June
2018  M  T  W  T  F  S  S      1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30         

Search the School of Mathematical SciencesPeople matching "Obstructions to smooth group actions on 4manifold" 
Professor Mathai Varghese Elder Professor of Mathematics, Australian Laureate Fellow, Fellow of the Australian Academy of Scie
More about Mathai Varghese... 
Courses matching "Obstructions to smooth group actions on 4manifold" 
Manifolds, lie groups and lie algebras Lie
groups
and
Lie
algebras
are
fundamental
concepts
in
both
mathematics
and
theoretical
physics.
The
theory
of
Lie
groups
and
Lie
algebras
was
developed
in
the
late
nineteenth
century
by
Sophus
Lie,
Wilhelm
Killing
and
others,
when
groups
appeared
as
symmetries
of
differential
equations.
Soon
it
was
realised
that
they
can
be
treated
by
purely
algebraic
means
yielding
the
concept
of
a
Lie
algebra.
In
physics
Lie
groups
and
Lie
algebras
are
important
in
describing
symmetries
of
physical
systems
and
in
gauge
theories.
As
preparation
for
the
theory
of
Lie
groups
the
course
will
start
off
with
an
introduction
to
the
basic
notions
of
differential
geometry,
including
smooth
manifolds,
tangent
spaces
and
vector
fields.
This
will
enable
us
to
understand
the
concept
of
a
Lie
group
in
a
very
general
setting.
The
second
part
of
the
course
will
be
an
introduction
the
theory
of
Lie
groups.
I
will
focus
mainly
on
the
relation
between
Lie
groups
and
Lie
algebras
and
cover
the
following
topics:
the
Lie
algebra
of
a
Lie
group
and
the
exponential
map;
Lie
group
homomorphisms;
Lie
subgroups
and
Cartan's
theorem.
The
third
part
of
the
course
is
devoted
to
the
structure
theory
of
Lie
algebras
and
will
present
the
classification
of
finite
dimensional
complex
semisimple
Lie
algebras.
To
this
end
we
will
cover
the
following
topics:
structure
theory
of
Lie
algebras:
nilpotent,
solvable
and
semiÃÂÃ¢ÂÂ
simple
Lie
algebras;
toral
subalgebras;
root
systems
and
their
classification
by
means
of
Dynkin
diagrams.
1. Introduction, motivation and examples of matrix groups and algebras
2. Smooth manifolds and vector fields
3. Lie groups and their Lie algebras
4. Cartan's Theorem and the classical Lie groups ÃÂ
5. The Lie group  Lie algebras correspondence
6. Homogeneous spaces
7. Structure Theory of Lie algebras
8. Complex semisimple Lie algebras
More about this course... 

Number Theory III Number theory is one of the oldest branches of mathematics. It is concerned with the properties of numbers, especially the properties of the integers. Historically, it was valued as the purest form of mathematics, but in fact there are many modern applications to information technology and cryptography. Number theory is a fundamentally useful course for any mathematician, but it also attracts a general audience because of its intrinsic beauty and its emphasis on problemsolving. Topics covered are: Divisibility and primes, congruences, arithmetic functions, continued fractions and rational approximation, quadratic residues, and primitive roots. Examples of diophantine equations. Modern applications to computer science, cryptography etc. Introduction to numbertheoretic computer packages.
More about this course... 

Sampling Theory and Practice III Sample surveys are an important source of statistical data. A great many published statistics on demographic, economic, political and health related characteristics are based on survey data. Simple random sampling is a well known method of sampling but, for reasons of efficiency and practical constraints, methods such as stratified sampling and cluster sampling are typically used by statistical authorities such as the Australian Bureau of Statistics and by market research organisations. This course is concerned with the design of sample surveys and the statistical analysis of data collected from such surveys. Topics covered are: experiments and surveys, steps in planning a survey; randomisation approach to sampling and estimation, sampling distribution of estimator, expected values, variances, generalisation of probability sampling; prediction approach, inadequacies of approach, decomposition of population total, concomitant variables; regression through the origin, estimation by least squares, ratio estimation, variance formulae; balance and robustness; best fit sample; stratified sampling, estimation, allocation, construction of strata, stratification on size variables, poststratification; twostage sampling, estimation, allocation, cluster sampling.
More about this course... 
Events matching "Obstructions to smooth group actions on 4manifold" 
Stability of timeperiodic flows 15:10 Fri 10 Mar, 2006 :: G08 Mathematics Building University of Adelaide :: Prof. Andrew Bassom, School of Mathematics and
Statistics, University of Western Australia
Timeperiodic shear layers occur naturally in a wide
range of applications from engineering to physiology. Transition to
turbulence in such flows is of practical interest and there have been
several papers dealing with the stability of flows composed of a
steady component plus an oscillatory part with zero mean. In such
flows a possible instability mechanism is associated with the mean
component so that the stability of the flow can be examined using some
sort of perturbationtype analysis. This strategy fails when the mean
part of the flow is small compared with the oscillatory component
which, of course, includes the case when the mean part is precisely
zero.
This difficulty with analytical studies has meant that the stability
of purely oscillatory flows has relied on various numerical
methods. Until very recently such techniques have only ever predicted
that the flow is stable, even though experiments suggest that they do
become unstable at high enough speeds. In this talk I shall expand on
this discrepancy with emphasis on the particular case of the socalled
flat Stokes layer. This flow, which is generated in a deep layer of
incompressible fluid lying above a flat plate which is oscillated in
its own plane, represents one of the few exact solutions of the
NavierStokes equations. We show theoretically that the flow does
become unstable to waves which propagate relative to the basic motion
although the theory predicts that this occurs much later than has been
found in experiments. Reasons for this discrepancy are examined by
reference to calculations for oscillatory flows in pipes and
channels. Finally, we propose some new experiments that might reduce
this disagreement between the theoretical predictions of instability
and practical realisations of breakdown in oscillatory flows. 

Inconsistent Mathematics 15:10 Fri 28 Apr, 2006 :: G08 Mathematics Building University of Adelaide :: Prof. Chris Mortensen
The Theory of Inconsistency arose historically from a
number of sources, such as the semantic paradoxes including The Liar
and the settheoretic paradoxes including Russell's. But these sources
are rather too closely connected with Foundationalism: the view that
mathematics has a foundation such as logic or set theory or category
theory etc. It soon became apparent that inconsistent mathematical
structures are of interest in their own right and do not depend on the
existence of foundations. This paper will survey some of the results
in inconsistent mathematics and discuss the bearing on various
philosophical positions including Platonism, Logicism, Hilbert's
Formalism, and Brouwer's Intuitionism. 

Mathematics of underground mining. 15:10 Fri 12 May, 2006 :: G08 Mathematics Building University of Adelaide :: Prof. Hyam Rubinstein
Underground mining infrastructure involves an
interesting range of optimisation problems with geometric
constraints. In particular, ramps, drives and tunnels have gradient
within a certain prescribed range and turning circles (curvature) are
also bounded. Finally obstacles have to be avoided, such as faults,
ore bodies themselves and old workings. A group of mathematicians and
engineers at Uni of Melb and Uni of SA have been working on this
problem for a number of years. I will summarise what we have found and
the challenges of working in the mining industry. 

Good and Bad Vibes 15:10 Fri 23 Feb, 2007 :: G08 Mathematics Building University of Adelaide :: Prof. Maurice Dodson
Media...Collapsing bridges and exploding rockets have been associated with vibrations in resonance with natural frequencies. As well, the stability of the solar system and the existence of solutions of SchrÃ¶dinger\'s equation and the wave equation are problematic in the presence of resonances. Such resonances can be avoided, or at least mitigated, by using ideas from Diophantine approximation, a branch of number theory. Applications of Diophantine approximation to these problems will be given and will include a connection with LISA (Laser Interferometer Space Antenna), a spacebased gravity wave detector under construction. 

Learning to Satisfy Actuator and Camera Networks 15:10 Fri 25 May, 2007 :: G08 Mathematics Building University of Adelaide :: Assistant Prof Mark Coates
Media...Wireless sensor and actuator networks (SANETs) represent an important extension of sensor networks, allowing nodes within the network to make autonomous decisions and perform actions (actuation) in response to sensor measurements and shared information. SANETS combine aspects of sensor networks and multirobot systems, and the merger gives rise to an array of challenges absent from conventional sensor networks. SANETs are active systems that must use the sensed information to modify the environment in order to elicit a desired response. This involves the development of an actuation strategy, a set of decision rules that specify how the network responds to sensed conditions. In this talk, I will discuss the challenges involved in using distributed algorithms to learn suitable actuation strategies. I will draw connections with the class of learning satisfiability problems, which includes a range of learning tasks involving multiple constraints. 

Finite Geometries: Classical Problems and Recent Developments 15:10 Fri 20 Jul, 2007 :: G04 Napier Building University of Adelaide :: Prof. Joseph A. Thas :: Ghent University, Belgium
In recent years there has been an increasing interest in finite projective spaces, and important applications to practical topics such as coding theory, cryptography and design of experiments have made the field even more attractive. In my talk some classical problems and recent developments will be discussed. First I will mention Segre's celebrated theorem and ovals and a purely combinatorial characterization of Hermitian curves in the projective plane over a finite field here, from the beginning, the considered pointset is contained in the projective plane over a finite field. Next, a recent elegant result on semiovals in PG(2,q), due to GÃ¡cs, will be given. A second approach is where the object is described as an incidence structure satisfying certain properties; here the geometry is not a priori embedded in a projective space. This will be illustrated by a characterization of the classical inversive plane in the odd case. Another quite recent beautiful result in Galois geometry is the discovery of an infinite class of hemisystems of the Hermitian variety in PG(3,q^2), leading to new interesting classes of incidence structures, graphs and codes; before this result, just one example for GF(9), due to Segre, was known. 

An Introduction to invariant differential pairings 14:10 Tue 24 Jul, 2007 :: Mathematics G08 :: Jens Kroeske
On homogeneous spaces G/P, where G is a semisimple Lie group and P is a
parabolic subgroup (the ordinary sphere or projective spaces being
examples), invariant operators, that is operators between certain
homogeneous bundles (functions, vector fields or forms being amongst the
typical examples) that are invariant under the action of the group G, have
been studied extensively. Especially on so called hermitian symmetric spaces
which arise through a 1grading of the Lie algebra of G there exists a
complete classification of first order invariant linear differential
operators even on more general manifolds (that allow a so called almost
hermitian structure).
This talk will introduce the notion of an invariant bilinear differential
pairing between sections of the aforementioned homogeneous bundles. Moreover
we will discuss a classification (excluding certain totally degenerate
cases) of all first order invariant bilinear differential pairings on
manifolds with an almost hermitian symmetric structure. The similarities and
connections with the linear operator classification will be highlighted and
discussed.


Add one part chaos, one part topology, and stir well... 13:10 Fri 19 Oct, 2007 :: Engineering North 132 :: Dr Matt Finn :: School of Mathematical Sciences
Media...Stirring and mixing of fluids occurs everywhere, from adding milk to a cup of coffee, right through to industrialscale chemical blending. So why stir in the first place? Is it possible to do it badly? And how can you make sure you do it effectively? I will attempt to answer these questions using a few thought experiments, some dynamical systems theory and a little topology.


Global and Local stationary modelling in finance: Theory and empirical evidence 14:10 Thu 10 Apr, 2008 :: G04 Napier Building University of Adelaide :: Prof. Dominique Guégan :: Universite Paris 1 PantheonSorbonne
To model real data sets using second order stochastic processes imposes that the data sets verify the second order stationarity condition. This stationarity condition concerns the unconditional moments of the process. It is in that context that most of models developed from the sixties' have been studied; We refer to the ARMA processes (Brockwell and Davis, 1988), the ARCH, GARCH and EGARCH models (Engle, 1982, Bollerslev, 1986, Nelson, 1990), the SETAR process (Lim and Tong, 1980 and Tong, 1990), the bilinear model (Granger and Andersen, 1978, Guégan, 1994), the EXPAR model (Haggan and Ozaki, 1980), the long memory process (Granger and Joyeux, 1980, Hosking, 1981, Gray, Zang and Woodward, 1989, Beran, 1994, Giraitis and Leipus, 1995, Guégan, 2000), the switching process (Hamilton, 1988). For all these models, we get an invertible causal solution under specific conditions on the parameters, then the forecast points and the forecast intervals are available.
Thus, the stationarity assumption is the basis for a general asymptotic theory for identification, estimation and forecasting. It guarantees that the increase of the sample size leads to more and more information of the same kind which is basic for an asymptotic theory to make sense.
Now nonstationarity modelling has also a long tradition in econometrics. This one is based on the conditional moments of the data generating process. It appears mainly in the heteroscedastic and volatility models, like the GARCH and related models, and stochastic volatility processes (Ghysels, Harvey and Renault 1997). This nonstationarity appears also in a different way with structural changes models like the switching models (Hamilton, 1988), the stopbreak model (Diebold and Inoue, 2001, Breidt and Hsu, 2002, Granger and Hyung, 2004) and the SETAR models, for instance. It can also be observed from linear models with time varying coefficients (Nicholls and Quinn, 1982, Tsay, 1987).
Thus, using stationary unconditional moments suggest a global stationarity for the model, but using nonstationary unconditional moments or nonstationary conditional moments or assuming existence of states suggest that this global stationarity fails and that we only observe a local stationary behavior.
The growing evidence of instability in the stochastic behavior of stocks, of exchange rates, of some economic data sets like growth rates for instance, characterized by existence of volatility or existence of jumps in the variance or on the levels of the prices imposes to discuss the assumption of global stationarity and its consequence in modelling, particularly in forecasting. Thus we can address several questions with respect to these remarks.
1. What kinds of nonstationarity affect the major financial and economic data sets? How to detect them?
2. Local and global stationarities: How are they defined?
3. What is the impact of evidence of nonstationarity on the statistics computed from the global non stationary data sets?
4. How can we analyze data sets in the nonstationary global framework? Does the asymptotic theory work in nonstationary framework?
5. What kind of models create local stationarity instead of global stationarity? How can we use them to develop a modelling and a forecasting strategy?
These questions began to be discussed in some papers in the economic literature. For some of these questions, the answers are known, for others, very few works exist. In this talk I will discuss all these problems and will propose 2 new stategies and modelling to solve them. Several interesting topics in empirical finance awaiting future research will also be discussed.


The Mathematics of String Theory 15:10 Fri 2 May, 2008 :: LG29 Napier Building University of Adelaide :: Prof. Peter Bouwknegt :: Department of Mathematics, ANU
String Theory has had, and continues to have, a profound impact on
many areas of mathematics and vice versa. In this talk I want to
address some relatively recent developments. In particular I will
argue, following Witten and others, that Dbrane charges take values
in the Ktheory of spacetime, rather than in integral cohomology as
one might have expected. I will also explore the mathematical
consequences of a particular symmetry, called Tduality, in this context.
I will give an intuitive introduction into Dbranes and Ktheory.
No prior knowledge about either String Theory, Dbranes or Ktheory
is required. 

Betti's Reciprocal Theorem for Inclusion and Contact Problems 15:10 Fri 1 Aug, 2008 :: G03 Napier Building University of Adelaide :: Prof. Patrick Selvadurai :: Department of Civil Engineering and Applied Mechanics, McGill University
Enrico Betti (18231892) is recognized in the mathematics community for his pioneering contributions to topology. An equally important contribution is his formulation of the reciprocity theorem applicable to elastic bodies that satisfy the classical equations of linear elasticity. Although James Clerk Maxwell (18311879) proposed a law of reciprocal displacements and rotations in 1864, the contribution of Betti is acknowledged for its underlying formal mathematical basis and generality. The purpose of this lecture is to illustrate how Betti's reciprocal theorem can be used to full advantage to develop compact analytical results for certain contact and inclusion problems in the classical theory of elasticity. Inclusion problems are encountered in number of areas in applied mechanics ranging from composite materials to geomechanics. In composite materials, the inclusion represents an inhomogeneity that is introduced to increase either the strength or the deformability characteristics of resulting material. In geomechanics, the inclusion represents a constructed material region, such as a ground anchor, that is introduced to provide load transfer from structural systems. Similarly, contact problems have applications to the modelling of the behaviour of indentors used in materials testing to the study of foundations used to distribute loads transmitted from structures. In the study of conventional problems the inclusions and the contact regions are directly loaded and this makes their analysis quite straightforward. When the interaction is induced by loads that are placed exterior to the indentor or inclusion, the direct analysis of the problem becomes inordinately complicated both in terns of formulation of the integral equations and their numerical solution. It is shown by a set of selected examples that the application of Betti's reciprocal theorem leads to the development of exact closed form solutions to what would otherwise be approximate solutions achievable only through the numerical solution of a set of coupled integral equations. 

Elliptic equation for diffusionadvection flows 15:10 Fri 15 Aug, 2008 :: G03 Napier Building University of Adelaide :: Prof. Pavel Bedrikovsetsky :: Australian School of Petroleum Science, University of Adelaide.
The standard diffusion equation is obtained by Einstein's method and its generalisation, FokkerPlankKolmogorovFeller theory. The time between jumps in Einstein derivation is constant.
We discuss random walks with residence time distribution, which occurs for flows of solutes and suspensions/colloids in porous media, CO2 sequestration in coal mines, several processes in chemical, petroleum and environmental engineering. The rigorous application of the Einstein's method results in new equation, containing the time and the mixed dispersion terms expressing the dispersion of the particle time steps.
Usually, adding the second time derivative results in additional initial data. For the equation derived, the condition of limited solution when time tends to infinity provides with uniqueness of the Caushy problem solution.
The solution of the pulse injection problem describing a common tracer injection experiment is studied in greater detail. The new theory predicts delay of the maximum of the tracer, compared to the velocity of the flow, while its forward "tail" contains much more particles than in the solution of the classical parabolic (advectiondispersion) equation. This is in agreement with the experimental observations and predictions of the direct simulation.


Symmetrybreaking and the Origin of Species 15:10 Fri 24 Oct, 2008 :: G03 Napier Building University of Adelaide :: Toby Elmhirst :: ARC Centre of Excellence for Coral Reef Studies, James Cook University
The theory of partial differential equations can say much about generic bifurcations from spatially homogeneous steady states, but relatively little about generic bifurcations from unimodal steady states. In many applications, spatially homogeneous steady states correspond to lowenergy physical states that are destabilized as energy is fed into the system, and in these cases standard PDE theory can yield some impressive and elegant results. However, for many macroscopic biological systems such results are less useful because lowenergy states do not hold the same priviledged position as they do in physical and chemical systems. For example, speciation  the evolutionary process by which new species are formed  can be seen as the destabilization of a unimodal density distribution over phenotype space. Given the diversity of species and environments, generic results are clearly needed, but cannot be gained from PDE theory. Indeed, such questions cannot even be adequately formulated in terms of PDEs. In this talk I will introduce 'Pod Systems' which can provide an answer to the question; 'What happens, generically, when a unimodal steady state loses stability?' In the pod system formalization, the answer involves elements of equivariant bifurcation theory and suggests that new species can arise as the result of broken symmetries. 

On the HenstockKurzweil integral (along with concerns about general math education in Europe) 15:10 Fri 13 Feb, 2009 :: Napier LG28 :: Prof JeanPierre Demailly :: University of Grenoble, France
The talk will be the occasion to take a few minutes to describe the situation of math education in France and in Europe, to motivate the interest of the lecturer in trying to bring back rigorous proofs in integration theory. The remaining 45 minutes will be devoted to explaining the basics of HenstockKurzweil integration theory, which, although not a response to education problems, is a modern and elementary approach of a very strong extension of the Riemann integral, providing easy access to several fundamental results of Lebesgue theory (monotone convergence theorem, existence of Lebesgue measure, etc.). 

The index theorem for projective families of elliptic operators 13:10 Fri 13 Mar, 2009 :: School Board Room :: Prof Mathai Varghese :: University of Adelaide


Classification and compact complex manifolds I 13:10 Fri 17 Apr, 2009 :: School Board Room :: A/Prof Nicholas Buchdahl :: University of Adelaide


Classification and compact complex manifolds II 13:10 Fri 24 Apr, 2009 :: School Board Room :: A/Prof Nicholas Buchdahl :: University of Adelaide


String structures and characteristic classes for loop group bundles 13:10 Fri 1 May, 2009 :: School Board Room :: Mr Raymond Vozzo :: University of Adelaide
The ChernWeil homomorphism gives a geometric method for calculating characteristic classes for principal bundles. In infinite dimensions, however, the standard theory fails due to analytical problems. In this talk I shall give a geometric method for calculating characteristic classes for principal bundle with structure group the loop group of a compact group which sidesteps these complications. This theory is inspired in some sense by results on the string class (a certain cohomology class on the base of a loop group bundle) which I shall outline. 

Four classes of complex manifolds 13:10 Fri 8 May, 2009 :: School Board Room :: A/Prof Finnur Larusson :: University of Adelaide
We introduce the four classes of complex manifolds defined by having few or many holomorphic maps to or from the complex plane. Two of these classes have played an important role in complex geometry for a long time. A third turns out to be too large to be of much interest. The fourth class has only recently emerged from work of Abel Prize winner Mikhail Gromov. 

Lagrangian fibrations on holomorphic symplectic manifolds I: Holomorphic Lagrangian fibrations 13:10 Fri 5 Jun, 2009 :: School Board Room :: Dr Justin Sawon :: Colorado State University
A compact K{\"a}hler manifold $X$ is a holomorphic symplectic manifold if it admits a nondegenerate holomorphic twoform $\sigma$. According to a theorem of Matsushita, fibrations on $X$ must be of a very restricted type: the fibres must be Lagrangian with respect to $\sigma$ and the generic fibre must be a complex torus. Moreover, it is expected that the base of the fibration must be complex projective space, and this has been proved by Hwang when $X$ is projective. The simplest example of these {\em Lagrangian fibrations\/} are elliptic K3 surfaces. In this talk we will explain the role of elliptic K3s in the classification of K3 surfaces, and the (conjectural) generalization to higher dimensions. 

ChernSimons classes on loop spaces and diffeomorphism groups 13:10 Fri 12 Jun, 2009 :: School Board Room :: Prof Steve Rosenberg :: Boston University
The loop space LM of a Riemannian manifold M comes with a family of Riemannian metrics indexed by a Sobolev parameter. We can construct characteristic classes for LM using the Wodzicki residue instead of the usual matrix trace. The Pontrjagin classes of LM vanish, but the secondary or ChernSimons classes may be nonzero and may distinguish circle actions on M. There are similar results for diffeomorphism groups of manifolds. 

Lagrangian fibrations on holomorphic symplectic manifolds II: Existence of Lagrangian fibrations 13:10 Fri 19 Jun, 2009 :: School Board Room :: Dr Justin Sawon :: Colorado State University
The Hilbert scheme ${\mathrm Hilb}^nS$ of points on a K3 surface $S$ is a wellknown holomorphic symplectic manifold. When does ${\mathrm Hilb}^nS$ admit a Lagrangian fibration? The existence of a Lagrangian fibration places some conditions on the Hodge structure, since the pull back of a hyperplane from the base gives a special divisor on ${\mathrm Hilb}^nS$, and in turn a special divisor on $S$. The converse is more difficult, but using FourierMukai transforms we will show that if $S$ admits a divisor of a certain degree then ${\mathrm Hilb}^nS$ admits a Lagrangian fibration. 

Lagrangian fibrations on holomorphic symplectic manifolds III: Holomorphic coisotropic reduction 13:10 Fri 26 Jun, 2009 :: School Board Room :: Dr Justin Sawon :: Colorado State University
Given a certain kind of submanifold $Y$ of a symplectic manifold $(X,\omega)$ we can form its coisotropic reduction as follows. The null directions of $\omega_Y$ define the characteristic foliation $F$ on $Y$. The space of leaves $Y/F$ then admits a symplectic form, descended from $\omega_Y$. Locally, the coisotropic reduction $Y/F$ looks just like a symplectic quotient. This construction also work for holomorphic symplectic manifolds, though one of the main difficulties in practice is ensuring that the leaves of the foliation are compact. We will describe a criterion for compactness, and apply coisotropic reduction to produce a classification result for Lagrangian fibrations by Jacobians. 

Nonlinear diffusiondriven flow in a stratified viscous fluid 15:00 Fri 26 Jun, 2009 :: Macbeth Lecture Theatre :: Associate Prof Michael Page :: Monash University
In 1970, two independent studies (by Wunsch and Phillips) of the behaviour of a linear densitystratified viscous fluid in a closed container demonstrated a slow flow can be generated simply due to the container having a sloping boundary surface This remarkable motion is generated as a result of the curvature of the lines of constant density near any sloping surface, which in turn enables a zero normalflux condition on the density to be satisfied along that boundary. When the Rayleigh number is large (or equivalently Wunsch's parameter $R$ is small) this motion is concentrated in the near vicinity of the sloping surface, in a thin `buoyancy layer' that has many similarities to an Ekman layer in a rotating fluid.
A number of studies have since considered the consequences of this type of `diffusivelydriven' flow in a semiinfinite domain, including in the deep ocean and with turbulent effects included. More recently, Page & Johnson (2008) described a steady linear theory for the broaderscale mass recirculation in a closed container and demonstrated that, unlike in previous studies, it is possible for the buoyancy layer to entrain fluid from that recirculation. That work has since been extended (Page & Johnson, 2009) to the nonlinear regime of the problem and some of the similarities to and differences from the linear case will be described in this talk. Simple and elegant analytical solutions in the limit as $R \to 0$ still exist in some situations, and they will be compared with numerical simulations in a tilted square container at small values of $R$. Further work on both the unsteady flow properties and the flow for other geometrical configurations will also be described. 

Another proof of GaboriauPopa 13:10 Fri 3 Jul, 2009 :: School Board Room :: Prof Greg Hjorth :: University of Melbourne
Gaboriau and Popa showed that a nonabelian free group on finitely many generators has continuum many measure preserving, free, ergodic, actions on standard Borel probability spaces. The original proof used the notion of property (T). I will sketch how this can be replaced by an elementary, and apparently new, dynamical property. 

Generalizations of the SteinTomas restriction theorem 13:10 Fri 7 Aug, 2009 :: School Board Room :: Prof Andrew Hassell :: Australian National University
The SteinTomas restriction theorem says that the
Fourier transform of a function in L^p(R^n) restricts to an
L^2 function on the unit sphere, for p in some range [1, 2(n+1)/(n+3)].
I will discuss geometric generalizations of this result, by interpreting
it as a property of the spectral measure of the Laplace operator on
R^n, and then generalizing to the LaplaceBeltrami operator on
certain complete Riemannian manifolds. It turns out that dynamical
properties of the geodesic flow play a crucial role in determining whether
a restrictiontype theorem holds for these manifolds.


Quantum Billiards 15:10 Fri 7 Aug, 2009 :: Badger labs G13
Macbeth Lecture Theatre :: Prof Andrew Hassell :: Australian National University
By a "billiard" I mean a bounded plane domain D, with smooth (enough) boundary. Quantum billiards is the study of properties of eigenfunctions of the Laplacian on D, i.e. solutions of $\Delta u = Eu$, where $u$ is a function on D vanishing at the boundary, $\Delta$ is the Laplacian on D and $E$ is a real number, in the limit as $E \to \infty$. This largeE limit is the "classical limit" in which eigenfunctions exhibit behaviour related to the classical billiard system (a billiard ball moving around inside D, bouncing elastically off the boundary).
I will talk about Quantum Ergodicity, which is the property that "most of" the eigenfunctions become uniformly distributed in D, asymptotically as $E \to \infty$, i.e. they are the same size, on average, in all parts of the domain D; and the stronger property of Quantum Unique Ergodicity, which is the same property with the words "most of" deleted. 

Weak Hopf algebras and Frobenius algebras 13:10 Fri 21 Aug, 2009 :: School Board Room :: Prof Ross Street :: Macquarie University
A basic example of a Hopf algebra is a group algebra: it is the vector space having the group as basis and having multiplication linearly extending that of the group. We can start with a category instead of a group, form the free vector space on the set of its morphisms, and define multiplication to be composition when possible and zero when not. The multiplication has an identity if the category has finitely many objects; this is a basic example of a weak bialgebra. It is a weak Hopf algebra when the category is a groupoid. Group algebras are also Frobenius algebras. We shall generalize weak bialgebras and Frobenius algebras to the context of monoidal categories and describe some of their theory using the geometry of string diagrams.


From linear algebra to knot theory 15:10 Fri 21 Aug, 2009 :: Badger Labs G13
Macbeth Lecture Theatre :: Prof Ross Street :: Macquarie University, Sydney
Vector spaces and linear functions form our paradigmatic monoidal category. The concepts underpinning linear algebra admit definitions, operations and constructions with analogues in many other parts of mathematics. We shall see how to generalize much of linear algebra to the context of monoidal categories. Traditional examples of such categories are obtained by replacing vector spaces by linear representations of a given compact group or by sheaves of vector spaces. More recent examples come from lowdimensional topology, in particular, from knot theory where the linear functions are replaced by braids or tangles. These geometric monoidal categories are often free in an appropriate sense, a fact that can be used to obtain algebraic invariants for manifolds. 

Defect formulae for integrals of pseudodifferential symbols:
applications to dimensional regularisation and index theory 13:10 Fri 4 Sep, 2009 :: School Board Room :: Prof Sylvie Paycha :: Universite Blaise Pascal, ClermontFerrand, France
The ordinary integral on L^1 functions on R^d unfortunately does not
extend to a translation invariant linear form on the whole algebra of
pseudodifferential symbols on R^d, forcing to work with ordinary linear
extensions which fail to be translation invariant. Defect formulae which express the difference between various linear extensions, show that they differ by local terms involving the noncommutative residue. In particular, we shall show how integrals regularised by a "dimensional regularisation" procedure familiar to physicists differ from Hadamard finite part (or "cutoff" regularised) integrals by a residue. When extended to pseudodifferential operators on closed manifolds, these defect formulae express the zeta regularised traces of a differential
operator in terms of a residue of its logarithm. In particular, we shall express the index of a Dirac type operator on a closed manifold in
terms of a logarithm of a generalized Laplacian, thus giving an a priori local
description of the index and shall discuss further applications.


The Monster 12:10 Thu 10 Sep, 2009 :: Napier 210 :: Dr David Parrott :: University of Adelaide
Media...The simple groups are the building blocks of all finite groups. The classification of finite simple groups is a towering achievement of 20th century mathematics. In addition to 18 infinite families of finite simple groups, there are 26 sporadic groups. The biggest sporadic group, dubbed The Monster, has about 10^54 elements. The talk will give a glimpse of this deep area of mathematics.


Covering spaces and algebra bundles 13:10 Fri 11 Sep, 2009 :: School Board Room :: Prof Keith Hannabuss :: University of Oxford
Bundles of C*algebras over a topological space M can be classified by a DixmierDouady obstruction in H^3(M,Z). This talk will describe some recent work with Mathai investigating the relationship between algebra bundles on M and on its covering space, where there can be no obstruction, particularly when there is a group acting on M. 

Curved pipe flow and its stability 15:10 Fri 11 Sep, 2009 :: Badger labs G13
Macbeth Lecture Theatre :: Dr Richard Clarke :: University of Auckland
The unsteady flow of a viscous fluid through a curved pipe is a widely occuring and well studied problem. The stability of such flows, however, has largely been overlooked; this is in marked contrast to flow through a straightpipe, examination of which forms a cornerstone of hydrodynamic stability theory. Importantly, however, flow through a curved pipe exhibits an array of flow structures that are simply not present in the zero curvature limit, and it is natural to expect these to substantially impact upon the flow's stability. By considering two very different kinds of flows through a curved pipe, we illustrate that this can indeed be the case. 

Statistical analysis for harmonized development of systemic organs in human fetuses 11:00 Thu 17 Sep, 2009 :: School Board Room :: Prof Kanta Naito :: Shimane University
The growth processes of human babies have been studied
sufficiently in scientific fields, but there have still been many issues
about the developments of human fetus which are not clarified. The aim of
this research is to investigate the developing process of systemic organs of
human fetuses based on the data set of measurements of fetus's bodies and
organs. Specifically, this talk is concerned with giving a mathematical
understanding for the harmonized developments of the organs of human
fetuses. The method to evaluate such harmonies is proposed by the use of the
maximal dilatation appeared in the theory of quasiconformal mapping. 

Understanding hypersurfaces through tropical geometry 12:10 Fri 25 Sep, 2009 :: Napier 102 :: Dr Mohammed Abouzaid :: Massachusetts Institute of Technology
Given a polynomial in two or more variables, one may study the
zero locus from the point of view of different mathematical subjects
(number theory, algebraic geometry, ...). I will explain how tropical
geometry allows to encode all topological aspects by elementary
combinatorial objects called "tropical varieties."
Mohammed Abouzaid received a B.S. in 2002 from the University of Richmond, and a Ph.D. in 2007 from the University of Chicago under the supervision of Paul Seidel. He is interested in symplectic topology and its interactions with algebraic geometry and differential topology, in particular the homological mirror symmetry conjecture. Since 2007 he has been a postdoctoral fellow at MIT, and a Clay Mathematics Institute Research Fellow. 

Stable commutator length 13:40 Fri 25 Sep, 2009 :: Napier 102 :: Prof Danny Calegari :: California Institute of Technology
Stable commutator length answers the question: "what is the simplest
surface in a given space with prescribed boundary?" where "simplest"
is interpreted in topological terms. This topological definition is
complemented by several equivalent definitions  in group theory, as a
measure of noncommutativity of a group; and in linear programming, as
the solution of a certain linear optimization problem. On the
topological side, scl is concerned with questions such as computing
the genus of a knot, or finding the simplest 4manifold that bounds a
given 3manifold. On the linear programming side, scl is measured in
terms of certain functions called quasimorphisms, which arise from
hyperbolic geometry (negative curvature) and symplectic geometry
(causal structures). In these talks we will discuss how scl in free
and surface groups is connected to such diverse phenomena as the
existence of closed surface subgroups in graphs of groups, rigidity
and discreteness of symplectic representations, bounding immersed
curves on a surface by immersed subsurfaces, and the theory of multi
dimensional continued fractions and Klein polyhedra.
Danny Calegari is the Richard Merkin Professor of Mathematics at the California Institute of Technology, and is one of the recipients of the 2009 Clay Research Award for his work in geometric topology and geometric group theory. He received a B.A. in 1994 from the University of Melbourne, and a Ph.D. in 2000 from the University of California, Berkeley under the joint supervision of Andrew Casson and William Thurston. From 2000 to 2002 he was Benjamin Peirce Assistant Professor at Harvard University, after which he joined the Caltech faculty; he became Richard Merkin Professor in 2007.


The proof of the Poincare conjecture 15:10 Fri 25 Sep, 2009 :: Napier 102 :: Prof Terrence Tao :: UCLA
In a series of three papers from 20022003, Grigori Perelman gave a spectacular proof of the Poincare Conjecture (every smooth compact simply connected threedimensional manifold is topologically isomorphic to a sphere), one of the most famous open problems in mathematics (and one of the seven Clay Millennium Prize Problems worth a million dollars each), by developing several new groundbreaking advances in Hamilton's theory of Ricci flow on manifolds. In this talk I describe in broad detail how the proof proceeds, and briefly discuss some of the key turning points in the argument.
About the speaker:
Terence Tao was born in Adelaide, Australia, in 1975. He has been a professor of mathematics at UCLA since 1999, having completed his PhD under Elias Stein at Princeton in 1996. Tao's areas of research include harmonic analysis, PDE, combinatorics, and number theory. He has received a number of awards, including the Salem Prize in 2000, the Bochner Prize in 2002, the Fields Medal and SASTRA Ramanujan Prize in 2006, and the MacArthur Fellowship and Ostrowski Prize in 2007. Terence Tao also currently holds the James and Carol Collins chair in mathematics at UCLA, and is a Fellow of the Royal Society and the Australian Academy of Sciences (Corresponding Member). 

Irreducible subgroups of SO(2,n) 13:10 Fri 16 Oct, 2009 :: School Board Room :: Dr Thomas Leistner :: University of Adelaide
Berger's classification of irreducibly represented Lie groups that can occur as holonomy groups of semiRiemannian manifolds is a remarkable result of modern differential geometry. What is remarkable about it is that it is so short and that only so few types of geometry can occur. In Riemannian signature this is even more remarkable, taking into account that any representation of a compact Lie group admits a positive definite invariant scalar product. Hence, for any not too small n there is an abundance of irreducible subgroups of SO(n). We show that in other signatures the situation is quite different with, for example, SO(1,n) having no proper irreducible subgroups. We will show how this and the corresponding result about irreducible subgroups of SO(2,n) follows from the KarpelevichMostov theorem. (This is joint work with Antonio J. Di Scala, Politecnico di Torino.) 

Is the price really right? 12:10 Thu 22 Oct, 2009 :: Napier 210 :: Mr Sam Cohen :: University of Adelaide
Media...Making decisions when outcomes are uncertain is a common problem we all face. In this talk I will outline some recent developments on this question from the mathematics of financethe theory of risk measures and nonlinear expectations. I will also talk about how decisions are currently made in the finance industry, and how some simple mathematics can show where these systems are open to abuse. 

Manifold destiny: a talk on water, fire and life 15:10 Fri 6 Nov, 2009 :: MacBeth Lecture Theatre :: Dr Sanjeeva Balasuriya :: University of Adelaide
Manifolds are important entities in dynamical systems, and organise space
into regions in which different motions occur. For example, intersections
between stable and unstable manifolds in discrete systems result in
chaotic motion. This talk will focus on manifolds and their locations in
continuous dynamical systems, and in particular on Melnikov's method and its adaptations for determining the effect of perturbations on manifolds.
The relevance of such adaptations to a surprising range of applications will be shown, in addition to recent theoretical developments inspired by such problems. The applications addressed in this talk include understanding the motion of fluid near oceanic eddies and currents, optimising mixing in nanofluidic devices in order to improve reactions, computing the speed of a flame front, and finding the spreading rate of bacterial colonies. 

Group actions in complex geometry, I and II 13:10 Fri 8 Jan, 2010 :: School Board Room :: Prof Frank Kutzschebauch, IGA Lecturer :: University of Berne
Media... 

Group actions in complex geometry, III and IV 10:10 Fri 15 Jan, 2010 :: School Board Room :: Prof Frank Kutzschebauch, IGA Lecturer :: University of Berne
Media... 

Group actions in complex geometry, V and VI 10:10 Fri 22 Jan, 2010 :: School Board Room :: Prof Frank Kutzschebauch, IGA Lecturer :: University of Berne
Media... 

Group actions in complex geometry, VII and VIII 10:10 Fri 29 Jan, 2010 :: Napier LG 23 :: Prof Frank Kutzschebauch, IGA Lecturer :: University of Berne
Media... 

Oka manifolds and Oka maps 13:10 Fri 29 Jan, 2010 :: Napier LG 23 :: Prof Franc Forstneric :: University of Ljubljana
In this survey lecture I will discuss a
new class of complex manifolds and of holomorphic maps
between them which I introduced in 2009
(F. Forstneric, Oka Manifolds, C. R. Acad. Sci. Paris,
Ser. I, 347 (2009) 10171020).
Roughly speaking, a complex manifold Y is said to be
an Oka manifold if Y admits plenty of holomorphic maps
from any Stein manifold (or Stein space) X to Y,
in a certain precise sense. In particular, the inclusion
of the space of holomorphic maps of X to Y into the space of
continuous maps must be a weak homotopy equivalence.
One of the main results is that this class of manifolds
can be characterized by a simple Runge approximation property
for holomorphic maps from complex Euclidean spaces C^n to Y,
with approximation on compact convex subsets of C^n.
This answers in the affirmative a question posed by
M. Gromov in 1989. I will also discuss the Oka properties
of holomorphic maps and their characterization by
approximation properties. 

A solution to the GromovVaserstein problem 15:10 Fri 29 Jan, 2010 :: Engineering North N 158 Chapman Lecture Theatre :: Prof Frank Kutzschebauch :: University of Berne, Switzerland
Any matrix in $SL_n (\mathbb C)$ can be written as a product of elementary matrices using the Gauss elimination process. If instead of the field of complex numbers, the entries in the matrix are elements of a more general ring, this becomes a delicate question. In particular, rings of complexvalued functions on a space are interesting cases. A deep result of Suslin gives an affirmative answer for the polynomial ring in $m$ variables in case the size $n$ of the matrix is at least 3. In the topological category, the problem was solved by Thurston and Vaserstein. For holomorphic functions on $\mathbb C^m$, the problem was posed by Gromov in the 1980s. We report on a complete solution to Gromov's problem. A main tool is the OkaGrauertGromov hprinciple in complex analysis. Our main theorem can be formulated as follows: In the absence of obvious topological obstructions, the Gauss elimination process can be performed in a way that depends holomorphically on the matrix. This is joint work with Bj\"orn Ivarsson. 

Proper holomorphic maps from strongly pseudoconvex domains to qconvex manifolds 13:10 Fri 5 Feb, 2010 :: School Board Room :: Prof Franc Forstneric :: University of Ljubljana
(Joint work with B. Drinovec Drnovsek, Amer. J. Math., in press.)
I will discuss the existence of closed complex subvarieties
of a complex manifold X that are proper holomorphic images
of strongly pseudoconvex Stein domains. The main
sufficient condition is expressed in terms of
the Morse indices and of the number of positive
Levi eigenvalues of an exhaustion function on X.
Examples show that our condition cannot be weakened in general.
I will describe optimal results for subvarieties of this type in
complements of compact complex submanifolds with Griffiths
positive normal bundle; in the projective case these
generalize classical theorems of Remmert, Bishop and
Narasimhan concerning proper holomorphic maps and embeddings
to complex Euclidean spaces. 

Finite and infinite words in number theory 15:10 Fri 12 Feb, 2010 :: Napier LG28 :: Dr Amy Glen :: Murdoch University
A 'word' is a finite or infinite sequence of symbols (called 'letters') taken from a finite nonempty set (called an 'alphabet'). In mathematics, words naturally arise when one wants to represent elements from some set (e.g., integers, real numbers, padic numbers, etc.) in a systematic way. For instance, expansions in integer bases (such as binary and decimal expansions) or continued fraction expansions allow us to associate with every real number a unique finite or infinite sequence of digits.
In this talk, I will discuss some old and new results in Combinatorics on Words and their applications to problems in Number Theory. In particular, by transforming inequalities between real numbers into (lexicographic) inequalities between infinite words representing their binary expansions, I will show how combinatorial properties of words can be used to completely describe the minimal intervals containing all fractional parts {x*2^n}, for some positive real number x, and for all nonnegative integers n. This is joint work with JeanPaul Allouche (Universite ParisSud, France). 

The exceptional Lie group G_2 and rolling balls 15:10 Fri 19 Feb, 2010 :: Napier LG28 :: Prof Pawel Nurowski :: University of Warsaw
In this talk, after a brief history of how the exceptional Lie group G_2 was discovered, I present various appearances of this group in mathematics. Its physical realisation as a symmetry group of a simple mechanical system will also be discussed. 

Integrable systems: noncommutative versus commutative 14:10 Thu 4 Mar, 2010 :: School Board Room :: Dr Cornelia Schiebold :: Mid Sweden University
After a general introduction to integrable systems, we will explain an
approach to their solution theory, which is based on Banach space theory. The
main point is first to shift attention to noncommutative integrable systems and
then to extract information about the original setting via projection techniques.
The resulting solution formulas turn out to be particularly wellsuited to the
qualitative study of certain solution classes. We will show how one can obtain
a complete asymptotic description of the so called multiple pole solutions, a
problem that was only treated for special cases before. 

Conformal structures with G_2 ambient metrics 13:10 Fri 19 Mar, 2010 :: School Board Room :: Dr Thomas Leistner :: University of Adelaide
The nsphere considered as a conformal manifold can be viewed as the projectivisation of the light cone in n+2 Minkowski space. A construction that generalises this picture to arbitrary conformal classes is the ambient metric introduced by C. Fefferman and R. Graham. In the talk, I will explain the FeffermanGraham ambient metric construction and how it detects the existence of certain metrics in the conformal class. Then I will present conformal classes of signature (3,2) for which the 7dimensional ambient metric has the noncompact exceptional Lie group G_2 as its holonomy. This is joint work with P. Nurowski, Warsaw University. 

American option pricing in a Markov chain market model 15:10 Fri 19 Mar, 2010 :: School Board Room :: Prof Robert Elliott :: School of Mathematical Sciences, University of Adelaide
This paper considers a model for asset pricing in a world where
the randomness is modeled by a Markov chain rather than Brownian motion.
In this paper we develop a theory of optimal stopping and related
variational inequalities for American options in this model. A version of
Saigal's Lemma is established and numerical algorithms developed.
This is a joint work with John van der Hoek. 

Loop groups and characteristic classes 13:10 Fri 23 Apr, 2010 :: School Board Room :: Dr Raymond Vozzo :: University of Adelaide
Suppose $G$ is a compact Lie group, $LG$ its (free) loop group and $\Omega G \subseteq LG$ its based loop group. Let $P \to M$ be a principal bundle with structure group one of these loop groups. In general, differential form representatives of characteristic classes for principal bundles can be easily obtained using the ChernWeil homomorphism, however for infinitedimensional bundles such as $P$ this runs into analytical problems and classes are more difficult to construct. In this talk I will explain some new results on characteristic classes for loop group bundles which demonstrate how to construct certain classeswhich we call string classesfor such bundles. These are obtained by making heavy use of a certain $G$bundle associated to any loop group bundle (which allows us to avoid the problems of dealing with infinitedimensional bundles). We shall see that the free loop group case naturally involves equivariant cohomology. 

Moduli spaces of stable holomorphic vector bundles II 13:10 Fri 30 Apr, 2010 :: School Board Room :: A/Prof Nicholas Buchdahl :: University of Adelaide
In this talk, I shall briefly review the notion of
stability for holomorphic vector bundles on compact
complex manifolds as discussed in the first part of this
talk (28 August 2009). Then I shall attempt to compute
some explicit examples in simple situations, illustrating
the use of basic algebraicgeometric tools.
The level of the talk will be appropriate for graduate
students, particularly those who have been taking part
in the algebraic geometry reading group meetings. 

The caloron transform 13:10 Fri 7 May, 2010 :: School Board Room :: Prof Michael Murray :: University of Adelaide
The caloron transform is a `fake' dimensional reduction which transforms a Gbundle over certain
manifolds to a loop group of G bundle over a manifold of one lower dimension. This talk will review the
caloron transform and show how it can be best understood using the language of pseudoisomorphisms
from category theory as well as considering its application to Bogomolny monopoles and string
structures.


Holonomy groups 15:10 Fri 7 May, 2010 :: Napier LG24 :: Dr Thomas Leistner :: University of Adelaide
In the first part of the talk I will illustrate some basic concepts of differential geometry that lead to the notion of a holonomy group. Then I will explain Berger's classification of Riemannian holonomy groups and discuss questions that arose from it. Finally, I will focus on holonomy groups of Lorentzian manifolds and indicate briefly why all this is of relevance to presentday theoretical physics. 

Two problems in porous media flow 15:10 Tue 11 May, 2010 :: Santos Lecture Theatre :: A/Prof Graeme Hocking :: Murdoch University
I will discuss two problems in porous media flow.
On a tropical island, fresh water may sit in the soil beneath the
ground, floating on the ocean's salt water. This water is a valuable
resource for the inhabitants, but requires sufficient rainfall to
recharge the lens. In this paper, Green's functions are used to derive
an integral equation to satisfy all of the conditions except those on
the interfaces, which are then solved for numerically. Conditions under
which the lens can be maintained will be described. This is work I did
with an Honours student, Sue Chen, who is now at U. Melbourne.
In the second problem, I will discuss an "exact" solution to a problem
in withdrawal from an unconfined aquifer. The problem formulation gives
rise to a singular integral equation that can be solved using a nice
orthogonality result I first met in airfoil theory. This is work with
Hong Zhang from Griffith University. 

Moduli spaces of stable holomorphic vector bundles III 13:10 Fri 14 May, 2010 :: School Board Room :: A/Prof Nicholas Buchdahl :: University of Adelaide
This talk is a continuation of the talk on 30 April. The same abstract applies:
In this talk, I shall briefly review the notion of
stability for holomorphic vector bundles on compact
complex manifolds as discussed in the first part of this
talk (28 August 2009). Then I shall attempt to compute
some explicit examples in simple situations, illustrating
the use of basic algebraicgeometric tools.
The level of the talk will be appropriate for graduate
students, particularly those who have been taking part
in the algebraic geometry reading group meetings. 

Spot the difference: how to tell when two things are the same (and when they're not!) 13:10 Wed 19 May, 2010 :: Napier 210 :: Dr Raymond Vozzo :: University of Adelaide
Media...High on a mathematician's todo list is classifying objects and structures that arise in mathematics. We see patterns in things and want to know what other sorts of things behave similarly. This poses several problems. How can you tell when two seemingly different mathematical objects are the same? Can you even tell when two seemingly similar mathematical objects are the same? In fact, what does "the same" even mean? How can you tell if two things are the same when you can't even see them! In this talk, we will take a walk through some areas of maths known as algebraic topology and category theory and I will show you some of the ways mathematicians have devised to tell when two things are "the same". 

Functorial 2connected covers 13:10 Fri 21 May, 2010 :: School Board Room :: David Roberts :: University of Adelaide
The Whitehead tower of a topological space seeks to resolve that space by successively removing homotopy groups from the 'bottom up'. For a pathconnected space with no 1dimensional local pathologies the first stage in the tower can be chosen to be the universal (=1connected) covering space. This construction also works in the category Diff of manifolds. However, further stages in the two known constructions of the Whitehead tower do not work in Diff, being purely topological  and one of these is nonfunctorial, depending on a large number of choices. This talk will survey results from my thesis which constructs a new, functorial model for the 2connected cover which will lift to a generalised (2)category of smooth objects.
This talk contains joint work with Andrew Stacey of the Norwegian University of Science and Technology. 

A variance constraining ensemble Kalman filter: how to improve forecast using climatic data of unobserved variables 15:10 Fri 28 May, 2010 :: Santos Lecture Theatre :: A/Prof Georg Gottwald :: The University of Sydney
Data assimilation aims to solve one of the fundamental problems ofnumerical weather prediction  estimating the optimal state of the
atmosphere given a numerical model of the dynamics, and sparse, noisy
observations of the system. A standard tool in attacking this
filtering problem is the Kalman filter.
We consider the problem when only partial observations are available.
In particular we consider the situation where the observational space
consists of variables which are directly observable with known
observational error, and of variables of which only their climatic
variance and mean are given. We derive the corresponding Kalman
filter in a variational setting.
We analyze the variance constraining Kalman filter (VCKF) filter for
a simple linear toy model and determine its range of optimal
performance. We explore the variance constraining Kalman filter in an
ensemble transform setting for the Lorenz96 system, and show that
incorporating the information on the variance on some unobservable
variables can improve the skill and also increase the stability of
the data assimilation procedure.
Using methods from dynamical systems theory we then systems where the
unobserved variables evolve deterministically but chaotically on a
fast time scale.
This is joint work with Lewis Mitchell and Sebastian Reich.


Vertex algebras and variational calculus I 13:10 Fri 4 Jun, 2010 :: School Board Room :: Dr Pedram Hekmati :: University of Adelaide
A basic operation in calculus of variations is the EulerLagrange variational
derivative, whose kernel determines the extremals of functionals. There exists a
natural resolution of this operator, called the variational complex.
In this talk, I shall explain how to use tools from the theory of vertex
algebras
to explicitly construct the variational complex. This also provides a very
convenient language for classifying and constructing integrable Hamiltonian
evolution equations. 

Topological chaos in two and three dimensions 15:10 Fri 18 Jun, 2010 :: Santos Lecture Theatre :: Dr Matt Finn :: School of Mathematical Sciences
Research into twodimensional laminar fluid mixing has enjoyed a
renaissance in the last decade since the realisation that the
Thurston–Nielsen theory of surface homeomorphisms can assist in
designing efficient "topologically chaotic" batch mixers.
In this talk I will survey some tools used in topological fluid
kinematics, including braid groups, traintracks, dynamical systems and
topological index formulae. I will then make some speculations about
topological chaos in three dimensions. 

On affine BMW algebras 13:10 Fri 25 Jun, 2010 :: Napier 208 :: Prof Arun Ram :: University of Melbourne
I will describe a family of algebras of tangles (which give rise to link invariants
following the methods of ReshetikhinTuraev and Jones) and describe some aspects of their
structure and their representation theory. The main goal will be to explain how to use
universal Verma modules for the symplectic group to compute the representation theory
of affine BMW (BirmanMurakamiWenzl) algebras. 

The Glass Bead Game 15:10 Fri 25 Jun, 2010 :: Napier G04 :: Prof Arun Ram :: University of Melbourne
This title is taken from the novel of Hermann Hesse. In joint work with A. Kleshchev, we were amused to discover a glass bead game for constructing representations of quiver Hecke algebras (algebras recently defined by KhovanovLauda and Rouquier whose representation theory categorifies quantum groups of KacMoody Lie algebras). In fact, the glass bead game is tantalizingly simple, and may soon be marketed in your local toy store. I will explain how this game works, and some of the fascinating numerology that appears in the scoring of the plays. 

The Hmm... Sessions 11:00 Wed 14 Jul, 2010 :: Maths DropIn Centre (Level 1 Schulz Building)
The aim of the Hmm... Sessions is for people to get together to solve
puzzles as a group. There will be lots of time to solve puzzles in groups
and to celebrate the clever solutions of others. The lunchbreak provides
time to socialise, play games or to continue solving puzzles (bring your own
lunch, or go out to nearby Rundle Mall to buy lunch on the day).
Hosted by Dr David Butler of the Maths Learning Service, University of
Adelaide. 

Higher nonunital Quillen K'theory 13:10 Fri 23 Jul, 2010 :: EngineeringMaths G06 :: Dr Snigdhayan Mahanta :: University of Adelaide
Quillen introduced a $K'_0$theory for possibly nonunital
rings and showed that it
agrees with the usual algebraic $K_0$theory if the ring is unital. We
shall introduce higher
$K'$groups for $k$algebras, where $k$ is a field, and discuss some
elementary properties
of this theory. We shall also show that for stable $C*$algebras the
higher $K'$theory agrees
with the topological $K$theory. If time permits we shall explain how
this provides a formalism
to treat topological $\mathbb{T}$dualities via Kasparov's bivariant $K$theory. 

The two envelope problem 12:10 Wed 11 Aug, 2010 :: Napier 210 :: A/Prof Gary Glonek :: University of Adelaide
Media...The two envelope problem is a long standing paradox in
probability theory. Although its formulation has elements in common
with the celebrated Monty Hall problem, the underlying paradox is
apparently far more subtle. In this talk, the problem will be
explained and various aspects of the paradox will be discussed.
Connections to Bayesian inference and other areas of statistics will
be explored. 

Index theory in the noncommutative world 13:10 Fri 20 Aug, 2010 :: Ingkarni Wardli B20 (Suite 4) :: Prof Alan Carey :: Australian National University
The aim of the talk is to give an overview of the noncommutative geometry approach to index theory. 

Index theory in Mathematics and Physics 15:10 Fri 20 Aug, 2010 :: Napier G04 :: Prof Alan Carey :: Australian National University
This lecture is a personal (and partly historical) overview in nontechnical terms of the topic described in the title, from first year linear algebra to von Neumann algebras. 

A classical construction for simplicial sets revisited 13:10 Fri 27 Aug, 2010 :: Ingkarni Wardli B20 (Suite 4) :: Dr Danny Stevenson :: University of Glasgow
Simplicial sets became popular in the 1950s as a combinatorial way to
study the homotopy theory of topological spaces. They are more robust
than the older notion of simplicial complexes, which were introduced
for the same purpose. In this talk, which will be as introductory as
possible, we will review some classical functors arising in the theory
of simplicial sets, some wellknown, some notsowellknown. We will
reexamine the proof of an old theorem of Kan in light of these
functors. We will try to keep all jargon to a minimum. 

On some applications of higher Quillen K'theory 13:10 Fri 3 Sep, 2010 :: Ingkarni Wardli B20 (Suite 4) :: Dr Snigdhayan Mahanta :: University of Adelaide
In my previous talk I introduced a functor from the category of kalgebras (k field) to abelian groups, called KQtheory. In this talk I will explain its relationship with
topological (homological) Tdualities and twisted Ktheory. 

Contraction subgroups in locally compact groups 13:10 Fri 17 Sep, 2010 :: Ingkarni Wardli B20 (Suite 4) :: Prof George Willis :: University of Newcastle
For each automorphism, $\alpha$, of the locally compact group $G$ there is a corresponding {\sl contraction subgroup\/}, $\hbox{con}(\alpha)$, which is the set of $x\in G$ such that $\alpha^n(x)$ converges to the identity as $n\to \infty$. Contractions subgroups are important in representation theory, through the Mautner phenomenon, and in the study of convolution semigroups.
If $G$ is a Lie group, then $\hbox{con}(\alpha)$ is automatically closed, can be described in terms of eigenvalues of $\hbox{ad}(\alpha)$, and is nilpotent. Since any connected group may be approximated by Lie groups, contraction subgroups of connected groups are thus well understood. Following a general introduction, the talk will focus on contraction subgroups of totally disconnected groups. A criterion for nontriviality of $\hbox{con}(\alpha)$ will be described (joint work with U.~Baumgartner) and a structure theorem for $\hbox{con}(\alpha)$ when it is closed will be presented (joint with H.~Gl\"oeckner). 

Totally disconnected, locally compact groups 15:10 Fri 17 Sep, 2010 :: Napier G04 :: Prof George Willis :: University of Newcastle
Locally compact groups occur in many branches of mathematics. Their study falls into two cases: connected groups, which occur as automorphisms of smooth structures such as spheres for example; and totally disconnected groups, which occur as automorphisms of discrete structures such as trees. The talk will give an overview of the currently developing structure theory of totally disconnected locally compact groups.
Techniques for analysing totally disconnected groups will be described that correspond to the familiar Lie group methods used to treat connected groups. These techniques played an essential role in the recent solution of a problem raised by R. Zimmer and G. Margulis concerning commensurated subgroups of arithmetic groups.


Principal Component Analysis Revisited 15:10 Fri 15 Oct, 2010 :: Napier G04 :: Assoc. Prof Inge Koch :: University of Adelaide
Since the beginning of the 20th century, Principal Component Analysis (PCA) has been an important tool in the analysis of multivariate data. The principal components summarise data in fewer than the original number of variables without losing essential information, and thus allow a split of the data into signal and noise components. PCA is a linear method, based on elegant mathematical theory.
The increasing complexity of data together with the emergence of fast computers in the later parts of the 20th century has led to a renaissance of PCA. The growing numbers of variables (in particular, highdimensional low sample size problems), nonGaussian data, and functional data (where the data are curves) are posing exciting challenges to statisticians, and have resulted in new research which extends the classical theory.
I begin with the classical PCA methodology and illustrate the challenges presented by the complex data that we are now able to collect. The main part of the talk focuses on extensions of PCA: the duality of PCA and the Principal Coordinates of Multidimensional Scaling, Sparse PCA, and consistency results relating to principal components, as the dimension grows. We will also look at newer developments such as Principal Component Regression and Supervised PCA, nonlinear PCA and Functional PCA.


IGAAMSI Workshop: Dirac operators in geometry, topology, representation theory, and physics 10:00 Mon 18 Oct, 2010 :: 7.15 Ingkarni Wardli :: Prof Dan Freed :: University of Texas, Austin
Lecture Series by Dan Freed (University of Texas, Austin).
Dirac introduced his eponymous operator to describe electrons in quantum theory.
It was rediscovered by Atiyah and Singer in their study of the index problem on
manifolds. In these lectures we explore new theorems and applications. Several
of these also involve Ktheory in its recent twisted and differential
variations.
These lectures will be supplemented by additional talks by invited speakers. For more details, please see the conference webpage:
http://www.iga.adelaide.edu.au/workshops/WorkshopOct2010/ 

Higher stacks and homotopy theory II: the motivic context 13:10 Thu 16 Dec, 2010 :: Ingkarni Wardli B21 :: Mr James Wallbridge :: University of Adelaide and Institut de mathematiques de Toulouse
In part I of this talk (JC seminar May 2008) we presented motivation
and the basic definitions for building homotopy theory into an arbitrary
category by introducing the notion of (higher) stacks. In part II we consider a
specific example on the category of schemes to illustrate how the machinery
works in practice. It will lead us into motivic territory (if we like it or
not). 

Complete quaternionic Kahler manifolds associated to cubic polynomials 13:10 Fri 11 Feb, 2011 :: Ingkarni Wardli B18 :: Prof Vicente Cortes :: University of Hamburg
We prove that the supergravity r and cmaps preserve completeness. As a consequence, any component H of a hypersurface {h = 1} defined by a homogeneous cubic polynomial h such that \partial^2 h is a complete Riemannian metric on H defines a complete projective special Kahler manifold and any complete projective special
Kahler manifold defines a complete quaternionic Kahler manifold of negative scalar curvature. We classify all complete quaternionic Kahler manifolds of dimension less or equal to 12 which are obtained in this way and describe some complete examples in 16 dimensions.


Heat transfer scaling and emergence of threedimensional flow in horizontal convection 15:10 Fri 25 Feb, 2011 :: Conference Room Level 7 Ingkarni Wardli :: Dr Greg Sheard :: Monash University
Horizontal convecton refers to flows driven by uneven heating on a horizontal forcing boundary. Flows exhibiting these characteristics are prevalent in nature, and include the NorthSouth Hadley circulation within the atmosphere between warmer and more temperate latitudes, as well as ocean currents driven by nonuniform heating via solar radiation.
Here a model for these generic convection flows is established featuring a rectangular enclosure, insulated on the side and top
walls, and driven by a linear temperature gradient applied along the bottom wall. Rayleigh number dependence of heat transfer
through the forcing boundary is computed and compared with theory. Attention is given to transitions in the flow, including the
development of unsteady flow and threedimensional flow: the effect of these transitions on the NusseltRayleigh number scaling exponents is described.


Real analytic sets in complex manifolds I: holomorphic closure dimension 13:10 Fri 4 Mar, 2011 :: Mawson 208 :: Dr Rasul Shafikov :: University of Western Ontario
After a quick introduction to real and complex analytic sets,
I will discuss possible notions of complex dimension of real sets, and then discuss a structure theorem for the holomorphic closure dimension which is defined as the dimension of the smallest complex analytic germ containing the real germ. 

Real analytic sets in complex manifolds II: complex dimension 13:10 Fri 11 Mar, 2011 :: Mawson 208 :: Dr Rasul Shafikov :: University of Western Ontario
Given a real analytic set R, denote by A the subset of R of points through which there is a nontrivial complex variety contained in R, i.e., A consists of points in R of positive complex dimension. I will discuss the structure of the set A. 

Surface quotients of hyperbolic buildings 13:10 Fri 18 Mar, 2011 :: Mawson 208 :: Dr Anne Thomas :: University of Sydney
Let I(p,v) be Bourdon's building, the unique simplyconnected 2complex such that all 2cells are regular rightangled hyperbolic pgons, and the link at each vertex is the complete bipartite graph K_{v,v}. We investigate and mostly determine the set of triples (p,v,g) for which there is a discrete group acting on I(p,v) so that the quotient is a compact orientable surface of genus g. Surprisingly, the existence of such a quotient depends upon the value of v. The remaining cases lead to open questions in tessellations of surfaces and in number theory. We use elementary group theory, combinatorics, algebraic topology and number theory. This is joint work with David Futer. 

Lattices in exotic groups 15:10 Fri 18 Mar, 2011 :: 7.15 Ingkarni Wardli :: Dr Anne Thomas :: University of Sydney
Media...A lattice in a locally compact group G is a discrete subgroup of cofinite volume. Lattices in Lie groups are wellstudied, but little is known about lattices in other, "exotic", locally compact groups. Examples of exotic groups include isometry groups of trees, buildings, polyhedral complexes and CAT(0) spaces, and KacMoody groups. We will survey known results, which include both rigidity and surprising examples of flexibility, and discuss the wide range of tools used to investigate lattices in these nonclassical settings. 

Lorentzian manifolds with special holonomy 13:10 Fri 25 Mar, 2011 :: Mawson 208 :: Mr Kordian Laerz :: Humboldt University, Berlin
A parallel lightlike vector field on a Lorentzian manifold X naturally defines a foliation of codimension 1 on X and a 1dimensional subfoliation. In the first part we introduce Lorentzian metrics on the total space of certain circle bundles in order to construct weakly irreducible Lorentzian manifolds admitting a parallel lightlike vector field such that all leaves of the foliations are compact. Then we study which holonomy representations can be realized in this way. Finally, we consider the structure of arbitrary Lorentzian manifolds for which the leaves of the foliations are compact.


Operator algebra quantum groups 13:10 Fri 1 Apr, 2011 :: Mawson 208 :: Dr Snigdhayan Mahanta :: University of Adelaide
Woronowicz initiated the study of quantum groups using C*algebras. His framework enabled him to deal with compact (linear) quantum groups. In this talk we shall introduce a notion of quantum groups that can handle infinite dimensional examples like SU(\infty). We shall also study some quantum homogeneous spaces associated to this group and compute their Ktheory groups. This is joint work with V. Mathai. 

Spherical tube hypersurfaces 13:10 Fri 8 Apr, 2011 :: Mawson 208 :: Prof Alexander Isaev :: Australian National University
We consider smooth real hypersurfaces in a complex vector space. Specifically, we are interested in tube hypersurfaces, i.e., hypersurfaces represented as the direct product of the imaginary part of the space and hypersurfaces lying in its real part. Tube hypersurfaces arise, for instance, as the boundaries of tube domains. The study of tube domains is a classical subject in several complex variables and complex geometry, which goes back to the beginning of the 20th century. Indeed, already Siegel found it convenient to realise certain symmetric domains as tubes.
One can endow a tube hypersurface with a socalled CRstructure, which is the remnant of the complex structure on the ambient vector space. We impose on the CRstructure the condition of sphericity. One way to state this condition is to require a certain curvature (called the CRcurvature of the hypersurface) to vanish identically. Spherical tube hypersurfaces possess remarkable properties and are of interest from both the complexgeometric and affinegeometric points of view. I my talk I will give an overview of the theory of such hypersurfaces. In particular, I will mention an algebraic construction arising from this theory that has applications in abstract commutative algebra and singularity theory. I will speak about these applications in detail in my colloquium talk later today. 

Algebraic hypersurfaces arising from Gorenstein algebras 15:10 Fri 8 Apr, 2011 :: 7.15 Ingkarni Wardli :: Associate Prof Alexander Isaev :: Australian National University
Media...To every Gorenstein algebra of finite dimension greater than 1 over a field of characteristic zero, and a projection on its maximal ideal with range equal to the annihilator of the ideal, one can associate a certain algebraic hypersurface lying in the ideal. Such hypersurfaces possess remarkable properties. They can be used, for instance, to help decide whether two given Gorenstein algebras are isomorphic, which for the case of complex numbers leads to interesting consequences in singularity theory. Also, for the case of real numbers such hypersurfaces naturally arise in CRgeometry. In my talk I will discuss these hypersurfaces and some of their applications. 

How to value risk 12:10 Mon 11 Apr, 2011 :: 5.57 Ingkarni Wardli :: Leo Shen :: University of Adelaide
A key question in mathematical finance is: given a future random payoff X, what is its value today? If X represents a loss, one can ask how risky is X. To mitigate risk it must be modelled and quantified. The finance industry has used ValueatRisk and conditional ValueatRisk as measures. However, these measures are not time consistent and ValueatRisk can penalize diversification. A modern theory of risk measures is being developed which is related to solutions of backward stochastic differential equations in continuous time and stochastic difference equations in discrete time.
I first review risk measures used in mathematical finance, including static and dynamic risk measures. I recall results relating to backward stochastic difference equations (BSDEs) associated with a single jump process. Then I evaluate some numerical examples of the solutions of the backward stochastic difference equations and related risk measures. These concepts are new. I hope the examples will indicate how they might be used. 

Centres of cyclotomic Hecke algebras 13:10 Fri 15 Apr, 2011 :: Mawson 208 :: A/Prof Andrew Francis :: University of Western Sydney
The cyclotomic Hecke algebras, or ArikiKoike algebras $H(R,q)$, are
deformations of the group algebras of certain complex reflection groups
$G(r,1,n)$, and also are quotients of the ubiquitous affine Hecke algebra.
The centre of the affine Hecke algebra has been understood since
Bernstein in terms of the symmetric group action on the weight lattice.
In this talk I will discuss the proof that over an arbitrary unital
commutative ring $R$, the centre of the affine Hecke algebra maps
\emph{onto} the centre of the cyclotomic Hecke algebra when $q1$ is
invertible in $R$. This is the analogue of the fact that the centre of
the Hecke algebra of type $A$ is the set of symmetric polynomials in
JucysMurphy elements (formerly known as he DipperJames conjecture). Key
components of the proof include the relationship between the trace
functions on the affine Hecke algebra and on the cyclotomic Hecke algebra,
and the link to the affine braid group. This is joint work with John
Graham and Lenny Jones. 

A strong Oka principle for embeddings of some planar domains into CxC*, I 13:10 Fri 6 May, 2011 :: Mawson 208 :: Mr Tyson Ritter :: University of Adelaide
The Oka principle refers to a collection of results in
complex analysis which state that there are only topological
obstructions to solving certain holomorphically defined problems
involving Stein manifolds. For example, a basic version of Gromov's
Oka principle states that every continuous map from a Stein manifold
into an elliptic complex manifold is homotopic to a holomorphic map.
In these two talks I will discuss a new result showing that
if we restrict the class of source manifolds to circular domains and
fix the target as CxC* we can obtain a much stronger Oka principle:
every continuous map from a circular domain S into CxC* is homotopic
to a proper holomorphic embedding. This result has close links with
the longstanding and difficult problem of finding proper holomorphic
embeddings of Riemann surfaces into C^2, with additional motivation
from other sources.


A strong Oka principle for embeddings of some planar domains into CxC*, II 13:10 Fri 13 May, 2011 :: Mawson 208 :: Mr Tyson Ritter :: University of Adelaide
The Oka principle refers to a collection of results in
complex analysis which state that there are only topological
obstructions to solving certain holomorphically defined problems
involving Stein manifolds. For example, a basic version of Gromov's
Oka principle states that every continuous map from a Stein manifold
into an elliptic complex manifold is homotopic to a holomorphic map.
In these two talks I will discuss a new result showing that
if we restrict the class of source manifolds to circular domains and
fix the target as CxC* we can obtain a much stronger Oka principle:
every continuous map from a circular domain S into CxC* is homotopic
to a proper holomorphic embedding. This result has close links with
the longstanding and difficult problem of finding proper holomorphic
embeddings of Riemann surfaces into C^2, with additional motivation
from other sources.


The ExtendedDomainEigenfunction Method: making old mathematics work for new problems 15:10 Fri 13 May, 2011 :: 7.15 Ingkarni Wardli :: Prof Stan Miklavcic :: University of South Australia
Media...Standard analytical solutions to elliptic boundary value problems on asymmetric domains are rarely, if ever, obtainable. Several years ago I proposed a solution technique to cope with such complicated domains. It involves the embedding of the original domain into one with simple boundaries where the classical eigenfunction solution approach can be used. The solution in the larger domain, when restricted to the original domain is then the solution of the original boundary value problem. In this talk I will present supporting theory for this idea, some numerical results for the particular case of the Laplace equation and the Stokes flow equations in twodimensions and discuss advantages and limitations of the proposal. 

Lifting principal bundles and abelian extensions 13:10 Fri 27 May, 2011 :: Mawson 208 :: Prof Michael Murray :: School of Mathematical Sciences
I will review what it means to lift the structure group of a principal bundle
and the topological obstruction to this in the case of a central extension. I will then discuss
some new results in the case of abelian extensions. 

Natural operations on the Hochschild cochain complex 13:10 Fri 3 Jun, 2011 :: Mawson 208 :: Dr Michael Batanin :: Macquarie University
The Hochschild cochain complex of an associative algebra provides an important bridge between algebra and geometry.
Algebraically, this is the derived center of the algebra. Geometrically, the Hochschild cohomology of the algebra of smooth functions on a manifold is isomorphic to the graduate space of polyvector fields on this manifold.
There are many important operations acting on the Hochschild complex. It is, however, a tricky question to ask which operations are natural because the Hochschild complex is not a functor. In my talk I will explain how we can overcome this obstacle and compute all possible natural operations on the Hochschild complex. The result leads immediately to a proof of the Deligne conjecture on Hochschild cochains. 

From group action to Kontsevich's SwissCheese conjecture through categorification 15:10 Fri 3 Jun, 2011 :: Mawson Lab G19 :: Dr Michael Batanin :: Macquarie University
Media...The Kontsevich SwissCheese conjecture is a deep generalization of the Deligne conjecture on Hochschild cochains which plays an important role in the deformation quantization theory.
Categorification is a method of thinking about mathematics by replacing set theoretical concepts by some higher dimensional objects. Categorification is somewhat of an art because there is no exact recipe for doing this. It is, however, a very powerful method of understanding (and producing) many deep results starting from simple facts we learned as undergraduate students.
In my talk I will explain how Kontsevich SwissCheese conjecture can be easily understood as a special case of categorification of a very familiar statement: an action of a group G (more generally, a monoid) on a set X is the same as group homomorphism from G to the group of automorphisms of X (monoid of endomorphisms of X in the case of a monoid action). 

Towards RogersRamanujan identities for the Lie algebra A_n 13:10 Fri 5 Aug, 2011 :: B.19 Ingkarni Wardli :: Prof Ole Warnaar :: University of Queensland
The RogersRamanujan identities are a pair of qseries identities proved by Leonard Rogers in 1894 which became famous two decades later as conjectures of Srinivasa Ramanujan. Since the 1980s it is known that the RogersRamanujan identities are in fact identities for characters of certain modules for the affine Lie algebra A_1. This poses the obvious question as to whether there exist RogersRamanujan identities for higher rank affine Lie algebras. In this talk I will describe some recent progress on this problem. I will also discuss a seemingly mysterious connection with the representation theory of quivers over finite fields. 

The Selberg integral 15:10 Fri 5 Aug, 2011 :: 7.15 Ingkarni Wardli :: Prof Ole Warnaar :: University of Queensland
Media...In this talk I will give a gentle introduction to the mathematics surrounding the Selberg integral. Selberg's integral, which first appeared in two rather unusual papers by Atle Selberg in the 1940s, has become famous as much for its association with (other) mathematical greats such as Enrico Bombieri and Freeman Dyson as for its importance in algebra (Coxeter groups), geometry (hyperplane arrangements) and number theory (the Riemann hypothesis). In this talk I will review the remarkable history of the Selberg integral and discuss some of its early applications. Time permitting I will end the talk by describing some of my own, ongoing work on Selberg integrals related to Lie algebras. 

AustMS/AMSI Mahler Lecture: Chaos, quantum mechanics and number theory 18:00 Tue 9 Aug, 2011 :: Napier 102 :: Prof Peter Sarnak :: Institute for Advanced Study, Princeton
Media...The correspondence principle in quantum mechanics
is concerned with the relation between a mechanical
system and its quantization.
When the mechanical system are relatively orderly ("integrable"), then this relation is well understood. However when the system is chaotic much less is understood. The key
features already appear and are well illustrated in the simplest systems which we will review. For chaotic systems defined numbertheoretically, much more is understood and the basic problems are connected with central questions in number theory.
The Mahler lectures are a biennial activity organised by the Australian Mathematical Society with the assistance of the Australian Mathematical Sciences Institute.


Boundaries of unsteady Lagrangian Coherent Structures 15:10 Wed 10 Aug, 2011 :: 5.57 Ingkarni Wardli :: Dr Sanjeeva Balasuriya :: Connecticut College, USA and the University of Adelaide
For steady flows, the boundaries of Lagrangian Coherent Structures
are segments of manifolds connected to fixed points. In the general
unsteady situation, these boundaries are timevarying manifolds of
hyperbolic trajectories. Locating these boundaries, and attempting
to meaningfully quantify fluid flux across them, is difficult since they
are moving with time. This talk uses a newly developed tangential movement
theory to locate these boundaries in nearlysteady compressible flows.


There are no magnetically charged particlelike solutions of the EinsteinYangMills equations for models with Abelian residual groups 13:10 Fri 19 Aug, 2011 :: B.19 Ingkarni Wardli :: Dr Todd Oliynyk :: Monash University
According to a conjecture from the 90's, globally regular, static, spherically symmetric (i.e. particlelike) solutions with nonzero total magnetic charge are not expected to exist in EinsteinYangMills theory. In this talk, I will describe recent work done in collaboration with M. Fisher where we establish the validity of this conjecture under certain restrictions on the residual gauge group. Of particular interest is that our nonexistence results apply to the most widely studied models with Abelian residual groups. 

Comparing Einstein to Newton via the postNewtonian expansions 15:10 Fri 19 Aug, 2011 :: 7.15 Ingkarni Wardli :: Dr Todd Oliynyk :: Monash University
Media...Einstein's general relativity is presently the most accurate theory of gravity. To completely determine the gravitational field, the Einstein field equations must be solved. These equations are extremely complex and outside of a small set of idealized situations, they are impossible to solve directly. However, to make physical predictions or understand physical phenomena, it is often enough to find approximate solutions that are governed by a simpler set of equations. For example, Newtonian gravity approximates general relativity very well in regimes where the typical velocity of the gravitating matter is small compared to the speed of light. Indeed, Newtonian gravity successfully explains much of the behaviour of our solar system and is a simpler theory of gravity. However, for many situations of interest ranging from binary star systems to GPS satellites, the Newtonian approximation is not accurate enough; general relativistic effects must be included. This desire to include relativistic corrections to Newtonian gravity lead to the development of the postNewtonian expansions. 

Deformations of Oka manifolds 13:10 Fri 26 Aug, 2011 :: B.19 Ingkarni Wardli :: A/Prof Finnur Larusson :: University of Adelaide
We discuss the behaviour of the Oka property with respect to deformations of compact complex manifolds. We have recently proved that in a family of compact complex manifolds, the set of Oka fibres corresponds to a G_delta subset of the base. We have also found a necessary and sufficient condition for the limit fibre of a sequence of Oka fibres to be Oka in terms of a new uniform Oka property. The special case when the fibres are tori will be considered, as well as the general case of holomorphic submersions with noncompact fibres. 

Laplace's equation on multiplyconnected domains 12:10 Mon 29 Aug, 2011 :: 5.57 Ingkarni Wardli :: Mr Hayden Tronnolone :: University of Adelaide
Various physical processes take place on multiplyconnected domains
(domains with some number of 'holes'), such as the stirring of a fluid
with paddles or the extrusion of material from a die. These systems may
be described by partial differential equations (PDEs). However, standard
numerical methods for solving PDEs are not wellsuited to such examples:
finite difference methods are difficult to implement on
multiplyconnected domains, especially when the boundaries are irregular
or moving, while finite element methods are computationally expensive.
In this talk I will describe a fast and accurate numerical method for
solving certain PDEs on twodimensional multiplyconnected domains,
considering Laplace's equation as an example. This method takes
advantage of complex variable techniques which allow the solution to be
found with spectral accuracy provided the boundary data is smooth. Other
advantages over traditional numerical methods will also be discussed. 

Oka properties of some hypersurface complements 13:10 Fri 2 Sep, 2011 :: B.19 Ingkarni Wardli :: Mr Alexander Hanysz :: University of Adelaide
Oka manifolds can be viewed as the "opposite" of Kobayashi hyperbolic manifolds. Kobayashi conjectured that the complement of a generic algebraic hypersurface of sufficiently high degree is hyperbolic. Therefore it is natural to ask whether the complement is Oka for the case of low degree or nonalgebraic hypersurfaces. We provide a complete answer to this question for complements of hyperplane arrangements, and some results for graphs of meromorphic functions. 

IGAAMSI Workshop: Groupvalued moment maps with applications to mathematics and physics 10:00 Mon 5 Sep, 2011 :: 7.15 Ingkarni Wardli
Media...Lecture series by Eckhard Meinrenken, University of Toronto.
Titles of individual lectures: 1) Introduction to Gvalued moment maps. 2) Dirac geometry and Witten's volume formulas.
3) DixmierDouady theory and prequantization. 4) Quantization of groupvalued moment maps. 5) Application to Verlinde formulas. These lectures will be supplemented by additional talks by invited speakers. For more details, please see the conference webpage. 

Twisted Morava Ktheory 13:10 Fri 9 Sep, 2011 :: 7.15 Ingkarni Wardli :: Dr Craig Westerland :: University of Melbourne
Morava's extraordinary Ktheories K(n) are a family of generalized cohomology theories which behave in some ways like Ktheory (indeed, K(1) is mod 2 Ktheory). Their construction exploits Quillen's description of cobordism in terms of formal group laws and LubinTate's methods in class field theory for constructing abelian extensions of number fields. Constructed from homotopytheoretic methods, they do not admit a geometric description (like deRham cohomology, Ktheory, or cobordism), but are nonetheless subtle, computable invariants of topological spaces. In this talk, I will give an introduction to these theories, and explain how it is possible to define an analogue of twisted Ktheory in this setting. Traditionally, Ktheory is twisted by a threedimensional cohomology class; in this case, K(n) admits twists by (n+2)dimensional classes. This work is joint with Hisham Sati. 

Configuration spaces in topology and geometry 15:10 Fri 9 Sep, 2011 :: 7.15 Ingkarni Wardli :: Dr Craig Westerland :: University of Melbourne
Media...Configuration spaces of points in R^n give a family of interesting geometric objects. They and their variants have numerous applications in geometry, topology, representation theory, and number theory. In this talk, we will review several of these manifestations (for instance, as moduli spaces, function spaces, and the like), and use them to address certain conjectures in number theory regarding distributions of number fields. 

Tduality via bundle gerbes I 13:10 Fri 23 Sep, 2011 :: B.19 Ingkarni Wardli :: Dr Raymond Vozzo :: University of Adelaide
In physics Tduality is a phenomenon which relates certain types of string theories to one another. From a topological point of view, one can view string theory as a duality between line bundles carrying a degree three cohomology class (the Hflux). In this talk we will use bundle gerbes to give a geometric realisation of the Hflux and explain how to construct the Tdual of a line bundle together with its Tdual bundle gerbe. 

Understanding the dynamics of event networks 15:00 Wed 28 Sep, 2011 :: B.18 Ingkarni Wardli :: Dr Amber Tomas :: The University of Oxford
Within many populations there are frequent communications between
pairs of individuals. Such communications might be emails sent within a
company, radio communications in a disaster zone or diplomatic
communications
between states. Often it is of interest to understand the factors that
drive the observed patterns of such communications, or to study how these
factors are changing over over time. Communications can be thought of as
events
occuring on the edges of a network which connects individuals in the
population.
In this talk I'll present a model for such communications which uses ideas
from
social network theory to account for the complex correlation structure
between
events. Applications to the Enron email corpus and the dynamics of hospital
ward transfer patterns will be discussed. 

Tduality via bundle gerbes II 13:10 Fri 21 Oct, 2011 :: B.19 Ingkarni Wardli :: Dr Raymond Vozzo :: University of Adelaide
In physics Tduality is a phenomenon which relates certain types of string theories to one another. From a topological point of view, one can view string theory as a duality between line bundles carrying a degree three cohomology class (the Hflux). In this talk we will use bundle gerbes to give a geometric realisation of the Hflux and explain how to construct the Tdual of a line bundle together with its Tdual bundle gerbe. 

Dirac operators on classifying spaces 13:10 Fri 28 Oct, 2011 :: B.19 Ingkarni Wardli :: Dr Pedram Hekmati :: University of Adelaide
The Dirac operator was introduced by Paul Dirac in 1928 as the formal square
root of the D'Alembert operator. Thirty years later it was rediscovered in
Euclidean signature by Atiyah and Singer in their seminal work on index theory.
In this talk I will describe efforts to construct a Dirac type operator on the
classifying space for odd complex Ktheory. Ultimately the aim is to produce a
projective family of Fredholm operators realising elements in twisted Ktheory
of a certain moduli stack. 

Oka theory of blowups 13:10 Fri 18 Nov, 2011 :: B.19 Ingkarni Wardli :: A/Prof Finnur Larusson :: University of Adelaide
This talk is a continuation of my talk last August. I will discuss the recentlyobtained answers to the open questions I described then. 

Stability analysis of nonparallel unsteady flows via separation of variables 15:30 Fri 18 Nov, 2011 :: 7.15 Ingkarni Wardli :: Prof Georgy Burde :: BenGurion University
Media...The problem of variables separation in the linear stability
equations, which govern the disturbance behavior in viscous
incompressible fluid flows, is discussed.
Stability of some unsteady nonparallel threedimensional flows (exact
solutions of the NavierStokes equations)
is studied via separation of variables using a semianalytical, seminumerical approach.
In this approach, a solution with separated variables is defined in a new coordinate system which is sought together with the solution form. As the result, the linear stability problems are reduced to eigenvalue problems for ordinary differential equations which can be solved numerically.
In some specific cases, the eigenvalue
problems can be solved analytically. Those unique examples of exact
(explicit) solution of the nonparallel unsteady flow stability
problems provide a very useful test for methods used in the
hydrodynamic stability theory. Exact solutions of the stability problems for some stagnationtype flows are presented. 

Applications of tropical geometry to groups and manifolds 13:10 Mon 21 Nov, 2011 :: B.19 Ingkarni Wardli :: Dr Stephan Tillmann :: University of Queensland
Tropical geometry is a young field with multiple origins. These include the work of Bergman on logarithmic limit sets of algebraic varieties; the work of the Brazilian computer scientist Simon on discrete mathematics; the work of Bieri, Neumann and Strebel on geometric invariants of groups; and, of course, the work of Newton on polynomials. Even though there is still need for a unified foundation of the field, there is an abundance of applications of tropical geometry in group theory, combinatorics, computational algebra and algebraic geometry. In this talk I will give an overview of (what I understand to be) tropical geometry with a bias towards applications to group theory and lowdimensional topology. 

Space of 2D shapes and the WeilPetersson metric: shapes, ideal fluid and Alzheimer's disease 13:10 Fri 25 Nov, 2011 :: B.19 Ingkarni Wardli :: Dr Sergey Kushnarev :: National University of Singapore
The WeilPetersson metric is an exciting metric on a space of simple
plane curves. In this talk the speaker will introduce the shape space and
demonstrate the connection with the EulerPoincare equations on the group
of diffeomorphisms (EPDiff). A numerical method for finding geodesics
between two shapes will be demonstrated and applied to the surface of the hippocampus to study the effects of Alzheimer's disease. As another application the speaker will discuss how to do statistics on the shape space and what should be done to improve it. 

String Theory and the Quest for Quantum Spacetime 15:10 Fri 9 Mar, 2012 :: Ligertwood 333 Law Lecture Theatre 2 :: Prof Rajesh Gopakumar :: HarishChandra Research Institute
Media...Space and time together constitute one of the most basic
elements of physical reality. Since Einstein spacetime has become an
active participant in the dynamics of the gravitational force.
However, our notion of a quantum spacetime is still rudimentary.
String theory, building upon hints provided from the physics of black
holes, seems to be suggesting a very novel, "holographic" picture of
what quantum spacetime might be. This relies on some very surprising
connections of gravity with quantum field theories (which provide the
framework for the description of the other fundamental interactions of
nature). In this talk, I will try and convey some of the flavour of
these connections as well as its significance. 

The Lorentzian conformal analogue of CalabiYau manifolds 13:10 Fri 16 Mar, 2012 :: B.20 Ingkarni Wardli :: Prof Helga Baum :: Humboldt University
CalabiYau manifolds are Riemannian manifolds with holonomy group SU(m). They are Ricciflat and Kahler and admit a 2parameter family of parallel spinors. In the talk we will discuss the Lorentzian conformal analogue of this situation. If on a manifold a class of conformally equivalent metrics [g] is given, then one can consider the holonomy group
of the conformal manifold (M,[g]), which is a subgroup of
O(p+1,q+1) if the metric g has signature (p,q). There is a close relation between algebraic properties of the conformal holonomy group and the existence of Einstein metrics in the conformal class as well as to the existence of conformal Killing spinors. In the talk I will explain classification results for conformal holonomy groups of Lorentzian manifolds. In particular, I will describe Lorentzian manifolds (M,g) with conformal holonomy group SU(1,m), which can be viewed as the conformal analogue of CalabiYau manifolds. Such Lorentzian
metrics g, known as Fefferman metrics, appear on S^1bundles over strictly pseudoconvex CR spin manifolds and admit a 2parameter family of conformal Killing spinors.


IGA Workshop: Dualities in field theories and the role of Ktheory 09:30 Mon 19 Mar, 2012 :: 7.15 Ingkarni Wardli :: Prof Jonathan Rosenberg :: University of Maryland
Media...Lecture series by Jonathan Rosenberg (University of Maryland). There will be additional talks by other invited speakers. 

The de Rham Complex 12:10 Mon 19 Mar, 2012 :: 5.57 Ingkarni Wardli :: Mr Michael Albanese :: University of Adelaide
Media...The de Rham complex is of fundamental importance in differential geometry. After first introducing differential forms (in the familiar setting of Euclidean space), I will demonstrate how the de Rham complex elegantly encodes one half (in a sense which will become apparent) of the results from vector calculus. If there is time, I will indicate how results from the remaining half of the theory can be concisely expressed by a single, far more general theorem. 

Financial risk measures  the theory and applications of backward stochastic difference/differential equations with respect to the single jump process 12:10 Mon 26 Mar, 2012 :: 5.57 Ingkarni Wardli :: Mr Bin Shen :: University of Adelaide
Media...This is my PhD thesis submitted one month ago. Chapter 1 introduces the backgrounds of the research fields. Then each chapter is a published or an accepted paper.
Chapter 2, to appear in Methodology and Computing in Applied Probability, establishes the theory of Backward Stochastic Difference Equations with respect to the single jump process in discrete time.
Chapter 3, published in Stochastic Analysis and Applications, establishes the theory of Backward Stochastic Differential Equations with respect to the single jump process in continuous time.
Chapter 2 and 3 consist of Part I Theory.
Chapter 4, published in Expert Systems With Applications, gives some examples about how to measure financial risks by the theory established in Chapter 2.
Chapter 5, accepted by Journal of Applied Probability, considers the question of an optimal transaction between two investors to minimize their risks. It's the applications of the theory established in Chapter 3.
Chapter 4 and 5 consist of Part II Applications. 

Bundle gerbes and the FaddeevMickelssonShatashvili anomaly 13:10 Fri 30 Mar, 2012 :: B.20 Ingkarni Wardli :: Dr Raymond Vozzo :: University of Adelaide
The FaddeevMickelssonShatashvili anomaly arises in the quantisation of fermions interacting with external gauge potentials. Mathematically, it can be described as a certain lifting problem for an extension of groups. The theory of bundle gerbes is very useful for studying lifting problems, however it only applies in the case of a central extension whereas in the study of the FMS anomaly the relevant extension is noncentral. In this talk I will explain how to describe this anomaly indirectly using bundle gerbes and how to use a generalisation of bundle gerbes to describe the (noncentral) lifting problem directly. This is joint work with Pedram Hekmati, Michael Murray and Danny Stevenson. 

New examples of totally disconnected, locally compact groups 13:10 Fri 20 Apr, 2012 :: B.20 Ingkarni Wardli :: Dr Murray Elder :: University of Newcastle
I will attempt to explain what a totally disconnected,
locally compact group is, and then describe some new work with George
Willis on an attempt to create new examples based on BaumslagSolitar
groups, which are well known, tried and tested
examples/counterexamples in geometric/combinatorial group theory. I
will describe how to compute invariants of scale and flat rank for
these groups. 

What is a selfsimilar group? 15:10 Fri 20 Apr, 2012 :: B.21 Ingkarni Wardli :: Dr Murray Elder :: University of Newcastle
Media...I will give a brief introduction to the theory of
selfsimilar groups, focusing on a couple of pertinent examples:
Grigorchuk's group of intermediate growth, and the basilica group.


A Problem of Siegel 13:10 Fri 27 Apr, 2012 :: B.20 Ingkarni Wardli :: Dr Brent Everitt :: University of York
The first explicit examples of orientable hyperbolic 3manifolds were constructed by Weber,
Siefert, and Lobell in the early 1930's. In the subsequent decades the world
of hyperbolic nmanifolds has grown into an extraordinarily rich one. Its sociology is
best understood through the eyes of invariants, and for hyperbolic manifolds the most
important invariant is volume. Viewed this way the ndimensional hyperbolic manifolds,
for fixed n, look like a wellordered subset of the reals (a discrete set even, when n is not 3).
So we are naturally led to the (manifold) Siegel problem: for a given n, determine the minimum
possible volume obtained by an orientable hyperbolic nmanifold. It is a problem with a long
and venerable history. In this talk I will describe a unified solution to the problem in low even
dimensions, one of which at least is new. Joint work with John Ratcliffe and Steve Tschantz (Vanderbilt). 

Acyclic embeddings of open Riemann surfaces into new examples of elliptic manifolds 13:10 Fri 4 May, 2012 :: Napier LG28 :: Dr Tyson Ritter :: University of Adelaide
In complex geometry a manifold is Stein if there are, in a certain
sense, "many" holomorphic maps from the manifold into C^n. While this
has long been well understood, a fruitful definition of the dual
notion has until recently been elusive. In Oka theory, a manifold is
Oka if it satisfies several equivalent definitions, each stating that
the manifold has "many" holomorphic maps into it from C^n. Related to
this is the geometric condition of ellipticity due to Gromov, who
showed that it implies a complex manifold is Oka.
We present recent contributions to three open questions involving
elliptic and Oka manifolds. We show that affine quotients of C^n are
elliptic, and combine this with an example of Margulis to construct
new elliptic manifolds of interesting homotopy types. It follows that
every open Riemann surface properly acyclically embeds into an
elliptic manifold, extending an existing result for open Riemann
surfaces with abelian fundamental group.


Index type invariants for twisted signature complexes 13:10 Fri 11 May, 2012 :: Napier LG28 :: Prof Mathai Varghese :: University of Adelaide
AtiyahPatodiSinger proved an index theorem for nonlocal boundary conditions
in the 1970's that has been widely used in mathematics and mathematical physics.
A key application of their theory gives the index theorem for signature operators on
oriented manifolds with boundary. As a consequence, they defined certain secondary
invariants that were metric independent. I will discuss some recent work with Benameur
where we extend the APS theory to signature operators twisted by an odd degree closed
differential form, and study the corresponding secondary invariants. 

On the full holonomy group of special Lorentzian manifolds 13:10 Fri 25 May, 2012 :: Napier LG28 :: Dr Thomas Leistner :: University of Adelaide
The holonomy group of a semiRiemannian manifold is defined as the group of parallel transports along loops based at a point. Its connected component, the `restricted holonomy group', is given by restricting in this definition to contractible loops. The restricted holonomy can essentially be described by its Lie algebra and many classification results are obtained in this way. In contrast, the `full' holonomy group is a more global object and classification results are out of reach.
In the talk I will describe recent results with H. Baum and K. Laerz (both HU Berlin) about the full holonomy group of socalled `indecomposable' Lorentzian manifolds.
I will explain a construction method that arises from analysing the effects on holonomy when dividing the manifold by the action of a properly discontinuous group of isometries and present several examples of Lorentzian manifolds with disconnected holonomy groups.


The change of probability measure for jump processes 12:10 Mon 28 May, 2012 :: 5.57 Ingkarni Wardli :: Mr Ahmed Hamada :: University of Adelaide
Media...In financial derivatives pricing theory, it is very common to change the probability measure from historical measure "real world" into a RiskNeutral measure as a development of the non arbitrage condition.
Girsanov theorem is the most known example of this technique and is used when prices randomness is modelled by Brownian motions. Other genuine candidates for modelling market randomness that have proved efficiency in recent literature are jump process, so how can a change of measure be performed for such processes?
This talk will address this question by introducing the non arbitrage condition, discussing Girsanov theorem for diffusion and jump processes and presenting a concrete example. 

Geometric modular representation theory 13:10 Fri 1 Jun, 2012 :: Napier LG28 :: Dr Anthony Henderson :: University of Sydney
Representation theory is one of the oldest areas of algebra, but many basic questions in it are still unanswered. This is especially true in the modular case, where one considers vector spaces over a field F of positive characteristic; typically, complications arise for particular small values of the characteristic. For example, from a vector space V one can construct the symmetric square S^2(V), which is one easy example of a representation of the group GL(V). One would like to say that this representation is irreducible, but that statement is not always true: if F has characteristic 2, there is a nontrivial invariant subspace. Even for GL(V), we do not know the dimensions of all irreducible representations in all characteristics.
In this talk, I will introduce some of the main ideas of geometric modular representation theory, a more recent approach which is making progress on some of these old problems. Essentially, the strategy is to reformulate everything in terms of homology of various topological spaces, where F appears only as the field of coefficients and the spaces themselves are independent of F; thus, the modular anomalies in representation theory arise because homology with modular coefficients is detecting something about the topology that rational coefficients do not. In practice, the spaces are usually varieties over the complex numbers, and homology is replaced by intersection cohomology to take into account the singularities of these varieties. 

A brief introduction to Support Vector Machines 12:30 Mon 4 Jun, 2012 :: 5.57 Ingkarni Wardli :: Mr Tyman Stanford :: University of Adelaide
Media...Support Vector Machines (SVMs) are used in a variety of contexts for a range of purposes including regression, feature selection and classification. To convey the basic principles of SVMs, this presentation will focus on the application of SVMs to classification. Classification (or discrimination), in a statistical sense, is supervised model creation for the purpose of assigning future observations to a group or class. An example might be determining healthy or diseased labels to patients from p characteristics obtained from a blood sample.
While SVMs are widely used, they are most successful when the data have one or more of the following properties:
The data are not consistent with a standard probability distribution.
The number of observations, n, used to create the model is less than the number of predictive features, p. (The socalled smalln, bigp problem.)
The decision boundary between the classes is likely to be nonlinear in the feature space.
I will present a short overview of how SVMs are constructed, keeping in mind their purpose. As this presentation is part of a double postgrad seminar, I will keep it to a maximum of 15 minutes.


Epidemiological consequences of householdbased antiviral prophylaxis for pandemic influenza 14:10 Fri 8 Jun, 2012 :: 7.15 Ingkarni Wardli :: Dr Joshua Ross :: The University of Adelaide
Media...Antiviral treatment offers a fast acting alternative to vaccination. It is viewed as a firstline of defence against pandemic influenza, protecting families and household members once infection has been detected. In clinical trials antiviral treatment has been shown to be efficacious in preventing infection, limiting disease and reducing transmission, yet their impact at containing the 2009 influenza A(H1N1)pdm outbreak was limited. I will describe some of our work, which attempts to understand this seeming discrepancy, through the development of a general model and computationally efficient methodology for studying householdbased interventions.
This is joint work with Dr Andrew Black (Adelaide), and Prof. Matt Keeling and Dr Thomas House (Warwick, U.K.). 

Adventures with group theory: counting and constructing polynomial invariants for applications in quantum entanglement and molecular phylogenetics 15:10 Fri 8 Jun, 2012 :: B.21 Ingkarni Wardli :: Dr Peter Jarvis :: The University of Tasmania
Media...In many modelling problems in mathematics and physics, a standard
challenge is dealing with several repeated instances of a system under
study. If linear transformations are involved, then the machinery of
tensor products steps in, and it is the job of group theory to control how
the relevant symmetries lift from a single system, to having many copies.
At the level of group characters, the construction which does this is
called PLETHYSM.
In this talk all this will be contextualised via two case studies:
entanglement invariants for multipartite quantum systems, and Markov
invariants for tree reconstruction in molecular phylogenetics. By the end
of the talk, listeners will have understood why Alice, Bob and Charlie
love Cayley's hyperdeterminant, and they will know why the three squangles
 polynomial beasts of degree 5 in 256 variables, with a modest 50,000
terms or so  can tell us a lot about quartet trees! 

IGA Workshop: Dendroidal sets 14:00 Tue 12 Jun, 2012 :: Ingkarni Wardli B17 :: Dr Ittay Weiss :: University of the South Pacific
Media...A series of four 2hour lectures by Dr. Ittay Weiss.
The theory of dendroidal sets was introduced by Moerdijk and Weiss in 2007 in the study of homotopy operads in algebraic topology. In the five years that have past since then several fundamental and highly nontrivial results were established. For instance, it was established that dendroidal sets provide models for homotopy operads in a way that extends the JoyalLurie approach to homotopy categories. It can be shown that dendroidal sets provide new models in the study of nfold loop spaces. And it is very recently shown that dendroidal sets model all connective spectra in a way that extends the modeling of certain spectra by Picard groupoids.
The aim of the lecture series will be to introduce the concepts mentioned above, present the elementary theory, and understand the scope of the results mentioned as well as discuss the potential for further applications. Sources for the course will include the article "From Operads to Dendroidal Sets" (in the AMS volume on mathematical foundations of quantum field theory (also on the arXiv)) and the lecture notes by Ieke Moerdijk "simplicial methods for operads and algebraic geometry" which resulted from an advanced course given in Barcelona 3 years ago.
No prior knowledge of operads will be assumed nor any knowledge of homotopy theory that is more advanced then what is required for the definition of the fundamental group. The basics of the language of presheaf categories will be recalled quickly and used freely. 

Introduction to quantales via axiomatic analysis 13:10 Fri 15 Jun, 2012 :: Napier LG28 :: Dr Ittay Weiss :: University of the South Pacific
Quantales were introduced by Mulvey in 1986 in the context of noncommutative topology with the aim of providing a concrete noncommutative framework for the foundations of quantum mechanics. Since then quantales found applications in other areas as well, among others in the work of Flagg. Flagg considers certain special quantales, called value quantales, that are desigend to capture the essential properties of ([0,\infty],\le,+) that are relevant for analysis. The result is a well behaved theory of value quantale enriched metric spaces. I will introduce the notion of quantales as if they were desigend for just this purpose, review most of the known results (since there are not too many), and address a some new results, conjectures, and questions. 

Ktheory and unbounded Fredholm operators 13:10 Mon 9 Jul, 2012 :: Ingkarni Wardli B19 :: Dr Jerry Kaminker :: University of California, Davis
There are several ways of viewing elements of K^1(X). One
of these is via families of unbounded selfadjoint Fredholm operators on X. Each operator will have discrete spectrum, with infinitely many positive and negative eigenvalues of finite multiplicity. One can associate to such a family a geometric object, its graph, and the Chern character and other invariants of the family can be studied from this perspective. By restricting the dimension of the eigenspaces one may sometimes use algebraic topology to completely determine the family up to equivalence. This talk will describe the general framework and some applications to families on lowdimensional manifolds
where the methods work well. Various notions related to spectral flow, the index gerbe and Berry phase play roles which will be discussed. This is joint work with Ron Douglas.


Complex geometry and operator theory 14:10 Mon 9 Jul, 2012 :: Ingkarni Wardli B19 :: Prof Ron Douglas :: Texas A&M University
In the study of bounded operators on Hilbert spaces of holomorphic functions, concepts and techniques from complex geometry are important. An antiholomorphic bundle exists on which one can define the Chern connection. Its curvature turns out to be a complete invariant and various operator notions can't be reframed in terms of geometrical ones which leads to the solution of some problems. We will discuss this approach with an emphasis on natural examples in the one and multivariable case.


The BanachTarski Paradox 11:10 Mon 30 Jul, 2012 :: G.07 Engineering Mathematics :: Mr William Crawford :: University of Adelaide
Media...The BanachTarski Paradox is one of the most counter intuitive results in set theory. It states that a ball can be cut up into a finite number of pieces, which using just rotations and translations can be reassembled into two identical copies of the original ball.
This contradicts our naive belief that cutting, rotating and translating objects in Euclidean space should preserve volume. However the construction of the "cutting" is heavily dependent on the axiom of choice, and the resultant pieces are nonmeasurable, i.e. no consistent notion of volume can be assigned to them.
A stronger form of the theorem states that any two bounded subsets of R^3 with nonempty interior are equidecomposable, that is one can be disassembled and reassembled into the other.
I'll be going through a brief proof of the theorem (and in doing so further alienate the pure mathematicians in the room from everybody else). 

The motivic logarithm and its realisations 13:10 Fri 3 Aug, 2012 :: Engineering North 218 :: Dr James Borger :: Australian National University
When a complex manifold is defined by polynomial equations, its cohomology groups inherit extra structure. This was discovered by Hodge in the 1920s and 30s. When the defining polynomials have rational coefficients, there is some additional, arithmetic structure on the cohomology. This was discovered by Grothendieck and others in the 1960s. But here the situation is still quite mysterious because each cohomology group has infinitely many different arithmetic structures and while they are not directly comparable, they share many propertieswith each other and with the Hodge structure.
All written accounts of this that I'm aware of treat arbitrary varieties. They are beautifully abstract and nonexplicit. In this talk, I'll take the opposite approach and try to give a flavour of the subject by working out a perhaps the simplest nontrivial example, the cohomology of C* relative to a subset of two points, in beautifully concrete and explicit detail. Here the common motif is the logarithm. In Hodge theory, it is realised as the complex logarithm; in the crystalline theory, it's as the padic logarithm; and in the etale theory, it's as Kummer theory.
I'll assume you have some familiarity with usual, singular cohomology of topological spaces, but I won't assume that you know anything about these nontopological cohomology theories. 

Hodge numbers and cohomology of complex algebraic varieties 13:10 Fri 10 Aug, 2012 :: Engineering North 218 :: Prof Gus Lehrer :: University of Sydney
Let $X$ be a complex algebraic variety defined over the ring $\mathfrak{O}$ of integers in a number field $K$ and let $\Gamma$ be a group of $\mathfrak{O}$automorphisms of $X$. I shall discuss how the counting of rational points over reductions mod $p$ of $X$, and an analysis of the Hodge structure of the cohomology of $X$, may be used to determine the cohomology as a $\Gamma$module. This will include some joint work with Alex Dimca and with Mark Kisin, and some classical unsolved problems.


Drawing of Viscous Threads with Temperaturedependent Viscosity 14:10 Fri 10 Aug, 2012 :: Engineering North N218 :: Dr Jonathan Wylie :: City University of Hong Kong
The drawing of viscous threads is important in a wide range of industrial
applications and is a primary manufacturing process in the optical fiber
and textile industries. Most of the materials used in these processes have
viscosities that vary extremely strongly with temperature.
We investigate the role played by viscous heating in the
drawing of viscous threads. Usually, the effects of viscous heating and
inertia are neglected because the parameters that characterize them are
typically very small. However, by performing a detailed theoretical
analysis we surprisingly show that even very small amounts of viscous
heating can lead to a runaway phenomena. On the other hand, inertia
prevents runaway, and the interplay between viscous heating and inertia
results in very complicated dynamics for the system.
Even more surprisingly, in the absence of viscous heating, we find that a
new type of instability can occur when a thread is heated by a radiative
heat source. By analyzing an asymptotic limit of the NavierStokes
equation we provide a theory that describes the nature of this instability
and explains the seemingly counterintuitive behavior.


The fundamental theorems of invariant theory, classical and quantum 15:10 Fri 10 Aug, 2012 :: B.21 Ingkarni Wardli :: Prof Gus Lehrer :: The University of Sydney
Media... Let V = C^n, and let (,) be a nondegenerate bilinear form
on V , which is either symmetric or antisymmetric. Write G for the isometry
group of (V , (,)); thus G = O_n (C) or Sp_n (C). The first fundamental
theorem (FFT) provides a set of generators for End_G(V^{\otimes r} ) (r = 1, 2, . . . ),
while the second fundamental theorem (SFT) gives all relations among the
generators. In 1937, Brauer formulated the FFT in terms of his celebrated
'Brauer algebra' B_r (\pm n), but there has hitherto been no similar version of
the SFT. One problem has been the generic nonsemisimplicity of B_r (\pm n),
which caused H Weyl to call it, in his work on invariants 'that enigmatic
algebra'. I shall present a solution to this problem, which shows that there is
a single idempotent in B_r (\pm n), which describes all the relations. The proof
is through a new 'Brauer category', in which the fundamental theorems are
easily formulated, and where a calculus of tangles may be used to prove these
results. There are quantum analogues of the fundamental theorems which I
shall also discuss. There are numerous applications in representation theory,
geometry and topology. This is joint work with Ruibin Zhang. 

Aircooled binary Rankine cycle performance with varying ambient temperature 12:10 Mon 13 Aug, 2012 :: B.21 Ingkarni Wardli :: Ms Josephine Varney :: University of Adelaide
Media...Next month, I have to give a presentation in Reno, Nevada to a group of geologists, engineers and geophysicists. So, for this talk, I am going to ask you to pretend you know very little about maths (and perhaps a lot about geology) and give me some feedback on my proposed talk.
The presentation itself, is about the effect of aircooling on geothermal power plant performance. Aircooling is necessary for geothermal plays in dry areas, and ambient air temperature significantly aï¬ects the power output of aircooled geothermal power plants. Hence, a method for determining the effect of ambient air temperature on geothermal power plants is presented. Using the ambient air temperature distribution from Leigh Creek, South Australia, this analysis shows that an optimally designed plant produces 6% more energy annually than a plant designed using the mean ambient temperature. 

Differential topology 101 13:10 Fri 17 Aug, 2012 :: Engineering North 218 :: Dr Nicholas Buchdahl :: University of Adelaide
Much of my recent research been directed at a problem in the
theory of compact complex surfacestrying to fill in a gap
in the EnriquesKodaira classification.
Attempting to classify some collection of mathematical
objects is a very common activity for pure mathematicians,
and there are many wellknown examples of successful
classification schemes; for example, the classification of
finite simple groups, and the classification of simply
connected topological 4manifolds.
The aim of this talk will be to illustrate how techniques
from differential geometry can be used to classify compact
surfaces. The level of the talk will be very elementary, and
the material is all very well known, but it is sometimes
instructive to look back over simple cases of a general
problem with the benefit of experience to gain greater
insight into the more general and difficult cases. 

Dealing with some maths 12:10 Mon 20 Aug, 2012 :: B.21 Ingkarni Wardli :: Mr Hayden Tronnolone :: University of Adelaide
Media...A group marched on a checkered path,
Bold but split in parts.
They turned and all were lost,
Save five regal hearts. 

Noncommutative geometry and conformal geometry 13:10 Fri 24 Aug, 2012 :: Engineering North 218 :: Dr Hang Wang :: Tsinghua University
In this talk, we shall use noncommutative geometry to obtain an index theorem in conformal geometry. This index theorem follows from an explicit and geometric computation of the ConnesChern character of the spectral triple in conformal geometry, which was introduced recently by Connes and Moscovici. This (twisted) spectral triple encodes the geometry of the group of conformal diffeomorphisms on a spin manifold. The crux of of this construction is the conformal invariance of the Dirac operator. As a result, the ConnesChern character is intimately related to the CM cocycle of an equivariant Dirac spectral triple. We compute this equivariant CM cocycle by heat kernel techniques. On the way we obtain a new heat kernel proof of the equivariant index theorem for Dirac operators. (Joint work with Raphael Ponge.) 

Holomorphic flexibility properties of compact complex surfaces 13:10 Fri 31 Aug, 2012 :: Engineering North 218 :: A/Prof Finnur Larusson :: University of Adelaide
I will describe recent joint work with Franc Forstneric (arXiv, July 2012). We introduce a new property, called the stratified Oka property, which fits into a hierarchy of antihyperbolicity properties that includes the Oka property. We show that stratified Oka manifolds are strongly dominable by affine spaces. It follows that Kummer surfaces are strongly dominable. We determine which minimal surfaces of class VII are Oka (assuming the global spherical shell conjecture). We deduce that the Oka property and several other antihyperbolicity properties are in general not closed in families of compact complex manifolds. I will summarise what is known about how the Oka property fits into the EnriquesKodaira classification of surfaces. 

Examples of counterexamples 13:10 Tue 4 Sep, 2012 :: 7.15 Ingkarni Wardli :: Dr Pedram Hekmati :: School of Mathematical Sciences
Media...This aims to be an example of an exemplary talk on examples of celebrated counterexamples in mathematics. A famous example, for example, is Euler's counterexample to Fermat's conjecture in number theory. 

Classification of a family of symmetric graphs with complete quotients 13:10 Fri 7 Sep, 2012 :: Engineering North 218 :: A/Prof Sanming Zhou :: University of Melbourne
A finite graph is called symmetric if its automorphism group is
transitive on the set of arcs (ordered pairs of adjacent vertices) of the
graph. This is to say that all arcs have the same status in the graph. I
will talk about recent results on the classification of a family of
symmetric graphs with complete quotients. The most interesting graphs
arising from this classification are defined in terms of Hermitian unitals
(which are specific block designs), and they admit unitary groups as
groups of automorphisms. I will also talk about applications of our
results in constructing large symmetric graphs of given degree and
diameter.
This talk contains joint work with M. Giulietti, S. Marcugini and F.
Pambianco.


Two classes of network structures that enable efficient information transmission 15:10 Fri 7 Sep, 2012 :: B.20 Ingkarni Wardli :: A/Prof Sanming Zhou :: The University of Melbourne
Media...What network topologies should we use in order to achieve efficient information transmission? Of course answer to this question depends on how we measure efficiency of information dissemination. If we measure it by the minimum gossiping time under the storeandforward, allport and fullduplex model, we show that certain Cayley graphs associated with Frobenius groups are `perfect' in a sense. (A Frobenius group is a permutation group which is transitive but not regular such that only the identity element can fix two points.) Such graphs are also optimal for alltoall routing in the sense that the maximum load on edges achieves the minimum. In this talk we will discuss this theory of optimal network design. 

Knot Theory 12:10 Mon 10 Sep, 2012 :: B.21 Ingkarni Wardli :: Mr Konrad Pilch :: University of Adelaide
Media...The ancient Chinese used it, the Celts had this skill in spades, it was a big skill of seafarers and pirates, and even now we need it if only to be able to wear shoes! This talk will be about Knot Theory. Knot theory has a colourful and interesting past and I will touch on the why, the what and the when of knots in mathematics. I shall also discuss the major problems concerning knots including the different methods of classification of knots, the unresolved questions about knots, and why have they even been studied. It will be a thorough immersion that will leave you knotted! 

Geometric quantisation in the noncompact setting 13:10 Fri 14 Sep, 2012 :: Engineering North 218 :: Dr Peter Hochs :: Leibniz University, Hannover
Traditionally, the geometric quantisation of an action by a compact Lie group on a compact symplectic manifold is defined as the equivariant index of a certain Dirac operator. This index is a welldefined formal difference of finitedimensional representations, since the Dirac operator is elliptic and the manifold and the group in question are compact. From a mathematical and physical point of view however, it is very desirable to extend geometric quantisation to noncompact groups and manifolds. Defining a suitable index is much harder in the noncompact setting, but several interesting results in this direction have been obtained. I will review the difficulties connected to noncompact geometric quantisation, and some of the solutions that have been proposed so far, mainly in connection to the "quantisation commutes with reduction" principle. (An introduction to this principle will be given in my talk at the Colloquium on the same day.)


Quantisation commutes with reduction 15:10 Fri 14 Sep, 2012 :: B.20 Ingkarni Wardli :: Dr Peter Hochs :: Leibniz University Hannover
Media...The "Quantisation commutes with reduction" principle is an idea from physics, which has powerful applications in mathematics. It basically states that the ways in which symmetry can be used to simplify a physical system in classical and quantum mechanics, are compatible. This provides a strong link between the areas in mathematics used to describe symmetry in classical and quantum mechanics: symplectic geometry and representation theory, respectively. It has been proved in the 1990s that quantisation indeed commutes with reduction, under the important assumption that all spaces and symmetry groups involved are compact. This talk is an introduction to this principle and, if time permits, its mathematical relevance. 

Krylov Subspace Methods or: How I Learned to Stop Worrying and Love GMRes 12:10 Mon 17 Sep, 2012 :: B.21 Ingkarni Wardli :: Mr David Wilke :: University of Adelaide
Media...Many problems within applied mathematics require the solution of a linear system of equations. For instance, models of arterial umbilical blood flow are obtained through a finite element approximation, resulting in a linear, n x n system. For small systems the solution is (almost) trivial, but what happens when n is large? Say, n ~ 10^6? In this case matrix inversion is expensive (read: completely impractical) and we seek approximate solutions in a reasonable time.
In this talk I will discuss the basic theory underlying Krylov subspace methods; a class of nonstationary iterative methods which are currently the methodsofchoice for large, sparse, linear systems. In particular I will focus on the method of Generalised Minimum RESiduals (GMRes), which is of the most popular for nonsymmetric systems. It is hoped that through this presentation I will convince you that a) solving linear systems is not necessarily trivial, and that b) my lack of any tangible results is not (entirely) a result of my own incompetence. 

Electrokinetics of concentrated suspensions of spherical particles 15:10 Fri 28 Sep, 2012 :: B.21 Ingkarni Wardli :: Dr Bronwyn BradshawHajek :: University of South Australia
Electrokinetic techniques are used to gather specific information about concentrated dispersions such as electronic inks, mineral processing slurries, pharmaceutical products and biological fluids (e.g. blood). But, like most experimental techniques, intermediate quantities are measured, and consequently the method relies explicitly on theoretical modelling to extract the quantities of experimental interest. A selfconsistent cellmodel theory of electrokinetics can be used to determine the electrical conductivity of a dense suspension of spherical colloidal particles, and thereby determine the quantities of interest (such as the particle surface potential). The numerical predictions of this model compare well with published experimental results. High frequency asymptotic analysis of the cellmodel leads to some interesting conclusions. 

Supermanifolds and the moduli space of instantons 13:10 Fri 19 Oct, 2012 :: Engineering North 218 :: Prof Ugo Bruzzo :: International School for Advanced Studies (SISSA), Trieste
I will give an example of an application of supermanifold theory to physics, i.e., how to "superize" the moduli space of instantons on a 4fold and use it to give a description of the BRST transformations, to compute the "supermeasure" of the moduli space, and the Nekrasov partition function. 

The space of cubic rational maps 13:10 Fri 26 Oct, 2012 :: Engineering North 218 :: Mr Alexander Hanysz :: University of Adelaide
For each natural number d, the space of rational maps of degree d on the Riemann sphere has the structure of a complex manifold. The topology of these manifolds has been extensively studied. The recent development of Oka theory raises some new and interesting questions about their complex structure. We apply geometric invariant theory to the degree 3 case, studying a double action of the Mobius group on the space of cubic rational maps. We show that the categorical quotient is C, and that the space of cubic rational maps enjoys the holomorphic flexibility properties of strong dominability and Cconnectedness. 

Numerical Free Probability: Computing Eigenvalue Distributions of Algebraic Manipulations of Random Matrices 15:10 Fri 2 Nov, 2012 :: B.20 Ingkarni Wardli :: Dr Sheehan Olver :: The University of Sydney
Media...Suppose that the global eigenvalue distributions
of two large random matrices A and B are known. It is a
remarkable fact that, generically, the eigenvalue distribution
of A + B and (if A and B are positive definite) A*B are
uniquely determined from only the eigenvalue distributions
of A and B; i.e., no information about eigenvectors are
required. These operations on eigenvalue distributions
are described by free probability theory. We construct a
numerical toolbox that can efficiently and reliably
calculate these operations with spectral accuracy, by
exploiting the complex analytical framework that underlies
free probability theory.


Modern trends in dynamo theory 15:10 Fri 16 Nov, 2012 :: B.20 Ingkarni Wardli :: Prof Michael Proctor :: University of Cambridge
Media...Dynamo action is the process by which magnetic fields in astrophysical bodies (and recently, laboratory fluids) are maintained against resistive losses by Faraday induction. For many years a favoured model of this process, known as meanfield electrodynamics, has been widely used to produce tractable models. I shall present a critique of this theory and contrast it it with another dynamo process (small scale dynamo action) that does not, unlike meanfield electrodynamics, rely on broken reflection symmetry or scale separation. Finally, I shall talk about very recent rigorous results concerning the Archontis dynamo, in which the magnetic and velocity fields are closely aligned.


Twisted analytic torsion and adiabatic limits 13:10 Wed 5 Dec, 2012 :: Ingkarni Wardli B17 :: Mr Ryan Mickler :: University of Adelaide
We review MathaiWu's recent extension of RaySinger analytic torsion to supercomplexes. We explore some new results relating these two torsions, and how we can apply the adiabatic spectral sequence due to Forman and Farber's analytic deformation theory to compute some spectral invariants of the complexes involved, answering some questions that were posed in MathaiWu's paper.


Variation of Hodge structure for generalized complex manifolds 13:10 Fri 7 Dec, 2012 :: Ingkarni Wardli B20 :: Dr David Baraglia :: University of Adelaide
Generalized complex geometry combines complex and symplectic geometry into a single framework, incorporating also holomorphic Poisson and biHermitian structures. The Dolbeault complex naturally extends to the generalized complex setting giving rise to Hodge structures in twisted cohomology. We consider the variations of Hodge structure and period mappings that arise from families of generalized complex manifolds. As an application we prove a local Torelli theorem for generalized CalabiYau manifolds. 

Hyperplane arrangements and tropicalization of linear spaces 10:10 Mon 17 Dec, 2012 :: Ingkarni Wardli B17 :: Dr Graham Denham :: University of Western Ontario
I will give an introduction to a sequence of ideas in tropical
geometry, the tropicalization of linear spaces. In the beginning, a construction due to De Concini and Procesi (wonderful models, 1995) gave a combinatorially explicit description of various iterated blowups of projective spaces along (proper transforms of) linear subspaces. A decade later, Tevelev's notion of tropical compactifications led to, in particular, a new view of the wonderful models and their intersection theory in terms of the theory of toric varieties (via work of FeichtnerSturmfels, FeichtnerYuzvinsky, ArdilaKlivans, and others). Recently, these ideas have played a role in Huh and Katz's proof of a longstanding conjecture in combinatorics. 

Stably Cayley groups over fields of characteristic 0 11:10 Mon 17 Dec, 2012 :: Ingkarni Wardli B17 :: Dr Nicole Lemire :: University of Western Ontario
A linear algebraic group is called a Cayley group if it is equivariantly
birationally isomorphic to its Lie algebra. It is stably Cayley
if the product of the group and some torus is Cayley. Cayley gave the first
examples of Cayley groups with his Cayley map back in 1846. Over an algebraically closed
field of characteristic 0, Cayley and stably Cayley simple groups were
classified by
Lemire, Popov and Reichstein in 2006.
In recent joint work with Blunk, Borovoi, Kunyavskii and Reichstein, we classify the simple stably Cayley groups over an arbitrary field of
characteristic 0. 

Conformally Fedosov manifolds 12:10 Fri 8 Mar, 2013 :: Ingkarni Wardli B19 :: Prof Michael Eastwood :: Australian National University
Symplectic and projective structures may be compatibly combined. The
resulting structure closely resembles conformal geometry and a manifold endowed
with such a structure is called conformally Fedosov. This talk will present the
basic theory of conformally Fedosov geometry and, in particular, construct a
Cartan connection for them. This is joint work with Jan Slovak. 

Twistor theory and the harmonic hull 15:10 Fri 8 Mar, 2013 :: B.18 Ingkarni Wardli :: Prof Michael Eastwood :: Australian National University
Media...Harmonic functions are realanalytic and so automatically extend as functions of complex variables. But how far do they extend? This question may be answered by twistor theory, the Penrose transform, and associated conformal geometry. Nothing will be supposed about such matters: I shall base the constructions on an elementary yet mysterious formula of Bateman from 1904. This is joint work with Feng Xu. 

Twistor space for rolling bodies 12:10 Fri 15 Mar, 2013 :: Ingkarni Wardli B19 :: Prof Pawel Nurowski :: University of Warsaw
We consider a configuration space of two solids rolling on each other
without slipping or twisting, and identify it with an open subset U of
R^5, equipped with a generic distribution D of 2planes. We will discuss
symmetry properties of the pair (U,D) and will mention that, in the case
of the two solids being balls, when changing the ratio of their radii,
the dimension of the group of local symmetries unexpectedly jumps from 6
to 14. This occurs for only one such ratio, and in such case the local
group of symmetries of the pair (U,D) is maximal. It is maximal not only
among the balls with various radii, but more generally among all (U,D)s
corresponding to configuration spaces of two solids rolling on each
other without slipping or twisting. This maximal group is isomorphic to
the split real form of the exceptional Lie group G2.
In the remaining part of the talk we argue how to identify the space U
from the pair (U,D) defined above with the bundle T of totally null real
2planes over a 4manifold equipped with a split signature metric. We
call T the twistor bundle for rolling bodies. We show that the rolling
distribution D, can be naturally identified with an appropriately defined
twistor distribution on T. We use this formulation of the rolling system
to find more surfaces which, when rigidly rolling on each other without
slipping or twisting, have the local group of symmetries isomorphic to
the exceptional group G2. 

Modular forms: a rough guide 12:10 Mon 18 Mar, 2013 :: B.19 Ingkarni Wardli :: Damien Warman :: University of Adelaide
Media...I recently found the need to learn a little about what I had naively believed to be an abstruse branch of number theory, but which turns out to be a ubiquitous and intriguing theory.
I'll introduce some of the geometry underlying the elementary theory of modular functions and modular forms. We'll look at some pictures and play with sage, time permitting. 

Einstein's special relativity beyond the speed of light 14:10 Mon 18 Mar, 2013 :: 7.15 Ingkarni Wardli :: Prof. Jim Hill :: School of Mathematical Sciences
Media...We derive extended Lorentz transformations between inertial frames for relative velocities greater than the speed of light, and which are complementary to the Lorentz transformation giving rise to the Einstein special theory of relativity. The new transformations arise from the same mathematical framework as the Lorentz transformation, displaying singular behaviour when the relative velocity approaches the speed of light and generating the same addition law for velocities, but most importantly, do not involve the need to introduce imaginary masses or complicated physics to provide welldefined expressions. 

How fast? Bounding the mixing time of combinatorial Markov chains 15:10 Fri 22 Mar, 2013 :: B.18 Ingkarni Wardli :: Dr Catherine Greenhill :: University of New South Wales
Media...A Markov chain is a stochastic process which is "memoryless",
in that the next state of the chain depends only on the current state,
and not on how it got there. It is a classical result that an ergodic
Markov chain has a unique stationary distribution.
However, classical theory does not provide any information on the rate of
convergence to stationarity. Around 30 years ago, the mixing time of
a Markov chain was introduced to measure the number of steps required
before the distribution of the chain is within some small distance of
the stationary distribution. One reason why this is important is that
researchers in areas such as physics and biology use Markov chains to
sample from large sets of interest. Rigorous bounds on the mixing time
of their chain allows these researchers to have confidence in their results.
Bounding the mixing time of combinatorial Markov chains can be a challenge, and there are only a few approaches available. I will discuss the main methods and give examples for each (with pretty pictures). 

Gauge groupoid cocycles and CheegerSimons differential characters 13:10 Fri 5 Apr, 2013 :: Ingkarni Wardli B20 :: Prof Jouko Mickelsson :: Royal Institute of Technology, Stockholm
Groups of gauge transformations in quantum field theory are typically
extended by a 2cocycle with values in a certain abelian group due to chiral symmetry breaking. For these extensions there exist a global explicit construction since the 1980's. I shall study the higher group cocycles following a recent paper by F. Wagemann and C. Wockel, but extending to the transformation groupoid
setting (motivated by QFT) and discussing potential obstructions in the
construction due to a nonvanishing of low dimensional homology groups
of the gauge group. The resolution of the obstruction is obtained
by an application of the CheegerSimons differential characters. 

A stability theorem for elliptic Harnack inequalities 15:10 Fri 5 Apr, 2013 :: B.18 Ingkarni Wardli :: Prof Richard Bass :: University of Connecticut
Media...Harnack inequalities are an important tool in probability theory,
analysis, and partial differential equations. The classical Harnack
inequality is just the one you learned in your graduate complex analysis
class, but there have been many extensions, to different spaces, such as
manifolds, fractals, infinite graphs, and to various sorts of elliptic operators.
A landmark result was that of Moser in 1961, where he proved the Harnack
inequality for solutions to a class of partial differential equations.
I will talk about the stability of Harnack inequalities. The main result
says that if the Harnack inequality holds for an operator on a space,
then the Harnack inequality will also hold for a large class of other operators
on that same space. This provides a generalization of the result of Moser. 

The Mathematics of Secrets 14:10 Mon 8 Apr, 2013 :: 210 Napier Building :: Dr Naomi Benger :: School of Mathematical Sciences
Media...One very important application of number theory is the implementation of public key cryptosystems that we use today. I will introduce elementary number theory, Fermat's theorem and use these to explain how ElGamal encryption and digital signatures work. 

Mtheory and higher gauge theory 13:10 Fri 12 Apr, 2013 :: Ingkarni Wardli B20 :: Dr Christian Saemann :: HeriotWatt University
I will review my recent work on integrability of Mbrane configurations and
the description of Mbrane models in higher gauge theory. In particular, I
will discuss categorified analogues of instantons and present superconformal equations of motion for the nonabelian tensor multiplet in six dimensions. The latter are derived from considering nonabelian gerbes on certain twistor spaces. 

A glimpse at the Langlands program 15:10 Fri 12 Apr, 2013 :: B.18 Ingkarni Wardli :: Dr Masoud Kamgarpour :: University of Queensland
Media...Abstract: In the late 1960s, Robert Langlands made a series of surprising conjectures relating fundamental concepts from number theory, representation theory, and algebraic geometry. Langlands' conjectures soon developed into a highprofile international research program known as the Langlands program. Many fundamental problems, including the ShimuraTaniyamaWeil conjecture (partially settled by Andrew Wiles in his proof of the Fermat's Last Theorem), are particular cases of the Langlands program. In this talk, I will discuss some of the motivation and results in this program. 

What in the world is a chebfun? 12:10 Mon 15 Apr, 2013 :: B.19 Ingkarni Wardli :: Hayden Tronnolone :: University of Adelaide
Media...Good question. Many functions encountered in practice can be wellapproximated by a linear combination of Chebyshev polynomials, which then allows the use of some powerful numerical techniques. I will give a very brief overview of the theory behind some of these methods, demonstrate how they may be implemented using the MATLAB package known as Chebfun, and answer the question posed in the title along the way.
No knowledge of approximation theory or MATLAB is required, however, you will need to accept the transliteration "Chebyshev". 

Conformal Killing spinors in Riemannian and Lorentzian geometry 12:10 Fri 19 Apr, 2013 :: Ingkarni Wardli B19 :: Prof Helga Baum :: Humboldt University
Conformal Killing spinors are the solutions of the conformally covariant twistor equation on spinors. Special cases are parallel and Killing spinors, the latter appear as eigenspinors of the Dirac operator on compact Riemannian manifolds of positive scalar curvature for the smallest possible positive eigenvalue. In the talk I will discuss geometric properties of manifolds admitting (conformal) Killing spinors. In particular, I will explain a local classification of the special geometric structures admitting conformal Killing spinors without zeros in the Riemannian as well as in the Lorentzian setting. 

The boundary conditions for macroscale modelling of a discrete diffusion system with periodic diffusivity 12:10 Mon 29 Apr, 2013 :: B.19 Ingkarni Wardli :: Chen Chen :: University of Adelaide
Media...Many mathematical and engineering problems have a multiscale nature. There are a vast of theories supporting multiscale modelling on infinite domain, such as homogenization theory and centre manifold theory. To date, there are little consideration of the correct boundary conditions to be used at the edge of macroscale model. In this seminar, I will present how to derive macroscale boundary conditions for the diffusion system. 

An Oka principle for equivariant isomorphisms 12:10 Fri 3 May, 2013 :: Ingkarni Wardli B19 :: A/Prof Finnur Larusson :: University of Adelaide
I will discuss new joint work with Frank Kutzschebauch (Bern) and Gerald Schwarz (Brandeis). Let $G$ be a reductive complex Lie group acting holomorphically on Stein manifolds $X$ and $Y$, which are locally $G$biholomorphic over a common categorical quotient $Q$. When is there a global $G$biholomorphism $X\to Y$?
In a situation that we describe, with some justification, as generic, we prove that the obstruction to solving this localtoglobal problem is topological and provide sufficient conditions for it to vanish. Our main tool is the equivariant version of Grauert's Oka principle due to Heinzner and Kutzschebauch.
We prove that $X$ and $Y$ are $G$biholomorphic if $X$ is $K$contractible, where $K$ is a maximal compact subgroup of $G$, or if there is a $G$diffeomorphism $X\to Y$ over $Q$, which is holomorphic when restricted to each fibre of the quotient map $X\to Q$. When $G$ is abelian, we obtain stronger theorems. Our results can be interpreted as instances of the Oka principle for sections of the sheaf of $G$biholomorphisms from $X$ to $Y$ over $Q$. This sheaf can be badly singular, even in simply defined examples.
Our work is in part motivated by the linearisation problem for actions on $\C^n$. It follows from one of our main results that a holomorphic $G$action on $\C^n$, which is locally $G$biholomorphic over a common quotient to a generic linear action, is linearisable. 

Filtering Theory in Modelling the Electricity Market 12:10 Mon 6 May, 2013 :: B.19 Ingkarni Wardli :: Ahmed Hamada :: University of Adelaide
Media...In mathematical finance, as in many other fields where applied mathematics is a powerful tool, we assume that a model is good enough when it captures different sources of randomness affecting the quantity of interests, which in this case is the electricity prices. The power market is very different from other markets in terms of the randomness sources that can be observed in the prices feature and evolution. We start from suggesting a new model that simulates the electricity prices, this new model is constructed by adding a periodicity term, a jumps terms and a positives mean reverting term. The later term is driven by a nonobservable Markov process. So in order to prices some financial product, we have to use some of the filtering theory to deal with the nonobservable process, these techniques are gaining very much of interest from practitioners and researchers in the field of financial mathematics. 

Diffeological spaces and differentiable stacks 12:10 Fri 10 May, 2013 :: Ingkarni Wardli B19 :: Dr David Roberts :: University of Adelaide
The category of finitedimensional smooth manifolds gives rise to interesting structures outside of itself, two examples being mapping spaces and classifying spaces. Diffeological spaces are a notion of generalised smooth space which form a cartesian closed category, so all fibre products and all mapping spaces of smooth manifolds exist as diffeological spaces. Differentiable stacks are a further generalisation that can also deal with moduli spaces (including classifying spaces) for objects with automorphisms. This talk will give an introduction to this circle of ideas. 

Neuronal excitability and canards 15:10 Fri 10 May, 2013 :: B.18 Ingkarni Wardli :: A/Prof Martin Wechselberger :: University of Sydney
Media...The notion of excitability was first introduced in an attempt to understand firing properties of neurons. It was Alan Hodgkin who identified three basic types (classes) of excitable axons (integrator, resonator and differentiator) distinguished by their different responses to injected steps of currents of various amplitudes.
Pioneered by Rinzel and Ermentrout, bifurcation theory explains repetitive (tonic) firing patterns for adequate steady inputs in integrator (type I) and resonator (type II) neuronal models. In contrast, the dynamic behavior of differentiator (type III) neurons cannot be explained by standard dynamical systems theory. This third type of excitable neuron encodes a dynamic change in the input and leads naturally to a transient response of the neuron.
In this talk, I will show that "canards"  peculiar mathematical creatures  are well suited to explain the nature of transient responses of neurons due to dynamic (smooth) inputs. I will apply this geometric theory to a simple driven FitzHughNagumo/MorrisLecar type neural model and to a more complicated neural model that describes paradoxical excitation due to propofol anesthesia. 

Crystallographic groups I: the classical theory 12:10 Fri 17 May, 2013 :: Ingkarni Wardli B19 :: Dr Wolfgang Globke :: University of Adelaide
A discrete isometry group acting properly discontinuously on the ndimensional
Euclidean space with compact quotient is called a crystallographic group.
This name reflects the fact that in dimension n=3 their compact fundamental
domains resemble a spacefilling crystal pattern.
For higher dimensions, Hilbert posed his famous 18th problem:
"Is there in ndimensional Euclidean space only a finite number of essentially
different kinds of groups of motions with a [compact] fundamental region?"
This problem was solved by Bieberbach when he proved that in every
dimension n there exists only a finite number of isomorphic crystallographic groups
and also gave a description of these groups.
From the perspective of differential geometry these results are of major importance,
as crystallographic groups are precisely the fundamental groups of
compact flat Riemannian orbifolds.
The quotient is even a manifold if the fundamental group is required to be torsionfree,
in which case it is called a Bieberbach group.
Moreover, for a flat manifold the fundamental group completely determines the
holonomy group.
In this talk I will discuss the properties of crystallographic groups, study examples in
dimension n=2 and n=3, and present the three Bieberbach theorems on the
structure of crystallographic groups.


Coincidences 14:10 Mon 20 May, 2013 :: 7.15 Ingkarni Wardli :: A/Prof. Robb Muirhead :: School of Mathematical Sciences
Media...This is a lighthearted (some would say contentfree) talk about coincidences, those surprising concurrences of events that are often perceived as meaningfully related, with no apparent causal connection. Time permitting, it will touch on topics like:
Patterns in data and the dangers of looking for patterns, unspecified ahead of time, and trying to "explain" them; e.g. post hoc subgroup analyses, cancer clusters, conspiracy theories ...
Matching problems; e.g. the birthday problem and extensions
People who win a lottery more than once  how surprised should we really be? What's the question we should be asking?
When you become familiar with a new word, and see it again soon afterwards, how surprised should you be?
Caution: This is a shortened version of a talk that was originally prepared for a group of nonmathematicians and nonstatisticians, so it's mostly nontechnical. It probably does not contain anything you don't already know  it will be an amazing coincidence if it does! 

Crystallographic groups II: generalisations 12:10 Fri 24 May, 2013 :: Ingkarni Wardli B19 :: Dr Wolfgang Globke :: University of Adelaide
The theory of crystallographic groups acting cocompactly on Euclidean space
can be extended and generalised in many different ways.
For example, instead of studying discrete groups of Euclidean isometries, one
can consider groups of isometries for indefinite inner products.
These are the fundamental groups of compact flat pseudoRiemannian manifolds.
Still more generally, one might study group of affine transformation on nspace
that are not required to preserve any bilinear form.
Also, the condition of cocompactness can be dropped.
In this talk, I will present some of the results obtained for these generalisations,
and also discuss some of my own work on flat homogeneous pseudoRiemannian
spaces. 

Heat kernel estimates on noncompact Riemannian manifolds: why and how? 15:10 Fri 7 Jun, 2013 :: B.18 Ingkarni Wardli :: Prof Thierry Coulhon :: Australian National University
Media...We will describe what is known and remains to be known about the connection between the large scale geometry of noncompact Riemannian manifolds
(and more general metric measure spaces) and large time estimates of their heat kernel. We will show how some of these estimates can be characterised in terms of Sobolev inequalities and give applications to the boundedness of Riesz transforms. 

Birational geometry of M_g 12:10 Fri 21 Jun, 2013 :: Ingkarni Wardli B19 :: Dr Jarod Alper :: Australian National University
In 1969, Deligne and Mumford introduced a beautiful compactification of the moduli space of smooth curves which has proved extremely influential in geometry, topology and physics. Using recent advances in higher dimensional geometry and the minimal model program, we study the birational geometry of M_g. In particular, in an effort to understand the canonical model of M_g, we study the log canonical models as well as the associated divisorial contractions and flips by interpreting these models as moduli spaces of particular singular curves. 

Invariant Theory: The 19th Century and Beyond 15:10 Fri 21 Jun, 2013 :: B.18 Ingkarni Wardli :: Dr Jarod Alper :: Australian National University
Media...A central theme in 19th century mathematics was invariant theory, which was viewed as a bridge between geometry and algebra. David Hilbert revolutionized the field with two seminal papers in 1890 and 1893 with techniques such as Hilbert's basis theorem, Hilbert's Nullstellensatz and Hilbert's syzygy theorem that spawned the modern field of commutative algebra. After Hilbert's groundbreaking work, the field of invariant theory remained largely inactive until the 1960's when David Mumford revitalized the field by reinterpreting Hilbert's ideas in the context of algebraic geometry which ultimately led to the influential construction of the moduli space of smooth curves. Today invariant theory remains a vital research area with connections to various mathematical disciplines: representation theory, algebraic geometry, commutative algebra, combinatorics and nonlinear differential operators.
The goal of this talk is to provide an introduction to invariant theory with an emphasis on Hilbert's and Mumford's contributions. Time permitting, I will explain recent research with Maksym Fedorchuk and David Smyth which exploits the ideas of Hilbert, Mumford as well as Kempf to answer a classical question concerning the stability of algebraic curves. 

IGA/AMSI Workshop: Representation theory and operator algebras 10:00 Mon 1 Jul, 2013 :: 7.15 Ingkarni Wardli :: Prof Nigel Higson :: Pennsylvania State University
Media...This interdisciplinary workshop will be about aspects of representation theory (in the sense of HarishChandra), aspects of noncommutative geometry (in the sense of Alain Connes) and aspects of operator Ktheory (in the sense of Gennadi Kasparov). It features the renowned speaker, Professor Nigel Higson (Penn State University) http://www.iga.adelaide.edu.au/workshops/WorkshopJuly2013/ All are welcome. 

Khomology and the quantization commutes with reduction problem 12:10 Fri 5 Jul, 2013 :: 7.15 Ingkarni Wardli :: Prof Nigel Higson :: Pennsylvania State University
The quantization commutes with reduction problem for Hamiltonian actions of compact Lie groups was solved by Meinrenken in the mid1990s using geometric techniques, and solved again shortly afterwards by Tian and Zhang using analytic methods. In this talk I shall outline some of the close links that exist between the problem, the two solutions, and the geometric and analytic versions of Khomology theory that are studied in noncommutative geometry. I shall try to make the case for Khomology as a useful conceptual framework for the solutions and (at least some of) their various generalizations. 

Quantization, Representations and the Orbit Philosophy 15:10 Fri 5 Jul, 2013 :: B.18 Ingkarni Wardli :: Prof Nigel Higson :: Pennsylvania State University
Media...This talk will be about the mathematics of quantization and about representation theory, where the concept of quantization seems to be especially relevant. It was discovered by Kirillov in the 1960's that the representation theory of nilpotent Lie groups (such as the group that encodes Heisenberg's commutation relations) can be beautifully and efficiently described using a vocabulary drawn from geometry and quantum mechanics. The description was soon adapted to other classes of Lie groups, and the expectation that it ought to apply almost universally has come to be called the "orbit philosophy." But despite early successes, the orbit philosophy is in a decidedly unfinished state. I'll try to explain some of the issues and some possible new directions. 

The search for the exotic  subfactors and conformal field theory 13:10 Fri 26 Jul, 2013 :: EngineeringMaths 212 :: Prof David E. Evans :: Cardiff University
Subfactor theory provides a framework for studying modular invariant partition functions in conformal field theory,
and candidates for exotic modular tensor categories. I will describe work with Terry Gannon on the search for exotic theories
beyond those from symmetries based on loop groups, WessZuminoWitten models and finite groups. 

Subfactors and twisted equivariant Ktheory 12:10 Fri 2 Aug, 2013 :: Ingkarni Wardli B19 :: Prof David E. Evans :: Cardiff University
The most basic structure of chiral conformal field theory (CFT) is the Verlinde ring. FreedHopkinsTeleman have expressed the Verlinde ring for the CFTs associated to loop groups as twisted equivariant Ktheory. In joint work with Terry Gannon, we build on their work to express Ktheoretically the structures of full CFT. In particular, the modular invariant partition functions (which essentially parametrise the possible full CFTs) have a rich interpretation within von Neumann algebras (subfactors), which has led to the developments of structures of full CFT such as the full system (fusion ring of defect lines), nimrep (cylindrical partition function), alphainduction etc. 

Symplectic Lie groups 12:10 Fri 9 Aug, 2013 :: Ingkarni Wardli B19 :: Dr Wolfgang Globke :: University of Adelaide
A "symplectic Lie group" is a Lie group G with a symplectic form such that G acts by symplectic transformations on itself. Such a G cannot be semisimple, so the research focuses on solvable symplectic Lie groups. In the compact case, a classification of these groups is known. In many cases, a solvable symplectic Lie group G is a cotangent bundle of a flat Lie group H. Then H is a Lagrange subgroup of G, meaning its Lie algebra h is isotropic in the Lie algebra g of G. The existence of Lagrange subalgebras or ideals in g is an important question which relates to many problems in the general structure theory of symplectic Lie groups.
In my talk, I will give a brief overview of the known results in this field, ranging from the 1970s to a very recent structure theory. 

A survey of nonabelian cohomology 12:10 Fri 16 Aug, 2013 :: Ingkarni Wardli B19 :: Dr Danny Stevenson :: University of Adelaide
If G is a topological group, not necessarily abelian, then the set H^1(M,G)
has a natural interpretation in terms of principal Gbundles on the space
M. In this talk I will describe higher degree analogs of both the set H^1(M,G)
and the notion of a principal bundle (the latter is closely connected to the
subject of bundle gerbes). I will explain, following work of Joyal,
Jardine and many others, how the language of abstract homotopy theory
gives a very convenient framework for discussing these ideas. 

The Einstein equations with torsion, reduction and duality 12:10 Fri 23 Aug, 2013 :: Ingkarni Wardli B19 :: Dr David Baraglia :: University of Adelaide
We consider the Einstein equations for connections with skew torsion. After some general remarks we look at these equations on principal Gbundles, making contact with string structures and heterotic string theory in the process. When G is a torus the equations are shown to possess a symmetry not shared by the usual Einstein equations  Tduality. This is joint work with Pedram Hekmati. 

Group meeting 15:10 Fri 23 Aug, 2013 :: 5.58 (Ingkarni Wardli) :: Dr Barry Cox, Professor Tony Roberts & Stephen Wade :: University of Adelaide
Talk: Dr Barry Cox  'Conformation space of sevenmember rings'.
Work in progress discussion:
Professor Tony Roberts  Macroscale PDEs emerge from microscale dynamics with quantified
errors
Stephen Wade  Trapped waves in flow past a trench 

The LowenheimSkolem theorem 12:10 Mon 26 Aug, 2013 :: B.19 Ingkarni Wardli :: William Crawford :: University of Adelaide
Media...For those of us who didn't do an undergrad course in logic, the foundations of set theory are pretty daunting. I will give a run down of some of the basics and then talk about a lesser known, but interesting result; the LowenheimSkolem theorem. One of the consequences of the theorem is that a set can be countable in one model of set theory, while being uncountable in another. 

What are fusion categories? 12:10 Fri 6 Sep, 2013 :: Ingkarni Wardli B19 :: Dr Scott Morrison :: Australian National University
Fusion categories are a common generalization of finite groups and quantum groups at roots of unity. I'll explain a little of their structure, mention their applications (to topological field theory and quantum computing), and then explore the ways in which they are in general similar to, or different from, the 'classical' cases. We've only just started exploring, and don't yet know what the exotic examples we've discovered signify about the landscape ahead. 

Ktheory and solid state physics 12:10 Fri 13 Sep, 2013 :: Ingkarni Wardli B19 :: Dr Keith Hannabuss :: Balliol College, Oxford
More than 50 years ago Dyson showed that there is a ninefold classification of random matrix models, the classes of which are each associated with Riemannian symmetric spaces. More recently it was realised that a related argument enables one to classify the insulating properties of fermionic systems (with the addition of an extra class to give 10 in all), and can be described using Ktheory. In this talk I shall give a survey of the ideas, and a brief outline of work with Guo Chuan Thiang. 

Group meeting 15:10 Fri 13 Sep, 2013 :: 5.58 (Ingkarni Wardli) :: Dr Sanjeeva Balasuriya and Dr Michael Chen :: University of Adelaide
Talks:
Nonautonomous control of invariant manifolds  Dr Sanjeeva Balasuriya ::
Interface problems in viscous flow  Dr Michael Chen 

The logarithmic singularities of the Green functions of the conformal powers of the Laplacian 11:10 Mon 16 Sep, 2013 :: Ingkarni Wardli B20 :: Prof Raphael Ponge :: Seoul National University
Green functions play an important role in conformal geometry. In this talk, we shall explain how to compute explicitly the logarithmic singularities of the Green functions of the conformal powers of the Laplacian. These operators are the Yamabe and Paneitz operators, as well as the conformal fractional powers of the Laplacian arising from scattering theory for PoincareEinstein metrics. The results are formulated in terms of Weyl conformal invariants defined via the ambient metric of FeffermanGraham. 

Noncommutative geometry and conformal geometry 13:10 Mon 16 Sep, 2013 :: Ingkarni Wardli B20 :: Prof Raphael Ponge :: Seoul National University
In this talk we shall report on a program of using the recent framework of twisted spectral triples to study conformal geometry from a noncommutative geometric perspective. One result is a local index formula in conformal geometry taking into account the action of the group of conformal diffeomorphisms. Another result is a version of VafaWitten's inequality for twisted spectral triples. Geometric applications include a version of VafaWitten's inequality in conformal geometry. There are also noncommutative versions for spectral triples over noncommutative tori and duals of discrete cocompact subgroups of semisimple Lie groups satisfying the BaumConnes conjecture. (This is joint work with Hang Wang.) 

Symmetry gaps for geometric structures 15:10 Fri 20 Sep, 2013 :: B.18 Ingkarni Wardli :: Dr Dennis The :: Australian National University
Media...Klein's Erlangen program classified geometries based on their (transitive) groups of symmetries, e.g. Euclidean geometry is the quotient of the rigid motion group by the subgroup of rotations. While this perspective is homogeneous, Riemann's generalization of Euclidean geometry is in general very "lumpy"  i.e. there exist Riemannian manifolds that have no symmetries at all. A common generalization where a group still plays a dominant role is Cartan geometry, which first arose in Cartan's solution to the equivalence problem for geometric structures, and which articulates what a "curved version" of a flat (homogeneous) model means. Parabolic geometries are Cartan geometries modelled on (generalized) flag varieties (e.g. projective space, isotropic Grassmannians) which are wellknown objects from the representation theory of semisimple Lie groups. These curved versions encompass a zoo of interesting geometries, including conformal, projective, CR, systems of 2nd order ODE, etc. This interaction between differential geometry and representation theory has proved extremely fruitful in recent years. My talk will be an examplebased tour of various types of parabolic geometries, which I'll use to outline some of the main aspects of the theory (suppressing technical details). The main thread throughout the talk will be the symmetry gap problem: For a given type of Cartan geometry, the maximal symmetry dimension is realized by the flat model, but what is the next possible ("submaximal") symmetry dimension? I'll sketch a recent solution (in joint work with Boris Kruglikov) for a wide class of parabolic geometries which gives a combinatorial recipe for reading the submaximal symmetry dimension from a Dynkin diagram. 

The irrational line on the torus 12:35 Mon 23 Sep, 2013 :: B.19 Ingkarni Wardli :: Kelli FrancisStaite :: University of Adelaide
The torus is very common example of a surface in R^3, but it's a lot more interesting than just a donut! I will introduce some standard mathematical descriptions of the torus, a bit of number theory, and finally what the irrational line on the torus is.
Why is this interesting? Well despite donuts being yummy to eat, the irrational line on the torus gives a range of pathological counterexamples. In Differential Geometry, it is an example of a manifold that is a subset of another manifold, but not a submanifold. In Lie theory, it is an example of a subgroup of a Lie group which is not a Lie subgroup.
If that wasn't enough of a mouthful, I may also provide some sweet incentives to come along! Does anyone know the location of a good donut store? 

Dynamics and the geometry of numbers 14:10 Fri 27 Sep, 2013 :: Horace Lamb Lecture Theatre :: Prof Akshay Venkatesh :: Stanford University
Media...It was understood by Minkowski that one could prove interesting results in number theory by considering the geometry of lattices in R^n. (A lattice is simply a grid of points.) This technique is called the "geometry of numbers." We now understand much more about analysis and dynamics on the space of all lattices, and this has led to a deeper understanding of classical questions. I will review some of these ideas, with emphasis on the dynamical aspects. 

Geodesic completeness of compact ppwaves 12:10 Fri 18 Oct, 2013 :: Ingkarni Wardli B19 :: Dr Thomas Leistner :: University of Adelaide
A semiRiemannian manifold is geodesically complete (or for short, complete) if all its maximal geodesics are defined on the real line. Whereas for Riemannian metrics the compactness of the manifold implies completeness, there are compact Lorentzian manifolds that are not complete (e.g. the CliftonPohl torus). Several rather strong conditions have been found in the literature under which a compact Lorentzian manifold is complete, including being homogeneous (Marsden) or of constant curvature (Carriere, Klingler), or admitting a timelike Killing vector field (Romero, Sanchez). We will consider ppwaves, which are Lorentzian manifold with a parallel null vector field and a highly degenerate curvature tensor, but which do not satisfy any of the above conditions. We will show that a compact ppwave is universally covered by a vector space, determine the metric on the universal cover and consequently show that they are geodesically complete. 

Localised index and L^2Lefschetz fixed point formula 12:10 Fri 25 Oct, 2013 :: Ingkarni Wardli B19 :: Dr Hang Wang :: University of Adelaide
In this talk we introduce a class of localised indices for the Dirac type operators on a complete Riemannian manifold, where a discrete group acts properly, cocompactly and isometrically. These localised indices, generalising the L^2index of Atiyah, are obtained by taking HattoriStallings traces of the higher index for the Dirac type operators. We shall talk about some motivation and applications for working on localised indices. The talk is related to joint work with BaiLing Wang. 

Group meeting 15:10 Fri 25 Oct, 2013 :: 5.58 (Ingkarni Wardli) :: Dr Ben Binder and Mr David Wilke :: University of Adelaide
Dr Ben Binder :: 'An inverse approach for solutions to freesurface flow problems'
:: Abstract: Surface water waves are familiar to most people, for example, the wave
pattern generated at the stern of a ship. The boundary or interface
between the air and water is called the freesurface. When determining a
solution to a freesurface flow problem it is commonplace for the forcing
(eg. shape of ship or waterbed topography) that creates the surface waves
to be prescribed, with the freesurface coming as part of the solution.
Alternatively, one can choose to prescribe the shape of the freesurface
and find the forcing inversely. In this talk I will discuss my ongoing
work using an inverse approach to discover new types of solutions to
freesurface flow problems in two and three dimensions, and how the
predictions of the method might be verified with experiments. ::
Mr David Wilke:: 'A Computational Fluid Dynamic Study of Blood Flow Within the Coiled Umbilical Arteries'::
Abstract: The umbilical cord is the lifeline of the fetus throughout gestation. In a normal pregnancy it facilitates the supply of oxygen and nutrients from the placenta via a single vein, in addition to the return of deoxygenated blood from the developing embryo or fetus via two umbilical arteries. Despite the major role it plays in the growth of the fetus, pathologies of the umbilical cord are poorly understood. In particular, variations in the cord geometry, which typically forms a helical arrangement, have been correlated with adverse outcomes in pregnancy. Cords exhibiting either abnormally low or high levels of coiling have been associated with pathological results including growthrestriction and fetal demise. Despite this, the methodology currently employed by clinicians to characterise umbilical pathologies can misdiagnose cords and is prone to error. In this talk a computational model of blood flow within rigid threedimensional structures representative of the umbilical arteries will be presented. This study determined that the current characterization was unable to differentiate between cords which exhibited clinically distinguishable flow properties, including the cord pressure drop, which provides a measure of the loading on the fetal heart.


Modelling and optimisation of group doseresponse challenge experiments 12:10 Mon 28 Oct, 2013 :: B.19 Ingkarni Wardli :: David Price :: University of Adelaide
Media...An important component of scientific research is the 'experiment'. Effective design of these experiments is important and, accordingly, has received significant attention under the heading 'optimal experimental design'. However, until recently, little work has been done on optimal experimental design for experiments where the underlying process can be modelled by a Markov chain. In this talk, I will discuss some of the work that has been done in the field of optimal experimental design for Markov Chains, and some of the work that I have done in applying this theory to doseresponse challenge experiments for the bacteria Campylobacter jejuni in chickens. 

IGA Lectures on Finsler geometry 13:30 Thu 31 Oct, 2013 :: Ingkarni Wardli 7.15 :: Prof Robert Bryant :: Duke University
Media...13:30 Refreshments.
14:00 Lecture 1: The origins of Finsler geometry in the calculus of variations.
15:00 Lecture 2: Finsler manifolds of constant flag curvature. 

Recent developments in special holonomy manifolds 12:10 Fri 1 Nov, 2013 :: Ingkarni Wardli 7.15 :: Prof Robert Bryant :: Duke University
One of the big classification results in differential geometry from the past century has been the classification of the possible holonomies of affine manifolds, with the major first step having been taken by Marcel Berger in his 1954 thesis. However, Berger's classification was only partial, and, in the past 20 years, an extensive research effort has been expended to complete this classification and extend it in a number of ways. In this talk, after recounting the major parts of the history of the subject, I will discuss some of the recent results and surprising new examples discovered as a byproduct of research into Finsler geometry. If time permits, I will also discuss some of the open problems in the subject. 

The geometry of rolling surfaces and nonholonomic mechanics 15:10 Fri 1 Nov, 2013 :: B.18 Ingkarni Wardli :: Prof Robert Bryant :: Duke University
Media...In mechanics, the system of a sphere rolling over a plane without slipping or twisting is a fundamental example of what is called a nonholonomic mechanical system, the study of which belongs to the subject of control theory. The more general case of one surface rolling over another without slipping or twisting is, similarly, of great interest for both practical and theoretical reasons. In this talk, which is intended for a general mathematical audience (i.e., no familiarity with control theory or differential geometry will be assumed), I will describe some of the basic features of this problem, a bit of its history, and some of the surprising developments that its study reveals, such as the unexpected appearance of the exceptional group G_2. 

Braids and entropy 10:10 Fri 8 Nov, 2013 :: Ingkarni Wardli B19 :: Prof Burglind Joricke :: Australian National University
This talk will be a brief introduction to some aspects of braid theory and to entropy, to provide background for the speaker's talk at 12:10 pm the same day.


Braids, conformal module and entropy 12:10 Fri 8 Nov, 2013 :: Ingkarni Wardli B19 :: Prof Burglind Joricke :: Australian National University
I will discuss two invariants of conjugacy classes of braids.
The first invariant is the conformal module which implicitly occurred
already in a paper of Gorin and Lin in connection with their
interest in Hilbert's 13th problem. The second is a popular
dynamical invariant, the entropy. It appeared in connection
with Thurston's theory of surface homeomorphisms.
It turns out that these invariants are related: They are inversely
proportional.
In a preparatory talk (at 10:10 am) I will give a brief introduction to some aspects of braid theory and to entropy.


Buoyancy driven exchange flows in the nearshore regions of lakes and reservoirs 15:10 Mon 2 Dec, 2013 :: 5.58 (Ingkarni Wardli) :: Professor John Patterson :: University of Sydney
Natural convection is the flow driven by differences in density, and is ubiquitous in nature and industry. It is the source of most environmental flows, and is the basis for almost all industrial heat exchange processes. It operates on both massive and micro scales. It is usually considered as a flow driven by temperature gradients, but could equally be from a gradient in any density determining property  salinity is one obvious example. It also depends on gravity; so magnetohydrodynamics becomes relevant as well. One particular interesting and environmentally relevant flow is the exchange flow in the nearshore regions of lakes and reservoirs. This occurs because of the effects of a decreasing depth approaching the shore resulting laterally unequal heat loss and heat gain during the diurnal cooling and heating cycle. This presentation will discuss some of the results obtained by the Natural Convection Group at Sydney University in analytical, numerical and experimental investigations of this mechanism, and the implications for lake water quality. 

A few flavours of optimal control of Markov chains 11:00 Thu 12 Dec, 2013 :: B18 :: Dr Sam Cohen :: Oxford University
Media...In this talk we will outline a general view of optimal control of a continuoustime Markov chain, and how this naturally leads to the theory of Backward Stochastic Differential Equations. We will see how this class of equations gives a natural setting to study these problems, and how we can calculate numerical solutions in many settings. These will include problems with payoffs with memory, with random terminal times, with ergodic and infinitehorizon value functions, and with finite and infinitely many states. Examples will be drawn from finance, networks and electronic engineering. 

Reductive group actions and some problems concerning their quotients 12:10 Fri 17 Jan, 2014 :: Ingkarni Wardli B20 :: Prof Gerald Schwarz :: Brandeis University
Media...We will gently introduce the concept of a complex reductive group and the notion of the quotient Z of a complex vector space V on which our complex reductive group G acts linearly. There is the quotient mapping p from V to Z. The quotient is an affine variety with a stratification coming from the group action. Let f be an automorphism of Z. We consider the following questions (and give some answers).
1) Does f preserve the stratification of Z, i.e., does it permute the strata?
2) Is there a lift F of f? This means that F maps V to V and p(F(v))=f(p(v)) for all v in V.
3) Can we arrange that F is equivariant?
We show that 1) is almost always true, that 2) is true in a lot of cases and that a twisted version of 3) then holds. 

The density property for complex manifolds: a strong form of holomorphic flexibility 12:10 Fri 24 Jan, 2014 :: Ingkarni Wardli B20 :: Prof Frank Kutzschebauch :: University of Bern
Compared with the real differentiable case, complex manifolds in general are more rigid, their groups of holomorphic diffeomorphisms are rather small (in general trivial). A long known exception to this behavior is affine nspace C^n for n at least 2. Its group of holomorphic diffeomorphisms is infinite dimensional. In the late 1980s Andersen and Lempert proved a remarkable
theorem which stated in its generalized version due to Forstneric and Rosay that any local holomorphic phase flow given on a Runge subset of C^n can be locally uniformly approximated by a global holomorphic diffeomorphism. The main ingredient in the proof was formalized by Varolin and called the density property: The Lie algebra generated by complete holomorphic vector fields is dense in the Lie algebra of all holomorphic vector fields. In these manifolds a similar local to global approximation of AndersenLempert type holds. It is a precise way of saying that the group of holomorphic diffeomorphisms is large.
In the talk we will explain how this notion is related to other more recent flexibility notions in complex geometry, in particular to the notion of a OkaForstneric manifold. We will give examples of manifolds with the density property and sketch applications of the density property. If time permits we will explain criteria for the density property developed by Kaliman and the speaker.


Integrability of infinitedimensional Lie algebras and Lie algebroids 12:10 Fri 7 Feb, 2014 :: Ingkarni Wardli B20 :: Christoph Wockel :: Hamburg University
Lie's Third Theorem states that each finitedimensional Lie algebra is the Lie algebra of a Lie group (we also say "integrates to a Lie group"). The corresponding statement for infinitedimensional Lie algebras or Lie algebroids is false and we will explain geometrically why this is the case. The underlying pattern is that of integration of central extensions of Lie algebras and Lie algebroids. This also occurs in other contexts, and we will explain some aspects of string group models in these terms. In the end we will sketch how the nonintegrability of Lie algebras and Lie algebroids can be overcome by passing to higher categorical objects (such as smooth stacks) and give a panoramic (but still conjectural) perspective on the precise relation of the various integrability problems.


The structuring role of chaotic stirring on pelagic ecosystems 11:10 Fri 28 Feb, 2014 :: B19 Ingkarni Wardli :: Dr Francesco d'Ovidio :: Universite Pierre et Marie Curie (Paris VI)
The open ocean upper layer is characterized by a complex transport dynamics occuring over different spatiotemporal scales. At the scale of 10100 km  which covers the so called mesoscale and part of the submesoscale  in situ and remote sensing observations detect strong variability in physical and biogeochemical fields like sea surface temperature, salinity, and chlorophyll concentration. The calculation of Lyapunov exponent and other nonlinear diagnostics applied to the surface currents have allowed to show that an important part of this tracer variability is due to chaotic stirring. Here I will extend this analysis to marine ecosystems. For primary producers, I will show that stable and unstable manifolds of hyperbolic points embedded in the surface velocity field are able to structure the phytoplanktonic community in fluid dynamical niches of dominant types, where competition can locally occur during bloom events. By using data from tagged whales, frigatebirds, and elephant seals, I will also show that chaotic stirring affects the behaviour of higher trophic levels. In perspective, these relations between transport structures and marine ecosystems can be the base for a biodiversity index constructued from satellite information, and therefore able to monitor key aspects of the marine biodiversity and its temporal variability at the global scale. 

Geometric quantisation in the noncompact setting 12:10 Fri 7 Mar, 2014 :: Ingkarni Wardli B20 :: Peter Hochs :: University of Adelaide
Geometric quantisation is a way to construct quantum mechanical phase spaces (Hilbert spaces) from classical mechanical phase spaces (symplectic manifolds). In the presence of a group action, the quantisation commutes with reduction principle states that geometric quantisation should be compatible with the ways the group action can be used to simplify (reduce) the classical and quantum phase spaces. This has deep consequences for the link between symplectic geometry and representation theory.
The quantisation commutes with reduction principle has been given explicit meaning, and been proved, in cases where the symplectic manifold and the group acting on it are compact. There have also been results where just the group, or the orbit space of the action, is assumed to be compact. These are important and difficult, but it is somewhat frustrating that they do not even apply to the simplest example from the physics point of view: a free particle in Rn. This talk is about a joint result with Mathai Varghese where the group, manifold and orbit space may all be noncompact. 

What Technical Performance Measures are Critical to Evaluate Geothermal Developments? 12:10 Mon 17 Mar, 2014 :: B.19 Ingkarni Wardli :: Jo Varney :: University of Adelaide
Media...Josephine Varney, Nigel Bean and Betina Bendall.
When geologists, geophysicists and engineers study geothermal developments, each group has their own set of technical performance measures. While these performance measures tell each group something important about the geothermal development, there is often difficulty in translating these technical performance measures into financial performance measures for investors. In this paper, we argue that brine effectiveness is the best, simple financial performance measure for a geothermal investor. This is because it is a good, yet simple indicator of ROI (return on investment); and importantly, links well production to power plant production, hence describes the geothermal development in a holistic sense. 

Embed to homogenise heterogeneous wave equation. 12:35 Mon 17 Mar, 2014 :: B.19 Ingkarni Wardli :: Chen Chen :: University of Adelaide
Media...Consider materials with complicated microstructure: we want to model their large scale dynamics by equations with effective, `average' coefficients. I will show an example of heterogeneous wave equation in 1D. If Centre manifold theory is applied to model the original heterogeneous wave equation directly, we will get a trivial model. I embed the wave equation into a family of more complex wave problems and I show the equivalence of the two sets of solutions. 

Moduli spaces of contact instantons 12:10 Fri 28 Mar, 2014 :: Ingkarni Wardli B20 :: David Baraglia :: University of Adelaide
In dimensions greater than four there are several notions of higher YangMills instantons. This talk concerns one such case, contact instantons, defined for 5dimensional contact manifolds. The geometry transverse to the Reeb foliation turns out to be important in understanding the moduli space. For example, we show the dimension of the moduli space is the index of a transverse elliptic complex. This is joint work with Pedram Hekmati. 

A model for the BitCoin block chain that takes propagation delays into account 15:10 Fri 28 Mar, 2014 :: B.21 Ingkarni Wardli :: Professor Peter Taylor :: The University of Melbourne
Media...Unlike cash transactions, most electronic transactions require the presence of a trusted authority to verify that the payer has sufficient funding to be able to make the transaction and to adjust the account balances of the payer and payee. In recent years BitCoin has been proposed as an "electronic equivalent of cash". The general idea is that transactions are verified in a coded form in a block chain, which is maintained by the community of participants. Problems can arise when the block chain splits: that is different participants have different versions of the block chain, something which can happen only when there are propagation delays, at least if all participants are behaving according to the protocol.
In this talk I shall present a preliminary model for the splitting behaviour of the block chain. I shall then go on to perform a similar analysis for a situation where a group of participants has adopted a recentlyproposed strategy for gaining a greater advantage from BitCoin processing than its combined computer power should be able to control. 

Scattering theory and noncommutative geometry 01:10 Mon 31 Mar, 2014 :: Ingkarni Wardli B20 :: Alan Carey :: Australian National University


Semiclassical restriction estimates 12:10 Fri 4 Apr, 2014 :: Ingkarni Wardli B20 :: Melissa Tacy :: University of Adelaide
Eigenfunctions of Hamiltonians arise naturally in the theory of quantum mechanics as stationary states of quantum systems. Their eigenvalues have an interpretation as the square root of E, where E is the energy of the system. We wish to better understand the high energy limit which defines the boundary between quantum and classical mechanics. In this talk I will focus on results regarding the restriction of eigenfunctions to lower dimensional subspaces, in particular to hypersurfaces. A convenient way to study such problems is to reframe them as problems in semiclassical analysis. 

Flow barriers and flux in unsteady flows 15:10 Fri 4 Apr, 2014 :: B.21 Ingkarni Wardli :: Dr Sanjeeva Balasuriya :: The University of Adelaide
Media...How does one define the boundary of the ozone hole, an oceanic eddy, or Jupiter's Great Red Spot? These occur in flows which are unsteady (nonautonomous), that is, which change with time, and therefore any boundary must as well. In steady (autonomous) flows, defining flow boundaries is straightforward: one first finds fixed points of the flow, and then determines entities in space which are attracted to or repelled from these points as time progresses. These are respectively the stable and unstable manifolds of the fixed points, and can be shown to partition space into regions of different types of flow. This talk will focus on the required modifications to this idea for determining flow barriers in the more realistic unsteady context. An application to maximising mixing in microfluidic devices will also be presented. 

TDuality and its Generalizations 12:10 Fri 11 Apr, 2014 :: Ingkarni Wardli B20 :: Jarah Evslin :: Theoretical Physics Center for Science Facilities, CAS
Given a manifold M with a torus action and a choice of integral 3cocycle H, Tduality yields another manifold with a torus action and integral 3cocyle. It induces a number of surprising automorphisms between structures on these manifolds. In this talk I will review Tduality and describe some work on two generalizations which are realized in string theory: NS5branes and heterotic strings. These respectively correspond to nonclosed 3classes H and to principal bundles fibered over M. 

A generalised KacPeterson cocycle 11:10 Thu 17 Apr, 2014 :: Ingkarni Wardli B20 :: Pedram Hekmati :: University of Adelaide
The KacPeterson cocycle appears in the study of highest weight modules of infinite dimensional Lie algebras and determines a central extension. The vanishing of its cohomology class is tied to the existence of a cubic Dirac operator whose square is a quadratic Casimir element. I will introduce a closely related Lie algebra cocycle that comes about when constructing spin representations and gives rise to a Banach Lie group with a highly nontrivial topology. I will also explain how to make sense of the cubic Dirac operator in this setting and discuss its relation to twisted Ktheory. This is joint work with Jouko Mickelsson. 

Outlier removal using the Bayesian information criterion for groupbased trajectory modelling 12:10 Mon 28 Apr, 2014 :: B.19 Ingkarni Wardli :: Chris Davies :: University of Adelaide
Media...Attributes measured longitudinally can be used to define discrete paths of measurements, or trajectories, for each individual in a given population. Groupbased trajectory modelling methods can be used to identify subgroups of trajectories within a population, such that trajectories that are grouped together are more similar to each other than to trajectories in distinct groups. Existing methods generally allocate every individual trajectory into one of the estimated groups. However this does not allow for the possibility that some individuals may be following trajectories so different from the rest of the population that they should not be included in a groupbased trajectory model. This results in these outlying trajectories being treated as though they belong to one of the groups, distorting the estimated trajectory groups and any subsequent analyses that use them.
We have developed an algorithm for removing outlying trajectories based on the maximum change in Bayesian information criterion (BIC) due to removing a single trajectory. As well as deciding which trajectory to remove, the number of groups in the model can also change. The decision to remove an outlying trajectory is made by comparing the loglikelihood contributions of the observations to those of simulated samples from the estimated groupbased trajectory model. In this talk the algorithm will be detailed and an application of its use will be demonstrated. 

Lefschetz fixed point theorem and beyond 12:10 Fri 2 May, 2014 :: Ingkarni Wardli B20 :: Hang Wang :: University of Adelaide
A Lefschetz number associated to a continuous map on a closed manifold is a topological invariant determined by the geometric information near the neighbourhood of fixed point set of the map. After an introduction of the Lefschetz fixed point theorem, we shall use the Diracdual Dirac method to derive the Lefschetz number on Ktheory level. The method concerns the comparison of the Dirac operator on the manifold and the Dirac operator on some submanifold. This method can be generalised to several interesting situations when the manifold is not necessarily compact. 

A geometric model for odd differential Ktheory 12:10 Fri 9 May, 2014 :: Ingkarni Wardli B20 :: Raymond Vozzo :: University of Adelaide
Odd Ktheory has the interesting property thatunlike even Ktheoryit admits an infinite number of inequivalent differential refinements. In this talk I will give a description of odd differential Ktheory using infinite rank bundles and explain why it is the correct differential refinement. This is joint work with Michael Murray, Pedram Hekmati and Vincent Schlegel. 

Ergodicity and loss of capacity: a stochastic horseshoe? 15:10 Fri 9 May, 2014 :: B.21 Ingkarni Wardli :: Professor Ami Radunskaya :: Pomona College, the United States of America
Media...Random fluctuations of an environment are common in ecological and
economical settings. The resulting processes can be described by a
stochastic dynamical system, where a family of maps parametrized by an
independent, identically distributed random variable forms the basis for a
Markov chain on a continuous state space. Random dynamical systems are a
beautiful combination of deterministic and random processes, and they have
received considerable interest since von Neuman and Ulam's seminal work in
the 1940's. Key questions in the study of a stochastic dynamical system
are: does the system have a welldefined average, i.e. is it ergodic?
How does this longterm behavior compare to that of the state
variable in a constant environment with the averaged parameter?
In this talk we answer these questions for a family of maps on the unit
interval that model selflimiting growth. The techniques used can be
extended to study other families of concave maps, and so we conjecture the
existence of a "stochastic horseshoe". 

Computing with groups 15:10 Fri 30 May, 2014 :: B.21 Ingkarni Wardli :: Dr Heiko Dietrich :: Monash University
Media...Groups are algebraic structures which show up in many branches of
mathematics and other areas of science; Computational Group Theory is
on the cutting edge of pure research in group theory and its interplay
with computational methods.
In this talk, we consider a practical aspect
of Computational Group Theory: how to represent a group in a computer,
and how to work with such a description efficiently. We will first
recall some wellestablished methods for permutation group; we will
then discuss some recent progress for matrix groups. 

Oka properties of groups of holomorphic and algebraic automorphisms of complex affine space 12:10 Fri 6 Jun, 2014 :: Ingkarni Wardli B20 :: Finnur Larusson :: University of Adelaide
I will discuss new joint work with Franc Forstneric. The group of holomorphic automorphisms of complex affine space C^n, n>1, is huge. It is not an infinitedimensional manifold in any recognised sense. Still, our work shows that in some ways it behaves like a finitedimensional Oka manifold. 

Group meeting 15:10 Fri 6 Jun, 2014 :: 5.58 Ingkarni Wardli :: Meng Cao and Trent Mattner :: University of Adelaide
Meng Cao:: Multiscale modelling couples patches of nonlinear wavelike simulations ::
Abstract:
The multiscale gaptooth scheme is built from given microscale simulations of complicated physical processes to empower macroscale simulations. By coupling small patches of simulations over unsimulated physical gaps, large savings in computational time are possible. So far the gaptooth scheme has been developed for dissipative systems, but wave systems are also of great interest. This article develops the gaptooth scheme to the case of nonlinear microscale simulations of wavelike systems. Classic macroscale interpolation provides a generic coupling between patches that achieves arbitrarily high order consistency between the multiscale scheme and the underlying microscale dynamics. Eigenanalysis indicates that the resultant gaptooth scheme empowers feasible computation of large scale simulations of wavelike dynamics with complicated underlying physics. As an pilot study, we implement numerical simulations of dambreaking waves by the gaptooth scheme. Comparison between a gaptooth simulation, a microscale simulation over the whole domain, and some published experimental data on dam breaking, demonstrates that the gaptooth scheme feasibly computes large scale wavelike dynamics with computational savings.
Trent Mattner :: Coupled atmospherefire simulations of the Canberra 2003 bushfires using WRFSfire :: Abstract:
The Canberra fires of January 18, 2003 are notorious for the extreme fire behaviour and fireatmospheretopography interactions that occurred, including leeslope fire channelling, pyrocumulonimbus development and tornado formation. In this talk, I will discuss coupled fireweather simulations of the Canberra fires using WRFSFire. In these simulations, a firebehaviour model is used to dynamically predict the evolution of the fire front according to local atmospheric and topographic conditions, as well as the associated heat and moisture fluxes to the atmosphere. It is found that the predicted fire front and heat flux is not too bad, bearing in mind the complexity of the problem and the severe modelling assumptions made. However, the predicted moisture flux is too low, which has some impact on atmospheric dynamics. 

Not nots, knots. 12:10 Mon 16 Jun, 2014 :: B.19 Ingkarni Wardli :: Luke KeatingHughes :: University of Adelaide
Media...Although knot theory does not ordinarily arise in classical mathematics, the study of knots themselves proves to be very intricate and is certainly an area with promise for new developments. Ultimately, the study of knots boils down to problems of classification and when two knots are seen to be 'equivalent'. In this seminar we will first talk about some basic definitions and properties of knots, then move on to calculating the knot polynomial  a powerful invariant on knots. 

Estimates for eigenfunctions of the Laplacian on compact Riemannian manifolds 12:10 Fri 1 Aug, 2014 :: Ingkarni Wardli B20 :: Andrew Hassell :: Australian National University
I am interested in estimates on eigenfunctions, accurate in the higheigenvalue limit. I will discuss estimates on the size (as measured by L^p norms) of eigenfunctions, on the whole Riemannian manifold, at the boundary, or at an interior hypersurface. The link between higheigenvalue estimates, geometry, and the dynamics of geodesic flow will be emphasized. 

Fast computation of eigenvalues and eigenfunctions on bounded plane domains 15:10 Fri 1 Aug, 2014 :: B.18 Ingkarni Wardli :: Professor Andrew Hassell :: Australian National University
Media...I will describe a new method for numerically computing eigenfunctions and eigenvalues on certain plane domains, derived from the socalled "scaling method" of Vergini and Saraceno. It is based on properties of the DirichlettoNeumann map on the domain, which relates a function f on the boundary of the domain to the normal derivative (at the boundary) of the eigenfunction with boundary data f. This is a topic of independent interest in pure mathematics. In my talk I will try to emphasize the inteplay between theory and applications, which is very rich in this situation. This is joint work with numerical analyst Alex Barnett (Dartmouth). 

Hydrodynamics and rheology of selfpropelled colloids 15:10 Fri 8 Aug, 2014 :: B17 Ingkarni Wardli :: Dr Sarthok Sircar :: University of Adelaide
The subcellular world has many components in common with soft condensed matter systems (polymers, colloids and liquid crystals). But it has novel properties, not present in traditional complex fluids, arising from a rich spectrum of nonequilibrium behavior: flocking, chemotaxis and bioconvection.
The talk is divided into two parts. In the first half, we will (get an idea on how to) derive a hydrodynamic model for selfpropelled particles of an arbitrary shape from first principles, in a sufficiently dilute suspension limit, moving in a 3dimensional space inside a viscous solvent. The model is then restricted to particles with ellipsoidal geometry to quantify the interplay of the longrange excluded volume and the shortrange selfpropulsion effects. The expression for the constitutive stresses, relating the kinetic theory with the momentum transport equations, are derived using a combination of the virtual work principle (for extra elastic stresses) and symmetry arguments (for active stresses).
The second half of the talk will highlight on my current numerical expertise. In particular we will exploit a specific class of spectral basis functions together with RK4 timestepping to determine the dynamical phases/structures as well as phasetransitions of these ellipsoidal clusters. We will also discuss on how to define the order (or orientation) of these clusters and understand the other rheological quantities.


Boundaryvalue problems for the Ricci flow 15:10 Fri 15 Aug, 2014 :: B.18 Ingkarni Wardli :: Dr Artem Pulemotov :: The University of Queensland
Media...The Ricci flow is a differential equation describing the evolution of a Riemannian manifold (i.e., a "curved" geometric object) into an Einstein manifold (i.e., an object with a "constant" curvature). This equation is particularly famous for its key role in the proof of the Poincare Conjecture. Understanding the Ricci flow on manifolds with boundary is a difficult problem with applications to a variety of fields, such as topology and mathematical physics. The talk will survey the current progress towards the resolution of this problem. In particular, we will discuss new results concerning spaces with symmetries. 

Quasimodes that do not Equidistribute 13:10 Tue 19 Aug, 2014 :: Ingkarni Wardli B17 :: Shimon Brooks :: BarIlan University
The QUE Conjecture of RudnickSarnak asserts that eigenfunctions of the Laplacian on Riemannian manifolds of negative curvature should equidistribute in the large eigenvalue limit. For a number of reasons, it is expected that this property may be related to the (conjectured) small multiplicities in the spectrum. One way to study this relationship is to ask about equidistribution for "quasimodes"or approximate eigenfunctions in place of highlydegenerate eigenspaces. We will discuss the case of surfaces of constant negative curvature; in particular, we will explain how to construct some examples of sufficiently weak quasimodes that do not satisfy QUE, and show how they fit into the larger theory. 

Tduality and the chiral de Rham complex 12:10 Fri 22 Aug, 2014 :: Ingkarni Wardli B20 :: Andrew Linshaw :: University of Denver
The chiral de Rham complex of Malikov, Schechtman, and Vaintrob is a sheaf of vertex algebras that exists on any smooth manifold M. It has a squarezero differential D, and contains the algebra of differential forms on M as a subcomplex. In this talk, I'll give an introduction to vertex algebras and sketch this construction. Finally, I'll discuss a notion of Tduality in this setting. This is based on joint work in progress with V. Mathai. 

Software and protocol verification using Alloy 12:10 Mon 25 Aug, 2014 :: B.19 Ingkarni Wardli :: Dinesha Ranathunga :: University of Adelaide
Media...Reliable software isn't achieved by trial and error. It requires tools to support verification. Alloy is a tool based on set theory that allows expression of a logicbased model of software or a protocol, and hence allows checking of this model. In this talk, I will cover its key concepts, language syntax and analysis features. 

A Random Walk Through Discrete State Markov Chain Theory 12:10 Mon 22 Sep, 2014 :: B.19 Ingkarni Wardli :: James Walker :: University of Adelaide
Media...This talk will go through the basics of Markov chain theory; including how to construct a continuoustime Markov chain (CTMC), how to adapt a Markov chain to include nonmemoryless distributions, how to simulate CTMC's and some key results. 

Spectral asymptotics on random Sierpinski gaskets 12:10 Fri 26 Sep, 2014 :: Ingkarni Wardli B20 :: Uta Freiberg :: Universitaet Stuttgart
Self similar fractals are often used in modeling porous media. Hence, defining a Laplacian and a Brownian motion on such sets describes transport through such materials. However, the assumption of strict self similarity could be too restricting. So, we present several models of random fractals which could be used instead. After recalling the classical approaches of random homogenous and recursive random fractals, we show how to interpolate between these two model classes with the help of so called Vvariable fractals. This concept (developed by Barnsley, Hutchinson & Stenflo) allows the definition of new families of random fractals, hereby the parameter V describes the degree of `variability' of the realizations. We discuss how the degree of variability influences the geometric, analytic and stochastic properties of these sets.  These results have been obtained with Ben Hambly (University of Oxford) and John Hutchinson (ANU Canberra). 

To Complex Analysis... and beyond! 12:10 Mon 29 Sep, 2014 :: B.19 Ingkarni Wardli :: Brett Chenoweth :: University of Adelaide
Media...In the undergraduate complex analysis course students learn about complex valued functions on domains in C (the complex plane). Several interesting and surprising results come about from this study. In my talk I will introduce a more general setting where complex analysis can be done, namely Riemann surfaces (complex manifolds of dimension 1). I will then prove that all noncompact Riemann surfaces are Stein; which loosely speaking means that their function theory is similar to that of C. 

Compact pseudoRiemannian solvmanifolds 12:10 Fri 17 Oct, 2014 :: Ingkarni Wardli B20 :: Wolfgang Globke :: University of Adelaide
A compact solvmanifold M is a quotient of a solvable Lie group G by a cocompact closed subgroup H. A pseudoRiemannian metric on M is induced by an Hinvariant symmetric 2tensor on G. In this talk I will describe some foundations and results of my ongoing work with Oliver Baues on the nature of this 2tensor and what it can imply for the subgroup H. 

Geometric singular perturbation theory and canard theory to study travelling waves in: 1) a model for tumor invasion; and 2) a model for wound healing angiogenesis. 15:10 Fri 17 Oct, 2014 :: EM 218 Engineering & Mathematics Building :: Dr Petrus (Peter) van Heijster :: QUT
In this talk, I will present results on the existence of smooth and shocklike travelling wave solutions for two advectionreactiondiffusion models.
The first model describes malignant tumour (i.e. skin cancer) invasion, while the second one is a model for wound healing angiogenesis.
Numerical solutions indicate that both smooth and shockfronted travelling wave solutions exist for these two models.
I will verify the existence of both type of these solutions using techniques from geometric singular perturbation theory and canard theory.
Moreover, I will provide numerical results on the stability of the waves and the actual observed wave speeds.
This is joint work with K. Harley, G. Pettet, R. Marangell and M. Wechselberger. 

The SerreGrothendieck theorem by geometric means 12:10 Fri 24 Oct, 2014 :: Ingkarni Wardli B20 :: David Roberts :: University of Adelaide
The SerreGrothendieck theorem implies that every torsion
integral 3rd cohomology class on a finite CWcomplex is the invariant
of some projective bundle. It was originally proved in a letter by
Serre, used homotopical methods, most notably a Postnikov
decomposition of a certain classifying space with divisible homotopy
groups. In this talk I will outline, using work of the algebraic
geometer Offer Gabber, a proof for compact smooth manifolds using
geometric means and a little Ktheory. 

Happiness and social information flow: Computational social science through data. 15:10 Fri 7 Nov, 2014 :: EM G06 (Engineering & Maths Bldg) :: Dr Lewis Mitchell :: University of Adelaide
The recent explosion in big data coming from online social networks has led to an increasing interest in bringing quantitative methods to bear on questions in social science. A recent highprofile example is the study of emotional contagion, which has led to significant challenges and controversy. This talk will focus on two issues related to emotional contagion, namely remotesensing of populationlevel wellbeing and the problem of information flow across a social network. We discuss some of the challenges in working with massive online data sets, and present a simple tool for measuring largescale happiness from such data. By combining over 10 million geolocated messages collected from Twitter with traditional census data we uncover geographies of happiness at the scale of states and cities, and discuss how these patterns may be related to traditional wellbeing measures and public health outcomes. Using tools from information theory we also study information flow between individuals and how this may relate to the concept of predictability for human behaviour. 

Happiness and social information flow: Computational social science through data. 15:10 Fri 7 Nov, 2014 :: EM G06 (Engineering & Maths Bldg) :: Dr Lewis Mitchell :: University of Adelaide
The recent explosion in big data coming from online social networks has led to an increasing interest in bringing quantitative methods to bear on questions in social science. A recent highprofile example is the study of emotional contagion, which has led to significant challenges and controversy. This talk will focus on two issues related to emotional contagion, namely remotesensing of populationlevel wellbeing and the problem of information flow across a social network. We discuss some of the challenges in working with massive online data sets, and present a simple tool for measuring largescale happiness from such data. By combining over 10 million geolocated messages collected from Twitter with traditional census data we uncover geographies of happiness at the scale of states and cities, and discuss how these patterns may be related to traditional wellbeing measures and public health outcomes. Using tools from information theory we also study information flow between individuals and how this may relate to the concept of predictability for human behaviour. 

Extending holomorphic maps from Stein manifolds into affine toric varieties 12:10 Fri 14 Nov, 2014 :: Ingkarni Wardli B20 :: Richard Larkang :: University of Adelaide
One way of defining socalled Oka manifolds is by saying that they satisfy the following interpolation property (IP): Y satisfies the IP if any holomorphic map from a closed submanifold S of a Stein manifold X into Y which has a continuous extension to X also has a holomorphic extension. An ostensibly weaker property is the convex interpolation property (CIP), where S is assumed to be a contractible submanifold of X = C^n. By a deep theorem of Forstneric, these (and several other) properties are in fact equivalent.
I will discuss a joint work with Finnur Larusson, where we consider the interpolation property when the target Y is a singular affine toric variety. We show that all affine toric varieties satisfy an interpolation property stronger than CIP, but that only in very special situations do they satisfy the full IP. 

Factorisations of Distributive Laws 12:10 Fri 19 Dec, 2014 :: Ingkarni Wardli B20 :: Paul Slevin :: University of Glasgow
Recently, distributive laws have been used by Boehm and Stefan to construct new examples of duplicial (paracyclic) objects, and hence cyclic homology theories. The paradigmatic example of such a theory is the cyclic homology HC(A) of an associative algebra A. It was observed by Kustermans, Murphy, and Tuset that the functor HC can be twisted by automorphisms of A. It turns out that this twisting procedure can be applied to any duplicial object defined by a distributive law.
I will begin by defining duplicial objects and cyclic homology, as well as discussing some categorical concepts, then describe the construction of Boehm and Stefan. I will then define the category of factorisations of a distributive law and explain how this acts on their construction, and give some examples, making explicit how the action of this category generalises the twisting of an associative algebra. 

Nonlinear analysis over infinite dimensional spaces and its applications 12:10 Fri 6 Feb, 2015 :: Ingkarni Wardli B20 :: Tsuyoshi Kato :: Kyoto University
In this talk we develop moduli theory of holomorphic curves over
infinite dimensional manifolds consisted by sequences of almost Kaehler manifolds.
Under the assumption of high symmetry, we verify that many mechanisms of
the standard moduli theory over closed symplectic manifolds also work over these
infinite dimensional spaces.
As an application, we study deformation theory of discrete groups acting
on trees. There is a canonical way, up to conjugacy to embed such groups
into the automorphism group over the infinite projective space.
We verify that for some class of Hamiltonian functions,
the deformed groups must be always asymptotically infinite. 

Boundary behaviour of Hitchin and hypo flows with leftinvariant initial data 12:10 Fri 27 Feb, 2015 :: Ingkarni Wardli B20 :: Vicente Cortes :: University of Hamburg
Hitchin and hypo flows constitute a system of first order pdes for the construction of
Ricciflat Riemannian mertrics of special holonomy in dimensions 6, 7 and 8.
Assuming that the initial geometric structure is leftinvariant, we study whether the resulting Ricciflat manifolds can be extended in a natural way to complete Ricciflat manifolds. This talk is based on joint work with Florin Belgun, Marco Freibert and Oliver Goertsches, see arXiv:1405.1866 (math.DG). 

Tannaka duality for stacks 12:10 Fri 6 Mar, 2015 :: Ingkarni Wardli B20 :: Jack Hall :: Australian National University
Traditionally, Tannaka duality is used to reconstruct a
group from its representations. I will describe a reformulation of
this duality for stacks, which is due to Lurie, and briefly touch on
some applications. 

On the analyticity of CRdiffeomorphisms 12:10 Fri 13 Mar, 2015 :: Engineering North N132 :: Ilya Kossivskiy :: University of Vienna
One of the fundamental objects in several complex variables is CRmappings. CRmappings naturally occur in complex analysis as boundary values of mappings between domains, and as restrictions of holomorphic mappings onto real submanifolds. It was already observed by Cartan that smooth CRdiffeomorphisms between CRsubmanifolds in C^N tend to be very regular, i.e., they are restrictions of holomorphic maps. However, in general smooth CRmappings form a more restrictive class of mappings. Thus, since the inception of CRgeometry, the following general question has been of fundamental importance for the field: Are CRequivalent realanalytic CRstructures also equivalent holomorphically? In joint work with Lamel, we answer this question in the negative, in any positive CRdimension and CRcodimension. Our construction is based on a recent dynamical technique in CRgeometry, developed in my earlier work with Shafikov. 

Singular Pfaffian systems in dimension 6 12:10 Fri 20 Mar, 2015 :: Napier 144 :: Pawel Nurowski :: Center for Theoretical Physics, Polish Academy of Sciences
We consider a pair of rank 3 distributions in dimension 6 with some remarkable properties.
They define an analog of the celebrated nearlyKahler structure on the 6 sphere, with the exceptional simple Lie group G2 as a group of symmetries. In our case the metric associated with the structure is pseudoRiemannian, of split signature. The 6 manifold has a 5dimensional boundary with interesting induced geometry. This structure on the boundary has no analog in the Riemannian case.


Symmetric groups via categorical representation theory 15:10 Fri 20 Mar, 2015 :: Engineering North N132 :: Dr Oded Yacobi :: University of Sydney
The symmetric groups play a fundamental role in representation theory and, while their characteristic zero representations are well understood, over fields of positive characteristic most foundational questions are still unanswered. In the 1990's Kleshchev made a spectacular breakthrough, and computed certain modular restriction multiplicities. It was observed by Lascoux, Leclerc, and Thibon that Kleshchev's numerology encodes a seemingly unrelated object: the crystal graph associated to an affine Lie algebra! We will explain how this mysterious connection opens the door to categorical representation theory, and, moreover, how the categorical perspective allows one to prove new theorems about representations of symmetric groups. We will also discuss other problems/applications in the landscape of categorical representation theory. 

Topological matter and its Ktheory 11:10 Thu 2 Apr, 2015 :: Ingkarni Wardli B18 :: Guo Chuan Thiang :: University of Adelaide
The notion of fundamental particles, as well as phases of condensed matter, evolves as new mathematical tools become available to the physicist. I will explain how Ktheory provides a powerful language for describing quantum mechanical symmetries, homotopies of their realisations, and topological insulators. Real Ktheory is crucial in this framework, and its rich structure is still being explored both physically and mathematically. 

Higher rank discrete Nahm equations for SU(N) monopoles in hyperbolic space 11:10 Wed 8 Apr, 2015 :: Engineering & Maths EM213 :: Joseph Chan :: University of Melbourne
Braam and Austin in 1990, proved that SU(2) magnetic monopoles in hyperbolic space H^3 are the same as solutions of the discrete Nahm equations. I apply equivariant Ktheory to the ADHM construction of instantons/holomorphic bundles to extend the BraamAustin result from SU(2) to SU(N). During its evolution, the matrices of the higher rank discrete Nahm equations jump in dimensions and this behaviour has not been observed in discrete evolution equations before. A secondary result is that the monopole field at the boundary of H^3 determines the monopole. 

Groups acting on trees 12:10 Fri 10 Apr, 2015 :: Napier 144 :: Anitha Thillaisundaram :: Heinrich Heine University of Duesseldorf
From a geometric point of view, branch groups are groups acting
spherically transitively on a spherically homogeneous rooted tree. The
applications of branch groups reach out to analysis, geometry,
combinatorics, and probability. The early construction of branch groups
were the Grigorchuk group and the GuptaSidki pgroups. Among its many
claims to fame, the Grigorchuk group was the first example of a group of
intermediate growth (i.e. neither polynomial nor exponential). Here we
consider a generalisation of the family of GrigorchukGuptaSidki groups,
and we examine the restricted occurrence of their maximal subgroups. 

IGA Workshop on Symmetries and Spinors: Interactions Between Geometry and Physics 09:30 Mon 13 Apr, 2015 :: Conference Room 7.15 on Level 7 of the Ingkarni Wardli building :: J. FigueroaO'Farrill (University of Edinburgh), M. Zabzine (Uppsala University), et al
Media...The interplay between physics and geometry has lead to stunning advances and enriched the internal structure of each field. This is vividly exemplified in the theory of supergravity, which is a supersymmetric extension of Einstein's relativity theory to the small scales governed by the laws of quantum physics. Sophisticated mathematics is being employed for finding solutions to the generalised Einstein equations and in return, they provide a rich source for new exotic geometries. This workshop brings together worldleading scientists from both, geometry and mathematical physics, as well as young researchers and students, to meet and learn about each others work. 

Group Meeting 15:10 Fri 24 Apr, 2015 :: N218 Engineering North :: Dr Ben Binder :: University of Adelaide
Talk (Dr Ben Binder): How do we quantify the filamentous growth in a yeast colony?
Abstract: In this talk we will develop a systematic method to measure the spatial patterning of yeast colony morphology. The methods are applicable to other physical systems with circular spatial domains, for example, batch mixing fluid devices. A hybrid modelling approach of the yeast growth process will also be discussed.
After the seminar, Ben will start a group discussion by sharing some information and experiences on attracting honours/PhD students to the group. 

Spherical Tduality: the nonprincipal case 12:10 Fri 1 May, 2015 :: Napier 144 :: Mathai Varghese :: University of Adelaide
Spherical Tduality is related to Mtheory and was introduced in recent joint work with Bouwknegt and Evslin. I will begin by briefly reviewing the case of principal SU(2)bundles with degree 7 flux, and then focus on the nonprincipal case for most of the talk, ending with the relation to SUGRA/Mtheory. 

Indefinite spectral triples and foliations of spacetime 12:10 Fri 8 May, 2015 :: Napier 144 :: Koen van den Dungen :: Australian National University
Motivated by Dirac operators on Lorentzian manifolds, we propose a new framework to deal with nonsymmetric and nonelliptic operators in noncommutative geometry. We provide a definition for indefinite spectral triples, which correspond bijectively with certain pairs of spectral triples.
Next, we will show how a special case of indefinite spectral triples can be constructed from a family of spectral triples. In particular, this construction provides a convenient setting to study the Dirac operator on a spacetime with a foliation by spacelike hypersurfaces.
This talk is based on joint work with Adam Rennie (arXiv:1503.06916). 

The twistor equation on Lorentzian Spin^c manifolds 12:10 Fri 15 May, 2015 :: Napier 144 :: Andree Lischewski :: University of Adelaide
In this talk I consider a conformally covariant spinor field equation, called the twistor equation, which can be formulated on any Lorentzian Spin^c manifold. Its solutions have become of importance in the study of supersymmetric field theories in recent years and were named "charged conformal Killing spinors". After a short review of conformal Spin^c geometry in Lorentzian signature, I will briefly discuss the emergence of charged conformal Killing spinors in supergravity. I will then focus on special geometric structures related to the twistor equation and use charged conformal Killing spinors in order to establish a link between conformal and CR geometry. 

Big things are weird 12:10 Mon 25 May, 2015 :: Napier LG29 :: Luke KeatingHughes :: University of Adelaide
Media...The pyramids of Giza, the depths of the Mariana trench, the massive Einstein Cross Quasar; all of these things are big and weird. Big weird things aren't just apparent in the physical world though, they appear in mathematics too! In this talk I will try to motivate a mathematical big thing and then show that it is weird.
In particular, we will introduce the necessary topology and homotopy theory in order to show that although all finite dimensional spheres are (almost canonically) noncontractible spaces  an infinite dimensional sphere IS contractible! This result's significance will then be explained in the context of Kuiper's Theorem if time permits. 

Monodromy of the Hitchin system and components of representation varieties 12:10 Fri 29 May, 2015 :: Napier 144 :: David Baraglia :: University of Adelaide
Representations of the fundamental group of a compact Riemann surface into a reductive Lie group form a moduli space, called a representation variety. An outstanding problem in topology is to determine the number of components of these varieties. Through a deep result known as nonabelian Hodge theory, representation varieties are homeomorphic to moduli spaces of certain holomorphic objects called Higgs bundles. In this talk I will describe recent joint work with L. Schaposnik computing the monodromy of the Hitchin fibration for Higgs bundle moduli spaces. Our results give a new unified proof of the number of components of several representation varieties. 

Group Meeting 15:10 Fri 29 May, 2015 :: EM 213 :: Dr Judy Bunder :: University of Adelaide
Talk : Patch dynamics for efficient exascale simulations
Abstract
Massive parallelisation has lead to a dramatic increase in available computational power.
However, data transfer speeds have failed to keep pace and are the major limiting factor in the development of exascale computing. New algorithms must be developed which minimise the transfer of data. Patch dynamics is a computational macroscale modelling scheme which provides a coarse macroscale solution of a problem defined on a fine microscale by dividing the domain into many nonoverlapping, coupled patches. Patch dynamics is readily adaptable to massive parallelisation as each processor core can evaluate the dynamics on one, or a few, patches. However, patch coupling conditions interpolate across the unevaluated parts of the domain between patches and require almost continuous data transfer. We propose a modified patch dynamics scheme which minimises data transfer by only reevaluating the patch coupling conditions at `mesoscale' time scales which are significantly larger than the microscale time of the microscale problem. We analyse and quantify the error arising from patch dynamics with mesoscale temporal coupling. 

Instantons and Geometric Representation Theory 12:10 Thu 23 Jul, 2015 :: Engineering and Maths EM212 :: Professor Richard Szabo :: HeriotWatt University
We give an overview of the various approaches to studying
supersymmetric quiver gauge theories on ALE spaces, and their conjectural
connections to twodimensional conformal field theory via AGTtype
dualities. From a mathematical perspective, this is formulated as a
relationship between the equivariant cohomology of certain moduli spaces
of sheaves on stacks and the representation theory of infinitedimensional
Lie algebras. We introduce an orbifold compactification of the minimal
resolution of the Atype toric singularity in four dimensions, and then
construct a moduli space of framed sheaves which is conjecturally
isomorphic to a Nakajima quiver variety. We apply this construction to
derive relations between the equivariant cohomology of these moduli spaces
and the representation theory of the affine Lie algebra of type A.


Dirac operators and Hamiltonian loop group action 12:10 Fri 24 Jul, 2015 :: Engineering and Maths EM212 :: Yanli Song :: University of Toronto
A definition to the geometric quantization for compact Hamiltonian Gspaces is given by Bott, defined as the index of the SpincDirac operator on the manifold. In this talk, I will explain how to generalize this idea to the Hamiltonian LGspaces. Instead of quantizing infinitedimensional manifolds directly, we use its equivalent finitedimensional model, the quasiHamiltonian Gspaces. By constructing twisted spinor bundle and twisted prequantum bundle on the quasiHamiltonian Gspace, we define a Dirac operator whose index are given by positive energy representation of loop groups. A key role in the construction will be played by the algebraic cubic Dirac operator for loop algebra. If time permitted, I will also explain how to prove the quantization commutes with reduction theorem for Hamiltonian LGspaces under this framework. 

Workshop on Geometric Quantisation 10:10 Mon 27 Jul, 2015 :: Level 7 conference room Ingkarni Wardli :: Michele Vergne, Weiping Zhang, Eckhard Meinrenken, Nigel Higson and many others
Media...Geometric quantisation has been an increasingly active area since before the 1980s, with links to physics, symplectic geometry, representation theory, index theory, and differential geometry and geometric analysis in general. In addition to its relevance as a field on its own, it acts as a focal point for the interaction between all of these areas, which has yielded farreaching and powerful results. This workshop features a large number of international speakers, who are all wellknown for their work in (differential) geometry, representation theory and/or geometric analysis. This is a great opportunity for anyone interested in these areas to meet and learn from some of the top mathematicians in the world. Students are especially welcome. Registration is free. 

Quantising proper actions on Spinc manifolds 11:00 Fri 31 Jul, 2015 :: Ingkarni Wardli Level 7 Room 7.15 :: Peter Hochs :: The University of Adelaide
Media...For a proper action by a Lie group on a Spinc manifold (both of which may be noncompact), we study an index of deformations of the Spinc Dirac operator, acting on the space of spinors invariant under the group action. When applied to spinors that are square integrable transversally to orbits in a suitable sense, the kernel of this operator turns out to be finitedimensional, under certain hypotheses of the deformation. This also allows one to show that the index has the quantisation commutes with reduction property (as proved by Meinrenken in the compact symplectic case, and by ParadanVergne in the compact Spinc case), for sufficiently large powers of the determinant line bundle. Furthermore, this result extends to Spinc Dirac operators twisted by vector bundles. A key ingredient of the arguments is the use of a family of inner products on the Lie algebra, depending on a point in the manifold. This is joint work with Mathai Varghese. 

Dynamics on Networks: The role of local dynamics and global networks on hypersynchronous neural activity 15:10 Fri 31 Jul, 2015 :: Ingkarni Wardli B21 :: Prof John Terry :: University of Exeter, UK
Media...Graph theory has evolved into a useful tool for studying complex brain networks inferred from a variety of measures of neural activity, including fMRI, DTI, MEG and EEG. In the study of neurological disorders, recent work has discovered differences in the structure of graphs inferred from patient and control cohorts. However, most of these studies pursue a purely observational approach; identifying correlations between properties of graphs and the cohort which they describe, without consideration of the underlying mechanisms. To move beyond this necessitates the development of mathematical modelling approaches to appropriately interpret network interactions and the alterations in brain dynamics they permit.
In the talk we introduce some of these concepts with application to epilepsy, introducing a dynamic network approach to study resting state EEG recordings from a cohort of 35 people with epilepsy and 40 adult controls. Using this framework we demonstrate a strongly significant difference between networks inferred from the background activity of people with epilepsy in comparison to normal controls. Our findings demonstrate that a mathematical model based analysis of routine clinical EEG provides significant additional information beyond standard clinical interpretation, which may ultimately enable a more appropriate mechanistic stratification of people with epilepsy leading to improved diagnostics and therapeutics. 

Gromov's method of convex integration and applications to minimal surfaces 12:10 Fri 7 Aug, 2015 :: Ingkarni Wardli B17 :: Finnur Larusson :: The University of Adelaide
Media...We start by considering an applied problem. You are interested in buying a used car. The price is tempting, but the car has a curious defect, so it is not clear whether you can even take it for a test drive. This problem illustrates the key idea of Gromov's method of convex integration. We introduce the method and some of its many applications, including new applications in the theory of minimal surfaces, and end with a sketch of ongoing joint work with Franc Forstneric. 

Equivariant bundle gerbes 12:10 Fri 21 Aug, 2015 :: Ingkarni Wardli B17 :: Michael Murray :: The University of Adelaide
Media...I will present the definitions of strong and weak group actions on a bundle gerbe and calculate the strongly equivariant
class of the basic bundle gerbe on a unitary group. This is joint work with David Roberts, Danny Stevenson and
Raymond Vozzo and forms part of arXiv:1506.07931. 

Vanishing lattices and moduli spaces 12:10 Fri 28 Aug, 2015 :: Ingkarni Wardli B17 :: David Baraglia :: The University of Adelaide
Media...Vanishing lattices are symplectic analogues of root systems. As with roots systems, they admit a classification in terms of certain Dynkin diagrams (not the usual ones from Lie theory). In this talk I will discuss this classification and if there is time I will outline my work (in progress) showing that the monodromy of the SL(n,C) Hitchin fibration is essentially a vanishing lattice. 

Integrability conditions for the Grushin operators 12:10 Fri 4 Sep, 2015 :: Ingkarni Wardli B17 :: Michael Eastwood :: The University of Adelaide
Fix a nonnegative integer k and consider the vector fields in the plane X=d/dx and Y=x^kd/dy. A smooth function f(x,y) is locally constant if and only if it is annihilated by the k^th Grushin operator f\mapsto(Xf,Yf). What about the range of this operator?


Tduality and bulkboundary correspondence 12:10 Fri 11 Sep, 2015 :: Ingkarni Wardli B17 :: Guo Chuan Thiang :: The University of Adelaide
Media...Bulkboundary correspondences in physics can be modelled as topological boundary homomorphisms in Ktheory, associated to an extension of a "bulk algebra" by a "boundary algebra". In joint work with V. Mathai, such bulkboundary maps are shown to Tdualize into simple restriction maps in a large number of cases, generalizing what the Fourier transform does for ordinary functions. I will give examples, involving both complex and real Ktheory, and explain how these results may be used to study topological phases of matter and Dbrane charges in string theory. 

Base change and Ktheory 12:10 Fri 18 Sep, 2015 :: Ingkarni Wardli B17 :: Hang Wang :: The University of Adelaide
Media...Tempered representations of an algebraic group can be classified by Ktheory of the corresponding group C^*algebra. We use Archimedean base change between Langlands parameters of real and complex algebraic groups to compare Ktheory of the corresponding C^*algebras of groups over different number fields. This is work in progress with K.F. Chao.


Queues and cooperative games 15:00 Fri 18 Sep, 2015 :: Ingkarni Wardli B21 :: Moshe Haviv :: Department of Statistics and the Federmann Center for the Study of Rationality, The Hebrew Universit
Media...The area of cooperative game theory deals with models in which a number of individuals, called players, can form coalitions so as to improve the utility of its members. In many cases, the formation of the grand coalition is a natural result of some negotiation or a bargaining procedure.
The main question then is how the players should split the gains due to their cooperation among themselves. Various solutions have been suggested among them the Shapley value, the nucleolus and the core.
Servers in a queueing system can also join forces. For example, they can exchange service capacity among themselves or serve customers who originally seek service at their peers. The overall performance improves and the question is how they should split the gains, or,
equivalently, how much each one of them needs to pay or be paid in order to cooperate with the others. Our major focus is in the core of the resulting cooperative game and in showing that in many queueing games the core is not empty.
Finally, customers who are served by the same server can also be looked at as players who form a grand coalition, now inflicting damage on each other in the form of additional waiting time. We show how cooperative game theory, specifically the AumannShapley prices, leads to a way in which this damage can be attributed to individual customers or groups of customers. 

Analytic complexity of bivariate holomorphic functions and cluster trees 12:10 Fri 2 Oct, 2015 :: Ingkarni Wardli B17 :: Timur Sadykov :: Plekhanov University, Moscow
The KolmogorovArnold theorem yields a representation of a multivariate continuous function in terms of a composition of functions which depend on at most two variables. In the analytic case, understanding the complexity of such a representation naturally leads to the notion of the analytic complexity of (a germ of) a bivariate multivalued analytic function. According to Beloshapka's local definition, the order of complexity of any univariate function is equal to zero while the nth complexity class is defined recursively to consist of functions of the form a(b(x,y)+c(x,y)), where a is a univariate analytic function and b and c belong to the (n1)th complexity class. Such a represenation is meant to be valid for suitable germs of multivalued holomorphic functions.
A randomly chosen bivariate analytic functions will most likely have infinite analytic complexity. However, for a number of important families of special functions of mathematical physics their complexity is finite and can be computed or estimated. Using this, we introduce the notion of the analytic complexity of a binary tree, in particular, a cluster tree, and investigate its properties.


Real Lie Groups and Complex Flag Manifolds 12:10 Fri 9 Oct, 2015 :: Ingkarni Wardli B17 :: Joseph A. Wolf :: University of California, Berkeley
Media...Let G be a complex simple direct limit group. Let G_R be a real form of G that corresponds to an hermitian symmetric space. I'll describe the corresponding bounded symmetric domain in the context of the Borel embedding, Cayley transforms, and the BergmanShilov boundary. Let Q be a parabolic subgroup of G. In finite dimensions this means that G/Q is a complex projective variety, or equivalently has a Kaehler metric invariant under a maximal compact subgroup of G. Then I'll show just how the bounded symmetric domains describe cycle spaces for open G_R orbits on G/Q. These cycle spaces include the complex bounded symmetric domains. In finite dimensions they are tightly related to moduli spaces for compact Kaehler manifolds and to representations of semisimple Lie groups; in infinite dimensions there are more problems than answers. Finally, time permitting, I'll indicate how some of this goes over to real and to quaternionic bounded symmetric domains.


ChernSimons classes on loop spaces and diffeomorphism groups 12:10 Fri 16 Oct, 2015 :: Ingkarni Wardli B17 :: Steve Rosenberg :: Boston University
Media...Not much is known about the topology of the diffeomorphism group Diff(M) of manifolds M of dimension four and higher. We'll show that for a class of manifolds of dimension 4k+1, Diff(M) has infinite fundamental group. This is proved by translating the problem into a question about ChernSimons classes on the tangent bundle to the loop space LM. To build the CS classes, we use a family of metrics on LM associated to a Riemannian metric on M. The curvature of these metrics takes values in an algebra of pseudodifferential operators. The main technical step in the CS construction is to replace the ordinary matrix trace in finite dimensions with the Wodzicki residue, the unique trace on this algebra. The moral is that some techniques in finite dimensional Riemannian geometry can be extended to some examples in infinite dimensional geometry.


Quasiisometry classification of certain hyperbolic Coxeter groups 11:00 Fri 23 Oct, 2015 :: Ingkarni Wardli Conference Room 7.15 (Level 7) :: Anne Thomas :: University of Sydney
Media...Let Gamma be a finite simple graph with vertex set S. The associated rightangled Coxeter group W is the group with generating set S, so that s^2 = 1 for all s in S and st = ts if and only if s and t are adjacent vertices in Gamma. Moussong proved that the group W is hyperbolic in the sense of Gromov if and only if Gamma has no "empty squares". We consider the quasiisometry classification of such Coxeter groups using the local cut point structure of their visual boundaries. In particular, we find an algorithm for computing Bowditch's JSJ tree for a class of these groups, and prove that two such groups are quasiisometric if and only if their JSJ trees are the same. This is joint work with Pallavi Dani (Louisiana State University). 

Covariant model structures and simplicial localization 12:10 Fri 30 Oct, 2015 :: Ingkarni Wardli B17 :: Danny Stevenson :: The University of Adelaide
Media...This talk will describe some aspects of the theory of quasicategories, in particular the notion of left fbration and the allied covariant model structure. If B is a simplicial set, then I will describe some Quillen equivalences relating the covariant model structure on simplicial sets over B to a certain localization of simplicial presheaves on the simplex category of B. I will show how this leads to a new description of Lurie's simplicial rigidification functor as a hammock localization and describe some applications to Lurie's theory of straightening and unstraightening functors. 

Nearmotiontrapping in rings of cylinders (and why this is the worst possible wave energy device) 15:10 Fri 30 Oct, 2015 :: Ingkarni Wardli B21 :: Dr Hugh Wolgamot :: University of Western Australia
Motion trapping structures can oscillate indefinitely when floating in an ideal fluid. This talk discusses a simple structure which is predicted to have very close to perfect trapping behaviour, where the structure has been investigated numerically and (for the first time) experimentally. While endless oscillations were evidently not observed experimentally, remarkable differences between 'tuned' and 'detuned' structures were still apparent, and simple theory is sufficient to explain much of the behaviour. A connection with wave energy will be briefly explored, though the link is not fruitful! 

Locally homogeneous ppwaves 12:10 Fri 6 Nov, 2015 :: Ingkarni Wardli B17 :: Thomas Leistner :: The University of Adelaide
Media...For a certain type of Lorentzian manifolds, the socalled ppwaves, we study the conditions implied on the curvature by local homogeneity of the metric. We show that under some mild genericity assumptions, these conditions are quite strong, forcing the ppwave to be a plane wave, and yielding a classification of homogeneous ppwaves. This also leads to a generalisation of a classical
result by Jordan, Ehlers and Kundt about vacuum ppwaves in dimension 4 to arbitrary dimensions. Several examples show that our genericity assumptions are essential.
This is joint work with W. Globke.


Weak globularity in homotopy theory and higher category theory 12:10 Thu 12 Nov, 2015 :: Ingkarni Wardli B19 :: Simona Paoli :: University of Leicester
Media...Spaces and homotopy theories are fundamental objects of study of algebraic topology. One way to study these objects is to break them into smaller components with the Postnikov decomposition. To describe such decomposition purely algebraically we need higher categorical structures. We describe one approach to modelling these structures based on a new paradigm to build weak higher categories, which is the notion of weak globularity. We describe some of their connections to both homotopy theory and higher category theory. 

Use of epidemic models in optimal decision making 15:00 Thu 19 Nov, 2015 :: Ingkarni Wardli 5.57 :: Tim Kinyanjui :: School of Mathematics, The University of Manchester
Media...Epidemic models have proved useful in a number of applications in epidemiology. In this work, I will present two areas that we have used modelling to make informed decisions. Firstly, we have used an age structured mathematical model to describe the transmission of Respiratory Syncytial Virus in a developed country setting and to explore different vaccination strategies. We found that delayed infant vaccination has significant potential in reducing the number of hospitalisations in the most vulnerable group and that most of the reduction is due to indirect protection. It also suggests that marked public health benefit could be achieved through RSV vaccine delivered to age groups not seen as most at risk of severe disease. The second application is in the optimal design of studies aimed at collection of householdstratified infection data. A design decision involves making a tradeoff between the number of households to enrol and the sampling frequency. Two commonly used study designs are considered: crosssectional and cohort. The search for an optimal design uses Bayesian methods to explore the joint parameterdesign space combined with Shannon entropy of the posteriors to estimate the amount of information for each design. We found that for the crosssectional designs, the amount of information increases with the sampling intensity while the cohort design often exhibits a tradeoff between the number of households sampled and the intensity of followup. Our results broadly support the choices made in existing data collection studies. 

Group meeting 15:10 Fri 20 Nov, 2015 :: Ingkarni Wardli B17 :: Mr Jack Keeler :: University of East Anglia / University of Adelaide
Title: Stability of freesurface flow over topography
Abstract: The forced KdV equation is used as a model to analyse the wave behaviour on the free surface in response to prescribed topographic forcing. The research involves computing steady solutions using numeric and asymptotic techniques and then analysing the stability of these steady solutions in timedependent calculations. Stability is analysed by computing the eigenvalue spectra of the linearised fKdV operator and by exploiting the Hamiltonian structure of the fKdV. Future work includes analysing the solution space for a corrugated topography and investigating the 3 dimensional problem using the KP equation.
+ Any items for group discussion 

Group meeting 15:10 Fri 20 Nov, 2015 :: Ingkarni Wardli B17 :: Mr Jack Keeler :: University of East Anglia / University of Adelaide
Title: Stability of freesurface flow over topography
Abstract: The forced KdV equation is used as a model to analyse the wave behaviour on the free surface in response to prescribed topographic forcing. The research involves computing steady solutions using numeric and asymptotic techniques and then analysing the stability of these steady solutions in timedependent calculations. Stability is analysed by computing the eigenvalue spectra of the linearised fKdV operator and by exploiting the Hamiltonian structure of the fKdV. Future work includes analysing the solution space for a corrugated topography and investigating the 3 dimensional problem using the KP equation.
+ Any items for group discussion 

Oka principles and the linearization problem 12:10 Fri 8 Jan, 2016 :: Engineering North N132 :: Gerald Schwarz :: Brandeis University
Media...Let G be a reductive complex Lie group (e.g., SL(n,C)) and let X and Y be Stein manifolds (closed complex submanifolds of some C^n). Suppose that G acts freely on X and Y. Then there are quotient Stein manifolds X/G and Y/G and quotient mappings p_X:X> X/G and p_Y: Y> Y/G such that X and Y are principal Gbundles over X/G and Y/G. Let us suppose that Q=X/G ~= Y/G so that X and Y have the same quotient Q. A map Phi: X\to Y of principal bundles (over Q) is simply an equivariant continuous map commuting with the projections. That is, Phi(gx)=g Phi(x) for all g in G and x in X, and p_X=p_Y o Phi. The famous Oka Principle of Grauert says that any Phi as above embeds in a continuous family Phi_t: X > Y, t in [0,1], where Phi_0=Phi, all the Phi_t satisfy the same conditions as Phi does and Phi_1 is holomorphic.
This is rather amazing.
We consider the case where G does not necessarily act freely on X and Y. There is still a notion of quotient and quotient mappings p_X: X> X//G and p_Y: Y> Y//G where X//G and Y//G are now Stein spaces and parameterize the closed Gorbits in X and Y. We assume that Q~= X//G~= Y//G and that we have a continuous equivariant Phi such that p_X=p_Y o Phi. We find conditions under which Phi embeds into a continuous family Phi_t such that Phi_1 is holomorphic.
We give an application to the Linearization Problem. Let G act holomorphically on C^n. When is there a biholomorphic map Phi:C^n > C^n such that Phi^{1} o g o Phi in GL(n,C) for all g in G? We find a condition which is necessary and sufficient for "most" Gactions.
This is joint work with F. Kutzschebauch and F. Larusson.


A fibered density property and the automorphism group of the spectral ball 12:10 Fri 15 Jan, 2016 :: Engineering North N132 :: Frank Kutzschebauch :: University of Bern
Media...The spectral ball is defined as the set of complex n by n matrices whose eigenvalues are all less than 1 in absolute value. Its group of holomorphic automorphisms has been studied over many decades in several papers and a precise conjecture about its structure has been formulated. In dimension 2 this conjecture was recently disproved by Kosinski. We not only disprove the conjecture in all dimensions but also give the best possible description of the automorphism group.
Namely we explain how the invariant theoretic quotient map divides the automorphism group of the spectral ball into a finite dimensional part of symmetries which lift from the quotient and an infinite dimensional part which leaves the fibration invariant. We prove a precise statement as to how hopelessly huge this latter part is. This is joint work with R. Andrist. 

A fixed point theorem on noncompact manifolds 12:10 Fri 12 Feb, 2016 :: Ingkarni Wardli B21 :: Peter Hochs :: University of Adelaide / Radboud University
Media...For an elliptic operator on a compact manifold acted on by a compact Lie group, the AtiyahSegalSinger fixed point formula expresses its equivariant index in terms of data on fixed point sets of group elements. This can for example be used to prove Weylâs character formula. We extend the definition of the equivariant index to noncompact manifolds, and prove a generalisation of the AtiyahSegalSinger formula, for group elements with compact fixed point sets. In one example, this leads to a relation with characters of discrete series representations of semisimple Lie groups. (This is joint work with Hang Wang.) 

The parametric hprinciple for minimal surfaces in R^n and null curves in C^n 12:10 Fri 11 Mar, 2016 :: Ingkarni Wardli B17 :: Finnur Larusson :: University of Adelaide
Media... I will describe new joint work with Franc Forstneric (arXiv:1602.01529). This work brings together four diverse topics from differential geometry, holomorphic geometry, and topology; namely the theory of minimal surfaces, Oka theory, convex integration theory, and the theory of absolute neighborhood retracts. Our goal is to determine the rough shape of several infinitedimensional spaces of maps of geometric interest. It turns out that they all have the same rough shape. 

Group meeting 15:10 Fri 11 Mar, 2016 :: TBA
TBA
+ Any items for group discussion 

Expanding maps 12:10 Fri 18 Mar, 2016 :: Eng & Maths EM205 :: Andy Hammerlindl :: Monash University
Media...Consider a function from the circle to itself such that the derivative is
greater than one at every point. Examples are maps of the form f(x) = mx for
integers m > 1. In some sense, these are the only possible examples. This
fact and the corresponding question for maps on higher dimensional manifolds
was a major motivation for Gromov to develop pioneering results in the field
of geometric group theory.
In this talk, I'll give an overview of this and other results relating
dynamical systems to the geometry of the manifolds on which they act and
(time permitting) talk about my own work in the area.


How predictable are you? Information and happiness in social media. 12:10 Mon 21 Mar, 2016 :: Ingkarni Wardli Conference Room 715 :: Dr Lewis Mitchell :: School of Mathematical Sciences
Media...The explosion of ``Big Data'' coming from online social networks and the like has opened up the new field of ``computational social science'', which applies a quantitative lens to problems traditionally in the domain of psychologists, anthropologists and social scientists. What does it mean to be influential? How do ideas propagate amongst populations? Is happiness contagious? For the first time, mathematicians, statisticians, and computer scientists can provide insight into these and other questions. Using data from social networks such as Facebook and Twitter, I will give an overview of recent research trends in computational social science, describe some of my own work using techniques like sentiment analysis and information theory in this realm, and explain how you can get involved with this highly rewarding research field as well.


Counting periodic points of plane Cremona maps 12:10 Fri 1 Apr, 2016 :: Eng & Maths EM205 :: Tuyen Truong :: University of Adelaide
Media...In this talk, I will present recent results, join with TienCuong Dinh and VietAnh Nguyen, on counting periodic points of plane Cremona maps (i.e. birational maps of P^2). The tools used include a Lefschetz fixed point formula of Saito, Iwasaki and Uehara for birational maps of surface whose fixed point set may contain curves; a bound on the arithmetic genus of curves of periodic points by Diller, Jackson and Sommerse; a result by Diller, Dujardin and Guedj on invariant (1,1) currents of meromorphic maps of compact Kahler surfaces; and a theory developed recently by Dinh and Sibony for non proper intersections of varieties. Among new results in the paper, we give a complete characterisation of when two positive closed (1,1) currents on a compact Kahler surface behave nicely in the view of Dinh and SibonyÃÂ¢ÃÂÃÂs theory, even if their wedge intersection may not be welldefined with respect to the classical pluripotential theory. Time allows, I will present some generalisations to meromorphic maps (including an upper bound for the number of isolated periodic points which is sometimes overlooked in the literature) and open questions. 

Geometric analysis of gaplabelling 12:10 Fri 8 Apr, 2016 :: Eng & Maths EM205 :: Mathai Varghese :: University of Adelaide
Media...Using an earlier result, joint with Quillen, I will formulate a gap labelling conjecture for magnetic Schrodinger operators with smooth aperiodic potentials on Euclidean space. Results in low dimensions will be given, and the formulation of the same problem for certain nonEuclidean spaces will be given if time permits.
This is ongoing joint work with Moulay Benameur.


Hot tube tau machine 15:10 Fri 15 Apr, 2016 :: B17 Ingkarni Wardli :: Dr Hayden Tronnolone :: University of Adelaide
Abstract: Microstructured optical fibres may be fabricated by first extruding molten material from a die to produce a macroscopic version of the final design, call a preform, and then stretching this to produce a fibre. In this talk I will demonstrate how to couple an existing model of the fluid flow during the extrusion stage to a basic model of the fluid temperature and present some preliminary conclusions. This work is still in progress and is being carried out in collaboration with Yvonne Stokes, Michael Chen and Jonathan Wylie.
(+ Any items for group discussion) 

Sard Theorem for the endpoint map in subRiemannian manifolds 12:10 Fri 29 Apr, 2016 :: Eng & Maths EM205 :: Alessandro Ottazzi :: University of New South Wales
Media...SubRiemannian geometries occur in several areas of pure and applied mathematics, including harmonic analysis, PDEs, control theory, metric geometry, geometric group theory, and neurobiology. We introduce subRiemannian manifolds and give some examples. Therefore we discuss some of the open problems, and in particular we focus on the Sard Theorem for the endpoint map, which is related to the study of length minimizers. Finally, we consider some recent results obtained in collaboration with E. Le Donne, R. Montgomery, P. Pansu and D. Vittone. 

How to count Betti numbers 12:10 Fri 6 May, 2016 :: Eng & Maths EM205 :: David Baraglia :: University of Adelaide
Media...I will begin this talk by showing how to obtain the Betti numbers of certain smooth complex projective varieties by counting points over a finite field. For singular or noncompact varieties this motivates us to consider the "virtual Hodge numbers" encoded by the "HodgeDeligne polynomial", a refinement of the topological Euler characteristic. I will then discuss the computation of HodgeDeligne polynomials for certain singular character varieties (i.e. moduli spaces of flat connections). 

Harmonic analysis of HodgeDirac operators 12:10 Fri 13 May, 2016 :: Eng & Maths EM205 :: Pierre Portal :: Australian National University
Media...When the metric on a Riemannian manifold is perturbed in a rough (merely bounded and measurable) manner, do basic estimates involving the Hodge Dirac operator $D = d+d^*$ remain valid? Even in the model case of a perturbation of the euclidean metric on $\mathbb{R}^n$, this is a difficult question. For instance, the fact that the $L^2$ estimate $\Du\_2 \sim \\sqrt{D^{2}}u\_2$ remains valid for perturbed versions of $D$ was a famous conjecture made by Kato in 1961 and solved, positively, in a ground breaking paper of Auscher, Hofmann, Lacey, McIntosh and Tchamitchian in 2002. In the past fifteen years, a theory has emerged from the solution of this conjecture, making rough perturbation problems much more tractable. In this talk, I will give a general introduction to this theory, and present one of its latest results: a flexible approach to $L^p$ estimates for the holomorphic functional calculus of $D$. This is joint work with D. Frey (Delft) and A. McIntosh (ANU).


Harmonic Analysis in Rough Contexts 15:10 Fri 13 May, 2016 :: Engineering South S112 :: Dr Pierre Portal :: Australian National University
Media...In recent years, perspectives on what constitutes the ``natural" framework within which to conduct various forms of mathematical analysis have shifted substantially. The common theme of these shifts can be described as a move towards roughness, i.e. the elimination of smoothness assumptions that had previously been considered fundamental. Examples include partial differential equations on domains with a boundary that is merely Lipschitz continuous, geometric analysis on metric measure spaces that do not have a smooth structure, and stochastic analysis of dynamical systems that have nowhere differentiable trajectories.
In this talk, aimed at a general mathematical audience, I describe some of these shifts towards roughness, placing an emphasis on harmonic analysis, and on my own contributions. This includes the development of heat kernel methods in situations where such a kernel is merely a distribution, and applications to deterministic and stochastic partial differential equations. 

Smooth mapping orbifolds 12:10 Fri 20 May, 2016 :: Eng & Maths EM205 :: David Roberts :: University of Adelaide
It is wellknown that orbifolds can be represented by a special kind of Lie groupoid, namely those that are Ã©tale and proper. Lie groupoids themselves are one way of presenting certain nice differentiable stacks.
In joint work with Ray Vozzo we have constructed a presentation of the mapping stack Hom(disc(M),X), for M a compact manifold and X a differentiable stack, by a FrÃ©chetLie groupoid. This uses an apparently new result in global analysis about the map C^\infty(K_1,Y) \to C^\infty(K_2,Y) induced by restriction along the inclusion K_2 \to K_1, for certain compact K_1,K_2. We apply this to the case of X being an orbifold to show that the mapping stack is an infinitedimensional orbifold groupoid. We also present results about mapping groupoids for bundle gerbes. 

Behavioural Microsimulation Approach to Social Policy and Behavioural Economics 15:10 Fri 20 May, 2016 :: S112 Engineering South :: Dr Drew Mellor :: Ernst & Young
SIMULAIT is a general purpose, behavioural microsimulation system designed to predict behavioural trends in human populations. This type of predictive capability grew out of original research initially conducted in conjunction with the Defence Science and Technology Group (DSTO) in South Australia, and has been fully commercialised and is in current use by a global customer base. To our customers, the principal value of the system lies in its ability to predict likely outcomes to scenarios that challenge conventional approaches based on extrapolation or generalisation. These types of scenarios include: the impact of disruptive technologies, such as the impact of widespread adoption of autonomous vehicles for transportation or batteries for household energy storage; and the impact of effecting policy elements or interventions, such as the impact of imposing water usage restrictions.
SIMULAIT employs a multidisciplinary methodology, drawing from agentbased modelling, behavioural science and psychology, microeconomics, artificial intelligence, simulation, game theory, engineering, mathematics and statistics. In this seminar, we start with a highlevel view of the system followed by a look under the hood to see how the various elements come together to answer questions about behavioural trends. The talk will conclude with a case study of a recent application of SIMULAIT to a significant policy problem  how to address the deficiency of STEM skilled teachers in the Victorian teaching workforce. 

Time series analysis of paleoclimate proxies (a mathematical perspective) 15:10 Fri 27 May, 2016 :: Engineering South S112 :: Dr Thomas Stemler :: University of Western Australia
Media...In this talk I will present the work my colleagues from the School of
Earth and Environment (UWA), the "trans disciplinary methods" group of
the Potsdam Institute for Climate Impact Research, Germany, and I did to
explain the dynamics of the AustralianSouth East Asian monsoon system
during the last couple of thousand years.
From a time series perspective paleoclimate proxy series are more or
less the monsters moving under your bed that wake you up in the middle
of the night. The data is clearly nonstationary, nonuniform sampled in
time and the influence of stochastic forcing or the level of measurement
noise are more or less unknown. Given these undesirable properties
almost all traditional time series analysis methods fail.
I will highlight two methods that allow us to draw useful conclusions
from the data sets. The first one uses Gaussian kernel methods to
reconstruct climate networks from multiple proxies. The coupling
relationships in these networks change over time and therefore can be
used to infer which areas of the monsoon system dominate the complex
dynamics of the whole system. Secondly I will introduce the
transformation cost time series method, which allows us to detect
changes in the dynamics of a nonuniform sampled time series. Unlike the
frequently used interpolation approach, our new method does not corrupt
the data and therefore avoids biases in any subsequence analysis. While
I will again focus on paleoclimate proxies, the method can be used in
other applied areas, where regular sampling is not possible.


On the Strong Novikov Conjecture for Locally Compact Groups in Low Degree Cohomology Classes 12:10 Fri 3 Jun, 2016 :: Eng & Maths EM205 :: Yoshiyasu Fukumoto :: Kyoto University
Media...The main result I will discuss is nonvanishing of the image of the index map from the Gequivariant Khomology of a Gmanifold X to the Ktheory of the C*algebra of the group G. The action of G on X is assumed to be proper and cocompact. Under the assumption that the Kronecker pairing of a Khomology class with a lowdimensional cohomology class is nonzero, we prove that the image of this class under the index map is nonzero. Neither discreteness of the locally compact group G nor freeness of the action of G on X are required. The case of free actions of discrete groups was considered earlier by B. Hanke and T. Schick.


Algebraic structures associated to Brownian motion on Lie groups 13:10 Thu 16 Jun, 2016 :: Ingkarni Wardli B17 :: Steve Rosenberg :: University of Adelaide / Boston University
Media...In (1+1)d TQFT, products and coproducts are associated to pairs of pants decompositions of Riemann surfaces. We consider a toy model in dimension (0+1) consisting of specific broken paths in a Lie group. The products and coproducts are constructed by a Brownian motion average of holonomy along these paths with respect to a connection on an auxiliary bundle. In the trivial case over the torus, we (seem to) recover the Hopf algebra structure on the symmetric algebra. In the general case, we (seem to) get deformations of this Hopf algebra. This is a preliminary report on joint work with Michael Murray and Raymond Vozzo. 

Multiscale modeling in biofluids and particle aggregation 15:10 Fri 17 Jun, 2016 :: B17 Ingkarni Wardli :: Dr Sarthok Sircar :: University of Adelaide
In today's seminar I will give 2 examples in mathematical biology which describes the multiscale organization at 2 levels: the meso/micro level and the continuum/macro level. I will then detail suitable tools in statistical mechanics to link these different scales.
The first problem arises in mathematical physiology: swellingdeswelling mechanism of mucus, an ionic gel. Mucus is packaged inside cells at high concentration (volume fraction) and when released into the extracellular environment, it expands in volume by two orders of magnitude in a matter of seconds. This rapid expansion is due to the rapid exchange of calcium and sodium that changes the crosslinked structure of the mucus polymers, thereby causing it to swell. Modeling this problem involves a twophase, polymer/solvent mixture theory (in the continuum level description), together with the chemistry of the polymer, its nearest neighbor interaction and its binding with the dissolved ionic species (in the microscale description). The problem is posed as a freeboundary problem, with the boundary conditions derived from a combination of variational principle and perturbation analysis. The dynamics of neutral gels and the equilibriumstates of the ionic gels are analyzed.
In the second example, we numerically study the adhesion fragmentation dynamics of rigid, round particles clusters subject to a homogeneous shear flow. In the macro level we describe the dynamics of the number density of these cluster. The description in the microscale includes (a) binding/unbinding of the bonds attached on the particle surface, (b) bond torsion, (c) surface potential due to ionic medium, and (d) flow hydrodynamics due to shear flow. 

ChernSimons invariants of Seifert manifolds via Loop spaces 14:10 Tue 28 Jun, 2016 :: Ingkarni Wardli B17 :: Ryan Mickler :: Northeastern University
Over the past 30 years the ChernSimons functional for connections on Gbundles over threemanfolds has lead to a deep understanding of the geometry of threemanfiolds, as well as knot invariants such as the Jones polynomial. Here we study this functional for threemanfolds that are topologically given as the total space of a principal circle bundle over a compact Riemann surface base, which are known as Seifert manifolds. We show that on such manifolds the ChernSimons functional reduces to a particular gaugetheoretic functional on the 2d base, that describes a gauge theory of connections on an infinite dimensional bundle over this base with structure group given by the levelk affine central extension of the loop group LG. We show that this formulation gives a new understanding of results of BeasleyWitten on the computability of quantum ChernSimons invariants of these manifolds as well as knot invariants for knots that wrap a single fiber of the circle bundle. A central tool in our analysis is the Caloron correspondence of MurrayStevensonVozzo.


Twists over etale groupoids and twisted vector bundles 12:10 Fri 22 Jul, 2016 :: Ingkarni Wardli B18 :: Elizabeth Gillaspy :: University of Colorado, Boulder
Media...Given a twist over an etale groupoid, one can construct an associated C*algebra which carries a good deal of geometric and physical meaning; for example, the Ktheory group of this C*algebra classifies Dbrane charges in string theory. Twisted vector bundles, when they exist, give rise to particularly important elements in this Ktheory group. In this talk, we will explain how to use the classifying space of the etale groupoid to construct twisted vector bundles, under some mild hypotheses on the twist and the classifying space.
My hope is that this talk will be accessible to a broad audience; in particular, no prior familiarity with groupoids, their twists, or the associated C*algebras will be assumed. This is joint work with Carla Farsi.


Calculus on symplectic manifolds 12:10 Fri 12 Aug, 2016 :: Ingkarni Wardli B18 :: Mike Eastwood :: University of Adelaide
Media...One can use the symplectic form to construct an elliptic complex replacing the de Rham complex. Then, under suitable curvature conditions, one can form coupled versions of this complex. Finally, on complex projective space, these constructions give rise to a series of elliptic complexes with geometric consequences for the FubiniStudy metric and its Xray transform. This talk, which will start from scratch, is based on the work of many authors but, especially, current joint work with Jan Slovak. 

Product Hardy spaces associated to operators with heat kernel bounds on spaces of homogeneous type 12:10 Fri 19 Aug, 2016 :: Ingkarni Wardli B18 :: Lesley Ward :: University of South Australia
Media...Much effort has been devoted to generalizing the
Calder'onZygmund theory in harmonic analysis from Euclidean
spaces to metric measure spaces, or spaces of homogeneous type.
Here the underlying space R^n with Euclidean metric
and Lebesgue measure is replaced by a set X with general
metric or quasimetric and a doubling measure. Further, one can
replace the Laplacian operator that underpins the
CalderonZygmund theory by more general operators L
satisfying heat kernel estimates.
I will present recent joint work with P. Chen, X.T. Duong,
J. Li and L.X. Yan along these lines. We develop the theory of
product Hardy spaces H^p_{L_1,L_2}(X_1 x X_2), for 1 

Singular vector bundles and topological semimetals 12:10 Fri 2 Sep, 2016 :: Ingkarni Wardli B18 :: Guo Chuan Thiang :: University of Adelaide
Media...The elusive Weyl fermion was recently realised as quasiparticle excitations of a topological semimetal. I will explain what a semimetal is, and the precise mathematical sense in which they can be "topological", in the sense of the general theory of topological insulators. This involves understanding vector bundles with singularities, with the aid of MayerVietoris principles, gerbes, and generalised degree theory. 

Geometry of pseudodifferential algebra bundles 12:10 Fri 16 Sep, 2016 :: Ingkarni Wardli B18 :: Mathai Varghese :: University of Adelaide
Media...I will motivate the construction of pseudodifferential algebra bundles arising in index theory, and also outline the construction of general pseudodifferential algebra bundles (and the associated sphere bundles), showing that there are many that are purely infinite dimensional that do not come from usual constructions in index theory. I will also discuss characteristic classes of such bundles. This is joint work with Richard Melrose. 

Symmetric functions and quantum integrability 15:10 Fri 30 Sep, 2016 :: Napier G03 :: Dr Paul ZinnJustin :: University of Melbourne/Universite Pierre et Marie Curie
Media...We'll discuss an approach to studying families of symmetric polynomials which is based on ''quantum integrability'', that is, on the use of exactly solvable twodimensional lattice models. We'll first explain the general strategy on the simplest case, namely Schur polynomials, with the introduction of a model of lattice paths (a.k.a. fivevertex model). We'll then discuss recent work (in collaboration with M. Wheeler) that extends this approach to HallLittlewood polynomials and Grothendieck polynomials, and some applications of it. 

Energy quantisation for the Willmore functional 11:10 Fri 7 Oct, 2016 :: Ligertwood 314 Flinders Room :: Yann Bernard :: Monash University
Media...We prove a bubbleneck decomposition and an energy quantisation result for sequences of Willmore surfaces immersed into R^(m>=3) with uniformly bounded energy and nondegenerating conformal structure. We deduce the strong compactness (modulo the action of the Moebius group) of closed Willmore surfaces of a given genus below some energy threshold.
This is jointwork with Tristan Riviere (ETH Zuerich).


On the Willmore energy 15:10 Fri 7 Oct, 2016 :: Napier G03 :: Dr Yann Bernard :: Monash University
Media...The Willmore energy of a surface captures its bending. Originally discovered 200 years ago by Sophie Germain in the context of elasticity theory, it has since then been rediscovered numerous times in several areas of science: general relativity, optics, string theory, conformal geometry, and cell biology. For example, our red blood cells assume a peculiar shape that minimises the Willmore energy.
In this talk, I will present the thrilling history of the Willmore energy, its applications, and its main properties. The presentation will be accessible to all mathematicians as well as to advanced undergraduate students. 

Character Formula for Discrete Series 12:10 Fri 14 Oct, 2016 :: Ingkarni Wardli B18 :: Hang Wang :: University of Adelaide
Media...Weyl character formula describes characters of irreducible representations of compact Lie groups. This formula can be obtained using geometric method, for example, from the AtiyahBott fixed point theorem or the AtiyahSegalSinger index theorem. HarishChandra character formula, the noncompact analogue of the Weyl character formula, can also be studied from the point of view of index theory. We apply orbital integrals on Ktheory of HarishChandra Schwartz algebra of a semisimple Lie group G, and then use geometric method to deduce HarishChandra character formulas for discrete series representations of G. This is work in progress with Peter Hochs.


Parahoric bundles, invariant theory and the KazhdanLusztig map 12:10 Fri 21 Oct, 2016 :: Ingkarni Wardli B18 :: David Baraglia :: University of Adelaide
Media...In this talk I will introduce the notion of parahoric groups, a loop group analogue of parabolic subgroups. I will also discuss a global version of this, namely parahoric bundles on a complex curve. This leads us to a problem concerning the behaviour of invariant polynomials on the dual of the Lie algebra, a kind of "parahoric invariant theory". The key to solving this problem turns out to be the KazhdanLusztig map, which assigns to each nilpotent orbit in a semisimple Lie algebra a conjugacy class in the Weyl group. Based on joint work with Masoud Kamgarpour and Rohith Varma. 

Leavitt path algebras 12:10 Fri 2 Dec, 2016 :: Engineering & Math EM213 :: Roozbeh Hazrat :: Western Sydney University
Media...From a directed graph one can generate an algebra which captures the movements along the graph. One such algebras are Leavitt path algebras.
Despite being introduced only 10 years ago, Leavitt path algebras have arisen in a variety of different contexts as diverse as analysis, symbolic dynamics, noncommutative geometry and representation theory. In fact, Leavitt path algebras are algebraic counterpart to graph C*algebras, a theory which has become an area of intensive research globally. There are strikingly parallel similarities between these two theories. Even more surprisingly, one cannot (yet) obtain the results in one theory as a consequence of the other; the statements look the same, however the techniques to prove them are quite different (as the names suggest, one uses Algebra and other Analysis). These all suggest that there might be a bridge between Algebra and Analysis yet to be uncovered.
In this talk, we introduce Leavitt path algebras and try to classify them by means of (graded) Grothendieck groups. We will ask nice questions!


An equivariant parametric Oka principle for bundles of homogeneous spaces 12:10 Fri 3 Mar, 2017 :: Napier 209 :: Finnur Larusson :: University of Adelaide
I will report on new joint work with Frank Kutzschebauch and Gerald Schwarz (arXiv:1612.07372). Under certain conditions, every continuous section of a holomorphic fibre bundle can be deformed to a holomorphic section. In fact, the inclusion of the space of holomorphic sections into the space of continuous sections is a weak homotopy equivalence. What if a complex Lie group acts on the bundle and its sections? We have proved an analogous result for equivariant sections. The result has a wide scope. If time permits, I will describe some interesting special cases and mention two applications. 

Diffeomorphisms of discs, harmonic spinors and positive scalar curvature 11:10 Fri 17 Mar, 2017 :: Engineering Nth N218 :: Diarmuid Crowley :: University of Melbourne
Media...Let Diff(D^k) be the space of diffeomorphisms of the kdisc fixing the boundary point wise. In this talk I will show for k > 5, that the homotopy groups \pi_*Diff(D^k) have nonzero 8periodic 2torsion detected in real Ktheory. I will then discuss applications for spin manifolds M of dimension 6 or greater: 1) Our results input to arguments of Hitchin which now show that M admits a metric with a harmonic spinor. 2) If nonempty, space of positive scalar curvature metrics on M has nonzero 8periodic 2torsion in its homotopy groups which is detected in real Ktheory. This is part of joint work with Thomas Schick and Wolfgang Steimle. 

What is index theory? 12:10 Tue 21 Mar, 2017 :: Inkgarni Wardli 5.57 :: Dr Peter Hochs :: School of Mathematical Sciences
Media...Index theory is a link between topology, geometry and analysis. A typical theorem in index theory says that two numbers are equal: an analytic index and a topological index. The first theorem of this kind was the index theorem of Atiyah and Singer, which they proved in 1963. Index theorems have many applications in maths and physics. For example, they can be used to prove that a differential equation must have a solution. Also, they imply that the topology of a space like a sphere or a torus determines in what ways it can be curved. Topology is the study of geometric properties that do not change if we stretch or compress a shape without cutting or glueing. Curvature does change when we stretch something out, so it is surprising that topology can say anything about curvature. Index theory has many surprising consequences like this.


Minimal surfaces and complex analysis 12:10 Fri 24 Mar, 2017 :: Napier 209 :: Antonio Alarcon :: University of Granada
Media...A surface in the Euclidean space R^3 is said to be minimal if it is locally areaminimizing, meaning that every point in the surface admits a compact neighborhood with the least area among all the surfaces with the same boundary. Although the origin of minimal surfaces is in physics, since they can be realized locally as soap films, this family of surfaces lies in the intersection of many fields of mathematics. In particular, complex analysis in one and several variables plays a fundamental role in the theory. In this lecture we will discuss the influence of complex analysis in the study of minimal surfaces. 

Geometric structures on moduli spaces 12:10 Fri 31 Mar, 2017 :: Napier 209 :: Nicholas Buchdahl :: University of Adelaide
Media...Moduli spaces are used to classify various kinds of objects,
often arising from solutions of certain differential equations on
manifolds; for example, the complex structures on a compact
surface or the antiselfdual YangMills equations on an oriented
smooth 4manifold. Sometimes these moduli spaces carry important
information about the underlying manifold, manifested most
clearly in the results of Donaldson and others on the topology of
smooth 4manifolds. It is also the case that these moduli spaces
themselves carry interesting geometric structures; for example,
the WeilPetersson metric on moduli spaces of compact Riemann
surfaces, exploited to great effect by Maryam Mirzakhani. In this
talk, I shall elaborate on the theme of geometric structures on
moduli spaces, with particular focus on some recentish work done
in conjunction with Georg Schumacher. 

Ktypes of tempered representations 12:10 Fri 7 Apr, 2017 :: Napier 209 :: Peter Hochs :: University of Adelaide
Media...Tempered representations of a reductive Lie group G are the irreducible unitary representations one needs in the Plancherel decomposition of L^2(G). They are relevant to harmonic analysis because of this, and also occur in the Langlands classification of the larger class of admissible representations. If K in G is a maximal compact subgroup, then there is a considerable amount of information in the restriction of a tempered representation to K. In joint work with Yanli Song and Shilin Yu, we give a geometric expression for the decomposition of such a restriction into irreducibles. The multiplicities of these irreducibles are expressed as indices of Dirac operators on reduced spaces of a coadjoint orbit of G corresponding to the representation. These reduced spaces are Spinc analogues of reduced spaces in symplectic geometry, defined in terms of moment maps that represent conserved quantities. This result involves a Spinc version of the quantisation commutes with reduction principle for noncompact manifolds. For discrete series representations, this was done by Paradan in 2003. 

PoissonLie Tduality and integrability 11:10 Thu 13 Apr, 2017 :: Engineering & Math EM213 :: Ctirad Klimcik :: AixMarseille University, Marseille
Media...The PoissonLie Tduality relates sigmamodels with target spaces symmetric with respect to mutually dual PoissonLie groups. In the special case if the PoissonLie symmetry reduces to the standard nonAbelian symmetry one of the corresponding mutually dual sigmamodels is the standard principal chiral model which is known to enjoy the property of integrability. A natural question whether this nonAbelian integrability can be lifted to integrability of sigma model dualizable with respect to the general PoissonLie symmetry has been answered in the affirmative by myself in 2008. The corresponding PoissonLie symmetric and integrable model is a oneparameter deformation of the principal chiral model and features a remarkable explicit appearance of the standard YangBaxter operator in the target space geometry. Several distinct integrable deformations of the YangBaxter sigma model have been then subsequently uncovered which turn out to be related by the PoissonLie Tduality to the so called lambdadeformed sigma models. My talk gives a review of these developments some of which found applications in string theory in the framework of the AdS/CFT correspondence. 

Hyperbolic geometry and knots 15:10 Fri 28 Apr, 2017 :: Engineering South S111 :: A/Prof Jessica Purcell :: Monash University
It has been known since the early 1980s that the complement of a knot or link decomposes into geometric pieces, and the most common geometry is hyperbolic. However, the connections between hyperbolic geometry and other knot and link invariants are not wellunderstood. Conjectured connections have applications to quantum topology and physics, 3manifold geometry and topology, and knot theory. In this talk, we will describe several results relating the hyperbolic geometry of a knot or link to other invariants, and their implications. 

Hodge theory on the moduli space of Riemann surfaces 12:10 Fri 5 May, 2017 :: Napier 209 :: Jesse GellRedman :: University of Melbourne
Media...The Hodge theorem on a closed Riemannian manifold identifies the deRham cohomology with the space of harmonic differential forms. Although there are various extensions of the Hodge theorem to singular or complete but noncompact spaces, when there is an identification of L^2 Harmonic forms with a topological feature of the underlying space, it is highly dependent on the nature of infinity (in the noncompact case) or the locus of incompleteness; no unifying theorem treats all cases. We will discuss work toward extending the Hodge theorem to singular Riemannian manifolds where the singular locus is an incomplete cusp edge. These can be pictured locally as a bundle of horns, and they provide a model for the behavior of the WeilPetersson metric on the compactified Riemann moduli space near the interior of a divisor. Joint with J. Swoboda and R. Melrose. 

Graded Ktheory and C*algebras 11:10 Fri 12 May, 2017 :: Engineering North 218 :: Aidan Sims :: University of Wollongong
Media...C*algebras can be regarded, in a very natural way, as noncommutative algebras of continuous functions on topological spaces. The analogy is strong enough that topological Ktheory in terms of formal differences of vector bundles has a direct analogue for C*algebras. There is by now a substantial array of tools out there for computing C*algebraic Ktheory. However, when we want to model physical phenomena, like topological phases of matter, we need to take into account various physical symmetries, some of which are encoded by gradings of C*algebras by the twoelement group. Even the definition of graded C*algebraic Ktheory is not entirely settled, and there are relatively few computational tools out there. I will try to outline what a C*algebra (and a graded C*algebra is), indicate what graded Ktheory ought to look like, and discuss recent work with Alex Kumjian and David Pask linking this with the deep and powerful work of Kasparov, and using this to develop computational tools. 

Lagrangian transport in deterministic flows: from theory to experiment 16:10 Tue 16 May, 2017 :: Engineering North N132 :: Dr Michel Speetjens :: Eindhoven University of Technology
Transport of scalar quantities (e.g. chemical species, nutrients, heat) in deterministic flows is key to a wide range of phenomena and processes in industry and Nature. This encompasses length scales ranging from microns to hundreds of kilometres, and includes systems as diverse as viscous flows in the processing industry, microfluidic flows in labsonachip and porous media, largescale geophysical and environmental flows, physiological and biological flows and even continuum descriptions of granular flows.
Essential to the net transport of a scalar quantity is its advection by the fluid motion. The Lagrangian perspective (arguably) is the most natural way to investigate advection and leans on the fact that fluid trajectories are organized into coherent structures that geometrically determine the advective transport properties. Lagrangian transport is typically investigated via theoretical and computational studies and often concerns idealized flow situations that are difficult (or even impossible) to create in laboratory experiments. However, bridging the gap from theoretical and computational results to realistic flows is essential for their physical meaningfulness and practical relevance. This presentation highlights a number of fundamental Lagrangian transport phenomena and properties in both twodimensional and threedimensional flows and demonstrates their physical validity by way of representative and experimentally realizable flows. 

Real bundle gerbes 12:10 Fri 19 May, 2017 :: Napier 209 :: Michael Murray :: University of Adelaide
Media...Bundle gerbe modules, via the notion of bundle gerbe Ktheory provide a realisation of twisted Ktheory. I will discuss the existence or Real bundle gerbes which are the corresponding objects required to construct Real twisted Ktheory in the sense of Atiyah. This is joint work with Richard Szabo (HeriotWatt), Pedram Hekmati (Auckland) and Raymond Vozzo which appeared in arXiv:1608.06466. 

Schubert Calculus on Lagrangian Grassmannians 12:10 Tue 23 May, 2017 :: EM 213 :: Hiep Tuan Dang :: National centre for theoretical sciences, Taiwan
Media...The Lagrangian Grassmannian $LG = LG(n,2n)$ is the projective complex manifold which parametrizes Lagrangian (i.e. maximal isotropic) subspaces in a symplective vector space of dimension $2n$. This talk is mainly devoted to Schubert calculus on $LG$. We first recall the definition of Schubert classes in this context. Then we present basic results which are similar to the classical formulas due to Pieri and Giambelli. These lead to a presentation of the cohomology ring of $LG$. Finally, we will discuss recent results related to the Schubert structure constants and GromovWitten invariants of $LG$. 

Holomorphic Legendrian curves 12:10 Fri 26 May, 2017 :: Napier 209 :: Franc Forstneric :: University of Ljubljana, Slovenia
Media...I will present recent results on the existence and behaviour of noncompact holomorphic
Legendrian curves in complex contact manifolds.
We show that these curves are ubiquitous in \C^{2n+1} with the
standard holomorphic contact form \alpha=dz+\sum_{j=1}^n x_jdy_j;
in particular, every open Riemann surface embeds into \C^3 as a proper
holomorphic Legendrian curves. On the other hand, for any integer n>= 1 there
exist Kobayashi hyperbolic complex contact structures on \C^{2n+1}
which do not admit any nonconstant Legendrian complex lines. Furthermore,
we construct a holomorphic Darboux chart around any noncompact holomorphic
Legendrian curve in an arbitrary complex contact manifold.
As an application, we show that every bordered holomorphic Legendrian curve
can be uniformly approximated by complete bounded Legendrian curves. 

Probabilistic approaches to human cognition: What can the math tell us? 15:10 Fri 26 May, 2017 :: Engineering South S111 :: Dr Amy Perfors :: School of Psychology, University of Adelaide
Why do people avoid vaccinating their children? Why, in groups, does it seem like the most extreme positions are weighted more highly? On the surface, both of these examples look like instances of nonoptimal or irrational human behaviour. This talk presents preliminary evidence suggesting, however, that in both cases this pattern of behaviour is sensible given certain assumptions about the structure of the world and the nature of beliefs. In the case of vaccination, we model people's choices using expected utility theory. This reveals that their ignorance about the nature of diseases like whooping cough makes them underweight the negative utility attached to contracting such a disease. When that ignorance is addressed, their values and utilities shift. In the case of extreme positions, we use simulations of chains of Bayesian learners to demonstrate that whenever information is propagated in groups, the views of the most extreme learners naturally gain more traction. This effect emerges as the result of basic mathematical assumptions rather than human irrationality. 

Constructing differential string structures 14:10 Wed 7 Jun, 2017 :: EM213 :: David Roberts :: University of Adelaide
Media...String structures on a manifold are analogous to spin structures, except instead of lifting the structure group through the extension Spin(n)\to SO(n) of Lie groups, we need to lift through the extension String(n)\to Spin(n) of Lie *2groups*. Such a thing exists if the first fractional Pontryagin class (1/2)p_1 vanishes in cohomology. A differential string structure also lifts connection data, but this is rather complicated, involving a number of locally defined differential forms satisfying cocyclelike conditions. This is an expansion of the geometric string structures of Stolz and Redden, which is, for a given connection A, merely a 3form R on the frame bundle such that dR = tr(F^2) for F the curvature of A; in other words a trivialisation of the de Rham class of (1/2)p_1. I will present work in progress on a framework (and specific results) that allows explicit calculation of the differential string structure for a large class of homogeneous spaces, which also yields formulas for the StolzRedden form. I will comment on the application to verifying the refined Stolz conjecture for our particular class of homogeneous spaces. Joint work with Ray Vozzo. 

Quaternionic Kaehler manifolds of cohomogeneity one 12:10 Fri 16 Jun, 2017 :: Ligertwood 231 :: Vicente Cortes :: Universitat Hamburg
Media...Quaternionic Kaehler manifolds form an important class of Riemannian manifolds of special holonomy. They provide examples of Einstein manifolds of nonzero scalar curvature. I will show how to construct explicit examples of complete quaternionic Kaehler manifolds of negative scalar curvature beyond homogeneous spaces. In particular, I will present a series of examples of cohomogeneity one, based on arXiv:1701.07882. 

Mathematics is Biology's Next Microscope (Only Better!) 15:10 Fri 11 Aug, 2017 :: Ingkarni Wardli B17 :: Dr Robyn Araujo :: Queensland University of Technology
While mathematics has long been considered "an essential tool for physics", the foundations of biology and the life sciences have received significantly less influence from mathematical ideas and theory. In this talk, I will give a brief discussion of my recent research on robustness in molecular signalling networks, as an example of a complex biological question that calls for a mathematical answer. In particular, it has been a longstanding mystery how the extraordinarily complex communication networks inside living cells, comprising thousands of different interacting molecules, are able to function robustly since complexity is generally associated with fragility. Mathematics has now suggested a resolution to this paradox through the discovery that robust adaptive signalling networks must be constructed from a just small number of welldefined universal modules (or "motifs"), connected together. The existence of these newlydiscovered modules has important implications for evolutionary biology, embryology and development, cancer research, and drug development. 

Mathematics is Biology'ÂÂs Next Microscope (Only Better!) 15:10 Fri 11 Aug, 2017 :: Ingkarni Wardli B17 :: Dr Robyn Araujo :: Queensland University of Technology
While mathematics has long been considered Ã¢ÂÂan essential tool for physics", the foundations of biology and the life sciences have received significantly less influence from mathematical ideas and theory. In this talk, I will give a brief discussion of my recent research on robustness in molecular signalling networks, as an example of a complex biological question that calls for a mathematical answer. In particular, it has been a longstanding mystery how the extraordinarily complex communication networks inside living cells, comprising thousands of different interacting molecules, are able to function robustly since complexity is generally associated with fragility. Mathematics has now suggested a resolution to this paradox through the discovery that robust adaptive signalling networks must be constructed from a just small number of welldefined universal modules (or Ã¢ÂÂmotifsÃ¢ÂÂ), connected together. The existence of these newlydiscovered modules has important implications for evolutionary biology, embryology and development, cancer research, and drug development. 

Conway's Rational Tangle 12:10 Tue 15 Aug, 2017 :: Inkgarni Wardli 5.57 :: Dr Hang Wang :: School of Mathematical Sciences
Media...Many researches in mathematics essentially feature some classification problems. In this context, invariants are created in order to associate algebraic quantities, such as numbers and groups, to elements of interested classes of geometric objects, such as surfaces. A key property of an invariant is that it does not change under ``allowable moves'' which can be specified in various geometric contexts. We demonstrate these lines of ideas by rational tangles, a notion in knot theory.
A tangle is analogous to a link except that it has free ends. Conway's rational tangles are the simplest tangles that can be ``unwound'' under a finite sequence of two simple moves, and they arise as building blocks for knots. A numerical invariant will be introduced for Conway's rational tangles and it provides the only known example of a complete invariant in knot theory.


Compact pseudoRiemannian homogeneous spaces 12:10 Fri 18 Aug, 2017 :: Engineering Sth S111 :: Wolfgang Globke :: University of Adelaide
Media...A pseudoRiemannian homogeneous space $M$ of finite volume can be presented as $M=G/H$, where $G$ is a Lie group acting transitively and isometrically on $M$, and $H$ is a closed subgroup of $G$.
The condition that $G$ acts isometrically and thus preserves a finite measure on $M$ leads to strong algebraic restrictions on $G$. In the special case where $G$ has no compact semisimple normal subgroups, it turns out that the isotropy subgroup $H$ is a lattice, and that the metric on $M$ comes from a biinvariant metric on $G$.
This result allows us to recover Zeghibâs classification of Lorentzian compact homogeneous spaces, and to move towards a classification for metric index 2.
As an application we can investigate which pseudoRiemannian homogeneous spaces of finite volume are Einstein spaces. Through the existence questions for lattice subgroups, this leads to an interesting connection with the theory of transcendental numbers, which allows us to characterize the Einstein cases in low dimensions.
This talk is based on joint works with Oliver Baues, Yuri Nikolayevsky and Abdelghani Zeghib. 

Topology as a tool in algebra 15:10 Fri 8 Sep, 2017 :: Ingkarni Wardli B17 :: Dr Zsuzsanna Dancso :: University of Sydney
Topologists often use algebra in order to understand the shape of a space: invariants such as homology and cohomology are basic, and very successful, examples of this principle. Although topology is used as a tool in algebra less often, I will describe a recurring pattern on the border of knot theory and quantum algebra where this is possible. We will explore how the tangled topology of "flying circles in R^3" is deeply related to a famous problem in Lie theory: the KashiwaraVergne (KV) problem (first solved in 2006 by AlekseevMeinrenken). I will explain how this relationship illuminates the intricate algebra of the KV problem. 

In space there is noone to hear you scream 12:10 Tue 12 Sep, 2017 :: Inkgarni Wardli 5.57 :: A/Prof Gary Glonek :: School of Mathematical Sciences
Media...Modern data problems often involve data in very high dimensions. For example, gene expression profiles, used to develop cancer screening models, typically have at least 30,000 dimensions. When dealing with such data, it is natural to apply intuition from low dimensional cases. For example, in a sample of normal observations, a typical data point will be near the centre of the distribution with only a small number of points at the edges.
In this talk, simple probability theory will be used to show that the geometry of data in high dimensional space is very different from what we can see in one and twodimensional examples. We will show that the typical data point is at the edge of the distribution, a long way from its centre and even further from any other points. 

On the fundamental of RayleighTaylor instability and interfacial mixing 15:10 Fri 15 Sep, 2017 :: Ingkarni Wardli B17 :: Prof Snezhana Abarzhi :: University of Western Australia
RayleighTaylor instability (RTI) develops when fluids of different densities are accelerated against their density gradient. Extensive interfacial mixing of the fluids ensues with time. RayleighTaylor (RT) mixing controls a broad variety of processes in fluids, plasmas and materials, in high and low energy density regimes, at astrophysical and atomistic scales. Examples include formation of hot spot in inertial confinement, supernova explosion, stellar and planetary convection, flows in atmosphere and ocean, reactive and supercritical fluids, material transformation under impact and lightmaterial interaction. In some of these cases (e.g. inertial confinement fusion) RT mixing should be tightly mitigated; in some others (e.g. turbulent combustion) it should be strongly enhanced. Understanding the fundamentals of RTI is crucial for achieving a better control of nonequilibrium processes in nature and technology.
Traditionally, it was presumed that RTI leads to uncontrolled growth of smallscale imperfections, singlescale nonlinear dynamics, and extensive mixing that is similar to canonical turbulence. The recent success of the theory and experiments in fluids and plasmas suggests an alternative scenario of RTI evolution. It finds that the interface is necessary for RT mixing to accelerate, the acceleration effects are strong enough to suppress the development of turbulence, and the RT dynamics is multiscale and has significant degree of order.
This talk presents a physicsbased consideration of fundamentals of RTI and RT mixing, and summarizes what is certain and what is not so certain in our knowledge of RTI. The focus question  How to influence the regularization process in RT mixing? We also discuss new opportunities for improvements of predictive modeling capabilities, physical description, and control of RT mixing in fluids, plasmas and materials. 

An action of the GrothendieckTeichmuller group on stable curves of genus zero 11:10 Fri 22 Sep, 2017 :: Engineering South S111 :: Marcy Robertson :: University of Melbourne
Media...In this talk, we show that the group of homotopy automorphisms of the profinite completion of the framed little 2discs operad is isomorphic to the (profinite) GrothendieckTeichmuller group. We deduce that the GrothendieckTeichmuller group acts nontrivially on an operadic model of the genus zero Teichmuller tower. This talk will be aimed at a general audience and will not assume previous knowledge of the GrothendieckTeichmuller group or operads. This is joint work with Pedro Boavida and Geoffroy Horel. 

Equivariant formality of homogeneous spaces 12:10 Fri 29 Sep, 2017 :: Engineering Sth S111 :: Alex ChiKwong Fok :: University of Adelaide
Equivariant formality, a notion in equivariant topology introduced by GoreskyKottwitzMacpherson, is a desirable property of spaces with group actions, which allows the application of localisation formula to evaluate integrals of any top closed forms and enables one to compute easily the equivariant cohomology. Broad classes of spaces of especial interest are wellknown to be equivariantly formal, e.g., compact symplectic manifolds equipped with Hamiltonian compact Lie group actions and projective varieties equipped with linear algebraic torus actions, of which flag varieties are examples. Less is known about compact homogeneous spaces G/K equipped with the isotropy action of K, which is not necessarily of maximal rank. In this talk we will review previous attempts of characterizing equivariant formality of G/K, and present our recent results on this problem using an analogue of equivariant formality in Ktheory. Part of the work presented in this talk is joint with Jeffrey Carlson. 

Operator algebras in rigid C*tensor categories 12:10 Fri 6 Oct, 2017 :: Engineering Sth S111 :: Corey Jones :: Australian National University
Media...In noncommutative geometry, operator algebras are often regarded as the algebras of functions on noncommutative spaces. Rigid C*tensor categories are algebraic structures that appear in the study of quantum field theories, subfactors, and compact quantum groups. We will explain how they can be thought of as ``noncommutative'' versions of the tensor category of Hilbert spaces. Combining these two viewpoints, we describe a notion of operator algebras internal to a rigid C*tensor category, and discuss applications to the theory of subfactors. 

Endperiodic Khomology and spin bordism 12:10 Fri 20 Oct, 2017 :: Engineering Sth S111 :: Michael Hallam :: University of Adelaide
This talk introduces new "endperiodic" variants of geometric Khomology and spin bordism theories that are tailored to a recent index theorem for evendimensional manifolds with periodic ends. This index theorem, due to Mrowka, Ruberman and Saveliev, is a generalisation of the AtiyahPatodiSinger index theorem for manifolds with odddimensional boundary. As in the APS index theorem, there is an (endperiodic) eta invariant that appears as a correction term for the periodic end. Invariance properties of the standard relative eta invariants are elegantly expressed using Khomology and spin bordism, and this continues to hold in the endperiodic case. In fact, there are natural isomorphisms between the standard Khomology/bordism theories and their endperiodic versions, and moreover these isomorphisms preserve relative eta invariants. The study is motivated by results on positive scalar curvature, namely obstructions and distinct path components of the moduli space of PSC metrics. Our isomorphisms provide a systematic method for transferring certain results on PSC from the odddimensional case to the evendimensional case. This work is joint with Mathai Varghese. 

Springer correspondence for symmetric spaces 12:10 Fri 17 Nov, 2017 :: Engineering Sth S111 :: Ting Xue :: University of Melbourne
Media...The Springer theory for reductive algebraic groups plays an important role in representation theory. It relates nilpotent orbits in the Lie algebra to irreducible representations of the Weyl group. We develop a Springer theory in the case of symmetric spaces using Fourier transform, which relates nilpotent orbits in this setting to irreducible representations of Hecke algebras of various Coxeter groups with specified parameters. This in turn gives rise to character sheaves on symmetric spaces, which we describe explicitly in the case of classical symmetric spaces. A key ingredient in the construction is the nearby cycle sheaves associated to the adjoint quotient map. The talk is based on joint work with Kari Vilonen and partly based on joint work with Misha Grinberg and Kari Vilonen. 

Stochastic Modelling of Urban Structure 11:10 Mon 20 Nov, 2017 :: Engineering Nth N132 :: Mark Girolami :: Imperial College London, and The Alan Turing Institute
Media...Urban systems are complex in nature and comprise of a large number of individuals that act according to utility, a measure of net benefit pertaining to preferences. The actions of individuals give rise to an emergent behaviour, creating the socalled urban structure that we observe. In this talk, I develop a stochastic model of urban structure to formally account for uncertainty arising from the complex behaviour. We further use this stochastic model to infer the components of a utility function from observed urban structure. This is a more powerful modelling framework in comparison to the ubiquitous discrete choice models that are of limited use for complex systems, in which the overall preferences of individuals are difficult to ascertain. We model urban structure as a realization of a Boltzmann distribution that is the invariant distribution of a related stochastic differential equation (SDE) that describes the dynamics of the urban system. Our specification of Boltzmann distribution assigns higher probability to stable configurations, in the sense that consumer surplus (demand) is balanced with running costs (supply), as characterized by a potential function. We specify a Bayesian hierarchical model to infer the components of a utility function from observed structure. Our model is doublyintractable and poses significant computational challenges that we overcome using recent advances in Markov chain Monte Carlo (MCMC) methods. We demonstrate our methodology with case studies on the London retail system and airports in England. 

A Hecke module structure on the KKtheory of arithmetic groups 13:10 Fri 2 Mar, 2018 :: Barr Smith South Polygon Lecture theatre :: Bram Mesland :: University of Bonn
Media...Let $G$ be a locally compact group, $\Gamma$ a discrete subgroup and $C_{G}(\Gamma)$ the commensurator of $\Gamma$ in $G$. The cohomology of $\Gamma$ is a module over the Shimura Hecke ring of the pair $(\Gamma,C_G(\Gamma))$. This construction recovers the action of the Hecke operators on modular forms for $SL(2,\mathbb{Z})$ as a particular case. In this talk I will discuss how the Shimura Hecke ring of a pair $(\Gamma, C_{G}(\Gamma))$ maps into the $KK$ring associated to an arbitrary $\Gamma$C*algebra. From this we obtain a variety of $K$theoretic Hecke modules. In the case of manifolds the Chern character provides a Hecke equivariant transformation into cohomology, which is an isomorphism in low dimensions. We discuss Hecke equivariant exact sequences arising from possibly noncommutative compactifications of $\Gamma$spaces. Examples include the BorelSerre and geodesic compactifications of the universal cover of an arithmetic manifold, and the totally disconnected boundary of the BruhatTits tree of $SL(2,\mathbb{Z})$. This is joint work with M.H. Sengun (Sheffield). 

Radial Toeplitz operators on bounded symmetric domains 11:10 Fri 9 Mar, 2018 :: Lower Napier LG11 :: Raul QuirogaBarranco :: CIMAT, Guanajuato, Mexico
Media...The Bergman spaces on a complex domain are defined as the space of holomorphic squareintegrable functions on the domain. These carry interesting structures both for analysis and representation theory in the case of bounded symmetric domains. On the other hand, these spaces have some bounded operators obtained as the composition of a multiplier operator and a projection. These operators are highly noncommuting between each other. However, there exist large commutative C*algebras generated by some of these Toeplitz operators very much related to Lie groups. I will construct an example of such C*algebras and provide a fairly explicit simultaneous diagonalization of the generating Toeplitz operators. 

Family gauge theory and characteristic classes of bundles of 4manifolds 13:10 Fri 16 Mar, 2018 :: Barr Smith South Polygon Lecture theatre :: Hokuto Konno :: University of Tokyo
Media...I will define a nontrivial characteristic class of bundles of
4manifolds using families of SeibergWitten equations. The basic idea
of the construction is to consider an infinite dimensional
analogue of the Euler class used in the usual theory of characteristic
classes. I will also explain how to prove the nontriviality of this
characteristic class. If time permits, I will mention a relation between
our characteristic class and positive scalar curvature metrics. 

Computing trisections of 4manifolds 13:10 Fri 23 Mar, 2018 :: Barr Smith South Polygon Lecture theatre :: Stephen Tillmann :: University of Sydney
Media...Gay and Kirby recently generalised Heegaard splittings of 3manifolds to
trisections of 4manifolds. A trisection describes a 4Ã¢ÂÂdimensional manifold
as a union of three 4Ã¢ÂÂdimensional handlebodies. The complexity of the
4Ã¢ÂÂmanifold is captured in a collection of curves on a surface, which guide
the gluing of the handelbodies. The minimal genus of such a surface is the
trisection genus of the 4manifold.
After defining trisections and giving key examples and applications, I will
describe an algorithm to compute trisections of 4Ã¢ÂÂmanifolds using arbitrary
triangulations as input. This results in the first explicit complexity
bounds for the trisection genus of a 4Ã¢ÂÂmanifold in terms of the number of
pentachora (4Ã¢ÂÂsimplices) in a triangulation. This is joint work with Mark
Bell, Joel Hass and Hyam Rubinstein. I will also describe joint work with
Jonathan Spreer that determines the trisection genus for each of the
standard simply connected PL 4manifolds. 

Complexity of 3Manifolds 15:10 Fri 23 Mar, 2018 :: Horace Lamb 1022 :: A/Prof Stephan Tillmann :: University of Sydney
In this talk, I will give a general introduction to complexity of
3manifolds and explain the connections between combinatorics, algebra,
geometry, and topology that arise in its study.
The complexity of a 3manifold is the minimum number of tetrahedra in a
triangulation of the manifold. It was defined and first studied by Matveev
in 1990. The complexity is generally difficult to compute, and various
upper and lower bounds have been derived during the last decades using
fundamental group, homology or hyperbolic volume.
Effective bounds have only been found in joint work with Jaco, Rubinstein
and, more recently, Spreer. Our bounds not only allowed us to determine the
first infinite classes of minimal triangulations of closed 3manifolds, but
they also lead to a structure theory of minimal triangulations of
3manifolds. 

Chaos in higherdimensional complex dynamics 13:10 Fri 20 Apr, 2018 :: Barr Smith South Polygon Lecture theatre :: Finnur Larusson :: University of Adelaide
Media... I will report on new joint work with Leandro Arosio (University of Rome, Tor Vergata). Complex manifolds can be thought of as laid out across a spectrum characterised by rigidity at one end and flexibility at the other. On the rigid side, Kobayashihyperbolic manifolds have at most a finitedimensional group of symmetries. On the flexible side, there are manifolds with an extremely large group of holomorphic automorphisms, the prototypes being the affine spaces $\mathbb C^n$ for $n \geq 2$. From a dynamical point of view, hyperbolicity does not permit chaos. An endomorphism of a Kobayashihyperbolic manifold is nonexpansive with respect to the Kobayashi distance, so every family of endomorphisms is equicontinuous. We show that not only does flexibility allow chaos: under a strong antihyperbolicity assumption, chaotic automorphisms are generic. A special case of our main result is that if $G$ is a connected complex linear algebraic group of dimension at least 2, not semisimple, then chaotic automorphisms are generic among all holomorphic automorphisms of $G$ that preserve a left or rightinvariant Haar form. For $G=\mathbb C^n$, this result was proved (although not explicitly stated) some 20 years ago by Fornaess and Sibony. Our generalisation follows their approach. I will give plenty of context and background, as well as some details of the proof of the main result. 

Index of Equivariant CalliasType Operators 13:10 Fri 27 Apr, 2018 :: Barr Smith South Polygon Lecture theatre :: Hao Guo :: University of Adelaide
Media...Suppose M is a smooth Riemannian manifold on which a Lie group G acts properly and isometrically. In this talk I will explore properties of a particular class of Ginvariant operators on M, called GCalliastype operators. These are Dirac operators that have been given an additional Z_2grading and a perturbation so as to be "invertible outside of a cocompact set in M". It turns out that GCalliastype operators are equivariantly Fredholm and so have an index in the Ktheory of the maximal group C*algebra of G. This index can be expressed as a KKproduct of a class in Khomology and a class in the Ktheory of the Higson Gcorona. In fact, one can show that the Ktheory of the Higson Gcorona is highly nontrivial, and thus the index theory of GCalliastype operators is not obviously trivial. As an application of the index theory of GCalliastype operators, I will mention an obstruction to the existence of Ginvariant metrics of positive scalar curvature on M. 

Braid groups and higher representation theory 13:10 Fri 4 May, 2018 :: Barr Smith South Polygon Lecture theatre :: Tony Licata :: Australian National University
Media...The Artin braid group arise in a number of different parts of mathematics. The goal of this talk will be to explain how basic grouptheoretic questions about the Artin braid group can be answered using some modern tools of linear and homological algebra, with an eye toward proving some open conjectures about other groups. 

Knot homologies 15:10 Fri 4 May, 2018 :: Horace Lamb 1022 :: Dr Anthony Licata :: Australian National University
The last twenty years have seen a lot of interaction between lowdimensional topology and representation theory. One facet of this interaction concerns "knot homologies," which are homological invariants of knots; the most famous of these, Khovanov homology, comes from the higher representation theory of sl_2. The goal of this talk will be to give a gentle introduction to this subject to nonexperts by telling you a bit about Khovanov homology. 

Cobordism maps on PFH induced by Lefschetz fibration over higher genus base 13:10 Fri 11 May, 2018 :: Barr Smith South Polygon Lecture theatre :: Guan Heng Chen :: University of Adelaide
In this talk, we will discuss the cobordism maps on periodic Floer homology(PFH) induced by Lefschetz fibration. Periodic Floer homology is a Gromov types invariant for three dimensional mapping torus and it is isomorphic to a version of Seiberg Witten Floer cohomology(SWF). Our result is to define the cobordism maps on PFH induced by certain types of Lefschetz fibration via using holomorphic curves method. Also, we show that the cobordism maps is equivalent to the cobordism maps on Seiberg Witten cohomology under the isomorphism PFH=SWF. 

Obstructions to smooth group actions on 4manifolds from families SeibergWitten theory 13:10 Fri 25 May, 2018 :: Barr Smith South Polygon Lecture theatre :: David Baraglia :: University of Adelaide
Media...Let X be a smooth, compact, oriented 4manifold and consider the following problem. Let G be a group which acts on the second cohomology of X preserving the intersection form. Can this action of G on H^2(X) be lifted to an action of G on X by diffeomorphisms? We study a parametrised version of SeibergWitten theory for smooth families of 4manifolds and obtain obstructions to the existence of such lifts. For example, we construct compact simplyconnected 4manifolds X and involutions on H^2(X) that can be realised by a continuous involution on X, or by a diffeomorphism, but not by an involutive diffeomorphism for any smooth structure on X. 

The mass of Riemannian manifolds 13:10 Fri 1 Jun, 2018 :: Barr Smith South Polygon Lecture theatre :: Matthias Ludewig :: MPIM Bonn
We will define the mass of differential operators L on compact Riemannian manifolds. In odd dimensions, if L is a conformally covariant differential operator, then its mass is also conformally covariant, while in even dimensions, one has a more complicated transformation rule. In the special case that L is the Yamabe operator, its mass is related to the ADM mass of an associated asymptotically flat spacetime. In particular, one expects positive mass theorems in various settings. Here we highlight some recent results. 

Hitchin's Projectively Flat Connection for the Moduli Space of Higgs Bundles 13:10 Fri 15 Jun, 2018 :: Barr Smith South Polygon Lecture theatre :: John McCarthy :: University of Adelaide
In this talk I will discuss the problem of geometrically quantizing the moduli space of Higgs bundles on a compact Riemann surface using Kahler polarisations. I will begin by introducing geometric quantization via Kahler polarisations for compact manifolds, leading up to the definition of a Hitchin connection as stated by Andersen. I will then describe the moduli spaces of stable bundles and Higgs bundles over a compact Riemann surface, and discuss their properties. The problem of geometrically quantizing the moduli space of stables bundles, a compact space, was solved independently by Hitchin and Axelrod, Del PIetra, and Witten. The Higgs moduli space is noncompact and therefore the techniques used do not apply, but carries an action of C*. I will finish the talk by discussing the problem of finding a Hitchin connection that preserves this C* action. Such a connection exists in the case of Higgs line bundles, and I will comment on the difficulties in higher rank. 
News matching "Obstructions to smooth group actions on 4manifold" 
ARC success The School of Mathematical Sciences was again very successful in attracting Australian Research Council funding for 2008. Recipients of ARC Discovery Projects are (with staff from the School highlighted):
Prof NG Bean; Prof PG Howlett; Prof CE Pearce; Prof SC Beecham; Dr AV Metcalfe; Dr JW Boland:
WaterLog  A mathematical model to implement recommendations of The Wentworth Group.
20082010: $645,000
Prof RJ Elliott:
Dynamic risk measures.
(Australian Professorial Fellowship)
20082012: $897,000
Dr MD Finn:
Topological Optimisation of Fluid Mixing.
20082010: $249,000
Prof PG Bouwknegt; Prof M Varghese; A/Prof S Wu:
Dualities in String Theory and Conformal Field Theory in the context of the Geometric Langlands Program.
20082010: $240,000
The latter grant is held through the ANU Posted Wed 26 Sep 07. 

Sam Cohen wins prize for best student talk at ANZIAM 2009 Congratulations to Mr Sam Cohen, a PhD student within the School, who was awarded the T. M. Cherry Prize for the best student paper at the 2009 meeting of ANZIAM for his talk on
A general theory of backward stochastic difference equations. Posted Fri 6 Feb 09. 

ARC Grant successes Congratulations to Tony Roberts, Charles Pearce, Robert Elliot, Andrew Metcalfe and all their collaborators on their success in the current round of ARC grants. The projects are "Development of innovative technologies for oil production based on the advanced theory of suspension flows in porous media" (Tony Roberts et al.), "Perturbation and approximation methods for linear operators with applications to train control, water resource management and evolution of physical systems" (Charles Pearce et al.),
"Risk Measures and Management in Finance and Actuarial Science Under RegimeSwitching Models" (Robert Elliott et al.) and "A new flood design methodology for a variable and changing climate" (Andrew Metcalfe et al.) Posted Mon 26 Oct 09. 

Group of Eight review The Go8 Review of Mathematics and Quantitative Disciplines has been released and is now available on the
Go8 website.
Posted Sat 20 Mar 10.More information... 

ARC Grant successes The School of Mathematical Sciences has again had outstanding success in the ARC Discovery and Linkage Projects schemes.
Congratulations to the following staff for their success in the Discovery Project scheme:
Prof Nigel Bean, Dr Josh Ross, Prof Phil Pollett, Prof Peter Taylor, New methods for improving active adaptive management in biological systems, $255,000 over 3 years;
Dr Josh Ross, New methods for integrating population structure and stochasticity into models of disease dynamics, $248,000 over three years;
A/Prof Matt Roughan, Dr Walter Willinger, Internet trafficmatrix synthesis, $290,000 over three years;
Prof Patricia Solomon, A/Prof John Moran, Statistical methods for the analysis of critical care data, with application to the Australian and New Zealand Intensive Care Database, $310,000 over 3 years;
Prof Mathai Varghese, Prof Peter Bouwknegt, Supersymmetric quantum field theory, topology and duality, $375,000 over 3 years;
Prof Peter Taylor, Prof Nigel Bean, Dr Sophie Hautphenne, Dr Mark Fackrell, Dr Malgorzata O'Reilly, Prof Guy Latouche, Advanced matrixanalytic methods with applications, $600,000 over 3 years.
Congratulations to the following staff for their success in the Linkage Project scheme:
Prof Simon Beecham, Prof Lee White, A/Prof John Boland, Prof Phil Howlett, Dr Yvonne Stokes, Mr John Wells, Paving the way: an experimental approach to the mathematical modelling and design of permeable pavements, $370,000 over 3 years;
Dr Amie Albrecht, Prof Phil Howlett, Dr Andrew Metcalfe, Dr Peter Pudney, Prof Roderick Smith, Saving energy on trains  demonstration, evaluation, integration, $540,000 over 3 years
Posted Fri 29 Oct 10. 

New Fellow of the Australian Academy of Science Professor Mathai Varghese, Professor of Pure Mathematics and ARC Professorial Fellow within the School of Mathematical Sciences, was elected to the Australian Academy of Science. Professor Varghese's citation read "for his distinguished for his work in geometric analysis involving the topology of manifolds, including the MathaiQuillen formalism in topological field theory.". Posted Tue 30 Nov 10. 

ARC Future Fellowship success Associate Professor Zudi Lu has been awarded an ARC Future Fellowship. Associate Professor Lu, and Associate Professor in Statistics, will use the support provided by his Future Fellowship to further improve the theory and practice of econometric modelling of nonlinear spatial time series. Congratulations Zudi. Posted Thu 12 May 11. 

IGAAMSI Workshop: Groupvalued moment maps with applications to mathematics and physics (5–9 September 2011) Lecture series by Eckhard Meinrenken, University of Toronto. Titles of
individual lectures: 1) Introduction to Gvalued moment maps. 2) Dirac
geometry and Witten's volume formulas. 3) DixmierDouady theory and
prequantization. 4) Quantization of groupvalued moment maps. 5)
Application to Verlinde formulas. These lectures will be supplemented by
additional talks by invited speakers. For more details, please see the
conference webpage
Posted Wed 27 Jul 11.More information... 

Inaugural Adelaide R Users Group The aim of the Adelaide Rusers group is to meet, discuss R, and share our experiences of R. It also hopes to be an opportunity for new users to get a helping hand up the first part of the steep learning curve or at least learn how to fit a line to the steep learning curve.
Posted Tue 18 Oct 11.More information... 

ARC Grant Success Congratulations to the following staff who were successful in securing funding from the Australian Research Council Discovery Projects Scheme. Associate Professor Finnur Larusson awarded $270,000 for his project Flexibility and symmetry in complex geometry; Dr Thomas Leistner, awarded $303,464 for his project Holonomy groups in Lorentzian geometry, Professor Michael Murray Murray and Dr Daniel Stevenson (Glasgow), awarded $270,000 for their project Bundle gerbes: generalisations and applications; Professor Mathai Varghese, awarded $105,000 for his project Advances in index theory and Prof Anthony Roberts and Professor Ioannis Kevrekidis (Princeton) awarded $330,000 for their project Accurate modelling of large multiscale dynamical systems for engineering and scientific
simulation and analysis Posted Tue 8 Nov 11. 

Dualities in field theories and the role of Ktheory Between Monday 19 and Friday 23 March 2012, the Institute for Geometry and its Applications will host a lecture series by Professor Jonathan Rosenberg from the University of Maryland. There
will be additional talks by other invited speakers. Posted Tue 6 Dec 11.More information... 

Elder Professor Mathai Varghese Awarded Australian Laureate Fellowship Professor Mathai Varghese, Elder Professor of Mathematics in the School of Mathematical Sciences, has been awarded an Australian Laureate Fellowship worth $1.64 million to advance Index Theory and its applications. The project is expected to enhance Australiaâs position at the forefront of international research in geometric analysis. Posted Thu 15 Jun 17.More information... 

Elder Professor Mathai Varghese Awarded Australian Laureate Fellowship Professor Mathai Varghese, Elder Professor of Mathematics in the School of Mathematical Sciences, has been awarded an Australian Laureate Fellowship worth $1.64 million to advance Index Theory and its applications. The project will enhance Australia's position at the forefront of international research in geometric analysis. Posted Thu 15 Jun 17.More information... 
Publications matching "Obstructions to smooth group actions on 4manifold"Publications 

Noncommutative correspondences, duality and Dbranes in bivariant Ktheory Brodzki, J; Varghese, Mathai; Rosenberg, J; Szabo, R, Advances in Theoretical and Mathematical Physics 13 (497–552) 2009  Portfolio risk minimization and differential games Elliott, Robert; Siu, T, Nonlinear AnalysisTheory Methods & Applications In Press (–) 2009  Tduality as a duality of loop group bundles Bouwknegt, Pier; Varghese, Mathai, Journal of Physics A: Mathematical and Theoretical (Print Edition) 42 (1620011–1620018) 2009  The maximum size of the intersection of two ovoids Butler, David, Journal of Combinatorial Theory Series A 116 (242–245) 2009  Dbranes, KKtheory and duality on noncommutative spaces Brodzki, J; Varghese, Mathai; Rosenberg, J; Szabo, R, Journal of Physics: Conference Series (Print Edition) 103 (1–13) 2008  Dbranes, RRfields and duality on noncommutative manifolds Brodzki, J; Varghese, Mathai; Rosenberg, J; Szabo, R, Communications in Mathematical Physics 277 (643–706) 2008  The inner automorphism 3group of a strict 2group Roberts, David; Schreiber, U, Journal of Homotopy and Related Structures 3 (193–245) 2008  The Heisenberg Group, SL (3, R) , and Rigidity Cap, A; Cowling, M; De Mari, F; Eastwood, Michael; McCallum, R, chapter in Harmonic Analysis, Group Representations, Automorphic Forms And Invariant Theory (World Scientific Publishing) 41–52, 2007  A sequence approach to linear perfect hash families Barwick, Susan; Jackson, WenAi, Designs Codes and Cryptography 45 (95–121) 2007  Geometric constructions of optimal linear perfect hash families Barwick, Susan; Jackson, WenAi, Finite Fields and Their Applications 14 (1–13) 2007  Nonclassical symmetry solutions for reactiondiffusion equations with explicity spatial dependence Hajek, Bronwyn; Edwards, M; Broadbridge, P; Williams, G, Nonlinear AnalysisTheory Methods & Applications 67 (2541–2552) 2007  Special tensors in the deformation theory of quadratic algebras for the classical Lie algebras Eastwood, Michael; Somberg, P; Soucek, V, Journal of Geometry and Physics 57 (2539–2546) 2007  TDuality in type II string theory via noncommutative geometry and beyond Varghese, Mathai, Progress of Theoretical Physics Supplement 171 (237–257) 2007  Nonlinear dynamics on centre manifolds describing turbulent floods: komega model Georgiev, D; Roberts, Anthony John; Strunin, D, Discrete and Continuous Dynamical Systems Supplement (419–428) 2007  On mysteriously missing Tduals, Hflux and the Tduality Group Varghese, Mathai; Rosenberg, J, chapter in Differential geometry and physics (World Scientific Publishing) 350–358, 2006  Conformal holonomy of Cspaces, Ricciflat, and Lorentzian manifolds Leistner, Thomas, Differential Geometry and its Applications 24 (458–478) 2006  Duality symmetry and the form fields of Mtheory Sati, Hicham, The Journal of High Energy Physics (Print Edition) 6 (0–10) 2006  Dynamic portfolio allocation, the dual theory of choice and probability distortion functions Hamada, M; Sherris, M; Van Der Hoek, John, Astin Bulletin 31 (187–217) 2006  Flock generalized quadrangles and tetradic sets of elliptic quadrics of PG(3, q) Barwick, Susan; Brown, Matthew; Penttila, T, Journal of Combinatorial Theory Series A 113 (273–290) 2006  Heat kernels and the range of the trace on completions of twisted group algebras Varghese, Mathai, Contemporary Mathematics 398 (321–345) 2006  Screen bundles of Lorentzian manifolds and some generalisations of ppwaves Leistner, Thomas, Journal of Geometry and Physics 56 (2117–2134) 2006  Tduality for torus bundles with Hfluxes via noncommutative topology, II: the highdimensional case and the Tduality group Varghese, Mathai; Rosenberg, J, Advances in Theoretical and Mathematical Physics 10 (123–158) 2006  The elliptic curves in gauge theory, string theory, and cohomology Sati, Hicham, The Journal of High Energy Physics (Print Edition) 3 (0–19) 2006  YangMills theory for bundle gerbes Varghese, Mathai; Roberts, David, Journal of Physics A: Mathematical and Theoretical (Print Edition) 39 (6039–6044) 2006  Actions of seminal plasma cytokines in priming female reproductive tract receptivity for embryo implantation Robertson, Sarah; Bromfield, John; Glynn, David; Sharkey, David; Jasper, Melinda, chapter in Immunology of Pregnancy (Springer) 148–158, 2006  Ktheory Varghese, Mathai, chapter in Encyclopedia of mathematical physics (Elsevier Academic Press) 246–254, 2006  Bundle gerbes for ChernSimons and WessZuminoWitten theories Carey, Alan; Johnson, Stuart; Murray, Michael; Stevenson, Daniel; Wang, BaiLing, Communications in Mathematical Physics 259 (577–613) 2005  Equivalence of spectral projections in semiclassical limit and a vanishing theorem for higher traces in Ktheory Kordyukov, Y; Varghese, Mathai; Shubin, M, Journal fur die Reine und Angewandte Mathematik 581 (193–236) 2005  Mtheory and characteristic classes Sati, Hicham, The Journal of High Energy Physics (Online Editions) 8 (0201–0208) 2005  Prolongations of linear overdetermined systems on affine and riemannian manifolds Eastwood, Michael, Circolo Matmeatico di Palermo. Rendiconti 75 (89–108) 2005  Risksensitive filtering and smoothing for continuoustime Markov processes Malcolm, William; Elliott, Robert; James, M, IEEE Transactions on Information Theory 51 (1731–1738) 2005  Smoothly parameterized ech cohomology of complex manifolds Bailey, T; Eastwood, Michael; Gindikin, S, Journal of Geometric Analysis 15 (9–23) 2005  The index of projective families of elliptic operators Varghese, Mathai; Melrose, R; Singer, I, Geometry & Topology Online 9 (341–373) 2005  Type II string theory and modularity Kriz, I; Sati, Hicham, The Journal of High Energy Physics (Online Editions) 8 (0381–03830) 2005  Type IIB string theory, Sduality, and generalized cohomology Kriz, I; Sati, Hicham, Nuclear Physics B 715 (639–664) 2005  Updating the parameters of a threshold scheme by minimal broadcast Barwick, Susan; Jackson, WenAi; Martin, K, IEEE Transactions on Information Theory 51 (620–633) 2005  Smoothly parameterized Cech cohomology of complex manifolds Bailey, T; Eastwood, Michael; Gindikin, S, Journal of Geometric Analysis 15 (9–23) 2005  A sufficient condition for the uniform exponential stability of timevarying systems with noise Grammel, G; Maizurna, Isna, Nonlinear AnalysisTheory Methods & Applications 56 (951–960) 2004  Characters of the discrete Heisenberg group and of its completion Tandra, Haryono; Moran, W, Mathematical Proceedings of the Cambridge Philosophical Society 136 (525–539) 2004  Geometrical contributions to secret sharing theory Jackson, WenAi; Martin, K; O'Keefe, Christine, Journal of Geometry 79 (102–133) 2004  Kirillov theory for a class of discrete nilpotent groups Tandra, Haryono; Moran, W, Canadian Journal of MathematicsJournal Canadien de Mathematiques 56 (883–896) 2004  Mtheory, type IIA superstrings, and elliptic cohomology Kriz, I; Sati, Hicham, Advances in Theoretical and Mathematical Physics 8 (345–394) 2004  Optimal linear perfect hash families with small parameters Barwick, Susan; Jackson, WenAi; Quinn, Catherine, Journal of Combinatorial Designs 12 (311–324) 2004  Some relations between twisted Ktheory and E8 gauge theory Varghese, Mathai; Sati, Hicham, The Journal of High Energy Physics (Online Editions) 3 (WWW 1–WWW 22) 2004  Subquadrangles of order s of generalized quadrangles of order (s, s2), Part I Brown, Matthew; Thas, J, Journal of Combinatorial Theory Series A 106 (15–32) 2004  Subquadrangles of order s of generalized quadrangles of order (s, s2), Part II Brown, Matthew; Thas, J, Journal of Combinatorial Theory Series A 106 (33–48) 2004  Topology and Hflux of Tdual manifolds Bouwknegt, Pier; Evslin, J; Varghese, Mathai, Physical Review Letters 92 (1816011–1816013) 2004  Measure Theory and Filtering: Introduction and Applications Aggoun, L; Elliott, Robert, (Cambridge University Press) 2004  Euler and his contribution to number theory Glen, Amy; Scott, Paul, Australian Mathematics Teacher 1 (2–5) 2004  Some relations between twisted Ktheory and E8 gauge theory Mathai, V; Sati, Hicham, The Journal of High Energy Physics (Online Editions) (WWW1–WWW22) 2004  Twozone model of shear dispersion in a channel using centre manifolds Roberts, Anthony John; Strunin, D, Quarterly Journal of Mechanics and Applied Mathematics 57 (363–378) 2004  A general fractional white noise theory and applications to finance Elliott, Robert; Van Der Hoek, John, Mathematical Finance 13 (301–330) 2003  Chern character in twisted Ktheory: Equivariant and holomorphic cases Varghese, Mathai; Stevenson, Daniel, Communications in Mathematical Physics 236 (161–186) 2003  Edge of the wedge theory in hypoanalytic manifolds Eastwood, Michael; Graham, C, Communications in Partial Differential Equations 28 (2003–2028) 2003  SeibergWittenFloer homology and Gluing formulae Carey, Alan; Wang, BaiLing, Acta Mathematica Sinica, English Series 19 (245–296) 2003  The geometric triangle for 3dimensional SeibergWitten monopoles Carey, Alan; Marcolli, M; Wang, BaiLing, Communications in Contemporary Mathematics 5 (197–250) 2003  Type1 Dbranes in an Hflux and twisted KOtheory Varghese, Mathai; Murray, Michael; Stevenson, Daniel, The Journal of High Energy Physics (Online Editions) 11 (www 1–www 22) 2003  The geometry and physics of the SeibergWitten equations Wu, Siye, chapter in Geometric analysis and applications to quantum field theory (Birkhauser) 157–203, 2002  On a convexity problem arising in queueing theory and electromagnetism Peake, M; Pearce, Charles, Sixth International Conference on Nonlinear Functional Analysis and Applications, Gyeongsang National University 01/09/00  Axial anomaly and topological charge in lattice gauge theory with overlap dirac operator Adams, Damian, Annals of Physics 296 (131–151) 2002  Families index theory for Overlap lattice Dirac operator. I Adams, Damian, Nuclear Physics B 624 (469–484) 2002  Families index theory, gauge fixing, and topology of the space of latticegauge fields: a summary Adams, Damian, Nuclear Physics BProceedings Supplements 109A (77–80) 2002  SeibergWitten and CassonWalker invariants for rational homology 3spheres Marcolli, M; Wang, BaiLing, Geometriae Dedicata 91 (45–58) 2002  The universal gerbe, DixmierDouady class, and gauge theory Carey, Alan; Mickelsson, J, Letters in Mathematical Physics 59 (47–60) 2002  Twisted Ktheory and Ktheory of bundle gerbes Bouwknegt, Pier; Carey, Alan; Varghese, Mathai; Murray, Michael; Stevenson, Daniel, Communications in Mathematical Physics 228 (17–45) 2002  Fast accurate computation of largescale IP traffic matrices from link loads  group of 15 > Zhang, Y; Roughan, Matthew; Duffield, N; Greenberg, A, Proceedings of the IEEE 90 (800–819) 2002  Lorentzian manifolds with special holonomy and parallel spinors Leistner, Thomas, Supplemento ai Rendiconti del Circolo Matematico di Palermo II 69 (131–159) 2002  On an extremal problem arising in queueing theory and telecommunications Peake, M; Pearce, Charles, chapter in Optimization and Related Topics (Kluwer Academic Publishers) 119–134, 2001  On positivity of the Kadison constant and noncommutative Bloch theory Varghese, Mathai, The Fifth Pacific Rim Geometry Conference, Sendai, Japan 25/07/00  Yet another construction of the central extension of the loop group Murray, Michael; Stevenson, Daniel, National Research Symposium on Geometric Analysis & Applications, AUSTRALIA 26/06/00  Commutative geometries are spin manifolds Rennie, Adam, Reviews in Mathematical Physics 13 (409–464) 2001  Csiszr fdivergence, Ostrowski's inequality and mutual information Dragomir, S; Gluscevic, Vido; Pearce, Charles, Nonlinear AnalysisTheory Methods & Applications 47 (2375–2386) 2001  Equivariant SeibergWitten Floer homology Marcolli, M; Wang, BaiLing, Communications in Analysis and Geometry 9 (451–639) 2001  Hilbert C*systems for actions of the circle group Baumgaertel, H; Carey, Alan, Reports on Mathematical Physics 47 (349–361) 2001  Linearised cavity theory with smooth detachment Haese, Peter, Australian Mathematical Society Gazette 28 (187–193) 2001  On the continuum limit of fermionic topological charge in lattice gauge theory Adams, David, Journal of Mathematical Physics 42 (5522–5533) 2001  Poisson manifolds in generalised Hamiltonian biomechanics Ivancevic, V; Pearce, Charles, Bulletin of the Australian Mathematical Society 64 (515–526) 2001  Refinements of some bounds in information theory Matic, M; Pearce, Charles; Pecaric, Josip, The ANZIAM Journal 42 (387–398) 2001  Some constructions of small generalized polygons Polster, Burkhard; Van Maldeghem, H, Journal of Combinatorial Theory Series A 96 (162–179) 2001  Subquadrangles of generalized quadrangles of order (q2, q), q Even O'Keefe, Christine; Penttila, T, Journal of Combinatorial Theory Series A 94 (218–229) 2001  The modelling and numerical simulation of causal nonlinear systems Howlett, P; Torokhti, Anatoli; Pearce, Charles, Nonlinear AnalysisTheory Methods & Applications 47 (5559–5572) 2001  Twisted index theory on good orbifolds, II: Fractional quantum numbers Marcolli, M; Varghese, Mathai, Communications in Mathematical Physics 217 (55–87) 2001  Complex Quaternionic Kahler Manifolds Eastwood, Michael, chapter in Further advances in twistor theory. Vol. III, Curved twistor spaces (Chapman & Hall/CRC) 31–34, 2001  Reporting of clinical trials using group sequential methods Moran, John; Peake, Sandra; Solomon, Patricia, Critical care and Resuscitation 3 (146–147) 2001  Introduction to ChernSimons gauge theory on general 3manifolds Adams, David, chapter in Mathematical methods in physics (World Scientific Publishing) 1–43, 2000  Shannon's and related inequalities in information theory Matic, M; Pearce, Charles; Pecaric, Josip, chapter in Survey on classical inequalities (Kluwer Academic Publishers) 127–164, 2000  Twistor theory Murray, Michael, chapter in Geometric approaches to differential equations (Cambridge University Press) 201–223, 2000  A gerbe obstruction to quantization of fermions on odddimensional manifolds with boundary Carey, Alan; Mickelsson, J, Letters in Mathematical Physics 51 (145–160) 2000  A remark of Schwarz's topological field theory Adams, David; Prodanov, E, Letters in Mathematical Physics 51 (249–255) 2000  Bundle gerbes applied to quantum field theory Carey, Alan; Mickelsson, J; Murray, Michael, Reviews in Mathematical Physics 12 (65–90) 2000  Bundle gerbes: stable isomorphism and local theory Murray, Michael; Stevenson, Daniel, Journal of the London Mathematical Society 62 (925–937) 2000  DBranes, BFields and twisted Ktheory Bouwknegt, Pier; Varghese, Mathai, The Journal of High Energy Physics (Online Editions) 3 (1–11) 2000  Global obstructions to gaugeinvariance in chiral gauge theory on the lattice Adams, David, Nuclear Physics B 589 (633–656) 2000  Notes on SeibergWittenFloer theory Carey, Alan; Wang, BaiLing, Contemporary Mathematics 258 (71–85) 2000  Quantum group actions on the Cuntz algebra Carey, Alan; Paolucci, A; Zhang, R, Annales Henri Poincare 1 (1097–1122) 2000 
Advanced search options
You may be able to improve your search results by using the following syntax:
Query  Matches the following 

Asymptotic Equation  Anything with "Asymptotic" or "Equation". 
+Asymptotic +Equation  Anything with "Asymptotic" and "Equation". 
+Stokes "NavierStokes"  Anything containing "Stokes" but not "NavierStokes". 
Dynam*  Anything containing "Dynamic", "Dynamical", "Dynamicist" etc. 
