The University of Adelaide
You are here
Text size: S | M | L
Printer Friendly Version
August 2018

Search the School of Mathematical Sciences

Find in People Courses Events News Publications

People matching "Moduli spaces of contact instantons"

Dr David Baraglia
ARC DECRA Fellow, APD Fellow

More about David Baraglia...
Associate Professor David Clements
Reader/Associate Professor in Applied Mathematics

More about David Clements...

Events matching "Moduli spaces of contact instantons"

Finite Geometries: Classical Problems and Recent Developments
15:10 Fri 20 Jul, 2007 :: G04 Napier Building University of Adelaide :: Prof. Joseph A. Thas :: Ghent University, Belgium

In recent years there has been an increasing interest in finite projective spaces, and important applications to practical topics such as coding theory, cryptography and design of experiments have made the field even more attractive. In my talk some classical problems and recent developments will be discussed. First I will mention Segre's celebrated theorem and ovals and a purely combinatorial characterization of Hermitian curves in the projective plane over a finite field here, from the beginning, the considered pointset is contained in the projective plane over a finite field. Next, a recent elegant result on semiovals in PG(2,q), due to Gács, will be given. A second approach is where the object is described as an incidence structure satisfying certain properties; here the geometry is not a priori embedded in a projective space. This will be illustrated by a characterization of the classical inversive plane in the odd case. Another quite recent beautiful result in Galois geometry is the discovery of an infinite class of hemisystems of the Hermitian variety in PG(3,q^2), leading to new interesting classes of incidence structures, graphs and codes; before this result, just one example for GF(9), due to Segre, was known.
An Introduction to invariant differential pairings
14:10 Tue 24 Jul, 2007 :: Mathematics G08 :: Jens Kroeske

On homogeneous spaces G/P, where G is a semi-simple Lie group and P is a parabolic subgroup (the ordinary sphere or projective spaces being examples), invariant operators, that is operators between certain homogeneous bundles (functions, vector fields or forms being amongst the typical examples) that are invariant under the action of the group G, have been studied extensively. Especially on so called hermitian symmetric spaces which arise through a 1-grading of the Lie algebra of G there exists a complete classification of first order invariant linear differential operators even on more general manifolds (that allow a so called almost hermitian structure).

This talk will introduce the notion of an invariant bilinear differential pairing between sections of the aforementioned homogeneous bundles. Moreover we will discuss a classification (excluding certain totally degenerate cases) of all first order invariant bilinear differential pairings on manifolds with an almost hermitian symmetric structure. The similarities and connections with the linear operator classification will be highlighted and discussed.

Betti's Reciprocal Theorem for Inclusion and Contact Problems
15:10 Fri 1 Aug, 2008 :: G03 Napier Building University of Adelaide :: Prof. Patrick Selvadurai :: Department of Civil Engineering and Applied Mechanics, McGill University

Enrico Betti (1823-1892) is recognized in the mathematics community for his pioneering contributions to topology. An equally important contribution is his formulation of the reciprocity theorem applicable to elastic bodies that satisfy the classical equations of linear elasticity. Although James Clerk Maxwell (1831-1879) proposed a law of reciprocal displacements and rotations in 1864, the contribution of Betti is acknowledged for its underlying formal mathematical basis and generality. The purpose of this lecture is to illustrate how Betti's reciprocal theorem can be used to full advantage to develop compact analytical results for certain contact and inclusion problems in the classical theory of elasticity. Inclusion problems are encountered in number of areas in applied mechanics ranging from composite materials to geomechanics. In composite materials, the inclusion represents an inhomogeneity that is introduced to increase either the strength or the deformability characteristics of resulting material. In geomechanics, the inclusion represents a constructed material region, such as a ground anchor, that is introduced to provide load transfer from structural systems. Similarly, contact problems have applications to the modelling of the behaviour of indentors used in materials testing to the study of foundations used to distribute loads transmitted from structures. In the study of conventional problems the inclusions and the contact regions are directly loaded and this makes their analysis quite straightforward. When the interaction is induced by loads that are placed exterior to the indentor or inclusion, the direct analysis of the problem becomes inordinately complicated both in terns of formulation of the integral equations and their numerical solution. It is shown by a set of selected examples that the application of Betti's reciprocal theorem leads to the development of exact closed form solutions to what would otherwise be approximate solutions achievable only through the numerical solution of a set of coupled integral equations.
Chern-Simons classes on loop spaces and diffeomorphism groups
13:10 Fri 12 Jun, 2009 :: School Board Room :: Prof Steve Rosenberg :: Boston University

The loop space LM of a Riemannian manifold M comes with a family of Riemannian metrics indexed by a Sobolev parameter. We can construct characteristic classes for LM using the Wodzicki residue instead of the usual matrix trace. The Pontrjagin classes of LM vanish, but the secondary or Chern-Simons classes may be nonzero and may distinguish circle actions on M. There are similar results for diffeomorphism groups of manifolds.
Another proof of Gaboriau-Popa
13:10 Fri 3 Jul, 2009 :: School Board Room :: Prof Greg Hjorth :: University of Melbourne

Gaboriau and Popa showed that a non-abelian free group on finitely many generators has continuum many measure preserving, free, ergodic, actions on standard Borel probability spaces. The original proof used the notion of property (T). I will sketch how this can be replaced by an elementary, and apparently new, dynamical property.
From linear algebra to knot theory
15:10 Fri 21 Aug, 2009 :: Badger Labs G13 Macbeth Lecture Theatre :: Prof Ross Street :: Macquarie University, Sydney

Vector spaces and linear functions form our paradigmatic monoidal category. The concepts underpinning linear algebra admit definitions, operations and constructions with analogues in many other parts of mathematics. We shall see how to generalize much of linear algebra to the context of monoidal categories. Traditional examples of such categories are obtained by replacing vector spaces by linear representations of a given compact group or by sheaves of vector spaces. More recent examples come from low-dimensional topology, in particular, from knot theory where the linear functions are replaced by braids or tangles. These geometric monoidal categories are often free in an appropriate sense, a fact that can be used to obtain algebraic invariants for manifolds.
Moduli spaces of stable holomorphic vector bundles
13:10 Fri 28 Aug, 2009 :: School Board Room :: Dr Nicholas Buchdahl :: University of Adelaide

Covering spaces and algebra bundles
13:10 Fri 11 Sep, 2009 :: School Board Room :: Prof Keith Hannabuss :: University of Oxford

Bundles of C*-algebras over a topological space M can be classified by a Dixmier-Douady obstruction in H^3(M,Z). This talk will describe some recent work with Mathai investigating the relationship between algebra bundles on M and on its covering space, where there can be no obstruction, particularly when there is a group acting on M.
Upper bounds for the essential dimension of the moduli stack of SL_n-bundles over a curve
11:10 Mon 14 Dec, 2009 :: School Board Room :: Dr Nicole Lemire :: University of Western Ontario, Canada

In joint work with Ajneet Dhillon, we find upper bounds for the essential dimension of various moduli stacks of SL_n-bundles over a curve. When n is a prime power, our calculation computes the essential dimension of the moduli stack of stable bundles exactly and the essential dimension is not equal to the dimension in this case.
Oka manifolds and Oka maps
13:10 Fri 29 Jan, 2010 :: Napier LG 23 :: Prof Franc Forstneric :: University of Ljubljana

In this survey lecture I will discuss a new class of complex manifolds and of holomorphic maps between them which I introduced in 2009 (F. Forstneric, Oka Manifolds, C. R. Acad. Sci. Paris, Ser. I, 347 (2009) 1017-1020). Roughly speaking, a complex manifold Y is said to be an Oka manifold if Y admits plenty of holomorphic maps from any Stein manifold (or Stein space) X to Y, in a certain precise sense. In particular, the inclusion of the space of holomorphic maps of X to Y into the space of continuous maps must be a weak homotopy equivalence. One of the main results is that this class of manifolds can be characterized by a simple Runge approximation property for holomorphic maps from complex Euclidean spaces C^n to Y, with approximation on compact convex subsets of C^n. This answers in the affirmative a question posed by M. Gromov in 1989. I will also discuss the Oka properties of holomorphic maps and their characterization by approximation properties.
Proper holomorphic maps from strongly pseudoconvex domains to q-convex manifolds
13:10 Fri 5 Feb, 2010 :: School Board Room :: Prof Franc Forstneric :: University of Ljubljana

(Joint work with B. Drinovec Drnovsek, Amer. J. Math., in press.) I will discuss the existence of closed complex subvarieties of a complex manifold X that are proper holomorphic images of strongly pseudoconvex Stein domains. The main sufficient condition is expressed in terms of the Morse indices and of the number of positive Levi eigenvalues of an exhaustion function on X. Examples show that our condition cannot be weakened in general. I will describe optimal results for subvarieties of this type in complements of compact complex submanifolds with Griffiths positive normal bundle; in the projective case these generalize classical theorems of Remmert, Bishop and Narasimhan concerning proper holomorphic maps and embeddings to complex Euclidean spaces.
Holomorphic extension on complex spaces
14:10 Fri 5 Mar, 2010 :: School Board Room :: Prof Egmont Porten :: Mid Sweden University

Mathematical epidemiology with a focus on households
15:10 Fri 23 Apr, 2010 :: Napier G04 :: Dr Joshua Ross :: University of Adelaide

Mathematical models are now used routinely to inform national and global policy-makers on issues that threaten human health or which have an adverse impact on the economy. In the first part of this talk I will provide an overview of mathematical epidemiology starting with the classical deterministic model and leading to some of the current challenges. I will then present some of my recently published work which provides computationally-efficient methods for studying a mathematical model incorporating household structure. We will conclude by briefly discussing some "work-in-progess" which utilises these methods to address the issues of inference, and mixing pattern and contact structure, for emerging infections.
Moduli spaces of stable holomorphic vector bundles II
13:10 Fri 30 Apr, 2010 :: School Board Room :: A/Prof Nicholas Buchdahl :: University of Adelaide

In this talk, I shall briefly review the notion of stability for holomorphic vector bundles on compact complex manifolds as discussed in the first part of this talk (28 August 2009). Then I shall attempt to compute some explicit examples in simple situations, illustrating the use of basic algebraic-geometric tools. The level of the talk will be appropriate for graduate students, particularly those who have been taking part in the algebraic geometry reading group meetings.
Moduli spaces of stable holomorphic vector bundles III
13:10 Fri 14 May, 2010 :: School Board Room :: A/Prof Nicholas Buchdahl :: University of Adelaide

This talk is a continuation of the talk on 30 April. The same abstract applies: In this talk, I shall briefly review the notion of stability for holomorphic vector bundles on compact complex manifolds as discussed in the first part of this talk (28 August 2009). Then I shall attempt to compute some explicit examples in simple situations, illustrating the use of basic algebraic-geometric tools. The level of the talk will be appropriate for graduate students, particularly those who have been taking part in the algebraic geometry reading group meetings.
Eynard-Orantin invariants and enumerative geometry
13:10 Fri 6 Aug, 2010 :: Ingkarni Wardli B20 (Suite 4) :: Dr Paul Norbury :: University of Melbourne

As a tool for studying enumerative problems in geometry Eynard and Orantin associate multilinear differentials to any plane curve. Their work comes from matrix models but does not require matrix models (for understanding or calculations). In some sense they describe deformations of complex structures of a curve and conjectural relationships to deformations of Kahler structures of an associated object. I will give an introduction to their invariants via explicit examples, mainly to do with the moduli space of Riemann surfaces, in which the plane curve has genus zero.
Counting lattice points in polytopes and geometry
15:10 Fri 6 Aug, 2010 :: Napier G04 :: Dr Paul Norbury :: University of Melbourne

Counting lattice points in polytopes arises in many areas of pure and applied mathematics. A basic counting problem is this: how many different ways can one give change of 1 dollar into 5,10, 20 and 50 cent coins? This problem counts lattice points in a tetrahedron, and if there also must be exactly 10 coins then it counts lattice points in a triangle. The number of lattice points in polytopes can be used to measure the robustness of a computer network, or in statistics to test independence of characteristics of samples. I will describe the general structure of lattice point counts and the difficulty of calculations. I will then describe a particular lattice point count in which the structure simplifies considerably allowing one to calculate easily. I will spend a brief time at the end describing how this is related to the moduli space of Riemann surfaces.
A classical construction for simplicial sets revisited
13:10 Fri 27 Aug, 2010 :: Ingkarni Wardli B20 (Suite 4) :: Dr Danny Stevenson :: University of Glasgow

Simplicial sets became popular in the 1950s as a combinatorial way to study the homotopy theory of topological spaces. They are more robust than the older notion of simplicial complexes, which were introduced for the same purpose. In this talk, which will be as introductory as possible, we will review some classical functors arising in the theory of simplicial sets, some well-known, some not-so-well-known. We will re-examine the proof of an old theorem of Kan in light of these functors. We will try to keep all jargon to a minimum.
Mathematical Sciences - Student and Industry Program
17:30 Mon 13 Sep, 2010 :: Rumours Cafe Level 6 Union House North Terrace Campus

Are you a professional who works within a relevant sector and wish to share your knowledge and experience with Students? Are you a current Student who is looking for the opportunity to talk to an Industry Professional? Then the Student and Industry Program is for you!

This event aims to provide current students with the opportunity to talk one-on-one with past graduates and industry professionals; gaining practical industry knowledge to help define their career goals. Students, industry and the University alike have the opportunity to benefit from the connections made through the program.

Admission is free, but places are limited, so get in early. Contact Maryanne Noon by Friday 3rd September 2010 with your name, Student ID number and program. e: p: 8313 0969

Other information Students are asked to arrive at 5:00pm sharp for a briefing prior to the function. Dress Code: Business Casual.

Lattices in exotic groups
15:10 Fri 18 Mar, 2011 :: 7.15 Ingkarni Wardli :: Dr Anne Thomas :: University of Sydney

A lattice in a locally compact group G is a discrete subgroup of cofinite volume. Lattices in Lie groups are well-studied, but little is known about lattices in other, "exotic", locally compact groups. Examples of exotic groups include isometry groups of trees, buildings, polyhedral complexes and CAT(0) spaces, and Kac-Moody groups. We will survey known results, which include both rigidity and surprising examples of flexibility, and discuss the wide range of tools used to investigate lattices in these non-classical settings.
Operator algebra quantum groups
13:10 Fri 1 Apr, 2011 :: Mawson 208 :: Dr Snigdhayan Mahanta :: University of Adelaide

Woronowicz initiated the study of quantum groups using C*-algebras. His framework enabled him to deal with compact (linear) quantum groups. In this talk we shall introduce a notion of quantum groups that can handle infinite dimensional examples like SU(\infty). We shall also study some quantum homogeneous spaces associated to this group and compute their K-theory groups. This is joint work with V. Mathai.
Knots, posets and sheaves
13:10 Fri 20 May, 2011 :: Mawson 208 :: Dr Brent Everitt :: University of York

The Euler characteristic is a nice simple integer invariant that one can attach to a space. Unfortunately, it is not natural: maps between spaces do not induce maps between their Euler characteristics, because it makes no sense to talk of a map between integers. This shortcoming is fixed by homology. Maps between spaces induce maps between their homologies, with the Euler characteristic encoded inside the homology. Recently it has become possible to play the same game with knots and the Jones polynomial: the Khovanov homology of a knot both encodes the Jones polynomial and is a natural invariant of the knot. After saying what all this means, this talk will observe that Khovanov homology is just a special case of sheaf homology on a poset, and we will explore some of the ramifications of this observation. This is joint work with Paul Turner (Geneva/Fribourg).
Object oriented data analysis
14:10 Thu 30 Jun, 2011 :: 7.15 Ingkarni Wardli :: Prof Steve Marron :: The University of North Carolina at Chapel Hill

Object Oriented Data Analysis is the statistical analysis of populations of complex objects. In the special case of Functional Data Analysis, these data objects are curves, where standard Euclidean approaches, such as principal components analysis, have been very successful. Recent developments in medical image analysis motivate the statistical analysis of populations of more complex data objects which are elements of mildly non-Euclidean spaces, such as Lie Groups and Symmetric Spaces, or of strongly non-Euclidean spaces, such as spaces of tree-structured data objects. These new contexts for Object Oriented Data Analysis create several potentially large new interfaces between mathematics and statistics. Even in situations where Euclidean analysis makes sense, there are statistical challenges because of the High Dimension Low Sample Size problem, which motivates a new type of asymptotics leading to non-standard mathematical statistics.
The (dual) local cyclic homology valued Chern-Connes character for some infinite dimensional spaces
13:10 Fri 29 Jul, 2011 :: B.19 Ingkarni Wardli :: Dr Snigdhayan Mahanta :: School of Mathematical Sciences

I will explain how to construct a bivariant Chern-Connes character on the category of sigma-C*-algebras taking values in Puschnigg's local cyclic homology. Roughly, setting the first (resp. the second) variable to complex numbers one obtains the K-theoretic (resp. dual K-homological) Chern-Connes character in one variable. We shall focus on the dual K-homological Chern-Connes character and investigate it in the example of SU(infty).
Horocycle flows at prime times
13:10 Wed 10 Aug, 2011 :: B.19 Ingkarni Wardli :: Prof Peter Sarnak :: Institute for Advanced Study, Princeton

The distribution of individual orbits of unipotent flows in homogeneous spaces are well understood thanks to the work work of Marina Ratner. It is conjectured that this property is preserved on restricting the times from the integers to primes, this being important in the study of prime numbers as well as in such dynamics. We review progress in understanding this conjecture, starting with Dirichlet (a finite system), Vinogradov (rotation of a circle or torus), Green and Tao (translation on a nilmanifold) and Ubis and Sarnak (horocycle flows in the semisimple case).
Twisted Morava K-theory
13:10 Fri 9 Sep, 2011 :: 7.15 Ingkarni Wardli :: Dr Craig Westerland :: University of Melbourne

Morava's extraordinary K-theories K(n) are a family of generalized cohomology theories which behave in some ways like K-theory (indeed, K(1) is mod 2 K-theory). Their construction exploits Quillen's description of cobordism in terms of formal group laws and Lubin-Tate's methods in class field theory for constructing abelian extensions of number fields. Constructed from homotopy-theoretic methods, they do not admit a geometric description (like deRham cohomology, K-theory, or cobordism), but are nonetheless subtle, computable invariants of topological spaces. In this talk, I will give an introduction to these theories, and explain how it is possible to define an analogue of twisted K-theory in this setting. Traditionally, K-theory is twisted by a three-dimensional cohomology class; in this case, K(n) admits twists by (n+2)-dimensional classes. This work is joint with Hisham Sati.
Configuration spaces in topology and geometry
15:10 Fri 9 Sep, 2011 :: 7.15 Ingkarni Wardli :: Dr Craig Westerland :: University of Melbourne

Configuration spaces of points in R^n give a family of interesting geometric objects. They and their variants have numerous applications in geometry, topology, representation theory, and number theory. In this talk, we will review several of these manifestations (for instance, as moduli spaces, function spaces, and the like), and use them to address certain conjectures in number theory regarding distributions of number fields.
Estimating transmission parameters for the swine flu pandemic
15:10 Fri 23 Sep, 2011 :: 7.15 Ingkarni Wardli :: Dr Kathryn Glass :: Australian National University

Following the onset of a new strain of influenza with pandemic potential, policy makers need specific advice on how fast the disease is spreading, who is at risk, and what interventions are appropriate for slowing transmission. Mathematical models play a key role in comparing interventions and identifying the best response, but models are only as good as the data that inform them. In the early stages of the 2009 swine flu outbreak, many researchers estimated transmission parameters - particularly the reproduction number - from outbreak data. These estimates varied, and were often biased by data collection methods, misclassification of imported cases or as a result of early stochasticity in case numbers. I will discuss a number of the pitfalls in achieving good quality parameter estimates from early outbreak data, and outline how best to avoid them. One of the early indications from swine flu data was that children were disproportionately responsible for disease spread. I will introduce a new method for estimating age-specific transmission parameters from both outbreak and seroprevalence data. This approach allows us to take account of empirical data on human contact patterns, and highlights the need to allow for asymmetric mixing matrices in modelling disease transmission between age groups. Applied to swine flu data from a number of different countries, it presents a consistent picture of higher transmission from children.
Dirac operators on classifying spaces
13:10 Fri 28 Oct, 2011 :: B.19 Ingkarni Wardli :: Dr Pedram Hekmati :: University of Adelaide

The Dirac operator was introduced by Paul Dirac in 1928 as the formal square root of the D'Alembert operator. Thirty years later it was rediscovered in Euclidean signature by Atiyah and Singer in their seminal work on index theory. In this talk I will describe efforts to construct a Dirac type operator on the classifying space for odd complex K-theory. Ultimately the aim is to produce a projective family of Fredholm operators realising elements in twisted K-theory of a certain moduli stack.
Metric geometry in data analysis
13:10 Fri 11 Nov, 2011 :: B.19 Ingkarni Wardli :: Dr Facundo Memoli :: University of Adelaide

The problem of object matching under invariances can be studied using certain tools from metric geometry. The central idea is to regard objects as metric spaces (or metric measure spaces). The type of invariance that one wishes to have in the matching is encoded by the choice of the metrics with which one endows the objects. The standard example is matching objects in Euclidean space under rigid isometries: in this situation one would endow the objects with the Euclidean metric. More general scenarios are possible in which the desired invariance cannot be reflected by the preservation of an ambient space metric. Several ideas due to M. Gromov are useful for approaching this problem. The Gromov-Hausdorff distance is a natural candidate for doing this. However, this metric leads to very hard combinatorial optimization problems and it is difficult to relate to previously reported practical approaches to the problem of object matching. I will discuss different variations of these ideas, and in particular will show a construction of an L^p version of the Gromov-Hausdorff metric, called the Gromov-Wassestein distance, which is based on mass transportation ideas. This new metric directly leads to quadratic optimization problems on continuous variables with linear constraints. As a consequence of establishing several lower bounds, it turns out that several invariants of metric measure spaces turn out to be quantitatively stable in the GW sense. These invariants provide practical tools for the discrimination of shapes and connect the GW ideas to a number of pre-existing approaches.
Geometric modular representation theory
13:10 Fri 1 Jun, 2012 :: Napier LG28 :: Dr Anthony Henderson :: University of Sydney

Representation theory is one of the oldest areas of algebra, but many basic questions in it are still unanswered. This is especially true in the modular case, where one considers vector spaces over a field F of positive characteristic; typically, complications arise for particular small values of the characteristic. For example, from a vector space V one can construct the symmetric square S^2(V), which is one easy example of a representation of the group GL(V). One would like to say that this representation is irreducible, but that statement is not always true: if F has characteristic 2, there is a nontrivial invariant subspace. Even for GL(V), we do not know the dimensions of all irreducible representations in all characteristics. In this talk, I will introduce some of the main ideas of geometric modular representation theory, a more recent approach which is making progress on some of these old problems. Essentially, the strategy is to re-formulate everything in terms of homology of various topological spaces, where F appears only as the field of coefficients and the spaces themselves are independent of F; thus, the modular anomalies in representation theory arise because homology with modular coefficients is detecting something about the topology that rational coefficients do not. In practice, the spaces are usually varieties over the complex numbers, and homology is replaced by intersection cohomology to take into account the singularities of these varieties.
IGA Workshop: Dendroidal sets
14:00 Tue 12 Jun, 2012 :: Ingkarni Wardli B17 :: Dr Ittay Weiss :: University of the South Pacific

A series of four 2-hour lectures by Dr. Ittay Weiss. The theory of dendroidal sets was introduced by Moerdijk and Weiss in 2007 in the study of homotopy operads in algebraic topology. In the five years that have past since then several fundamental and highly non-trivial results were established. For instance, it was established that dendroidal sets provide models for homotopy operads in a way that extends the Joyal-Lurie approach to homotopy categories. It can be shown that dendroidal sets provide new models in the study of n-fold loop spaces. And it is very recently shown that dendroidal sets model all connective spectra in a way that extends the modeling of certain spectra by Picard groupoids. The aim of the lecture series will be to introduce the concepts mentioned above, present the elementary theory, and understand the scope of the results mentioned as well as discuss the potential for further applications. Sources for the course will include the article "From Operads to Dendroidal Sets" (in the AMS volume on mathematical foundations of quantum field theory (also on the arXiv)) and the lecture notes by Ieke Moerdijk "simplicial methods for operads and algebraic geometry" which resulted from an advanced course given in Barcelona 3 years ago. No prior knowledge of operads will be assumed nor any knowledge of homotopy theory that is more advanced then what is required for the definition of the fundamental group. The basics of the language of presheaf categories will be recalled quickly and used freely.
Introduction to quantales via axiomatic analysis
13:10 Fri 15 Jun, 2012 :: Napier LG28 :: Dr Ittay Weiss :: University of the South Pacific

Quantales were introduced by Mulvey in 1986 in the context of non-commutative topology with the aim of providing a concrete non-commutative framework for the foundations of quantum mechanics. Since then quantales found applications in other areas as well, among others in the work of Flagg. Flagg considers certain special quantales, called value quantales, that are desigend to capture the essential properties of ([0,\infty],\le,+) that are relevant for analysis. The result is a well behaved theory of value quantale enriched metric spaces. I will introduce the notion of quantales as if they were desigend for just this purpose, review most of the known results (since there are not too many), and address a some new results, conjectures, and questions.
Notions of non-commutative metric spaces; why and how
15:10 Fri 15 Jun, 2012 :: B.21 Ingkarni Wardli :: Dr Ittay Weiss :: The University of the South Pacific

The classical notion of metric space includes the axiom of symmetry: d(x,y)=d(y,x). Some applications of metric techniques to problems in computer graphics, concurrency, and physics (to mention a few) are seriously stressing the limitations imposed by symmetry, resulting in various relaxations of it. I will review some of the motivating problems that seem to require non-symmetry and then review some of the suggested models to deal with the problem. My review will be critical to the topological implications (which are often unpleasant) of some of the models and I will present metric 1-spaces, a new notion of generalized metric spaces.
Complex geometry and operator theory
14:10 Mon 9 Jul, 2012 :: Ingkarni Wardli B19 :: Prof Ron Douglas :: Texas A&M University

In the study of bounded operators on Hilbert spaces of holomorphic functions, concepts and techniques from complex geometry are important. An anti-holomorphic bundle exists on which one can define the Chern connection. Its curvature turns out to be a complete invariant and various operator notions can't be reframed in terms of geometrical ones which leads to the solution of some problems. We will discuss this approach with an emphasis on natural examples in the one and multivariable case.
The motivic logarithm and its realisations
13:10 Fri 3 Aug, 2012 :: Engineering North 218 :: Dr James Borger :: Australian National University

When a complex manifold is defined by polynomial equations, its cohomology groups inherit extra structure. This was discovered by Hodge in the 1920s and 30s. When the defining polynomials have rational coefficients, there is some additional, arithmetic structure on the cohomology. This was discovered by Grothendieck and others in the 1960s. But here the situation is still quite mysterious because each cohomology group has infinitely many different arithmetic structures and while they are not directly comparable, they share many properties---with each other and with the Hodge structure. All written accounts of this that I'm aware of treat arbitrary varieties. They are beautifully abstract and non-explicit. In this talk, I'll take the opposite approach and try to give a flavour of the subject by working out a perhaps the simplest nontrivial example, the cohomology of C* relative to a subset of two points, in beautifully concrete and explicit detail. Here the common motif is the logarithm. In Hodge theory, it is realised as the complex logarithm; in the crystalline theory, it's as the p-adic logarithm; and in the etale theory, it's as Kummer theory. I'll assume you have some familiarity with usual, singular cohomology of topological spaces, but I won't assume that you know anything about these non-topological cohomology theories.
Holomorphic flexibility properties of compact complex surfaces
13:10 Fri 31 Aug, 2012 :: Engineering North 218 :: A/Prof Finnur Larusson :: University of Adelaide

I will describe recent joint work with Franc Forstneric (arXiv, July 2012). We introduce a new property, called the stratified Oka property, which fits into a hierarchy of anti-hyperbolicity properties that includes the Oka property. We show that stratified Oka manifolds are strongly dominable by affine spaces. It follows that Kummer surfaces are strongly dominable. We determine which minimal surfaces of class VII are Oka (assuming the global spherical shell conjecture). We deduce that the Oka property and several other anti-hyperbolicity properties are in general not closed in families of compact complex manifolds. I will summarise what is known about how the Oka property fits into the Enriques-Kodaira classification of surfaces.
Quantisation commutes with reduction
15:10 Fri 14 Sep, 2012 :: B.20 Ingkarni Wardli :: Dr Peter Hochs :: Leibniz University Hannover

The "Quantisation commutes with reduction" principle is an idea from physics, which has powerful applications in mathematics. It basically states that the ways in which symmetry can be used to simplify a physical system in classical and quantum mechanics, are compatible. This provides a strong link between the areas in mathematics used to describe symmetry in classical and quantum mechanics: symplectic geometry and representation theory, respectively. It has been proved in the 1990s that quantisation indeed commutes with reduction, under the important assumption that all spaces and symmetry groups involved are compact. This talk is an introduction to this principle and, if time permits, its mathematical relevance.
Supermanifolds and the moduli space of instantons
13:10 Fri 19 Oct, 2012 :: Engineering North 218 :: Prof Ugo Bruzzo :: International School for Advanced Studies (SISSA), Trieste

I will give an example of an application of supermanifold theory to physics, i.e., how to "superize" the moduli space of instantons on a 4-fold and use it to give a description of the BRST transformations, to compute the "supermeasure" of the moduli space, and the Nekrasov partition function.
Moduli spaces of instantons in algebraic geometry and physics
15:10 Fri 19 Oct, 2012 :: B.20 Ingkarni Wardli :: Prof Ugo Bruzzo :: International School for Advanced Studies Trieste

I will give a quick introduction to the notion of instanton, stressing its role in physics and in mathematics. I will also show how algebraic geometry provides powerful tools to study the geometry of the moduli spaces of instantons.
Hyperplane arrangements and tropicalization of linear spaces
10:10 Mon 17 Dec, 2012 :: Ingkarni Wardli B17 :: Dr Graham Denham :: University of Western Ontario

I will give an introduction to a sequence of ideas in tropical geometry, the tropicalization of linear spaces. In the beginning, a construction due to De Concini and Procesi (wonderful models, 1995) gave a combinatorially explicit description of various iterated blowups of projective spaces along (proper transforms of) linear subspaces. A decade later, Tevelev's notion of tropical compactifications led to, in particular, a new view of the wonderful models and their intersection theory in terms of the theory of toric varieties (via work of Feichtner-Sturmfels, Feichtner-Yuzvinsky, Ardila-Klivans, and others). Recently, these ideas have played a role in Huh and Katz's proof of a long-standing conjecture in combinatorics.
Twistor space for rolling bodies
12:10 Fri 15 Mar, 2013 :: Ingkarni Wardli B19 :: Prof Pawel Nurowski :: University of Warsaw

We consider a configuration space of two solids rolling on each other without slipping or twisting, and identify it with an open subset U of R^5, equipped with a generic distribution D of 2-planes. We will discuss symmetry properties of the pair (U,D) and will mention that, in the case of the two solids being balls, when changing the ratio of their radii, the dimension of the group of local symmetries unexpectedly jumps from 6 to 14. This occurs for only one such ratio, and in such case the local group of symmetries of the pair (U,D) is maximal. It is maximal not only among the balls with various radii, but more generally among all (U,D)s corresponding to configuration spaces of two solids rolling on each other without slipping or twisting. This maximal group is isomorphic to the split real form of the exceptional Lie group G2. In the remaining part of the talk we argue how to identify the space U from the pair (U,D) defined above with the bundle T of totally null real 2-planes over a 4-manifold equipped with a split signature metric. We call T the twistor bundle for rolling bodies. We show that the rolling distribution D, can be naturally identified with an appropriately defined twistor distribution on T. We use this formulation of the rolling system to find more surfaces which, when rigidly rolling on each other without slipping or twisting, have the local group of symmetries isomorphic to the exceptional group G2.
A stability theorem for elliptic Harnack inequalities
15:10 Fri 5 Apr, 2013 :: B.18 Ingkarni Wardli :: Prof Richard Bass :: University of Connecticut

Harnack inequalities are an important tool in probability theory, analysis, and partial differential equations. The classical Harnack inequality is just the one you learned in your graduate complex analysis class, but there have been many extensions, to different spaces, such as manifolds, fractals, infinite graphs, and to various sorts of elliptic operators. A landmark result was that of Moser in 1961, where he proved the Harnack inequality for solutions to a class of partial differential equations. I will talk about the stability of Harnack inequalities. The main result says that if the Harnack inequality holds for an operator on a space, then the Harnack inequality will also hold for a large class of other operators on that same space. This provides a generalization of the result of Moser.
M-theory and higher gauge theory
13:10 Fri 12 Apr, 2013 :: Ingkarni Wardli B20 :: Dr Christian Saemann :: Heriot-Watt University

I will review my recent work on integrability of M-brane configurations and the description of M-brane models in higher gauge theory. In particular, I will discuss categorified analogues of instantons and present superconformal equations of motion for the non-abelian tensor multiplet in six dimensions. The latter are derived from considering non-abelian gerbes on certain twistor spaces.
Diffeological spaces and differentiable stacks
12:10 Fri 10 May, 2013 :: Ingkarni Wardli B19 :: Dr David Roberts :: University of Adelaide

The category of finite-dimensional smooth manifolds gives rise to interesting structures outside of itself, two examples being mapping spaces and classifying spaces. Diffeological spaces are a notion of generalised smooth space which form a cartesian closed category, so all fibre products and all mapping spaces of smooth manifolds exist as diffeological spaces. Differentiable stacks are a further generalisation that can also deal with moduli spaces (including classifying spaces) for objects with automorphisms. This talk will give an introduction to this circle of ideas.
Crystallographic groups II: generalisations
12:10 Fri 24 May, 2013 :: Ingkarni Wardli B19 :: Dr Wolfgang Globke :: University of Adelaide

The theory of crystallographic groups acting cocompactly on Euclidean space can be extended and generalised in many different ways. For example, instead of studying discrete groups of Euclidean isometries, one can consider groups of isometries for indefinite inner products. These are the fundamental groups of compact flat pseudo-Riemannian manifolds. Still more generally, one might study group of affine transformation on n-space that are not required to preserve any bilinear form. Also, the condition of cocompactness can be dropped. In this talk, I will present some of the results obtained for these generalisations, and also discuss some of my own work on flat homogeneous pseudo-Riemannian spaces.
A new approach to pointwise heat kernel upper bounds on doubling metric measure spaces
12:10 Fri 7 Jun, 2013 :: Ingkarni Wardli B19 :: Prof Thierry Coulhon :: Australian National University

On doubling metric measure spaces endowed with a Dirichlet form and satisfying the Davies-Gaffney estimate, we show some characterisations of pointwise upper bounds of the heat kernel in terms of one-parameter weighted inequalities which correspond respectively to the Nash inequality and to a Gagliardo-Nirenberg type inequality when the volume growth is polynomial. This yields a new and simpler proof of the well-known equivalence between classical heat kernel upper bounds and the relative Faber-Krahn inequalities. We are also able to treat more general pointwise estimates where the heat kernel rate of decay is not necessarily governed by the volume growth. This is a joint work with Salahaddine Boutayeb and Adam Sikora.
Heat kernel estimates on non-compact Riemannian manifolds: why and how?
15:10 Fri 7 Jun, 2013 :: B.18 Ingkarni Wardli :: Prof Thierry Coulhon :: Australian National University

We will describe what is known and remains to be known about the connection between the large scale geometry of non-compact Riemannian manifolds (and more general metric measure spaces) and large time estimates of their heat kernel. We will show how some of these estimates can be characterised in terms of Sobolev inequalities and give applications to the boundedness of Riesz transforms.
Birational geometry of M_g
12:10 Fri 21 Jun, 2013 :: Ingkarni Wardli B19 :: Dr Jarod Alper :: Australian National University

In 1969, Deligne and Mumford introduced a beautiful compactification of the moduli space of smooth curves which has proved extremely influential in geometry, topology and physics. Using recent advances in higher dimensional geometry and the minimal model program, we study the birational geometry of M_g. In particular, in an effort to understand the canonical model of M_g, we study the log canonical models as well as the associated divisorial contractions and flips by interpreting these models as moduli spaces of particular singular curves.
Invariant Theory: The 19th Century and Beyond
15:10 Fri 21 Jun, 2013 :: B.18 Ingkarni Wardli :: Dr Jarod Alper :: Australian National University

A central theme in 19th century mathematics was invariant theory, which was viewed as a bridge between geometry and algebra. David Hilbert revolutionized the field with two seminal papers in 1890 and 1893 with techniques such as Hilbert's basis theorem, Hilbert's Nullstellensatz and Hilbert's syzygy theorem that spawned the modern field of commutative algebra. After Hilbert's groundbreaking work, the field of invariant theory remained largely inactive until the 1960's when David Mumford revitalized the field by reinterpreting Hilbert's ideas in the context of algebraic geometry which ultimately led to the influential construction of the moduli space of smooth curves. Today invariant theory remains a vital research area with connections to various mathematical disciplines: representation theory, algebraic geometry, commutative algebra, combinatorics and nonlinear differential operators. The goal of this talk is to provide an introduction to invariant theory with an emphasis on Hilbert's and Mumford's contributions. Time permitting, I will explain recent research with Maksym Fedorchuk and David Smyth which exploits the ideas of Hilbert, Mumford as well as Kempf to answer a classical question concerning the stability of algebraic curves.
The Hamiltonian Cycle Problem and Markov Decision Processes
15:10 Fri 2 Aug, 2013 :: B.18 Ingkarni Wardli :: Prof Jerzy Filar :: Flinders University

We consider the famous Hamiltonian cycle problem (HCP) embedded in a Markov decision process (MDP). More specifically, we consider a moving object on a graph G where, at each vertex, a controller may select an arc emanating from that vertex according to a probabilistic decision rule. A stationary policy is simply a control where these decision rules are time invariant. Such a policy induces a Markov chain on the vertices of the graph. Therefore, HCP is equivalent to a search for a stationary policy that induces a 0-1 probability transition matrix whose non-zero entries trace out a Hamiltonian cycle in the graph. A consequence of this embedding is that we may consider the problem over a number of, alternative, convex - rather than discrete - domains. These include: (a) the space of stationary policies, (b) the more restricted but, very natural, space of doubly stochastic matrices induced by the graph, and (c) the associated spaces of so-called "occupational measures". This approach to the HCP has led to both theoretical and algorithmic approaches to the underlying HCP problem. In this presentation, we outline a selection of results generated by this line of research.
The Einstein equations with torsion, reduction and duality
12:10 Fri 23 Aug, 2013 :: Ingkarni Wardli B19 :: Dr David Baraglia :: University of Adelaide

We consider the Einstein equations for connections with skew torsion. After some general remarks we look at these equations on principal G-bundles, making contact with string structures and heterotic string theory in the process. When G is a torus the equations are shown to possess a symmetry not shared by the usual Einstein equations - T-duality. This is joint work with Pedram Hekmati.
Geometry of moduli spaces
12:10 Fri 30 Aug, 2013 :: Ingkarni Wardli B19 :: Prof Georg Schumacher :: University of Marburg

We discuss the concept of moduli spaces in complex geometry. The main examples are moduli of compact Riemann surfaces, moduli of compact projective varieties and moduli of holomorphic vector bundles, whose points correspond to isomorphism classes of the given objects. Moduli spaces carry a natural topology, whereas a complex structure that reflects the variation of the structure in a family exists in general only under extra conditions. In a similar way, a natural hermitian metric (Weil-Petersson metric) on moduli spaces that induces a symplectic structure can be constructed from the variation of distinguished metrics on the fibers. In this way, various questions concerning the underlying symplectic structure, the curvature of the Weil-Petersson metric, hyperbolicity of moduli spaces, and construction of positive/ample line bundles on compactified moduli spaces can be answered.
K-theory and solid state physics
12:10 Fri 13 Sep, 2013 :: Ingkarni Wardli B19 :: Dr Keith Hannabuss :: Balliol College, Oxford

More than 50 years ago Dyson showed that there is a nine-fold classification of random matrix models, the classes of which are each associated with Riemannian symmetric spaces. More recently it was realised that a related argument enables one to classify the insulating properties of fermionic systems (with the addition of an extra class to give 10 in all), and can be described using K-theory. In this talk I shall give a survey of the ideas, and a brief outline of work with Guo Chuan Thiang.
Geometric quantisation in the noncompact setting
12:10 Fri 7 Mar, 2014 :: Ingkarni Wardli B20 :: Peter Hochs :: University of Adelaide

Geometric quantisation is a way to construct quantum mechanical phase spaces (Hilbert spaces) from classical mechanical phase spaces (symplectic manifolds). In the presence of a group action, the quantisation commutes with reduction principle states that geometric quantisation should be compatible with the ways the group action can be used to simplify (reduce) the classical and quantum phase spaces. This has deep consequences for the link between symplectic geometry and representation theory. The quantisation commutes with reduction principle has been given explicit meaning, and been proved, in cases where the symplectic manifold and the group acting on it are compact. There have also been results where just the group, or the orbit space of the action, is assumed to be compact. These are important and difficult, but it is somewhat frustrating that they do not even apply to the simplest example from the physics point of view: a free particle in Rn. This talk is about a joint result with Mathai Varghese where the group, manifold and orbit space may all be noncompact.
Moduli spaces of contact instantons
12:10 Fri 28 Mar, 2014 :: Ingkarni Wardli B20 :: David Baraglia :: University of Adelaide

In dimensions greater than four there are several notions of higher Yang-Mills instantons. This talk concerns one such case, contact instantons, defined for 5-dimensional contact manifolds. The geometry transverse to the Reeb foliation turns out to be important in understanding the moduli space. For example, we show the dimension of the moduli space is the index of a transverse elliptic complex. This is joint work with Pedram Hekmati.
Boundary-value problems for the Ricci flow
15:10 Fri 15 Aug, 2014 :: B.18 Ingkarni Wardli :: Dr Artem Pulemotov :: The University of Queensland

The Ricci flow is a differential equation describing the evolution of a Riemannian manifold (i.e., a "curved" geometric object) into an Einstein manifold (i.e., an object with a "constant" curvature). This equation is particularly famous for its key role in the proof of the Poincare Conjecture. Understanding the Ricci flow on manifolds with boundary is a difficult problem with applications to a variety of fields, such as topology and mathematical physics. The talk will survey the current progress towards the resolution of this problem. In particular, we will discuss new results concerning spaces with symmetries.
Topology, geometry, and moduli spaces
12:10 Fri 10 Oct, 2014 :: Ingkarni Wardli B20 :: Nick Buchdahl :: University of Adelaide

In recent years, moduli spaces of one kind or another have been shown to be of great utility, this quite apart from their inherent interest. Many of their applications involve their topology, but as we all know, understanding of topological structures is often facilitated through the use of geometric methods, and some of these moduli spaces carry geometric structures that are considerable interest in their own right. In this talk, I will describe some of the background and the ideas in this general context, focusing on questions that I have been considering lately together with my colleague Georg Schumacher from Marburg in Germany, who was visiting us recently.
Nonlinear analysis over infinite dimensional spaces and its applications
12:10 Fri 6 Feb, 2015 :: Ingkarni Wardli B20 :: Tsuyoshi Kato :: Kyoto University

In this talk we develop moduli theory of holomorphic curves over infinite dimensional manifolds consisted by sequences of almost Kaehler manifolds. Under the assumption of high symmetry, we verify that many mechanisms of the standard moduli theory over closed symplectic manifolds also work over these infinite dimensional spaces. As an application, we study deformation theory of discrete groups acting on trees. There is a canonical way, up to conjugacy to embed such groups into the automorphism group over the infinite projective space. We verify that for some class of Hamiltonian functions, the deformed groups must be always asymptotically infinite.
Higher rank discrete Nahm equations for SU(N) monopoles in hyperbolic space
11:10 Wed 8 Apr, 2015 :: Engineering & Maths EM213 :: Joseph Chan :: University of Melbourne

Braam and Austin in 1990, proved that SU(2) magnetic monopoles in hyperbolic space H^3 are the same as solutions of the discrete Nahm equations. I apply equivariant K-theory to the ADHM construction of instantons/holomorphic bundles to extend the Braam-Austin result from SU(2) to SU(N). During its evolution, the matrices of the higher rank discrete Nahm equations jump in dimensions and this behaviour has not been observed in discrete evolution equations before. A secondary result is that the monopole field at the boundary of H^3 determines the monopole.
Big things are weird
12:10 Mon 25 May, 2015 :: Napier LG29 :: Luke Keating-Hughes :: University of Adelaide

The pyramids of Giza, the depths of the Mariana trench, the massive Einstein Cross Quasar; all of these things are big and weird. Big weird things aren't just apparent in the physical world though, they appear in mathematics too! In this talk I will try to motivate a mathematical big thing and then show that it is weird. In particular, we will introduce the necessary topology and homotopy theory in order to show that although all finite dimensional spheres are (almost canonically) non-contractible spaces - an infinite dimensional sphere IS contractible! This result's significance will then be explained in the context of Kuiper's Theorem if time permits.
Monodromy of the Hitchin system and components of representation varieties
12:10 Fri 29 May, 2015 :: Napier 144 :: David Baraglia :: University of Adelaide

Representations of the fundamental group of a compact Riemann surface into a reductive Lie group form a moduli space, called a representation variety. An outstanding problem in topology is to determine the number of components of these varieties. Through a deep result known as non-abelian Hodge theory, representation varieties are homeomorphic to moduli spaces of certain holomorphic objects called Higgs bundles. In this talk I will describe recent joint work with L. Schaposnik computing the monodromy of the Hitchin fibration for Higgs bundle moduli spaces. Our results give a new unified proof of the number of components of several representation varieties.
Instantons and Geometric Representation Theory
12:10 Thu 23 Jul, 2015 :: Engineering and Maths EM212 :: Professor Richard Szabo :: Heriot-Watt University

We give an overview of the various approaches to studying supersymmetric quiver gauge theories on ALE spaces, and their conjectural connections to two-dimensional conformal field theory via AGT-type dualities. From a mathematical perspective, this is formulated as a relationship between the equivariant cohomology of certain moduli spaces of sheaves on stacks and the representation theory of infinite-dimensional Lie algebras. We introduce an orbifold compactification of the minimal resolution of the A-type toric singularity in four dimensions, and then construct a moduli space of framed sheaves which is conjecturally isomorphic to a Nakajima quiver variety. We apply this construction to derive relations between the equivariant cohomology of these moduli spaces and the representation theory of the affine Lie algebra of type A.
Dirac operators and Hamiltonian loop group action
12:10 Fri 24 Jul, 2015 :: Engineering and Maths EM212 :: Yanli Song :: University of Toronto

A definition to the geometric quantization for compact Hamiltonian G-spaces is given by Bott, defined as the index of the Spinc-Dirac operator on the manifold. In this talk, I will explain how to generalize this idea to the Hamiltonian LG-spaces. Instead of quantizing infinite-dimensional manifolds directly, we use its equivalent finite-dimensional model, the quasi-Hamiltonian G-spaces. By constructing twisted spinor bundle and twisted pre-quantum bundle on the quasi-Hamiltonian G-space, we define a Dirac operator whose index are given by positive energy representation of loop groups. A key role in the construction will be played by the algebraic cubic Dirac operator for loop algebra. If time permitted, I will also explain how to prove the quantization commutes with reduction theorem for Hamiltonian LG-spaces under this framework.
Vanishing lattices and moduli spaces
12:10 Fri 28 Aug, 2015 :: Ingkarni Wardli B17 :: David Baraglia :: The University of Adelaide

Vanishing lattices are symplectic analogues of root systems. As with roots systems, they admit a classification in terms of certain Dynkin diagrams (not the usual ones from Lie theory). In this talk I will discuss this classification and if there is time I will outline my work (in progress) showing that the monodromy of the SL(n,C) Hitchin fibration is essentially a vanishing lattice.
Real Lie Groups and Complex Flag Manifolds
12:10 Fri 9 Oct, 2015 :: Ingkarni Wardli B17 :: Joseph A. Wolf :: University of California, Berkeley

Let G be a complex simple direct limit group. Let G_R be a real form of G that corresponds to an hermitian symmetric space. I'll describe the corresponding bounded symmetric domain in the context of the Borel embedding, Cayley transforms, and the Bergman-Shilov boundary. Let Q be a parabolic subgroup of G. In finite dimensions this means that G/Q is a complex projective variety, or equivalently has a Kaehler metric invariant under a maximal compact subgroup of G. Then I'll show just how the bounded symmetric domains describe cycle spaces for open G_R orbits on G/Q. These cycle spaces include the complex bounded symmetric domains. In finite dimensions they are tightly related to moduli spaces for compact Kaehler manifolds and to representations of semisimple Lie groups; in infinite dimensions there are more problems than answers. Finally, time permitting, I'll indicate how some of this goes over to real and to quaternionic bounded symmetric domains.
Chern-Simons classes on loop spaces and diffeomorphism groups
12:10 Fri 16 Oct, 2015 :: Ingkarni Wardli B17 :: Steve Rosenberg :: Boston University

Not much is known about the topology of the diffeomorphism group Diff(M) of manifolds M of dimension four and higher. We'll show that for a class of manifolds of dimension 4k+1, Diff(M) has infinite fundamental group. This is proved by translating the problem into a question about Chern-Simons classes on the tangent bundle to the loop space LM. To build the CS classes, we use a family of metrics on LM associated to a Riemannian metric on M. The curvature of these metrics takes values in an algebra of pseudodifferential operators. The main technical step in the CS construction is to replace the ordinary matrix trace in finite dimensions with the Wodzicki residue, the unique trace on this algebra. The moral is that some techniques in finite dimensional Riemannian geometry can be extended to some examples in infinite dimensional geometry.
Weak globularity in homotopy theory and higher category theory
12:10 Thu 12 Nov, 2015 :: Ingkarni Wardli B19 :: Simona Paoli :: University of Leicester

Spaces and homotopy theories are fundamental objects of study of algebraic topology. One way to study these objects is to break them into smaller components with the Postnikov decomposition. To describe such decomposition purely algebraically we need higher categorical structures. We describe one approach to modelling these structures based on a new paradigm to build weak higher categories, which is the notion of weak globularity. We describe some of their connections to both homotopy theory and higher category theory.
Oka principles and the linearization problem
12:10 Fri 8 Jan, 2016 :: Engineering North N132 :: Gerald Schwarz :: Brandeis University

Let G be a reductive complex Lie group (e.g., SL(n,C)) and let X and Y be Stein manifolds (closed complex submanifolds of some C^n). Suppose that G acts freely on X and Y. Then there are quotient Stein manifolds X/G and Y/G and quotient mappings p_X:X-> X/G and p_Y: Y-> Y/G such that X and Y are principal G-bundles over X/G and Y/G. Let us suppose that Q=X/G ~= Y/G so that X and Y have the same quotient Q. A map Phi: X\to Y of principal bundles (over Q) is simply an equivariant continuous map commuting with the projections. That is, Phi(gx)=g Phi(x) for all g in G and x in X, and p_X=p_Y o Phi. The famous Oka Principle of Grauert says that any Phi as above embeds in a continuous family Phi_t: X -> Y, t in [0,1], where Phi_0=Phi, all the Phi_t satisfy the same conditions as Phi does and Phi_1 is holomorphic. This is rather amazing. We consider the case where G does not necessarily act freely on X and Y. There is still a notion of quotient and quotient mappings p_X: X-> X//G and p_Y: Y-> Y//G where X//G and Y//G are now Stein spaces and parameterize the closed G-orbits in X and Y. We assume that Q~= X//G~= Y//G and that we have a continuous equivariant Phi such that p_X=p_Y o Phi. We find conditions under which Phi embeds into a continuous family Phi_t such that Phi_1 is holomorphic. We give an application to the Linearization Problem. Let G act holomorphically on C^n. When is there a biholomorphic map Phi:C^n -> C^n such that Phi^{-1} o g o Phi in GL(n,C) for all g in G? We find a condition which is necessary and sufficient for "most" G-actions. This is joint work with F. Kutzschebauch and F. Larusson.
Quantisation of Hitchin's moduli space
12:10 Fri 22 Jan, 2016 :: Engineering North N132 :: Siye Wu :: National Tsing Hua Univeristy

In this talk, I construct prequantum line bundles on Hitchin's moduli spaces of orientable and non-orientable surfaces and study the geometric quantisation and quantisation via branes by complexification of the moduli spaces.
The parametric h-principle for minimal surfaces in R^n and null curves in C^n
12:10 Fri 11 Mar, 2016 :: Ingkarni Wardli B17 :: Finnur Larusson :: University of Adelaide

I will describe new joint work with Franc Forstneric (arXiv:1602.01529). This work brings together four diverse topics from differential geometry, holomorphic geometry, and topology; namely the theory of minimal surfaces, Oka theory, convex integration theory, and the theory of absolute neighborhood retracts. Our goal is to determine the rough shape of several infinite-dimensional spaces of maps of geometric interest. It turns out that they all have the same rough shape.
Geometric analysis of gap-labelling
12:10 Fri 8 Apr, 2016 :: Eng & Maths EM205 :: Mathai Varghese :: University of Adelaide

Using an earlier result, joint with Quillen, I will formulate a gap labelling conjecture for magnetic Schrodinger operators with smooth aperiodic potentials on Euclidean space. Results in low dimensions will be given, and the formulation of the same problem for certain non-Euclidean spaces will be given if time permits. This is ongoing joint work with Moulay Benameur.
How to count Betti numbers
12:10 Fri 6 May, 2016 :: Eng & Maths EM205 :: David Baraglia :: University of Adelaide

I will begin this talk by showing how to obtain the Betti numbers of certain smooth complex projective varieties by counting points over a finite field. For singular or non-compact varieties this motivates us to consider the "virtual Hodge numbers" encoded by the "Hodge-Deligne polynomial", a refinement of the topological Euler characteristic. I will then discuss the computation of Hodge-Deligne polynomials for certain singular character varieties (i.e. moduli spaces of flat connections).
Harmonic Analysis in Rough Contexts
15:10 Fri 13 May, 2016 :: Engineering South S112 :: Dr Pierre Portal :: Australian National University

In recent years, perspectives on what constitutes the ``natural" framework within which to conduct various forms of mathematical analysis have shifted substantially. The common theme of these shifts can be described as a move towards roughness, i.e. the elimination of smoothness assumptions that had previously been considered fundamental. Examples include partial differential equations on domains with a boundary that is merely Lipschitz continuous, geometric analysis on metric measure spaces that do not have a smooth structure, and stochastic analysis of dynamical systems that have nowhere differentiable trajectories. In this talk, aimed at a general mathematical audience, I describe some of these shifts towards roughness, placing an emphasis on harmonic analysis, and on my own contributions. This includes the development of heat kernel methods in situations where such a kernel is merely a distribution, and applications to deterministic and stochastic partial differential equations.
Some free boundary value problems in mean curvature flow and fully nonlinear curvature flows
12:10 Fri 27 May, 2016 :: Eng & Maths EM205 :: Valentina Wheeler :: University of Wollongong

In this talk we present an overview of the current research in mean curvature flow and fully nonlinear curvature flows with free boundaries, with particular focus on our own results. Firstly we consider the scenario of a mean curvature flow solution with a ninety-degree angle condition on a fixed hypersurface in Euclidean space, that we call the contact hypersurface. We prove that under restrictions on either the initial hypersurface (such as rotational symmetry) or restrictions on the contact hypersurface the flow exists for all times and converges to a self-similar solution. We also discuss the possibility of a curvature singularity appearing on the free boundary contained in the contact hypersurface. We extend some of these results to the setting of a hypersurface evolving in its normal direction with speed given by a fully nonlinear functional of the principal curvatures.
Chern-Simons invariants of Seifert manifolds via Loop spaces
14:10 Tue 28 Jun, 2016 :: Ingkarni Wardli B17 :: Ryan Mickler :: Northeastern University

Over the past 30 years the Chern-Simons functional for connections on G-bundles over three-manfolds has lead to a deep understanding of the geometry of three-manfiolds, as well as knot invariants such as the Jones polynomial. Here we study this functional for three-manfolds that are topologically given as the total space of a principal circle bundle over a compact Riemann surface base, which are known as Seifert manifolds. We show that on such manifolds the Chern-Simons functional reduces to a particular gauge-theoretic functional on the 2d base, that describes a gauge theory of connections on an infinite dimensional bundle over this base with structure group given by the level-k affine central extension of the loop group LG. We show that this formulation gives a new understanding of results of Beasley-Witten on the computability of quantum Chern-Simons invariants of these manifolds as well as knot invariants for knots that wrap a single fiber of the circle bundle. A central tool in our analysis is the Caloron correspondence of Murray-Stevenson-Vozzo.
Holomorphic Flexibility Properties of Spaces of Elliptic Functions
12:10 Fri 29 Jul, 2016 :: Ingkarni Wardli B18 :: David Bowman :: University of Adelaide

The set of meromorphic functions on an elliptic curve naturally possesses the structure of a complex manifold. The component of degree 3 functions is 6-dimensional and enjoys several interesting complex-analytic properties that make it, loosely speaking, the opposite of a hyperbolic manifold. Our main result is that this component has a 54-sheeted branched covering space that is an Oka manifold.
Product Hardy spaces associated to operators with heat kernel bounds on spaces of homogeneous type
12:10 Fri 19 Aug, 2016 :: Ingkarni Wardli B18 :: Lesley Ward :: University of South Australia

Much effort has been devoted to generalizing the Calder'on-Zygmund theory in harmonic analysis from Euclidean spaces to metric measure spaces, or spaces of homogeneous type. Here the underlying space R^n with Euclidean metric and Lebesgue measure is replaced by a set X with general metric or quasi-metric and a doubling measure. Further, one can replace the Laplacian operator that underpins the Calderon-Zygmund theory by more general operators L satisfying heat kernel estimates. I will present recent joint work with P. Chen, X.T. Duong, J. Li and L.X. Yan along these lines. We develop the theory of product Hardy spaces H^p_{L_1,L_2}(X_1 x X_2), for 1
Hilbert schemes of points of some surfaces and quiver representations
12:10 Fri 23 Sep, 2016 :: Ingkarni Wardli B17 :: Ugo Bruzzo :: International School for Advanced Studies, Trieste

Hilbert schemes of points on the total spaces of the line bundles O(-n) on P1 (desingularizations of toric singularities of type (1/n)(1,1)) can be given an ADHM description, and as a result, they can be realized as varieties of quiver representations.
SIR epidemics with stages of infection
12:10 Wed 28 Sep, 2016 :: EM218 :: Matthieu Simon :: Universite Libre de Bruxelles

This talk is concerned with a stochastic model for the spread of an epidemic in a closed homogeneously mixing population. The population is subdivided into three classes of individuals: the susceptibles, the infectives and the removed cases. In short, an infective remains infectious during a random period of time. While infected, it can contact all the susceptibles present, independently of the other infectives. At the end of the infectious period, it becomes a removed case and has no further part in the infection process.

We represent an infectious period as a set of different stages that an infective can go through before being removed. The transitions between stages are ruled by either a Markov process or a semi-Markov process. In each stage, an infective makes contaminations at the epochs of a Poisson process with a specific rate.

Our purpose is to derive closed expressions for a transform of different statistics related to the end of the epidemic, such as the final number of susceptibles and the area under the trajectories of all the infectives. The analysis is performed by using simple matrix analytic methods and martingale arguments. Numerical illustrations will be provided at the end of the talk.
Toroidal Soap Bubbles: Constant Mean Curvature Tori in S ^ 3 and R ^3
12:10 Fri 28 Oct, 2016 :: Ingkarni Wardli B18 :: Emma Carberry :: University of Sydney

Constant mean curvature (CMC) tori in S ^ 3, R ^ 3 or H ^ 3 are in bijective correspondence with spectral curve data, consisting of a hyperelliptic curve, a line bundle on this curve and some additional data, which in particular determines the relevant space form. This point of view is particularly relevant for considering moduli-space questions, such as the prevalence of tori amongst CMC planes and whether tori can be deformed. I will address these questions for the spherical and Euclidean cases, using Whitham deformations.
An equivariant parametric Oka principle for bundles of homogeneous spaces
12:10 Fri 3 Mar, 2017 :: Napier 209 :: Finnur Larusson :: University of Adelaide

I will report on new joint work with Frank Kutzschebauch and Gerald Schwarz (arXiv:1612.07372). Under certain conditions, every continuous section of a holomorphic fibre bundle can be deformed to a holomorphic section. In fact, the inclusion of the space of holomorphic sections into the space of continuous sections is a weak homotopy equivalence. What if a complex Lie group acts on the bundle and its sections? We have proved an analogous result for equivariant sections. The result has a wide scope. If time permits, I will describe some interesting special cases and mention two applications.
Geometric structures on moduli spaces
12:10 Fri 31 Mar, 2017 :: Napier 209 :: Nicholas Buchdahl :: University of Adelaide

Moduli spaces are used to classify various kinds of objects, often arising from solutions of certain differential equations on manifolds; for example, the complex structures on a compact surface or the anti-self-dual Yang-Mills equations on an oriented smooth 4-manifold. Sometimes these moduli spaces carry important information about the underlying manifold, manifested most clearly in the results of Donaldson and others on the topology of smooth 4-manifolds. It is also the case that these moduli spaces themselves carry interesting geometric structures; for example, the Weil-Petersson metric on moduli spaces of compact Riemann surfaces, exploited to great effect by Maryam Mirzakhani. In this talk, I shall elaborate on the theme of geometric structures on moduli spaces, with particular focus on some recent-ish work done in conjunction with Georg Schumacher.
K-types of tempered representations
12:10 Fri 7 Apr, 2017 :: Napier 209 :: Peter Hochs :: University of Adelaide

Tempered representations of a reductive Lie group G are the irreducible unitary representations one needs in the Plancherel decomposition of L^2(G). They are relevant to harmonic analysis because of this, and also occur in the Langlands classification of the larger class of admissible representations. If K in G is a maximal compact subgroup, then there is a considerable amount of information in the restriction of a tempered representation to K. In joint work with Yanli Song and Shilin Yu, we give a geometric expression for the decomposition of such a restriction into irreducibles. The multiplicities of these irreducibles are expressed as indices of Dirac operators on reduced spaces of a coadjoint orbit of G corresponding to the representation. These reduced spaces are Spin-c analogues of reduced spaces in symplectic geometry, defined in terms of moment maps that represent conserved quantities. This result involves a Spin-c version of the quantisation commutes with reduction principle for noncompact manifolds. For discrete series representations, this was done by Paradan in 2003.
Poisson-Lie T-duality and integrability
11:10 Thu 13 Apr, 2017 :: Engineering & Math EM213 :: Ctirad Klimcik :: Aix-Marseille University, Marseille

The Poisson-Lie T-duality relates sigma-models with target spaces symmetric with respect to mutually dual Poisson-Lie groups. In the special case if the Poisson-Lie symmetry reduces to the standard non-Abelian symmetry one of the corresponding mutually dual sigma-models is the standard principal chiral model which is known to enjoy the property of integrability. A natural question whether this non-Abelian integrability can be lifted to integrability of sigma model dualizable with respect to the general Poisson-Lie symmetry has been answered in the affirmative by myself in 2008. The corresponding Poisson-Lie symmetric and integrable model is a one-parameter deformation of the principal chiral model and features a remarkable explicit appearance of the standard Yang-Baxter operator in the target space geometry. Several distinct integrable deformations of the Yang-Baxter sigma model have been then subsequently uncovered which turn out to be related by the Poisson-Lie T-duality to the so called lambda-deformed sigma models. My talk gives a review of these developments some of which found applications in string theory in the framework of the AdS/CFT correspondence.
Geometric limits of knot complements
12:10 Fri 28 Apr, 2017 :: Napier 209 :: Jessica Purcell :: Monash University

The complement of a knot often admits a hyperbolic metric: a metric with constant curvature -1. In this talk, we will investigate sequences of hyperbolic knots, and the possible spaces they converge to as a geometric limit. In particular, we show that there exist hyperbolic knots in the 3-sphere such that the set of points of large injectivity radius in the complement take up the bulk of the volume. This is joint work with Autumn Kent.
Hodge theory on the moduli space of Riemann surfaces
12:10 Fri 5 May, 2017 :: Napier 209 :: Jesse Gell-Redman :: University of Melbourne

The Hodge theorem on a closed Riemannian manifold identifies the deRham cohomology with the space of harmonic differential forms. Although there are various extensions of the Hodge theorem to singular or complete but non-compact spaces, when there is an identification of L^2 Harmonic forms with a topological feature of the underlying space, it is highly dependent on the nature of infinity (in the non-compact case) or the locus of incompleteness; no unifying theorem treats all cases. We will discuss work toward extending the Hodge theorem to singular Riemannian manifolds where the singular locus is an incomplete cusp edge. These can be pictured locally as a bundle of horns, and they provide a model for the behavior of the Weil-Petersson metric on the compactified Riemann moduli space near the interior of a divisor. Joint with J. Swoboda and R. Melrose.
Graded K-theory and C*-algebras
11:10 Fri 12 May, 2017 :: Engineering North 218 :: Aidan Sims :: University of Wollongong

C*-algebras can be regarded, in a very natural way, as noncommutative algebras of continuous functions on topological spaces. The analogy is strong enough that topological K-theory in terms of formal differences of vector bundles has a direct analogue for C*-algebras. There is by now a substantial array of tools out there for computing C*-algebraic K-theory. However, when we want to model physical phenomena, like topological phases of matter, we need to take into account various physical symmetries, some of which are encoded by gradings of C*-algebras by the two-element group. Even the definition of graded C*-algebraic K-theory is not entirely settled, and there are relatively few computational tools out there. I will try to outline what a C*-algebra (and a graded C*-algebra is), indicate what graded K-theory ought to look like, and discuss recent work with Alex Kumjian and David Pask linking this with the deep and powerful work of Kasparov, and using this to develop computational tools.
Holomorphic Legendrian curves
12:10 Fri 26 May, 2017 :: Napier 209 :: Franc Forstneric :: University of Ljubljana, Slovenia

I will present recent results on the existence and behaviour of noncompact holomorphic Legendrian curves in complex contact manifolds. We show that these curves are ubiquitous in \C^{2n+1} with the standard holomorphic contact form \alpha=dz+\sum_{j=1}^n x_jdy_j; in particular, every open Riemann surface embeds into \C^3 as a proper holomorphic Legendrian curves. On the other hand, for any integer n>= 1 there exist Kobayashi hyperbolic complex contact structures on \C^{2n+1} which do not admit any nonconstant Legendrian complex lines. Furthermore, we construct a holomorphic Darboux chart around any noncompact holomorphic Legendrian curve in an arbitrary complex contact manifold. As an application, we show that every bordered holomorphic Legendrian curve can be uniformly approximated by complete bounded Legendrian curves.
Constructing differential string structures
14:10 Wed 7 Jun, 2017 :: EM213 :: David Roberts :: University of Adelaide

String structures on a manifold are analogous to spin structures, except instead of lifting the structure group through the extension Spin(n)\to SO(n) of Lie groups, we need to lift through the extension String(n)\to Spin(n) of Lie *2-groups*. Such a thing exists if the first fractional Pontryagin class (1/2)p_1 vanishes in cohomology. A differential string structure also lifts connection data, but this is rather complicated, involving a number of locally defined differential forms satisfying cocycle-like conditions. This is an expansion of the geometric string structures of Stolz and Redden, which is, for a given connection A, merely a 3-form R on the frame bundle such that dR = tr(F^2) for F the curvature of A; in other words a trivialisation of the de Rham class of (1/2)p_1. I will present work in progress on a framework (and specific results) that allows explicit calculation of the differential string structure for a large class of homogeneous spaces, which also yields formulas for the Stolz-Redden form. I will comment on the application to verifying the refined Stolz conjecture for our particular class of homogeneous spaces. Joint work with Ray Vozzo.
Quaternionic Kaehler manifolds of co-homogeneity one
12:10 Fri 16 Jun, 2017 :: Ligertwood 231 :: Vicente Cortes :: Universitat Hamburg

Quaternionic Kaehler manifolds form an important class of Riemannian manifolds of special holonomy. They provide examples of Einstein manifolds of non-zero scalar curvature. I will show how to construct explicit examples of complete quaternionic Kaehler manifolds of negative scalar curvature beyond homogeneous spaces. In particular, I will present a series of examples of co-homogeneity one, based on arXiv:1701.07882.
Compact pseudo-Riemannian homogeneous spaces
12:10 Fri 18 Aug, 2017 :: Engineering Sth S111 :: Wolfgang Globke :: University of Adelaide

A pseudo-Riemannian homogeneous space $M$ of finite volume can be presented as $M=G/H$, where $G$ is a Lie group acting transitively and isometrically on $M$, and $H$ is a closed subgroup of $G$. The condition that $G$ acts isometrically and thus preserves a finite measure on $M$ leads to strong algebraic restrictions on $G$. In the special case where $G$ has no compact semisimple normal subgroups, it turns out that the isotropy subgroup $H$ is a lattice, and that the metric on $M$ comes from a bi-invariant metric on $G$. This result allows us to recover Zeghib’s classification of Lorentzian compact homogeneous spaces, and to move towards a classification for metric index 2. As an application we can investigate which pseudo-Riemannian homogeneous spaces of finite volume are Einstein spaces. Through the existence questions for lattice subgroups, this leads to an interesting connection with the theory of transcendental numbers, which allows us to characterize the Einstein cases in low dimensions. This talk is based on joint works with Oliver Baues, Yuri Nikolayevsky and Abdelghani Zeghib.
Equivariant formality of homogeneous spaces
12:10 Fri 29 Sep, 2017 :: Engineering Sth S111 :: Alex Chi-Kwong Fok :: University of Adelaide

Equivariant formality, a notion in equivariant topology introduced by Goresky-Kottwitz-Macpherson, is a desirable property of spaces with group actions, which allows the application of localisation formula to evaluate integrals of any top closed forms and enables one to compute easily the equivariant cohomology. Broad classes of spaces of especial interest are well-known to be equivariantly formal, e.g., compact symplectic manifolds equipped with Hamiltonian compact Lie group actions and projective varieties equipped with linear algebraic torus actions, of which flag varieties are examples. Less is known about compact homogeneous spaces G/K equipped with the isotropy action of K, which is not necessarily of maximal rank. In this talk we will review previous attempts of characterizing equivariant formality of G/K, and present our recent results on this problem using an analogue of equivariant formality in K-theory. Part of the work presented in this talk is joint with Jeffrey Carlson.
Operator algebras in rigid C*-tensor categories
12:10 Fri 6 Oct, 2017 :: Engineering Sth S111 :: Corey Jones :: Australian National University

In noncommutative geometry, operator algebras are often regarded as the algebras of functions on noncommutative spaces. Rigid C*-tensor categories are algebraic structures that appear in the study of quantum field theories, subfactors, and compact quantum groups. We will explain how they can be thought of as ``noncommutative'' versions of the tensor category of Hilbert spaces. Combining these two viewpoints, we describe a notion of operator algebras internal to a rigid C*-tensor category, and discuss applications to the theory of subfactors.
End-periodic K-homology and spin bordism
12:10 Fri 20 Oct, 2017 :: Engineering Sth S111 :: Michael Hallam :: University of Adelaide

This talk introduces new "end-periodic" variants of geometric K-homology and spin bordism theories that are tailored to a recent index theorem for even-dimensional manifolds with periodic ends. This index theorem, due to Mrowka, Ruberman and Saveliev, is a generalisation of the Atiyah-Patodi-Singer index theorem for manifolds with odd-dimensional boundary. As in the APS index theorem, there is an (end-periodic) eta invariant that appears as a correction term for the periodic end. Invariance properties of the standard relative eta invariants are elegantly expressed using K-homology and spin bordism, and this continues to hold in the end-periodic case. In fact, there are natural isomorphisms between the standard K-homology/bordism theories and their end-periodic versions, and moreover these isomorphisms preserve relative eta invariants. The study is motivated by results on positive scalar curvature, namely obstructions and distinct path components of the moduli space of PSC metrics. Our isomorphisms provide a systematic method for transferring certain results on PSC from the odd-dimensional case to the even-dimensional case. This work is joint with Mathai Varghese.
Springer correspondence for symmetric spaces
12:10 Fri 17 Nov, 2017 :: Engineering Sth S111 :: Ting Xue :: University of Melbourne

The Springer theory for reductive algebraic groups plays an important role in representation theory. It relates nilpotent orbits in the Lie algebra to irreducible representations of the Weyl group. We develop a Springer theory in the case of symmetric spaces using Fourier transform, which relates nilpotent orbits in this setting to irreducible representations of Hecke algebras of various Coxeter groups with specified parameters. This in turn gives rise to character sheaves on symmetric spaces, which we describe explicitly in the case of classical symmetric spaces. A key ingredient in the construction is the nearby cycle sheaves associated to the adjoint quotient map. The talk is based on joint work with Kari Vilonen and partly based on joint work with Misha Grinberg and Kari Vilonen.
A Hecke module structure on the KK-theory of arithmetic groups
13:10 Fri 2 Mar, 2018 :: Barr Smith South Polygon Lecture theatre :: Bram Mesland :: University of Bonn

Let $G$ be a locally compact group, $\Gamma$ a discrete subgroup and $C_{G}(\Gamma)$ the commensurator of $\Gamma$ in $G$. The cohomology of $\Gamma$ is a module over the Shimura Hecke ring of the pair $(\Gamma,C_G(\Gamma))$. This construction recovers the action of the Hecke operators on modular forms for $SL(2,\mathbb{Z})$ as a particular case. In this talk I will discuss how the Shimura Hecke ring of a pair $(\Gamma, C_{G}(\Gamma))$ maps into the $KK$-ring associated to an arbitrary $\Gamma$-C*-algebra. From this we obtain a variety of $K$-theoretic Hecke modules. In the case of manifolds the Chern character provides a Hecke equivariant transformation into cohomology, which is an isomorphism in low dimensions. We discuss Hecke equivariant exact sequences arising from possibly noncommutative compactifications of $\Gamma$-spaces. Examples include the Borel-Serre and geodesic compactifications of the universal cover of an arithmetic manifold, and the totally disconnected boundary of the Bruhat-Tits tree of $SL(2,\mathbb{Z})$. This is joint work with M.H. Sengun (Sheffield).
Radial Toeplitz operators on bounded symmetric domains
11:10 Fri 9 Mar, 2018 :: Lower Napier LG11 :: Raul Quiroga-Barranco :: CIMAT, Guanajuato, Mexico

The Bergman spaces on a complex domain are defined as the space of holomorphic square-integrable functions on the domain. These carry interesting structures both for analysis and representation theory in the case of bounded symmetric domains. On the other hand, these spaces have some bounded operators obtained as the composition of a multiplier operator and a projection. These operators are highly noncommuting between each other. However, there exist large commutative C*-algebras generated by some of these Toeplitz operators very much related to Lie groups. I will construct an example of such C*-algebras and provide a fairly explicit simultaneous diagonalization of the generating Toeplitz operators.
Quantum Airy structures and topological recursion
13:10 Wed 14 Mar, 2018 :: Ingkarni Wardli B17 :: Gaetan Borot :: MPI Bonn

Quantum Airy structures are Lie algebras of quadratic differential operators -- their classical limit describes Lagrangian subvarieties in symplectic vector spaces which are tangent to the zero section and cut out by quadratic equations. Their partition function -- which is the function annihilated by the collection of differential operators -- can be computed by the topological recursion. I will explain how to obtain quantum Airy structures from spectral curves, and explain how we can retrieve from them correlation functions of semi-simple cohomological field theories, by exploiting the symmetries. This is based on joint work with Andersen, Chekhov and Orantin.
Chaos in higher-dimensional complex dynamics
13:10 Fri 20 Apr, 2018 :: Barr Smith South Polygon Lecture theatre :: Finnur Larusson :: University of Adelaide

I will report on new joint work with Leandro Arosio (University of Rome, Tor Vergata). Complex manifolds can be thought of as laid out across a spectrum characterised by rigidity at one end and flexibility at the other. On the rigid side, Kobayashi-hyperbolic manifolds have at most a finite-dimensional group of symmetries. On the flexible side, there are manifolds with an extremely large group of holomorphic automorphisms, the prototypes being the affine spaces $\mathbb C^n$ for $n \geq 2$. From a dynamical point of view, hyperbolicity does not permit chaos. An endomorphism of a Kobayashi-hyperbolic manifold is non-expansive with respect to the Kobayashi distance, so every family of endomorphisms is equicontinuous. We show that not only does flexibility allow chaos: under a strong anti-hyperbolicity assumption, chaotic automorphisms are generic. A special case of our main result is that if $G$ is a connected complex linear algebraic group of dimension at least 2, not semisimple, then chaotic automorphisms are generic among all holomorphic automorphisms of $G$ that preserve a left- or right-invariant Haar form. For $G=\mathbb C^n$, this result was proved (although not explicitly stated) some 20 years ago by Fornaess and Sibony. Our generalisation follows their approach. I will give plenty of context and background, as well as some details of the proof of the main result.
Hitchin's Projectively Flat Connection for the Moduli Space of Higgs Bundles
13:10 Fri 15 Jun, 2018 :: Barr Smith South Polygon Lecture theatre :: John McCarthy :: University of Adelaide

In this talk I will discuss the problem of geometrically quantizing the moduli space of Higgs bundles on a compact Riemann surface using Kahler polarisations. I will begin by introducing geometric quantization via Kahler polarisations for compact manifolds, leading up to the definition of a Hitchin connection as stated by Andersen. I will then describe the moduli spaces of stable bundles and Higgs bundles over a compact Riemann surface, and discuss their properties. The problem of geometrically quantizing the moduli space of stables bundles, a compact space, was solved independently by Hitchin and Axelrod, Del PIetra, and Witten. The Higgs moduli space is non-compact and therefore the techniques used do not apply, but carries an action of C*. I will finish the talk by discussing the problem of finding a Hitchin connection that preserves this C* action. Such a connection exists in the case of Higgs line bundles, and I will comment on the difficulties in higher rank.
The topology and geometry of spaces of Yang-Mills-Higgs flow lines
11:10 Fri 27 Jul, 2018 :: Barr Smith South Polygon Lecture theatre :: Graeme Wilkin :: National University of Singapore

Given a smooth complex vector bundle over a compact Riemann surface, one can define the space of Higgs bundles and an energy functional on this space: the Yang-Mills-Higgs functional. The gradient flow of this functional resembles a nonlinear heat equation, and the limit of the flow detects information about the algebraic structure of the initial Higgs bundle (e.g. whether or not it is semistable). In this talk I will explain my work to classify ancient solutions of the Yang-Mills-Higgs flow in terms of their algebraic structure, which leads to an algebro-geometric classification of Yang-Mills-Higgs flow lines. Critical points connected by flow lines can then be interpreted in terms of the Hecke correspondence, which appears in Witten’s recent work on Geometric Langlands. This classification also gives a geometric description of spaces of unbroken flow lines in terms of secant varieties of the underlying Riemann surface, and in the remaining time I will describe work in progress to relate the (analytic) Morse compactification of these spaces by broken flow lines to an algebro-geometric compactification by iterated blowups of secant varieties.

Publications matching "Moduli spaces of contact instantons"

On some contact problems for inhomogeneous anisotropic elastic materials
Clements, David; Ang, W, International Journal of Engineering Science In Press (–) 2009
D-branes, KK-theory and duality on noncommutative spaces
Brodzki, J; Varghese, Mathai; Rosenberg, J; Szabo, R, Journal of Physics: Conference Series (Print Edition) 103 (1–13) 2008
Conformal holonomy of C-spaces, Ricci-flat, and Lorentzian manifolds
Leistner, Thomas, Differential Geometry and its Applications 24 (458–478) 2006
Flux compactifications on projective spaces and the S-duality puzzle
Bouwknegt, Pier; Evslin, J; Jurco, B; Varghese, Mathai; Sati, Hicham, Advances in Theoretical and Mathematical Physics 10 (345–394) 2006
Methods of constrained and unconstrained approximation for mappings in probability spaces
Torokhti, Anatoli; Howlett, P; Pearce, Charles, chapter in Modern Applied Mathematics (Narosa Publishing House) 83–129, 2005
Moduli of isolated hypersurface singularities
Eastwood, Michael, The Asian Journal of Mathematics 8 (305–314) 2004
A note on monopole moduli spaces
Murray, Michael; Singer, Michael, Journal of Mathematical Physics 44 (3517–3531) 2003
Stochastic Differential Equations in Hilbert Spaces
Filinkov, Alexei; Maizurna, Isna; Sorenson, J; Van Der Hoek, John, chapter in Applicable Mathematics in the Golden Age (Morgan & Claypool) 32–169, 2003
Differential equations in spaces of abstract stochastic distributions
Filinkov, Alexei; Sorensen, Julian, Stochastics and Stochastic Reports 72 (129–173) 2002
Cebyseb's inequality in n-inner product spaces
Budimir, I; Cho, Y; Matic, M; Pecaric, Josip, Sixth International Conference on Nonlinear Functional Analysis, Gyeongsang & Kyungnam Nat Universities, Korea 01/09/00
Inequalities of Hlawka's type in G-inner product spaces
Cho, Y; Matic, M; Pecaric, Josip, Sixth International Conference on Nonlinear Functional Analysis, Gyeongsang & Kyungnam Nat Universities, Korea 01/09/00
Caudal characteristics of QBDs with decomposable phase spaces
Bean, Nigel; Li, J-M; Taylor, Peter, Advances in algorithmic methods for stochastic models, Leuven, Belgium 01/07/01
m-systems of polar spaces and maximal arcs in projective planes
Hamilton, N; Quinn, Catherine, Bulletin of the Belgian Mathematical Society-Simon Stevin 7 (237–248) 2000

Advanced search options

You may be able to improve your search results by using the following syntax:

QueryMatches the following
Asymptotic EquationAnything with "Asymptotic" or "Equation".
+Asymptotic +EquationAnything with "Asymptotic" and "Equation".
+Stokes -"Navier-Stokes"Anything containing "Stokes" but not "Navier-Stokes".
Dynam*Anything containing "Dynamic", "Dynamical", "Dynamicist" etc.