The University of Adelaide
You are here
Text size: S | M | L
Printer Friendly Version
October 2018
MTWTFSS
1234567
891011121314
15161718192021
22232425262728
293031    
       

Search the School of Mathematical Sciences

Find in People Courses Events News Publications

People matching "Monodromy of the Hitchin system and components of "

Professor Patty Solomon
Professor of Statistical Bioinformatics


More about Patty Solomon...
Dr Hang Wang
ARC DECRA Fellow


More about Hang Wang...

Events matching "Monodromy of the Hitchin system and components of "

Good and Bad Vibes
15:10 Fri 23 Feb, 2007 :: G08 Mathematics Building University of Adelaide :: Prof. Maurice Dodson

Media...
Collapsing bridges and exploding rockets have been associated with vibrations in resonance with natural frequencies. As well, the stability of the solar system and the existence of solutions of Schrödinger\'s equation and the wave equation are problematic in the presence of resonances. Such resonances can be avoided, or at least mitigated, by using ideas from Diophantine approximation, a branch of number theory. Applications of Diophantine approximation to these problems will be given and will include a connection with LISA (Laser Interferometer Space Antenna), a space-based gravity wave detector under construction.
Identifying the source of photographic images by analysis of JPEG quantization artifacts
15:10 Fri 27 Apr, 2007 :: G08 Mathematics Building University of Adelaide :: Dr Matthew Sorell

Media...
In a forensic context, digital photographs are becoming more common as sources of evidence in criminal and civil matters. Questions that arise include identifying the make and model of a camera to assist in the gathering of physical evidence; matching photographs to a particular camera through the camera’s unique characteristics; and determining the integrity of a digital image, including whether the image contains steganographic information. From a digital file perspective, there is also the question of whether metadata has been deliberately modified to mislead the investigator, and in the case of multiple images, whether a timeline can be established from the various timestamps within the file, imposed by the operating system or determined by other image characteristics. This talk is concerned specifically with techniques to identify the make, model series and particular source camera model given a digital image. We exploit particular characteristics of the camera’s JPEG coder to demonstrate that such identification is possible, and that even when an image has subsequently been re-processed, there are often sufficient residual characteristics of the original coding to at least narrow down the possible camera models of interest.
Flooding in the Sundarbans
15:10 Fri 18 May, 2007 :: G08 Mathematics Building University of Adelaide :: Steve Need

Media...
The Sunderbans is a region of deltaic isles formed in the mouth of the Ganges River on the border between India and Bangladesh. As the largest mangrove forest in the world it is a world heritage site, however it is also home to several remote communities who have long inhabited some regions. Many of the inhabited islands are low-lying and are particularly vulnerable to flooding, a major hazard of living in the region. Determining suitable levels of protection to be provided to these communities relies upon accurate assessment of the flood risk facing these communities. Only recently the Indian Government commissioned a study into flood risk in the Sunderbans with a view to determine where flood protection needed to be upgraded.

Flooding due to rainfall is limited due to the relatively small catchment sizes, so the primary causes of flooding in the Sunderbans are unnaturally high tides, tropical cyclones (which regularly sweep through the bay of Bengal) or some combination of the two. Due to the link between tidal anomaly and drops in local barometric pressure, the two causes of flooding may be highly correlated. I propose stochastic methods for analysing the flood risk and present the early work of a case study which shows the direction of investigation. The strategy involves linking several components; a stochastic approximation to a hydraulic flood routing model, FARIMA and GARCH models for storm surge and a stochastic model for cyclone occurrence and tracking. The methods suggested are general and should have applications in other cyclone affected regions.

Modelling gene networks: the case of the quorum sensing network in bacteria.
15:10 Fri 1 Jun, 2007 :: G08 Mathematics Building University of Adelaide :: Dr Adrian Koerber

The quorum sensing regulatory gene-network is employed by bacteria to provide a measure of their population-density and switch their behaviour accordingly. I will present an overview of quorum sensing in bacteria together with some of the modelling approaches I\'ve taken to describe this system. I will also discuss how this system relates to virulence and medical treatment, and the insights gained from the mathematics.
Insights into the development of the enteric nervous system and Hirschsprung's disease
15:10 Fri 24 Aug, 2007 :: G08 Mathematics building University of Adelaide :: Assoc. Prof. Kerry Landman :: Department of Mathematics and Statistics, University of Melbourne

During the development of the enteric nervous system, neural crest (NC) cells must first migrate into and colonise the entire gut from stomach to anal end. The migratory precursor NC cells change type and differentiate into neurons and glia cells. These cells form the enteric nervous system, which gives rise to normal gut function and peristaltic contraction. Failure of the NC cells to invade the whole gut results in a lack of neurons in a length of the terminal intestine. This potentially fatal condition, marked by intractable constipation, is called Hirschsprung's Disease. The interplay between cell migration, cell proliferation and embryonic gut growth are important to the success of the NC cell colonisation process. Multiscale models are needed in order to model the different spatiotemporal scales of the NC invasion. For example, the NC invasion wave moves into unoccupied regions of the gut with a wave speed of around 40 microns per hour. New time-lapse techniques have shown that there is a web-like network structure within the invasion wave. Furthermore, within this network, individual cell trajectories vary considerably. We have developed a population-scale model for basic rules governing NC cell invasive behaviour incorporating the important mechanisms. The model predictions were tested experimentally. Mathematical and experimental results agreed. The results provide an understanding of why many of the genes implicated in Hirschsprung's Disease influence NC population size. Our recently developed individual cell-based model also produces an invasion wave with a well-defined wave speed; however, in addition Individual cell trajectories within the invasion wave can be extracted. Further challenges in modeling the various scales of the developmental system will be discussed.
Queues with Advance Reservations
15:10 Fri 21 Sep, 2007 :: G04 Napier Building University of Adelaide :: Prof. Peter Taylor :: Department of Mathematics and Statistics, University of Melbourne

Queues where, on "arrival", customers make a reservation for service at some time in the future are endemic. However there is surprisingly little about them in the literature. Simulations illustrate some interesting implications of the facility to make such reservations. For example introducing independent and identically distributed reservation periods into an Erlang loss system can either increase or decrease the blocking probability from that given by Erlang's formula, despite the fact that the process of 'reserved arrivals' is still Poisson. In this talk we shall discuss a number of ways of looking at such queues. In particular, we shall obtain various transient and stationary distributions associated with the "bookings diary" for the infinite server system. However, this does not immediately answer the question of how to calculate the above-mentioned blocking probabilities. We shall conclude with a few suggestions as to how this calculation might be carried out.
Rubber Ballons -- Prototypes of Hysteresis
15:10 Fri 16 Nov, 2007 :: G04 Napier Building University of Adelaide :: Emeritus Prof. Ingo Muller :: Technical University Berlin

Rubber balloons are characterized by a non-monotone pressure-radius relation which presages interesting non-trivial stability problems. A stability criterion is developed and exploited in order to show that the balloon may be stabilized at any radius by loading it with a piston under an elastic spring, if only the spring is hard enough. If two connected balloons are subject to an inflation-deflation cycle, the pressure-radius curve exhibits a fairly simple hysteresis loop. More complex hysteresis loops appear when more balloons are all inflated together. And if many balloons are inflated and deflated at the same time, the hysteresis loop assumes the form reminiscent of pseudo-elasticity. Stability in those complex cases is determined by a simple suggestive argument. References: [1] W.Kitsche, I.Muller, P.Strehlow. Simulation of pseudo-elastic behaviour in a system of rubber balloons. In: Metastability and Incompletely Posed Problems, S.Antman, J.L.Ericksen, D.Kinderlehrer, I.Muller (eds.) IMA Volume No.3, Springer Verlag, New York (1987) [2] I.Muller, P.Strehlow, Rubber and Rubber Balloons, Springer Lecture Notes on Physics, Springer Verlag, Heidelberg (2004)
Similarity solutions for surface-tension driven flows
15:10 Fri 14 Mar, 2008 :: LG29 Napier Building University of Adelaide :: Prof John Lister :: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK

The breakup of a mass of fluid into drops is a ubiquitous phenomenon in daily life, the natural environment and technology, with common examples including a dripping tap, ocean spray and ink-jet printing. It is a feature of many generic industrial processes such as spraying, emulsification, aeration, mixing and atomisation, and is an undesirable feature in coating and fibre spinning. Surface-tension driven pinch-off and the subsequent recoil are examples of finite-time singularities in which the interfacial curvature becomes infinite at the point of disconnection. As a result, the flow near the point of disconnection becomes self-similar and independent of initial and far-field conditions. Similarity solutions will be presented for the cases of inviscid and very viscous flow, along with comparison to experiments. In each case, a boundary-integral representation can be used both to examine the time-dependent behaviour and as the basis of a modified Newton scheme for direct solution of the similarity equations.
Computational Methods for Phase Response Analysis of Circadian Clocks
15:10 Fri 18 Jul, 2008 :: G04 Napier Building University of Adelaide. :: Prof. Linda Petzold :: Dept. of Mechanical and Environmental Engineering, University of California, Santa Barbara

Circadian clocks govern daily behaviors of organisms in all kingdoms of life. In mammals, the master clock resides in the suprachiasmatic nucleus (SCN) of the hypothalamus. It is composed of thousands of neurons, each of which contains a sloppy oscillator - a molecular clock governed by a transcriptional feedback network. Via intercellular signaling, the cell population synchronizes spontaneously, forming a coherent oscillation. This multi-oscillator is then entrained to its environment by the daily light/dark cycle.

Both at the cellular and tissular levels, the most important feature of the clock is its ability not simply to keep time, but to adjust its time, or phase, to signals. We present the parametric impulse phase response curve (pIPRC), an analytical analog to the phase response curve (PRC) used experimentally. We use the pIPRC to understand both the consequences of intercellular signaling and the light entrainment process. Further, we determine which model components determine the phase response behavior of a single oscillator by using a novel model reduction technique. We reduce the number of model components while preserving the pIPRC and then incorporate the resultant model into a couple SCN tissue model. Emergent properties, including the ability of the population to synchronize spontaneously are preserved in the reduction. Finally, we present some mathematical tools for the study of synchronization in a network of coupled, noisy oscillators.

Symmetry-breaking and the Origin of Species
15:10 Fri 24 Oct, 2008 :: G03 Napier Building University of Adelaide :: Toby Elmhirst :: ARC Centre of Excellence for Coral Reef Studies, James Cook University

The theory of partial differential equations can say much about generic bifurcations from spatially homogeneous steady states, but relatively little about generic bifurcations from unimodal steady states. In many applications, spatially homogeneous steady states correspond to low-energy physical states that are destabilized as energy is fed into the system, and in these cases standard PDE theory can yield some impressive and elegant results. However, for many macroscopic biological systems such results are less useful because low-energy states do not hold the same priviledged position as they do in physical and chemical systems. For example, speciation -- the evolutionary process by which new species are formed -- can be seen as the destabilization of a unimodal density distribution over phenotype space. Given the diversity of species and environments, generic results are clearly needed, but cannot be gained from PDE theory. Indeed, such questions cannot even be adequately formulated in terms of PDEs. In this talk I will introduce 'Pod Systems' which can provide an answer to the question; 'What happens, generically, when a unimodal steady state loses stability?' In the pod system formalization, the answer involves elements of equivariant bifurcation theory and suggests that new species can arise as the result of broken symmetries.
Oceanographic Research at the South Australian Research and Development Institute: opportunities for collaborative research
15:10 Fri 21 Nov, 2008 :: Napier G04 :: Associate Prof John Middleton :: South Australian Research and Development Institute

Increasing threats to S.A.'s fisheries and marine environment have underlined the increasing need for soundly based research into the ocean circulation and ecosystems (phyto/zooplankton) of the shelf and gulfs. With support of Marine Innovation SA, the Oceanography Program has within 2 years, grown to include 6 FTEs and a budget of over $4.8M. The program currently leads two major research projects, both of which involve numerical and applied mathematical modelling of oceanic flow and ecosystems as well as statistical techniques for the analysis of data. The first is the implementation of the Southern Australian Integrated Marine Observing System (SAIMOS) that is providing data to understand the dynamics of shelf boundary currents, monitor for climate change and understand the phyto/zooplankton ecosystems that under-pin SA's wild fisheries and aquaculture. SAIMOS involves the use of ship-based sampling, the deployment of underwater marine moorings, underwater gliders, HF Ocean RADAR, acoustic tracking of tagged fish and Autonomous Underwater vehicles.

The second major project involves measuring and modelling the ocean circulation and biological systems within Spencer Gulf and the impact on prawn larval dispersal and on the sustainability of existing and proposed aquaculture sites. The discussion will focus on opportunities for collaborative research with both faculty and students in this exciting growth area of S.A. science.

Bursts and canards in a pituitary lactotroph model
15:10 Fri 6 Mar, 2009 :: Napier LG29 :: Dr Martin Wechselberger :: University of Sydney

Bursting oscillations in nerve cells have been the focus of a great deal of attention by mathematicians. These are typically studied by taking advantage of multiple time-scales in the system under study to perform a singular perturbation analysis. Bursting also occurs in hormone-secreting pituitary cells, but is characterized by fast bursts with small electrical impulses. Although the separation of time-scales is not as clear, singular perturbation analysis is still the key to understand the bursting mechanism. In particular, we will show that canards are responsible for the observed oscillatory behaviour.
Tummy troubles
12:10 Thu 9 Apr, 2009 :: Napier 210 :: Dr Ben Binder

Media...
Hirschsprung's disease is relatively common, affecting roughly 1 in 5000 newly born babies each year in Australia. The disease occurs when there is an incomplete formation of the nervous system in the gut. Mathematical models can help in determining the underlying mechanisms that cause the disease. Comparisons between theoretical predictions and experimental results will be made.
Quantum Billiards
15:10 Fri 7 Aug, 2009 :: Badger labs G13 Macbeth Lecture Theatre :: Prof Andrew Hassell :: Australian National University

By a "billiard" I mean a bounded plane domain D, with smooth (enough) boundary. Quantum billiards is the study of properties of eigenfunctions of the Laplacian on D, i.e. solutions of $\Delta u = Eu$, where $u$ is a function on D vanishing at the boundary, $\Delta$ is the Laplacian on D and $E$ is a real number, in the limit as $E \to \infty$. This large-E limit is the "classical limit" in which eigenfunctions exhibit behaviour related to the classical billiard system (a billiard ball moving around inside D, bouncing elastically off the boundary). I will talk about Quantum Ergodicity, which is the property that "most of" the eigenfunctions become uniformly distributed in D, asymptotically as $E \to \infty$, i.e. they are the same size, on average, in all parts of the domain D; and the stronger property of Quantum Unique Ergodicity, which is the same property with the words "most of" deleted.
Modelling fluid-structure interactions in micro-devices
15:00 Thu 3 Sep, 2009 :: School Board Room :: Dr Richard Clarke :: University of Auckland

The flows generated in many modern micro-devices possess very little convective inertia, however, they can be highly unsteady and exert substantial hydrodynamic forces on the device components. Typically these components exhibit some degree of compliance, which traditionally has been treated using simple one-dimensional elastic beam models. However, recent findings have suggested that three-dimensional effects can be important and, accordingly, we consider the elastohydrodynamic response of a rapidly oscillating three-dimensional elastic plate that is immersed in a viscous fluid. In addition, a preliminary model will be presented which incorporates the presence of a nearby elastic wall.
Understanding hypersurfaces through tropical geometry
12:10 Fri 25 Sep, 2009 :: Napier 102 :: Dr Mohammed Abouzaid :: Massachusetts Institute of Technology

Given a polynomial in two or more variables, one may study the zero locus from the point of view of different mathematical subjects (number theory, algebraic geometry, ...). I will explain how tropical geometry allows to encode all topological aspects by elementary combinatorial objects called "tropical varieties." Mohammed Abouzaid received a B.S. in 2002 from the University of Richmond, and a Ph.D. in 2007 from the University of Chicago under the supervision of Paul Seidel. He is interested in symplectic topology and its interactions with algebraic geometry and differential topology, in particular the homological mirror symmetry conjecture. Since 2007 he has been a postdoctoral fellow at MIT, and a Clay Mathematics Institute Research Fellow.
Irreducible subgroups of SO(2,n)
13:10 Fri 16 Oct, 2009 :: School Board Room :: Dr Thomas Leistner :: University of Adelaide

Berger's classification of irreducibly represented Lie groups that can occur as holonomy groups of semi-Riemannian manifolds is a remarkable result of modern differential geometry. What is remarkable about it is that it is so short and that only so few types of geometry can occur. In Riemannian signature this is even more remarkable, taking into account that any representation of a compact Lie group admits a positive definite invariant scalar product. Hence, for any not too small n there is an abundance of irreducible subgroups of SO(n). We show that in other signatures the situation is quite different with, for example, SO(1,n) having no proper irreducible subgroups. We will show how this and the corresponding result about irreducible subgroups of SO(2,n) follows from the Karpelevich-Mostov theorem. (This is joint work with Antonio J. Di Scala, Politecnico di Torino.)
Eigen-analysis of fluid-loaded compliant panels
15:10 Wed 9 Dec, 2009 :: Santos Lecture Theatre :: Prof Tony Lucey :: Curtin University of Technology

This presentation concerns the fluid-structure interaction (FSI) that occurs between a fluid flow and an arbitrarily deforming flexible boundary considered to be a flexible panel or a compliant coating that comprises the wetted surface of a marine vehicle. We develop and deploy an approach that is a hybrid of computational and theoretical techniques. The system studied is two-dimensional and linearised disturbances are assumed. Of particular novelty in the present work is the ability of our methods to extract a full set of fluid-structure eigenmodes for systems that have strong spatial inhomogeneity in the structure of the flexible wall.

We first present the approach and some results of the system in which an ideal, zero-pressure gradient, flow interacts with a flexible plate held at both its ends. We use a combination of boundary-element and finite-difference methods to express the FSI system as a single matrix equation in the interfacial variable. This is then couched in state-space form and standard methods used to extract the system eigenvalues. It is then shown how the incorporation of spatial inhomogeneity in the stiffness of the plate can be either stabilising or destabilising. We also show that adding a further restraint within the streamwise extent of a homogeneous panel can trigger an additional type of hydroelastic instability at low flow speeds. The mechanism for the fluid-to-structure energy transfer that underpins this instability can be explained in terms of the pressure-signal phase relative to that of the wall motion and the effect on this relationship of the added wall restraint.

We then show how the ideal-flow approach can be conceptually extended to include boundary-layer effects. The flow field is now modelled by the continuity equation and the linearised perturbation momentum equation written in velocity-velocity form. The near-wall flow field is spatially discretised into rectangular elements on an Eulerian grid and a variant of the discrete-vortex method is applied. The entire fluid-structure system can again be assembled as a linear system for a single set of unknowns - the flow-field vorticity and the wall displacements - that admits the extraction of eigenvalues. We then show how stability diagrams for the fully-coupled finite flow-structure system can be assembled, in doing so identifying classes of wall-based or fluid-based and spatio-temporal wave behaviour.

The exceptional Lie group G_2 and rolling balls
15:10 Fri 19 Feb, 2010 :: Napier LG28 :: Prof Pawel Nurowski :: University of Warsaw

In this talk, after a brief history of how the exceptional Lie group G_2 was discovered, I present various appearances of this group in mathematics. Its physical realisation as a symmetry group of a simple mechanical system will also be discussed.
Estimation of sparse Bayesian networks using a score-based approach
15:10 Fri 30 Apr, 2010 :: School Board Room :: Dr Jessica Kasza :: University of Copenhagen

The estimation of Bayesian networks given high-dimensional data sets, with more variables than there are observations, has been the focus of much recent research. These structures provide a flexible framework for the representation of the conditional independence relationships of a set of variables, and can be particularly useful in the estimation of genetic regulatory networks given gene expression data.

In this talk, I will discuss some new research on learning sparse networks, that is, networks with many conditional independence restrictions, using a score-based approach. In the case of genetic regulatory networks, such sparsity reflects the view that each gene is regulated by relatively few other genes. The presented approach allows prior information about the overall sparsity of the underlying structure to be included in the analysis, as well as the incorporation of prior knowledge about the connectivity of individual nodes within the network.

Interpolation of complex data using spatio-temporal compressive sensing
13:00 Fri 28 May, 2010 :: Santos Lecture Theatre :: A/Prof Matthew Roughan :: School of Mathematical Sciences, University of Adelaide

Many complex datasets suffer from missing data, and interpolating these missing elements is a key task in data analysis. Moreover, it is often the case that we see only a linear combination of the desired measurements, not the measurements themselves. For instance, in network management, it is easy to count the traffic on a link, but harder to measure the end-to-end flows. Additionally, typical interpolation algorithms treat either the spatial, or the temporal components of data separately, but in many real datasets have strong spatio-temporal structure that we would like to exploit in reconstructing the missing data. In this talk I will describe a novel reconstruction algorithm that exploits concepts from the growing area of compressive sensing to solve all of these problems and more. The approach works so well on Internet traffic matrices that we can obtain a reasonable reconstruction with as much as 98% of the original data missing.
A variance constraining ensemble Kalman filter: how to improve forecast using climatic data of unobserved variables
15:10 Fri 28 May, 2010 :: Santos Lecture Theatre :: A/Prof Georg Gottwald :: The University of Sydney

Data assimilation aims to solve one of the fundamental problems ofnumerical weather prediction - estimating the optimal state of the atmosphere given a numerical model of the dynamics, and sparse, noisy observations of the system. A standard tool in attacking this filtering problem is the Kalman filter.

We consider the problem when only partial observations are available. In particular we consider the situation where the observational space consists of variables which are directly observable with known observational error, and of variables of which only their climatic variance and mean are given. We derive the corresponding Kalman filter in a variational setting.

We analyze the variance constraining Kalman filter (VCKF) filter for a simple linear toy model and determine its range of optimal performance. We explore the variance constraining Kalman filter in an ensemble transform setting for the Lorenz-96 system, and show that incorporating the information on the variance on some un-observable variables can improve the skill and also increase the stability of the data assimilation procedure.

Using methods from dynamical systems theory we then systems where the un-observed variables evolve deterministically but chaotically on a fast time scale.

This is joint work with Lewis Mitchell and Sebastian Reich.

On affine BMW algebras
13:10 Fri 25 Jun, 2010 :: Napier 208 :: Prof Arun Ram :: University of Melbourne

I will describe a family of algebras of tangles (which give rise to link invariants following the methods of Reshetikhin-Turaev and Jones) and describe some aspects of their structure and their representation theory. The main goal will be to explain how to use universal Verma modules for the symplectic group to compute the representation theory of affine BMW (Birman-Murakami-Wenzl) algebras.
The Glass Bead Game
15:10 Fri 25 Jun, 2010 :: Napier G04 :: Prof Arun Ram :: University of Melbourne

This title is taken from the novel of Hermann Hesse. In joint work with A. Kleshchev, we were amused to discover a glass bead game for constructing representations of quiver Hecke algebras (algebras recently defined by Khovanov-Lauda and Rouquier whose representation theory categorifies quantum groups of Kac-Moody Lie algebras). In fact, the glass bead game is tantalizingly simple, and may soon be marketed in your local toy store. I will explain how this game works, and some of the fascinating numerology that appears in the scoring of the plays.
Mathematica Seminar
15:10 Wed 28 Jul, 2010 :: Engineering Annex 314 :: Kim Schriefer :: Wolfram Research

The Mathematica Seminars 2010 offer an opportunity to experience the applicability, ease-of-use, as well as the advancements of Mathematica 7 in education and academic research. These seminars will highlight the latest directions in technical computing with Mathematica, and the impact this technology has across a wide range of academic fields, from maths, physics and biology to finance, economics and business. Those not yet familiar with Mathematica will gain an overview of the system and discover the breadth of applications it can address, while experts will get firsthand experience with recent advances in Mathematica like parallel computing, digital image processing, point-and-click palettes, built-in curated data, as well as courseware examples.
Compound and constrained regression analyses for EIV models
15:05 Fri 27 Aug, 2010 :: Napier LG28 :: Prof Wei Zhu :: State University of New York at Stony Brook

In linear regression analysis, randomness often exists in the independent variables and the resulting models are referred to errors-in-variables (EIV) models. The existing general EIV modeling framework, the structural model approach, is parametric and dependent on the usually unknown underlying distributions. In this work, we introduce a general non-parametric EIV modeling framework, the compound regression analysis, featuring an intuitive geometric representation and a 1-1 correspondence to the structural model. Properties, examples and further generalizations of this new modeling approach are discussed in this talk.
Contraction subgroups in locally compact groups
13:10 Fri 17 Sep, 2010 :: Ingkarni Wardli B20 (Suite 4) :: Prof George Willis :: University of Newcastle

For each automorphism, $\alpha$, of the locally compact group $G$ there is a corresponding {\sl contraction subgroup\/}, $\hbox{con}(\alpha)$, which is the set of $x\in G$ such that $\alpha^n(x)$ converges to the identity as $n\to \infty$. Contractions subgroups are important in representation theory, through the Mautner phenomenon, and in the study of convolution semigroups. If $G$ is a Lie group, then $\hbox{con}(\alpha)$ is automatically closed, can be described in terms of eigenvalues of $\hbox{ad}(\alpha)$, and is nilpotent. Since any connected group may be approximated by Lie groups, contraction subgroups of connected groups are thus well understood. Following a general introduction, the talk will focus on contraction subgroups of totally disconnected groups. A criterion for non-triviality of $\hbox{con}(\alpha)$ will be described (joint work with U.~Baumgartner) and a structure theorem for $\hbox{con}(\alpha)$ when it is closed will be presented (joint with H.~Gl\"oeckner).
Explicit numerical simulation of multiphase and confined flows
15:10 Fri 8 Oct, 2010 :: Napier G04 :: Prof Mark Biggs :: University of Adelaide

Simulations in which the system of interest is essentially mimicked are termed explicit numerical simulations (ENS). Direct numerical simulation (DNS) of turbulence is a well known and long-standing example of ENS. Such simulations provide a basis for elucidating fundamentals in a way that is impossible experimentally and formulating and parameterizing engineering models with reduced experimentation. In this presentation, I will first outline the concept of ENS. I will then report a number of ENS-based studies of various multiphase fluid systems and flows in porous media. In the first of these studies, which is concerned with flow of suspensions in porous media accompanied by deposition, ENS is used to demonstrate the significant inadequacies of the classical trajectory models typically used for the study of such problems. In the second study, which is concerned with elucidating the change in binary droplet collision behaviour with Capillary number (Ca) and Reynolds number (Re), a range of collision scenarios are revealed as a function of Ca and Re and it appears that the boundaries between these scenarios in the Ca-Re space are not distinct but, rather, smeared. In the final study, it is shown that ENS an be used to predict ab initio the hydrodynamic properties of single phase flow through porous media from the Darcy to the turbulent regimes.
Principal Component Analysis Revisited
15:10 Fri 15 Oct, 2010 :: Napier G04 :: Assoc. Prof Inge Koch :: University of Adelaide

Since the beginning of the 20th century, Principal Component Analysis (PCA) has been an important tool in the analysis of multivariate data. The principal components summarise data in fewer than the original number of variables without losing essential information, and thus allow a split of the data into signal and noise components. PCA is a linear method, based on elegant mathematical theory. The increasing complexity of data together with the emergence of fast computers in the later parts of the 20th century has led to a renaissance of PCA. The growing numbers of variables (in particular, high-dimensional low sample size problems), non-Gaussian data, and functional data (where the data are curves) are posing exciting challenges to statisticians, and have resulted in new research which extends the classical theory. I begin with the classical PCA methodology and illustrate the challenges presented by the complex data that we are now able to collect. The main part of the talk focuses on extensions of PCA: the duality of PCA and the Principal Coordinates of Multidimensional Scaling, Sparse PCA, and consistency results relating to principal components, as the dimension grows. We will also look at newer developments such as Principal Component Regression and Supervised PCA, nonlinear PCA and Functional PCA.
IGA-AMSI Workshop: Dirac operators in geometry, topology, representation theory, and physics
10:00 Mon 18 Oct, 2010 :: 7.15 Ingkarni Wardli :: Prof Dan Freed :: University of Texas, Austin

Lecture Series by Dan Freed (University of Texas, Austin). Dirac introduced his eponymous operator to describe electrons in quantum theory. It was rediscovered by Atiyah and Singer in their study of the index problem on manifolds. In these lectures we explore new theorems and applications. Several of these also involve K-theory in its recent twisted and differential variations. These lectures will be supplemented by additional talks by invited speakers. For more details, please see the conference webpage: http://www.iga.adelaide.edu.au/workshops/WorkshopOct2010/
Queues with skill based routing under FCFS–ALIS regime
15:10 Fri 11 Feb, 2011 :: B17 Ingkarni Wardli :: Prof Gideon Weiss :: The University of Haifa, Israel

We consider a system where jobs of several types are served by servers of several types, and a bipartite graph between server types and job types describes feasible assignments. This is a common situation in manufacturing, call centers with skill based routing, matching of parent-child in adoption or matching in kidney transplants etc. We consider the case of first come first served policy: jobs are assigned to the first available feasible server in order of their arrivals. We consider two types of policies for assigning customers to idle servers - a random assignment and assignment to the longest idle server (ALIS) We survey some results for four different situations:

  • For a loss system we find conditions for reversibility and insensitivity.
  • For a manufacturing type system, in which there is enough capacity to serve all jobs, we discuss a product form solution and waiting times.
  • For an infinite matching model in which an infinite sequence of customers of IID types, and infinite sequence of servers of IID types are matched according to first come first, we obtain a product form stationary distribution for this system, which we use to calculate matching rates.
  • For a call center model with overload and abandonments we make some plausible observations.

This talk surveys joint work with Ivo Adan, Rene Caldentey, Cor Hurkens, Ed Kaplan and Damon Wischik, as well as work by Jeremy Visschers, Rishy Talreja and Ward Whitt.

What is a p-adic number?
12:10 Mon 28 Feb, 2011 :: 5.57 Ingkarni Wardli :: Alexander Hanysz :: University of Adelaide

The p-adic numbers are: (a) something that visiting seminar speakers invoke when the want to frighten the audience; (b) a fascinating and useful concept in modern algebra; (c) alphabetically just before q-adic numbers? In this talk I hope to convince the audience that option (b) is worth considering. I will begin by reviewing how we get from integers via rational numbers to the real number system. Then we'll look at how this process can be "twisted" to produce something new.
Modelling of Hydrological Persistence in the Murray-Darling Basin for the Management of Weirs
12:10 Mon 4 Apr, 2011 :: 5.57 Ingkarni Wardli :: Aiden Fisher :: University of Adelaide

The lakes and weirs along the lower Murray River in Australia are aggregated and considered as a sequence of five reservoirs. A seasonal Markov chain model for the system will be implemented, and a stochastic dynamic program will be used to find optimal release strategies, in terms of expected monetary value (EMV), for the competing demands on the water resource given the stochastic nature of inflows. Matrix analytic methods will be used to analyse the system further, and in particular enable the full distribution of first passage times between any groups of states to be calculated. The full distribution of first passage times can be used to provide a measure of the risk associated with optimum EMV strategies, such as conditional value at risk (CVaR). The sensitivity of the model, and risk, to changing rainfall scenarios will be investigated. The effect of decreasing the level of discretisation of the reservoirs will be explored. Also, the use of matrix analytic methods facilitates the use of hidden states to allow for hydrological persistence in the inflows. Evidence for hydrological persistence of inflows to the lower Murray system, and the effect of making allowance for this, will be discussed.
Centres of cyclotomic Hecke algebras
13:10 Fri 15 Apr, 2011 :: Mawson 208 :: A/Prof Andrew Francis :: University of Western Sydney

The cyclotomic Hecke algebras, or Ariki-Koike algebras $H(R,q)$, are deformations of the group algebras of certain complex reflection groups $G(r,1,n)$, and also are quotients of the ubiquitous affine Hecke algebra. The centre of the affine Hecke algebra has been understood since Bernstein in terms of the symmetric group action on the weight lattice. In this talk I will discuss the proof that over an arbitrary unital commutative ring $R$, the centre of the affine Hecke algebra maps \emph{onto} the centre of the cyclotomic Hecke algebra when $q-1$ is invertible in $R$. This is the analogue of the fact that the centre of the Hecke algebra of type $A$ is the set of symmetric polynomials in Jucys-Murphy elements (formerly known as he Dipper-James conjecture). Key components of the proof include the relationship between the trace functions on the affine Hecke algebra and on the cyclotomic Hecke algebra, and the link to the affine braid group. This is joint work with John Graham and Lenny Jones.
Comparison of Spectral and Wavelet Estimation of the Dynamic Linear System of a Wade Energy Device
12:10 Mon 2 May, 2011 :: 5.57 Ingkarni Wardli :: Mohd Aftar :: University of Adelaide

Renewable energy has been one of the main issues nowadays. The implications of fossil energy and nuclear energy along with its limited source have triggered researchers and industries to find another source of renewable energy for example hydro energy, wind energy and also wave energy. In this seminar, I will talk about the spectral estimation and wavelet estimation of a linear dynamical system of motion for a heaving buoy wave energy device. The spectral estimates was based on the Fourier transform, while the wavelet estimate was based on the wavelet transform. Comparisons between two spectral estimates with a wavelet estimate of the amplitude response operator(ARO) for the dynamical system of the wave energy device shows that the wavelet estimate ARO is much better for data with and without noise.
Where is the best place in Australia to build an enhanced geothermal system?
12:10 Mon 30 May, 2011 :: 5.57 Ingkarni Wardli :: Ms Josephine Varney :: University of Adelaide

This week, my parents will join around 185,000 other Australians, in a significant move towards renewable energy, and install solar panels on the roof of their house. While solar energy is an important and useful form of renewable energy it is not able to provide power all the time. Opponents of renewable energy maintain that until renewable energy can provide energy all the time, traditional fossil-fuel generated power will be required to produce our base-load power. Geothermal energy is a renewable energy that can provide energy all the time. However, due to its special geological requirements, it can only be produced in a very small number of places in the world. An Enhanced Geothermal System (EGS) is a new technology which allows geothermal energy to be produced in a much wider range of places than traditional geothermal energy. Currently, there are ten different companies investigating possible EGS sties within Australia. This seminar investigates the question, that all these companies hope they have answered well, 'Where is the best place in Australia for an EGS facility?'
Routing in equilibrium
15:10 Tue 21 Jun, 2011 :: 7.15 Ingkarni Wardli :: Dr Timothy Griffin :: University of Cambridge

Media...
Some path problems cannot be modelled using semirings because the associated algebraic structure is not distributive. Rather than attempting to compute globally optimal paths with such structures, it may be sufficient in some cases to find locally optimal paths --- paths that represent a stable local equilibrium. For example, this is the type of routing system that has evolved to connect Internet Service Providers (ISPs) where link weights implement bilateral commercial relationships between them. Previous work has shown that routing equilibria can be computed for some non-distributive algebras using algorithms in the Bellman-Ford family. However, no polynomial time bound was known for such algorithms. In this talk, we show that routing equilibria can be computed using Dijkstra's algorithm for one class of non-distributive structures. This provides the first polynomial time algorithm for computing locally optimal solutions to path problems.
Object oriented data analysis
14:10 Thu 30 Jun, 2011 :: 7.15 Ingkarni Wardli :: Prof Steve Marron :: The University of North Carolina at Chapel Hill

Object Oriented Data Analysis is the statistical analysis of populations of complex objects. In the special case of Functional Data Analysis, these data objects are curves, where standard Euclidean approaches, such as principal components analysis, have been very successful. Recent developments in medical image analysis motivate the statistical analysis of populations of more complex data objects which are elements of mildly non-Euclidean spaces, such as Lie Groups and Symmetric Spaces, or of strongly non-Euclidean spaces, such as spaces of tree-structured data objects. These new contexts for Object Oriented Data Analysis create several potentially large new interfaces between mathematics and statistics. Even in situations where Euclidean analysis makes sense, there are statistical challenges because of the High Dimension Low Sample Size problem, which motivates a new type of asymptotics leading to non-standard mathematical statistics.
Towards Rogers-Ramanujan identities for the Lie algebra A_n
13:10 Fri 5 Aug, 2011 :: B.19 Ingkarni Wardli :: Prof Ole Warnaar :: University of Queensland

The Rogers-Ramanujan identities are a pair of q-series identities proved by Leonard Rogers in 1894 which became famous two decades later as conjectures of Srinivasa Ramanujan. Since the 1980s it is known that the Rogers-Ramanujan identities are in fact identities for characters of certain modules for the affine Lie algebra A_1. This poses the obvious question as to whether there exist Rogers-Ramanujan identities for higher rank affine Lie algebras. In this talk I will describe some recent progress on this problem. I will also discuss a seemingly mysterious connection with the representation theory of quivers over finite fields.
AustMS/AMSI Mahler Lecture: Chaos, quantum mechanics and number theory
18:00 Tue 9 Aug, 2011 :: Napier 102 :: Prof Peter Sarnak :: Institute for Advanced Study, Princeton

Media...
The correspondence principle in quantum mechanics is concerned with the relation between a mechanical system and its quantization. When the mechanical system are relatively orderly ("integrable"), then this relation is well understood. However when the system is chaotic much less is understood. The key features already appear and are well illustrated in the simplest systems which we will review. For chaotic systems defined number-theoretically, much more is understood and the basic problems are connected with central questions in number theory. The Mahler lectures are a biennial activity organised by the Australian Mathematical Society with the assistance of the Australian Mathematical Sciences Institute.
Horocycle flows at prime times
13:10 Wed 10 Aug, 2011 :: B.19 Ingkarni Wardli :: Prof Peter Sarnak :: Institute for Advanced Study, Princeton

The distribution of individual orbits of unipotent flows in homogeneous spaces are well understood thanks to the work work of Marina Ratner. It is conjectured that this property is preserved on restricting the times from the integers to primes, this being important in the study of prime numbers as well as in such dynamics. We review progress in understanding this conjecture, starting with Dirichlet (a finite system), Vinogradov (rotation of a circle or torus), Green and Tao (translation on a nilmanifold) and Ubis and Sarnak (horocycle flows in the semisimple case).
Comparing Einstein to Newton via the post-Newtonian expansions
15:10 Fri 19 Aug, 2011 :: 7.15 Ingkarni Wardli :: Dr Todd Oliynyk :: Monash University

Media...
Einstein's general relativity is presently the most accurate theory of gravity. To completely determine the gravitational field, the Einstein field equations must be solved. These equations are extremely complex and outside of a small set of idealized situations, they are impossible to solve directly. However, to make physical predictions or understand physical phenomena, it is often enough to find approximate solutions that are governed by a simpler set of equations. For example, Newtonian gravity approximates general relativity very well in regimes where the typical velocity of the gravitating matter is small compared to the speed of light. Indeed, Newtonian gravity successfully explains much of the behaviour of our solar system and is a simpler theory of gravity. However, for many situations of interest ranging from binary star systems to GPS satellites, the Newtonian approximation is not accurate enough; general relativistic effects must be included. This desire to include relativistic corrections to Newtonian gravity lead to the development of the post-Newtonian expansions.
Configuration spaces in topology and geometry
15:10 Fri 9 Sep, 2011 :: 7.15 Ingkarni Wardli :: Dr Craig Westerland :: University of Melbourne

Media...
Configuration spaces of points in R^n give a family of interesting geometric objects. They and their variants have numerous applications in geometry, topology, representation theory, and number theory. In this talk, we will review several of these manifestations (for instance, as moduli spaces, function spaces, and the like), and use them to address certain conjectures in number theory regarding distributions of number fields.
Stability analysis of nonparallel unsteady flows via separation of variables
15:30 Fri 18 Nov, 2011 :: 7.15 Ingkarni Wardli :: Prof Georgy Burde :: Ben-Gurion University

Media...
The problem of variables separation in the linear stability equations, which govern the disturbance behavior in viscous incompressible fluid flows, is discussed. Stability of some unsteady nonparallel three-dimensional flows (exact solutions of the Navier-Stokes equations) is studied via separation of variables using a semi-analytical, semi-numerical approach. In this approach, a solution with separated variables is defined in a new coordinate system which is sought together with the solution form. As the result, the linear stability problems are reduced to eigenvalue problems for ordinary differential equations which can be solved numerically. In some specific cases, the eigenvalue problems can be solved analytically. Those unique examples of exact (explicit) solution of the nonparallel unsteady flow stability problems provide a very useful test for methods used in the hydrodynamic stability theory. Exact solutions of the stability problems for some stagnation-type flows are presented.
Applications of tropical geometry to groups and manifolds
13:10 Mon 21 Nov, 2011 :: B.19 Ingkarni Wardli :: Dr Stephan Tillmann :: University of Queensland

Tropical geometry is a young field with multiple origins. These include the work of Bergman on logarithmic limit sets of algebraic varieties; the work of the Brazilian computer scientist Simon on discrete mathematics; the work of Bieri, Neumann and Strebel on geometric invariants of groups; and, of course, the work of Newton on polynomials. Even though there is still need for a unified foundation of the field, there is an abundance of applications of tropical geometry in group theory, combinatorics, computational algebra and algebraic geometry. In this talk I will give an overview of (what I understand to be) tropical geometry with a bias towards applications to group theory and low-dimensional topology.
Embedding circle domains into the affine plane C^2
13:10 Fri 10 Feb, 2012 :: B.20 Ingkarni Wardli :: Prof Franc Forstneric :: University of Ljubljana

We prove that every circle domain in the Riemann sphere admits a proper holomorphic embedding into the affine plane C^2. By a circle domain we mean a domain obtained by removing from the Riemann sphere a finite or countable family of pairwise disjoint closed round discs. Our proof also applies to some circle domains with punctures. The uniformization theorem of He and Schramm (1996) says that every domain in the Riemann sphere with at most countably many boundary components is conformally equivalent to a circle domain, so our theorem embeds all such domains properly holomorphically in C^2. (Joint work with Erlend F. Wold.)
Mixing, dynamics, and probability
15:10 Fri 2 Mar, 2012 :: B.21 Ingkarni Wardli :: A/Prof Gary Froyland :: University of New South Wales

Media...
Many interesting natural phenomena are hard to predict. When modelled as a dynamical system, this unpredictability is often the result of rapid separation of nearby trajectories. Viewing the dynamics as acting on a probability measure, the mixing property states that two measurements (or random variables), evaluated at increasingly separated times, become independent in the time-separation limit. Thus, the later measurement becomes increasingly difficult to predict, given the outcome of the earlier measurement. If this approach to independence occurs exponentially quickly in time, one can profitably use linear operator tools to analyse the dynamics. I will give an overview of these techniques and show how they can be applied to answer mathematical questions, describe observed behaviour in fluid mixing, and analyse models of the ocean and atmosphere.
The entropy of an overlapping dynamical system
15:10 Fri 23 Mar, 2012 :: Napier G03 :: Prof Michael Barnsley :: Australian National University

Media...
The term "overlapping" refers to a certain fairly simple type of piecewise continuous function from the unit interval to itself and also to a fairly simple type of iterated function system (IFS) on the unit interval. A correspondence between these two classes of objects is used to: 1. find a necessary and sufficient condition for a fractal transformation from the attractor of one overlapping IFS to the attractor of another overlapping IFS to be a homeomorphism and 2. find a formula for the topological entropy of the dynamical system associated with an overlapping function. These results suggest a new method for analysing clocks, weather systems and prime numbers.
Spatial-point data sets and the Polya distribution
15:10 Fri 27 Apr, 2012 :: B.21 Ingkarni Wardli :: Dr Benjamin Binder :: The University of Adelaide

Media...
Spatial-point data sets, generated from a wide range of physical systems and mathematical models, can be analyzed by counting the number of objects in equally sized bins. We find that the bin counts are related to the Polya distribution. New indexes are developed which quantify whether or not a spatial data set is at its most evenly distributed state. Using three case studies (Lagrangian fluid particles in chaotic laminar flows, cellular automata agents in discrete models, and biological cells within colonies), we calculate the indexes and predict the spatial-state of the system.
Mathematical modelling of the surface adsorption for methane on carbon nanostructures
12:10 Mon 30 Apr, 2012 :: 5.57 Ingkarni Wardli :: Mr Olumide Adisa :: University of Adelaide

Media...
In this talk, methane (CH4) adsorption is investigated on both graphite and in the region between two aligned single-walled carbon nanotubes, which we refer to as the groove site. The Lennard–Jones potential function and the continuous approximation is exploited to determine surface binding energies between a single CH4 molecule and graphite and between a single CH4 and two aligned single-walled carbon nanotubes. The modelling indicates that for a CH4 molecule interacting with graphite, the binding energy of the system is minimized when the CH4 carbon is 3.83 angstroms above the surface of the graphitic carbon, while the binding energy of the CH4–groove site system is minimized when the CH4 carbon is 5.17 angstroms away from the common axis shared by the two aligned single-walled carbon nanotubes. These results confirm the current view that for larger groove sites, CH4 molecules in grooves are likely to move towards the outer surfaces of one of the single-walled carbon nanotubes. The results presented in this talk are computationally efficient and are in good agreement with experiments and molecular dynamics simulations, and show that CH4 adsorption on graphite and groove surfaces is more favourable at lower temperatures and higher pressures.
The classification of Dynkin diagrams
12:10 Mon 21 May, 2012 :: 5.57 Ingkarni Wardli :: Mr Alexander Hanysz :: University of Adelaide

Media...
The idea of continuous symmetry is often described in mathematics via Lie groups. These groups can be classified by their root systems: collections of vectors satisfying certain symmetry properties. The root systems are described in a concise way by Dynkin diagrams, and it turns out, roughly speaking, that there are only seven possible shapes for a Dynkin diagram. In this talk I'll describe some simple examples of Lie groups, explain what a root system is, and show how a Dynkin diagram encodes this information. Then I'll give a very brief sketch of the methods used to classify Dynkin diagrams.
Geometric modular representation theory
13:10 Fri 1 Jun, 2012 :: Napier LG28 :: Dr Anthony Henderson :: University of Sydney

Representation theory is one of the oldest areas of algebra, but many basic questions in it are still unanswered. This is especially true in the modular case, where one considers vector spaces over a field F of positive characteristic; typically, complications arise for particular small values of the characteristic. For example, from a vector space V one can construct the symmetric square S^2(V), which is one easy example of a representation of the group GL(V). One would like to say that this representation is irreducible, but that statement is not always true: if F has characteristic 2, there is a nontrivial invariant subspace. Even for GL(V), we do not know the dimensions of all irreducible representations in all characteristics. In this talk, I will introduce some of the main ideas of geometric modular representation theory, a more recent approach which is making progress on some of these old problems. Essentially, the strategy is to re-formulate everything in terms of homology of various topological spaces, where F appears only as the field of coefficients and the spaces themselves are independent of F; thus, the modular anomalies in representation theory arise because homology with modular coefficients is detecting something about the topology that rational coefficients do not. In practice, the spaces are usually varieties over the complex numbers, and homology is replaced by intersection cohomology to take into account the singularities of these varieties.
Adventures with group theory: counting and constructing polynomial invariants for applications in quantum entanglement and molecular phylogenetics
15:10 Fri 8 Jun, 2012 :: B.21 Ingkarni Wardli :: Dr Peter Jarvis :: The University of Tasmania

Media...
In many modelling problems in mathematics and physics, a standard challenge is dealing with several repeated instances of a system under study. If linear transformations are involved, then the machinery of tensor products steps in, and it is the job of group theory to control how the relevant symmetries lift from a single system, to having many copies. At the level of group characters, the construction which does this is called PLETHYSM. In this talk all this will be contextualised via two case studies: entanglement invariants for multipartite quantum systems, and Markov invariants for tree reconstruction in molecular phylogenetics. By the end of the talk, listeners will have understood why Alice, Bob and Charlie love Cayley's hyperdeterminant, and they will know why the three squangles -- polynomial beasts of degree 5 in 256 variables, with a modest 50,000 terms or so -- can tell us a lot about quartet trees!
Comparison of spectral and wavelet estimators of transfer function for linear systems
12:10 Mon 18 Jun, 2012 :: B.21 Ingkarni Wardli :: Mr Mohd Aftar Abu Bakar :: University of Adelaide

Media...
We compare spectral and wavelet estimators of the response amplitude operator (RAO) of a linear system, with various input signals and added noise scenarios. The comparison is based on a model of a heaving buoy wave energy device (HBWED), which oscillates vertically as a single mode of vibration linear system. HBWEDs and other single degree of freedom wave energy devices such as the oscillating wave surge convertors (OWSC) are currently deployed in the ocean, making single degree of freedom wave energy devices important systems to both model and analyse in some detail. However, the results of the comparison relate to any linear system. It was found that the wavelet estimator of the RAO offers no advantage over the spectral estimators if both input and response time series data are noise free and long time series are available. If there is noise on only the response time series, only the wavelet estimator or the spectral estimator that uses the cross-spectrum of the input and response signals in the numerator should be used. For the case of noise on only the input time series, only the spectral estimator that uses the cross-spectrum in the denominator gives a sensible estimate of the RAO. If both the input and response signals are corrupted with noise, a modification to both the input and response spectrum estimates can provide a good estimator of the RAO. However, a combination of wavelet and spectral methods is introduced as an alternative RAO estimator. The conclusions apply for autoregressive emulators of sea surface elevation, impulse, and pseudorandom binary sequences (PRBS) inputs. However, a wavelet estimator is needed in the special case of a chirp input where the signal has a continuously varying frequency.
The motivic logarithm and its realisations
13:10 Fri 3 Aug, 2012 :: Engineering North 218 :: Dr James Borger :: Australian National University

When a complex manifold is defined by polynomial equations, its cohomology groups inherit extra structure. This was discovered by Hodge in the 1920s and 30s. When the defining polynomials have rational coefficients, there is some additional, arithmetic structure on the cohomology. This was discovered by Grothendieck and others in the 1960s. But here the situation is still quite mysterious because each cohomology group has infinitely many different arithmetic structures and while they are not directly comparable, they share many properties---with each other and with the Hodge structure. All written accounts of this that I'm aware of treat arbitrary varieties. They are beautifully abstract and non-explicit. In this talk, I'll take the opposite approach and try to give a flavour of the subject by working out a perhaps the simplest nontrivial example, the cohomology of C* relative to a subset of two points, in beautifully concrete and explicit detail. Here the common motif is the logarithm. In Hodge theory, it is realised as the complex logarithm; in the crystalline theory, it's as the p-adic logarithm; and in the etale theory, it's as Kummer theory. I'll assume you have some familiarity with usual, singular cohomology of topological spaces, but I won't assume that you know anything about these non-topological cohomology theories.
Hodge numbers and cohomology of complex algebraic varieties
13:10 Fri 10 Aug, 2012 :: Engineering North 218 :: Prof Gus Lehrer :: University of Sydney

Let $X$ be a complex algebraic variety defined over the ring $\mathfrak{O}$ of integers in a number field $K$ and let $\Gamma$ be a group of $\mathfrak{O}$-automorphisms of $X$. I shall discuss how the counting of rational points over reductions mod $p$ of $X$, and an analysis of the Hodge structure of the cohomology of $X$, may be used to determine the cohomology as a $\Gamma$-module. This will include some joint work with Alex Dimca and with Mark Kisin, and some classical unsolved problems.
Drawing of Viscous Threads with Temperature-dependent Viscosity
14:10 Fri 10 Aug, 2012 :: Engineering North N218 :: Dr Jonathan Wylie :: City University of Hong Kong

The drawing of viscous threads is important in a wide range of industrial applications and is a primary manufacturing process in the optical fiber and textile industries. Most of the materials used in these processes have viscosities that vary extremely strongly with temperature. We investigate the role played by viscous heating in the drawing of viscous threads. Usually, the effects of viscous heating and inertia are neglected because the parameters that characterize them are typically very small. However, by performing a detailed theoretical analysis we surprisingly show that even very small amounts of viscous heating can lead to a runaway phenomena. On the other hand, inertia prevents runaway, and the interplay between viscous heating and inertia results in very complicated dynamics for the system. Even more surprisingly, in the absence of viscous heating, we find that a new type of instability can occur when a thread is heated by a radiative heat source. By analyzing an asymptotic limit of the Navier-Stokes equation we provide a theory that describes the nature of this instability and explains the seemingly counterintuitive behavior.
The fundamental theorems of invariant theory, classical and quantum
15:10 Fri 10 Aug, 2012 :: B.21 Ingkarni Wardli :: Prof Gus Lehrer :: The University of Sydney

Media...
Let V = C^n, and let (-,-) be a non-degenerate bilinear form on V , which is either symmetric or anti-symmetric. Write G for the isometry group of (V , (-,-)); thus G = O_n (C) or Sp_n (C). The first fundamental theorem (FFT) provides a set of generators for End_G(V^{\otimes r} ) (r = 1, 2, . . . ), while the second fundamental theorem (SFT) gives all relations among the generators. In 1937, Brauer formulated the FFT in terms of his celebrated 'Brauer algebra' B_r (\pm n), but there has hitherto been no similar version of the SFT. One problem has been the generic non-semisimplicity of B_r (\pm n), which caused H Weyl to call it, in his work on invariants 'that enigmatic algebra'. I shall present a solution to this problem, which shows that there is a single idempotent in B_r (\pm n), which describes all the relations. The proof is through a new 'Brauer category', in which the fundamental theorems are easily formulated, and where a calculus of tangles may be used to prove these results. There are quantum analogues of the fundamental theorems which I shall also discuss. There are numerous applications in representation theory, geometry and topology. This is joint work with Ruibin Zhang.
Wave propagation in disordered media
15:10 Fri 31 Aug, 2012 :: B.21 Ingkarni Wardli :: Dr Luke Bennetts :: The University of Adelaide

Media...
Problems involving wave propagation through systems composed of arrays of scattering sources embedded in some background medium will be considered. For example, in a fluids setting, the background medium is the open ocean surface and the scatterers are floating bodies, such as wave energy devices. Waves propagate in very different ways if the system is structured or disordered. If the disorder is random the problem is to determine the `effective' wave propagation properties by considering the ensemble average over all possible realisations of the system. I will talk about semi-analytical (i.e. low numerical cost) approaches to determining the effective properties.
Quantisation commutes with reduction
15:10 Fri 14 Sep, 2012 :: B.20 Ingkarni Wardli :: Dr Peter Hochs :: Leibniz University Hannover

Media...
The "Quantisation commutes with reduction" principle is an idea from physics, which has powerful applications in mathematics. It basically states that the ways in which symmetry can be used to simplify a physical system in classical and quantum mechanics, are compatible. This provides a strong link between the areas in mathematics used to describe symmetry in classical and quantum mechanics: symplectic geometry and representation theory, respectively. It has been proved in the 1990s that quantisation indeed commutes with reduction, under the important assumption that all spaces and symmetry groups involved are compact. This talk is an introduction to this principle and, if time permits, its mathematical relevance.
Krylov Subspace Methods or: How I Learned to Stop Worrying and Love GMRes
12:10 Mon 17 Sep, 2012 :: B.21 Ingkarni Wardli :: Mr David Wilke :: University of Adelaide

Media...
Many problems within applied mathematics require the solution of a linear system of equations. For instance, models of arterial umbilical blood flow are obtained through a finite element approximation, resulting in a linear, n x n system. For small systems the solution is (almost) trivial, but what happens when n is large? Say, n ~ 10^6? In this case matrix inversion is expensive (read: completely impractical) and we seek approximate solutions in a reasonable time. In this talk I will discuss the basic theory underlying Krylov subspace methods; a class of non-stationary iterative methods which are currently the methods-of-choice for large, sparse, linear systems. In particular I will focus on the method of Generalised Minimum RESiduals (GMRes), which is of the most popular for nonsymmetric systems. It is hoped that through this presentation I will convince you that a) solving linear systems is not necessarily trivial, and that b) my lack of any tangible results is not (entirely) a result of my own incompetence.
Turbulent flows, semtex, and rainbows
12:10 Mon 8 Oct, 2012 :: B.21 Ingkarni Wardli :: Ms Sophie Calabretto :: University of Adelaide

Media...
The analysis of turbulence in transient flows has applications across a broad range of fields. We use the flow of fluid in a toroidal container as a paradigm for studying the complex dynamics due to this turbulence. To explore the dynamics of our system, we exploit the numerical capabilities of semtex; a quadrilateral spectral element DNS code. Rainbows result.
Probability, what can it tell us about health?
13:10 Tue 9 Oct, 2012 :: 7.15 Ingkarni Wardli :: Prof Nigel Bean :: School of Mathematical Sciences

Media...
Clinical trials are the way in which modern medical systems test whether individual treatments are worthwhile. Sophisticated statistics is used to try and make the conclusions from clinical trials as meaningful as possible. What can a very simple probability model then tell us about the worth of multiple treatments? What might the implications of this be for the whole health system?

This talk is based on research currently being conducted with a physician at a major Adelaide hospital. It requires no health knowledge and was not tested on animals. All you need is an enquiring and open mind.
Fair and Loathing in State Parliament
12:10 Mon 29 Oct, 2012 :: B.21 Ingkarni Wardli :: Mr Casey Briggs :: University of Adelaide

Media...
The South Australian electoral system has a history of bias, malapportionment and perceived unfairness. These days, it is typical of most systems across Australia, except with one major difference - a specific legislated criterion designed to force the system to be 'fair'. In reality, fairness is a hard concept to define, and an even harder concept to enforce. In this talk I will briefly take you through the history of South Australian electoral reform, the current state of affairs and my proposed research. There will be very little in the way of rigorous mathematics. No knowledge of politics is assumed, but an understanding of the process of voting would be useful.
Hyperplane arrangements and tropicalization of linear spaces
10:10 Mon 17 Dec, 2012 :: Ingkarni Wardli B17 :: Dr Graham Denham :: University of Western Ontario

I will give an introduction to a sequence of ideas in tropical geometry, the tropicalization of linear spaces. In the beginning, a construction due to De Concini and Procesi (wonderful models, 1995) gave a combinatorially explicit description of various iterated blowups of projective spaces along (proper transforms of) linear subspaces. A decade later, Tevelev's notion of tropical compactifications led to, in particular, a new view of the wonderful models and their intersection theory in terms of the theory of toric varieties (via work of Feichtner-Sturmfels, Feichtner-Yuzvinsky, Ardila-Klivans, and others). Recently, these ideas have played a role in Huh and Katz's proof of a long-standing conjecture in combinatorics.
Twistor space for rolling bodies
12:10 Fri 15 Mar, 2013 :: Ingkarni Wardli B19 :: Prof Pawel Nurowski :: University of Warsaw

We consider a configuration space of two solids rolling on each other without slipping or twisting, and identify it with an open subset U of R^5, equipped with a generic distribution D of 2-planes. We will discuss symmetry properties of the pair (U,D) and will mention that, in the case of the two solids being balls, when changing the ratio of their radii, the dimension of the group of local symmetries unexpectedly jumps from 6 to 14. This occurs for only one such ratio, and in such case the local group of symmetries of the pair (U,D) is maximal. It is maximal not only among the balls with various radii, but more generally among all (U,D)s corresponding to configuration spaces of two solids rolling on each other without slipping or twisting. This maximal group is isomorphic to the split real form of the exceptional Lie group G2. In the remaining part of the talk we argue how to identify the space U from the pair (U,D) defined above with the bundle T of totally null real 2-planes over a 4-manifold equipped with a split signature metric. We call T the twistor bundle for rolling bodies. We show that the rolling distribution D, can be naturally identified with an appropriately defined twistor distribution on T. We use this formulation of the rolling system to find more surfaces which, when rigidly rolling on each other without slipping or twisting, have the local group of symmetries isomorphic to the exceptional group G2.
A glimpse at the Langlands program
15:10 Fri 12 Apr, 2013 :: B.18 Ingkarni Wardli :: Dr Masoud Kamgarpour :: University of Queensland

Media...
Abstract: In the late 1960s, Robert Langlands made a series of surprising conjectures relating fundamental concepts from number theory, representation theory, and algebraic geometry. Langlands' conjectures soon developed into a high-profile international research program known as the Langlands program. Many fundamental problems, including the Shimura-Taniyama-Weil conjecture (partially settled by Andrew Wiles in his proof of the Fermat's Last Theorem), are particular cases of the Langlands program. In this talk, I will discuss some of the motivation and results in this program.
The boundary conditions for macroscale modelling of a discrete diffusion system with periodic diffusivity
12:10 Mon 29 Apr, 2013 :: B.19 Ingkarni Wardli :: Chen Chen :: University of Adelaide

Media...
Many mathematical and engineering problems have a multiscale nature. There are a vast of theories supporting multiscale modelling on infinite domain, such as homogenization theory and centre manifold theory. To date, there are little consideration of the correct boundary conditions to be used at the edge of macroscale model. In this seminar, I will present how to derive macroscale boundary conditions for the diffusion system.
Colour
12:10 Mon 13 May, 2013 :: B.19 Ingkarni Wardli :: Lyron Winderbaum :: University of Adelaide

Media...
Colour is a powerful tool in presenting data, but it can be tricky to choose just the right colours to represent your data honestly - do the colours used in your heatmap overemphasise the differences between particular values over others? does your choice of colours overemphasize one when they should be represented as equal? etc. All these questions are fundamentally based in how we perceive colour. There has been alot of research into how we perceive colour in the past century, and some interesting results. I will explain how a `standard observer' was found empirically and used to develop an absolute reference standard for colour in 1931. How although the common Red-Green-Blue representation of colour is useful and intuitive, distances between colours in this space do not reflect our perception of difference between colours and how alternative, perceptually focused colourspaces where introduced in 1976. I will go on to explain how these results can be used to provide simple mechanisms by which to choose colours that satisfy particular properties such as being equally different from each other, or being linearly more different in sequence, or maintaining such properties when transferred to greyscale, or for a colourblind person.
Pulsatile Flow
12:10 Mon 20 May, 2013 :: B.19 Ingkarni Wardli :: David Wilke :: University of Adelaide

Media...
Blood flow within the human arterial system is inherently unsteady as a consequence of the pulsations of the heart. The unsteady nature of the flow gives rise to a number of important flow features which may be critical in understanding pathologies of the cardiovascular system. For example, it is believed that large oscillations in wall shear stress may enhance the effects of artherosclerosis, among other pathologies. In this talk I will present some of the basic concepts of pulsatile flow and follow the analysis first performed by J.R. Womersley in his seminal 1955 paper.
Multiscale modelling couples patches of wave-like simulations
12:10 Mon 27 May, 2013 :: B.19 Ingkarni Wardli :: Meng Cao :: University of Adelaide

Media...
A multiscale model is proposed to significantly reduce the expensive numerical simulations of complicated waves over large spatial domains. The multiscale model is built from given microscale simulations of complicated physical processes such as sea ice or turbulent shallow water. Our long term aim is to enable macroscale simulations obtained by coupling small patches of simulations together over large physical distances. This initial work explores the coupling of patch simulations of wave-like pdes. With the line of development being to water waves we discuss the dynamics of two complementary fields called the 'depth' h and 'velocity' u. A staggered grid is used for the microscale simulation of the depth h and velocity u. We introduce a macroscale staggered grid to couple the microscale patches. Linear or quadratic interpolation provides boundary conditions on the field in each patch. Linear analysis of the whole coupled multiscale system establishes that the resultant macroscale dynamics is appropriate. Numerical simulations support the linear analysis. This multiscale method should empower the feasible computation of large scale simulations of wave-like dynamics with complicated underlying physics.
Invariant Theory: The 19th Century and Beyond
15:10 Fri 21 Jun, 2013 :: B.18 Ingkarni Wardli :: Dr Jarod Alper :: Australian National University

Media...
A central theme in 19th century mathematics was invariant theory, which was viewed as a bridge between geometry and algebra. David Hilbert revolutionized the field with two seminal papers in 1890 and 1893 with techniques such as Hilbert's basis theorem, Hilbert's Nullstellensatz and Hilbert's syzygy theorem that spawned the modern field of commutative algebra. After Hilbert's groundbreaking work, the field of invariant theory remained largely inactive until the 1960's when David Mumford revitalized the field by reinterpreting Hilbert's ideas in the context of algebraic geometry which ultimately led to the influential construction of the moduli space of smooth curves. Today invariant theory remains a vital research area with connections to various mathematical disciplines: representation theory, algebraic geometry, commutative algebra, combinatorics and nonlinear differential operators. The goal of this talk is to provide an introduction to invariant theory with an emphasis on Hilbert's and Mumford's contributions. Time permitting, I will explain recent research with Maksym Fedorchuk and David Smyth which exploits the ideas of Hilbert, Mumford as well as Kempf to answer a classical question concerning the stability of algebraic curves.
IGA/AMSI Workshop: Representation theory and operator algebras
10:00 Mon 1 Jul, 2013 :: 7.15 Ingkarni Wardli :: Prof Nigel Higson :: Pennsylvania State University

Media...
This interdisciplinary workshop will be about aspects of representation theory (in the sense of Harish-Chandra), aspects of noncommutative geometry (in the sense of Alain Connes) and aspects of operator K-theory (in the sense of Gennadi Kasparov). It features the renowned speaker, Professor Nigel Higson (Penn State University) http://www.iga.adelaide.edu.au/workshops/WorkshopJuly2013/ All are welcome.
Quantization, Representations and the Orbit Philosophy
15:10 Fri 5 Jul, 2013 :: B.18 Ingkarni Wardli :: Prof Nigel Higson :: Pennsylvania State University

Media...
This talk will be about the mathematics of quantization and about representation theory, where the concept of quantization seems to be especially relevant. It was discovered by Kirillov in the 1960's that the representation theory of nilpotent Lie groups (such as the group that encodes Heisenberg's commutation relations) can be beautifully and efficiently described using a vocabulary drawn from geometry and quantum mechanics. The description was soon adapted to other classes of Lie groups, and the expectation that it ought to apply almost universally has come to be called the "orbit philosophy." But despite early successes, the orbit philosophy is in a decidedly unfinished state. I'll try to explain some of the issues and some possible new directions.
Subfactors and twisted equivariant K-theory
12:10 Fri 2 Aug, 2013 :: Ingkarni Wardli B19 :: Prof David E. Evans :: Cardiff University

The most basic structure of chiral conformal field theory (CFT) is the Verlinde ring. Freed-Hopkins-Teleman have expressed the Verlinde ring for the CFTs associated to loop groups as twisted equivariant K-theory. In joint work with Terry Gannon, we build on their work to express K-theoretically the structures of full CFT. In particular, the modular invariant partition functions (which essentially parametrise the possible full CFTs) have a rich interpretation within von Neumann algebras (subfactors), which has led to the developments of structures of full CFT such as the full system (fusion ring of defect lines), nimrep (cylindrical partition function), alpha-induction etc.
Geometry of moduli spaces
12:10 Fri 30 Aug, 2013 :: Ingkarni Wardli B19 :: Prof Georg Schumacher :: University of Marburg

We discuss the concept of moduli spaces in complex geometry. The main examples are moduli of compact Riemann surfaces, moduli of compact projective varieties and moduli of holomorphic vector bundles, whose points correspond to isomorphism classes of the given objects. Moduli spaces carry a natural topology, whereas a complex structure that reflects the variation of the structure in a family exists in general only under extra conditions. In a similar way, a natural hermitian metric (Weil-Petersson metric) on moduli spaces that induces a symplectic structure can be constructed from the variation of distinguished metrics on the fibers. In this way, various questions concerning the underlying symplectic structure, the curvature of the Weil-Petersson metric, hyperbolicity of moduli spaces, and construction of positive/ample line bundles on compactified moduli spaces can be answered.
Symmetry gaps for geometric structures
15:10 Fri 20 Sep, 2013 :: B.18 Ingkarni Wardli :: Dr Dennis The :: Australian National University

Media...
Klein's Erlangen program classified geometries based on their (transitive) groups of symmetries, e.g. Euclidean geometry is the quotient of the rigid motion group by the subgroup of rotations. While this perspective is homogeneous, Riemann's generalization of Euclidean geometry is in general very "lumpy" - i.e. there exist Riemannian manifolds that have no symmetries at all. A common generalization where a group still plays a dominant role is Cartan geometry, which first arose in Cartan's solution to the equivalence problem for geometric structures, and which articulates what a "curved version" of a flat (homogeneous) model means. Parabolic geometries are Cartan geometries modelled on (generalized) flag varieties (e.g. projective space, isotropic Grassmannians) which are well-known objects from the representation theory of semisimple Lie groups. These curved versions encompass a zoo of interesting geometries, including conformal, projective, CR, systems of 2nd order ODE, etc. This interaction between differential geometry and representation theory has proved extremely fruitful in recent years. My talk will be an example-based tour of various types of parabolic geometries, which I'll use to outline some of the main aspects of the theory (suppressing technical details). The main thread throughout the talk will be the symmetry gap problem: For a given type of Cartan geometry, the maximal symmetry dimension is realized by the flat model, but what is the next possible ("submaximal") symmetry dimension? I'll sketch a recent solution (in joint work with Boris Kruglikov) for a wide class of parabolic geometries which gives a combinatorial recipe for reading the submaximal symmetry dimension from a Dynkin diagram.
Gravitational slingshot and space mission design
15:10 Fri 11 Oct, 2013 :: B.18 Ingkarni Wardli :: Prof Pawel Nurowski :: Polish Academy of Sciences

Media...
When planning a space mission the weight of the spacecraft is the main issue. Every gram sent into the outer space costs a lot. A considerable part of the overall weight of the spaceship consists of a fuel needed to control it. I will explain how space agencies reduce the amount of fuel needed to go to a given place in the Solar System by using gravity of celestial bodies encountered along the trip. I will start with the explanation of an old trick called `gravitational slingshot', and end up with a modern technique which is based on the analysis of a 3-body problem appearing in Newtonian mechanics.
The geometry of rolling surfaces and non-holonomic mechanics
15:10 Fri 1 Nov, 2013 :: B.18 Ingkarni Wardli :: Prof Robert Bryant :: Duke University

Media...
In mechanics, the system of a sphere rolling over a plane without slipping or twisting is a fundamental example of what is called a non-holonomic mechanical system, the study of which belongs to the subject of control theory. The more general case of one surface rolling over another without slipping or twisting is, similarly, of great interest for both practical and theoretical reasons. In this talk, which is intended for a general mathematical audience (i.e., no familiarity with control theory or differential geometry will be assumed), I will describe some of the basic features of this problem, a bit of its history, and some of the surprising developments that its study reveals, such as the unexpected appearance of the exceptional group G_2.
All at sea with spectral analysis
11:10 Tue 19 Nov, 2013 :: Ingkarni Wardli Level 5 Room 5.56 :: A/Prof Andrew Metcalfe :: The University of Adelaide

The steady state response of a single degree of freedom damped linear stystem to a sinusoidal input is a sinusoidal function at the same frequency, but generally with a different amplitude and a phase shift. The analogous result for a random stationary input can be described in terms of input and response spectra and a transfer function description of the linear system. The practical use of this result is that the parameters of a linear system can be estimated from the input and response spectra, and the response spectrum can be predicted if the transfer function and input spectrum are known. I shall demonstrate these results with data from a small ship in the North Sea. The results from the sea trial raise the issue of non-linearity, and second order amplitude response functons are obtained using auto-regressive estimators. The possibility of using wavelets rather than spectra is consedred in the context of single degree of freedom linear systems. Everybody welcome to attend. Please not a change of venue - we will be in room 5.56
Geometric quantisation in the noncompact setting
12:10 Fri 7 Mar, 2014 :: Ingkarni Wardli B20 :: Peter Hochs :: University of Adelaide

Geometric quantisation is a way to construct quantum mechanical phase spaces (Hilbert spaces) from classical mechanical phase spaces (symplectic manifolds). In the presence of a group action, the quantisation commutes with reduction principle states that geometric quantisation should be compatible with the ways the group action can be used to simplify (reduce) the classical and quantum phase spaces. This has deep consequences for the link between symplectic geometry and representation theory. The quantisation commutes with reduction principle has been given explicit meaning, and been proved, in cases where the symplectic manifold and the group acting on it are compact. There have also been results where just the group, or the orbit space of the action, is assumed to be compact. These are important and difficult, but it is somewhat frustrating that they do not even apply to the simplest example from the physics point of view: a free particle in Rn. This talk is about a joint result with Mathai Varghese where the group, manifold and orbit space may all be noncompact.
The effects of pre-existing immunity
15:10 Fri 7 Mar, 2014 :: B.18 Ingkarni Wardli :: Associate Professor Jane Heffernan :: York University, Canada

Media...
Immune system memory, also called immunity, is gained as a result of primary infection or vaccination, and can be boosted after vaccination or secondary infections. Immunity is developed so that the immune system is primed to react and fight a pathogen earlier and more effectively in secondary infections. The effects of memory, however, on pathogen propagation in an individual host (in-host) and a population (epidemiology) are not well understood. Mathematical models of infectious diseases, employing dynamical systems, computer simulation and bifurcation analysis, can provide projections of pathogen propagation, show outcomes of infection and help inform public health interventions. In the Modelling Infection and Immunity (MI^2) lab, we develop and study biologically informed mathematical models of infectious diseases at both levels of infection, and combine these models into comprehensive multi-scale models so that the effects of individual immunity in a population can be determined. In this talk we will discuss some of the interesting mathematical phenomenon that arise in our models, and show how our results are directly applicable to what is known about the persistence of infectious diseases.
Dynamical systems approach to fluid-plasma turbulence
15:10 Fri 14 Mar, 2014 :: 5.58 Ingkarni Wardli :: Professor Abraham Chian

Sun-Earth system is a complex, electrodynamically coupled system dominated by multiscale interactions. The complex behavior of the space environment is indicative of a state driven far from equilibrium whereby instabilities, nonlinear waves, and turbulence play key roles in the system dynamics. First, we review the fundamental concepts of nonlinear dynamics in fluids and plasmas and discuss their relevance to the study of the Sun-Earth relation. Next, we show how Lagrangian coherent structures identify the transport barriers of plasma turbulence modeled by 3-D solar convective dynamo. Finally, we show how Lagrangian coherent structures can be detected in the solar photospheric turbulence using satellite observations.
Viscoelastic fluids: mathematical challenges in determining their relaxation spectra
15:10 Mon 17 Mar, 2014 :: 5.58 Ingkarni Wardli :: Professor Russell Davies :: Cardiff University

Determining the relaxation spectrum of a viscoelastic fluid is a crucial step before a linear or nonlinear constitutive model can be applied. Information about the relaxation spectrum is obtained from simple flow experiments such as creep or oscillatory shear. However, the determination process involves the solution of one or more highly ill-posed inverse problems. The availability of only discrete data, the presence of noise in the data, as well as incomplete data, collectively make the problem very hard to solve. In this talk I will illustrate the mathematical challenges inherent in determining relaxation spectra, and also introduce the method of wavelet regularization which enables the representation of a continuous relaxation spectrum by a set of hyperbolic scaling functions.
Is it possible to beat the lottery system?
12:10 Mon 24 Mar, 2014 :: B.19 Ingkarni Wardli :: Michael Lydeamore :: University of Adelaide

Media...
Every week millions of people around the country buy tickets for a round of the lottery. Known as the "lotto", the chances of winning the big prize are less than 1 in 8 million, yet every week people will purchase a ticket. What if there was a smart way of betting which would increase your odds? A few weeks ago an article came across my desk with those very words: "Using this scheme you will win more". In this talk, we'll test those claims. Looking first at a basic counting argument, and then later moving the hard work over to a computer we'll find out if this betting scheme (and many others similar to it) will actually win you more or if just like playing in a casino, you'll still go bankrupt with probability 1.
Semiclassical restriction estimates
12:10 Fri 4 Apr, 2014 :: Ingkarni Wardli B20 :: Melissa Tacy :: University of Adelaide

Eigenfunctions of Hamiltonians arise naturally in the theory of quantum mechanics as stationary states of quantum systems. Their eigenvalues have an interpretation as the square root of E, where E is the energy of the system. We wish to better understand the high energy limit which defines the boundary between quantum and classical mechanics. In this talk I will focus on results regarding the restriction of eigenfunctions to lower dimensional subspaces, in particular to hypersurfaces. A convenient way to study such problems is to reframe them as problems in semiclassical analysis.
The Mandelbrot Set
12:10 Mon 5 May, 2014 :: B.19 Ingkarni Wardli :: David Bowman :: University of Adelaide

Media...
The Mandelbrot set is an icon of modern mathematics, an image which fires the popular imagination when accompanied by the words 'chaos' and 'fractal'. However, few could give even a vague definition of this mysterious set and fewer still know the mathematical meaning behind it. In this talk we will be looking at the role that the Mandelbrot set plays in complex dynamics, the study of iterated complex valued functions. We shall discuss attracting and repelling cycles and how they are related to the different components of the Mandelbrot set.
Ergodicity and loss of capacity: a stochastic horseshoe?
15:10 Fri 9 May, 2014 :: B.21 Ingkarni Wardli :: Professor Ami Radunskaya :: Pomona College, the United States of America

Media...
Random fluctuations of an environment are common in ecological and economical settings. The resulting processes can be described by a stochastic dynamical system, where a family of maps parametrized by an independent, identically distributed random variable forms the basis for a Markov chain on a continuous state space. Random dynamical systems are a beautiful combination of deterministic and random processes, and they have received considerable interest since von Neuman and Ulam's seminal work in the 1940's. Key questions in the study of a stochastic dynamical system are: does the system have a well-defined average, i.e. is it ergodic? How does this long-term behavior compare to that of the state variable in a constant environment with the averaged parameter? In this talk we answer these questions for a family of maps on the unit interval that model self-limiting growth. The techniques used can be extended to study other families of concave maps, and so we conjecture the existence of a "stochastic horseshoe".
Multiple Sclerosis and linear stability analysis
12:35 Mon 19 May, 2014 :: B.19 Ingkarni Wardli :: Saber Dini :: University of Adelaide

Media...
Multiple sclerosis (MS), is an inflammatory disease in which the immune system of the body attacks the myelin sheaths around axons in the brain and damages, or in other words, demyelinates the axons. Demyelination process can lead to scarring as well as a broad spectrum of signs and symptoms. Brain of vertebrates has a mechanism to restore the demyelination or Remyelinate the damaged area. Remyelination in the brain is accomplished by glial cells (servers of neurons). Glial cells should accumulate in the damaged areas of the brain to start the repairing process and this accumulation can be viewed as instability. Therefore, spatiotemporal linear stability analysis can be undertaken on the issue to investigate quantitative aspects of the remyelination process.
World Is Fukt, or, Why our system for elections doesn't reflect the will of the people, but micro parties like it Just The Way It Is.
12:10 Mon 2 Jun, 2014 :: B.19 Ingkarni Wardli :: Casey Briggs :: University of Adelaide

Media...
Results of elections for upper houses in Australia are notoriously difficult to predict, largely because of the quirky voting counting system used. In this seminar I will explain how the system works and why voters have low control over the outcome. I will then demonstrate using a senate calculator the sensitivity of these elections, including how small changes in votes can lead to dramatically different outcomes.
Modelling the mean-field behaviour of cellular automata
12:10 Mon 4 Aug, 2014 :: B.19 Ingkarni Wardli :: Kale Davies :: University of Adelaide

Media...
Cellular automata (CA) are lattice-based models in which agents fill the lattice sites and behave according to some specified rule. CA are particularly useful when modelling cell behaviour and as such many people consider CA model in which agents undergo motility and proliferation type events. We are particularly interested in predicting the average behaviour of these models. In this talk I will show how a system of differential equations can be derived for the system and discuss the difficulties that arise in even the seemingly simple case of a CA with motility and proliferation.
Hydrodynamics and rheology of self-propelled colloids
15:10 Fri 8 Aug, 2014 :: B17 Ingkarni Wardli :: Dr Sarthok Sircar :: University of Adelaide

The sub-cellular world has many components in common with soft condensed matter systems (polymers, colloids and liquid crystals). But it has novel properties, not present in traditional complex fluids, arising from a rich spectrum of non-equilibrium behavior: flocking, chemotaxis and bioconvection. The talk is divided into two parts. In the first half, we will (get an idea on how to) derive a hydrodynamic model for self-propelled particles of an arbitrary shape from first principles, in a sufficiently dilute suspension limit, moving in a 3-dimensional space inside a viscous solvent. The model is then restricted to particles with ellipsoidal geometry to quantify the interplay of the long-range excluded volume and the short-range self-propulsion effects. The expression for the constitutive stresses, relating the kinetic theory with the momentum transport equations, are derived using a combination of the virtual work principle (for extra elastic stresses) and symmetry arguments (for active stresses). The second half of the talk will highlight on my current numerical expertise. In particular we will exploit a specific class of spectral basis functions together with RK4 time-stepping to determine the dynamical phases/structures as well as phase-transitions of these ellipsoidal clusters. We will also discuss on how to define the order (or orientation) of these clusters and understand the other rheological quantities.
Ideal membership on singular varieties by means of residue currents
12:10 Fri 29 Aug, 2014 :: Ingkarni Wardli B20 :: Richard Larkang :: University of Adelaide

On a complex manifold X, one can consider the following ideal membership problem: Does a holomorphic function on X belong to a given ideal of holomorphic functions on X? Residue currents give a way of expressing analytically this essentially algebraic problem. I will discuss some basic cases of this, why such an analytic description might be useful, and finish by discussing a generalization of this to singular varieties.
Neural Development of the Visual System: a laminar approach
15:10 Fri 29 Aug, 2014 :: N132 Engineering North :: Dr Andrew Oster :: Eastern Washington University

Media...
In this talk, we will introduce the architecture of the visual system in higher order primates and cats. Through activity-dependent plasticity mechanisms, the left and right eye streams segregate in the cortex in a stripe-like manner, resulting in a pattern called an ocular dominance map. We introduce a mathematical model to study how such a neural wiring pattern emerges. We go on to consider the joint development of the ocular dominance map with another feature of the visual system, the cytochrome oxidase blobs, which appear in the center of the ocular dominance stripes. Since cortex is in fact comprised of layers, we introduce a simple laminar model and perform a stability analysis of the wiring pattern. This intricate biological structure (ocular dominance stripes with "blobs" periodically distributed in their centers) can be understood as occurring due to two Turing instabilities combined with the leading-order dynamics of the system.
Neural Development of the Visual System: a laminar approach
15:10 Fri 29 Aug, 2014 :: This talk will now be given as a School Colloquium :: Dr Andrew Oster :: Eastern Washington University

In this talk, we will introduce the architecture of the visual system in higher order primates and cats. Through activity-dependent plasticity mechanisms, the left and right eye streams segregate in the cortex in a stripe-like manner, resulting in a pattern called an ocular dominance map. We introduce a mathematical model to study how such a neural wiring pattern emerges. We go on to consider the joint development of the ocular dominance map with another feature of the visual system, the cytochrome oxidase blobs, which appear in the center of the ocular dominance stripes. Since cortex is in fact comprised of layers, we introduce a simple laminar model and perform a stability analysis of the wiring pattern. This intricate biological structure (ocular dominance stripes with 'blobs' periodically distributed in their centers) can be understood as occurring due to two Turing instabilities combined with the leading-order dynamics of the system.
Exploration vs. Exploitation with Partially Observable Gaussian Autoregressive Arms
15:00 Mon 29 Sep, 2014 :: Engineering North N132 :: Julia Kuhn :: The University of Queensland & The University of Amsterdam

Media...
We consider a restless bandit problem with Gaussian autoregressive arms, where the state of an arm is only observed when it is played and the state-dependent reward is collected. Since arms are only partially observable, a good decision policy needs to account for the fact that information about the state of an arm becomes more and more obsolete while the arm is not being played. Thus, the decision maker faces a tradeoff between exploiting those arms that are believed to be currently the most rewarding (i.e. those with the largest conditional mean), and exploring arms with a high conditional variance. Moreover, one would like the decision policy to remain tractable despite the infinite state space and also in systems with many arms. A policy that gives some priority to exploration is the Whittle index policy, for which we establish structural properties. These motivate a parametric index policy that is computationally much simpler than the Whittle index but can still outperform the myopic policy. Furthermore, we examine the many-arm behavior of the system under the parametric policy, identifying equations describing its asymptotic dynamics. Based on these insights we provide a simple heuristic algorithm to evaluate the performance of index policies; the latter is used to optimize the parametric index.
Optimally Chosen Quadratic Forms for Partitioning Multivariate Data
13:10 Tue 14 Oct, 2014 :: Ingkarni Wardli 715 Conference Room :: Assoc. Prof. Inge Koch :: School of Mathematical Sciences

Media...
Quadratic forms are commonly used in linear algebra. For d-dimensional vectors they have a matrix representation, Q(x) = x'Ax, for some symmetric matrix A. In statistics quadratic forms are defined for d-dimensional random vectors, and one of the best-known quadratic forms is the Mahalanobis distance of two random vectors. In this talk we want to partition a quadratic form Q(X) = X'MX, where X is a random vector, and M a symmetric matrix, that is, we want to find a d-dimensional random vector W such that Q(X) = W'W. This problem has many solutions. We are interested in a solution or partition W of X such that pairs of corresponding variables (X_j, W_j) are highly correlated and such that W is simpler than the given X. We will consider some natural candidates for W which turn out to be suboptimal in the sense of the above constraints, and we will then exhibit the optimal solution. Solutions of this type are useful in the well-known T-square statistic. We will see in examples what these solutions look like.
Micro Magnetofluidics - Wireless Manipulation for Microfluidics
15:10 Fri 24 Oct, 2014 :: N.132 Engineering North :: Professor Nam-Trung Nguyen :: Griffith University

Media...
Microfluidics is rich in multi-physics phenomena, which offer fundamentally new capabilities in the manipulation and detection of biological particles. Most current microfluidic applications are based on hydrodynamic, electrokinetic, acoustic and optic actuation. Implementing these concepts requires bulky external pumping/valving systems and energy supplies. The required wires and connectors make their fabrication and handling difficult. Most of the conventional approaches induce heat that may affect sensitive bio particles such as cells. There is a need for a technology for fluid handling in microfluidic devices that is of low-cost, simple, wireless, free of induced heat and independent of pH level or ion concentration. The use of magnetism would provide a wireless solution for this need. Micro magnetofluidics is a newly established research field that links magnetism and microfluidics to gain new capabilities. Magnetism provides a convenient and wireless way for control and manipulation of fluid flow in the microscale. Investigation of magnetism-induced phenomena in a microfluidic device has the advantage of well-defined experimental condition such as temperature and magnetic field because of the system size. This talk presents recent interesting phenomena in both continuous-flow and digital micro magnetofluidics.
What happens when you eat pizza?: the science and mathematics behind digestion
14:10 Mon 27 Oct, 2014 :: Ingkarni Wardli 715 Conference Room :: Dr. Sarthok Sircar :: School of Mathematical Sciences

Media...
Our stomach is an inferno with acidic juices that are strong enough to bore a hole through our hands. Ever wondered why the stomach does not digest itself ? The answer lies in an interesting defence mechanism along the stomach lining which also aids in digestion of food. In this talk I will present this mechanism and briefly present the physics, chemistry, biology and (off course !) the mathematics to describe this system. The talk may also answer your queries regarding heart-burn especially when you eat a lot of free-food !!
Extending holomorphic maps from Stein manifolds into affine toric varieties
12:10 Fri 14 Nov, 2014 :: Ingkarni Wardli B20 :: Richard Larkang :: University of Adelaide

One way of defining so-called Oka manifolds is by saying that they satisfy the following interpolation property (IP): Y satisfies the IP if any holomorphic map from a closed submanifold S of a Stein manifold X into Y which has a continuous extension to X also has a holomorphic extension. An ostensibly weaker property is the convex interpolation property (CIP), where S is assumed to be a contractible submanifold of X = C^n. By a deep theorem of Forstneric, these (and several other) properties are in fact equivalent. I will discuss a joint work with Finnur Larusson, where we consider the interpolation property when the target Y is a singular affine toric variety. We show that all affine toric varieties satisfy an interpolation property stronger than CIP, but that only in very special situations do they satisfy the full IP.
Fractal substitution tilings
11:10 Wed 17 Dec, 2014 :: Ingkarni Wardli B17 :: Mike Whittaker :: University of Wollongong

Starting with a substitution tiling, I will demonstrate a method for constructing infinitely many new substitution tilings. Each of these new tilings is derived from a graph iterated function system and the tiles typically have fractal boundary. As an application, we construct an odd spectral triple on a C*-algebra associated with an aperiodic substitution tiling. No knowledge of tilings, C*-algebras, or spectral triples will be assumed. This is joint work with Natalie Frank, Michael Mampusti, and Sam Webster.
Boundary behaviour of Hitchin and hypo flows with left-invariant initial data
12:10 Fri 27 Feb, 2015 :: Ingkarni Wardli B20 :: Vicente Cortes :: University of Hamburg

Hitchin and hypo flows constitute a system of first order pdes for the construction of Ricci-flat Riemannian mertrics of special holonomy in dimensions 6, 7 and 8. Assuming that the initial geometric structure is left-invariant, we study whether the resulting Ricci-flat manifolds can be extended in a natural way to complete Ricci-flat manifolds. This talk is based on joint work with Florin Belgun, Marco Freibert and Oliver Goertsches, see arXiv:1405.1866 (math.DG).
Symmetric groups via categorical representation theory
15:10 Fri 20 Mar, 2015 :: Engineering North N132 :: Dr Oded Yacobi :: University of Sydney

The symmetric groups play a fundamental role in representation theory and, while their characteristic zero representations are well understood, over fields of positive characteristic most foundational questions are still unanswered. In the 1990's Kleshchev made a spectacular breakthrough, and computed certain modular restriction multiplicities. It was observed by Lascoux, Leclerc, and Thibon that Kleshchev's numerology encodes a seemingly unrelated object: the crystal graph associated to an affine Lie algebra! We will explain how this mysterious connection opens the door to categorical representation theory, and, moreover, how the categorical perspective allows one to prove new theorems about representations of symmetric groups. We will also discuss other problems/applications in the landscape of categorical representation theory.
Did the Legend of Zelda unfold in our Solar System?
12:10 Mon 27 Apr, 2015 :: Napier LG29 :: Adam Rohrlach :: University of Adelaide

Media...
Well, obviously not. We can see the other planets, and they're not terribly conducive to Elven based life. Still, I aim to exhaustively explore the topic, all the while avoiding conventional logic and reasoning. Clearly, one could roll out any number of 'telescope' based proofs, and 'video game characters aren't really real, even after a million wishes' arguments, but I want to tackle this hotly debated issue using physics (the ugly cousin of actual mathematics). Armed with a remedial understanding of year 12 physics, from the acclaimed 2000 South Australian syllabus, I can think of no one better qualified, or possibly willing, to give this talk.
Haven't I seen you before? Accounting for partnership duration in infectious disease modeling
15:10 Fri 8 May, 2015 :: Level 7 Conference Room Ingkarni Wardli :: Dr Joel Miller :: Monash University

Media...

Our ability to accurately predict and explain the spread of an infectious disease is a significant factor in our ability to implement effective interventions. Our ability to accurately model disease spread depends on how accurately we capture the various effects. This is complicated by the fact that infectious disease spread involves a number of time scales. Four that are particularly relevant are: duration of infection in an individual, duration of partnerships between individuals, the time required for an epidemic to spread through the population, and the time required for the population structure to change (demographic or otherwise).

Mathematically simple models of disease spread usually make the implicit assumption that the duration of partnerships is by far the shortest time scale in the system. Thus they miss out on the tendency for infected individuals to deplete their local pool of susceptibles. Depending on the details of the disease in question, this effect may be significant.

I will discuss work done to reduce these assumptions for "SIR" (Susceptible-Infected-Recovered) diseases, which allows us to interpolate between populations which are static and populations which change partners rapidly in closed populations (no entry/exit). I will then discuss early results in applying these methods to diseases such as HIV in which the population time scales are relevant.

Monodromy of the Hitchin system and components of representation varieties
12:10 Fri 29 May, 2015 :: Napier 144 :: David Baraglia :: University of Adelaide

Representations of the fundamental group of a compact Riemann surface into a reductive Lie group form a moduli space, called a representation variety. An outstanding problem in topology is to determine the number of components of these varieties. Through a deep result known as non-abelian Hodge theory, representation varieties are homeomorphic to moduli spaces of certain holomorphic objects called Higgs bundles. In this talk I will describe recent joint work with L. Schaposnik computing the monodromy of the Hitchin fibration for Higgs bundle moduli spaces. Our results give a new unified proof of the number of components of several representation varieties.
Complex Systems, Chaotic Dynamics and Infectious Diseases
15:10 Fri 5 Jun, 2015 :: Engineering North N132 :: Prof Michael Small :: UWA

Media...
In complex systems, the interconnection between the components of the system determine the dynamics. The system is described by a very large and random mathematical graph and it is the topological structure of that graph which is important for understanding of the dynamical behaviour of the system. I will talk about two specific examples - (1) spread of infectious disease (where the connection between the agents in a population, rather than epidemic parameters, determine the endemic state); and, (2) a transformation to represent a dynamical system as a graph (such that the "statistical mechanics" of the graph characterise the dynamics).
Instantons and Geometric Representation Theory
12:10 Thu 23 Jul, 2015 :: Engineering and Maths EM212 :: Professor Richard Szabo :: Heriot-Watt University

We give an overview of the various approaches to studying supersymmetric quiver gauge theories on ALE spaces, and their conjectural connections to two-dimensional conformal field theory via AGT-type dualities. From a mathematical perspective, this is formulated as a relationship between the equivariant cohomology of certain moduli spaces of sheaves on stacks and the representation theory of infinite-dimensional Lie algebras. We introduce an orbifold compactification of the minimal resolution of the A-type toric singularity in four dimensions, and then construct a moduli space of framed sheaves which is conjecturally isomorphic to a Nakajima quiver variety. We apply this construction to derive relations between the equivariant cohomology of these moduli spaces and the representation theory of the affine Lie algebra of type A.
Dirac operators and Hamiltonian loop group action
12:10 Fri 24 Jul, 2015 :: Engineering and Maths EM212 :: Yanli Song :: University of Toronto

A definition to the geometric quantization for compact Hamiltonian G-spaces is given by Bott, defined as the index of the Spinc-Dirac operator on the manifold. In this talk, I will explain how to generalize this idea to the Hamiltonian LG-spaces. Instead of quantizing infinite-dimensional manifolds directly, we use its equivalent finite-dimensional model, the quasi-Hamiltonian G-spaces. By constructing twisted spinor bundle and twisted pre-quantum bundle on the quasi-Hamiltonian G-space, we define a Dirac operator whose index are given by positive energy representation of loop groups. A key role in the construction will be played by the algebraic cubic Dirac operator for loop algebra. If time permitted, I will also explain how to prove the quantization commutes with reduction theorem for Hamiltonian LG-spaces under this framework.
Workshop on Geometric Quantisation
10:10 Mon 27 Jul, 2015 :: Level 7 conference room Ingkarni Wardli :: Michele Vergne, Weiping Zhang, Eckhard Meinrenken, Nigel Higson and many others

Media...
Geometric quantisation has been an increasingly active area since before the 1980s, with links to physics, symplectic geometry, representation theory, index theory, and differential geometry and geometric analysis in general. In addition to its relevance as a field on its own, it acts as a focal point for the interaction between all of these areas, which has yielded far-reaching and powerful results. This workshop features a large number of international speakers, who are all well-known for their work in (differential) geometry, representation theory and/or geometric analysis. This is a great opportunity for anyone interested in these areas to meet and learn from some of the top mathematicians in the world. Students are especially welcome. Registration is free.
Vanishing lattices and moduli spaces
12:10 Fri 28 Aug, 2015 :: Ingkarni Wardli B17 :: David Baraglia :: The University of Adelaide

Media...
Vanishing lattices are symplectic analogues of root systems. As with roots systems, they admit a classification in terms of certain Dynkin diagrams (not the usual ones from Lie theory). In this talk I will discuss this classification and if there is time I will outline my work (in progress) showing that the monodromy of the SL(n,C) Hitchin fibration is essentially a vanishing lattice.
Queues and cooperative games
15:00 Fri 18 Sep, 2015 :: Ingkarni Wardli B21 :: Moshe Haviv :: Department of Statistics and the Federmann Center for the Study of Rationality, The Hebrew Universit

Media...
The area of cooperative game theory deals with models in which a number of individuals, called players, can form coalitions so as to improve the utility of its members. In many cases, the formation of the grand coalition is a natural result of some negotiation or a bargaining procedure. The main question then is how the players should split the gains due to their cooperation among themselves. Various solutions have been suggested among them the Shapley value, the nucleolus and the core.

Servers in a queueing system can also join forces. For example, they can exchange service capacity among themselves or serve customers who originally seek service at their peers. The overall performance improves and the question is how they should split the gains, or, equivalently, how much each one of them needs to pay or be paid in order to cooperate with the others. Our major focus is in the core of the resulting cooperative game and in showing that in many queueing games the core is not empty.

Finally, customers who are served by the same server can also be looked at as players who form a grand coalition, now inflicting damage on each other in the form of additional waiting time. We show how cooperative game theory, specifically the Aumann-Shapley prices, leads to a way in which this damage can be attributed to individual customers or groups of customers.
Analytic complexity of bivariate holomorphic functions and cluster trees
12:10 Fri 2 Oct, 2015 :: Ingkarni Wardli B17 :: Timur Sadykov :: Plekhanov University, Moscow

The Kolmogorov-Arnold theorem yields a representation of a multivariate continuous function in terms of a composition of functions which depend on at most two variables. In the analytic case, understanding the complexity of such a representation naturally leads to the notion of the analytic complexity of (a germ of) a bivariate multi-valued analytic function. According to Beloshapka's local definition, the order of complexity of any univariate function is equal to zero while the n-th complexity class is defined recursively to consist of functions of the form a(b(x,y)+c(x,y)), where a is a univariate analytic function and b and c belong to the (n-1)-th complexity class. Such a represenation is meant to be valid for suitable germs of multi-valued holomorphic functions. A randomly chosen bivariate analytic functions will most likely have infinite analytic complexity. However, for a number of important families of special functions of mathematical physics their complexity is finite and can be computed or estimated. Using this, we introduce the notion of the analytic complexity of a binary tree, in particular, a cluster tree, and investigate its properties.
Weak globularity in homotopy theory and higher category theory
12:10 Thu 12 Nov, 2015 :: Ingkarni Wardli B19 :: Simona Paoli :: University of Leicester

Media...
Spaces and homotopy theories are fundamental objects of study of algebraic topology. One way to study these objects is to break them into smaller components with the Postnikov decomposition. To describe such decomposition purely algebraically we need higher categorical structures. We describe one approach to modelling these structures based on a new paradigm to build weak higher categories, which is the notion of weak globularity. We describe some of their connections to both homotopy theory and higher category theory.
Quantisation of Hitchin's moduli space
12:10 Fri 22 Jan, 2016 :: Engineering North N132 :: Siye Wu :: National Tsing Hua Univeristy

In this talk, I construct prequantum line bundles on Hitchin's moduli spaces of orientable and non-orientable surfaces and study the geometric quantisation and quantisation via branes by complexification of the moduli spaces.
Counting periodic points of plane Cremona maps
12:10 Fri 1 Apr, 2016 :: Eng & Maths EM205 :: Tuyen Truong :: University of Adelaide

Media...
In this talk, I will present recent results, join with Tien-Cuong Dinh and Viet-Anh Nguyen, on counting periodic points of plane Cremona maps (i.e. birational maps of P^2). The tools used include a Lefschetz fixed point formula of Saito, Iwasaki and Uehara for birational maps of surface whose fixed point set may contain curves; a bound on the arithmetic genus of curves of periodic points by Diller, Jackson and Sommerse; a result by Diller, Dujardin and Guedj on invariant (1,1) currents of meromorphic maps of compact Kahler surfaces; and a theory developed recently by Dinh and Sibony for non proper intersections of varieties. Among new results in the paper, we give a complete characterisation of when two positive closed (1,1) currents on a compact Kahler surface behave nicely in the view of Dinh and Sibony’s theory, even if their wedge intersection may not be well-defined with respect to the classical pluripotential theory. Time allows, I will present some generalisations to meromorphic maps (including an upper bound for the number of isolated periodic points which is sometimes overlooked in the literature) and open questions.
How to count Betti numbers
12:10 Fri 6 May, 2016 :: Eng & Maths EM205 :: David Baraglia :: University of Adelaide

Media...
I will begin this talk by showing how to obtain the Betti numbers of certain smooth complex projective varieties by counting points over a finite field. For singular or non-compact varieties this motivates us to consider the "virtual Hodge numbers" encoded by the "Hodge-Deligne polynomial", a refinement of the topological Euler characteristic. I will then discuss the computation of Hodge-Deligne polynomials for certain singular character varieties (i.e. moduli spaces of flat connections).
Mathematical modelling of the immune response to influenza
15:00 Thu 12 May, 2016 :: Ingkarni Wardli B20 :: Ada Yan :: University of Melbourne

Media...
The immune response plays an important role in the resolution of primary influenza infection and prevention of subsequent infection in an individual. However, the relative roles of each component of the immune response in clearing infection, and the effects of interaction between components, are not well quantified.

We have constructed a model of the immune response to influenza based on data from viral interference experiments, where ferrets were exposed to two influenza strains within a short time period. The changes in viral kinetics of the second virus due to the first virus depend on the strains used as well as the interval between exposures, enabling inference of the timing of innate and adaptive immune response components and the role of cross-reactivity in resolving infection. Our model provides a mechanistic explanation for the observed variation in viruses' abilities to protect against subsequent infection at short inter-exposure intervals, either by delaying the second infection or inducing stochastic extinction of the second virus. It also explains the decrease in recovery time for the second infection when the two strains elicit cross-reactive cellular adaptive immune responses. To account for inter-subject as well as inter-virus variation, the model is formulated using a hierarchical framework. We will fit the model to experimental data using Markov Chain Monte Carlo methods; quantification of the model will enable a deeper understanding of the effects of potential new treatments.
Behavioural Microsimulation Approach to Social Policy and Behavioural Economics
15:10 Fri 20 May, 2016 :: S112 Engineering South :: Dr Drew Mellor :: Ernst & Young

SIMULAIT is a general purpose, behavioural micro-simulation system designed to predict behavioural trends in human populations. This type of predictive capability grew out of original research initially conducted in conjunction with the Defence Science and Technology Group (DSTO) in South Australia, and has been fully commercialised and is in current use by a global customer base. To our customers, the principal value of the system lies in its ability to predict likely outcomes to scenarios that challenge conventional approaches based on extrapolation or generalisation. These types of scenarios include: the impact of disruptive technologies, such as the impact of wide-spread adoption of autonomous vehicles for transportation or batteries for household energy storage; and the impact of effecting policy elements or interventions, such as the impact of imposing water usage restrictions. SIMULAIT employs a multi-disciplinary methodology, drawing from agent-based modelling, behavioural science and psychology, microeconomics, artificial intelligence, simulation, game theory, engineering, mathematics and statistics. In this seminar, we start with a high-level view of the system followed by a look under the hood to see how the various elements come together to answer questions about behavioural trends. The talk will conclude with a case study of a recent application of SIMULAIT to a significant policy problem - how to address the deficiency of STEM skilled teachers in the Victorian teaching workforce.
Time series analysis of paleo-climate proxies (a mathematical perspective)
15:10 Fri 27 May, 2016 :: Engineering South S112 :: Dr Thomas Stemler :: University of Western Australia

Media...
In this talk I will present the work my colleagues from the School of Earth and Environment (UWA), the "trans disciplinary methods" group of the Potsdam Institute for Climate Impact Research, Germany, and I did to explain the dynamics of the Australian-South East Asian monsoon system during the last couple of thousand years. From a time series perspective paleo-climate proxy series are more or less the monsters moving under your bed that wake you up in the middle of the night. The data is clearly non-stationary, non-uniform sampled in time and the influence of stochastic forcing or the level of measurement noise are more or less unknown. Given these undesirable properties almost all traditional time series analysis methods fail. I will highlight two methods that allow us to draw useful conclusions from the data sets. The first one uses Gaussian kernel methods to reconstruct climate networks from multiple proxies. The coupling relationships in these networks change over time and therefore can be used to infer which areas of the monsoon system dominate the complex dynamics of the whole system. Secondly I will introduce the transformation cost time series method, which allows us to detect changes in the dynamics of a non-uniform sampled time series. Unlike the frequently used interpolation approach, our new method does not corrupt the data and therefore avoids biases in any subsequence analysis. While I will again focus on paleo-climate proxies, the method can be used in other applied areas, where regular sampling is not possible.
Etale ideas in topological and algebraic dynamical systems
12:10 Fri 5 Aug, 2016 :: Ingkarni Wardli B18 :: Tuyen Truong :: University of Adelaide

Media...
In etale topology, instead of considering open subsets of a space, we consider etale neighbourhoods lying over these open subsets. In this talk, I define an etale analog of dynamical systems: to understand a dynamical system f:(X,\Omega )->(X,\Omega ), we consider other dynamical systems lying over it. I then propose to use this to resolve the following two questions: Question 1: What should be the topological entropy of a dynamical system (f,X,\Omega ) when (X,\Omega ) is not a compact space? Question 2: What is the relation between topological entropy of a rational map or correspondence (over a field of arbitrary characteristic) to the pullback on cohomology groups and algebraic cycles?
Predicting turbulence
14:10 Tue 30 Aug, 2016 :: Napier 209 :: Dr Trent Mattner :: School of Mathematical Sciences

Media...
Turbulence is characterised by three-dimensional unsteady fluid motion over a wide range of spatial and temporal scales. It is important in many problems of technological and scientific interest, such as drag reduction, energy production and climate prediction. Turbulent flows are governed by the Navier--Stokes equations, which are a nonlinear system of partial differential equations. Typically, numerical methods are needed to find solutions to these equations. In turbulent flows, however, the resulting computational problem is usually intractable. Filtering or averaging the Navier--Stokes equations mitigates the computational problem, but introduces new quantities into the equations. Mathematical models of turbulence are needed to estimate these quantities. One promising turbulence model consists of a random collection of fluid vortices, which are themselves approximate solutions of the Navier--Stokes equations.
Hilbert schemes of points of some surfaces and quiver representations
12:10 Fri 23 Sep, 2016 :: Ingkarni Wardli B17 :: Ugo Bruzzo :: International School for Advanced Studies, Trieste

Media...
Hilbert schemes of points on the total spaces of the line bundles O(-n) on P1 (desingularizations of toric singularities of type (1/n)(1,1)) can be given an ADHM description, and as a result, they can be realized as varieties of quiver representations.
Leavitt path algebras
12:10 Fri 2 Dec, 2016 :: Engineering & Math EM213 :: Roozbeh Hazrat :: Western Sydney University

Media...
From a directed graph one can generate an algebra which captures the movements along the graph. One such algebras are Leavitt path algebras. Despite being introduced only 10 years ago, Leavitt path algebras have arisen in a variety of different contexts as diverse as analysis, symbolic dynamics, noncommutative geometry and representation theory. In fact, Leavitt path algebras are algebraic counterpart to graph C*-algebras, a theory which has become an area of intensive research globally. There are strikingly parallel similarities between these two theories. Even more surprisingly, one cannot (yet) obtain the results in one theory as a consequence of the other; the statements look the same, however the techniques to prove them are quite different (as the names suggest, one uses Algebra and other Analysis). These all suggest that there might be a bridge between Algebra and Analysis yet to be uncovered. In this talk, we introduce Leavitt path algebras and try to classify them by means of (graded) Grothendieck groups. We will ask nice questions!
Diffeomorphisms of discs, harmonic spinors and positive scalar curvature
11:10 Fri 17 Mar, 2017 :: Engineering Nth N218 :: Diarmuid Crowley :: University of Melbourne

Media...
Let Diff(D^k) be the space of diffeomorphisms of the k-disc fixing the boundary point wise. In this talk I will show for k > 5, that the homotopy groups \pi_*Diff(D^k) have non-zero 8-periodic 2-torsion detected in real K-theory. I will then discuss applications for spin manifolds M of dimension 6 or greater: 1) Our results input to arguments of Hitchin which now show that M admits a metric with a harmonic spinor. 2) If non-empty, space of positive scalar curvature metrics on M has non-zero 8-periodic 2-torsion in its homotopy groups which is detected in real K-theory. This is part of joint work with Thomas Schick and Wolfgang Steimle.
K-types of tempered representations
12:10 Fri 7 Apr, 2017 :: Napier 209 :: Peter Hochs :: University of Adelaide

Media...
Tempered representations of a reductive Lie group G are the irreducible unitary representations one needs in the Plancherel decomposition of L^2(G). They are relevant to harmonic analysis because of this, and also occur in the Langlands classification of the larger class of admissible representations. If K in G is a maximal compact subgroup, then there is a considerable amount of information in the restriction of a tempered representation to K. In joint work with Yanli Song and Shilin Yu, we give a geometric expression for the decomposition of such a restriction into irreducibles. The multiplicities of these irreducibles are expressed as indices of Dirac operators on reduced spaces of a coadjoint orbit of G corresponding to the representation. These reduced spaces are Spin-c analogues of reduced spaces in symplectic geometry, defined in terms of moment maps that represent conserved quantities. This result involves a Spin-c version of the quantisation commutes with reduction principle for noncompact manifolds. For discrete series representations, this was done by Paradan in 2003.
Aggregation patterns from local and non-local interactions
15:10 Fri 30 Jun, 2017 :: Ingkarni Wardli 5.57 :: Dr Emily Hackett-Jones :: Centre for Cancer Biology, University of South Australia

Biological aggregations are ubiquitous in nature and may arise from a number of different mechanisms - both local and non-local. I will discuss two such mechanisms with particular application to the enteric nervous system; the nervous system in the gut responsible for peristalsis. Aggregates of neurons with a particular form are necessary for normal gut development. Our work suggests possible explanations for observations in normal and abnormal gut development.
Weil's Riemann hypothesis (RH) and dynamical systems
12:10 Fri 11 Aug, 2017 :: Engineering Sth S111 :: Tuyen Truong :: University of Adelaide

Media...
Weil proposed an analogue of the RH in finite fields, aiming at counting asymptotically the number of solutions to a given system of polynomial equations (with coefficients in a finite field) in finite field extensions of the base field. This conjecture influenced the development of Algebraic Geometry since the 1950’s, most important achievements include: Grothendieck et al.’s etale cohomology, and Bombieri and Grothendieck’s standard conjectures on algebraic cycles (inspired by a Kahlerian analogue of a generalisation of Weil’s RH by Serre). Weil’s RH was solved by Deligne in the 70’s, but the finite field analogue of Serre’s result is still open (even in dimension 2). This talk presents my recent work proposing a generalisation of Weil’s RH by relating it to standard conjectures and a relatively new notion in complex dynamical systems called dynamical degrees. In the course of the talk, I will present the proof of a question proposed by Esnault and Srinivas (which is related to a result by Gromov and Yomdin on entropy of complex dynamical systems), which gives support to the finite field analogue of Serre’s result.
Dynamics of transcendental Hanon maps
11:10 Wed 20 Sep, 2017 :: Engineering & Math EM212 :: Leandro Arosio :: University of Rome

The dynamics of a polynomial in the complex plane is a classical topic studied already at the beginning of the 20th century by Fatou and Julia. The complex plane is partitioned in two natural invariant sets: a compact set called the Julia set, with (usually) fractal structure and chaotic behaviour, and the Fatou set, where dynamics has no sensitive dependence on initial conditions. The dynamics of a transcendental map was first studied by Baker fifty years ago, and shows striking differences with the polynomial case: for example, there are wandering Fatou components. Moving to C^2, an analogue of polynomial dynamics is given by Hanon maps, polynomial automorphisms with interesting dynamics. In this talk I will introduce a natural generalisation of transcendental dynamics to C^2, and show how to construct wandering domains for such maps.
Equivariant formality of homogeneous spaces
12:10 Fri 29 Sep, 2017 :: Engineering Sth S111 :: Alex Chi-Kwong Fok :: University of Adelaide

Equivariant formality, a notion in equivariant topology introduced by Goresky-Kottwitz-Macpherson, is a desirable property of spaces with group actions, which allows the application of localisation formula to evaluate integrals of any top closed forms and enables one to compute easily the equivariant cohomology. Broad classes of spaces of especial interest are well-known to be equivariantly formal, e.g., compact symplectic manifolds equipped with Hamiltonian compact Lie group actions and projective varieties equipped with linear algebraic torus actions, of which flag varieties are examples. Less is known about compact homogeneous spaces G/K equipped with the isotropy action of K, which is not necessarily of maximal rank. In this talk we will review previous attempts of characterizing equivariant formality of G/K, and present our recent results on this problem using an analogue of equivariant formality in K-theory. Part of the work presented in this talk is joint with Jeffrey Carlson.
End-periodic K-homology and spin bordism
12:10 Fri 20 Oct, 2017 :: Engineering Sth S111 :: Michael Hallam :: University of Adelaide

This talk introduces new "end-periodic" variants of geometric K-homology and spin bordism theories that are tailored to a recent index theorem for even-dimensional manifolds with periodic ends. This index theorem, due to Mrowka, Ruberman and Saveliev, is a generalisation of the Atiyah-Patodi-Singer index theorem for manifolds with odd-dimensional boundary. As in the APS index theorem, there is an (end-periodic) eta invariant that appears as a correction term for the periodic end. Invariance properties of the standard relative eta invariants are elegantly expressed using K-homology and spin bordism, and this continues to hold in the end-periodic case. In fact, there are natural isomorphisms between the standard K-homology/bordism theories and their end-periodic versions, and moreover these isomorphisms preserve relative eta invariants. The study is motivated by results on positive scalar curvature, namely obstructions and distinct path components of the moduli space of PSC metrics. Our isomorphisms provide a systematic method for transferring certain results on PSC from the odd-dimensional case to the even-dimensional case. This work is joint with Mathai Varghese.
How oligomerisation impacts steady state gradient in a morphogen-receptor system
15:10 Fri 20 Oct, 2017 :: Ingkarni Wardli 5.57 :: Mr Phillip Brown :: University of Adelaide

In developmental biology an important process is cell fate determination, where cells start to differentiate their form and function. This is an element of the broader concept of morphogenesis. It has long been held that cell differentiation can occur by a chemical signal providing positional information to 'undecided' cells. This chemical produces a gradient of concentration that indicates to a cell what path it should develop along. More recently it has been shown that in a particular system of this type, the chemical (protein) does not exist purely as individual molecules, but can exist in multi-protein complexes known as oligomers. Mathematical modelling has been performed on systems of oligomers to determine if this concept can produce useful gradients of concentration. However, there are wide range of possibilities when it comes to how oligomer systems can be modelled and most of them have not been explored. In this talk I will introduce a new monomer system and analyse it, before extending this model to include oligomers. A number of oligomer models are proposed based on the assumption that proteins are only produced in their oligomer form and can only break apart once they have left the producing cell. It will be shown that when oligomers are present under these conditions, but only monomers are permitted to bind with receptors, then the system can produce robust, biologically useful gradients for a significantly larger range of model parameters (for instance, degradation, production and binding rates) compared to the monomer system. We will also show that when oligomers are permitted to bind with receptors there is negligible difference compared to the monomer system.
Springer correspondence for symmetric spaces
12:10 Fri 17 Nov, 2017 :: Engineering Sth S111 :: Ting Xue :: University of Melbourne

Media...
The Springer theory for reductive algebraic groups plays an important role in representation theory. It relates nilpotent orbits in the Lie algebra to irreducible representations of the Weyl group. We develop a Springer theory in the case of symmetric spaces using Fourier transform, which relates nilpotent orbits in this setting to irreducible representations of Hecke algebras of various Coxeter groups with specified parameters. This in turn gives rise to character sheaves on symmetric spaces, which we describe explicitly in the case of classical symmetric spaces. A key ingredient in the construction is the nearby cycle sheaves associated to the adjoint quotient map. The talk is based on joint work with Kari Vilonen and partly based on joint work with Misha Grinberg and Kari Vilonen.
Stochastic Modelling of Urban Structure
11:10 Mon 20 Nov, 2017 :: Engineering Nth N132 :: Mark Girolami :: Imperial College London, and The Alan Turing Institute

Media...
Urban systems are complex in nature and comprise of a large number of individuals that act according to utility, a measure of net benefit pertaining to preferences. The actions of individuals give rise to an emergent behaviour, creating the so-called urban structure that we observe. In this talk, I develop a stochastic model of urban structure to formally account for uncertainty arising from the complex behaviour. We further use this stochastic model to infer the components of a utility function from observed urban structure. This is a more powerful modelling framework in comparison to the ubiquitous discrete choice models that are of limited use for complex systems, in which the overall preferences of individuals are difficult to ascertain. We model urban structure as a realization of a Boltzmann distribution that is the invariant distribution of a related stochastic differential equation (SDE) that describes the dynamics of the urban system. Our specification of Boltzmann distribution assigns higher probability to stable configurations, in the sense that consumer surplus (demand) is balanced with running costs (supply), as characterized by a potential function. We specify a Bayesian hierarchical model to infer the components of a utility function from observed structure. Our model is doubly-intractable and poses significant computational challenges that we overcome using recent advances in Markov chain Monte Carlo (MCMC) methods. We demonstrate our methodology with case studies on the London retail system and airports in England.
A multiscale approximation of a Cahn-Larche system with phase separation on the microscale
15:10 Thu 22 Feb, 2018 :: Ingkarni Wardli 5.57 :: Ms Lisa Reischmann :: University of Augsberg

We consider the process of phase separation of a binary system under the influence of mechanical deformation and we derive a mathematical multiscale model, which describes the evolving microstructure taking into account the elastic properties of the involved materials. Motivated by phase-separation processes observed in lipid monolayers in film-balance experiments, the starting point of the model is the Cahn-Hilliard equation coupled with the equations of linear elasticity, the so-called Cahn-Larche system. Owing to the fact that the mechanical deformation takes place on a macrosopic scale whereas the phase separation happens on a microscopic level, a multiscale approach is imperative. We assume the pattern of the evolving microstructure to have an intrinsic length scale associated with it, which, after nondimensionalisation, leads to a scaled model involving a small parameter epsilon>0, which is suitable for periodic-homogenisation techniques. For the full nonlinear problem the so-called homogenised problem is then obtained by letting epsilon tend to zero using the method of asymptotic expansion. Furthermore, we present a linearised Cahn-Larche system and use the method of two-scale convergence to obtain the associated limit problem, which turns out to have the same structure as in the nonlinear case, in a mathematically rigorous way. Properties of the limit model will be discussed.
Radial Toeplitz operators on bounded symmetric domains
11:10 Fri 9 Mar, 2018 :: Lower Napier LG11 :: Raul Quiroga-Barranco :: CIMAT, Guanajuato, Mexico

Media...
The Bergman spaces on a complex domain are defined as the space of holomorphic square-integrable functions on the domain. These carry interesting structures both for analysis and representation theory in the case of bounded symmetric domains. On the other hand, these spaces have some bounded operators obtained as the composition of a multiplier operator and a projection. These operators are highly noncommuting between each other. However, there exist large commutative C*-algebras generated by some of these Toeplitz operators very much related to Lie groups. I will construct an example of such C*-algebras and provide a fairly explicit simultaneous diagonalization of the generating Toeplitz operators.
Braid groups and higher representation theory
13:10 Fri 4 May, 2018 :: Barr Smith South Polygon Lecture theatre :: Tony Licata :: Australian National University

Media...
The Artin braid group arise in a number of different parts of mathematics. The goal of this talk will be to explain how basic group-theoretic questions about the Artin braid group can be answered using some modern tools of linear and homological algebra, with an eye toward proving some open conjectures about other groups.
Knot homologies
15:10 Fri 4 May, 2018 :: Horace Lamb 1022 :: Dr Anthony Licata :: Australian National University

The last twenty years have seen a lot of interaction between low-dimensional topology and representation theory. One facet of this interaction concerns "knot homologies," which are homological invariants of knots; the most famous of these, Khovanov homology, comes from the higher representation theory of sl_2. The goal of this talk will be to give a gentle introduction to this subject to non-experts by telling you a bit about Khovanov homology.
Stability Through a Geometric Lens
15:10 Fri 18 May, 2018 :: Horace Lamb 1022 :: Dr Robby Marangell :: University of Sydney

Focussing on the example of the Fisher/KPP equation, I will show how geometric information can be used to establish (in)stability results in some partial differential equations (PDEs). Viewing standing and travelling waves as fixed points of a flow in an infinite dimensional system, leads to a reduction of the linearised stability problem to a boundary value problem in a linear non-autonomous ordinary differential equation (ODE). Next, by exploiting the linearity of the system, one can use geometric ideas to reveal additional structure underlying the determination of stability. I will show how the Riccati equation can be used to produce a reasonably computable detector of eigenvalues and how such a detector is related to another, well-known eigenvalue detector, the Evans function. If there is time, I will try to expand on how to generalise these ideas to systems of PDEs.
Hitchin's Projectively Flat Connection for the Moduli Space of Higgs Bundles
13:10 Fri 15 Jun, 2018 :: Barr Smith South Polygon Lecture theatre :: John McCarthy :: University of Adelaide

In this talk I will discuss the problem of geometrically quantizing the moduli space of Higgs bundles on a compact Riemann surface using Kahler polarisations. I will begin by introducing geometric quantization via Kahler polarisations for compact manifolds, leading up to the definition of a Hitchin connection as stated by Andersen. I will then describe the moduli spaces of stable bundles and Higgs bundles over a compact Riemann surface, and discuss their properties. The problem of geometrically quantizing the moduli space of stables bundles, a compact space, was solved independently by Hitchin and Axelrod, Del PIetra, and Witten. The Higgs moduli space is non-compact and therefore the techniques used do not apply, but carries an action of C*. I will finish the talk by discussing the problem of finding a Hitchin connection that preserves this C* action. Such a connection exists in the case of Higgs line bundles, and I will comment on the difficulties in higher rank.
The topology and geometry of spaces of Yang-Mills-Higgs flow lines
11:10 Fri 27 Jul, 2018 :: Barr Smith South Polygon Lecture theatre :: Graeme Wilkin :: National University of Singapore

Given a smooth complex vector bundle over a compact Riemann surface, one can define the space of Higgs bundles and an energy functional on this space: the Yang-Mills-Higgs functional. The gradient flow of this functional resembles a nonlinear heat equation, and the limit of the flow detects information about the algebraic structure of the initial Higgs bundle (e.g. whether or not it is semistable). In this talk I will explain my work to classify ancient solutions of the Yang-Mills-Higgs flow in terms of their algebraic structure, which leads to an algebro-geometric classification of Yang-Mills-Higgs flow lines. Critical points connected by flow lines can then be interpreted in terms of the Hecke correspondence, which appears in Witten’s recent work on Geometric Langlands. This classification also gives a geometric description of spaces of unbroken flow lines in terms of secant varieties of the underlying Riemann surface, and in the remaining time I will describe work in progress to relate the (analytic) Morse compactification of these spaces by broken flow lines to an algebro-geometric compactification by iterated blowups of secant varieties.
Equivariant Index, Traces and Representation Theory
11:10 Fri 10 Aug, 2018 :: Barr Smith South Polygon Lecture theatre :: Hang Wang :: University of Adelaide

K-theory of C*-algebras associated to a semisimple Lie group can be understood both from the geometric point of view via Baum-Connes assembly map and from the representation theoretic point of view via harmonic analysis of Lie groups. A K-theory generator can be viewed as the equivariant index of some Dirac operator, but also interpreted as a (family of) representation(s) parametrised by the noncompact abelian part in the Levi component of a cuspidal parabolic subgroup. Applying orbital traces to the K-theory group, we obtain the equivariant index as a fixed point formula which, for each K-theory generators for (limit of) discrete series, recovers Harish-Chandra’s character formula on the representation theory side. This is a noncompact analogue of Atiyah-Segal-Singer fixed point theorem in relation to the Weyl character formula. This is joint work with Peter Hochs.
Tales of Multiple Regression: Informative Missingness, Recommender Systems, and R2-D2
15:10 Fri 17 Aug, 2018 :: Napier 208 :: Prof Howard Bondell :: University of Melbourne

In this talk, we briefly discuss two projects tangentially related under the umbrella of high-dimensional regression. The first part of the talk investigates informative missingness in the framework of recommender systems. In this setting, we envision a potential rating for every object-user pair. The goal of a recommender system is to predict the unobserved ratings in order to recommend an object that the user is likely to rate highly. A typically overlooked piece is that the combinations are not missing at random. For example, in movie ratings, a relationship between the user ratings and their viewing history is expected, as human nature dictates the user would seek out movies that they anticipate enjoying. We model this informative missingness, and place the recommender system in a shared-variable regression framework which can aid in prediction quality. The second part of the talk deals with a new class of prior distributions for shrinkage regularization in sparse linear regression, particularly the high dimensional case. Instead of placing a prior on the coefficients themselves, we place a prior on the regression R-squared. This is then distributed to the coefficients by decomposing it via a Dirichlet Distribution. We call the new prior R2-D2 in light of its R-Squared Dirichlet Decomposition. Compared to existing shrinkage priors, we show that the R2-D2 prior can simultaneously achieve both high prior concentration at zero, as well as heavier tails. These two properties combine to provide a higher degree of shrinkage on the irrelevant coefficients, along with less bias in estimation of the larger signals.
Topological Data Analysis
15:10 Fri 31 Aug, 2018 :: Napier 208 :: Dr Vanessa Robins :: Australian National University

Topological Data Analysis has grown out of work focussed on deriving qualitative and yet quantifiable information about the shape of data. The underlying assumption is that knowledge of shape - the way the data are distributed - permits high-level reasoning and modelling of the processes that created this data. The 0-th order aspect of shape is the number pieces: "connected components" to a topologist; "clustering" to a statistician. Higher-order topological aspects of shape are holes, quantified as "non-bounding cycles" in homology theory. These signal the existence of some type of constraint on the data-generating process. Homology lends itself naturally to computer implementation, but its naive application is not robust to noise. This inspired the development of persistent homology: an algebraic topological tool that measures changes in the topology of a growing sequence of spaces (a filtration). Persistent homology provides invariants called the barcodes or persistence diagrams that are sets of intervals recording the birth and death parameter values of each homology class in the filtration. It captures information about the shape of data over a range of length scales, and enables the identification of "noisy" topological structure. Statistical analysis of persistent homology has been challenging because the raw information (the persistence diagrams) are provided as sets of intervals rather than functions. Various approaches to converting persistence diagrams to functional forms have been developed recently, and have found application to data ranging from the distribution of galaxies, to porous materials, and cancer detection.
Exceptional quantum symmetries
11:10 Fri 5 Oct, 2018 :: Barr Smith South Polygon Lecture theatre :: Scott Morrison :: Australian National University

I will survey our current understanding of "quantum symmetries", the mathematical models of topological order, in particular through the formalism of fusion categories. Our very limited classification results to date point to nearly all examples being built out of data coming from finite groups, quantum groups at roots of unity, and cohomological data. However, there are a small number of "exceptional" quantum symmetries that so far appear to be disconnected from the world of classical symmetries as studied in representation theory and group theory. I'll give an update on recent progress understanding these examples.
Interactive theorem proving for mathematicians
15:10 Fri 5 Oct, 2018 :: Napier 208 :: A/Prof Scott Morrison :: Australian National University

Mathematicians use computers to write their proofs (LaTeX), and to do their calculations (Sage, Mathematica, Maple, Matlab, etc, as well as custom code for simulations or searches). However today we rarely use computers to help us to construct and understand proofs. There is a long tradition in computer science of interactive and automatic theorem proving; particularly today these are important tools in engineering correct software, as well as in optimisation and compilation. There have been some notable examples of formalisation of modern mathematics (e.g. the odd order theorem, the Kepler conjecture, and the four-colour theorem). Even in these cases, huge engineering efforts were required to translate the mathematics to a form a computer could understand. Moreover, in most areas of research there is a huge gap between the interests of human mathematicians and the abilities of computer provers. Nevertheless, I think it's time for mathematicians to start getting interested in interactive theorem provers! It's now possible to write proofs, and write tools that help write proofs, in languages which are expressive enough to encompass most of modern mathematics, and ergonomic enough to use for general purpose programming. I'll give an informal introduction to dependent type theory (the logical foundation of many modern theorem provers), some examples of doing mathematics in such a system, and my experiences working with mathematics students in these systems.
Twisted K-theory of compact Lie groups and extended Verlinde algebras
11:10 Fri 12 Oct, 2018 :: Barr Smith South Polygon Lecture theatre :: Chi-Kwong Fok :: University of Adelaide

In a series of recent papers, Freed, Hopkins and Teleman put forth a deep result which identifies the twisted K -theory of a compact Lie group G with the representation theory of its loop group LG. Under suitable conditions, both objects can be enhanced to the Verlinde algebra, which appears in mathematical physics as the Frobenius algebra of a certain topological quantum field theory, and in algebraic geometry as the algebra encoding information of moduli spaces of G-bundles over Riemann surfaces. The Verlinde algebra for G with nice connectedness properties have been well-known. However, explicit descriptions of such for disconnected G are lacking. In this talk, I will discuss the various aspects of the Freed-Hopkins-Teleman Theorem and partial results on an extension of the Verlinde algebra arising from a disconnected G. The talk is based on work in progress joint with David Baraglia and Varghese Mathai.

Publications matching "Monodromy of the Hitchin system and components of "

Publications
A bistable reaction-diffusion system in a stretching flow
Cox, Stephen; Gottwald, G, Physica D 216 (307–318) 2006
Numerical studies on the approximation of horizontal diffusion using sigma coordinate system
Lee, Jong; Teubner, Michael; Nixon, John; Cho, Y-S, KSCE Journal of Civil Engineering 10 (145–149) 2006
Best causal mathematical models for a nonlinear system
Torokhti, Anatoli; Howlett, P; Pearce, Charles, IEEE Transactions on Circuits and Systems I - regular papers 52 (1013–1020) 2005
Variance Components
Solomon, Patricia, chapter in Encyclopedia of Biostatistics (John Wiley and Sons.) 5685–5697, 2005
Modern approach of design of welded components subjected to fatigue loading
Ghosh, Abir, Journal of Structural Engineering-ASCE 130 (812–820) 2004
Relationships between the El-Nino southern oscillation and spate flows in southern Africa and Australia
Whiting, Julian; Lambert, Martin; Metcalfe, Andrew; Adamson, Peter; Franks, S; Kuczera, George, Hydrology and Earth System Sciences 8 (1118–1128) 2004
Spectral decomposition methods for the computation of RMS values in an active suspension
Pearce, Charles; Thompson, A, Vehicle System Dynamics 42 (395–411) 2004
An optimal feedback model for a non-linear causal system
Howlett, P; Torokhti, Anatoli; Pearce, Charles, ICOTA'06, Ballarat, Vic, Australia 09/12/04
Components of variance
Cox, D; Solomon, Patricia, (Chapman & Hall/CRC) 2003
A non-parametric hidden Markov model for climate state identification
Lambert, Martin; Whiting, Julian; Metcalfe, Andrew, Hydrology and Earth System Sciences 7 (652–667) 2003
Modelling persistence in annual Australian point rainfall
Whiting, Julian; Lambert, Martin; Metcalfe, Andrew, Hydrology and Earth System Sciences 7 (197–211) 2003
RMS values for force, stroke and deflection in a quarter-car model active suspension with preview
Thompson, A; Pearce, Charles, Vehicle System Dynamics 39 (57–75) 2003
The Andr/Bruck and Bose representation of conics in Baer subplanes of PG(2, q2)
Quinn, Catherine, Journal of Geometry 74 (123–138) 2002
Direct computation of the performance index for an optimally controlled active suspension with preview applied to a half-car model
Thompson, A; Pearce, Charles, Vehicle System Dynamics 35 (121–137) 2001
Performance index for a preview active suspension applied to a quarter-car model
Thompson, A; Pearce, Charles, Vehicle System Dynamics 35 (55–66) 2001
Active vibration control to reduce the low frequency vibration transmission through an existing passive isolation system
Lee, Jong; Li, Xun; Cazzolato, Benjamin; Hansen, Colin, ICSV8: 8th International congress of sound and vibration, Hong Kong China 02/07/01
A scalable computer system
O'Brien, F; Roughan, Matthew,
The Andre/Bruck and Bose representation in PG(2h, q): unitals and Baer subplanes
Barwick, Susan; Casse, Rey; Quinn, Catherine, Bulletin of the Belgian Mathematical Society-Simon Stevin 7 (173–197) 2000

Advanced search options

You may be able to improve your search results by using the following syntax:

QueryMatches the following
Asymptotic EquationAnything with "Asymptotic" or "Equation".
+Asymptotic +EquationAnything with "Asymptotic" and "Equation".
+Stokes -"Navier-Stokes"Anything containing "Stokes" but not "Navier-Stokes".
Dynam*Anything containing "Dynamic", "Dynamical", "Dynamicist" etc.