutions of the small-helix-torsion Navier-Stokes equations. This work has particular relevance to spiral particle separators used in the minerals processing industry. Early work on modelling of particle-laden thin-film flow in spiral channels will also be discussed.
Thin-film flow in helically-wound channels with small torsion
15:10 Fri 26 Oct, 2012 :: B.21 Ingkarni Wardli :: Dr Yvonne Stokes :: University of Adelaide

The study of flow in open helically-wound channels has application to many natural and industrial flows. We will consider laminar flow down helically-wound channels of rectangular cross section and with small torsion, in which the fluid depth is small. Assuming a steady-state flow that is independent of position along the axis of the channel, the flow solution may be determined in the two-dimensional cross section of the channel. A thin-film approximation yields explicit expressions for the fluid velocity in terms of the free-surface shape. The latter satisfies an interesting non-linear ordinary differential equation that, for a channel of rectangular cross section, has an analytical solution. The predictions of the thin-film model are shown to be in good agreement with much more computationally intensive solutions of the small-helix-torsion Navier-Stokes equations. This work has particular relevance to spiral particle separators used in the minerals processing industry. Early work on modelling of particle-laden thin-film flow in spiral channels will also be discussed.
Twisted analytic torsion and adiabatic limits
13:10 Wed 5 Dec, 2012 :: Ingkarni Wardli B17 :: Mr Ryan Mickler :: University of Adelaide

We review Mathai-Wu's recent extension of Ray-Singer analytic torsion to supercomplexes. We explore some new results relating these two torsions, and how we can apply the adiabatic spectral sequence due to Forman and Farber's analytic deformation theory to compute some spectral invariants of the complexes involved, answering some questions that were posed in Mathai-Wu's paper.
A multiscale approach to reaction-diffusion processes in domains with microstructure
15:10 Fri 15 Mar, 2013 :: B.18 Ingkarni Wardli :: Prof Malte Peter :: University of Augsburg

Media...
Reaction-diffusion processes occur in many materials with microstructure such as biological cells, steel or concrete. The main difficulty in modelling and simulating accurately such processes is to account for the fine microstructure of the material. One method of upscaling multi-scale problems, which has proven reliable for obtaining feasible macroscopic models, is the method of periodic homogenisation. The talk will give an introduction to multi-scale modelling of chemical mechanisms in domains with microstructure as well as to the method of periodic homogenisation. Moreover, a few aspects of solving the resulting systems of equations numerically will also be discussed.
Einstein's special relativity beyond the speed of light
14:10 Mon 18 Mar, 2013 :: 7.15 Ingkarni Wardli :: Prof. Jim Hill :: School of Mathematical Sciences

Media...
We derive extended Lorentz transformations between inertial frames for relative velocities greater than the speed of light, and which are complementary to the Lorentz transformation giving rise to the Einstein special theory of relativity. The new transformations arise from the same mathematical framework as the Lorentz transformation, displaying singular behaviour when the relative velocity approaches the speed of light and generating the same addition law for velocities, but most importantly, do not involve the need to introduce imaginary masses or complicated physics to provide well-defined expressions.
A stability theorem for elliptic Harnack inequalities
15:10 Fri 5 Apr, 2013 :: B.18 Ingkarni Wardli :: Prof Richard Bass :: University of Connecticut

Media...
Harnack inequalities are an important tool in probability theory, analysis, and partial differential equations. The classical Harnack inequality is just the one you learned in your graduate complex analysis class, but there have been many extensions, to different spaces, such as manifolds, fractals, infinite graphs, and to various sorts of elliptic operators. A landmark result was that of Moser in 1961, where he proved the Harnack inequality for solutions to a class of partial differential equations. I will talk about the stability of Harnack inequalities. The main result says that if the Harnack inequality holds for an operator on a space, then the Harnack inequality will also hold for a large class of other operators on that same space. This provides a generalization of the result of Moser.
M-theory and higher gauge theory
13:10 Fri 12 Apr, 2013 :: Ingkarni Wardli B20 :: Dr Christian Saemann :: Heriot-Watt University

I will review my recent work on integrability of M-brane configurations and the description of M-brane models in higher gauge theory. In particular, I will discuss categorified analogues of instantons and present superconformal equations of motion for the non-abelian tensor multiplet in six dimensions. The latter are derived from considering non-abelian gerbes on certain twistor spaces.
Crystallographic groups I: the classical theory
12:10 Fri 17 May, 2013 :: Ingkarni Wardli B19 :: Dr Wolfgang Globke :: University of Adelaide

A discrete isometry group acting properly discontinuously on the n-dimensional Euclidean space with compact quotient is called a crystallographic group. This name reflects the fact that in dimension n=3 their compact fundamental domains resemble a space-filling crystal pattern. For higher dimensions, Hilbert posed his famous 18th problem: "Is there in n-dimensional Euclidean space only a finite number of essentially different kinds of groups of motions with a [compact] fundamental region?" This problem was solved by Bieberbach when he proved that in every dimension n there exists only a finite number of isomorphic crystallographic groups and also gave a description of these groups. From the perspective of differential geometry these results are of major importance, as crystallographic groups are precisely the fundamental groups of compact flat Riemannian orbifolds. The quotient is even a manifold if the fundamental group is required to be torsion-free, in which case it is called a Bieberbach group. Moreover, for a flat manifold the fundamental group completely determines the holonomy group. In this talk I will discuss the properties of crystallographic groups, study examples in dimension n=2 and n=3, and present the three Bieberbach theorems on the structure of crystallographic groups.
K-homology and the quantization commutes with reduction problem
12:10 Fri 5 Jul, 2013 :: 7.15 Ingkarni Wardli :: Prof Nigel Higson :: Pennsylvania State University

The quantization commutes with reduction problem for Hamiltonian actions of compact Lie groups was solved by Meinrenken in the mid-1990s using geometric techniques, and solved again shortly afterwards by Tian and Zhang using analytic methods. In this talk I shall outline some of the close links that exist between the problem, the two solutions, and the geometric and analytic versions of K-homology theory that are studied in noncommutative geometry. I shall try to make the case for K-homology as a useful conceptual framework for the solutions and (at least some of) their various generalizations.
Fire-Atmosphere Models
12:10 Mon 29 Jul, 2013 :: B.19 Ingkarni Wardli :: Mika Peace :: University of Adelaide

Media...
Fire behaviour models are increasingly being used to assist in planning and operational decisions for bush fires and fuel reduction burns. Rate of spread (ROS) of the fire front is a key output of such models. The ROS value is typically calculated from a formula which has been derived from empirical data, using very simple meteorological inputs. We have used a coupled fire-atmosphere model to simulate real bushfire events. The results show that complex interactions between a fire and the atmosphere can have a significant influence on fire spread, thus highlighting the limitations of a model that uses simple meteorological inputs.
Shannon entropy as a diagnostic tool for PDEs in conservation form
15:10 Fri 16 Aug, 2013 :: B.18 Ingkarni Wardli :: Prof Philip Broadbridge :: La Trobe University

Media...
After normalization, an evolving real non-negative function may be viewed as a probability density. From this we may derive the corresponding evolution law for Shannon entropy. Parabolic equations, hyperbolic equations and fourth-order diffusion equations evolve information in quite different ways. Entropy and irreversibility can be introduced in a self-consistent manner and at an elementary level by reference to some simple evolution equations such as the linear heat equation. It is easily seen that the 2nd law of thermodynamics is equivalent to loss of Shannon information when temperature obeys a general nonlinear 2nd order diffusion equation. With fourth order diffusion terms, new problems arise. We know from applications such as thin film flow and surface diffusion, that fourth order diffusion terms may generate ripples and they do not satisfy the Second Law. Despite this, we can identify the class of fourth order quasilinear diffusion equations that increase the Shannon entropy.
The Einstein equations with torsion, reduction and duality
12:10 Fri 23 Aug, 2013 :: Ingkarni Wardli B19 :: Dr David Baraglia :: University of Adelaide

We consider the Einstein equations for connections with skew torsion. After some general remarks we look at these equations on principal G-bundles, making contact with string structures and heterotic string theory in the process. When G is a torus the equations are shown to possess a symmetry not shared by the usual Einstein equations - T-duality. This is joint work with Pedram Hekmati.
The logarithmic singularities of the Green functions of the conformal powers of the Laplacian
11:10 Mon 16 Sep, 2013 :: Ingkarni Wardli B20 :: Prof Raphael Ponge :: Seoul National University

Green functions play an important role in conformal geometry. In this talk, we shall explain how to compute explicitly the logarithmic singularities of the Green functions of the conformal powers of the Laplacian. These operators are the Yamabe and Paneitz operators, as well as the conformal fractional powers of the Laplacian arising from scattering theory for Poincare-Einstein metrics. The results are formulated in terms of Weyl conformal invariants defined via the ambient metric of Fefferman-Graham.
A gentle introduction to bubble evolution in Hele-Shaw flows
15:10 Fri 22 Nov, 2013 :: 5.58 (Ingkarni Wardli) :: Dr Scott McCue :: QUT

A Hele-Shaw cell is easy to make and serves as a fun toy for an applied mathematician to play with. If we inject air into a Hele-Shaw cell that is otherwise filled with viscous fluid, we can observe a bubble of air growing in size. The process is highly unstable, and the bubble boundary expands in an uneven fashion, leading to striking fingering patterns (look up Hele-Shaw cell or Saffman-Taylor instability on YouTube). From a mathematical perspective, modelling these Hele-Shaw flows is interesting because the governing equations are sufficiently ``simple'' that a considerable amount of analytical progress is possible. Indeed, there is no other context in which (genuinely) two-dimensional moving boundary problems are so tractable. More generally, Hele-Shaw flows are important as they serve as prototypes for more complicated (and important) physical processes such as crystal growth and diffusion limited aggregation. I will give an introduction to some of the main ideas and summarise some of my present research in this area.
A few flavours of optimal control of Markov chains
11:00 Thu 12 Dec, 2013 :: B18 :: Dr Sam Cohen :: Oxford University

Media...
In this talk we will outline a general view of optimal control of a continuous-time Markov chain, and how this naturally leads to the theory of Backward Stochastic Differential Equations. We will see how this class of equations gives a natural setting to study these problems, and how we can calculate numerical solutions in many settings. These will include problems with payoffs with memory, with random terminal times, with ergodic and infinite-horizon value functions, and with finite and infinitely many states. Examples will be drawn from finance, networks and electronic engineering.
Geometric quantisation in the noncompact setting
12:10 Fri 7 Mar, 2014 :: Ingkarni Wardli B20 :: Peter Hochs :: University of Adelaide

Geometric quantisation is a way to construct quantum mechanical phase spaces (Hilbert spaces) from classical mechanical phase spaces (symplectic manifolds). In the presence of a group action, the quantisation commutes with reduction principle states that geometric quantisation should be compatible with the ways the group action can be used to simplify (reduce) the classical and quantum phase spaces. This has deep consequences for the link between symplectic geometry and representation theory. The quantisation commutes with reduction principle has been given explicit meaning, and been proved, in cases where the symplectic manifold and the group acting on it are compact. There have also been results where just the group, or the orbit space of the action, is assumed to be compact. These are important and difficult, but it is somewhat frustrating that they do not even apply to the simplest example from the physics point of view: a free particle in Rn. This talk is about a joint result with Mathai Varghese where the group, manifold and orbit space may all be noncompact.
Embed to homogenise heterogeneous wave equation.
12:35 Mon 17 Mar, 2014 :: B.19 Ingkarni Wardli :: Chen Chen :: University of Adelaide

Media...
Consider materials with complicated microstructure: we want to model their large scale dynamics by equations with effective, `average' coefficients. I will show an example of heterogeneous wave equation in 1D. If Centre manifold theory is applied to model the original heterogeneous wave equation directly, we will get a trivial model. I embed the wave equation into a family of more complex wave problems and I show the equivalence of the two sets of solutions.
T-Duality and its Generalizations
12:10 Fri 11 Apr, 2014 :: Ingkarni Wardli B20 :: Jarah Evslin :: Theoretical Physics Center for Science Facilities, CAS

Given a manifold M with a torus action and a choice of integral 3-cocycle H, T-duality yields another manifold with a torus action and integral 3-cocyle. It induces a number of surprising automorphisms between structures on these manifolds. In this talk I will review T-duality and describe some work on two generalizations which are realized in string theory: NS5-branes and heterotic strings. These respectively correspond to non-closed 3-classes H and to principal bundles fibered over M.
Complexifications, Realifications, Real forms and Complex Structures
12:10 Mon 23 Jun, 2014 :: B.19 Ingkarni Wardli :: Kelli Francis-Staite :: University of Adelaide

Media...
Italian mathematicians Niccolò Fontana Tartaglia and Gerolamo Cardano introduced complex numbers to solve polynomial equations such as x^2+1=0. Solving a standard real differential equation often uses complex eigenvalues and eigenfunctions. In both cases, the solution space is expanded to include the complex numbers, solved, and then translated back to the real case. My talk aims to explain the process of complexification and related concepts. It will give vocabulary and some basic results about this important process. And it will contain cute cat pictures.
The Bismut-Chern character as dimension reduction functor and its twisting
12:10 Fri 4 Jul, 2014 :: Ingkarni Wardli B20 :: Fei Han :: National University of Singapore

The Bismut-Chern character is a loop space refinement of the Chern character. It plays an essential role in the interpretation of the Atiyah-Singer index theorem from the point of view of loop space. In this talk, I will first briefly review the construction of the Bismut-Chern character and show how it can be viewed as a dimension reduction functor in the Stolz-Teichner program on supersymmetric quantum field theories. I will then introduce the construction of the twisted Bismut-Chern character, which represents our joint work with Varghese Mathai.
Modelling the mean-field behaviour of cellular automata
12:10 Mon 4 Aug, 2014 :: B.19 Ingkarni Wardli :: Kale Davies :: University of Adelaide

Media...
Cellular automata (CA) are lattice-based models in which agents fill the lattice sites and behave according to some specified rule. CA are particularly useful when modelling cell behaviour and as such many people consider CA model in which agents undergo motility and proliferation type events. We are particularly interested in predicting the average behaviour of these models. In this talk I will show how a system of differential equations can be derived for the system and discuss the difficulties that arise in even the seemingly simple case of a CA with motility and proliferation.
Hydrodynamics and rheology of self-propelled colloids
15:10 Fri 8 Aug, 2014 :: B17 Ingkarni Wardli :: Dr Sarthok Sircar :: University of Adelaide

The sub-cellular world has many components in common with soft condensed matter systems (polymers, colloids and liquid crystals). But it has novel properties, not present in traditional complex fluids, arising from a rich spectrum of non-equilibrium behavior: flocking, chemotaxis and bioconvection. The talk is divided into two parts. In the first half, we will (get an idea on how to) derive a hydrodynamic model for self-propelled particles of an arbitrary shape from first principles, in a sufficiently dilute suspension limit, moving in a 3-dimensional space inside a viscous solvent. The model is then restricted to particles with ellipsoidal geometry to quantify the interplay of the long-range excluded volume and the short-range self-propulsion effects. The expression for the constitutive stresses, relating the kinetic theory with the momentum transport equations, are derived using a combination of the virtual work principle (for extra elastic stresses) and symmetry arguments (for active stresses). The second half of the talk will highlight on my current numerical expertise. In particular we will exploit a specific class of spectral basis functions together with RK4 time-stepping to determine the dynamical phases/structures as well as phase-transitions of these ellipsoidal clusters. We will also discuss on how to define the order (or orientation) of these clusters and understand the other rheological quantities.
Boundary-value problems for the Ricci flow
15:10 Fri 15 Aug, 2014 :: B.18 Ingkarni Wardli :: Dr Artem Pulemotov :: The University of Queensland

Media...
The Ricci flow is a differential equation describing the evolution of a Riemannian manifold (i.e., a "curved" geometric object) into an Einstein manifold (i.e., an object with a "constant" curvature). This equation is particularly famous for its key role in the proof of the Poincare Conjecture. Understanding the Ricci flow on manifolds with boundary is a difficult problem with applications to a variety of fields, such as topology and mathematical physics. The talk will survey the current progress towards the resolution of this problem. In particular, we will discuss new results concerning spaces with symmetries.
T-duality and the chiral de Rham complex
12:10 Fri 22 Aug, 2014 :: Ingkarni Wardli B20 :: Andrew Linshaw :: University of Denver

The chiral de Rham complex of Malikov, Schechtman, and Vaintrob is a sheaf of vertex algebras that exists on any smooth manifold M. It has a square-zero differential D, and contains the algebra of differential forms on M as a subcomplex. In this talk, I'll give an introduction to vertex algebras and sketch this construction. Finally, I'll discuss a notion of T-duality in this setting. This is based on joint work in progress with V. Mathai.
Spherical T-duality
01:10 Mon 25 Aug, 2014 :: Ingkarni Wardli B18 :: Mathai Varghese :: University of Adelaide

I will talk on a new variant of T-duality, called spherical T-duality, which relates pairs of the form (P,H) consisting of a principal SU(2)-bundle P --> M and a 7-cocycle H on P. Intuitively spherical T-duality exchanges H with the second Chern class c_2(P). This is precisely true when M is compact oriented and dim(M) is at most 4. When M is higher dimensional, not all pairs (P,H) admit spherical T-duals and even when they exist, the spherical T-duals are not always unique. We will try and explain this phenomenon. Nonetheless, we prove that all spherical T-dualities induce a degree-shifting isomorphism on the 7-twisted cohomologies of the bundles and, when dim(M) is at most 7, also their integral twisted cohomologies and, when dim(M) is at most 4, even their 7-twisted K-theories. While the complete physical relevance of spherical T-duality is still being explored, it does provide an identification between conserved charges in certain distinct IIB supergravity and string compactifications. This is joint work with Peter Bouwknegt and Jarah Evslin.
Exploration vs. Exploitation with Partially Observable Gaussian Autoregressive Arms
15:00 Mon 29 Sep, 2014 :: Engineering North N132 :: Julia Kuhn :: The University of Queensland & The University of Amsterdam

Media...
We consider a restless bandit problem with Gaussian autoregressive arms, where the state of an arm is only observed when it is played and the state-dependent reward is collected. Since arms are only partially observable, a good decision policy needs to account for the fact that information about the state of an arm becomes more and more obsolete while the arm is not being played. Thus, the decision maker faces a tradeoff between exploiting those arms that are believed to be currently the most rewarding (i.e. those with the largest conditional mean), and exploring arms with a high conditional variance. Moreover, one would like the decision policy to remain tractable despite the infinite state space and also in systems with many arms. A policy that gives some priority to exploration is the Whittle index policy, for which we establish structural properties. These motivate a parametric index policy that is computationally much simpler than the Whittle index but can still outperform the myopic policy. Furthermore, we examine the many-arm behavior of the system under the parametric policy, identifying equations describing its asymptotic dynamics. Based on these insights we provide a simple heuristic algorithm to evaluate the performance of index policies; the latter is used to optimize the parametric index.
The Serre-Grothendieck theorem by geometric means
12:10 Fri 24 Oct, 2014 :: Ingkarni Wardli B20 :: David Roberts :: University of Adelaide

The Serre-Grothendieck theorem implies that every torsion integral 3rd cohomology class on a finite CW-complex is the invariant of some projective bundle. It was originally proved in a letter by Serre, used homotopical methods, most notably a Postnikov decomposition of a certain classifying space with divisible homotopy groups. In this talk I will outline, using work of the algebraic geometer Offer Gabber, a proof for compact smooth manifolds using geometric means and a little K-theory.
Multiscale modelling of multicellular biological systems: mechanics, development and disease
03:10 Fri 6 Mar, 2015 :: Lower Napier LG24 :: Dr James Osborne :: University of Melbourne

When investigating the development and function of multicellular biological systems it is not enough to only consider the behaviour of individual cells in isolation. For example when studying tissue development, how individual cells interact, both mechanically and biochemically, influences the resulting tissues form and function. In this talk we present a multiscale modelling framework for simulating the development and function of multicellular biological systems (in particular tissues). Utilising the natural structural unit of the cell, the framework consists of three main scales: the tissue level (macro-scale); the cell level (meso-scale); and the sub-cellular level (micro-scale), with multiple interactions occurring between all scales. The cell level is central to the framework and cells are modelled as discrete interacting entities using one of a number of possible modelling paradigms, including lattice based models (cellular automata and cellular Potts) and off-lattice based models (cell centre and vertex based representations). The sub-cellular level concerns numerous metabolic and biochemical processes represented by interaction networks rendered stochastically or into ODEs. The outputs from such systems influence the behaviour of the cell level affecting properties such as adhesion and also influencing cell mitosis and apoptosis. At the tissue level we consider factors or restraints that influence the cells, for example the distribution of a nutrient or messenger molecule, which is represented by field equations, on a growing domain, with individual cells functioning as sinks and/or sources. The modular approach taken within the framework enables more realistic behaviour to be considered at each scale. This framework is implemented within the Open Source Chaste library (Cancer Heart and Soft Tissue Environment, (http://www.cs.ox.ac.uk/chaste/) and has been used to model biochemical and biomechanical interactions in various biological systems. In this talk we present the key ideas of the framework along with applications within the fields of development and disease.
Tannaka duality for stacks
12:10 Fri 6 Mar, 2015 :: Ingkarni Wardli B20 :: Jack Hall :: Australian National University

Traditionally, Tannaka duality is used to reconstruct a group from its representations. I will describe a reformulation of this duality for stacks, which is due to Lurie, and briefly touch on some applications.
Higher rank discrete Nahm equations for SU(N) monopoles in hyperbolic space
11:10 Wed 8 Apr, 2015 :: Engineering & Maths EM213 :: Joseph Chan :: University of Melbourne

Braam and Austin in 1990, proved that SU(2) magnetic monopoles in hyperbolic space H^3 are the same as solutions of the discrete Nahm equations. I apply equivariant K-theory to the ADHM construction of instantons/holomorphic bundles to extend the Braam-Austin result from SU(2) to SU(N). During its evolution, the matrices of the higher rank discrete Nahm equations jump in dimensions and this behaviour has not been observed in discrete evolution equations before. A secondary result is that the monopole field at the boundary of H^3 determines the monopole.
IGA Workshop on Symmetries and Spinors: Interactions Between Geometry and Physics
09:30 Mon 13 Apr, 2015 :: Conference Room 7.15 on Level 7 of the Ingkarni Wardli building :: J. Figueroa-O'Farrill (University of Edinburgh), M. Zabzine (Uppsala University), et al

Media...
The interplay between physics and geometry has lead to stunning advances and enriched the internal structure of each field. This is vividly exemplified in the theory of supergravity, which is a supersymmetric extension of Einstein's relativity theory to the small scales governed by the laws of quantum physics. Sophisticated mathematics is being employed for finding solutions to the generalised Einstein equations and in return, they provide a rich source for new exotic geometries. This workshop brings together world-leading scientists from both, geometry and mathematical physics, as well as young researchers and students, to meet and learn about each others work.
Spherical T-duality: the non-principal case
12:10 Fri 1 May, 2015 :: Napier 144 :: Mathai Varghese :: University of Adelaide

Spherical T-duality is related to M-theory and was introduced in recent joint work with Bouwknegt and Evslin. I will begin by briefly reviewing the case of principal SU(2)-bundles with degree 7 flux, and then focus on the non-principal case for most of the talk, ending with the relation to SUGRA/M-theory.
An Engineer-Mathematician Duality Approach to Finite Element Methods
12:10 Mon 18 May, 2015 :: Napier LG29 :: Jordan Belperio :: University of Adelaide

Media...
The finite element method has been a prominently used numerical technique for engineers solving solid mechanics, electro-magnetic and heat transfer problems for over 30 years. More recently the finite element method has been used to solve fluid mechanics problems, a field where finite difference methods are more commonly used. In this talk, I will introduce the basic mathematics behind the finite element method, the similarity between the finite element method and finite difference method and comparing how engineers and mathematicians use finite element methods. I will then demonstrate two solutions to the wave equation using the finite element method.
Big things are weird
12:10 Mon 25 May, 2015 :: Napier LG29 :: Luke Keating-Hughes :: University of Adelaide

Media...
The pyramids of Giza, the depths of the Mariana trench, the massive Einstein Cross Quasar; all of these things are big and weird. Big weird things aren't just apparent in the physical world though, they appear in mathematics too! In this talk I will try to motivate a mathematical big thing and then show that it is weird. In particular, we will introduce the necessary topology and homotopy theory in order to show that although all finite dimensional spheres are (almost canonically) non-contractible spaces - an infinite dimensional sphere IS contractible! This result's significance will then be explained in the context of Kuiper's Theorem if time permits.
Dirac operators and Hamiltonian loop group action
12:10 Fri 24 Jul, 2015 :: Engineering and Maths EM212 :: Yanli Song :: University of Toronto

A definition to the geometric quantization for compact Hamiltonian G-spaces is given by Bott, defined as the index of the Spinc-Dirac operator on the manifold. In this talk, I will explain how to generalize this idea to the Hamiltonian LG-spaces. Instead of quantizing infinite-dimensional manifolds directly, we use its equivalent finite-dimensional model, the quasi-Hamiltonian G-spaces. By constructing twisted spinor bundle and twisted pre-quantum bundle on the quasi-Hamiltonian G-space, we define a Dirac operator whose index are given by positive energy representation of loop groups. A key role in the construction will be played by the algebraic cubic Dirac operator for loop algebra. If time permitted, I will also explain how to prove the quantization commutes with reduction theorem for Hamiltonian LG-spaces under this framework.
Quantising proper actions on Spin-c manifolds
11:00 Fri 31 Jul, 2015 :: Ingkarni Wardli Level 7 Room 7.15 :: Peter Hochs :: The University of Adelaide

Media...
For a proper action by a Lie group on a Spin-c manifold (both of which may be noncompact), we study an index of deformations of the Spin-c Dirac operator, acting on the space of spinors invariant under the group action. When applied to spinors that are square integrable transversally to orbits in a suitable sense, the kernel of this operator turns out to be finite-dimensional, under certain hypotheses of the deformation. This also allows one to show that the index has the quantisation commutes with reduction property (as proved by Meinrenken in the compact symplectic case, and by Paradan-Vergne in the compact Spin-c case), for sufficiently large powers of the determinant line bundle. Furthermore, this result extends to Spin-c Dirac operators twisted by vector bundles. A key ingredient of the arguments is the use of a family of inner products on the Lie algebra, depending on a point in the manifold. This is joint work with Mathai Varghese.
T-duality and bulk-boundary correspondence
12:10 Fri 11 Sep, 2015 :: Ingkarni Wardli B17 :: Guo Chuan Thiang :: The University of Adelaide

Media...
Bulk-boundary correspondences in physics can be modelled as topological boundary homomorphisms in K-theory, associated to an extension of a "bulk algebra" by a "boundary algebra". In joint work with V. Mathai, such bulk-boundary maps are shown to T-dualize into simple restriction maps in a large number of cases, generalizing what the Fourier transform does for ordinary functions. I will give examples, involving both complex and real K-theory, and explain how these results may be used to study topological phases of matter and D-brane charges in string theory.
Use of epidemic models in optimal decision making
15:00 Thu 19 Nov, 2015 :: Ingkarni Wardli 5.57 :: Tim Kinyanjui :: School of Mathematics, The University of Manchester

Media...
Epidemic models have proved useful in a number of applications in epidemiology. In this work, I will present two areas that we have used modelling to make informed decisions. Firstly, we have used an age structured mathematical model to describe the transmission of Respiratory Syncytial Virus in a developed country setting and to explore different vaccination strategies. We found that delayed infant vaccination has significant potential in reducing the number of hospitalisations in the most vulnerable group and that most of the reduction is due to indirect protection. It also suggests that marked public health benefit could be achieved through RSV vaccine delivered to age groups not seen as most at risk of severe disease. The second application is in the optimal design of studies aimed at collection of household-stratified infection data. A design decision involves making a trade-off between the number of households to enrol and the sampling frequency. Two commonly used study designs are considered: cross-sectional and cohort. The search for an optimal design uses Bayesian methods to explore the joint parameter-design space combined with Shannon entropy of the posteriors to estimate the amount of information for each design. We found that for the cross-sectional designs, the amount of information increases with the sampling intensity while the cohort design often exhibits a trade-off between the number of households sampled and the intensity of follow-up. Our results broadly support the choices made in existing data collection studies.
T-duality for elliptic curve orientifolds
12:10 Fri 4 Mar, 2016 :: Ingkarni Wardli B17 :: Jonathan Rosenberg :: University of Maryland

Media...
Orientifold string theories are quantum field theories based on the geometry of a space with an involution. T-dualities are certain relationships between such theories that look different on the surface but give rise to the same observable physics. In this talk I will not assume any knowledge of physics but will concentrate on the associated geometry, in the case where the underlying space is a (complex) elliptic curve and the involution is either holomorphic or anti-holomorphic. The results blend algebraic topology and algebraic geometry. This is mostly joint work with Chuck Doran and Stefan Mendez-Diez.
Harmonic Analysis in Rough Contexts
15:10 Fri 13 May, 2016 :: Engineering South S112 :: Dr Pierre Portal :: Australian National University

Media...
In recent years, perspectives on what constitutes the ``natural" framework within which to conduct various forms of mathematical analysis have shifted substantially. The common theme of these shifts can be described as a move towards roughness, i.e. the elimination of smoothness assumptions that had previously been considered fundamental. Examples include partial differential equations on domains with a boundary that is merely Lipschitz continuous, geometric analysis on metric measure spaces that do not have a smooth structure, and stochastic analysis of dynamical systems that have nowhere differentiable trajectories. In this talk, aimed at a general mathematical audience, I describe some of these shifts towards roughness, placing an emphasis on harmonic analysis, and on my own contributions. This includes the development of heat kernel methods in situations where such a kernel is merely a distribution, and applications to deterministic and stochastic partial differential equations.
Multi-scale modeling in biofluids and particle aggregation
15:10 Fri 17 Jun, 2016 :: B17 Ingkarni Wardli :: Dr Sarthok Sircar :: University of Adelaide

In today's seminar I will give 2 examples in mathematical biology which describes the multi-scale organization at 2 levels: the meso/micro level and the continuum/macro level. I will then detail suitable tools in statistical mechanics to link these different scales. The first problem arises in mathematical physiology: swelling-de-swelling mechanism of mucus, an ionic gel. Mucus is packaged inside cells at high concentration (volume fraction) and when released into the extracellular environment, it expands in volume by two orders of magnitude in a matter of seconds. This rapid expansion is due to the rapid exchange of calcium and sodium that changes the cross-linked structure of the mucus polymers, thereby causing it to swell. Modeling this problem involves a two-phase, polymer/solvent mixture theory (in the continuum level description), together with the chemistry of the polymer, its nearest neighbor interaction and its binding with the dissolved ionic species (in the micro-scale description). The problem is posed as a free-boundary problem, with the boundary conditions derived from a combination of variational principle and perturbation analysis. The dynamics of neutral gels and the equilibrium-states of the ionic gels are analyzed. In the second example, we numerically study the adhesion fragmentation dynamics of rigid, round particles clusters subject to a homogeneous shear flow. In the macro level we describe the dynamics of the number density of these cluster. The description in the micro-scale includes (a) binding/unbinding of the bonds attached on the particle surface, (b) bond torsion, (c) surface potential due to ionic medium, and (d) flow hydrodynamics due to shear flow.
Probabilistic Meshless Methods for Bayesian Inverse Problems
15:10 Fri 5 Aug, 2016 :: Engineering South S112 :: Dr Chris Oates :: University of Technology Sydney

Media...
This talk deals with statistical inverse problems that involve partial differential equations (PDEs) with unknown parameters. Our goal is to account, in a rigorous way, for the impact of discretisation error that is introduced at each evaluation of the likelihood due to numerical solution of the PDE. In the context of meshless methods, the proposed, model-based approach to discretisation error encourages statistical inferences to be more conservative in the presence of significant solver error. In addition, (i) a principled learning-theoretic approach to minimise the impact of solver error is developed, and (ii) the challenge of non-linear PDEs is considered. The method is applied to parameter inference problems in which non-negligible solver error must be accounted for in order to draw valid statistical conclusions.
Predicting turbulence
14:10 Tue 30 Aug, 2016 :: Napier 209 :: Dr Trent Mattner :: School of Mathematical Sciences

Media...
Turbulence is characterised by three-dimensional unsteady fluid motion over a wide range of spatial and temporal scales. It is important in many problems of technological and scientific interest, such as drag reduction, energy production and climate prediction. Turbulent flows are governed by the Navier--Stokes equations, which are a nonlinear system of partial differential equations. Typically, numerical methods are needed to find solutions to these equations. In turbulent flows, however, the resulting computational problem is usually intractable. Filtering or averaging the Navier--Stokes equations mitigates the computational problem, but introduces new quantities into the equations. Mathematical models of turbulence are needed to estimate these quantities. One promising turbulence model consists of a random collection of fluid vortices, which are themselves approximate solutions of the Navier--Stokes equations.
Some results on the stability of flat Stokes layers
15:10 Fri 14 Oct, 2016 :: Ingkarni Wardli 5.57 :: Professor Andrew Bassom :: University of Tasmania

The flat Stokes layer is one of the relatively few exact solutions of the incompressible Navier-Stokes equations. For that reason the temporal stability of the layer has attracted considerable interest over the years. Fortunately, not only is the issue one solely of academic curiosity, but some kind of Stokes layer is likely to be set up at the boundaries of any physical time-periodic flow making its stability of practical interest as well. In this talk I shall review progress made in the understanding of the linear stability properties of the flow. In particular I will discuss the fact that theoretical predictions of critical conditions are wildly different from those observed in the laboratory.
Fault tolerant computation of hyperbolic PDEs with the sparse grid combination technique
15:10 Fri 28 Oct, 2016 :: Ingkarni Wardli 5.57 :: Dr Brendan Harding :: University of Adelaide

Computing solutions to high dimensional problems is challenging because of the curse of dimensionality. The sparse grid combination technique allows one to significantly reduce the cost of computing solutions such that they become manageable on current supercomputers. However, as these supercomputers increase in size the rate of failure also increases. This poses a challenge for our computations. In this talk we look at the problem of computing solutions to hyperbolic partial differential equations with the combination technique in an environment where faults occur. A fault tolerant generalisation of the combination technique will be presented along with results that demonstrate its effectiveness.
Diffeomorphisms of discs, harmonic spinors and positive scalar curvature
11:10 Fri 17 Mar, 2017 :: Engineering Nth N218 :: Diarmuid Crowley :: University of Melbourne

Media...
Let Diff(D^k) be the space of diffeomorphisms of the k-disc fixing the boundary point wise. In this talk I will show for k > 5, that the homotopy groups \pi_*Diff(D^k) have non-zero 8-periodic 2-torsion detected in real K-theory. I will then discuss applications for spin manifolds M of dimension 6 or greater: 1) Our results input to arguments of Hitchin which now show that M admits a metric with a harmonic spinor. 2) If non-empty, space of positive scalar curvature metrics on M has non-zero 8-periodic 2-torsion in its homotopy groups which is detected in real K-theory. This is part of joint work with Thomas Schick and Wolfgang Steimle.
Geometric structures on moduli spaces
12:10 Fri 31 Mar, 2017 :: Napier 209 :: Nicholas Buchdahl :: University of Adelaide

Media...
Moduli spaces are used to classify various kinds of objects, often arising from solutions of certain differential equations on manifolds; for example, the complex structures on a compact surface or the anti-self-dual Yang-Mills equations on an oriented smooth 4-manifold. Sometimes these moduli spaces carry important information about the underlying manifold, manifested most clearly in the results of Donaldson and others on the topology of smooth 4-manifolds. It is also the case that these moduli spaces themselves carry interesting geometric structures; for example, the Weil-Petersson metric on moduli spaces of compact Riemann surfaces, exploited to great effect by Maryam Mirzakhani. In this talk, I shall elaborate on the theme of geometric structures on moduli spaces, with particular focus on some recent-ish work done in conjunction with Georg Schumacher.
K-types of tempered representations
12:10 Fri 7 Apr, 2017 :: Napier 209 :: Peter Hochs :: University of Adelaide

Media...
Tempered representations of a reductive Lie group G are the irreducible unitary representations one needs in the Plancherel decomposition of L^2(G). They are relevant to harmonic analysis because of this, and also occur in the Langlands classification of the larger class of admissible representations. If K in G is a maximal compact subgroup, then there is a considerable amount of information in the restriction of a tempered representation to K. In joint work with Yanli Song and Shilin Yu, we give a geometric expression for the decomposition of such a restriction into irreducibles. The multiplicities of these irreducibles are expressed as indices of Dirac operators on reduced spaces of a coadjoint orbit of G corresponding to the representation. These reduced spaces are Spin-c analogues of reduced spaces in symplectic geometry, defined in terms of moment maps that represent conserved quantities. This result involves a Spin-c version of the quantisation commutes with reduction principle for noncompact manifolds. For discrete series representations, this was done by Paradan in 2003.
Poisson-Lie T-duality and integrability
11:10 Thu 13 Apr, 2017 :: Engineering & Math EM213 :: Ctirad Klimcik :: Aix-Marseille University, Marseille

Media...
The Poisson-Lie T-duality relates sigma-models with target spaces symmetric with respect to mutually dual Poisson-Lie groups. In the special case if the Poisson-Lie symmetry reduces to the standard non-Abelian symmetry one of the corresponding mutually dual sigma-models is the standard principal chiral model which is known to enjoy the property of integrability. A natural question whether this non-Abelian integrability can be lifted to integrability of sigma model dualizable with respect to the general Poisson-Lie symmetry has been answered in the affirmative by myself in 2008. The corresponding Poisson-Lie symmetric and integrable model is a one-parameter deformation of the principal chiral model and features a remarkable explicit appearance of the standard Yang-Baxter operator in the target space geometry. Several distinct integrable deformations of the Yang-Baxter sigma model have been then subsequently uncovered which turn out to be related by the Poisson-Lie T-duality to the so called lambda-deformed sigma models. My talk gives a review of these developments some of which found applications in string theory in the framework of the AdS/CFT correspondence.
Quaternionic Kaehler manifolds of co-homogeneity one
12:10 Fri 16 Jun, 2017 :: Ligertwood 231 :: Vicente Cortes :: Universitat Hamburg

Media...
Quaternionic Kaehler manifolds form an important class of Riemannian manifolds of special holonomy. They provide examples of Einstein manifolds of non-zero scalar curvature. I will show how to construct explicit examples of complete quaternionic Kaehler manifolds of negative scalar curvature beyond homogeneous spaces. In particular, I will present a series of examples of co-homogeneity one, based on arXiv:1701.07882.
Exact coherent structures in high speed flows
15:10 Fri 28 Jul, 2017 :: Ingkarni Wardli B17 :: Prof Philip Hall :: Monash University

In recent years, there has been much interest in the relevance of nonlinear solutions of the Navier-Stokes equations to fully turbulent flows. The solutions must be calculated numerically at moderate Reynolds numbers but in the limit of high Reynolds numbers asymptotic methods can be used to greatly simplify the computational task and to uncover the key physical processes sustaining the nonlinear states. In particular, in confined flows exact coherent structures defining the boundary between the laminar and turbulent attractors can be constructed. In addition, structures which capture the essential physical properties of fully turbulent flows can be found. The extension of the ideas to boundary layer flows and current work attempting to explain the law of the wall will be discussed.
Weil's Riemann hypothesis (RH) and dynamical systems
12:10 Fri 11 Aug, 2017 :: Engineering Sth S111 :: Tuyen Truong :: University of Adelaide

Media...
Weil proposed an analogue of the RH in finite fields, aiming at counting asymptotically the number of solutions to a given system of polynomial equations (with coefficients in a finite field) in finite field extensions of the base field. This conjecture influenced the development of Algebraic Geometry since the 1950’s, most important achievements include: Grothendieck et al.’s etale cohomology, and Bombieri and Grothendieck’s standard conjectures on algebraic cycles (inspired by a Kahlerian analogue of a generalisation of Weil’s RH by Serre). Weil’s RH was solved by Deligne in the 70’s, but the finite field analogue of Serre’s result is still open (even in dimension 2). This talk presents my recent work proposing a generalisation of Weil’s RH by relating it to standard conjectures and a relatively new notion in complex dynamical systems called dynamical degrees. In the course of the talk, I will present the proof of a question proposed by Esnault and Srinivas (which is related to a result by Gromov and Yomdin on entropy of complex dynamical systems), which gives support to the finite field analogue of Serre’s result.
Compact pseudo-Riemannian homogeneous spaces
12:10 Fri 18 Aug, 2017 :: Engineering Sth S111 :: Wolfgang Globke :: University of Adelaide

Media...
A pseudo-Riemannian homogeneous space $M$ of finite volume can be presented as $M=G/H$, where $G$ is a Lie group acting transitively and isometrically on $M$, and $H$ is a closed subgroup of $G$. The condition that $G$ acts isometrically and thus preserves a finite measure on $M$ leads to strong algebraic restrictions on $G$. In the special case where $G$ has no compact semisimple normal subgroups, it turns out that the isotropy subgroup $H$ is a lattice, and that the metric on $M$ comes from a bi-invariant metric on $G$. This result allows us to recover Zeghib’s classification of Lorentzian compact homogeneous spaces, and to move towards a classification for metric index 2. As an application we can investigate which pseudo-Riemannian homogeneous spaces of finite volume are Einstein spaces. Through the existence questions for lattice subgroups, this leads to an interesting connection with the theory of transcendental numbers, which allows us to characterize the Einstein cases in low dimensions. This talk is based on joint works with Oliver Baues, Yuri Nikolayevsky and Abdelghani Zeghib.
Time-reversal symmetric topology from physics
12:10 Fri 25 Aug, 2017 :: Engineering Sth S111 :: Guo Chuan Thiang :: University of Adelaide

Media...
Time-reversal plays a crucial role in experimentally discovered topological insulators (2008) and semimetals (2015). This is mathematically interesting because one is forced to use "Quaternionic" characteristic classes and differential topology --- a previously ill-motivated generalisation. Guided by physical intuition, an equivariant Poincare-Lefschetz duality, Euler structures, and a new type of monopole with torsion charge, will be introduced.
A multiscale approximation of a Cahn-Larche system with phase separation on the microscale
15:10 Thu 22 Feb, 2018 :: Ingkarni Wardli 5.57 :: Ms Lisa Reischmann :: University of Augsberg

We consider the process of phase separation of a binary system under the influence of mechanical deformation and we derive a mathematical multiscale model, which describes the evolving microstructure taking into account the elastic properties of the involved materials. Motivated by phase-separation processes observed in lipid monolayers in film-balance experiments, the starting point of the model is the Cahn-Hilliard equation coupled with the equations of linear elasticity, the so-called Cahn-Larche system. Owing to the fact that the mechanical deformation takes place on a macrosopic scale whereas the phase separation happens on a microscopic level, a multiscale approach is imperative. We assume the pattern of the evolving microstructure to have an intrinsic length scale associated with it, which, after nondimensionalisation, leads to a scaled model involving a small parameter epsilon>0, which is suitable for periodic-homogenisation techniques. For the full nonlinear problem the so-called homogenised problem is then obtained by letting epsilon tend to zero using the method of asymptotic expansion. Furthermore, we present a linearised Cahn-Larche system and use the method of two-scale convergence to obtain the associated limit problem, which turns out to have the same structure as in the nonlinear case, in a mathematically rigorous way. Properties of the limit model will be discussed.
Quantum Airy structures and topological recursion
13:10 Wed 14 Mar, 2018 :: Ingkarni Wardli B17 :: Gaetan Borot :: MPI Bonn

Media...
Quantum Airy structures are Lie algebras of quadratic differential operators -- their classical limit describes Lagrangian subvarieties in symplectic vector spaces which are tangent to the zero section and cut out by quadratic equations. Their partition function -- which is the function annihilated by the collection of differential operators -- can be computed by the topological recursion. I will explain how to obtain quantum Airy structures from spectral curves, and explain how we can retrieve from them correlation functions of semi-simple cohomological field theories, by exploiting the symmetries. This is based on joint work with Andersen, Chekhov and Orantin.
Family gauge theory and characteristic classes of bundles of 4-manifolds
13:10 Fri 16 Mar, 2018 :: Barr Smith South Polygon Lecture theatre :: Hokuto Konno :: University of Tokyo

Media...
I will define a non-trivial characteristic class of bundles of 4-manifolds using families of Seiberg-Witten equations. The basic idea of the construction is to consider an infinite dimensional analogue of the Euler class used in the usual theory of characteristic classes. I will also explain how to prove the non-triviality of this characteristic class. If time permits, I will mention a relation between our characteristic class and positive scalar curvature metrics.
Stability Through a Geometric Lens
15:10 Fri 18 May, 2018 :: Horace Lamb 1022 :: Dr Robby Marangell :: University of Sydney

Focussing on the example of the Fisher/KPP equation, I will show how geometric information can be used to establish (in)stability results in some partial differential equations (PDEs). Viewing standing and travelling waves as fixed points of a flow in an infinite dimensional system, leads to a reduction of the linearised stability problem to a boundary value problem in a linear non-autonomous ordinary differential equation (ODE). Next, by exploiting the linearity of the system, one can use geometric ideas to reveal additional structure underlying the determination of stability. I will show how the Riccati equation can be used to produce a reasonably computable detector of eigenvalues and how such a detector is related to another, well-known eigenvalue detector, the Evans function. If there is time, I will try to expand on how to generalise these ideas to systems of PDEs.
Discrete fluxes and duality in gauge theory
11:10 Fri 24 Aug, 2018 :: Barr Smith South Polygon Lecture theatre :: Siye Wu :: National Tsinghua University

We explore the notions of discrete electric and magnetic fluxes introduced by 't Hooft in the late 1970s. After explaining their physics origin, we consider the description in mathematical terminology. We finally study their role in duality.
How long does it take to get there?
11:10 Fri 19 Oct, 2018 :: Engineering North N132 :: Professor Herbert Huppert :: University of Cambridge

In many situations involving nonlinear partial differential equations, requiring much numerical calculation because there is no analytic solution, it is possible to find a similarity solution to the resulting (still nonlinear) ordinary differential equation; sometimes even analytically, but it is generally independent of the initial conditions. The similarity solution is said to approach the real solution for t >> tau, say. But what is tau? How does it depend on the parameters of the problem and the initial conditions? Answers will be presented for a variety of problems and the audience will be asked to suggest others if they know of them.
An Introduction to Ricci Flow
11:10 Fri 19 Oct, 2018 :: Barr Smith South Polygon Lecture theatre :: Miles Simon :: University of Magdeburg

In these three talks we give an introduction to Ricci flow and present some applications thereof. After introducing the Ricci flow we present some theorems and arguments from the theory of linear and non-linear parabolic equations. We explain why this theory guarantees that there is always a solution to the Ricci flow for a short time for any given smooth initial metric on a compact manifold without boundary. We calculate evolution equations for certain geometric quantities, and present some examples of maximum principle type arguments. In the last lecture we present some geometric results which are derived with the help of the Ricci flow.
Some advances in the formulation of analytical methods for linear and nonlinear dynamics
15:10 Tue 20 Nov, 2018 :: EMG07 :: Dr Vladislav Sorokin :: University of Auckland

In the modern engineering, it is often necessary to solve problems involving strong parametric excitation and (or) strong nonlinearity. Dynamics of micro- and nanoscale electro-mechanical systems, wave propagation in structures made of corrugated composite materials are just examples of those. Numerical methods, although able to predict systems behavior for specific sets of parameters, fail to provide an insight into underlying physics. On the other hand, conventional analytical methods impose severe restrictions on the problem parameters space and (or) on types of the solutions. Thus, the quest for advanced tools to deal with linear and nonlinear structural dynamics still continues, and the lecture is concerned with an advanced formulation of an analytical method. The principal novelty aspect is that the presence of a small parameter in governing equations is not requested, so that dynamic problems involving strong parametric excitation and (or) strong nonlinearity can be considered. Another advantage of the method is that it is free from conventional restrictions on the excitation frequency spectrum and applicable for problems involving combined multiple parametric and (or) direct excitations with incommensurate frequencies, essential for some applications. A use of the method will be illustrated in several examples, including analysis of the effects of corrugation shapes on dispersion relation and frequency band-gaps of structures and dynamics of nonlinear parametric amplifiers.

News matching "The Einstein equations with torsion, reduction and"

Sam Cohen wins prize for best student talk at ANZIAM 2009
Congratulations to Mr Sam Cohen, a PhD student within the School, who was awarded the T. M. Cherry Prize for the best student paper at the 2009 meeting of ANZIAM for his talk on A general theory of backward stochastic difference equations. Posted Fri 6 Feb 09.
ARC Grant successes
The School of Mathematical Sciences has again had outstanding success in the ARC Discovery and Linkage Projects schemes. Congratulations to the following staff for their success in the Discovery Project scheme: Prof Nigel Bean, Dr Josh Ross, Prof Phil Pollett, Prof Peter Taylor, New methods for improving active adaptive management in biological systems, $255,000 over 3 years; Dr Josh Ross, New methods for integrating population structure and stochasticity into models of disease dynamics, $248,000 over three years; A/Prof Matt Roughan, Dr Walter Willinger, Internet traffic-matrix synthesis, $290,000 over three years; Prof Patricia Solomon, A/Prof John Moran, Statistical methods for the analysis of critical care data, with application to the Australian and New Zealand Intensive Care Database, $310,000 over 3 years; Prof Mathai Varghese, Prof Peter Bouwknegt, Supersymmetric quantum field theory, topology and duality, $375,000 over 3 years; Prof Peter Taylor, Prof Nigel Bean, Dr Sophie Hautphenne, Dr Mark Fackrell, Dr Malgorzata O'Reilly, Prof Guy Latouche, Advanced matrix-analytic methods with applications, $600,000 over 3 years. Congratulations to the following staff for their success in the Linkage Project scheme: Prof Simon Beecham, Prof Lee White, A/Prof John Boland, Prof Phil Howlett, Dr Yvonne Stokes, Mr John Wells, Paving the way: an experimental approach to the mathematical modelling and design of permeable pavements, $370,000 over 3 years; Dr Amie Albrecht, Prof Phil Howlett, Dr Andrew Metcalfe, Dr Peter Pudney, Prof Roderick Smith, Saving energy on trains - demonstration, evaluation, integration, $540,000 over 3 years Posted Fri 29 Oct 10.
Go8-Germany Research Cooperation Scheme
Congratulations to Thomas Leistner whose application under the Go8-Germany Research Co-operation Scheme is one of 24 across Australia to be funded in 2011-2012. Thomas will work with Professor Helga Baum of Humbolt University in Berlin on spinor field equations in global Lorentzian geometry. Posted Thu 4 Nov 10.

Publications matching "The Einstein equations with torsion, reduction and"

Publications
Non-commutative correspondences, duality and D-branes in bivariant K-theory
Brodzki, J; Varghese, Mathai; Rosenberg, J; Szabo, R, Advances in Theoretical and Mathematical Physics 13 (497–552) 2009
T-duality as a duality of loop group bundles
Bouwknegt, Pier; Varghese, Mathai, Journal of Physics A: Mathematical and Theoretical (Print Edition) 42 (162001-1–162001-8) 2009
D-branes, KK-theory and duality on noncommutative spaces
Brodzki, J; Varghese, Mathai; Rosenberg, J; Szabo, R, Journal of Physics: Conference Series (Print Edition) 103 (1–13) 2008
D-branes, RR-fields and duality on noncommutative manifolds
Brodzki, J; Varghese, Mathai; Rosenberg, J; Szabo, R, Communications in Mathematical Physics 277 (643–706) 2008
Dessins d'enfants and differential equations
Larusson, Finnur; Sadykov, T, St Petersburg Mathematical Journal 19 (1003–1014) 2008
Model subgrid microscale interactions to accurately discretise stochastic partial differential equations.
Roberts, Anthony John,
Nonclassical symmetry solutions for reaction-diffusion equations with explicity spatial dependence
Hajek, Bronwyn; Edwards, M; Broadbridge, P; Williams, G, Nonlinear Analysis-Theory Methods & Applications 67 (2541–2552) 2007
T-Duality in type II string theory via noncommutative geometry and beyond
Varghese, Mathai, Progress of Theoretical Physics Supplement 171 (237–257) 2007
Computer algebra derives normal forms of stochastic differential equations
Roberts, Anthony John,
On mysteriously missing T-duals, H-flux and the T-duality Group
Varghese, Mathai; Rosenberg, J, chapter in Differential geometry and physics (World Scientific Publishing) 350–358, 2006
Duality symmetry and the form fields of M-theory
Sati, Hicham, The Journal of High Energy Physics (Print Edition) 6 (0–10) 2006
Flux compactifications on projective spaces and the S-duality puzzle
Bouwknegt, Pier; Evslin, J; Jurco, B; Varghese, Mathai; Sati, Hicham, Advances in Theoretical and Mathematical Physics 10 (345–394) 2006
Nonassociative Tori and Applications to T-Duality
Bouwknegt, Pier; Hannabuss, K; Varghese, Mathai, Communications in Mathematical Physics 264 (41–69) 2006
T-duality for torus bundles with H-fluxes via noncommutative topology, II: the high-dimensional case and the T-duality group
Varghese, Mathai; Rosenberg, J, Advances in Theoretical and Mathematical Physics 10 (123–158) 2006
A normal form of thin fluid film equations resolves the transient paradox
Roberts, Anthony John, Physica D 223 (69–81) 2006
Resolving the multitude of microscale interactions accurately models stochastic partial differential equations
Roberts, Anthony John, London Mathematical Society. Journal of Computation and Mathematics 9 (193–221) 2006
A hydrodynamic model of the incompressible Navier-Stokes equations for free surface flows
Lee, Jong; Teubner, Michael; Nixon, John; Gill, Peter, The XXXI IAHR Congress, Seoul, Korea 11/09/05
L2 torsion without the determinant class condition and extended L2 cohomology
Braverman, M; Carey, Alan; Farber, M; Varghese, Mathai, Communications in Contemporary Mathematics 7 (421–462) 2005
Ramaswami's duality and probabilistic algorithms for determining the rate matrix for a structured GI/M/1 Markov chain
Hunt, Emma, The ANZIAM Journal 46 (485–493) 2005
T-duality for principal torus bundles and dimensionally reduced Gysin sequences
Bouwknegt, Pier; Hannabuss, K; Varghese, Mathai, Advances in Theoretical and Mathematical Physics 9 (1–25) 2005
T-duality for torus bundles with H-fluxes via noncommutative topology
Varghese, Mathai; Rosenberg, J, Communications in Mathematical Physics 253 (705–721) 2005
Type IIB string theory, S-duality, and generalized cohomology
Kriz, I; Sati, Hicham, Nuclear Physics B 715 (639–664) 2005
Computer algebra resolves a multitude of microscale interactions to model stochastic partial differential equations
Roberts, Anthony John,
On the boundary-layer equations for power-law fluids
Denier, James; Dabrowski, Paul, Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences 460 (3143–3158) 2004
T-duality for principal torus bundles
Bouwknegt, Pier; Hannabuss, K; Varghese, Mathai, The Journal of High Energy Physics (Online Editions) 3 (WWW 1–WWW 10) 2004
T-duality: Topology change from H-flux
Bouwknegt, Pier; Evslin, J; Varghese, Mathai, Communications in Mathematical Physics 249 (383–415) 2004
Partial differential equations
Van Der Hoek, John, Workshop on Mathematical Methods in Finance (2004), Melbourne, Vic, 2004 07/06/04
Shear dispersion along circular pipes is affected by bends, but the torsion of the pipe is negligible
Roberts, Anthony John, SIAM Journal on Applied Dynamical Systems 3 (433–462) 2004
Edge of the wedge theory in hypo-analytic manifolds
Eastwood, Michael; Graham, C, Communications in Partial Differential Equations 28 (2003–2028) 2003
Stochastic Differential Equations in Hilbert Spaces
Filinkov, Alexei; Maizurna, Isna; Sorenson, J; Van Der Hoek, John, chapter in Applicable Mathematics in the Golden Age (Morgan & Claypool) 32–169, 2003
A step towards holistic discretisation of stochastic partial differential equations
Roberts, Anthony John, The ANZIAM Journal 45 (C1–C15) 2003
The Knizhnik-Zamolodchikov equations
Bouwknegt, Pier, chapter in Geometric analysis and applications to quantum field theory (Birkhauser) 21–44, 2002
The geometry and physics of the Seiberg-Witten equations
Wu, Siye, chapter in Geometric analysis and applications to quantum field theory (Birkhauser) 157–203, 2002
Differential equations in spaces of abstract stochastic distributions
Filinkov, Alexei; Sorensen, Julian, Stochastics and Stochastic Reports 72 (129–173) 2002
Weak UCP and perturbed monopole equations
Booss-Bavnbek, B; Marcolli, M; Wang, Bai-Ling, International Journal of Mathematics 13 (987–1008) 2002
Flow in spiral channels of small curvature and torsion
Stokes, Yvonne, The IUTAM Symposium on Free Surface Flows, Birmingham, UK 10/07/00
Integrated solutions of stochastic evolution equations with additive noise
Filinkov, Alexei; Maizurna, Isna, Bulletin of the Australian Mathematical Society 64 (281–290) 2001
Mappings preserving locations of movable poles: II. The third and fifth Painlev equations
Gordoa, P; Joshi, Nalini; Pickering, A, Nonlinearity 14 (567–582) 2001
Non-Schlesinger deformations of ordinary differential equations with rational coefficients
Kitaev, Alexandre, Journal of Physics A: Mathematical and Theoretical (Print Edition) 34 (2259–2272) 2001
Topological duality in humanoid robot dynamics
Ivancevic, V; Pearce, Charles, The ANZIAM Journal 43 (183–194) 2001
Truncation-type methods and Bcklund transformations for ordinary differential equations: The third and fifth Painlev equations
Gordoa, P; Joshi, Nalini; Pickering, A, Glasgow Mathematical Journal 43A (23–32) 2001
The Einstein bundle of a non-linear graviton
Eastwood, Michael, chapter in Further advances in twistor theory. Vol. III, Curved twistor spaces (Chapman & Hall/CRC) 36–39, 2001
Impossible Einstein-Weyl geometries
Eastwood, Michael, 19th Winter School Geometry and Physics, Srni, Czech Republic 09/01/99
Correspondences, von Neumann algebras and holomorphic L2 torsion
Carey, Alan; Farber, M; Varghese, Mathai, Canadian Journal of Mathematics-Journal Canadien de Mathematiques 52 (695–736) 2000
Local Constraints on Einstein-Weyl geometries: The 3-dimensional case
Eastwood, Michael; Tod, K, Annals of Global Analysis and Geometry 18 (1–27) 2000
Nonexistence results for the Korteweg-de Vries and Kadomtsev-Petviashvili equations
Joshi, Nalini; Petersen, J; Schubert, Luke Mark, Studies in Applied Mathematics 105 (361–374) 2000
On the complete integrability of the discrete Nahm equations
Murray, Michael; Singer, Michael, Communications in Mathematical Physics 210 (497–519) 2000
Reciprocal link for 2 + 1-dimensional extensions of shallow water equations
Hone, Andrew, Applied Mathematics Letters 13 (37–42) 2000
Regional cerebral blood flow in fibromyalgia Single-photon-emission computed tomography evidence of reduction in the pontine tegmentum and thalami
Kwiatek, R; Barnden, L; Tedman, Raymond; Jarrett, Richard; Chew, J; Rowe, Christopher; Pile, Kevin, Arthritis and Rheumatism 43 (2823–2833) 2000
Weak and generalized solutions to abstract stochastic equations
Melnikova, I; Filinkov, Alexei, Doklady Mathematics 62 (373–377) 2000

Advanced search options

You may be able to improve your search results by using the following syntax:

QueryMatches the following
Asymptotic EquationAnything with "Asymptotic" or "Equation".
+Asymptotic +EquationAnything with "Asymptotic" and "Equation".
+Stokes -"Navier-Stokes"Anything containing "Stokes" but not "Navier-Stokes".
Dynam*Anything containing "Dynamic", "Dynamical", "Dynamicist" etc.