The University of Adelaide
You are here
Text size: S | M | L
Printer Friendly Version
September 2019
MTWTFSS
      1
2345678
9101112131415
16171819202122
23242526272829
30      

Search the School of Mathematical Sciences

Find in People Courses Events News Publications

Courses matching "Manifold destiny: a talk on water, fire and life"

Statistical Practice I (Life Sciences)

Statistical ideas and methods are essential tools in virtually all areas that rely on data to make decisions and reach conclusions. This includes diverse fields such as science, technology, government, commerce, manufacturing and the life sciences. In broad terms, statistics is about getting information from data. This includes both the important question of how to obtain suitable data for a given purpose and also how best to extract the information, often in the presence of random variability. This course provides an introduction to the contemporary application of statistics to a range of real world situations. It has a strong practical focus using the statistical package SPSS to analyse real data relevant to the life sciences. Topics covered are: organisation, description and presentation of data in the life sciences; design of experiments and surveys; random variables, probability distributions, the binomial distribution and the normal distribution; statistical inference, tests of significance, confidence intervals; inference for means and proportions, one-sample tests, two independent samples, paired data, t-tests, contingency tables; analysis of variance; linear regression, least squares estimation, residuals and transformations, inference for regression coefficients, prediction.

More about this course...

Statistical Practice I (Life Sciences) (Pre-Vet)

Statistical ideas and methods are essential tools in virtually all areas that rely on data to make decisions and reach conclusions. This includes diverse fields such as science, technology, government, commerce, manufacturing and the life sciences. In broad terms, statistics is about getting information from data. This includes both the important question of how to obtain suitable data for a given purpose and also how best to extract the information, often in the presence of random variability. This course provides an introduction to the contemporary application of statistics to a range of real world situations. It has a strong practical focus using the statistical package SPSS to analyse real data relevant to the life sciences. Topics covered are: organisation, description and presentation of data in the life sciences; design of experiments and surveys; random variables, probability distributions, the binomial distribution and the normal distribution; statistical inference, tests of significance, confidence intervals; inference for means and proportions, one-sample tests, two independent samples, paired data, t-tests, contingency tables; analysis of variance; linear regression, least squares estimation, residuals and transformations, inference for regression coefficients, prediction.

More about this course...

Water waves and free-surface flows

Surface water waves occur in many physical situations that are familiar to most people. They include waves on the surface of an ocean, tsunamis, and waves generated by shipping vessels. The interface or boundary between the water and air is called the free-surface. During this course, students will encounter a variety of mathematical methods used to determine the shape of the free-surface, for linear and nonlinear water wave problems. This will enable us to study the fundamental properties of water wave propagation.

More about this course...

Events matching "Manifold destiny: a talk on water, fire and life"

Stability of time-periodic flows
15:10 Fri 10 Mar, 2006 :: G08 Mathematics Building University of Adelaide :: Prof. Andrew Bassom, School of Mathematics and Statistics, University of Western Australia

Time-periodic shear layers occur naturally in a wide range of applications from engineering to physiology. Transition to turbulence in such flows is of practical interest and there have been several papers dealing with the stability of flows composed of a steady component plus an oscillatory part with zero mean. In such flows a possible instability mechanism is associated with the mean component so that the stability of the flow can be examined using some sort of perturbation-type analysis. This strategy fails when the mean part of the flow is small compared with the oscillatory component which, of course, includes the case when the mean part is precisely zero.

This difficulty with analytical studies has meant that the stability of purely oscillatory flows has relied on various numerical methods. Until very recently such techniques have only ever predicted that the flow is stable, even though experiments suggest that they do become unstable at high enough speeds. In this talk I shall expand on this discrepancy with emphasis on the particular case of the so-called flat Stokes layer. This flow, which is generated in a deep layer of incompressible fluid lying above a flat plate which is oscillated in its own plane, represents one of the few exact solutions of the Navier-Stokes equations. We show theoretically that the flow does become unstable to waves which propagate relative to the basic motion although the theory predicts that this occurs much later than has been found in experiments. Reasons for this discrepancy are examined by reference to calculations for oscillatory flows in pipes and channels. Finally, we propose some new experiments that might reduce this disagreement between the theoretical predictions of instability and practical realisations of breakdown in oscillatory flows.
Homological algebra and applications - a historical survey
15:10 Fri 19 May, 2006 :: G08 Mathematics Building University of Adelaide :: Prof. Amnon Neeman

Homological algebra is a curious branch of mathematics; it is a powerful tool which has been used in many diverse places, without any clear understanding why it should be so useful. We will give a list of applications, proceeding chronologically: first to topology, then to complex analysis, then to algebraic geometry, then to commutative algebra and finally (if we have time) to non-commutative algebra. At the end of the talk I hope to be able to say something about the part of homological algebra on which I have worked, and its applications. That part is derived categories.
Maths and Movie Making
15:10 Fri 13 Oct, 2006 :: G08 Mathematics Building University of Adelaide :: Dr Michael Anderson

Mathematics underlies many of the techniques used in modern movie making. This talk will sketch out the movie visual effects pipeline, discussing how mathematics is used in the various stages and detailing some of the mathematical areas that are still being actively researched.
The talk will finish with an overview of the type of work the speaker is involved in, the steps that led him there and the opportunities for mathematicians in this new and exciting area.
Identifying the source of photographic images by analysis of JPEG quantization artifacts
15:10 Fri 27 Apr, 2007 :: G08 Mathematics Building University of Adelaide :: Dr Matthew Sorell

Media...
In a forensic context, digital photographs are becoming more common as sources of evidence in criminal and civil matters. Questions that arise include identifying the make and model of a camera to assist in the gathering of physical evidence; matching photographs to a particular camera through the camera’s unique characteristics; and determining the integrity of a digital image, including whether the image contains steganographic information. From a digital file perspective, there is also the question of whether metadata has been deliberately modified to mislead the investigator, and in the case of multiple images, whether a timeline can be established from the various timestamps within the file, imposed by the operating system or determined by other image characteristics. This talk is concerned specifically with techniques to identify the make, model series and particular source camera model given a digital image. We exploit particular characteristics of the camera’s JPEG coder to demonstrate that such identification is possible, and that even when an image has subsequently been re-processed, there are often sufficient residual characteristics of the original coding to at least narrow down the possible camera models of interest.
Learning to Satisfy Actuator and Camera Networks
15:10 Fri 25 May, 2007 :: G08 Mathematics Building University of Adelaide :: Assistant Prof Mark Coates

Media...
Wireless sensor and actuator networks (SANETs) represent an important extension of sensor networks, allowing nodes within the network to make autonomous decisions and perform actions (actuation) in response to sensor measurements and shared information. SANETS combine aspects of sensor networks and multi-robot systems, and the merger gives rise to an array of challenges absent from conventional sensor networks. SANETs are active systems that must use the sensed information to modify the environment in order to elicit a desired response. This involves the development of an actuation strategy, a set of decision rules that specify how the network responds to sensed conditions. In this talk, I will discuss the challenges involved in using distributed algorithms to learn suitable actuation strategies. I will draw connections with the class of learning satisfiability problems, which includes a range of learning tasks involving multiple constraints.
Finite Geometries: Classical Problems and Recent Developments
15:10 Fri 20 Jul, 2007 :: G04 Napier Building University of Adelaide :: Prof. Joseph A. Thas :: Ghent University, Belgium

In recent years there has been an increasing interest in finite projective spaces, and important applications to practical topics such as coding theory, cryptography and design of experiments have made the field even more attractive. In my talk some classical problems and recent developments will be discussed. First I will mention Segre's celebrated theorem and ovals and a purely combinatorial characterization of Hermitian curves in the projective plane over a finite field here, from the beginning, the considered pointset is contained in the projective plane over a finite field. Next, a recent elegant result on semiovals in PG(2,q), due to Gács, will be given. A second approach is where the object is described as an incidence structure satisfying certain properties; here the geometry is not a priori embedded in a projective space. This will be illustrated by a characterization of the classical inversive plane in the odd case. Another quite recent beautiful result in Galois geometry is the discovery of an infinite class of hemisystems of the Hermitian variety in PG(3,q^2), leading to new interesting classes of incidence structures, graphs and codes; before this result, just one example for GF(9), due to Segre, was known.
An Introduction to invariant differential pairings
14:10 Tue 24 Jul, 2007 :: Mathematics G08 :: Jens Kroeske

On homogeneous spaces G/P, where G is a semi-simple Lie group and P is a parabolic subgroup (the ordinary sphere or projective spaces being examples), invariant operators, that is operators between certain homogeneous bundles (functions, vector fields or forms being amongst the typical examples) that are invariant under the action of the group G, have been studied extensively. Especially on so called hermitian symmetric spaces which arise through a 1-grading of the Lie algebra of G there exists a complete classification of first order invariant linear differential operators even on more general manifolds (that allow a so called almost hermitian structure).

This talk will introduce the notion of an invariant bilinear differential pairing between sections of the aforementioned homogeneous bundles. Moreover we will discuss a classification (excluding certain totally degenerate cases) of all first order invariant bilinear differential pairings on manifolds with an almost hermitian symmetric structure. The similarities and connections with the linear operator classification will be highlighted and discussed.

Likelihood inference for a problem in particle physics
15:10 Fri 27 Jul, 2007 :: G04 Napier Building University of Adelaide :: Prof. Anthony Davison

The Large Hadron Collider (LHC), a particle accelerator located at CERN, near Geneva, is (currently!) expected to start operation in early 2008. It is located in an underground tunnel 27km in circumference, and when fully operational, will be the world's largest and highest energy particle accelerator. It is hoped that it will provide evidence for the existence of the Higgs boson, the last remaining particle of the so-called Standard Model of particle physics. The quantity of data that will be generated by the LHC is roughly equivalent to that of the European telecommunications network, but this will be boiled down to just a few numbers. After a brief introduction, this talk will outline elements of the statistical problem of detecting the presence of a particle, and then sketch how higher order likelihood asymptotics may be used for signal detection in this context. The work is joint with Nicola Sartori, of the Università Ca' Foscari, in Venice.
Div, grad, curl, and all that
15:10 Fri 10 Aug, 2007 :: G08 Mathematics Building University of Adelaide :: Prof. Mike Eastwood :: School of Mathematical Sciences, University of Adelaide

These well-known differential operators are, of course, important in applied mathematics. This is just the tip of an iceberg. I shall indicate some of what lies beneath the surface. There are links with topology, physics, symmetry groups, finite element schemes, and more besides. This talk will touch on these different topics by means of examples. Little prior knowledge will be assumed beyond the equality of mixed partial derivatives.
Fermat's Last Theorem and modular elliptic curves
15:10 Wed 5 Sep, 2007 :: G08 Mathematics Building University of Adelaide :: Dr Mark Kisin

Media...
I will give a historical talk, explaining the steps by which one can deduce Fermat's Last Theorem from a statement about modular forms and elliptic curves.
Regression: a backwards step?
13:10 Fri 7 Sep, 2007 :: Maths G08 :: Dr Gary Glonek

Media...
Most students of high school mathematics will have encountered the technique of fitting a line to data by least squares. Those who have taken a university statistics course will also have heard this method referred to as regression. However, it is not obvious from common dictionary definitions why this should be the case. For example, "reversion to an earlier or less advanced state or form". In this talk, the mathematical phenomenon that gave regression its name will be explained and will be shown to have implications in some unexpected contexts.
Queues with Advance Reservations
15:10 Fri 21 Sep, 2007 :: G04 Napier Building University of Adelaide :: Prof. Peter Taylor :: Department of Mathematics and Statistics, University of Melbourne

Queues where, on "arrival", customers make a reservation for service at some time in the future are endemic. However there is surprisingly little about them in the literature. Simulations illustrate some interesting implications of the facility to make such reservations. For example introducing independent and identically distributed reservation periods into an Erlang loss system can either increase or decrease the blocking probability from that given by Erlang's formula, despite the fact that the process of 'reserved arrivals' is still Poisson. In this talk we shall discuss a number of ways of looking at such queues. In particular, we shall obtain various transient and stationary distributions associated with the "bookings diary" for the infinite server system. However, this does not immediately answer the question of how to calculate the above-mentioned blocking probabilities. We shall conclude with a few suggestions as to how this calculation might be carried out.
Similarity solutions for surface-tension driven flows
15:10 Fri 14 Mar, 2008 :: LG29 Napier Building University of Adelaide :: Prof John Lister :: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK

The breakup of a mass of fluid into drops is a ubiquitous phenomenon in daily life, the natural environment and technology, with common examples including a dripping tap, ocean spray and ink-jet printing. It is a feature of many generic industrial processes such as spraying, emulsification, aeration, mixing and atomisation, and is an undesirable feature in coating and fibre spinning. Surface-tension driven pinch-off and the subsequent recoil are examples of finite-time singularities in which the interfacial curvature becomes infinite at the point of disconnection. As a result, the flow near the point of disconnection becomes self-similar and independent of initial and far-field conditions. Similarity solutions will be presented for the cases of inviscid and very viscous flow, along with comparison to experiments. In each case, a boundary-integral representation can be used both to examine the time-dependent behaviour and as the basis of a modified Newton scheme for direct solution of the similarity equations.
Values of transcendental entire functions at algebraic points.
15:10 Fri 28 Mar, 2008 :: LG29 Napier Building University of Adelaide :: Prof. Eugene Poletsky :: Syracuse University, USA

Algebraic numbers are roots of polynomials with integer coefficients, so their set is countable. All other numbers are called transcendental. Although most numbers are transcendental, it was only in 1873 that Hermite proved that the base $e$ of natural logarithms is not algebraic. The proof was based on the fact that $e$ is the value at 1 of the exponential function $e^z$ which is entire and does not change under differentiation.

This achievement raised two questions: What entire functions take only transcendental values at algebraic points? Also, given an entire transcendental function $f$, describe, or at least find properties of, the set of algebraic numbers where the values of $f$ are also algebraic. The first question, developed by Siegel, Shidlovsky, and others, led to the notion of $E$-functions, which have controlled derivatives. Answering the second question, Polya and Gelfond obtained restrictions for entire functions that have integer values at integer points (Polya) or Gaussian integer values at Gaussian integer points (Gelfond). For more general sets of points only counterexamples were known.

Recently D. Coman and the speaker developed new tools for the second question, which give an answer, at least partially, for general entire functions and their values at general sets of algebraic points.

In my talk we will discuss old and new results in this direction. All relevant definitions will be provided and the talk will be accessible to postgraduates and honours students.

Adaptive Fast Convergence - Towards Optimal Reconstruction Guarantees for Phylogenetic Trees
16:00 Tue 1 Apr, 2008 :: School Board Room :: Schlomo Moran :: Computer Science Department, Technion, Haifa, Israel

One of the central challenges in phylogenetics is to be able to reliably resolve as much of the topology of the evolutionary tree from short taxon-sequences. In the past decade much attention has been focused on studying fast converging reconstruction algorithms, which guarantee (w.h.p) correct reconstruction of the entire tree from sequences of near-minimal length (assuming some accepted model of sequence evolution along the tree). The major drawback of these methods is that when the sequences are too short to correctly reconstruct the tree in its entirety, they do not provide any reconstruction guarantee for sufficiently long edges. Specifically, the presence of some very short edges in the model tree may prevent these algorithms from reconstructing even edges of moderate length.

In this talk we present a stronger reconstruction guarantee called "adaptive fast convergence", which provides guarantees for the correct reconstruction of all sufficiently long edges of the original tree. We then present a general technique, which (unlike previous reconstruction techniques) employs dynamic edge-contraction during the reconstruction of the tree. We conclude by demonstrating how this technique is used to achieve adaptive fast convergence.

Groundwater: using mathematics to solve our water crisis
13:10 Wed 9 Apr, 2008 :: Napier 210 :: Dr Michael Teubner

'The driest state in the driest continent' is how South Australia used to be described. And that was before the drought! Now we have severe water restrictions, dead lawns, and dying gardens. But this need not be the case. Mathematics to the rescue! Groundwater exists below much of the Adelaide metro area. We can store winter stormwater in the ground and use it when we need it in summer. But we need mathematical models to understand where groundwater exists, where we can inject stormwater and how much can be stored, and where we can extract it: all through mathematical models. Come along and see that we don't have a water problem, we have a water management problem.
Global and Local stationary modelling in finance: Theory and empirical evidence
14:10 Thu 10 Apr, 2008 :: G04 Napier Building University of Adelaide :: Prof. Dominique Guégan :: Universite Paris 1 Pantheon-Sorbonne

To model real data sets using second order stochastic processes imposes that the data sets verify the second order stationarity condition. This stationarity condition concerns the unconditional moments of the process. It is in that context that most of models developed from the sixties' have been studied; We refer to the ARMA processes (Brockwell and Davis, 1988), the ARCH, GARCH and EGARCH models (Engle, 1982, Bollerslev, 1986, Nelson, 1990), the SETAR process (Lim and Tong, 1980 and Tong, 1990), the bilinear model (Granger and Andersen, 1978, Guégan, 1994), the EXPAR model (Haggan and Ozaki, 1980), the long memory process (Granger and Joyeux, 1980, Hosking, 1981, Gray, Zang and Woodward, 1989, Beran, 1994, Giraitis and Leipus, 1995, Guégan, 2000), the switching process (Hamilton, 1988). For all these models, we get an invertible causal solution under specific conditions on the parameters, then the forecast points and the forecast intervals are available.

Thus, the stationarity assumption is the basis for a general asymptotic theory for identification, estimation and forecasting. It guarantees that the increase of the sample size leads to more and more information of the same kind which is basic for an asymptotic theory to make sense.

Now non-stationarity modelling has also a long tradition in econometrics. This one is based on the conditional moments of the data generating process. It appears mainly in the heteroscedastic and volatility models, like the GARCH and related models, and stochastic volatility processes (Ghysels, Harvey and Renault 1997). This non-stationarity appears also in a different way with structural changes models like the switching models (Hamilton, 1988), the stopbreak model (Diebold and Inoue, 2001, Breidt and Hsu, 2002, Granger and Hyung, 2004) and the SETAR models, for instance. It can also be observed from linear models with time varying coefficients (Nicholls and Quinn, 1982, Tsay, 1987).

Thus, using stationary unconditional moments suggest a global stationarity for the model, but using non-stationary unconditional moments or non-stationary conditional moments or assuming existence of states suggest that this global stationarity fails and that we only observe a local stationary behavior.

The growing evidence of instability in the stochastic behavior of stocks, of exchange rates, of some economic data sets like growth rates for instance, characterized by existence of volatility or existence of jumps in the variance or on the levels of the prices imposes to discuss the assumption of global stationarity and its consequence in modelling, particularly in forecasting. Thus we can address several questions with respect to these remarks.

1. What kinds of non-stationarity affect the major financial and economic data sets? How to detect them?

2. Local and global stationarities: How are they defined?

3. What is the impact of evidence of non-stationarity on the statistics computed from the global non stationary data sets?

4. How can we analyze data sets in the non-stationary global framework? Does the asymptotic theory work in non-stationary framework?

5. What kind of models create local stationarity instead of global stationarity? How can we use them to develop a modelling and a forecasting strategy?

These questions began to be discussed in some papers in the economic literature. For some of these questions, the answers are known, for others, very few works exist. In this talk I will discuss all these problems and will propose 2 new stategies and modelling to solve them. Several interesting topics in empirical finance awaiting future research will also be discussed.

The Mathematics of String Theory
15:10 Fri 2 May, 2008 :: LG29 Napier Building University of Adelaide :: Prof. Peter Bouwknegt :: Department of Mathematics, ANU

String Theory has had, and continues to have, a profound impact on many areas of mathematics and vice versa. In this talk I want to address some relatively recent developments. In particular I will argue, following Witten and others, that D-brane charges take values in the K-theory of spacetime, rather than in integral cohomology as one might have expected. I will also explore the mathematical consequences of a particular symmetry, called T-duality, in this context. I will give an intuitive introduction into D-branes and K-theory. No prior knowledge about either String Theory, D-branes or K-theory is required.
The limits of proof
13:10 Wed 21 May, 2008 :: Napier 210 :: A/Prof Finnur Larusson

Media...
The job of the mathematician is to discover new truths about mathematical objects and their relationships. Such truths are established by proving them. This raises a fundamental question. Can every mathematical truth be proved (by a sufficiently clever being) or are there truths that will forever lie beyond the reach of proof? Mathematics can be turned on itself to investigate this question. In this talk, we will see that under certain assumptions about proofs, there are truths that cannot be proved. You must decide for yourself whether you think these assumptions are valid!
Puzzle-based learning: Introduction to mathematics
15:10 Fri 23 May, 2008 :: LG29 Napier Building University of Adelaide :: Prof. Zbigniew Michalewicz :: School of Computer Science, University of Adelaide

Media...
The talk addresses a gap in the educational curriculum for 1st year students by proposing a new course that aims at getting students to think about how to frame and solve unstructured problems. The idea is to increase the student's mathematical awareness and problem-solving skills by discussing a variety of puzzles. The talk makes an argument that this approach - called Puzzle-Based Learning - is very beneficial for introducing mathematics, critical thinking, and problem-solving skills.

The new course has been approved by the University of Adelaide for Faculty of Engineering, Computer Science, and Mathematics. Many other universities are in the process of introducing such a course. The course will be offered in two versions: (a) full-semester course and (b) a unit within general course (e.g. Introduction to Engineering). All teaching materials (power point slides, assignments, etc.) are being prepared. The new textbook (Puzzle-Based Learning: Introduction to Critical Thinking, Mathematics, and Problem Solving) will be available from June 2008. The talk provides additional information on this development.

For further information see http://www.PuzzleBasedlearning.edu.au/

Computational Methods for Phase Response Analysis of Circadian Clocks
15:10 Fri 18 Jul, 2008 :: G04 Napier Building University of Adelaide. :: Prof. Linda Petzold :: Dept. of Mechanical and Environmental Engineering, University of California, Santa Barbara

Circadian clocks govern daily behaviors of organisms in all kingdoms of life. In mammals, the master clock resides in the suprachiasmatic nucleus (SCN) of the hypothalamus. It is composed of thousands of neurons, each of which contains a sloppy oscillator - a molecular clock governed by a transcriptional feedback network. Via intercellular signaling, the cell population synchronizes spontaneously, forming a coherent oscillation. This multi-oscillator is then entrained to its environment by the daily light/dark cycle.

Both at the cellular and tissular levels, the most important feature of the clock is its ability not simply to keep time, but to adjust its time, or phase, to signals. We present the parametric impulse phase response curve (pIPRC), an analytical analog to the phase response curve (PRC) used experimentally. We use the pIPRC to understand both the consequences of intercellular signaling and the light entrainment process. Further, we determine which model components determine the phase response behavior of a single oscillator by using a novel model reduction technique. We reduce the number of model components while preserving the pIPRC and then incorporate the resultant model into a couple SCN tissue model. Emergent properties, including the ability of the population to synchronize spontaneously are preserved in the reduction. Finally, we present some mathematical tools for the study of synchronization in a network of coupled, noisy oscillators.

Probabilistic models of human cognition
15:10 Fri 29 Aug, 2008 :: G03 Napier Building University of Adelaide :: Dr Daniel Navarro :: School of Psychology, University of Adelaide

Over the last 15 years a fairly substantial psychological literature has developed in which human reasoning and decision-making is viewed as the solution to a variety of statistical problems posed by the environments in which we operate. In this talk, I briefly outline the general approach to cognitive modelling that is adopted in this literature, which relies heavily on Bayesian statistics, and introduce a little of the current research in this field. In particular, I will discuss work by myself and others on the statistical basis of how people make simple inductive leaps and generalisations, and the links between these generalisations and how people acquire word meanings and learn new concepts. If time permits, the extensions of the work in which complex concepts may be characterised with the aid of nonparametric Bayesian tools such as Dirichlet processes will be briefly mentioned.
Free surface Stokes flows with surface tension
15:10 Fri 5 Sep, 2008 :: G03 Napier Building University of Adelaide :: Prof. Darren Crowdy :: Imperial College London

In this talk, we will survey a number of different free boundary problems involving slow viscous (Stokes) flows in which surface tension is active on the free boundary. Both steady and unsteady flows will be considered. Motivating applications range from industrial processes such as viscous sintering (where end-products are formed as a result of the surface-tension-driven densification of a compact of smaller particles that are heated in order that they coalesce) to biological phenomena such as understanding how organisms swim (i.e. propel themselves) at low Reynolds numbers. Common to our approach to all these problems will be an analytical/theoretical treatment of model problems via complex variable methods -- techniques well-known at infinite Reynolds numbers but used much less often in the Stokes regime. These model problems can give helpful insights into the behaviour of the true physical systems.
For the love of logs
13:10 Wed 10 Sep, 2008 :: Napier 210 :: Dr Paul McCann

Media...
The humble logarithm is a well known and dependable beast. In this talk we will provide a "greatest hits-tory" of the logarithm, highlighting some memorable moments from its first 400 years of life, and pondering some of the reasons why logarithms arise in so many diverse and unexpected situations. Finally, we will juggle some simple numerical coincidences to calculate a few choice logarithms from scratch.
The Mechanics of Nanoscale Devices
15:10 Fri 10 Oct, 2008 :: G03 Napier Building University of Adelaide :: Associate Prof. John Sader :: Department of Mathematics and Statistics, The University of Melbourne

Nanomechanical sensors are often used to measure environmental changes with extreme sensitivity. Controlling the effects of surfaces and fluid dissipation presents significant challenges to achieving the ultimate sensitivity in these devices. In this talk, I will give an overview of theoretical/experimental work we are undertaking to explore the underlying physical processes in these systems. The talk will be general and aimed at introducing some recent developments in the field of nanomechanical sensors.
Assisted reproduction technology: how maths can contribute
13:10 Wed 22 Oct, 2008 :: Napier 210 :: Dr Yvonne Stokes

Media...
Most people will have heard of IVF (in vitro fertilisation), a technology for helping infertile couples have a baby. Although there are many IVF babies, many will also know that the success rate is still low for the cost and inconvenience involved. The fact that some women cannot make use of IVF because of life-threatening consequences is less well known but motivates research into other technologies, including IVM (in vitro maturation). What has all this to do with maths? Come along and find out how mathematical modelling is contributing to understanding and improvement in this important and interesting field.
Symmetry-breaking and the Origin of Species
15:10 Fri 24 Oct, 2008 :: G03 Napier Building University of Adelaide :: Toby Elmhirst :: ARC Centre of Excellence for Coral Reef Studies, James Cook University

The theory of partial differential equations can say much about generic bifurcations from spatially homogeneous steady states, but relatively little about generic bifurcations from unimodal steady states. In many applications, spatially homogeneous steady states correspond to low-energy physical states that are destabilized as energy is fed into the system, and in these cases standard PDE theory can yield some impressive and elegant results. However, for many macroscopic biological systems such results are less useful because low-energy states do not hold the same priviledged position as they do in physical and chemical systems. For example, speciation -- the evolutionary process by which new species are formed -- can be seen as the destabilization of a unimodal density distribution over phenotype space. Given the diversity of species and environments, generic results are clearly needed, but cannot be gained from PDE theory. Indeed, such questions cannot even be adequately formulated in terms of PDEs. In this talk I will introduce 'Pod Systems' which can provide an answer to the question; 'What happens, generically, when a unimodal steady state loses stability?' In the pod system formalization, the answer involves elements of equivariant bifurcation theory and suggests that new species can arise as the result of broken symmetries.
What on Earth is Computational Advertising?
15:10 Wed 28 Jan, 2009 :: Napier G03 :: Dr John Tomlin :: Yahoo! Research Labs

This talk will begin with a brief introduction to, and overview of, the topic we have come to call "computational advertising", by which we mean the algorithmic techniques useful for the optimal placement, scheduling and context of on-line advertisements. Such advertisements encompass a large and growing fraction of the advertising industry, and, in the forms of display advertising, content match, and search marketing, bring in a large fraction of the income derived from the web. In addition to the overview, we give two examples of optimization models applied to problems in sponsored search and display advertising.
On the Henstock-Kurzweil integral (along with concerns about general math education in Europe)
15:10 Fri 13 Feb, 2009 :: Napier LG28 :: Prof Jean-Pierre Demailly :: University of Grenoble, France

The talk will be the occasion to take a few minutes to describe the situation of math education in France and in Europe, to motivate the interest of the lecturer in trying to bring back rigorous proofs in integration theory. The remaining 45 minutes will be devoted to explaining the basics of Henstock-Kurzweil integration theory, which, although not a response to education problems, is a modern and elementary approach of a very strong extension of the Riemann integral, providing easy access to several fundamental results of Lebesgue theory (monotone convergence theorem, existence of Lebesgue measure, etc.).
Impulsively generated drops
15:00 Fri 27 Feb, 2009 :: Napier LG29 :: Prof William Phillips :: Swinburne University of Technology

This talk is concerned with the evolution of an unbounded inviscid fluid-fluid interface subject to an axisymmetric impulse in pressure and how inertial, interfacial and gravitational forces affect that evolution. The construct was motivated by the occurrence of lung hemorrhage resulting from ultrasonic imaging and pursues the notion that bursts of ultrasound act to expel droplets that puncture the soft air-filled sacs in the lung plural surface allowing them to fill with blood. The evolution of the free surface is described by a boundary integral formulation which is integrated forward in time numerically. As the interface evolves, it is seen, depending upon the levels of gravity and surface tension, to form either axisymmetric surface jets, waves or droplets. Moreover the droplets may be spherical, inverted tear-shaped or pancake like. Also of interest is the finite time singularity which occurs when the drop pinches off; this is seen to be of the power law type with an exponent of 2/3.
Boltzmann's Equations for Suspension Flow in Porous Media and Correction of the Classical Model
15:10 Fri 13 Mar, 2009 :: Napier LG29 :: Prof Pavel Bedrikovetsky :: University of Adelaide

Suspension/colloid transport in porous media is a basic phenomenon in environmental, petroleum and chemical engineering. Suspension of particles moves through porous media and particles are captured by straining or attraction. We revise the classical equations for particle mass balance and particle capture kinetics and show its non-realistic behaviour in cases of large dispersion and of flow-free filtration. In order to resolve the paradoxes, the pore-scale model is derived. The model can be transformed to Boltzmann equation with particle distribution over pores. Introduction of sink-source terms into Boltzmann equation results in much more simple calculations if compared with the traditional Chapman-Enskog averaging procedure. Technique of projecting operators in Hilbert space of Fourier images is used. The projection subspace is constructed in a way to avoid dependency of averaged equations on sink-source terms. The averaging results in explicit expressions for particle flux and capture rate. The particle flux expression describes the effect of advective particle velocity decrease if compared with the carrier water velocity due to preferential capture of "slow" particles in small pores. The capture rate kinetics describes capture from either advective or diffusive fluxes. The equations derived exhibit positive advection velocity for any dispersion and particle capture in immobile fluid that resolves the above-mentioned paradox. Finally, we discuss validation of the model for propagation of contaminants in aquifers, for filtration, for potable water production by artesian wells, for formation damage in oilfields.
From histograms to multivariate polynomial histograms and shape estimation
12:10 Thu 19 Mar, 2009 :: Napier 210 :: A/Prof Inge Koch

Media...
Histograms are convenient and easy-to-use tools for estimating the shape of data, but they have serious problems which are magnified for multivariate data. We combine classic histograms with shape estimation by polynomials. The new relatives, `polynomial histograms', have surprisingly nice mathematical properties, which we will explore in this talk. We also show how they can be used for real data of 10-20 dimensions to analyse and understand the shape of these data.
Geometric analysis on the noncommutative torus
13:10 Fri 20 Mar, 2009 :: School Board Room :: Prof Jonathan Rosenberg :: University of Maryland

Noncommutative geometry (in the sense of Alain Connes) involves replacing a conventional space by a "space" in which the algebra of functions is noncommutative. The simplest truly non-trivial noncommutative manifold is the noncommutative 2-torus, whose algebra of functions is also called the irrational rotation algebra. I will discuss a number of recent results on geometric analysis on the noncommutative torus, including the study of nonlinear noncommutative elliptic PDEs (such as the noncommutative harmonic map equation) and noncommutative complex analysis (with noncommutative elliptic functions).
Sloshing in tanks of liquefied natural gas (LNG) vessels
15:10 Wed 22 Apr, 2009 :: Napier LG29 :: Prof. Frederic Dias :: ENS, Cachan

The last scientific conversation I had with Ernie Tuck was on liquid impact. As a matter of fact, we discussed the paper by J.H. Milgram, Journal of Fluid Mechanics 37 (1969), entitled "The motion of a fluid in a cylindrical container with a free surface following vertical impact." Liquid impact is a key issue in sloshing and in particular in sloshing in tanks of LNG vessels. Numerical simulations of sloshing have been performed by various groups, using various types of numerical methods. In terms of the numerical results, the outcome is often impressive, but the question remains of how relevant these results are when it comes to determining impact pressures. The numerical models are too simplified to reproduce the high variability of the measured pressures. In fact, for the time being, it is not possible to simulate accurately both global and local effects. Unfortunately it appears that local effects predominate over global effects when the behaviour of pressures is considered. Having said this, it is important to point out that numerical studies can be quite useful to perform sensitivity analyses in idealized conditions such as a liquid mass falling under gravity on top of a horizontal wall and then spreading along the lateral sides. Simple analytical models inspired by numerical results on idealized problems can also be useful to predict trends. The talk is organized as follows: After a brief introduction on the sloshing problem and on scaling laws, it will be explained to what extent numerical studies can be used to improve our understanding of impact pressures. Results on a liquid mass hitting a wall obtained by a finite-volume code with interface reconstruction as well as results obtained by a simple analytical model will be shown to reproduce the trends of experiments on sloshing. This is joint work with L. Brosset (GazTransport & Technigaz), J.-M. Ghidaglia (ENS Cachan) and J.-P. Braeunig (INRIA).
String structures and characteristic classes for loop group bundles
13:10 Fri 1 May, 2009 :: School Board Room :: Mr Raymond Vozzo :: University of Adelaide

The Chern-Weil homomorphism gives a geometric method for calculating characteristic classes for principal bundles. In infinite dimensions, however, the standard theory fails due to analytical problems. In this talk I shall give a geometric method for calculating characteristic classes for principal bundle with structure group the loop group of a compact group which side-steps these complications. This theory is inspired in some sense by results on the string class (a certain cohomology class on the base of a loop group bundle) which I shall outline.
How to see in higher dimensions
12:10 Thu 7 May, 2009 :: Napier 210 :: Prof Michael Murray

Media...
The human brain has evolved to be able to think intuitively in three dimensions. Unfortunately the real world is at least four and maybe 10, 11 or 26 dimensional. In this talk I will discuss some of the tricks mathematicians have devised to think about higher dimensional objects.
Wall turbulence: from the laboratory to the atmosphere
15:00 Fri 29 May, 2009 :: Napier LG29 :: Prof Ivan Marusic :: The University of Melbourne

The study of wall-bounded turbulent flows has received great attention over the past few years as a result of high Reynolds number experiments conducted in new high Reynolds number facilities such as the Princeton "superpipe", the NDF facility in Chicago and the HRNBLWT at the University of Melbourne. These experiments have brought into question the fundamental scaling laws of the turbulence and mean flow quantities as well as revealed high Reynolds number phenomena, which make extrapolation of low Reynolds number results highly questionable. In this talk these issues will be reviewed and new results from the HRNBLWT and atmospheric surface layer on the salt-flats of Utah will be presented documenting unique high Reynolds number phenomena. The implications for skin-friction drag reduction technologies and improved near-wall models for large-eddy simulation will be discussed.
Lagrangian fibrations on holomorphic symplectic manifolds I: Holomorphic Lagrangian fibrations
13:10 Fri 5 Jun, 2009 :: School Board Room :: Dr Justin Sawon :: Colorado State University

A compact K{\"a}hler manifold $X$ is a holomorphic symplectic manifold if it admits a non-degenerate holomorphic two-form $\sigma$. According to a theorem of Matsushita, fibrations on $X$ must be of a very restricted type: the fibres must be Lagrangian with respect to $\sigma$ and the generic fibre must be a complex torus. Moreover, it is expected that the base of the fibration must be complex projective space, and this has been proved by Hwang when $X$ is projective. The simplest example of these {\em Lagrangian fibrations\/} are elliptic K3 surfaces. In this talk we will explain the role of elliptic K3s in the classification of K3 surfaces, and the (conjectural) generalization to higher dimensions.
Averaging reduction for stochastic PDEs
15:10 Fri 5 Jun, 2009 :: LG29 :: Dr Wei Wang :: University of Adelaide

In this talk, I introduce recent work on macroscopic reduction for stochastic PDEs by an averaging method. Furthermore by using a special coupling boundary conditions, a macroscopic discrete approximation model can be derived.
Chern-Simons classes on loop spaces and diffeomorphism groups
13:10 Fri 12 Jun, 2009 :: School Board Room :: Prof Steve Rosenberg :: Boston University

The loop space LM of a Riemannian manifold M comes with a family of Riemannian metrics indexed by a Sobolev parameter. We can construct characteristic classes for LM using the Wodzicki residue instead of the usual matrix trace. The Pontrjagin classes of LM vanish, but the secondary or Chern-Simons classes may be nonzero and may distinguish circle actions on M. There are similar results for diffeomorphism groups of manifolds.
Lagrangian fibrations on holomorphic symplectic manifolds II: Existence of Lagrangian fibrations
13:10 Fri 19 Jun, 2009 :: School Board Room :: Dr Justin Sawon :: Colorado State University

The Hilbert scheme ${\mathrm Hilb}^nS$ of points on a K3 surface $S$ is a well-known holomorphic symplectic manifold. When does ${\mathrm Hilb}^nS$ admit a Lagrangian fibration? The existence of a Lagrangian fibration places some conditions on the Hodge structure, since the pull back of a hyperplane from the base gives a special divisor on ${\mathrm Hilb}^nS$, and in turn a special divisor on $S$. The converse is more difficult, but using Fourier-Mukai transforms we will show that if $S$ admits a divisor of a certain degree then ${\mathrm Hilb}^nS$ admits a Lagrangian fibration.
Lagrangian fibrations on holomorphic symplectic manifolds III: Holomorphic coisotropic reduction
13:10 Fri 26 Jun, 2009 :: School Board Room :: Dr Justin Sawon :: Colorado State University

Given a certain kind of submanifold $Y$ of a symplectic manifold $(X,\omega)$ we can form its coisotropic reduction as follows. The null directions of $\omega|_Y$ define the characteristic foliation $F$ on $Y$. The space of leaves $Y/F$ then admits a symplectic form, descended from $\omega|_Y$. Locally, the coisotropic reduction $Y/F$ looks just like a symplectic quotient. This construction also work for holomorphic symplectic manifolds, though one of the main difficulties in practice is ensuring that the leaves of the foliation are compact. We will describe a criterion for compactness, and apply coisotropic reduction to produce a classification result for Lagrangian fibrations by Jacobians.
Nonlinear diffusion-driven flow in a stratified viscous fluid
15:00 Fri 26 Jun, 2009 :: Macbeth Lecture Theatre :: Associate Prof Michael Page :: Monash University

In 1970, two independent studies (by Wunsch and Phillips) of the behaviour of a linear density-stratified viscous fluid in a closed container demonstrated a slow flow can be generated simply due to the container having a sloping boundary surface This remarkable motion is generated as a result of the curvature of the lines of constant density near any sloping surface, which in turn enables a zero normal-flux condition on the density to be satisfied along that boundary. When the Rayleigh number is large (or equivalently Wunsch's parameter $R$ is small) this motion is concentrated in the near vicinity of the sloping surface, in a thin `buoyancy layer' that has many similarities to an Ekman layer in a rotating fluid.

A number of studies have since considered the consequences of this type of `diffusively-driven' flow in a semi-infinite domain, including in the deep ocean and with turbulent effects included. More recently, Page & Johnson (2008) described a steady linear theory for the broader-scale mass recirculation in a closed container and demonstrated that, unlike in previous studies, it is possible for the buoyancy layer to entrain fluid from that recirculation. That work has since been extended (Page & Johnson, 2009) to the nonlinear regime of the problem and some of the similarities to and differences from the linear case will be described in this talk. Simple and elegant analytical solutions in the limit as $R \to 0$ still exist in some situations, and they will be compared with numerical simulations in a tilted square container at small values of $R$. Further work on both the unsteady flow properties and the flow for other geometrical configurations will also be described.

Quantum Billiards
15:10 Fri 7 Aug, 2009 :: Badger labs G13 Macbeth Lecture Theatre :: Prof Andrew Hassell :: Australian National University

By a "billiard" I mean a bounded plane domain D, with smooth (enough) boundary. Quantum billiards is the study of properties of eigenfunctions of the Laplacian on D, i.e. solutions of $\Delta u = Eu$, where $u$ is a function on D vanishing at the boundary, $\Delta$ is the Laplacian on D and $E$ is a real number, in the limit as $E \to \infty$. This large-E limit is the "classical limit" in which eigenfunctions exhibit behaviour related to the classical billiard system (a billiard ball moving around inside D, bouncing elastically off the boundary). I will talk about Quantum Ergodicity, which is the property that "most of" the eigenfunctions become uniformly distributed in D, asymptotically as $E \to \infty$, i.e. they are the same size, on average, in all parts of the domain D; and the stronger property of Quantum Unique Ergodicity, which is the same property with the words "most of" deleted.
Predicting turbulence
12:10 Wed 12 Aug, 2009 :: Napier 210 :: Dr Trent Mattner :: University of Adelaide

Media...
Turbulence is characterised by three-dimensional unsteady fluid motion over a wide range of spatial and temporal scales. It is important in many problems of technological and scientific interest, such as drag reduction, energy production and climate prediction. In this talk, I will explain why turbulent flows are difficult to predict and describe a modern mathematical model of turbulence based on a random collection of fluid vortices.
Defect formulae for integrals of pseudodifferential symbols: applications to dimensional regularisation and index theory
13:10 Fri 4 Sep, 2009 :: School Board Room :: Prof Sylvie Paycha :: Universite Blaise Pascal, Clermont-Ferrand, France

The ordinary integral on L^1 functions on R^d unfortunately does not extend to a translation invariant linear form on the whole algebra of pseudodifferential symbols on R^d, forcing to work with ordinary linear extensions which fail to be translation invariant. Defect formulae which express the difference between various linear extensions, show that they differ by local terms involving the noncommutative residue. In particular, we shall show how integrals regularised by a "dimensional regularisation" procedure familiar to physicists differ from Hadamard finite part (or "cut-off" regularised) integrals by a residue. When extended to pseudodifferential operators on closed manifolds, these defect formulae express the zeta regularised traces of a differential operator in terms of a residue of its logarithm. In particular, we shall express the index of a Dirac type operator on a closed manifold in terms of a logarithm of a generalized Laplacian, thus giving an a priori local description of the index and shall discuss further applications.
The Monster
12:10 Thu 10 Sep, 2009 :: Napier 210 :: Dr David Parrott :: University of Adelaide

Media...
The simple groups are the building blocks of all finite groups. The classification of finite simple groups is a towering achievement of 20th century mathematics. In addition to 18 infinite families of finite simple groups, there are 26 sporadic groups. The biggest sporadic group, dubbed The Monster, has about 10^54 elements. The talk will give a glimpse of this deep area of mathematics.
Covering spaces and algebra bundles
13:10 Fri 11 Sep, 2009 :: School Board Room :: Prof Keith Hannabuss :: University of Oxford

Bundles of C*-algebras over a topological space M can be classified by a Dixmier-Douady obstruction in H^3(M,Z). This talk will describe some recent work with Mathai investigating the relationship between algebra bundles on M and on its covering space, where there can be no obstruction, particularly when there is a group acting on M.
Statistical analysis for harmonized development of systemic organs in human fetuses
11:00 Thu 17 Sep, 2009 :: School Board Room :: Prof Kanta Naito :: Shimane University

The growth processes of human babies have been studied sufficiently in scientific fields, but there have still been many issues about the developments of human fetus which are not clarified. The aim of this research is to investigate the developing process of systemic organs of human fetuses based on the data set of measurements of fetus's bodies and organs. Specifically, this talk is concerned with giving a mathematical understanding for the harmonized developments of the organs of human fetuses. The method to evaluate such harmonies is proposed by the use of the maximal dilatation appeared in the theory of quasi-conformal mapping.
Stable commutator length
13:40 Fri 25 Sep, 2009 :: Napier 102 :: Prof Danny Calegari :: California Institute of Technology

Stable commutator length answers the question: "what is the simplest surface in a given space with prescribed boundary?" where "simplest" is interpreted in topological terms. This topological definition is complemented by several equivalent definitions - in group theory, as a measure of non-commutativity of a group; and in linear programming, as the solution of a certain linear optimization problem. On the topological side, scl is concerned with questions such as computing the genus of a knot, or finding the simplest 4-manifold that bounds a given 3-manifold. On the linear programming side, scl is measured in terms of certain functions called quasimorphisms, which arise from hyperbolic geometry (negative curvature) and symplectic geometry (causal structures). In these talks we will discuss how scl in free and surface groups is connected to such diverse phenomena as the existence of closed surface subgroups in graphs of groups, rigidity and discreteness of symplectic representations, bounding immersed curves on a surface by immersed subsurfaces, and the theory of multi- dimensional continued fractions and Klein polyhedra. Danny Calegari is the Richard Merkin Professor of Mathematics at the California Institute of Technology, and is one of the recipients of the 2009 Clay Research Award for his work in geometric topology and geometric group theory. He received a B.A. in 1994 from the University of Melbourne, and a Ph.D. in 2000 from the University of California, Berkeley under the joint supervision of Andrew Casson and William Thurston. From 2000 to 2002 he was Benjamin Peirce Assistant Professor at Harvard University, after which he joined the Caltech faculty; he became Richard Merkin Professor in 2007.
The proof of the Poincare conjecture
15:10 Fri 25 Sep, 2009 :: Napier 102 :: Prof Terrence Tao :: UCLA

In a series of three papers from 2002-2003, Grigori Perelman gave a spectacular proof of the Poincare Conjecture (every smooth compact simply connected three-dimensional manifold is topologically isomorphic to a sphere), one of the most famous open problems in mathematics (and one of the seven Clay Millennium Prize Problems worth a million dollars each), by developing several new groundbreaking advances in Hamilton's theory of Ricci flow on manifolds. In this talk I describe in broad detail how the proof proceeds, and briefly discuss some of the key turning points in the argument. About the speaker: Terence Tao was born in Adelaide, Australia, in 1975. He has been a professor of mathematics at UCLA since 1999, having completed his PhD under Elias Stein at Princeton in 1996. Tao's areas of research include harmonic analysis, PDE, combinatorics, and number theory. He has received a number of awards, including the Salem Prize in 2000, the Bochner Prize in 2002, the Fields Medal and SASTRA Ramanujan Prize in 2006, and the MacArthur Fellowship and Ostrowski Prize in 2007. Terence Tao also currently holds the James and Carol Collins chair in mathematics at UCLA, and is a Fellow of the Royal Society and the Australian Academy of Sciences (Corresponding Member).
A Fourier-Mukai transform for invariant differential cohomology
13:10 Fri 9 Oct, 2009 :: School Board Room :: Mr Richard Green :: University of Adelaide

Fourier-Mukai transforms are a geometric analogue of integral transforms playing an important role in algebraic geometry. Their name derives from the construction of Mukai involving the Poincare line bundle associated to an abelian variety. In this talk I will discuss recent work looking at an analogue of this original Fourier-Mukai transform in the context of differential geometry, which gives an isomorphism between the invariant differential cohomology of a real torus and its dual.
Buildings
15:10 Fri 9 Oct, 2009 :: MacBeth Lecture Theatre :: Prof Guyan Robertson :: University of Newcastle, UK

Buildings were created by J. Tits in order to give a systematic geometric interpretation of simple Lie groups (and of simple algebraic groups). Buildings have since found applications in many areas of mathematics. This talk will give an informal introduction to these beautiful objects.
Modelling and pricing for portfolio credit derivatives
15:10 Fri 16 Oct, 2009 :: MacBeth Lecture Theatre :: Dr Ben Hambly :: University of Oxford

The current financial crisis has been in part precipitated by the growth of complex credit derivatives and their mispricing. This talk will discuss some of the background to the `credit crunch', as well as the models and methods used currently. We will then develop an alternative view of large basket credit derivatives, as functions of a stochastic partial differential equation, which addresses some of the shortcomings.
Is the price really right?
12:10 Thu 22 Oct, 2009 :: Napier 210 :: Mr Sam Cohen :: University of Adelaide

Media...
Making decisions when outcomes are uncertain is a common problem we all face. In this talk I will outline some recent developments on this question from the mathematics of finance-the theory of risk measures and nonlinear expectations. I will also talk about how decisions are currently made in the finance industry, and how some simple mathematics can show where these systems are open to abuse.
Analytic torsion for twisted de Rham complexes
13:10 Fri 30 Oct, 2009 :: School Board Room :: Prof Mathai Varghese :: University of Adelaide

We define analytic torsion for the twisted de Rham complex, consisting of differential forms on a compact Riemannian manifold X with coefficients in a flat vector bundle E, with a differential given by a flat connection on E plus a closed odd degree differential form on X. The definition in our case is more complicated than in the case discussed by Ray-Singer, as it uses pseudodifferential operators. We show that this analytic torsion is independent of the choice of metrics on X and E, establish some basic functorial properties, and compute it in many examples. We also establish the relationship of an invariant version of analytic torsion for T-dual circle bundles with closed 3-form flux. This is joint work with Siye Wu.
Manifold destiny: a talk on water, fire and life
15:10 Fri 6 Nov, 2009 :: MacBeth Lecture Theatre :: Dr Sanjeeva Balasuriya :: University of Adelaide

Manifolds are important entities in dynamical systems, and organise space into regions in which different motions occur. For example, intersections between stable and unstable manifolds in discrete systems result in chaotic motion. This talk will focus on manifolds and their locations in continuous dynamical systems, and in particular on Melnikov's method and its adaptations for determining the effect of perturbations on manifolds. The relevance of such adaptations to a surprising range of applications will be shown, in addition to recent theoretical developments inspired by such problems. The applications addressed in this talk include understanding the motion of fluid near oceanic eddies and currents, optimising mixing in nano-fluidic devices in order to improve reactions, computing the speed of a flame front, and finding the spreading rate of bacterial colonies.
This talk has been cancelled
15:10 Fri 27 Nov, 2009 :: TBA :: Prof Ulrich Horst :: Humboldt-University, Berlin

Critical sets of products of linear forms
13:10 Mon 14 Dec, 2009 :: School Board Room :: Dr Graham Denham :: University of Western Ontario, Canada

Suppose $f_1,f_2,\ldots,f_n$ are linear polynomials in $\ell$ variables and $\lambda_1,\lambda_2,\ldots,\lambda_n$ are nonzero complex numbers. The product $$ \Phi_\lambda=\Prod_{i=1}^n f_1^{\lambda_i}, $$ called a master function, defines a (multivalued) function on $\ell$-dimensional complex space, or more precisely, on the complement of a set of hyperplanes. Then it is easy to ask (but harder to answer) what the set of critical points of a master function looks like, in terms of some properties of the input polynomials and $\lambda_i$'s. In my talk I will describe the motivation for considering such a question. Then I will indicate how the geometry and combinatorics of hyperplane arrangements can be used to provide at least a partial answer.
Hartogs-type holomorphic extensions
13:10 Tue 15 Dec, 2009 :: School Board Room :: Prof Roman Dwilewicz :: Missouri University of Science and Technology

We will review holomorphic extension problems starting with the famous Hartogs extension theorem (1906), via Severi-Kneser-Fichera-Martinelli theorems, up to some recent (partial) results of Al Boggess (Texas A&M Univ.), Zbigniew Slodkowski (Univ. Illinois at Chicago), and the speaker. The holomorphic extension problems for holomorphic or Cauchy-Riemann functions are fundamental problems in complex analysis of several variables. The talk will be very elementary, with many figures, and accessible to graduate and even advanced undergraduate students.
Oka manifolds and Oka maps
13:10 Fri 29 Jan, 2010 :: Napier LG 23 :: Prof Franc Forstneric :: University of Ljubljana

In this survey lecture I will discuss a new class of complex manifolds and of holomorphic maps between them which I introduced in 2009 (F. Forstneric, Oka Manifolds, C. R. Acad. Sci. Paris, Ser. I, 347 (2009) 1017-1020). Roughly speaking, a complex manifold Y is said to be an Oka manifold if Y admits plenty of holomorphic maps from any Stein manifold (or Stein space) X to Y, in a certain precise sense. In particular, the inclusion of the space of holomorphic maps of X to Y into the space of continuous maps must be a weak homotopy equivalence. One of the main results is that this class of manifolds can be characterized by a simple Runge approximation property for holomorphic maps from complex Euclidean spaces C^n to Y, with approximation on compact convex subsets of C^n. This answers in the affirmative a question posed by M. Gromov in 1989. I will also discuss the Oka properties of holomorphic maps and their characterization by approximation properties.
Proper holomorphic maps from strongly pseudoconvex domains to q-convex manifolds
13:10 Fri 5 Feb, 2010 :: School Board Room :: Prof Franc Forstneric :: University of Ljubljana

(Joint work with B. Drinovec Drnovsek, Amer. J. Math., in press.) I will discuss the existence of closed complex subvarieties of a complex manifold X that are proper holomorphic images of strongly pseudoconvex Stein domains. The main sufficient condition is expressed in terms of the Morse indices and of the number of positive Levi eigenvalues of an exhaustion function on X. Examples show that our condition cannot be weakened in general. I will describe optimal results for subvarieties of this type in complements of compact complex submanifolds with Griffiths positive normal bundle; in the projective case these generalize classical theorems of Remmert, Bishop and Narasimhan concerning proper holomorphic maps and embeddings to complex Euclidean spaces.
Finite and infinite words in number theory
15:10 Fri 12 Feb, 2010 :: Napier LG28 :: Dr Amy Glen :: Murdoch University

A 'word' is a finite or infinite sequence of symbols (called 'letters') taken from a finite non-empty set (called an 'alphabet'). In mathematics, words naturally arise when one wants to represent elements from some set (e.g., integers, real numbers, p-adic numbers, etc.) in a systematic way. For instance, expansions in integer bases (such as binary and decimal expansions) or continued fraction expansions allow us to associate with every real number a unique finite or infinite sequence of digits.

In this talk, I will discuss some old and new results in Combinatorics on Words and their applications to problems in Number Theory. In particular, by transforming inequalities between real numbers into (lexicographic) inequalities between infinite words representing their binary expansions, I will show how combinatorial properties of words can be used to completely describe the minimal intervals containing all fractional parts {x*2^n}, for some positive real number x, and for all non-negative integers n. This is joint work with Jean-Paul Allouche (Universite Paris-Sud, France).

The exceptional Lie group G_2 and rolling balls
15:10 Fri 19 Feb, 2010 :: Napier LG28 :: Prof Pawel Nurowski :: University of Warsaw

In this talk, after a brief history of how the exceptional Lie group G_2 was discovered, I present various appearances of this group in mathematics. Its physical realisation as a symmetry group of a simple mechanical system will also be discussed.
Some unusual uses of usual symmetries and some usual uses of unusual symmetries
12:10 Wed 10 Mar, 2010 :: School board room :: Prof Phil Broadbridge :: La Trobe University

Ever since Sophus Lie around 1880, continuous groups of invariance transformations have been used to reduce variables and to construct special solutions of PDEs. I will outline the general ideas, then show some variations on the usual reduction algorithm that I have used to solve some practical nonlinear boundary value problems. Applications include soil-water flow, metal surface evolution and population genetics.
Nonlinear time series econometrics and financial econometrics: a personal overview
15:10 Fri 12 Mar, 2010 :: Napier G04 :: Prof Jiti Gao :: University of Adelaide

Through using ten examples, the talk focuses on the recent development on nonlinear time series econometrics and financial econometrics. Such examples cover the following models: 1. Nonlinear time series trend model; 2. Partially linear autoregressive model; 3. Nonlinear capital asset pricing model; 4. Additive capital asset pricing model; 5. Varying-coefficient capital asset pricing model; 6. Semiparametric error-term model; 7. Nonlinear and nonstationary model; 8. Partially linear ARCH model; 9. Continuous-time financial model; and 10. Stochastic volatility model.
Conformal structures with G_2 ambient metrics
13:10 Fri 19 Mar, 2010 :: School Board Room :: Dr Thomas Leistner :: University of Adelaide

The n-sphere considered as a conformal manifold can be viewed as the projectivisation of the light cone in n+2 Minkowski space. A construction that generalises this picture to arbitrary conformal classes is the ambient metric introduced by C. Fefferman and R. Graham. In the talk, I will explain the Fefferman-Graham ambient metric construction and how it detects the existence of certain metrics in the conformal class. Then I will present conformal classes of signature (3,2) for which the 7-dimensional ambient metric has the noncompact exceptional Lie group G_2 as its holonomy. This is joint work with P. Nurowski, Warsaw University.
The fluid mechanics of gels used in tissue engineering
15:10 Fri 9 Apr, 2010 :: Santos Lecture Theatre :: Dr Edward Green :: University of Western Australia

Tissue engineering could be called 'the science of spare parts'. Although currently in its infancy, its long-term aim is to grow functional tissues and organs in vitro to replace those which have become defective through age, trauma or disease. Recent experiments have shown that mechanical interactions between cells and the materials in which they are grown have an important influence on tissue architecture, but in order to understand these effects, we first need to understand the mechanics of the gels themselves.

Many biological gels (e.g. collagen) used in tissue engineering have a fibrous microstructure which affects the way forces are transmitted through the material, and which in turn affects cell migration and other behaviours. I will present a simple continuum model of gel mechanics, based on treating the gel as a transversely isotropic viscous material. Two canonical problems are considered involving thin two-dimensional films: extensional flow, and squeezing flow of the fluid between two rigid plates. Neglecting inertia, gravity and surface tension, in each regime we can exploit the thin geometry to obtain a leading-order problem which is sufficiently tractable to allow the use of analytical methods. I discuss how these results could be exploited practically to determine the mechanical properties of real gels. If time permits, I will also talk about work currently in progress which explores the interaction between gel mechanics and cell behaviour.

Loop groups and characteristic classes
13:10 Fri 23 Apr, 2010 :: School Board Room :: Dr Raymond Vozzo :: University of Adelaide

Suppose $G$ is a compact Lie group, $LG$ its (free) loop group and $\Omega G \subseteq LG$ its based loop group. Let $P \to M$ be a principal bundle with structure group one of these loop groups. In general, differential form representatives of characteristic classes for principal bundles can be easily obtained using the Chern-Weil homomorphism, however for infinite-dimensional bundles such as $P$ this runs into analytical problems and classes are more difficult to construct. In this talk I will explain some new results on characteristic classes for loop group bundles which demonstrate how to construct certain classes---which we call string classes---for such bundles. These are obtained by making heavy use of a certain $G$-bundle associated to any loop group bundle (which allows us to avoid the problems of dealing with infinite-dimensional bundles). We shall see that the free loop group case naturally involves equivariant cohomology.
Mathematical epidemiology with a focus on households
15:10 Fri 23 Apr, 2010 :: Napier G04 :: Dr Joshua Ross :: University of Adelaide

Mathematical models are now used routinely to inform national and global policy-makers on issues that threaten human health or which have an adverse impact on the economy. In the first part of this talk I will provide an overview of mathematical epidemiology starting with the classical deterministic model and leading to some of the current challenges. I will then present some of my recently published work which provides computationally-efficient methods for studying a mathematical model incorporating household structure. We will conclude by briefly discussing some "work-in-progess" which utilises these methods to address the issues of inference, and mixing pattern and contact structure, for emerging infections.
Moduli spaces of stable holomorphic vector bundles II
13:10 Fri 30 Apr, 2010 :: School Board Room :: A/Prof Nicholas Buchdahl :: University of Adelaide

In this talk, I shall briefly review the notion of stability for holomorphic vector bundles on compact complex manifolds as discussed in the first part of this talk (28 August 2009). Then I shall attempt to compute some explicit examples in simple situations, illustrating the use of basic algebraic-geometric tools. The level of the talk will be appropriate for graduate students, particularly those who have been taking part in the algebraic geometry reading group meetings.
Estimation of sparse Bayesian networks using a score-based approach
15:10 Fri 30 Apr, 2010 :: School Board Room :: Dr Jessica Kasza :: University of Copenhagen

The estimation of Bayesian networks given high-dimensional data sets, with more variables than there are observations, has been the focus of much recent research. These structures provide a flexible framework for the representation of the conditional independence relationships of a set of variables, and can be particularly useful in the estimation of genetic regulatory networks given gene expression data.

In this talk, I will discuss some new research on learning sparse networks, that is, networks with many conditional independence restrictions, using a score-based approach. In the case of genetic regulatory networks, such sparsity reflects the view that each gene is regulated by relatively few other genes. The presented approach allows prior information about the overall sparsity of the underlying structure to be included in the analysis, as well as the incorporation of prior knowledge about the connectivity of individual nodes within the network.

The caloron transform
13:10 Fri 7 May, 2010 :: School Board Room :: Prof Michael Murray :: University of Adelaide

The caloron transform is a `fake' dimensional reduction which transforms a G-bundle over certain manifolds to a loop group of G bundle over a manifold of one lower dimension. This talk will review the caloron transform and show how it can be best understood using the language of pseudo-isomorphisms from category theory as well as considering its application to Bogomolny monopoles and string structures.
Holonomy groups
15:10 Fri 7 May, 2010 :: Napier LG24 :: Dr Thomas Leistner :: University of Adelaide

In the first part of the talk I will illustrate some basic concepts of differential geometry that lead to the notion of a holonomy group. Then I will explain Berger's classification of Riemannian holonomy groups and discuss questions that arose from it. Finally, I will focus on holonomy groups of Lorentzian manifolds and indicate briefly why all this is of relevance to present-day theoretical physics.
Two problems in porous media flow
15:10 Tue 11 May, 2010 :: Santos Lecture Theatre :: A/Prof Graeme Hocking :: Murdoch University

I will discuss two problems in porous media flow.

On a tropical island, fresh water may sit in the soil beneath the ground, floating on the ocean's salt water. This water is a valuable resource for the inhabitants, but requires sufficient rainfall to recharge the lens. In this paper, Green's functions are used to derive an integral equation to satisfy all of the conditions except those on the interfaces, which are then solved for numerically. Conditions under which the lens can be maintained will be described. This is work I did with an Honours student, Sue Chen, who is now at U. Melbourne.

In the second problem, I will discuss an "exact" solution to a problem in withdrawal from an unconfined aquifer. The problem formulation gives rise to a singular integral equation that can be solved using a nice orthogonality result I first met in airfoil theory. This is work with Hong Zhang from Griffith University.

Moduli spaces of stable holomorphic vector bundles III
13:10 Fri 14 May, 2010 :: School Board Room :: A/Prof Nicholas Buchdahl :: University of Adelaide

This talk is a continuation of the talk on 30 April. The same abstract applies: In this talk, I shall briefly review the notion of stability for holomorphic vector bundles on compact complex manifolds as discussed in the first part of this talk (28 August 2009). Then I shall attempt to compute some explicit examples in simple situations, illustrating the use of basic algebraic-geometric tools. The level of the talk will be appropriate for graduate students, particularly those who have been taking part in the algebraic geometry reading group meetings.
Spot the difference: how to tell when two things are the same (and when they're not!)
13:10 Wed 19 May, 2010 :: Napier 210 :: Dr Raymond Vozzo :: University of Adelaide

Media...
High on a mathematician's to-do list is classifying objects and structures that arise in mathematics. We see patterns in things and want to know what other sorts of things behave similarly. This poses several problems. How can you tell when two seemingly different mathematical objects are the same? Can you even tell when two seemingly similar mathematical objects are the same? In fact, what does "the same" even mean? How can you tell if two things are the same when you can't even see them! In this talk, we will take a walk through some areas of maths known as algebraic topology and category theory and I will show you some of the ways mathematicians have devised to tell when two things are "the same".
Functorial 2-connected covers
13:10 Fri 21 May, 2010 :: School Board Room :: David Roberts :: University of Adelaide

The Whitehead tower of a topological space seeks to resolve that space by successively removing homotopy groups from the 'bottom up'. For a path-connected space with no 1-dimensional local pathologies the first stage in the tower can be chosen to be the universal (=1-connected) covering space. This construction also works in the category Diff of manifolds. However, further stages in the two known constructions of the Whitehead tower do not work in Diff, being purely topological - and one of these is non-functorial, depending on a large number of choices. This talk will survey results from my thesis which constructs a new, functorial model for the 2-connected cover which will lift to a generalised (2-)category of smooth objects. This talk contains joint work with Andrew Stacey of the Norwegian University of Science and Technology.
Interpolation of complex data using spatio-temporal compressive sensing
13:00 Fri 28 May, 2010 :: Santos Lecture Theatre :: A/Prof Matthew Roughan :: School of Mathematical Sciences, University of Adelaide

Many complex datasets suffer from missing data, and interpolating these missing elements is a key task in data analysis. Moreover, it is often the case that we see only a linear combination of the desired measurements, not the measurements themselves. For instance, in network management, it is easy to count the traffic on a link, but harder to measure the end-to-end flows. Additionally, typical interpolation algorithms treat either the spatial, or the temporal components of data separately, but in many real datasets have strong spatio-temporal structure that we would like to exploit in reconstructing the missing data. In this talk I will describe a novel reconstruction algorithm that exploits concepts from the growing area of compressive sensing to solve all of these problems and more. The approach works so well on Internet traffic matrices that we can obtain a reasonable reconstruction with as much as 98% of the original data missing.
Vertex algebras and variational calculus I
13:10 Fri 4 Jun, 2010 :: School Board Room :: Dr Pedram Hekmati :: University of Adelaide

A basic operation in calculus of variations is the Euler-Lagrange variational derivative, whose kernel determines the extremals of functionals. There exists a natural resolution of this operator, called the variational complex. In this talk, I shall explain how to use tools from the theory of vertex algebras to explicitly construct the variational complex. This also provides a very convenient language for classifying and constructing integrable Hamiltonian evolution equations.
The mathematics of theoretical inference in cognitive psychology
15:10 Fri 11 Jun, 2010 :: Napier LG24 :: Prof John Dunn :: University of Adelaide

The aim of psychology in general, and of cognitive psychology in particular, is to construct theoretical accounts of mental processes based on observed changes in performance on one or more cognitive tasks. The fundamental problem faced by the researcher is that these mental processes are not directly observable but must be inferred from changes in performance between different experimental conditions. This inference is further complicated by the fact that performance measures may only be monotonically related to the underlying psychological constructs. State-trace analysis provides an approach to this problem which has gained increasing interest in recent years. In this talk, I explain state-trace analysis and discuss the set of mathematical issues that flow from it. Principal among these are the challenges of statistical inference and an unexpected connection to the mathematics of oriented matroids.
Some thoughts on wine production
15:05 Fri 18 Jun, 2010 :: School Board Room :: Prof Zbigniew Michalewicz :: School of Computer Science, University of Adelaide

In the modern information era, managers (e.g. winemakers) recognize the competitive opportunities represented by decision-support tools which can provide a significant cost savings & revenue increases for their businesses. Wineries make daily decisions on the processing of grapes, from harvest time (prediction of maturity of grapes, scheduling of equipment and labour, capacity planning, scheduling of crushers) through tank farm activities (planning and scheduling of wine and juice transfers on the tank farm) to packaging processes (bottling and storage activities). As such operation is quite complex, the whole area is loaded with interesting OR-related issues. These include the issues of global vs. local optimization, relationship between prediction and optimization, operating in dynamic environments, strategic vs. tactical optimization, and multi-objective optimization & trade-off analysis. During the talk we address the above issues; a few real-world applications will be shown and discussed to emphasize some of the presented material.
Topological chaos in two and three dimensions
15:10 Fri 18 Jun, 2010 :: Santos Lecture Theatre :: Dr Matt Finn :: School of Mathematical Sciences

Research into two-dimensional laminar fluid mixing has enjoyed a renaissance in the last decade since the realisation that the Thurston–Nielsen theory of surface homeomorphisms can assist in designing efficient "topologically chaotic" batch mixers. In this talk I will survey some tools used in topological fluid kinematics, including braid groups, train-tracks, dynamical systems and topological index formulae. I will then make some speculations about topological chaos in three dimensions.
Meteorological drivers of extreme bushfire events in southern Australia
15:10 Fri 2 Jul, 2010 :: Benham Lecture Theatre :: Prof Graham Mills :: Centre for Australian Weather and Climate Research, Melbourne

Bushfires occur regularly during summer in southern Australia, but only a few of these fires become iconic due to their effects, either in terms of loss of life or economic and social cost. Such events include Black Friday (1939), the Hobart fires (1967), Ash Wednesday (1983), the Canberra bushfires (2003), and most recently Black Saturday in February 2009. In most of these events the weather of the day was statistically extreme in terms of heat, (low) humidity, and wind speed, and in terms of antecedent drought. There are a number of reasons for conducting post-event analyses of the meteorology of these events. One is to identify any meteorological circulation systems or dynamic processes occurring on those days that might not be widely or hitherto recognised, to document these, and to develop new forecast or guidance products. The understanding and prediction of such features can be used in the short term to assist in effective management of fires and the safety of firefighters and in the medium range to assist preparedness for the onset of extreme conditions. The results of such studies can also be applied to simulations of future climates to assess the likely changes in frequency of the most extreme fire weather events, and their documentary records provide a resource that can be used for advanced training purposes. In addition, particularly for events further in the past, revisiting these events using reanalysis data sets and contemporary NWP models can also provide insights unavailable at the time of the events. Over the past few years the Bushfire CRC's Fire Weather and Fire Danger project in CAWCR has studied the mesoscale meteorology of a number of major fire events, including the days of Ash Wednesday 1983, the Dandenong Ranges fire in January 1997, the Canberra fires and the Alpine breakout fires in January 2003, the Lower Eyre Peninsula fires in January 2005 and the Boorabbin fire in December 2007-January 2008. Various aspects of these studies are described below, including the structures of dry cold frontal wind changes, the particular character of the cold fronts associated with the most damaging fires in southeastern Australia, and some aspects of how the vertical temperature and humidity structure of the atmosphere may affect the fire weather at the surface. These studies reveal much about these major events, but also suggest future research directions, and some of these will be discussed.
Introduction to mirror symmetry and the Fukaya category I
13:10 Thu 15 Jul, 2010 :: Napier G04 :: Dr Mohammed Abouzaid, IGA Lecturer :: Clay Research Fellow, MIT

I shall give an overview of recent progress in homological mirror symmetry, both in clarifying our conceptual understanding of how the sign of the canonical bundle affects the behaviour of the mirror, and in obtaining concrete examples where the mirror conjecture has now been verified. (This is a two-hour talk.)
Introduction to mirror symmetry and the Fukaya category II
13:10 Fri 16 Jul, 2010 :: Napier G04 :: Dr Mohammed Abouzaid, IGA Lecturer :: Clay Research Fellow, MIT

I shall give an overview of recent progress in homological mirror symmetry, both in clarifying our conceptual understanding of how the sign of the canonical bundle affects the behaviour of the mirror, and in obtaining concrete examples where the mirror conjecture has now been verified. (This is a two-hour talk.)
Adjoint methods for adaptive error control, optimization, and uncertainty quantification
15:10 Fri 16 Jul, 2010 :: Napier G03 :: Dr Varis Carey :: Colorado State University

We give an introduction to the use of adjoint equations (and solutions) for numerical error control and solution enhancement of PDEs. In addition, the same equations can be used for optimization routines and uncertainty quantification. We discuss the modification of these methods in the context of operator splitting and to non-variational (e.g. finite volume) methods. Finally, we conclude with an application of the method to the shallow water equations and discuss some of the hurdles that need to be overcome when extending adjoint methodologies to ocean and atmospheric modeling.
Introduction to mirror symmetry and the Fukaya category III
13:10 Mon 19 Jul, 2010 :: Napier G04 :: Dr Mohammed Abouzaid, IGA Lecturer :: Clay Research Fellow, MIT

I shall give an overview of recent progress in homological mirror symmetry, both in clarifying our conceptual understanding of how the sign of the canonical bundle affects the behaviour of the mirror, and in obtaining concrete examples where the mirror conjecture has now been verified. (This is a two-hour talk.)
Introduction to mirror symmetry and the Fukaya category IV
13:10 Tue 20 Jul, 2010 :: Napier G04 :: Dr Mohammed Abouzaid, IGA Lecturer :: Clay Research Fellow, MIT

I shall give an overview of recent progress in homological mirror symmetry, both in clarifying our conceptual understanding of how the sign of the canonical bundle affects the behaviour of the mirror, and in obtaining concrete examples where the mirror conjecture has now been verified. (This is a two-hour talk.)
Introduction to mirror symmetry and the Fukaya category V
13:10 Wed 21 Jul, 2010 :: Napier G04 :: Dr Mohammed Abouzaid, IGA Lecturer :: Clay Research Fellow, MIT

I shall give an overview of recent progress in homological mirror symmetry, both in clarifying our conceptual understanding of how the sign of the canonical bundle affects the behaviour of the mirror, and in obtaining concrete examples where the mirror conjecture has now been verified. (This is a two-hour talk.)
The two envelope problem
12:10 Wed 11 Aug, 2010 :: Napier 210 :: A/Prof Gary Glonek :: University of Adelaide

Media...
The two envelope problem is a long standing paradox in probability theory. Although its formulation has elements in common with the celebrated Monty Hall problem, the underlying paradox is apparently far more subtle. In this talk, the problem will be explained and various aspects of the paradox will be discussed. Connections to Bayesian inference and other areas of statistics will be explored.
Index theory in the noncommutative world
13:10 Fri 20 Aug, 2010 :: Ingkarni Wardli B20 (Suite 4) :: Prof Alan Carey :: Australian National University

The aim of the talk is to give an overview of the noncommutative geometry approach to index theory.
A classical construction for simplicial sets revisited
13:10 Fri 27 Aug, 2010 :: Ingkarni Wardli B20 (Suite 4) :: Dr Danny Stevenson :: University of Glasgow

Simplicial sets became popular in the 1950s as a combinatorial way to study the homotopy theory of topological spaces. They are more robust than the older notion of simplicial complexes, which were introduced for the same purpose. In this talk, which will be as introductory as possible, we will review some classical functors arising in the theory of simplicial sets, some well-known, some not-so-well-known. We will re-examine the proof of an old theorem of Kan in light of these functors. We will try to keep all jargon to a minimum.
Compound and constrained regression analyses for EIV models
15:05 Fri 27 Aug, 2010 :: Napier LG28 :: Prof Wei Zhu :: State University of New York at Stony Brook

In linear regression analysis, randomness often exists in the independent variables and the resulting models are referred to errors-in-variables (EIV) models. The existing general EIV modeling framework, the structural model approach, is parametric and dependent on the usually unknown underlying distributions. In this work, we introduce a general non-parametric EIV modeling framework, the compound regression analysis, featuring an intuitive geometric representation and a 1-1 correspondence to the structural model. Properties, examples and further generalizations of this new modeling approach are discussed in this talk.
On some applications of higher Quillen K'-theory
13:10 Fri 3 Sep, 2010 :: Ingkarni Wardli B20 (Suite 4) :: Dr Snigdhayan Mahanta :: University of Adelaide

In my previous talk I introduced a functor from the category of k-algebras (k field) to abelian groups, called KQ-theory. In this talk I will explain its relationship with topological (homological) T-dualities and twisted K-theory.
A polyhedral model for boron nitride nanotubes
15:10 Fri 3 Sep, 2010 :: Napier G04 :: Dr Barry Cox :: University of Adelaide

The conventional rolled-up model of nanotubes does not apply to the very small radii tubes, for which curvature effects become significant. In this talk an existing geometric model for carbon nanotubes proposed by the authors, which accommodates this deficiency and which is based on the exact polyhedral cylindrical structure, is extended to a nanotube structure involving two species of atoms in equal proportion, and in particular boron nitride nanotubes. This generalisation allows the principle features to be included as the fundamental assumptions of the model, such as equal bond length but distinct bond angles and radii between the two species. The polyhedral model is based on the five simple geometric assumptions: (i) all bonds are of equal length, (ii) all bond angles for the boron atoms are equal, (iii) all boron atoms lie at an equal distance from the nanotube axis, (iv) all nitrogen atoms lie at an equal distance from the nanotube axis, and (v) there exists a fixed ratio of pyramidal height H, between the boron species compared with the corresponding height in a symmetric single species nanotube. Working from these postulates, expressions are derived for the various structural parameters such as radii and bond angles for the two species for specific values of the chiral vector numbers (n,m). The new model incorporates an additional constant of proportionality H, which we assume applies to all nanotubes comprising the same elements and is such that H = 1 for a single species nanotube. Comparison with `ab initio' studies suggest that this assumption is entirely reasonable, and in particular we determine the value H = 0.56\pm0.04 for boron nitride, based on computational results in the literature. This talk relates to work which is a couple of years old and given time at the end we will discuss some newer results in geometric models developed with our former student Richard Lee (now also at the University of Adelaide as a post doc) and some work-in-progress on carbon nanocones. Note: pyramidal height is our own terminology and will be explained in the talk.
Triangles, maps and curvature
13:10 Wed 8 Sep, 2010 :: Napier 210 :: Dr Thomas Leistner :: University of Adelaide

Euclidean space is flat but the real world is curved. This causes lots of problems for sailors, surveyors, mapmakers, and even geometers. In the talk I will explain how the notion of curvature evolved in mathematics starting off from practical applications such as geodesy and cartography and yielding less practical applications in modern physics.
Simultaneous confidence band and hypothesis test in generalised varying-coefficient models
15:05 Fri 10 Sep, 2010 :: Napier LG28 :: Prof Wenyang Zhang :: University of Bath

Generalised varying-coefficient models (GVC) are very important models. There are a considerable number of literature addressing these models. However, most of the existing literature are devoted to the estimation procedure. In this talk, I will systematically investigate the statistical inference for GVC, which includes confidence band as well as hypothesis test. I will show the asymptotic distribution of the maximum discrepancy between the estimated functional coefficient and the true functional coefficient. I will compare different approaches for the construction of confidence band and hypothesis test. Finally, the proposed statistical inference methods are used to analyse the data from China about contraceptive use there, which leads to some interesting findings.
Mathematical Sciences - Student and Industry Program
17:30 Mon 13 Sep, 2010 :: Rumours Cafe Level 6 Union House North Terrace Campus

Are you a professional who works within a relevant sector and wish to share your knowledge and experience with Students? Are you a current Student who is looking for the opportunity to talk to an Industry Professional? Then the Student and Industry Program is for you!

This event aims to provide current students with the opportunity to talk one-on-one with past graduates and industry professionals; gaining practical industry knowledge to help define their career goals. Students, industry and the University alike have the opportunity to benefit from the connections made through the program.

Admission is free, but places are limited, so get in early. Contact Maryanne Noon by Friday 3rd September 2010 with your name, Student ID number and program. e: maryanne.noon@adelaide.edu.au p: 8313 0969

Other information Students are asked to arrive at 5:00pm sharp for a briefing prior to the function. Dress Code: Business Casual.

Contraction subgroups in locally compact groups
13:10 Fri 17 Sep, 2010 :: Ingkarni Wardli B20 (Suite 4) :: Prof George Willis :: University of Newcastle

For each automorphism, $\alpha$, of the locally compact group $G$ there is a corresponding {\sl contraction subgroup\/}, $\hbox{con}(\alpha)$, which is the set of $x\in G$ such that $\alpha^n(x)$ converges to the identity as $n\to \infty$. Contractions subgroups are important in representation theory, through the Mautner phenomenon, and in the study of convolution semigroups. If $G$ is a Lie group, then $\hbox{con}(\alpha)$ is automatically closed, can be described in terms of eigenvalues of $\hbox{ad}(\alpha)$, and is nilpotent. Since any connected group may be approximated by Lie groups, contraction subgroups of connected groups are thus well understood. Following a general introduction, the talk will focus on contraction subgroups of totally disconnected groups. A criterion for non-triviality of $\hbox{con}(\alpha)$ will be described (joint work with U.~Baumgartner) and a structure theorem for $\hbox{con}(\alpha)$ when it is closed will be presented (joint with H.~Gl\"oeckner).
Totally disconnected, locally compact groups
15:10 Fri 17 Sep, 2010 :: Napier G04 :: Prof George Willis :: University of Newcastle

Locally compact groups occur in many branches of mathematics. Their study falls into two cases: connected groups, which occur as automorphisms of smooth structures such as spheres for example; and totally disconnected groups, which occur as automorphisms of discrete structures such as trees. The talk will give an overview of the currently developing structure theory of totally disconnected locally compact groups. Techniques for analysing totally disconnected groups will be described that correspond to the familiar Lie group methods used to treat connected groups. These techniques played an essential role in the recent solution of a problem raised by R. Zimmer and G. Margulis concerning commensurated subgroups of arithmetic groups.
The mathematics of smell
15:10 Wed 29 Sep, 2010 :: Ingkarni Wardli 5.57 :: Dr Michael Borgas :: CSIRO Light Metals Flagship; Marine and Atmospheric Research; Centre for Australian Weather and Clim

The sense of smell is important in nature, but the least well understood of our senses. A mathematical model of smell, which combines the transmission of volatile-organic-compound chemical signals (VOCs) on the wind, transduced by olfactory receptors in our noses into neural information, and assembled into our odour perception, is useful. Applications include regulations for odour nuisance, like German VDI protocols for calibrated noses, to the design of modern chemical sensors for extracting information from the environment and even for the perfume industry. This talk gives a broad overview of turbulent mixing in surface layers of the atmosphere, measurements of VOCs with PTR-MS (proton transfer reaction mass spectrometers), our noses, and integrated environmental models of the Alumina industry (a source of odour emissions) to help understand the science of smell.
Some algebras associated with quantum gauge theories
13:10 Fri 15 Oct, 2010 :: Ingkarni Wardli B20 (Suite 4) :: Dr Keith Hannabuss :: Balliol College, Oxford

Classical gauge theories study sections of vector bundles and associated connections and curvature. The corresponding quantum gauge theories are normally written algebraically but can be understood as noncommutative geometries. This talk will describe one approach to the quantum gauge theories which uses braided categories.
Principal Component Analysis Revisited
15:10 Fri 15 Oct, 2010 :: Napier G04 :: Assoc. Prof Inge Koch :: University of Adelaide

Since the beginning of the 20th century, Principal Component Analysis (PCA) has been an important tool in the analysis of multivariate data. The principal components summarise data in fewer than the original number of variables without losing essential information, and thus allow a split of the data into signal and noise components. PCA is a linear method, based on elegant mathematical theory. The increasing complexity of data together with the emergence of fast computers in the later parts of the 20th century has led to a renaissance of PCA. The growing numbers of variables (in particular, high-dimensional low sample size problems), non-Gaussian data, and functional data (where the data are curves) are posing exciting challenges to statisticians, and have resulted in new research which extends the classical theory. I begin with the classical PCA methodology and illustrate the challenges presented by the complex data that we are now able to collect. The main part of the talk focuses on extensions of PCA: the duality of PCA and the Principal Coordinates of Multidimensional Scaling, Sparse PCA, and consistency results relating to principal components, as the dimension grows. We will also look at newer developments such as Principal Component Regression and Supervised PCA, nonlinear PCA and Functional PCA.
Statistical physics and behavioral adaptation to Creation's main stimuli: sex and food
15:10 Fri 29 Oct, 2010 :: E10 B17 Suite 1 :: Prof Laurent Seuront :: Flinders University and South Australian Research and Development Institute

Animals typically search for food and mates, while avoiding predators. This is particularly critical for keystone organisms such as intertidal gastropods and copepods (i.e. millimeter-scale crustaceans) as they typically rely on non-visual senses for detecting, identifying and locating mates in their two- and three-dimensional environments. Here, using stochastic methods derived from the field of nonlinear physics, we provide new insights into the nature (i.e. innate vs. acquired) of the motion behavior of gastropods and copepods, and demonstrate how changes in their behavioral properties can be used to identify the trade-offs between foraging for food or sex. The gastropod Littorina littorea hence moves according to fractional Brownian motions while foraging for food (in accordance with the fractal nature of food distributions), and switch to Brownian motion while foraging for sex. In contrast, the swimming behavior of the copepod Temora longicornis belongs to the class of multifractal random walks (MRW; i.e. a form of anomalous diffusion), characterized by a nonlinear moment scaling function for distance versus time. This clearly differs from the traditional Brownian and fractional Brownian walks expected or previously detected in animal behaviors. The divergence between MRW and Levy flight and walk is also discussed, and it is shown how copepod anomalous diffusion is enhanced by the presence and concentration of conspecific water-borne signals, and is dramatically increasing male-female encounter rates.
Higher stacks and homotopy theory II: the motivic context
13:10 Thu 16 Dec, 2010 :: Ingkarni Wardli B21 :: Mr James Wallbridge :: University of Adelaide and Institut de mathematiques de Toulouse

In part I of this talk (JC seminar May 2008) we presented motivation and the basic definitions for building homotopy theory into an arbitrary category by introducing the notion of (higher) stacks. In part II we consider a specific example on the category of schemes to illustrate how the machinery works in practice. It will lead us into motivic territory (if we like it or not).
Complete quaternionic Kahler manifolds associated to cubic polynomials
13:10 Fri 11 Feb, 2011 :: Ingkarni Wardli B18 :: Prof Vicente Cortes :: University of Hamburg

We prove that the supergravity r- and c-maps preserve completeness. As a consequence, any component H of a hypersurface {h = 1} defined by a homogeneous cubic polynomial h such that -\partial^2 h is a complete Riemannian metric on H defines a complete projective special Kahler manifold and any complete projective special Kahler manifold defines a complete quaternionic Kahler manifold of negative scalar curvature. We classify all complete quaternionic Kahler manifolds of dimension less or equal to 12 which are obtained in this way and describe some complete examples in 16 dimensions.
Queues with skill based routing under FCFS–ALIS regime
15:10 Fri 11 Feb, 2011 :: B17 Ingkarni Wardli :: Prof Gideon Weiss :: The University of Haifa, Israel

We consider a system where jobs of several types are served by servers of several types, and a bipartite graph between server types and job types describes feasible assignments. This is a common situation in manufacturing, call centers with skill based routing, matching of parent-child in adoption or matching in kidney transplants etc. We consider the case of first come first served policy: jobs are assigned to the first available feasible server in order of their arrivals. We consider two types of policies for assigning customers to idle servers - a random assignment and assignment to the longest idle server (ALIS) We survey some results for four different situations:

  • For a loss system we find conditions for reversibility and insensitivity.
  • For a manufacturing type system, in which there is enough capacity to serve all jobs, we discuss a product form solution and waiting times.
  • For an infinite matching model in which an infinite sequence of customers of IID types, and infinite sequence of servers of IID types are matched according to first come first, we obtain a product form stationary distribution for this system, which we use to calculate matching rates.
  • For a call center model with overload and abandonments we make some plausible observations.

This talk surveys joint work with Ivo Adan, Rene Caldentey, Cor Hurkens, Ed Kaplan and Damon Wischik, as well as work by Jeremy Visschers, Rishy Talreja and Ward Whitt.

What is a p-adic number?
12:10 Mon 28 Feb, 2011 :: 5.57 Ingkarni Wardli :: Alexander Hanysz :: University of Adelaide

The p-adic numbers are: (a) something that visiting seminar speakers invoke when the want to frighten the audience; (b) a fascinating and useful concept in modern algebra; (c) alphabetically just before q-adic numbers? In this talk I hope to convince the audience that option (b) is worth considering. I will begin by reviewing how we get from integers via rational numbers to the real number system. Then we'll look at how this process can be "twisted" to produce something new.
Mathematical modelling in nanotechnology
15:10 Fri 4 Mar, 2011 :: 7.15 Ingkarni Wardli :: Prof Jim Hill :: University of Adelaide

Media...
In this talk we present an overview of the mathematical modelling contributions of the Nanomechanics Groups at the Universities of Adelaide and Wollongong. Fullerenes and carbon nanotubes have unique properties, such as low weight, high strength, flexibility, high thermal conductivity and chemical stability, and they have many potential applications in nano-devices. In this talk we first present some new results on the geometric structure of carbon nanotubes and on related nanostructures. One concept that has attracted much attention is the creation of nano-oscillators, to produce frequencies in the gigahertz range, for applications such as ultra-fast optical filters and nano-antennae. The sliding of an inner shell inside an outer shell of a multi-walled carbon nanotube can generate oscillatory frequencies up to several gigahertz, and the shorter the inner tube the higher the frequency. A C60-nanotube oscillator generates high frequencies by oscillating a C60 fullerene inside a single-walled carbon nanotube. Here we discuss the underlying mechanisms of nano-oscillators and using the Lennard-Jones potential together with the continuum approach, to mathematically model the C60-nanotube nano-oscillator. Finally, three illustrative examples of recent modelling in hydrogen storage, nanomedicine and nanocomputing are discussed.
Bioinspired computation in combinatorial optimization: algorithms and their computational complexity
15:10 Fri 11 Mar, 2011 :: 7.15 Ingkarni Wardli :: Dr Frank Neumann :: The University of Adelaide

Media...
Bioinspired computation methods, such as evolutionary algorithms and ant colony optimization, are being applied successfully to complex engineering and combinatorial optimization problems. The computational complexity analysis of this type of algorithms has significantly increased the theoretical understanding of these successful algorithms. In this talk, I will give an introduction into this field of research and present some important results that we achieved for problems from combinatorial optimization. These results can also be found in my recent textbook "Bioinspired Computation in Combinatorial Optimization -- Algorithms and Their Computational Complexity".
To which extent the model of Black-Scholes can be applied in the financial market?
12:10 Mon 21 Mar, 2011 :: 5.57 Ingkarni Wardli :: Ahmed Hamada :: University of Adelaide

Black and Scholes have introduced a new approach to model the stock price dynamics about three decades ago. The so called Black Scholes model seems to be very adapted to the nature of market prices, mainly because the usage of the Brownian motion and the mathematical properties that follow from. Like every theoretical model, put in practice, it does not appear to be flawless, that means that new adaptations and extensions should be made so that engineers and marketers could utilise the Black Scholes models to trade and hedge risk on the market. A more detailed description with application will be given in the talk.
A mathematical investigation of methane encapsulation in carbon nanotubes.
12:10 Mon 21 Mar, 2011 :: 5.57 Ingkarni Wardli :: Olumide Adisa :: University of Adelaide

I hope we don't have to wait until oil and coal run out before we tackle that." - Thomas Edison, 1931. In a bid to resolve energy issues consistent with Thomas Edison's worries, scientists have been looking at other clean and sustainable sources of energy such as natural gas - methane. In this talk, the interaction between a methane molecule and carbon nanotubes is investigated mathematically, using two different models - first discrete and second, continuous. These models are analyzed to determine the dimensions of the particular nanotubes which will readily suck-up methane molecules. The results determine the minimum and maximum interaction energies required for methane encapsulation in different tube sizes, and establish the second model of the methane molecule as a simple and elegant model which might be exploited for other problems.
Lorentzian manifolds with special holonomy
13:10 Fri 25 Mar, 2011 :: Mawson 208 :: Mr Kordian Laerz :: Humboldt University, Berlin

A parallel lightlike vector field on a Lorentzian manifold X naturally defines a foliation of codimension 1 on X and a 1-dimensional subfoliation. In the first part we introduce Lorentzian metrics on the total space of certain circle bundles in order to construct weakly irreducible Lorentzian manifolds admitting a parallel lightlike vector field such that all leaves of the foliations are compact. Then we study which holonomy representations can be realized in this way. Finally, we consider the structure of arbitrary Lorentzian manifolds for which the leaves of the foliations are compact.
Operator algebra quantum groups
13:10 Fri 1 Apr, 2011 :: Mawson 208 :: Dr Snigdhayan Mahanta :: University of Adelaide

Woronowicz initiated the study of quantum groups using C*-algebras. His framework enabled him to deal with compact (linear) quantum groups. In this talk we shall introduce a notion of quantum groups that can handle infinite dimensional examples like SU(\infty). We shall also study some quantum homogeneous spaces associated to this group and compute their K-theory groups. This is joint work with V. Mathai.
Classification for high-dimensional data
15:10 Fri 1 Apr, 2011 :: Conference Room Level 7 Ingkarni Wardli :: Associate Prof Inge Koch :: The University of Adelaide

For two-class classification problems Fisher's discriminant rule performs well in many scenarios provided the dimension, d, is much smaller than the sample size n. As the dimension increases, Fisher's rule may no longer be adequate, and can perform as poorly as random guessing. In this talk we look at new ways of overcoming this poor performance for high-dimensional data by suitably modifying Fisher's rule, and in particular we describe the 'Features Annealed Independence Rule (FAIR)? of Fan and Fan (2008) and a rule based on canonical correlation analysis. I describe some theoretical developments, and also show analysis of data which illustrate the performance of these modified rule.
Modelling of Hydrological Persistence in the Murray-Darling Basin for the Management of Weirs
12:10 Mon 4 Apr, 2011 :: 5.57 Ingkarni Wardli :: Aiden Fisher :: University of Adelaide

The lakes and weirs along the lower Murray River in Australia are aggregated and considered as a sequence of five reservoirs. A seasonal Markov chain model for the system will be implemented, and a stochastic dynamic program will be used to find optimal release strategies, in terms of expected monetary value (EMV), for the competing demands on the water resource given the stochastic nature of inflows. Matrix analytic methods will be used to analyse the system further, and in particular enable the full distribution of first passage times between any groups of states to be calculated. The full distribution of first passage times can be used to provide a measure of the risk associated with optimum EMV strategies, such as conditional value at risk (CVaR). The sensitivity of the model, and risk, to changing rainfall scenarios will be investigated. The effect of decreasing the level of discretisation of the reservoirs will be explored. Also, the use of matrix analytic methods facilitates the use of hidden states to allow for hydrological persistence in the inflows. Evidence for hydrological persistence of inflows to the lower Murray system, and the effect of making allowance for this, will be discussed.
How round is your triangle, square, pentagon, ...?
12:10 Wed 6 Apr, 2011 :: Napier 210 :: Dr Barry Cox :: University of Adelaide

Media...
Most of us are familiar with the problem of making circular holes in wood or other material. For smaller diameter holes we typically use a drill, and for larger diameter holes a spade-bit, hole-saw or plunge router may be used. However for some applications, like mortise-and-tenon joints, what is needed is a tool that will produce a hole with a cross-section that is something other than a circle. In this talk we look at curves that may be used as the basis for a device that will produce holes with a cross-section of an equilateral triangle, square, or any regular polygon. Along the way we will touch on areas of engineering, algebra, geometry, calculus, Gothic art and architecture.
Spherical tube hypersurfaces
13:10 Fri 8 Apr, 2011 :: Mawson 208 :: Prof Alexander Isaev :: Australian National University

We consider smooth real hypersurfaces in a complex vector space. Specifically, we are interested in tube hypersurfaces, i.e., hypersurfaces represented as the direct product of the imaginary part of the space and hypersurfaces lying in its real part. Tube hypersurfaces arise, for instance, as the boundaries of tube domains. The study of tube domains is a classical subject in several complex variables and complex geometry, which goes back to the beginning of the 20th century. Indeed, already Siegel found it convenient to realise certain symmetric domains as tubes. One can endow a tube hypersurface with a so-called CR-structure, which is the remnant of the complex structure on the ambient vector space. We impose on the CR-structure the condition of sphericity. One way to state this condition is to require a certain curvature (called the CR-curvature of the hypersurface) to vanish identically. Spherical tube hypersurfaces possess remarkable properties and are of interest from both the complex-geometric and affine-geometric points of view. I my talk I will give an overview of the theory of such hypersurfaces. In particular, I will mention an algebraic construction arising from this theory that has applications in abstract commutative algebra and singularity theory. I will speak about these applications in detail in my colloquium talk later today.
Algebraic hypersurfaces arising from Gorenstein algebras
15:10 Fri 8 Apr, 2011 :: 7.15 Ingkarni Wardli :: Associate Prof Alexander Isaev :: Australian National University

Media...
To every Gorenstein algebra of finite dimension greater than 1 over a field of characteristic zero, and a projection on its maximal ideal with range equal to the annihilator of the ideal, one can associate a certain algebraic hypersurface lying in the ideal. Such hypersurfaces possess remarkable properties. They can be used, for instance, to help decide whether two given Gorenstein algebras are isomorphic, which for the case of complex numbers leads to interesting consequences in singularity theory. Also, for the case of real numbers such hypersurfaces naturally arise in CR-geometry. In my talk I will discuss these hypersurfaces and some of their applications.
Centres of cyclotomic Hecke algebras
13:10 Fri 15 Apr, 2011 :: Mawson 208 :: A/Prof Andrew Francis :: University of Western Sydney

The cyclotomic Hecke algebras, or Ariki-Koike algebras $H(R,q)$, are deformations of the group algebras of certain complex reflection groups $G(r,1,n)$, and also are quotients of the ubiquitous affine Hecke algebra. The centre of the affine Hecke algebra has been understood since Bernstein in terms of the symmetric group action on the weight lattice. In this talk I will discuss the proof that over an arbitrary unital commutative ring $R$, the centre of the affine Hecke algebra maps \emph{onto} the centre of the cyclotomic Hecke algebra when $q-1$ is invertible in $R$. This is the analogue of the fact that the centre of the Hecke algebra of type $A$ is the set of symmetric polynomials in Jucys-Murphy elements (formerly known as he Dipper-James conjecture). Key components of the proof include the relationship between the trace functions on the affine Hecke algebra and on the cyclotomic Hecke algebra, and the link to the affine braid group. This is joint work with John Graham and Lenny Jones.
Why is a pure mathematician working in biology?
15:10 Fri 15 Apr, 2011 :: Mawson Lab G19 lecture theatre :: Associate Prof Andrew Francis :: University of Western Sydney

Media...
A pure mathematician working in biology should be a contradiction in terms. In this talk I will describe how I became interested in working in biology, coming from an algebraic background. I will also describe some areas of evolutionary biology that may benefit from an algebraic approach. Finally, if time permits I will reflect on the sometimes difficult distinction between pure and applied mathematics, and perhaps venture some thoughts on mathematical research in general.
Comparison of Spectral and Wavelet Estimation of the Dynamic Linear System of a Wade Energy Device
12:10 Mon 2 May, 2011 :: 5.57 Ingkarni Wardli :: Mohd Aftar :: University of Adelaide

Renewable energy has been one of the main issues nowadays. The implications of fossil energy and nuclear energy along with its limited source have triggered researchers and industries to find another source of renewable energy for example hydro energy, wind energy and also wave energy. In this seminar, I will talk about the spectral estimation and wavelet estimation of a linear dynamical system of motion for a heaving buoy wave energy device. The spectral estimates was based on the Fourier transform, while the wavelet estimate was based on the wavelet transform. Comparisons between two spectral estimates with a wavelet estimate of the amplitude response operator(ARO) for the dynamical system of the wave energy device shows that the wavelet estimate ARO is much better for data with and without noise.
A strong Oka principle for embeddings of some planar domains into CxC*, I
13:10 Fri 6 May, 2011 :: Mawson 208 :: Mr Tyson Ritter :: University of Adelaide

The Oka principle refers to a collection of results in complex analysis which state that there are only topological obstructions to solving certain holomorphically defined problems involving Stein manifolds. For example, a basic version of Gromov's Oka principle states that every continuous map from a Stein manifold into an elliptic complex manifold is homotopic to a holomorphic map. In these two talks I will discuss a new result showing that if we restrict the class of source manifolds to circular domains and fix the target as CxC* we can obtain a much stronger Oka principle: every continuous map from a circular domain S into CxC* is homotopic to a proper holomorphic embedding. This result has close links with the long-standing and difficult problem of finding proper holomorphic embeddings of Riemann surfaces into C^2, with additional motivation from other sources.
The Cauchy integral formula
12:10 Mon 9 May, 2011 :: 5.57 Ingkarni Wardli :: Stephen Wade :: University of Adelaide

In this talk I will explain a simple method used for calculating the Hilbert transform of an analytic function, and provide some assurance that this isn't a bad thing to do in spite of the somewhat ominous presence of infinite areas. As it turns out this type of integral is not without an application, as will be demonstrated by one application to a problem in fluid mechanics.
When statistics meets bioinformatics
12:10 Wed 11 May, 2011 :: Napier 210 :: Prof Patty Solomon :: School of Mathematical Sciences

Media...
Bioinformatics is a new field of research which encompasses mathematics, computer science, biology, medicine and the physical sciences. It has arisen from the need to handle and analyse the vast amounts of data being generated by the new genomics technologies. The interface of these disciplines used to be information-poor, but is now information-mega-rich, and statistics plays a central role in processing this information and making it intelligible. In this talk, I will describe a published bioinformatics study which claimed to have developed a simple test for the early detection of ovarian cancer from a blood sample. The US Food and Drug Administration was on the verge of approving the test kits for market in 2004 when demonstrated flaws in the study design and analysis led to its withdrawal. We are still waiting for an effective early biomarker test for ovarian cancer.
A strong Oka principle for embeddings of some planar domains into CxC*, II
13:10 Fri 13 May, 2011 :: Mawson 208 :: Mr Tyson Ritter :: University of Adelaide

The Oka principle refers to a collection of results in complex analysis which state that there are only topological obstructions to solving certain holomorphically defined problems involving Stein manifolds. For example, a basic version of Gromov's Oka principle states that every continuous map from a Stein manifold into an elliptic complex manifold is homotopic to a holomorphic map. In these two talks I will discuss a new result showing that if we restrict the class of source manifolds to circular domains and fix the target as CxC* we can obtain a much stronger Oka principle: every continuous map from a circular domain S into CxC* is homotopic to a proper holomorphic embedding. This result has close links with the long-standing and difficult problem of finding proper holomorphic embeddings of Riemann surfaces into C^2, with additional motivation from other sources.
The Extended-Domain-Eigenfunction Method: making old mathematics work for new problems
15:10 Fri 13 May, 2011 :: 7.15 Ingkarni Wardli :: Prof Stan Miklavcic :: University of South Australia

Media...
Standard analytical solutions to elliptic boundary value problems on asymmetric domains are rarely, if ever, obtainable. Several years ago I proposed a solution technique to cope with such complicated domains. It involves the embedding of the original domain into one with simple boundaries where the classical eigenfunction solution approach can be used. The solution in the larger domain, when restricted to the original domain is then the solution of the original boundary value problem. In this talk I will present supporting theory for this idea, some numerical results for the particular case of the Laplace equation and the Stokes flow equations in two-dimensions and discuss advantages and limitations of the proposal.
Knots, posets and sheaves
13:10 Fri 20 May, 2011 :: Mawson 208 :: Dr Brent Everitt :: University of York

The Euler characteristic is a nice simple integer invariant that one can attach to a space. Unfortunately, it is not natural: maps between spaces do not induce maps between their Euler characteristics, because it makes no sense to talk of a map between integers. This shortcoming is fixed by homology. Maps between spaces induce maps between their homologies, with the Euler characteristic encoded inside the homology. Recently it has become possible to play the same game with knots and the Jones polynomial: the Khovanov homology of a knot both encodes the Jones polynomial and is a natural invariant of the knot. After saying what all this means, this talk will observe that Khovanov homology is just a special case of sheaf homology on a poset, and we will explore some of the ramifications of this observation. This is joint work with Paul Turner (Geneva/Fribourg).
Statistical challenges in molecular phylogenetics
15:10 Fri 20 May, 2011 :: Mawson Lab G19 lecture theatre :: Dr Barbara Holland :: University of Tasmania

Media...
This talk will give an introduction to the ways that mathematics and statistics gets used in the inference of evolutionary (phylogenetic) trees. Taking a model-based approach to estimating the relationships between species has proven to be an enormously effective, however, there are some tricky statistical challenges that remain. The increasingly plentiful amount of DNA sequence data is a boon, but it is also throwing a spotlight on some of the shortcomings of current best practice particularly in how we (1) assess the reliability of our phylogenetic estimates, and (2) how we choose appropriate models. This talk will aim to give a general introduction this area of research and will also highlight some results from two of my recent PhD students.
Statistical modelling in economic forecasting: semi-parametrically spatio-temporal approach
12:10 Mon 23 May, 2011 :: 5.57 Ingkarni Wardli :: Dawlah Alsulami :: University of Adelaide

How to model spatio-temporal variation of housing prices is an important and challenging problem as it is of vital importance for both investors and policy makersto assess any movement in housing prices. In this seminar I will talk about the proposed model to estimate any movement in housing prices and measure the risk more accurately.
Priority queueing systems with random switchover times and generalisations of the Kendall-Takacs equation
16:00 Wed 1 Jun, 2011 :: 7.15 Ingkarni Wardli :: Dr Andrei Bejan :: The University of Cambridge

In this talk I will review existing analytical results for priority queueing systems with Poisson incoming flows, general service times and a single server which needs some (random) time to switch between requests of different priority. Specifically, I will discuss analytical results for the busy period and workload of such systems with a special structure of switchover times. The results related to the busy period can be seen as generalisations of the famous Kendall-Tak\'{a}cs functional equation for $M|G|1$: being formulated in terms of Laplace-Stieltjes transform, they represent systems of functional recurrent equations. I will present a methodology and algorithms of their numerical solution; the efficiency of these algorithms is achieved by acceleration of the numerical procedure of solving the classical Kendall-Tak\'{a}cs equation. At the end I will identify open problems with regard to such systems; these open problems are mainly related to the modelling of switchover times.
Natural operations on the Hochschild cochain complex
13:10 Fri 3 Jun, 2011 :: Mawson 208 :: Dr Michael Batanin :: Macquarie University

The Hochschild cochain complex of an associative algebra provides an important bridge between algebra and geometry. Algebraically, this is the derived center of the algebra. Geometrically, the Hochschild cohomology of the algebra of smooth functions on a manifold is isomorphic to the graduate space of polyvector fields on this manifold. There are many important operations acting on the Hochschild complex. It is, however, a tricky question to ask which operations are natural because the Hochschild complex is not a functor. In my talk I will explain how we can overcome this obstacle and compute all possible natural operations on the Hochschild complex. The result leads immediately to a proof of the Deligne conjecture on Hochschild cochains.
From group action to Kontsevich's Swiss-Cheese conjecture through categorification
15:10 Fri 3 Jun, 2011 :: Mawson Lab G19 :: Dr Michael Batanin :: Macquarie University

Media...
The Kontsevich Swiss-Cheese conjecture is a deep generalization of the Deligne conjecture on Hochschild cochains which plays an important role in the deformation quantization theory. Categorification is a method of thinking about mathematics by replacing set theoretical concepts by some higher dimensional objects. Categorification is somewhat of an art because there is no exact recipe for doing this. It is, however, a very powerful method of understanding (and producing) many deep results starting from simple facts we learned as undergraduate students. In my talk I will explain how Kontsevich Swiss-Cheese conjecture can be easily understood as a special case of categorification of a very familiar statement: an action of a group G (more generally, a monoid) on a set X is the same as group homomorphism from G to the group of automorphisms of X (monoid of endomorphisms of X in the case of a monoid action).
Probability density estimation by diffusion
15:10 Fri 10 Jun, 2011 :: 7.15 Ingkarni Wardli :: Prof Dirk Kroese :: University of Queensland

Media...
One of the beautiful aspects of Mathematics is that seemingly disparate areas can often have deep connections. This talk is about the fundamental connection between probability density estimation, diffusion processes, and partial differential equations. Specifically, we show how to obtain efficient probability density estimators by solving partial differential equations related to diffusion processes. This new perspective leads, in combination with Fast Fourier techniques, to very fast and accurate algorithms for density estimation. Moreover, the diffusion formulation unifies most of the existing adaptive smoothing algorithms and provides a natural solution to the boundary bias of classical kernel density estimators. This talk covers topics in Statistics, Probability, Applied Mathematics, and Numerical Mathematics, with a surprise appearance of the theta function. This is joint work with Zdravko Botev and Joe Grotowski.
Routing in equilibrium
15:10 Tue 21 Jun, 2011 :: 7.15 Ingkarni Wardli :: Dr Timothy Griffin :: University of Cambridge

Media...
Some path problems cannot be modelled using semirings because the associated algebraic structure is not distributive. Rather than attempting to compute globally optimal paths with such structures, it may be sufficient in some cases to find locally optimal paths --- paths that represent a stable local equilibrium. For example, this is the type of routing system that has evolved to connect Internet Service Providers (ISPs) where link weights implement bilateral commercial relationships between them. Previous work has shown that routing equilibria can be computed for some non-distributive algebras using algorithms in the Bellman-Ford family. However, no polynomial time bound was known for such algorithms. In this talk, we show that routing equilibria can be computed using Dijkstra's algorithm for one class of non-distributive structures. This provides the first polynomial time algorithm for computing locally optimal solutions to path problems.
What is... a tensor?
12:10 Mon 25 Jul, 2011 :: 5.57 Ingkarni Wardli :: Mr Michael Albanese :: School of Mathematical Sciences

Tensors are important objects that are frequently used in a variety of fields including continuum mechanics, general relativity and differential geometry. Despite their importance, they are often defined poorly (if at all) which contributes to a lack of understanding. In this talk, I will give a concrete definition of a tensor and provide some familiar examples. For the remainder of the talk, I will discuss some applications—here I mean applications in the pure maths sense (i.e. more abstract nonsense, but hopefully still interesting).
Towards Rogers-Ramanujan identities for the Lie algebra A_n
13:10 Fri 5 Aug, 2011 :: B.19 Ingkarni Wardli :: Prof Ole Warnaar :: University of Queensland

The Rogers-Ramanujan identities are a pair of q-series identities proved by Leonard Rogers in 1894 which became famous two decades later as conjectures of Srinivasa Ramanujan. Since the 1980s it is known that the Rogers-Ramanujan identities are in fact identities for characters of certain modules for the affine Lie algebra A_1. This poses the obvious question as to whether there exist Rogers-Ramanujan identities for higher rank affine Lie algebras. In this talk I will describe some recent progress on this problem. I will also discuss a seemingly mysterious connection with the representation theory of quivers over finite fields.
The Selberg integral
15:10 Fri 5 Aug, 2011 :: 7.15 Ingkarni Wardli :: Prof Ole Warnaar :: University of Queensland

Media...
In this talk I will give a gentle introduction to the mathematics surrounding the Selberg integral. Selberg's integral, which first appeared in two rather unusual papers by Atle Selberg in the 1940s, has become famous as much for its association with (other) mathematical greats such as Enrico Bombieri and Freeman Dyson as for its importance in algebra (Coxeter groups), geometry (hyperplane arrangements) and number theory (the Riemann hypothesis). In this talk I will review the remarkable history of the Selberg integral and discuss some of its early applications. Time permitting I will end the talk by describing some of my own, ongoing work on Selberg integrals related to Lie algebras.
Spectra alignment/matching for the classification of cancer and control patients
12:10 Mon 8 Aug, 2011 :: 5.57 Ingkarni Wardli :: Mr Tyman Stanford :: University of Adelaide

Proteomic time-of-flight mass spectrometry produces a spectrum based on the peptides (chains of amino acids) in each patient’s serum sample. The spectra contain data points for an x-axis (peptide weight) and a y-axis (peptide frequency/count/intensity). It is our end goal to differentiate cancer (and sub-types) and control patients using these spectra. Before we can do this, peaks in these data must be found and common peptides to different spectra must be found. The data are noisy because of biotechnological variation and calibration error; data points for different peptide weights may in fact be same peptide. An algorithm needs to be employed to find common peptides between spectra, as performing alignment ‘by hand’ is almost infeasible. We borrow methods suggested in the literature by metabolomic gas chromatography-mass spectrometry and extend the methods for our purposes. In this talk I will go over the basic tenets of what we hope to achieve and the process towards this.
Boundaries of unsteady Lagrangian Coherent Structures
15:10 Wed 10 Aug, 2011 :: 5.57 Ingkarni Wardli :: Dr Sanjeeva Balasuriya :: Connecticut College, USA and the University of Adelaide

For steady flows, the boundaries of Lagrangian Coherent Structures are segments of manifolds connected to fixed points. In the general unsteady situation, these boundaries are time-varying manifolds of hyperbolic trajectories. Locating these boundaries, and attempting to meaningfully quantify fluid flux across them, is difficult since they are moving with time. This talk uses a newly developed tangential movement theory to locate these boundaries in nearly-steady compressible flows.
Dealing with the GC-content bias in second-generation DNA sequence data
15:10 Fri 12 Aug, 2011 :: Horace Lamb :: Prof Terry Speed :: Walter and Eliza Hall Institute

Media...
The field of genomics is currently dealing with an explosion of data from so-called second-generation DNA sequencing machines. This is creating many challenges and opportunities for statisticians interested in the area. In this talk I will outline the technology and the data flood, and move on to one particular problem where the technology is used: copy-number analysis. There we find a novel bias, which, if not dealt with properly, can dominate the signal of interest. I will describe how we think about and summarize it, and go on to identify a plausible source of this bias, leading up to a way of removing it. Our approach makes use of the total variation metric on discrete measures, but apart from this, is largely descriptive.
Textbooks go interactive but are they any better?
12:10 Mon 15 Aug, 2011 :: 5.57 Ingkarni Wardli :: Mr Patrick Korbel :: University of Adelaide

Textbooks remain a central part of mathematics lessons in secondary schools. However, while textbooks are still formatted in the traditional way, they are including increasingly more sophisticated software packages to assist teachers and students. I will be demonstrating the different software packages available to students included with two South Australian textbooks. I will talk about how these new features fit into the current classroom environment and some of their potential positives and negatives. I would also like to encourage people to share their own experiences with textbooks, especially if they were used in a novel way or you have experience of mathematics classes in another country.
There are no magnetically charged particle-like solutions of the Einstein-Yang-Mills equations for models with Abelian residual groups
13:10 Fri 19 Aug, 2011 :: B.19 Ingkarni Wardli :: Dr Todd Oliynyk :: Monash University

According to a conjecture from the 90's, globally regular, static, spherically symmetric (i.e. particle-like) solutions with nonzero total magnetic charge are not expected to exist in Einstein-Yang-Mills theory. In this talk, I will describe recent work done in collaboration with M. Fisher where we establish the validity of this conjecture under certain restrictions on the residual gauge group. Of particular interest is that our non-existence results apply to the most widely studied models with Abelian residual groups.
Blood flow in the coiled umbilical cord
12:10 Mon 22 Aug, 2011 :: 5.57 Ingkarni Wardli :: Mr David Wilke :: University of Adelaide

The umbilical cord is the connecting cord between the developing embryo or fetus and the placenta. In a normal pregnancy it facilitates the supply of oxygen and nutrients from the placenta, in addition to the return of deoxygenated blood from the fetus. One of the most striking features of the umbilical cord is it's coiled structure, which allows the vasculature to withstand tensile and compressive forces in utero. The level of coiling also has a significant effect on the blood flow and cords exhibiting abnormally high or low levels are known to correlate well with adverse outcomes in pregancy, including fetal demise. In this talk I will discuss the complexities associated with numerically modeling blood flow within the umbilical cord, and provide an outline of the key features which will be investigated throughout my research.
Laplace's equation on multiply-connected domains
12:10 Mon 29 Aug, 2011 :: 5.57 Ingkarni Wardli :: Mr Hayden Tronnolone :: University of Adelaide

Various physical processes take place on multiply-connected domains (domains with some number of 'holes'), such as the stirring of a fluid with paddles or the extrusion of material from a die. These systems may be described by partial differential equations (PDEs). However, standard numerical methods for solving PDEs are not well-suited to such examples: finite difference methods are difficult to implement on multiply-connected domains, especially when the boundaries are irregular or moving, while finite element methods are computationally expensive. In this talk I will describe a fast and accurate numerical method for solving certain PDEs on two-dimensional multiply-connected domains, considering Laplace's equation as an example. This method takes advantage of complex variable techniques which allow the solution to be found with spectral accuracy provided the boundary data is smooth. Other advantages over traditional numerical methods will also be discussed.
Twisted Morava K-theory
13:10 Fri 9 Sep, 2011 :: 7.15 Ingkarni Wardli :: Dr Craig Westerland :: University of Melbourne

Morava's extraordinary K-theories K(n) are a family of generalized cohomology theories which behave in some ways like K-theory (indeed, K(1) is mod 2 K-theory). Their construction exploits Quillen's description of cobordism in terms of formal group laws and Lubin-Tate's methods in class field theory for constructing abelian extensions of number fields. Constructed from homotopy-theoretic methods, they do not admit a geometric description (like deRham cohomology, K-theory, or cobordism), but are nonetheless subtle, computable invariants of topological spaces. In this talk, I will give an introduction to these theories, and explain how it is possible to define an analogue of twisted K-theory in this setting. Traditionally, K-theory is twisted by a three-dimensional cohomology class; in this case, K(n) admits twists by (n+2)-dimensional classes. This work is joint with Hisham Sati.
Configuration spaces in topology and geometry
15:10 Fri 9 Sep, 2011 :: 7.15 Ingkarni Wardli :: Dr Craig Westerland :: University of Melbourne

Media...
Configuration spaces of points in R^n give a family of interesting geometric objects. They and their variants have numerous applications in geometry, topology, representation theory, and number theory. In this talk, we will review several of these manifestations (for instance, as moduli spaces, function spaces, and the like), and use them to address certain conjectures in number theory regarding distributions of number fields.
Mathematical modelling of lobster populations in South Australia
12:10 Mon 12 Sep, 2011 :: 5.57 Ingkarni Wardli :: Mr John Feenstra :: University of Adelaide

Just how many lobsters are there hanging around the South Australian coastline? How is this number changing over time? What is the demographic breakdown of this number? And what does it matter? Find out the answers to these questions in my upcoming talk. I will provide a brief flavour of the kinds of quantitative methods involved, showcasing relevant applications of regression, population modelling, estimation, as well as simulation. A product of these analyses are biological performance indicators which are used by government to help decide on fishery controls such as yearly total allowable catch quotas. This assists in maintaining the sustainability of the fishery and hence benefits both the fishers and the lobsters they catch.
Cohomology of higher-rank graphs and twisted C*-algebras
13:10 Fri 16 Sep, 2011 :: B.19 Ingkarni Wardli :: Dr Aidan Sims :: University of Wollongong

Higher-rank graphs and their $C^*$-algebras were introduced by Kumjian and Pask in 2000. They have provided a rich source of tractable examples of $C^*$-algebras, the most elementary of which are the commutative algebras $C(\mathbb{T}^k)$ of continuous functions on $k$-tori. In this talk we shall describe how to define the homology and cohomology of a higher-rank graph, and how to associate to each higher-rank graph $\Lambda$ and $\mathbb{T}$-valued cocycle on $\Lambda$ a twisted higher-rank graph $C^*$-algebra. As elementary examples, we obtain all noncommutative tori. This is a preleminary report on ongoing joint work with Alex Kumjian and David Pask.
Graph C*-algebras
15:10 Fri 16 Sep, 2011 :: 7.15 Ingkarni Wardli :: Dr Aidan Sims :: University of Wollongong

Media...
In the late 1990's, Kumjian-Pask-Raeburn-Renault introduced the class of graph C*-algebras, building on previous work of Cuntz-Krieger and of Enomoto-Watatani in the early 1980's. Since then these C*-algebras have been very intensively studied because they are on the one hand very general, and yet on the other hand extremely tractable. In this talk I shall give an overview of what a graph C*-algebra is, and of some of the remarkable results about these intriguing objects proved by many mathematicians over the last 15 years. We will not assume any specific background, and all are very welcome to attend.
Statistical analysis of metagenomic data from the microbial community involved in industrial bioleaching
12:10 Mon 19 Sep, 2011 :: 5.57 Ingkarni Wardli :: Ms Susana Soto-Rojo :: University of Adelaide

In the last two decades heap bioleaching has become established as a successful commercial option for recovering copper from low-grade secondary sulfide ores. Genetics-based approaches have recently been employed in the task of characterizing mineral processing bacteria. Data analysis is a key issue and thus the implementation of adequate mathematical and statistical tools is of fundamental importance to draw reliable conclusions. In this talk I will give a recount of two specific problems that we have been working on. The first regarding experimental design and the latter on modeling composition and activity of the microbial consortium.
T-duality via bundle gerbes I
13:10 Fri 23 Sep, 2011 :: B.19 Ingkarni Wardli :: Dr Raymond Vozzo :: University of Adelaide

In physics T-duality is a phenomenon which relates certain types of string theories to one another. From a topological point of view, one can view string theory as a duality between line bundles carrying a degree three cohomology class (the H-flux). In this talk we will use bundle gerbes to give a geometric realisation of the H-flux and explain how to construct the T-dual of a line bundle together with its T-dual bundle gerbe.
Estimating disease prevalence in hidden populations
14:05 Wed 28 Sep, 2011 :: B.18 Ingkarni Wardli :: Dr Amber Tomas :: The University of Oxford

Estimating disease prevalence in "hidden" populations such as injecting drug users or men who have sex with men is an important public health issue. However, traditional design-based estimation methods are inappropriate because they assume that a list of all members of the population is available from which to select a sample. Respondent Driven Sampling (RDS) is a method developed over the last 15 years for sampling from hidden populations. Similarly to snowball sampling, it leverages the fact that members of hidden populations are often socially connected to one another. Although RDS is now used around the world, there are several common population characteristics which are known to cause estimates calculated from such samples to be significantly biased. In this talk I'll discuss the motivation for RDS, as well as some of the recent developments in methods of estimation.
Understanding the dynamics of event networks
15:00 Wed 28 Sep, 2011 :: B.18 Ingkarni Wardli :: Dr Amber Tomas :: The University of Oxford

Within many populations there are frequent communications between pairs of individuals. Such communications might be emails sent within a company, radio communications in a disaster zone or diplomatic communications between states. Often it is of interest to understand the factors that drive the observed patterns of such communications, or to study how these factors are changing over over time. Communications can be thought of as events occuring on the edges of a network which connects individuals in the population. In this talk I'll present a model for such communications which uses ideas from social network theory to account for the complex correlation structure between events. Applications to the Enron email corpus and the dynamics of hospital ward transfer patterns will be discussed.
Statistical analysis of school-based student performance data
12:10 Mon 10 Oct, 2011 :: 5.57 Ingkarni Wardli :: Ms Jessica Tan :: University of Adelaide

Join me in the journey of being a statistician for 15 minutes of your day (if you are not already one) and experience the task of data cleaning without having to get your own hands dirty. Most of you may have sat the Basic Skills Tests when at school or know someone who currently has to do the NAPLAN (National Assessment Program - Literacy and Numeracy) tests. Tests like these assess student progress and can be used to accurately measure school performance. In trying to answer the research question: "what conclusions about student progress and school performance can be drawn from NAPLAN data or data of a similar nature, using mathematical and statistical modelling and analysis techniques?", I have uncovered some interesting results about the data in my initial data analysis which I shall explain in this talk.
Statistical modelling for some problems in bioinformatics
11:10 Fri 14 Oct, 2011 :: B.17 Ingkarni Wardli :: Professor Geoff McLachlan :: The University of Queensland

Media...
In this talk we consider some statistical analyses of data arising in bioinformatics. The problems include the detection of differential expression in microarray gene-expression data, the clustering of time-course gene-expression data and, lastly, the analysis of modern-day cytometric data. Extensions are considered to the procedures proposed for these three problems in McLachlan et al. (Bioinformatics, 2006), Ng et al. (Bioinformatics, 2006), and Pyne et al. (PNAS, 2009), respectively. The latter references are available at http://www.maths.uq.edu.au/~gjm/.
On the role of mixture distributions in the modelling of heterogeneous data
15:10 Fri 14 Oct, 2011 :: 7.15 Ingkarni Wardli :: Prof Geoff McLachlan :: University of Queensland

Media...
We consider the role that finite mixture distributions have played in the modelling of heterogeneous data, in particular for clustering continuous data via mixtures of normal distributions. A very brief history is given starting with the seminal papers by Day and Wolfe in the sixties before the appearance of the EM algorithm. It was the publication in 1977 of the latter algorithm by Dempster, Laird, and Rubin that greatly stimulated interest in the use of finite mixture distributions to model heterogeneous data. This is because the fitting of mixture models by maximum likelihood is a classic example of a problem that is simplified considerably by the EM's conceptual unification of maximum likelihood estimation from data that can be viewed as being incomplete. In recent times there has been a proliferation of applications in which the number of experimental units n is comparatively small but the underlying dimension p is extremely large as, for example, in microarray-based genomics and other high-throughput experimental approaches. Hence there has been increasing attention given not only in bioinformatics and machine learning, but also in mainstream statistics, to the analysis of complex data in this situation where n is small relative to p. The latter part of the talk shall focus on the modelling of such high-dimensional data using mixture distributions.
T-duality via bundle gerbes II
13:10 Fri 21 Oct, 2011 :: B.19 Ingkarni Wardli :: Dr Raymond Vozzo :: University of Adelaide

In physics T-duality is a phenomenon which relates certain types of string theories to one another. From a topological point of view, one can view string theory as a duality between line bundles carrying a degree three cohomology class (the H-flux). In this talk we will use bundle gerbes to give a geometric realisation of the H-flux and explain how to construct the T-dual of a line bundle together with its T-dual bundle gerbe.
Likelihood-free Bayesian inference: modelling drug resistance in Mycobacterium tuberculosis
15:10 Fri 21 Oct, 2011 :: 7.15 Ingkarni Wardli :: Dr Scott Sisson :: University of New South Wales

Media...
A central pillar of Bayesian statistical inference is Monte Carlo integration, which is based on obtaining random samples from the posterior distribution. There are a number of standard ways to obtain these samples, provided that the likelihood function can be numerically evaluated. In the last 10 years, there has been a substantial push to develop methods that permit Bayesian inference in the presence of computationally intractable likelihood functions. These methods, termed ``likelihood-free'' or approximate Bayesian computation (ABC), are now being applied extensively across many disciplines. In this talk, I'll present a brief, non-technical overview of the ideas behind likelihood-free methods. I'll motivate and illustrate these ideas through an analysis of the epidemiological fitness cost of drug resistance in Mycobacterium tuberculosis.
Dirac operators on classifying spaces
13:10 Fri 28 Oct, 2011 :: B.19 Ingkarni Wardli :: Dr Pedram Hekmati :: University of Adelaide

The Dirac operator was introduced by Paul Dirac in 1928 as the formal square root of the D'Alembert operator. Thirty years later it was rediscovered in Euclidean signature by Atiyah and Singer in their seminal work on index theory. In this talk I will describe efforts to construct a Dirac type operator on the classifying space for odd complex K-theory. Ultimately the aim is to produce a projective family of Fredholm operators realising elements in twisted K-theory of a certain moduli stack.
Oka theory of blow-ups
13:10 Fri 18 Nov, 2011 :: B.19 Ingkarni Wardli :: A/Prof Finnur Larusson :: University of Adelaide

This talk is a continuation of my talk last August. I will discuss the recently-obtained answers to the open questions I described then.
Applications of tropical geometry to groups and manifolds
13:10 Mon 21 Nov, 2011 :: B.19 Ingkarni Wardli :: Dr Stephan Tillmann :: University of Queensland

Tropical geometry is a young field with multiple origins. These include the work of Bergman on logarithmic limit sets of algebraic varieties; the work of the Brazilian computer scientist Simon on discrete mathematics; the work of Bieri, Neumann and Strebel on geometric invariants of groups; and, of course, the work of Newton on polynomials. Even though there is still need for a unified foundation of the field, there is an abundance of applications of tropical geometry in group theory, combinatorics, computational algebra and algebraic geometry. In this talk I will give an overview of (what I understand to be) tropical geometry with a bias towards applications to group theory and low-dimensional topology.
Space of 2D shapes and the Weil-Petersson metric: shapes, ideal fluid and Alzheimer's disease
13:10 Fri 25 Nov, 2011 :: B.19 Ingkarni Wardli :: Dr Sergey Kushnarev :: National University of Singapore

The Weil-Petersson metric is an exciting metric on a space of simple plane curves. In this talk the speaker will introduce the shape space and demonstrate the connection with the Euler-Poincare equations on the group of diffeomorphisms (EPDiff). A numerical method for finding geodesics between two shapes will be demonstrated and applied to the surface of the hippocampus to study the effects of Alzheimer's disease. As another application the speaker will discuss how to do statistics on the shape space and what should be done to improve it.
Collision and instability in a rotating fluid-filled torus
15:10 Mon 12 Dec, 2011 :: Benham Lecture Theatre :: Dr Richard Clarke :: The University of Auckland

The simple experiment discussed in this talk, first conceived by Madden and Mullin (JFM, 1994) as part of their investigations into the non-uniqueness of decaying turbulent flow, consists of a fluid-filled torus which is rotated in an horizontal plane. Turbulence within the contained flow is triggered through a rapid change in its rotation rate. The flow instabilities which transition the flow to this turbulent state, however, are truly fascinating in their own right, and form the subject of this presentation. Flow features observed in both UK- and Auckland-based experiments will be highlighted, and explained through both boundary-layer analysis and full DNS. In concluding we argue that this flow regime, with its compact geometry and lack of cumbersome flow entry effects, presents an ideal regime in which to study many prototype flow behaviours, very much in the same spirit as Taylor-Couette flow.
Plurisubharmonic subextensions as envelopes of disc functionals
13:10 Fri 2 Mar, 2012 :: B.20 Ingkarni Wardli :: A/Prof Finnur Larusson :: University of Adelaide

I will describe new joint work with Evgeny Poletsky. We prove a disc formula for the largest plurisubharmonic subextension of an upper semicontinuous function on a domain $W$ in a Stein manifold to a larger domain $X$ under suitable conditions on $W$ and $X$. We introduce a related equivalence relation on the space of analytic discs in $X$ with boundary in $W$. The quotient is a complex manifold with a local biholomorphism to $X$, except it need not be Hausdorff. We use our disc formula to generalise Kiselman's minimum principle. We show that his infimum function is an example of a plurisubharmonic subextension.
String Theory and the Quest for Quantum Spacetime
15:10 Fri 9 Mar, 2012 :: Ligertwood 333 Law Lecture Theatre 2 :: Prof Rajesh Gopakumar :: Harish-Chandra Research Institute

Media...
Space and time together constitute one of the most basic elements of physical reality. Since Einstein spacetime has become an active participant in the dynamics of the gravitational force. However, our notion of a quantum spacetime is still rudimentary. String theory, building upon hints provided from the physics of black holes, seems to be suggesting a very novel, "holographic" picture of what quantum spacetime might be. This relies on some very surprising connections of gravity with quantum field theories (which provide the framework for the description of the other fundamental interactions of nature). In this talk, I will try and convey some of the flavour of these connections as well as its significance.
The Lorentzian conformal analogue of Calabi-Yau manifolds
13:10 Fri 16 Mar, 2012 :: B.20 Ingkarni Wardli :: Prof Helga Baum :: Humboldt University

Calabi-Yau manifolds are Riemannian manifolds with holonomy group SU(m). They are Ricci-flat and Kahler and admit a 2-parameter family of parallel spinors. In the talk we will discuss the Lorentzian conformal analogue of this situation. If on a manifold a class of conformally equivalent metrics [g] is given, then one can consider the holonomy group of the conformal manifold (M,[g]), which is a subgroup of O(p+1,q+1) if the metric g has signature (p,q). There is a close relation between algebraic properties of the conformal holonomy group and the existence of Einstein metrics in the conformal class as well as to the existence of conformal Killing spinors. In the talk I will explain classification results for conformal holonomy groups of Lorentzian manifolds. In particular, I will describe Lorentzian manifolds (M,g) with conformal holonomy group SU(1,m), which can be viewed as the conformal analogue of Calabi-Yau manifolds. Such Lorentzian metrics g, known as Fefferman metrics, appear on S^1-bundles over strictly pseudoconvex CR spin manifolds and admit a 2-parameter family of conformal Killing spinors.
Fluid mechanics: what's maths got to do with it?
13:10 Tue 20 Mar, 2012 :: 7.15 Ingkarni Wardli :: A/Prof Jim Denier :: School of Mathematical Sciences

Media...
We've all heard about the grand challenges in mathematics. There was the Poincare Conjecture, which has now been resolved. There is the Riemann Hypothesis which many are seeking to prove. But one of the most intriguing is the so called "Navier-Stokes Equations" problem, intriguing because it not only involves some wickedly difficult mathematics but also involves questions about our deep understanding of nature as encountered in the flow of fluids. This talk will introduce the problem (without the wickedly difficult mathematics) and discuss some of the consequences of its resolution.
Instability in standing waves in inhomogeneous nonlinear Schrodinger equations
13:10 Fri 30 Mar, 2012 :: B.17 Ingkarni Wardli :: Dr Robert Marangell :: The University of Sydney

Media...
In this talk, I will describe a mechanism for determining instability of standing wave solutions to a class of inhomogeneous nonlinear Schrodinger (NLS) equations. The inhomogeneity in this case means that the equations will spatially alternate between NLS and the so-called Gross-Pitaevskii equation. Such equations are useful in 1-D models of Bose-Einstein Condensates (BECs). The mechanism is inherently topological and therefore robust, leading to its application to a number of different soliton solutions, such as gap solitons, surface gap solitons, and dark soliton among others.
Bundle gerbes and the Faddeev-Mickelsson-Shatashvili anomaly
13:10 Fri 30 Mar, 2012 :: B.20 Ingkarni Wardli :: Dr Raymond Vozzo :: University of Adelaide

The Faddeev-Mickelsson-Shatashvili anomaly arises in the quantisation of fermions interacting with external gauge potentials. Mathematically, it can be described as a certain lifting problem for an extension of groups. The theory of bundle gerbes is very useful for studying lifting problems, however it only applies in the case of a central extension whereas in the study of the FMS anomaly the relevant extension is non-central. In this talk I will explain how to describe this anomaly indirectly using bundle gerbes and how to use a generalisation of bundle gerbes to describe the (non-central) lifting problem directly. This is joint work with Pedram Hekmati, Michael Murray and Danny Stevenson.
The Kazdan-Warner equation
12:10 Mon 2 Apr, 2012 :: 5.57 Ingkarni Wardli :: Mr Damien Warman :: University of Adelaide

Media...
We look at an equation arising from the differential-geometric problem of specifying the scalar curvature of a manifold.
Fast-track study of viscous flow over topography using 'Smoothed Particle Hydrodynamics'
12:10 Mon 16 Apr, 2012 :: 5.57 Ingkarni Wardli :: Mr Stephen Wade :: University of Adelaide

Media...
Motivated by certain tea room discussions, I am going to (attempt to) model the flow of a viscous fluid under gravity over conical topography. The method used is 'Smoothed Particle Hydrodynamics' (SPH), which is an easy-to-use but perhaps limited-accuracy computational method. The model could be extended to include solidification and thermodynamic effects that can also be implemented within the framework of SPH, and this has the obvious practical application to the modelling of the coverage of ice cream with ice magic, I mean, lava flows. If I fail to achieve this within the next 4 weeks, I will have to go through a talk on SPH that I gave during honours instead.
A Problem of Siegel
13:10 Fri 27 Apr, 2012 :: B.20 Ingkarni Wardli :: Dr Brent Everitt :: University of York

The first explicit examples of orientable hyperbolic 3-manifolds were constructed by Weber, Siefert, and Lobell in the early 1930's. In the subsequent decades the world of hyperbolic n-manifolds has grown into an extraordinarily rich one. Its sociology is best understood through the eyes of invariants, and for hyperbolic manifolds the most important invariant is volume. Viewed this way the n-dimensional hyperbolic manifolds, for fixed n, look like a well-ordered subset of the reals (a discrete set even, when n is not 3). So we are naturally led to the (manifold) Siegel problem: for a given n, determine the minimum possible volume obtained by an orientable hyperbolic n-manifold. It is a problem with a long and venerable history. In this talk I will describe a unified solution to the problem in low even dimensions, one of which at least is new. Joint work with John Ratcliffe and Steve Tschantz (Vanderbilt).
Mathematical modelling of the surface adsorption for methane on carbon nanostructures
12:10 Mon 30 Apr, 2012 :: 5.57 Ingkarni Wardli :: Mr Olumide Adisa :: University of Adelaide

Media...
In this talk, methane (CH4) adsorption is investigated on both graphite and in the region between two aligned single-walled carbon nanotubes, which we refer to as the groove site. The Lennard–Jones potential function and the continuous approximation is exploited to determine surface binding energies between a single CH4 molecule and graphite and between a single CH4 and two aligned single-walled carbon nanotubes. The modelling indicates that for a CH4 molecule interacting with graphite, the binding energy of the system is minimized when the CH4 carbon is 3.83 angstroms above the surface of the graphitic carbon, while the binding energy of the CH4–groove site system is minimized when the CH4 carbon is 5.17 angstroms away from the common axis shared by the two aligned single-walled carbon nanotubes. These results confirm the current view that for larger groove sites, CH4 molecules in grooves are likely to move towards the outer surfaces of one of the single-walled carbon nanotubes. The results presented in this talk are computationally efficient and are in good agreement with experiments and molecular dynamics simulations, and show that CH4 adsorption on graphite and groove surfaces is more favourable at lower temperatures and higher pressures.
Acyclic embeddings of open Riemann surfaces into new examples of elliptic manifolds
13:10 Fri 4 May, 2012 :: Napier LG28 :: Dr Tyson Ritter :: University of Adelaide

In complex geometry a manifold is Stein if there are, in a certain sense, "many" holomorphic maps from the manifold into C^n. While this has long been well understood, a fruitful definition of the dual notion has until recently been elusive. In Oka theory, a manifold is Oka if it satisfies several equivalent definitions, each stating that the manifold has "many" holomorphic maps into it from C^n. Related to this is the geometric condition of ellipticity due to Gromov, who showed that it implies a complex manifold is Oka. We present recent contributions to three open questions involving elliptic and Oka manifolds. We show that affine quotients of C^n are elliptic, and combine this with an example of Margulis to construct new elliptic manifolds of interesting homotopy types. It follows that every open Riemann surface properly acyclically embeds into an elliptic manifold, extending an existing result for open Riemann surfaces with abelian fundamental group.
Are Immigrants Discriminated in the Australian Labour Market?
12:10 Mon 7 May, 2012 :: 5.57 Ingkarni Wardli :: Ms Wei Xian Lim :: University of Adelaide

Media...
In this talk, I will present what I did in my honours project, which was to determine if immigrants, categorised as immigrants from English speaking countries and Non-English speaking countries, are discriminated in the Australian labour market. To determine if discrimination exists, a decomposition of the wage function is applied and analysed via regression analysis. Two different methods of estimating the unknown parameters in the wage function will be discussed: 1. the Ordinary Least Square method, 2. the Quantile Regression method. This is your rare chance of hearing me talk about non-nanomathematics related stuff!
Computational complexity, taut structures and triangulations
13:10 Fri 18 May, 2012 :: Napier LG28 :: Dr Benjamin Burton :: University of Queensland

There are many interesting and difficult algorithmic problems in low-dimensional topology. Here we study the problem of finding a taut structure on a 3-manifold triangulation, whose existence has implications for both the geometry and combinatorics of the triangulation. We prove that detecting taut structures is "hard", in the sense that it is NP-complete. We also prove that detecting taut structures is "not too hard", by showing it to be fixed-parameter tractable. This is joint work with Jonathan Spreer.
Unknot recognition and the elusive polynomial time algorithm
15:10 Fri 18 May, 2012 :: B.21 Ingkarni Wardli :: Dr Benjamin Burton :: The University of Queensland

Media...
What do practical topics such as linear programming and greedy heuristics have to do with theoretical problems such as unknot recognition and the Poincare conjecture? In this talk we explore new approaches to old and difficult computational problems from geometry and topology: how to tell whether a loop of string is knotted, or whether a 3-dimensional space has no interesting topological features. Although the best known algorithms for these problems run in exponential time, there is increasing evidence that a polynomial time solution might be possible. We outline several promising approaches in which computational geometry, linear programming and greedy algorithms all play starring roles.
The classification of Dynkin diagrams
12:10 Mon 21 May, 2012 :: 5.57 Ingkarni Wardli :: Mr Alexander Hanysz :: University of Adelaide

Media...
The idea of continuous symmetry is often described in mathematics via Lie groups. These groups can be classified by their root systems: collections of vectors satisfying certain symmetry properties. The root systems are described in a concise way by Dynkin diagrams, and it turns out, roughly speaking, that there are only seven possible shapes for a Dynkin diagram. In this talk I'll describe some simple examples of Lie groups, explain what a root system is, and show how a Dynkin diagram encodes this information. Then I'll give a very brief sketch of the methods used to classify Dynkin diagrams.
P or NP: this is the question
13:10 Tue 22 May, 2012 :: 7.15 Ingkarni Wardli :: Dr Ali Eshragh :: School of Mathematical Sciences

Media...
Up to early 70's, the main concentration of mathematicians was the design of algorithms. However, the advent of computers changed this focus from not just the design of an algorithm but also to the most efficient algorithm. This created a new field of research, namely the complexity of algorithms, and the associated problem "Is P equal to NP?" was born. The latter question has been unknown for more than four decades and is one of the most famous open problems of the 21st century. Any person who can solve this problem will be awarded US$1,000,000 by the Clay Institute. In this talk, we are going to introduce this problem through simple examples and explain one of the intriguing approaches that may help to solve it.
On the full holonomy group of special Lorentzian manifolds
13:10 Fri 25 May, 2012 :: Napier LG28 :: Dr Thomas Leistner :: University of Adelaide

The holonomy group of a semi-Riemannian manifold is defined as the group of parallel transports along loops based at a point. Its connected component, the `restricted holonomy group', is given by restricting in this definition to contractible loops. The restricted holonomy can essentially be described by its Lie algebra and many classification results are obtained in this way. In contrast, the `full' holonomy group is a more global object and classification results are out of reach. In the talk I will describe recent results with H. Baum and K. Laerz (both HU Berlin) about the full holonomy group of so-called `indecomposable' Lorentzian manifolds. I will explain a construction method that arises from analysing the effects on holonomy when dividing the manifold by the action of a properly discontinuous group of isometries and present several examples of Lorentzian manifolds with disconnected holonomy groups.
The change of probability measure for jump processes
12:10 Mon 28 May, 2012 :: 5.57 Ingkarni Wardli :: Mr Ahmed Hamada :: University of Adelaide

Media...
In financial derivatives pricing theory, it is very common to change the probability measure from historical measure "real world" into a Risk-Neutral measure as a development of the non arbitrage condition. Girsanov theorem is the most known example of this technique and is used when prices randomness is modelled by Brownian motions. Other genuine candidates for modelling market randomness that have proved efficiency in recent literature are jump process, so how can a change of measure be performed for such processes? This talk will address this question by introducing the non arbitrage condition, discussing Girsanov theorem for diffusion and jump processes and presenting a concrete example.
Geometric modular representation theory
13:10 Fri 1 Jun, 2012 :: Napier LG28 :: Dr Anthony Henderson :: University of Sydney

Representation theory is one of the oldest areas of algebra, but many basic questions in it are still unanswered. This is especially true in the modular case, where one considers vector spaces over a field F of positive characteristic; typically, complications arise for particular small values of the characteristic. For example, from a vector space V one can construct the symmetric square S^2(V), which is one easy example of a representation of the group GL(V). One would like to say that this representation is irreducible, but that statement is not always true: if F has characteristic 2, there is a nontrivial invariant subspace. Even for GL(V), we do not know the dimensions of all irreducible representations in all characteristics. In this talk, I will introduce some of the main ideas of geometric modular representation theory, a more recent approach which is making progress on some of these old problems. Essentially, the strategy is to re-formulate everything in terms of homology of various topological spaces, where F appears only as the field of coefficients and the spaces themselves are independent of F; thus, the modular anomalies in representation theory arise because homology with modular coefficients is detecting something about the topology that rational coefficients do not. In practice, the spaces are usually varieties over the complex numbers, and homology is replaced by intersection cohomology to take into account the singularities of these varieties.
Model turbulent floods based upon the Smagorinski large eddy closure
12:10 Mon 4 Jun, 2012 :: 5.57 Ingkarni Wardli :: Mr Meng Cao :: University of Adelaide

Media...
Rivers, floods and tsunamis are often very turbulent. Conventional models of such environmental fluids are typically based on depth-averaged inviscid irrotational flow equations. We explore changing such a base to the turbulent Smagorinski large eddy closure. The aim is to more appropriately model the fluid dynamics of such complex environmental fluids by using such a turbulent closure. Large changes in fluid depth are allowed. Computer algebra constructs the slow manifold of the flow in terms of the fluid depth h and the mean turbulent lateral velocities u and v. The major challenge is to deal with the nonlinear stress tensor in the Smagorinski closure. The model integrates the effects of inertia, self-advection, bed drag, gravitational forcing and turbulent dissipation with minimal assumptions. Although the resultant model is close to established models, the real outcome is creating a sound basis for the modelling so others, in their modelling of more complex situations, can systematically include more complex physical processes.
Adventures with group theory: counting and constructing polynomial invariants for applications in quantum entanglement and molecular phylogenetics
15:10 Fri 8 Jun, 2012 :: B.21 Ingkarni Wardli :: Dr Peter Jarvis :: The University of Tasmania

Media...
In many modelling problems in mathematics and physics, a standard challenge is dealing with several repeated instances of a system under study. If linear transformations are involved, then the machinery of tensor products steps in, and it is the job of group theory to control how the relevant symmetries lift from a single system, to having many copies. At the level of group characters, the construction which does this is called PLETHYSM. In this talk all this will be contextualised via two case studies: entanglement invariants for multipartite quantum systems, and Markov invariants for tree reconstruction in molecular phylogenetics. By the end of the talk, listeners will have understood why Alice, Bob and Charlie love Cayley's hyperdeterminant, and they will know why the three squangles -- polynomial beasts of degree 5 in 256 variables, with a modest 50,000 terms or so -- can tell us a lot about quartet trees!
K-theory and unbounded Fredholm operators
13:10 Mon 9 Jul, 2012 :: Ingkarni Wardli B19 :: Dr Jerry Kaminker :: University of California, Davis

There are several ways of viewing elements of K^1(X). One of these is via families of unbounded self-adjoint Fredholm operators on X. Each operator will have discrete spectrum, with infinitely many positive and negative eigenvalues of finite multiplicity. One can associate to such a family a geometric object, its graph, and the Chern character and other invariants of the family can be studied from this perspective. By restricting the dimension of the eigenspaces one may sometimes use algebraic topology to completely determine the family up to equivalence. This talk will describe the general framework and some applications to families on low-dimensional manifolds where the methods work well. Various notions related to spectral flow, the index gerbe and Berry phase play roles which will be discussed. This is joint work with Ron Douglas.
2012 AMSI-SSAI Lecture: Approximate Bayesian computation (ABC): advances and limitations
11:00 Fri 13 Jul, 2012 :: Engineering South S112 :: Prof Christian Robert :: Universite Paris-Dauphine

Media...
The lack of closed form likelihoods has been the bane of Bayesian computation for many years and, prior to the introduction of MCMC methods, a strong impediment to the propagation of the Bayesian paradigm. We are now facing models where an MCMC completion of the model towards closed-form likelihoods seems unachievable and where a further degree of approximation appears unavoidable. In this talk, I will present the motivation for approximative Bayesian computation (ABC) methods, the consistency results already available, the various Monte Carlo implementations found in the current literature, as well as the inferential, rather than computational, challenges set by these methods. A recent advance based on empirical likelihood will also be discussed.
The Four Colour Theorem
11:10 Mon 23 Jul, 2012 :: B.17 Ingkarni Wardli :: Mr Vincent Schlegel :: University of Adelaide

Media...
Arguably the most famous problem in discrete mathematics, the Four Colour Theorem was first conjectured in 1852 by South African mathematician Francis Guthrie. For 124 years, it defied many attempts to prove and disprove it. I will talk briefly about some of the rich history of this result, including some of the graph-theoretic techniques used in the 1976 Appel-Haken proof.
The motivic logarithm and its realisations
13:10 Fri 3 Aug, 2012 :: Engineering North 218 :: Dr James Borger :: Australian National University

When a complex manifold is defined by polynomial equations, its cohomology groups inherit extra structure. This was discovered by Hodge in the 1920s and 30s. When the defining polynomials have rational coefficients, there is some additional, arithmetic structure on the cohomology. This was discovered by Grothendieck and others in the 1960s. But here the situation is still quite mysterious because each cohomology group has infinitely many different arithmetic structures and while they are not directly comparable, they share many properties---with each other and with the Hodge structure. All written accounts of this that I'm aware of treat arbitrary varieties. They are beautifully abstract and non-explicit. In this talk, I'll take the opposite approach and try to give a flavour of the subject by working out a perhaps the simplest nontrivial example, the cohomology of C* relative to a subset of two points, in beautifully concrete and explicit detail. Here the common motif is the logarithm. In Hodge theory, it is realised as the complex logarithm; in the crystalline theory, it's as the p-adic logarithm; and in the etale theory, it's as Kummer theory. I'll assume you have some familiarity with usual, singular cohomology of topological spaces, but I won't assume that you know anything about these non-topological cohomology theories.
Geometry - algebraic to arithmetic to absolute
15:10 Fri 3 Aug, 2012 :: B.21 Ingkarni Wardli :: Dr James Borger :: Australian National University

Media...
Classical algebraic geometry is about studying solutions to systems of polynomial equations with complex coefficients. In arithmetic algebraic geometry, one digs deeper and studies the arithmetic properties of the solutions when the coefficients are rational, or even integral. From the usual point of view, it's impossible to go deeper than this for the simple reason that no smaller rings are available - the integers have no proper subrings. In this talk, I will explain how an emerging subject, lambda-algebraic geometry, allows one to do just this and why one might care.
AFL Tipping isn't all about numbers and stats...or is it.....
12:10 Mon 6 Aug, 2012 :: B.21 Ingkarni Wardli :: Ms Jessica Tan :: University of Adelaide

Media...
The result of an AFL game is always unpredictable - we all know that. Hence why we discuss the weekend's upsets and the local tipping competition as part of the "water-cooler and weekend" conversation on a Monday morning. Different people use various weird and wonderful techniques or criteria to predict the winning team. With readily available data, I will investigate and compare various strategies and define a measure of the hardness of a round (full acknowledgements will be made in my presentation). Hopefully this will help me for next year's tipping competition...
Air-cooled binary Rankine cycle performance with varying ambient temperature
12:10 Mon 13 Aug, 2012 :: B.21 Ingkarni Wardli :: Ms Josephine Varney :: University of Adelaide

Media...
Next month, I have to give a presentation in Reno, Nevada to a group of geologists, engineers and geophysicists. So, for this talk, I am going to ask you to pretend you know very little about maths (and perhaps a lot about geology) and give me some feedback on my proposed talk. The presentation itself, is about the effect of air-cooling on geothermal power plant performance. Air-cooling is necessary for geothermal plays in dry areas, and ambient air temperature significantly affects the power output of air-cooled geothermal power plants. Hence, a method for determining the effect of ambient air temperature on geothermal power plants is presented. Using the ambient air temperature distribution from Leigh Creek, South Australia, this analysis shows that an optimally designed plant produces 6% more energy annually than a plant designed using the mean ambient temperature.
Differential topology 101
13:10 Fri 17 Aug, 2012 :: Engineering North 218 :: Dr Nicholas Buchdahl :: University of Adelaide

Much of my recent research been directed at a problem in the theory of compact complex surfaces---trying to fill in a gap in the Enriques-Kodaira classification. Attempting to classify some collection of mathematical objects is a very common activity for pure mathematicians, and there are many well-known examples of successful classification schemes; for example, the classification of finite simple groups, and the classification of simply connected topological 4-manifolds. The aim of this talk will be to illustrate how techniques from differential geometry can be used to classify compact surfaces. The level of the talk will be very elementary, and the material is all very well known, but it is sometimes instructive to look back over simple cases of a general problem with the benefit of experience to gain greater insight into the more general and difficult cases.
Noncommutative geometry and conformal geometry
13:10 Fri 24 Aug, 2012 :: Engineering North 218 :: Dr Hang Wang :: Tsinghua University

In this talk, we shall use noncommutative geometry to obtain an index theorem in conformal geometry. This index theorem follows from an explicit and geometric computation of the Connes-Chern character of the spectral triple in conformal geometry, which was introduced recently by Connes and Moscovici. This (twisted) spectral triple encodes the geometry of the group of conformal diffeomorphisms on a spin manifold. The crux of of this construction is the conformal invariance of the Dirac operator. As a result, the Connes-Chern character is intimately related to the CM cocycle of an equivariant Dirac spectral triple. We compute this equivariant CM cocycle by heat kernel techniques. On the way we obtain a new heat kernel proof of the equivariant index theorem for Dirac operators. (Joint work with Raphael Ponge.)
Star Wars Vs The Lord of the Rings: A Survival Analysis
12:10 Mon 27 Aug, 2012 :: B.21 Ingkarni Wardli :: Mr Christopher Davies :: University of Adelaide

Media...
Ever wondered whether you are more likely to die in the Galactic Empire or Middle Earth? Well this is the postgraduate seminar for you! I'll be attempting to answer this question using survival analysis, the statistical method of choice for investigating time to event data. Spoiler Warning: This talk will contain references to the deaths of characters in the above movie sagas.
Boundary-layer transition and separation over asymmetrically textured spherical surfaces
12:30 Mon 27 Aug, 2012 :: B.21 Ingkarni Wardli :: Mr Adam Tunney :: University of Adelaide

Media...
The game of cricket is unique among ball sports by the ignorant exploitation of \thetitle in the practice of swing bowling, often referred to as a "mysterious art". I will talk a bit about the Magnus effect exploited in inferior sports, the properties of a cricket ball that allow swing bowling, and the explanation of three modes of swing (conventional, contrast and reverse). Following that there will be some discussion on how I plan to use mathematics to turn this "art" into science.
Wave propagation in disordered media
15:10 Fri 31 Aug, 2012 :: B.21 Ingkarni Wardli :: Dr Luke Bennetts :: The University of Adelaide

Media...
Problems involving wave propagation through systems composed of arrays of scattering sources embedded in some background medium will be considered. For example, in a fluids setting, the background medium is the open ocean surface and the scatterers are floating bodies, such as wave energy devices. Waves propagate in very different ways if the system is structured or disordered. If the disorder is random the problem is to determine the `effective' wave propagation properties by considering the ensemble average over all possible realisations of the system. I will talk about semi-analytical (i.e. low numerical cost) approaches to determining the effective properties.
Principal Component Analysis (PCA)
12:30 Mon 3 Sep, 2012 :: B.21 Ingkarni Wardli :: Mr Lyron Winderbaum :: University of Adelaide

Media...
Principal Component Analysis (PCA) has become something of a buzzword recently in a number of disciplines including the gene expression and facial recognition. It is a classical, and fundamentally simple, concept that has been around since the early 1900's, its recent popularity largely due to the need for dimension reduction techniques in analyzing high dimensional data that has become more common in the last decade, and the availability of computing power to implement this. I will explain the concept, prove a result, and give a couple of examples. The talk should be accessible to all disciplines as it (should?) only assume first year linear algebra, the concept of a random variable, and covariance.
Examples of counterexamples
13:10 Tue 4 Sep, 2012 :: 7.15 Ingkarni Wardli :: Dr Pedram Hekmati :: School of Mathematical Sciences

Media...
This aims to be an example of an exemplary talk on examples of celebrated counterexamples in mathematics. A famous example, for example, is Euler's counterexample to Fermat's conjecture in number theory.
Classification of a family of symmetric graphs with complete quotients
13:10 Fri 7 Sep, 2012 :: Engineering North 218 :: A/Prof Sanming Zhou :: University of Melbourne

A finite graph is called symmetric if its automorphism group is transitive on the set of arcs (ordered pairs of adjacent vertices) of the graph. This is to say that all arcs have the same status in the graph. I will talk about recent results on the classification of a family of symmetric graphs with complete quotients. The most interesting graphs arising from this classification are defined in terms of Hermitian unitals (which are specific block designs), and they admit unitary groups as groups of automorphisms. I will also talk about applications of our results in constructing large symmetric graphs of given degree and diameter. This talk contains joint work with M. Giulietti, S. Marcugini and F. Pambianco.
Two classes of network structures that enable efficient information transmission
15:10 Fri 7 Sep, 2012 :: B.20 Ingkarni Wardli :: A/Prof Sanming Zhou :: The University of Melbourne

Media...
What network topologies should we use in order to achieve efficient information transmission? Of course answer to this question depends on how we measure efficiency of information dissemination. If we measure it by the minimum gossiping time under the store-and-forward, all-port and full-duplex model, we show that certain Cayley graphs associated with Frobenius groups are `perfect' in a sense. (A Frobenius group is a permutation group which is transitive but not regular such that only the identity element can fix two points.) Such graphs are also optimal for all-to-all routing in the sense that the maximum load on edges achieves the minimum. In this talk we will discuss this theory of optimal network design.
Knot Theory
12:10 Mon 10 Sep, 2012 :: B.21 Ingkarni Wardli :: Mr Konrad Pilch :: University of Adelaide

Media...
The ancient Chinese used it, the Celts had this skill in spades, it was a big skill of seafarers and pirates, and even now we need it if only to be able to wear shoes! This talk will be about Knot Theory. Knot theory has a colourful and interesting past and I will touch on the why, the what and the when of knots in mathematics. I shall also discuss the major problems concerning knots including the different methods of classification of knots, the unresolved questions about knots, and why have they even been studied. It will be a thorough immersion that will leave you knotted!
The Wonderful World of Interval Arithmetic
12:30 Mon 10 Sep, 2012 :: B.21 Ingkarni Wardli :: Ms Mingmei Teo :: University of Adelaide

Media...
There are many situations where we round off answers or give approximations to solutions to equations. Are we happy to do so or are there ways we can overcome this problem? What about providing intervals in which the true solution lies? An example of this is when Archimedes was able to contain \pi by taking a circle between inscribed and circumscribed polygons and take an increasing number of sides of the polygons. In this talk, I will explain a variety of things to do with interval arithmetic. These range from why interval arithmetic is useful to us, some basics of interval arithmetic and also some interesting and cool properties of intervals. I will also discuss briefly how I use it in my project.
Geometric quantisation in the noncompact setting
13:10 Fri 14 Sep, 2012 :: Engineering North 218 :: Dr Peter Hochs :: Leibniz University, Hannover

Traditionally, the geometric quantisation of an action by a compact Lie group on a compact symplectic manifold is defined as the equivariant index of a certain Dirac operator. This index is a well-defined formal difference of finite-dimensional representations, since the Dirac operator is elliptic and the manifold and the group in question are compact. From a mathematical and physical point of view however, it is very desirable to extend geometric quantisation to noncompact groups and manifolds. Defining a suitable index is much harder in the noncompact setting, but several interesting results in this direction have been obtained. I will review the difficulties connected to noncompact geometric quantisation, and some of the solutions that have been proposed so far, mainly in connection to the "quantisation commutes with reduction" principle. (An introduction to this principle will be given in my talk at the Colloquium on the same day.)
Quantisation commutes with reduction
15:10 Fri 14 Sep, 2012 :: B.20 Ingkarni Wardli :: Dr Peter Hochs :: Leibniz University Hannover

Media...
The "Quantisation commutes with reduction" principle is an idea from physics, which has powerful applications in mathematics. It basically states that the ways in which symmetry can be used to simplify a physical system in classical and quantum mechanics, are compatible. This provides a strong link between the areas in mathematics used to describe symmetry in classical and quantum mechanics: symplectic geometry and representation theory, respectively. It has been proved in the 1990s that quantisation indeed commutes with reduction, under the important assumption that all spaces and symmetry groups involved are compact. This talk is an introduction to this principle and, if time permits, its mathematical relevance.
Krylov Subspace Methods or: How I Learned to Stop Worrying and Love GMRes
12:10 Mon 17 Sep, 2012 :: B.21 Ingkarni Wardli :: Mr David Wilke :: University of Adelaide

Media...
Many problems within applied mathematics require the solution of a linear system of equations. For instance, models of arterial umbilical blood flow are obtained through a finite element approximation, resulting in a linear, n x n system. For small systems the solution is (almost) trivial, but what happens when n is large? Say, n ~ 10^6? In this case matrix inversion is expensive (read: completely impractical) and we seek approximate solutions in a reasonable time. In this talk I will discuss the basic theory underlying Krylov subspace methods; a class of non-stationary iterative methods which are currently the methods-of-choice for large, sparse, linear systems. In particular I will focus on the method of Generalised Minimum RESiduals (GMRes), which is of the most popular for nonsymmetric systems. It is hoped that through this presentation I will convince you that a) solving linear systems is not necessarily trivial, and that b) my lack of any tangible results is not (entirely) a result of my own incompetence.
The advection-diffusion-reaction equation on the surface of the sphere
12:10 Mon 24 Sep, 2012 :: B.21 Ingkarni Wardli :: Mr Kale Davies :: University of Adelaide

Media...
We aim to solve the advection-diffusion-reaction equation on the surface of a sphere. In order to do this we will be required to utilise spherical harmonics, a set of solutions to Laplace's equation in spherical coordinates. Upon solving the equations, we aim to find a set of parameters that cause a localised concentration to be maintained in the flow, referred to as a hotspot. In this talk I will discuss the techniques that are required to numerically solve this problem and the issues that occur/how to deal with these issues when searching for hotspot solutions.
Rescaling the coalescent
12:30 Mon 8 Oct, 2012 :: B.21 Ingkarni Wardli :: Mr Adam Rohrlach :: University of Adelaide

Media...
Recently I gave a short talk about how researchers use mathematics to estimate the time since a species' most recent common ancestor. I also pointed out why this generally doesn't work when a population hasn't had a constant population size. Then I quickly changed the subject. In this talk I aim to reintroduce the Coalescent Model, show how it works in general, and finally how researcher's deal with varying a population size.
Probability, what can it tell us about health?
13:10 Tue 9 Oct, 2012 :: 7.15 Ingkarni Wardli :: Prof Nigel Bean :: School of Mathematical Sciences

Media...
Clinical trials are the way in which modern medical systems test whether individual treatments are worthwhile. Sophisticated statistics is used to try and make the conclusions from clinical trials as meaningful as possible. What can a very simple probability model then tell us about the worth of multiple treatments? What might the implications of this be for the whole health system?

This talk is based on research currently being conducted with a physician at a major Adelaide hospital. It requires no health knowledge and was not tested on animals. All you need is an enquiring and open mind.
Complex analysis in low Reynolds number hydrodynamics
15:10 Fri 12 Oct, 2012 :: B.20 Ingkarni Wardli :: Prof Darren Crowdy :: Imperial College London

Media...
It is a well-known fact that the methods of complex analysis provide great advantage in studying physical problems involving a harmonic field satisfying Laplace's equation. One example is in ideal fluid mechanics (infinite Reynolds number) where the absence of viscosity, and the assumption of zero vorticity, mean that it is possible to introduce a so-called complex potential -- an analytic function from which all physical quantities of interest can be inferred. In the opposite limit of zero Reynolds number flows which are slow and viscous and the governing fields are not harmonic it is much less common to employ the methods of complex analysis even though they continue to be relevant in certain circumstances. This talk will give an overview of a variety of problems involving slow viscous Stokes flows where complex analysis can be usefully employed to gain theoretical insights. A number of example problems will be considered including the locomotion of low-Reynolds-number micro-organisms and micro-robots, the friction properties of superhydrophobic surfaces in microfluidics and problems of viscous sintering and the manufacture of microstructured optic fibres (MOFs).
Optimal Experimental Design: What Is It?
12:10 Mon 15 Oct, 2012 :: B.21 Ingkarni Wardli :: Mr David Price :: University of Adelaide

Media...
Optimal designs are a class of experimental designs that are optimal with respect to some statistical criterion. That answers the question, right? But what do I mean by 'optimal', and which 'statistical criterion' should you use? In this talk I will answer all these questions, and provide an overly simple example to demonstrate how optimal design works. I will then give a brief explanation of how I will use this methodology, and what chickens have to do with it.
AD Model Builder and the estimation of lobster abundance
12:10 Mon 22 Oct, 2012 :: B.21 Ingkarni Wardli :: Mr John Feenstra :: University of Adelaide

Media...
Determining how many millions of lobsters reside in our waters and how it changes over time is a central aim of lobster stock assessment. ADMB is powerful optimisation software to model and solve complex non-linear problems using automatic differentiation and plays a major role in SA and worldwide in fisheries stock assessment analyses. In this talk I will provide a brief description of an example modelling problem, key features and use of ADMB.
The space of cubic rational maps
13:10 Fri 26 Oct, 2012 :: Engineering North 218 :: Mr Alexander Hanysz :: University of Adelaide

For each natural number d, the space of rational maps of degree d on the Riemann sphere has the structure of a complex manifold. The topology of these manifolds has been extensively studied. The recent development of Oka theory raises some new and interesting questions about their complex structure. We apply geometric invariant theory to the degree 3 case, studying a double action of the Mobius group on the space of cubic rational maps. We show that the categorical quotient is C, and that the space of cubic rational maps enjoys the holomorphic flexibility properties of strong dominability and C-connectedness.
Fair and Loathing in State Parliament
12:10 Mon 29 Oct, 2012 :: B.21 Ingkarni Wardli :: Mr Casey Briggs :: University of Adelaide

Media...
The South Australian electoral system has a history of bias, malapportionment and perceived unfairness. These days, it is typical of most systems across Australia, except with one major difference - a specific legislated criterion designed to force the system to be 'fair'. In reality, fairness is a hard concept to define, and an even harder concept to enforce. In this talk I will briefly take you through the history of South Australian electoral reform, the current state of affairs and my proposed research. There will be very little in the way of rigorous mathematics. No knowledge of politics is assumed, but an understanding of the process of voting would be useful.
Modern trends in dynamo theory
15:10 Fri 16 Nov, 2012 :: B.20 Ingkarni Wardli :: Prof Michael Proctor :: University of Cambridge

Media...
Dynamo action is the process by which magnetic fields in astrophysical bodies (and recently, laboratory fluids) are maintained against resistive losses by Faraday induction. For many years a favoured model of this process, known as mean-field electrodynamics, has been widely used to produce tractable models. I shall present a critique of this theory and contrast it it with another dynamo process (small scale dynamo action) that does not, unlike mean-field electrodynamics, rely on broken reflection symmetry or scale separation. Finally, I shall talk about very recent rigorous results concerning the Archontis dynamo, in which the magnetic and velocity fields are closely aligned.
Recent results on holomorphic extension of functions on unbounded domains in C^n
11:10 Fri 21 Dec, 2012 :: Ingkarni Wardli B19 :: Prof Roman Dwilewicz :: Missouri University of Science and Technology

In the talk there will be given a short review of holomorphic extension problems starting with the famous Hartogs theorem (1906) up to recent results on global holomorphic extensions for unbounded domains, obtained together with Al Boggess (Arizona State Univ.) and Zbigniew Slodkowski (Univ. Illinois at Chicago). There is an interesting geometry behind the extension problem for unbounded domains, namely (in some cases) it depends on the position of a complex variety in the closure of the domain. The extension problem appeared non-trivial and the work is in progress. However the talk will be illustrated by many figures and pictures and should be accessible also to graduate students.
Conformally Fedosov manifolds
12:10 Fri 8 Mar, 2013 :: Ingkarni Wardli B19 :: Prof Michael Eastwood :: Australian National University

Symplectic and projective structures may be compatibly combined. The resulting structure closely resembles conformal geometry and a manifold endowed with such a structure is called conformally Fedosov. This talk will present the basic theory of conformally Fedosov geometry and, in particular, construct a Cartan connection for them. This is joint work with Jan Slovak.
Twistor space for rolling bodies
12:10 Fri 15 Mar, 2013 :: Ingkarni Wardli B19 :: Prof Pawel Nurowski :: University of Warsaw

We consider a configuration space of two solids rolling on each other without slipping or twisting, and identify it with an open subset U of R^5, equipped with a generic distribution D of 2-planes. We will discuss symmetry properties of the pair (U,D) and will mention that, in the case of the two solids being balls, when changing the ratio of their radii, the dimension of the group of local symmetries unexpectedly jumps from 6 to 14. This occurs for only one such ratio, and in such case the local group of symmetries of the pair (U,D) is maximal. It is maximal not only among the balls with various radii, but more generally among all (U,D)s corresponding to configuration spaces of two solids rolling on each other without slipping or twisting. This maximal group is isomorphic to the split real form of the exceptional Lie group G2. In the remaining part of the talk we argue how to identify the space U from the pair (U,D) defined above with the bundle T of totally null real 2-planes over a 4-manifold equipped with a split signature metric. We call T the twistor bundle for rolling bodies. We show that the rolling distribution D, can be naturally identified with an appropriately defined twistor distribution on T. We use this formulation of the rolling system to find more surfaces which, when rigidly rolling on each other without slipping or twisting, have the local group of symmetries isomorphic to the exceptional group G2.
A multiscale approach to reaction-diffusion processes in domains with microstructure
15:10 Fri 15 Mar, 2013 :: B.18 Ingkarni Wardli :: Prof Malte Peter :: University of Augsburg

Media...
Reaction-diffusion processes occur in many materials with microstructure such as biological cells, steel or concrete. The main difficulty in modelling and simulating accurately such processes is to account for the fine microstructure of the material. One method of upscaling multi-scale problems, which has proven reliable for obtaining feasible macroscopic models, is the method of periodic homogenisation. The talk will give an introduction to multi-scale modelling of chemical mechanisms in domains with microstructure as well as to the method of periodic homogenisation. Moreover, a few aspects of solving the resulting systems of equations numerically will also be discussed.
A stability theorem for elliptic Harnack inequalities
15:10 Fri 5 Apr, 2013 :: B.18 Ingkarni Wardli :: Prof Richard Bass :: University of Connecticut

Media...
Harnack inequalities are an important tool in probability theory, analysis, and partial differential equations. The classical Harnack inequality is just the one you learned in your graduate complex analysis class, but there have been many extensions, to different spaces, such as manifolds, fractals, infinite graphs, and to various sorts of elliptic operators. A landmark result was that of Moser in 1961, where he proved the Harnack inequality for solutions to a class of partial differential equations. I will talk about the stability of Harnack inequalities. The main result says that if the Harnack inequality holds for an operator on a space, then the Harnack inequality will also hold for a large class of other operators on that same space. This provides a generalization of the result of Moser.
Kronecker-Weber Theorem
12:10 Mon 8 Apr, 2013 :: B.19 Ingkarni Wardli :: Konrad Pilch :: University of Adelaide

Media...
The Kronecker-Weber Theorem has a rich and inspiring history. Much like Fermat's Last Theorem, it can be expressed in a very simple way. Its many proofs often utilise heavy machinery and those who claim it can be solved using elementary means, have quite frankly redefined the meaning of elementary. It has inspired David Hilbert and many other mathematicians leading to a great amount of fantastic work in the area. In this talk, I will discuss this theorem, a 'fairly' simple proof of it as well as discuss how it is relevant to my work and the works of others.
A glimpse at the Langlands program
15:10 Fri 12 Apr, 2013 :: B.18 Ingkarni Wardli :: Dr Masoud Kamgarpour :: University of Queensland

Media...
Abstract: In the late 1960s, Robert Langlands made a series of surprising conjectures relating fundamental concepts from number theory, representation theory, and algebraic geometry. Langlands' conjectures soon developed into a high-profile international research program known as the Langlands program. Many fundamental problems, including the Shimura-Taniyama-Weil conjecture (partially settled by Andrew Wiles in his proof of the Fermat's Last Theorem), are particular cases of the Langlands program. In this talk, I will discuss some of the motivation and results in this program.
Conformal Killing spinors in Riemannian and Lorentzian geometry
12:10 Fri 19 Apr, 2013 :: Ingkarni Wardli B19 :: Prof Helga Baum :: Humboldt University

Conformal Killing spinors are the solutions of the conformally covariant twistor equation on spinors. Special cases are parallel and Killing spinors, the latter appear as eigenspinors of the Dirac operator on compact Riemannian manifolds of positive scalar curvature for the smallest possible positive eigenvalue. In the talk I will discuss geometric properties of manifolds admitting (conformal) Killing spinors. In particular, I will explain a local classification of the special geometric structures admitting conformal Killing spinors without zeros in the Riemannian as well as in the Lorentzian setting.
The boundary conditions for macroscale modelling of a discrete diffusion system with periodic diffusivity
12:10 Mon 29 Apr, 2013 :: B.19 Ingkarni Wardli :: Chen Chen :: University of Adelaide

Media...
Many mathematical and engineering problems have a multiscale nature. There are a vast of theories supporting multiscale modelling on infinite domain, such as homogenization theory and centre manifold theory. To date, there are little consideration of the correct boundary conditions to be used at the edge of macroscale model. In this seminar, I will present how to derive macroscale boundary conditions for the diffusion system.
Models of cell-extracellular matrix interactions in tissue engineering
15:10 Fri 3 May, 2013 :: B.18 Ingkarni Wardli :: Dr Ed Green :: University of Adelaide

Media...
Tissue engineers hope in future to be able to grow functional tissues in vitro to replace those that are damaged by injury, disease, or simple wear and tear. They use cell culture methods, such as seeding cells within collagen gels, that are designed to mimic the cells' environment in vivo. Amongst other factors, it is clear that mechanical interactions between cells and the extracellular matrix (ECM) in which they reside play an important role in tissue development. However, the mechanics of the ECM is complex, and at present, its role is only partly understood. In this talk, I will present mathematical models of some simple cell-ECM interaction problems, and show how they can be used to gain more insight into the processes that regulate tissue development.
Diffeological spaces and differentiable stacks
12:10 Fri 10 May, 2013 :: Ingkarni Wardli B19 :: Dr David Roberts :: University of Adelaide

The category of finite-dimensional smooth manifolds gives rise to interesting structures outside of itself, two examples being mapping spaces and classifying spaces. Diffeological spaces are a notion of generalised smooth space which form a cartesian closed category, so all fibre products and all mapping spaces of smooth manifolds exist as diffeological spaces. Differentiable stacks are a further generalisation that can also deal with moduli spaces (including classifying spaces) for objects with automorphisms. This talk will give an introduction to this circle of ideas.
Neuronal excitability and canards
15:10 Fri 10 May, 2013 :: B.18 Ingkarni Wardli :: A/Prof Martin Wechselberger :: University of Sydney

Media...
The notion of excitability was first introduced in an attempt to understand firing properties of neurons. It was Alan Hodgkin who identified three basic types (classes) of excitable axons (integrator, resonator and differentiator) distinguished by their different responses to injected steps of currents of various amplitudes. Pioneered by Rinzel and Ermentrout, bifurcation theory explains repetitive (tonic) firing patterns for adequate steady inputs in integrator (type I) and resonator (type II) neuronal models. In contrast, the dynamic behavior of differentiator (type III) neurons cannot be explained by standard dynamical systems theory. This third type of excitable neuron encodes a dynamic change in the input and leads naturally to a transient response of the neuron. In this talk, I will show that "canards" - peculiar mathematical creatures - are well suited to explain the nature of transient responses of neurons due to dynamic (smooth) inputs. I will apply this geometric theory to a simple driven FitzHugh-Nagumo/Morris-Lecar type neural model and to a more complicated neural model that describes paradoxical excitation due to propofol anesthesia.
Crystallographic groups I: the classical theory
12:10 Fri 17 May, 2013 :: Ingkarni Wardli B19 :: Dr Wolfgang Globke :: University of Adelaide

A discrete isometry group acting properly discontinuously on the n-dimensional Euclidean space with compact quotient is called a crystallographic group. This name reflects the fact that in dimension n=3 their compact fundamental domains resemble a space-filling crystal pattern. For higher dimensions, Hilbert posed his famous 18th problem: "Is there in n-dimensional Euclidean space only a finite number of essentially different kinds of groups of motions with a [compact] fundamental region?" This problem was solved by Bieberbach when he proved that in every dimension n there exists only a finite number of isomorphic crystallographic groups and also gave a description of these groups. From the perspective of differential geometry these results are of major importance, as crystallographic groups are precisely the fundamental groups of compact flat Riemannian orbifolds. The quotient is even a manifold if the fundamental group is required to be torsion-free, in which case it is called a Bieberbach group. Moreover, for a flat manifold the fundamental group completely determines the holonomy group. In this talk I will discuss the properties of crystallographic groups, study examples in dimension n=2 and n=3, and present the three Bieberbach theorems on the structure of crystallographic groups.
Pulsatile Flow
12:10 Mon 20 May, 2013 :: B.19 Ingkarni Wardli :: David Wilke :: University of Adelaide

Media...
Blood flow within the human arterial system is inherently unsteady as a consequence of the pulsations of the heart. The unsteady nature of the flow gives rise to a number of important flow features which may be critical in understanding pathologies of the cardiovascular system. For example, it is believed that large oscillations in wall shear stress may enhance the effects of artherosclerosis, among other pathologies. In this talk I will present some of the basic concepts of pulsatile flow and follow the analysis first performed by J.R. Womersley in his seminal 1955 paper.
Coincidences
14:10 Mon 20 May, 2013 :: 7.15 Ingkarni Wardli :: A/Prof. Robb Muirhead :: School of Mathematical Sciences

Media...
This is a lighthearted (some would say content-free) talk about coincidences, those surprising concurrences of events that are often perceived as meaningfully related, with no apparent causal connection. Time permitting, it will touch on topics like:
Patterns in data and the dangers of looking for patterns, unspecified ahead of time, and trying to "explain" them; e.g. post hoc subgroup analyses, cancer clusters, conspiracy theories ...
Matching problems; e.g. the birthday problem and extensions
People who win a lottery more than once -- how surprised should we really be? What's the question we should be asking?
When you become familiar with a new word, and see it again soon afterwards, how surprised should you be?
Caution: This is a shortened version of a talk that was originally prepared for a group of non-mathematicians and non-statisticians, so it's mostly non-technical. It probably does not contain anything you don't already know -- it will be an amazing coincidence if it does!
Crystallographic groups II: generalisations
12:10 Fri 24 May, 2013 :: Ingkarni Wardli B19 :: Dr Wolfgang Globke :: University of Adelaide

The theory of crystallographic groups acting cocompactly on Euclidean space can be extended and generalised in many different ways. For example, instead of studying discrete groups of Euclidean isometries, one can consider groups of isometries for indefinite inner products. These are the fundamental groups of compact flat pseudo-Riemannian manifolds. Still more generally, one might study group of affine transformation on n-space that are not required to preserve any bilinear form. Also, the condition of cocompactness can be dropped. In this talk, I will present some of the results obtained for these generalisations, and also discuss some of my own work on flat homogeneous pseudo-Riemannian spaces.
Multiscale modelling couples patches of wave-like simulations
12:10 Mon 27 May, 2013 :: B.19 Ingkarni Wardli :: Meng Cao :: University of Adelaide

Media...
A multiscale model is proposed to significantly reduce the expensive numerical simulations of complicated waves over large spatial domains. The multiscale model is built from given microscale simulations of complicated physical processes such as sea ice or turbulent shallow water. Our long term aim is to enable macroscale simulations obtained by coupling small patches of simulations together over large physical distances. This initial work explores the coupling of patch simulations of wave-like pdes. With the line of development being to water waves we discuss the dynamics of two complementary fields called the 'depth' h and 'velocity' u. A staggered grid is used for the microscale simulation of the depth h and velocity u. We introduce a macroscale staggered grid to couple the microscale patches. Linear or quadratic interpolation provides boundary conditions on the field in each patch. Linear analysis of the whole coupled multiscale system establishes that the resultant macroscale dynamics is appropriate. Numerical simulations support the linear analysis. This multiscale method should empower the feasible computation of large scale simulations of wave-like dynamics with complicated underlying physics.
A strong Oka principle for proper immersions of finitely connected planar domains into CxC*
12:10 Fri 31 May, 2013 :: Ingkarni Wardli B19 :: Dr Tyson Ritter :: University of Adelaide

Gromov, in his seminal 1989 paper on the Oka principle, proved that every continuous map from a Stein manifold into an elliptic manifold is homotopic to a holomorphic map. In previous work we showed that, given a continuous map from X to the elliptic manifold CxC*, where X is a finitely connected planar domain without isolated boundary points, a stronger Oka property holds whereby the map is homotopic to a proper holomorphic embedding. If the planar domain is additionally permitted to have isolated boundary points the problem becomes more difficult, and it is not yet clear whether a strong Oka property for embeddings into CxC* continues to hold. We will discuss recent results showing that every continuous map from a finitely connected planar domain into CxC* is homotopic to a proper immersion that, in most cases, identifies at most finitely many pairs of distinct points. This is joint work with Finnur Larusson.
Markov decision processes and interval Markov chains: what is the connection?
12:10 Mon 3 Jun, 2013 :: B.19 Ingkarni Wardli :: Mingmei Teo :: University of Adelaide

Media...
Markov decision processes are a way to model processes which involve some sort of decision making and interval Markov chains are a way to incorporate uncertainty in the transition probability matrix. How are these two concepts related? In this talk, I will give an overview of these concepts and discuss how they relate to each other.
Invariant Theory: The 19th Century and Beyond
15:10 Fri 21 Jun, 2013 :: B.18 Ingkarni Wardli :: Dr Jarod Alper :: Australian National University

Media...
A central theme in 19th century mathematics was invariant theory, which was viewed as a bridge between geometry and algebra. David Hilbert revolutionized the field with two seminal papers in 1890 and 1893 with techniques such as Hilbert's basis theorem, Hilbert's Nullstellensatz and Hilbert's syzygy theorem that spawned the modern field of commutative algebra. After Hilbert's groundbreaking work, the field of invariant theory remained largely inactive until the 1960's when David Mumford revitalized the field by reinterpreting Hilbert's ideas in the context of algebraic geometry which ultimately led to the influential construction of the moduli space of smooth curves. Today invariant theory remains a vital research area with connections to various mathematical disciplines: representation theory, algebraic geometry, commutative algebra, combinatorics and nonlinear differential operators. The goal of this talk is to provide an introduction to invariant theory with an emphasis on Hilbert's and Mumford's contributions. Time permitting, I will explain recent research with Maksym Fedorchuk and David Smyth which exploits the ideas of Hilbert, Mumford as well as Kempf to answer a classical question concerning the stability of algebraic curves.
K-homology and the quantization commutes with reduction problem
12:10 Fri 5 Jul, 2013 :: 7.15 Ingkarni Wardli :: Prof Nigel Higson :: Pennsylvania State University

The quantization commutes with reduction problem for Hamiltonian actions of compact Lie groups was solved by Meinrenken in the mid-1990s using geometric techniques, and solved again shortly afterwards by Tian and Zhang using analytic methods. In this talk I shall outline some of the close links that exist between the problem, the two solutions, and the geometric and analytic versions of K-homology theory that are studied in noncommutative geometry. I shall try to make the case for K-homology as a useful conceptual framework for the solutions and (at least some of) their various generalizations.
Quantization, Representations and the Orbit Philosophy
15:10 Fri 5 Jul, 2013 :: B.18 Ingkarni Wardli :: Prof Nigel Higson :: Pennsylvania State University

Media...
This talk will be about the mathematics of quantization and about representation theory, where the concept of quantization seems to be especially relevant. It was discovered by Kirillov in the 1960's that the representation theory of nilpotent Lie groups (such as the group that encodes Heisenberg's commutation relations) can be beautifully and efficiently described using a vocabulary drawn from geometry and quantum mechanics. The description was soon adapted to other classes of Lie groups, and the expectation that it ought to apply almost universally has come to be called the "orbit philosophy." But despite early successes, the orbit philosophy is in a decidedly unfinished state. I'll try to explain some of the issues and some possible new directions.
Fire-Atmosphere Models
12:10 Mon 29 Jul, 2013 :: B.19 Ingkarni Wardli :: Mika Peace :: University of Adelaide

Media...
Fire behaviour models are increasingly being used to assist in planning and operational decisions for bush fires and fuel reduction burns. Rate of spread (ROS) of the fire front is a key output of such models. The ROS value is typically calculated from a formula which has been derived from empirical data, using very simple meteorological inputs. We have used a coupled fire-atmosphere model to simulate real bushfire events. The results show that complex interactions between a fire and the atmosphere can have a significant influence on fire spread, thus highlighting the limitations of a model that uses simple meteorological inputs.
Symplectic Lie groups
12:10 Fri 9 Aug, 2013 :: Ingkarni Wardli B19 :: Dr Wolfgang Globke :: University of Adelaide

A "symplectic Lie group" is a Lie group G with a symplectic form such that G acts by symplectic transformations on itself. Such a G cannot be semisimple, so the research focuses on solvable symplectic Lie groups. In the compact case, a classification of these groups is known. In many cases, a solvable symplectic Lie group G is a cotangent bundle of a flat Lie group H. Then H is a Lagrange subgroup of G, meaning its Lie algebra h is isotropic in the Lie algebra g of G. The existence of Lagrange subalgebras or ideals in g is an important question which relates to many problems in the general structure theory of symplectic Lie groups. In my talk, I will give a brief overview of the known results in this field, ranging from the 1970s to a very recent structure theory.
Eigenvalue Magic Tricks
14:10 Mon 12 Aug, 2013 :: 7.15 Ingkarni Wardli :: Dr David Butler :: Maths Learning Centre

Media...
Eigenvalues are awesome, but students rarely get the chance to see just how supremely awesome they are. In this talk I will tell you some awesome truths about eigenvalues that you do not get to see in first year, and show you their proofs, which happen to contain some of the most clever magic tricks in the whole of maths.
A survey of non-abelian cohomology
12:10 Fri 16 Aug, 2013 :: Ingkarni Wardli B19 :: Dr Danny Stevenson :: University of Adelaide

If G is a topological group, not necessarily abelian, then the set H^1(M,G) has a natural interpretation in terms of principal G-bundles on the space M. In this talk I will describe higher degree analogs of both the set H^1(M,G) and the notion of a principal bundle (the latter is closely connected to the subject of bundle gerbes). I will explain, following work of Joyal, Jardine and many others, how the language of abstract homotopy theory gives a very convenient framework for discussing these ideas.
Group meeting
15:10 Fri 23 Aug, 2013 :: 5.58 (Ingkarni Wardli) :: Dr Barry Cox, Professor Tony Roberts & Stephen Wade :: University of Adelaide

Talk: Dr Barry Cox - 'Conformation space of seven-member rings'. Work in progress discussion: Professor Tony Roberts - Macroscale PDEs emerge from microscale dynamics with quantified errors Stephen Wade - Trapped waves in flow past a trench
The Lowenheim-Skolem theorem
12:10 Mon 26 Aug, 2013 :: B.19 Ingkarni Wardli :: William Crawford :: University of Adelaide

Media...
For those of us who didn't do an undergrad course in logic, the foundations of set theory are pretty daunting. I will give a run down of some of the basics and then talk about a lesser known, but interesting result; the Lowenheim-Skolem theorem. One of the consequences of the theorem is that a set can be countable in one model of set theory, while being uncountable in another.
Medical Decision Analysis
12:10 Mon 2 Sep, 2013 :: B.19 Ingkarni Wardli :: Eka Baker :: University of Adelaide

Doctors make life changing decisions every day based on clinical trial data. However, this data is often obtained from studies on healthy individuals or on patients with only the disease that a treatment is targeting. Outside of these studies, many patients will have other conditions that may affect the predicted benefit of receiving a certain treatment. I will talk about what clinical trials are, how to measure the benefit of treatments, and how having multiple conditions (comorbidities) will affect the benefit of treatments.
Thin-film flow in helical channels
12:10 Mon 9 Sep, 2013 :: B.19 Ingkarni Wardli :: David Arnold :: University of Adelaide

Media...
Spiral particle separators are used in the mineral processing industry to refine ores. A slurry, formed by mixing crushed ore with a fluid, is run down a helical channel and at the end of the channel, the particles end up sorted in different sections of the channel. Design of such devices is largely experimentally based, and mathematical modelling of flow in helical channels is relatively limited. In this talk, I will outline some of the work that I have been doing on thin-film flow in helical channels.
K-theory and solid state physics
12:10 Fri 13 Sep, 2013 :: Ingkarni Wardli B19 :: Dr Keith Hannabuss :: Balliol College, Oxford

More than 50 years ago Dyson showed that there is a nine-fold classification of random matrix models, the classes of which are each associated with Riemannian symmetric spaces. More recently it was realised that a related argument enables one to classify the insulating properties of fermionic systems (with the addition of an extra class to give 10 in all), and can be described using K-theory. In this talk I shall give a survey of the ideas, and a brief outline of work with Guo Chuan Thiang.
The logarithmic singularities of the Green functions of the conformal powers of the Laplacian
11:10 Mon 16 Sep, 2013 :: Ingkarni Wardli B20 :: Prof Raphael Ponge :: Seoul National University

Green functions play an important role in conformal geometry. In this talk, we shall explain how to compute explicitly the logarithmic singularities of the Green functions of the conformal powers of the Laplacian. These operators are the Yamabe and Paneitz operators, as well as the conformal fractional powers of the Laplacian arising from scattering theory for Poincare-Einstein metrics. The results are formulated in terms of Weyl conformal invariants defined via the ambient metric of Fefferman-Graham.
Noncommutative geometry and conformal geometry
13:10 Mon 16 Sep, 2013 :: Ingkarni Wardli B20 :: Prof Raphael Ponge :: Seoul National University

In this talk we shall report on a program of using the recent framework of twisted spectral triples to study conformal geometry from a noncommutative geometric perspective. One result is a local index formula in conformal geometry taking into account the action of the group of conformal diffeomorphisms. Another result is a version of Vafa-Witten's inequality for twisted spectral triples. Geometric applications include a version of Vafa-Witten's inequality in conformal geometry. There are also noncommutative versions for spectral triples over noncommutative tori and duals of discrete cocompact subgroups of semisimple Lie groups satisfying the Baum-Connes conjecture. (This is joint work with Hang Wang.)
How to see in many dimensions
14:10 Mon 16 Sep, 2013 :: 7.15 Ingkarni Wardli :: Prof. Michael Murray :: School of Mathematical Sciences

Media...
The human brain has evolved to be able to think intuitively in three dimensions. Unfortunately the real world is at least four and maybe 10, 11 or 26 dimensional. In this talk I will show how mathematics can be used to develop your ability to think in more than three dimensions.
Random Wanderings on a Sphere...
11:10 Tue 17 Sep, 2013 :: Ingkarni Wardli Level 5 Room 5.57 :: A/Prof Robb Muirhead :: University of Adelaide

This will be a short talk (about 30 minutes) about the following problem. (Even if I tell you all I know about it, it won't take very long!) Imagine the earth is a unit sphere in 3-dimensions. You're standing at a fixed point, which we may as well take to be the North Pole. Suddenly you get moved to another point on the sphere by a random (uniform) orthogonal transormation. Where are you now? You're not at a point which is uniformly distributed on the surface of the sphere (so, since most of the earth's surface is water, you're probably drowning). But then you get moved again by the same orthogonal transformation. Where are you now? And what happens to your location it this happens repeatedly? I have only a partial answwer to this question, for 2 and 3 transformations. (There's nothing special about 3 dimensions here--results hold for all dimensions which are at least 3.) I don't know of any statistical application for this! This work was motivated by a talk I heard, given by Tom Marzetta (Bell Labs) at a conference at MIT. Although I know virtually nothing about signal processing, I gather Marzetta was trying to encode signals using powers of ranfom orthogonal matrices. After carrying out simulations, I think he decided it wasn't a good idea.
Conformal geometry in four variables and a special geometry in five
12:10 Fri 20 Sep, 2013 :: Ingkarni Wardli B19 :: Dr Dennis The :: Australian National University

Starting with a split signature 4-dimensional conformal manifold, one can build a 5-dimensional bundle over it equipped with a 2-plane distribution. Generically, this is a (2,3,5)-distribution in the sense of Cartan's five variables paper, an aspect that was recently pursued by Daniel An and Pawel Nurowski (finding new examples concerning the geometry of rolling bodies where the (2,3,5)-distribution has G2-symmetry). I shall explain how to understand some elementary aspects of this "twistor construction" from the perspective of parabolic geometry. This is joint work with Michael Eastwood and Katja Sagerschnig.
Symmetry gaps for geometric structures
15:10 Fri 20 Sep, 2013 :: B.18 Ingkarni Wardli :: Dr Dennis The :: Australian National University

Media...
Klein's Erlangen program classified geometries based on their (transitive) groups of symmetries, e.g. Euclidean geometry is the quotient of the rigid motion group by the subgroup of rotations. While this perspective is homogeneous, Riemann's generalization of Euclidean geometry is in general very "lumpy" - i.e. there exist Riemannian manifolds that have no symmetries at all. A common generalization where a group still plays a dominant role is Cartan geometry, which first arose in Cartan's solution to the equivalence problem for geometric structures, and which articulates what a "curved version" of a flat (homogeneous) model means. Parabolic geometries are Cartan geometries modelled on (generalized) flag varieties (e.g. projective space, isotropic Grassmannians) which are well-known objects from the representation theory of semisimple Lie groups. These curved versions encompass a zoo of interesting geometries, including conformal, projective, CR, systems of 2nd order ODE, etc. This interaction between differential geometry and representation theory has proved extremely fruitful in recent years. My talk will be an example-based tour of various types of parabolic geometries, which I'll use to outline some of the main aspects of the theory (suppressing technical details). The main thread throughout the talk will be the symmetry gap problem: For a given type of Cartan geometry, the maximal symmetry dimension is realized by the flat model, but what is the next possible ("submaximal") symmetry dimension? I'll sketch a recent solution (in joint work with Boris Kruglikov) for a wide class of parabolic geometries which gives a combinatorial recipe for reading the submaximal symmetry dimension from a Dynkin diagram.
Controlling disease, one household at a time.
12:10 Mon 23 Sep, 2013 :: B.19 Ingkarni Wardli :: Michael Lydeamore :: University of Adelaide

Pandemics and Epidemics have always caused significant disruption to society. Attempting to model each individual in any reasonable sized population is unfeasible at best, but we can get surprisingly good results just by looking at a single household in a population. In this talk, I'll try to guide you through the logic I've discovered this year, and present some of the key results we've obtained so far, as well as provide a brief indication of what's to come.
The irrational line on the torus
12:35 Mon 23 Sep, 2013 :: B.19 Ingkarni Wardli :: Kelli Francis-Staite :: University of Adelaide

The torus is very common example of a surface in R^3, but it's a lot more interesting than just a donut! I will introduce some standard mathematical descriptions of the torus, a bit of number theory, and finally what the irrational line on the torus is. Why is this interesting? Well despite donuts being yummy to eat, the irrational line on the torus gives a range of pathological counter-examples. In Differential Geometry, it is an example of a manifold that is a subset of another manifold, but not a submanifold. In Lie theory, it is an example of a subgroup of a Lie group which is not a Lie subgroup. If that wasn't enough of a mouthful, I may also provide some sweet incentives to come along! Does anyone know the location of a good donut store?
How to stack oranges in three dimensions, 24 dimensions and beyond
18:00 Thu 26 Sep, 2013 :: Horace Lamb Lecture Theatre :: Prof Akshay Venkatesh :: Stanford University

Media...
How can we pack balls as tightly as possible? In other words: to squeeze as many balls as possible into a limited space, what's the best way of arranging the balls? It's not hard to guess what the answer should be - but it's very hard to be sure that it really is the answer! I'll tell the interesting story of this problem, going back to the astronomer Kepler, and ending almost four hundred years later with Thomas Hales. I will then talk about stacking 24-dimensional oranges: what this means, how it relates to the Voyager spacecraft, and the many things we don't know beyond this.
A mathematician walks into a bar.....
12:10 Mon 30 Sep, 2013 :: B.19 Ingkarni Wardli :: Ben Rohrlach :: University of Adelaide

Media...
Man is by his very nature, inquisitive. Our need to know has been the reason we've always evolved as a species. From discovering fire, to exploring the galaxy with those Vulcan guys in that documentary I saw, knowing the answer to a question has always driven human kind. Clearly then, I had to ask something. Something that by it's very nature is a thing. A thing that, specifically, I had to know. That thing that I had to know was this: Do mathematicians get stupider the more they drink? Is this effect more pronounced than for normal (Gaussian) people? At the quiz night that AUMS just ran I managed to talk two tables into letting me record some key drinking statistics. I'll be using those statistics to introduce some different statistical tests commonly seen in most analyses you'll see in other fields. Oh, and I'll answer those questions I mentioned earlier too, hopefully. Let's do this thing.
Modelling the South Australian garfish population slice by slice.
12:10 Mon 14 Oct, 2013 :: B.19 Ingkarni Wardli :: John Feenstra :: University of Adelaide

Media...
In this talk I will provide a taste of how South Australian garfish populations are modelled. The role and importance of garfish 'slices' will be explained and how these help produce important reporting quantities of yearly recruitment, legal-size biomass, and exploitation rate within a framework of an age and length based population model.
Lost in Space: Point Pattern Matching and Astrometry
12:35 Mon 14 Oct, 2013 :: B.19 Ingkarni Wardli :: Annie Conway :: University of Adelaide

Astrometry is the field of research that concerns the positions of objects in space. This can be useful for satellite tracking where we would like to know accurate positions of satellites at given times. Telescopes give us some idea of the position, but unfortunately they are not very precise. However, if a photograph of a satellite has stars in the background, we can use that information to refine our estimate of the location of the image, since the positions of stars are known to high accuracy and are readily available in star catalogues. But there are billions of stars in the sky so first we would need to determine which ones we're actually looking at. In this talk I will give a brief introduction to astrometry and walk through a point pattern matching algorithm for identifying stars in a photograph.
How the leopard got his spots
14:10 Mon 14 Oct, 2013 :: 7.15 Ingkarni Wardli :: Dr Ed Green :: School of Mathematical Sciences

Media...
Patterns are everywhere in nature, whether they be the spots and stripes on animals' coats, or the intricate arrangement of different cell types in a tissue. But how do these patterns arise? Whilst every cell contains a plan of the organism in its genes, the cells need to organise themselves so that each knows what it should do to achieve this plan. Mathematics can help biologists explore how different types of signals might be used to control the patterning process. In this talk, I will introduce two simple mathematical theories of biological pattern formation: Turing patterns where, surprisingly, the essential ingredient for producing the pattern is diffusion, which usually tends to make things more uniform; and the Keller-Segel model, which provides a simple mechanism for the formation of multicellular structures from isolated single cells. These mathematical models can be used to explain how tissues develop, and why there are many spotted animals with a stripy tail, but no stripy animals with a spotted tail.
Geodesic completeness of compact pp-waves
12:10 Fri 18 Oct, 2013 :: Ingkarni Wardli B19 :: Dr Thomas Leistner :: University of Adelaide

A semi-Riemannian manifold is geodesically complete (or for short, complete) if all its maximal geodesics are defined on the real line. Whereas for Riemannian metrics the compactness of the manifold implies completeness, there are compact Lorentzian manifolds that are not complete (e.g. the Clifton-Pohl torus). Several rather strong conditions have been found in the literature under which a compact Lorentzian manifold is complete, including being homogeneous (Marsden) or of constant curvature (Carriere, Klingler), or admitting a timelike Killing vector field (Romero, Sanchez). We will consider pp-waves, which are Lorentzian manifold with a parallel null vector field and a highly degenerate curvature tensor, but which do not satisfy any of the above conditions. We will show that a compact pp-wave is universally covered by a vector space, determine the metric on the universal cover and consequently show that they are geodesically complete.
Model Misspecification due to Site Specific Rate Heterogeneity: how is tree inference affected?
12:10 Mon 21 Oct, 2013 :: B.19 Ingkarni Wardli :: Stephen Crotty :: University of Adelaide

Media...
In this talk I'll answer none of the questions you ever had about phylogenetics, but hopefully some you didn't. I'll be giving this presentation at a phylogenetics conference in 3 weeks, so sorry it is a little light on background. You've been warned! Phlyogeneticists have long recognised that different sites in a DNA sequence can experience different rates of nucleotide substitution, and many models have been developed to accommodate this rate heterogeneity. But what happens when a single site exhibits rate heterogeneity along different branches of an evolutionary tree? In this talk I'll introduce the notion of Site Specific Rate Heterogeneity (SSRH) and investigate a simple case, looking at the impact of SSRH on inference via maximum parsimony, neighbour joining and maximum likelihood.
Localised index and L^2-Lefschetz fixed point formula
12:10 Fri 25 Oct, 2013 :: Ingkarni Wardli B19 :: Dr Hang Wang :: University of Adelaide

In this talk we introduce a class of localised indices for the Dirac type operators on a complete Riemannian manifold, where a discrete group acts properly, co-compactly and isometrically. These localised indices, generalising the L^2-index of Atiyah, are obtained by taking Hattori-Stallings traces of the higher index for the Dirac type operators. We shall talk about some motivation and applications for working on localised indices. The talk is related to joint work with Bai-Ling Wang.
Group meeting
15:10 Fri 25 Oct, 2013 :: 5.58 (Ingkarni Wardli) :: Dr Ben Binder and Mr David Wilke :: University of Adelaide

Dr Ben Binder :: 'An inverse approach for solutions to free-surface flow problems' :: Abstract: Surface water waves are familiar to most people, for example, the wave pattern generated at the stern of a ship. The boundary or interface between the air and water is called the free-surface. When determining a solution to a free-surface flow problem it is commonplace for the forcing (eg. shape of ship or waterbed topography) that creates the surface waves to be prescribed, with the free-surface coming as part of the solution. Alternatively, one can choose to prescribe the shape of the free-surface and find the forcing inversely. In this talk I will discuss my ongoing work using an inverse approach to discover new types of solutions to free-surface flow problems in two and three dimensions, and how the predictions of the method might be verified with experiments. :: Mr David Wilke:: 'A Computational Fluid Dynamic Study of Blood Flow Within the Coiled Umbilical Arteries':: Abstract: The umbilical cord is the lifeline of the fetus throughout gestation. In a normal pregnancy it facilitates the supply of oxygen and nutrients from the placenta via a single vein, in addition to the return of deoxygenated blood from the developing embryo or fetus via two umbilical arteries. Despite the major role it plays in the growth of the fetus, pathologies of the umbilical cord are poorly understood. In particular, variations in the cord geometry, which typically forms a helical arrangement, have been correlated with adverse outcomes in pregnancy. Cords exhibiting either abnormally low or high levels of coiling have been associated with pathological results including growth-restriction and fetal demise. Despite this, the methodology currently employed by clinicians to characterise umbilical pathologies can misdiagnose cords and is prone to error. In this talk a computational model of blood flow within rigid three-dimensional structures representative of the umbilical arteries will be presented. This study determined that the current characterization was unable to differentiate between cords which exhibited clinically distinguishable flow properties, including the cord pressure drop, which provides a measure of the loading on the fetal heart.
Modelling and optimisation of group dose-response challenge experiments
12:10 Mon 28 Oct, 2013 :: B.19 Ingkarni Wardli :: David Price :: University of Adelaide

Media...
An important component of scientific research is the 'experiment'. Effective design of these experiments is important and, accordingly, has received significant attention under the heading 'optimal experimental design'. However, until recently, little work has been done on optimal experimental design for experiments where the underlying process can be modelled by a Markov chain. In this talk, I will discuss some of the work that has been done in the field of optimal experimental design for Markov Chains, and some of the work that I have done in applying this theory to dose-response challenge experiments for the bacteria Campylobacter jejuni in chickens.
Recent developments in special holonomy manifolds
12:10 Fri 1 Nov, 2013 :: Ingkarni Wardli 7.15 :: Prof Robert Bryant :: Duke University

One of the big classification results in differential geometry from the past century has been the classification of the possible holonomies of affine manifolds, with the major first step having been taken by Marcel Berger in his 1954 thesis. However, Berger's classification was only partial, and, in the past 20 years, an extensive research effort has been expended to complete this classification and extend it in a number of ways. In this talk, after recounting the major parts of the history of the subject, I will discuss some of the recent results and surprising new examples discovered as a by-product of research into Finsler geometry. If time permits, I will also discuss some of the open problems in the subject.
The geometry of rolling surfaces and non-holonomic mechanics
15:10 Fri 1 Nov, 2013 :: B.18 Ingkarni Wardli :: Prof Robert Bryant :: Duke University

Media...
In mechanics, the system of a sphere rolling over a plane without slipping or twisting is a fundamental example of what is called a non-holonomic mechanical system, the study of which belongs to the subject of control theory. The more general case of one surface rolling over another without slipping or twisting is, similarly, of great interest for both practical and theoretical reasons. In this talk, which is intended for a general mathematical audience (i.e., no familiarity with control theory or differential geometry will be assumed), I will describe some of the basic features of this problem, a bit of its history, and some of the surprising developments that its study reveals, such as the unexpected appearance of the exceptional group G_2.
Braids and entropy
10:10 Fri 8 Nov, 2013 :: Ingkarni Wardli B19 :: Prof Burglind Joricke :: Australian National University

This talk will be a brief introduction to some aspects of braid theory and to entropy, to provide background for the speaker's talk at 12:10 pm the same day.
Braids, conformal module and entropy
12:10 Fri 8 Nov, 2013 :: Ingkarni Wardli B19 :: Prof Burglind Joricke :: Australian National University

I will discuss two invariants of conjugacy classes of braids. The first invariant is the conformal module which implicitly occurred already in a paper of Gorin and Lin in connection with their interest in Hilbert's 13th problem. The second is a popular dynamical invariant, the entropy. It appeared in connection with Thurston's theory of surface homeomorphisms. It turns out that these invariants are related: They are inversely proportional. In a preparatory talk (at 10:10 am) I will give a brief introduction to some aspects of braid theory and to entropy.
Buoyancy driven exchange flows in the nearshore regions of lakes and reservoirs
15:10 Mon 2 Dec, 2013 :: 5.58 (Ingkarni Wardli) :: Professor John Patterson :: University of Sydney

Natural convection is the flow driven by differences in density, and is ubiquitous in nature and industry. It is the source of most environmental flows, and is the basis for almost all industrial heat exchange processes. It operates on both massive and micro scales. It is usually considered as a flow driven by temperature gradients, but could equally be from a gradient in any density determining property - salinity is one obvious example. It also depends on gravity; so magnetohydrodynamics becomes relevant as well. One particular interesting and environmentally relevant flow is the exchange flow in the nearshore regions of lakes and reservoirs. This occurs because of the effects of a decreasing depth approaching the shore resulting laterally unequal heat loss and heat gain during the diurnal cooling and heating cycle. This presentation will discuss some of the results obtained by the Natural Convection Group at Sydney University in analytical, numerical and experimental investigations of this mechanism, and the implications for lake water quality.
A few flavours of optimal control of Markov chains
11:00 Thu 12 Dec, 2013 :: B18 :: Dr Sam Cohen :: Oxford University

Media...
In this talk we will outline a general view of optimal control of a continuous-time Markov chain, and how this naturally leads to the theory of Backward Stochastic Differential Equations. We will see how this class of equations gives a natural setting to study these problems, and how we can calculate numerical solutions in many settings. These will include problems with payoffs with memory, with random terminal times, with ergodic and infinite-horizon value functions, and with finite and infinitely many states. Examples will be drawn from finance, networks and electronic engineering.
Weak Stochastic Maximum Principle (SMP) and Applications
15:10 Thu 12 Dec, 2013 :: B.21 Ingkarni Wardli :: Dr Harry Zheng :: Imperial College, London

Media...
In this talk we discuss a weak necessary and sufficient SMP for Markov modulated optimal control problems. Instead of insisting on the maximum condition of the Hamiltonian, we show that 0 belongs to the sum of Clarke's generalized gradient of the Hamiltonian and Clarke's normal cone of the control constraint set at the optimal control. Under a joint concavity condition on the Hamiltonian the necessary condition becomes sufficient. We give examples to demonstrate the weak SMP and its applications in quadratic loss minimization.
The density property for complex manifolds: a strong form of holomorphic flexibility
12:10 Fri 24 Jan, 2014 :: Ingkarni Wardli B20 :: Prof Frank Kutzschebauch :: University of Bern

Compared with the real differentiable case, complex manifolds in general are more rigid, their groups of holomorphic diffeomorphisms are rather small (in general trivial). A long known exception to this behavior is affine n-space C^n for n at least 2. Its group of holomorphic diffeomorphisms is infinite dimensional. In the late 1980s Andersen and Lempert proved a remarkable theorem which stated in its generalized version due to Forstneric and Rosay that any local holomorphic phase flow given on a Runge subset of C^n can be locally uniformly approximated by a global holomorphic diffeomorphism. The main ingredient in the proof was formalized by Varolin and called the density property: The Lie algebra generated by complete holomorphic vector fields is dense in the Lie algebra of all holomorphic vector fields. In these manifolds a similar local to global approximation of Andersen-Lempert type holds. It is a precise way of saying that the group of holomorphic diffeomorphisms is large. In the talk we will explain how this notion is related to other more recent flexibility notions in complex geometry, in particular to the notion of a Oka-Forstneric manifold. We will give examples of manifolds with the density property and sketch applications of the density property. If time permits we will explain criteria for the density property developed by Kaliman and the speaker.
Geometric quantisation in the noncompact setting
12:10 Fri 7 Mar, 2014 :: Ingkarni Wardli B20 :: Peter Hochs :: University of Adelaide

Geometric quantisation is a way to construct quantum mechanical phase spaces (Hilbert spaces) from classical mechanical phase spaces (symplectic manifolds). In the presence of a group action, the quantisation commutes with reduction principle states that geometric quantisation should be compatible with the ways the group action can be used to simplify (reduce) the classical and quantum phase spaces. This has deep consequences for the link between symplectic geometry and representation theory. The quantisation commutes with reduction principle has been given explicit meaning, and been proved, in cases where the symplectic manifold and the group acting on it are compact. There have also been results where just the group, or the orbit space of the action, is assumed to be compact. These are important and difficult, but it is somewhat frustrating that they do not even apply to the simplest example from the physics point of view: a free particle in Rn. This talk is about a joint result with Mathai Varghese where the group, manifold and orbit space may all be noncompact.
The effects of pre-existing immunity
15:10 Fri 7 Mar, 2014 :: B.18 Ingkarni Wardli :: Associate Professor Jane Heffernan :: York University, Canada

Media...
Immune system memory, also called immunity, is gained as a result of primary infection or vaccination, and can be boosted after vaccination or secondary infections. Immunity is developed so that the immune system is primed to react and fight a pathogen earlier and more effectively in secondary infections. The effects of memory, however, on pathogen propagation in an individual host (in-host) and a population (epidemiology) are not well understood. Mathematical models of infectious diseases, employing dynamical systems, computer simulation and bifurcation analysis, can provide projections of pathogen propagation, show outcomes of infection and help inform public health interventions. In the Modelling Infection and Immunity (MI^2) lab, we develop and study biologically informed mathematical models of infectious diseases at both levels of infection, and combine these models into comprehensive multi-scale models so that the effects of individual immunity in a population can be determined. In this talk we will discuss some of the interesting mathematical phenomenon that arise in our models, and show how our results are directly applicable to what is known about the persistence of infectious diseases.
The phase of the scattering operator from the geometry of certain infinite dimensional Lie groups
12:10 Fri 14 Mar, 2014 :: Ingkarni Wardli B20 :: Jouko Mickelsson :: University of Helsinki

This talk is about some work on the phase of the time evolution operator in QED and QCD, related to the geometry of certain infinite-dimensional groups (essentially modelled by PSDO's).
Embed to homogenise heterogeneous wave equation.
12:35 Mon 17 Mar, 2014 :: B.19 Ingkarni Wardli :: Chen Chen :: University of Adelaide

Media...
Consider materials with complicated microstructure: we want to model their large scale dynamics by equations with effective, `average' coefficients. I will show an example of heterogeneous wave equation in 1D. If Centre manifold theory is applied to model the original heterogeneous wave equation directly, we will get a trivial model. I embed the wave equation into a family of more complex wave problems and I show the equivalence of the two sets of solutions.
Viscoelastic fluids: mathematical challenges in determining their relaxation spectra
15:10 Mon 17 Mar, 2014 :: 5.58 Ingkarni Wardli :: Professor Russell Davies :: Cardiff University

Determining the relaxation spectrum of a viscoelastic fluid is a crucial step before a linear or nonlinear constitutive model can be applied. Information about the relaxation spectrum is obtained from simple flow experiments such as creep or oscillatory shear. However, the determination process involves the solution of one or more highly ill-posed inverse problems. The availability of only discrete data, the presence of noise in the data, as well as incomplete data, collectively make the problem very hard to solve. In this talk I will illustrate the mathematical challenges inherent in determining relaxation spectra, and also introduce the method of wavelet regularization which enables the representation of a continuous relaxation spectrum by a set of hyperbolic scaling functions.
Is it possible to beat the lottery system?
12:10 Mon 24 Mar, 2014 :: B.19 Ingkarni Wardli :: Michael Lydeamore :: University of Adelaide

Media...
Every week millions of people around the country buy tickets for a round of the lottery. Known as the "lotto", the chances of winning the big prize are less than 1 in 8 million, yet every week people will purchase a ticket. What if there was a smart way of betting which would increase your odds? A few weeks ago an article came across my desk with those very words: "Using this scheme you will win more". In this talk, we'll test those claims. Looking first at a basic counting argument, and then later moving the hard work over to a computer we'll find out if this betting scheme (and many others similar to it) will actually win you more or if just like playing in a casino, you'll still go bankrupt with probability 1.
Moduli spaces of contact instantons
12:10 Fri 28 Mar, 2014 :: Ingkarni Wardli B20 :: David Baraglia :: University of Adelaide

In dimensions greater than four there are several notions of higher Yang-Mills instantons. This talk concerns one such case, contact instantons, defined for 5-dimensional contact manifolds. The geometry transverse to the Reeb foliation turns out to be important in understanding the moduli space. For example, we show the dimension of the moduli space is the index of a transverse elliptic complex. This is joint work with Pedram Hekmati.
A model for the BitCoin block chain that takes propagation delays into account
15:10 Fri 28 Mar, 2014 :: B.21 Ingkarni Wardli :: Professor Peter Taylor :: The University of Melbourne

Media...
Unlike cash transactions, most electronic transactions require the presence of a trusted authority to verify that the payer has sufficient funding to be able to make the transaction and to adjust the account balances of the payer and payee. In recent years BitCoin has been proposed as an "electronic equivalent of cash". The general idea is that transactions are verified in a coded form in a block chain, which is maintained by the community of participants. Problems can arise when the block chain splits: that is different participants have different versions of the block chain, something which can happen only when there are propagation delays, at least if all participants are behaving according to the protocol. In this talk I shall present a preliminary model for the splitting behaviour of the block chain. I shall then go on to perform a similar analysis for a situation where a group of participants has adopted a recently-proposed strategy for gaining a greater advantage from BitCoin processing than its combined computer power should be able to control.
Aircraft flight dynamics and stability
12:10 Mon 31 Mar, 2014 :: B.19 Ingkarni Wardli :: David Arnold :: University of Adelaide

Media...
In general, a stable plane is safer, more efficient and more comfortable than an unstable plane, however there are many design features that affect stability. In this talk I will discuss the dynamics of fixed wing aircraft in flight, with particular emphasis on stability. I will discuss some basic stability considerations, and how they influence aircraft design as well as some interesting modes of instability, and how they may be managed. Hopefully this talk will help to explain why planes to look the way they do.
The limits of proof
14:10 Wed 2 Apr, 2014 :: Hughes Lecture Room 322 :: Assoc. Prof. Finnur Larusson :: School of Mathematical Sciences

Media...
The job of the mathematician is to discover new truths about mathematical objects and their relationships. Such truths are established by proving them. This raises a fundamental question. Can every mathematical truth be proved (by a sufficiently clever being) or are there truths that will forever lie beyond the reach of proof? Mathematics can be turned on itself to investigate this question. In this talk, we will see that under certain assumptions about proofs, there are truths that cannot be proved. You must decide for yourself whether you think these assumptions are valid!
Semiclassical restriction estimates
12:10 Fri 4 Apr, 2014 :: Ingkarni Wardli B20 :: Melissa Tacy :: University of Adelaide

Eigenfunctions of Hamiltonians arise naturally in the theory of quantum mechanics as stationary states of quantum systems. Their eigenvalues have an interpretation as the square root of E, where E is the energy of the system. We wish to better understand the high energy limit which defines the boundary between quantum and classical mechanics. In this talk I will focus on results regarding the restriction of eigenfunctions to lower dimensional subspaces, in particular to hypersurfaces. A convenient way to study such problems is to reframe them as problems in semiclassical analysis.
Flow barriers and flux in unsteady flows
15:10 Fri 4 Apr, 2014 :: B.21 Ingkarni Wardli :: Dr Sanjeeva Balasuriya :: The University of Adelaide

Media...
How does one define the boundary of the ozone hole, an oceanic eddy, or Jupiter's Great Red Spot? These occur in flows which are unsteady (nonautonomous), that is, which change with time, and therefore any boundary must as well. In steady (autonomous) flows, defining flow boundaries is straightforward: one first finds fixed points of the flow, and then determines entities in space which are attracted to or repelled from these points as time progresses. These are respectively the stable and unstable manifolds of the fixed points, and can be shown to partition space into regions of different types of flow. This talk will focus on the required modifications to this idea for determining flow barriers in the more realistic unsteady context. An application to maximising mixing in microfluidic devices will also be presented.
The Dynamics of Falling
12:10 Mon 7 Apr, 2014 :: B.19 Ingkarni Wardli :: Lyron Winderbaum :: University of Adelaide

Media...
As most of you know I am addicted to climbing. So I thought I might talk abit about some math related to climbing, ropes, tension, and to be entirely honest, mostly statics -- not dynamics, but the title was catchy. I'll explain a little about climbing, and the different ways in which you can go about protecting yourself from a fall by using ropes. This involves some interesting formulae for friction that most of you probably haven't seen before, and even some trig for the geometry enthusiast, but be warned -- it delves into the realms of physics. I even uncovered a few unexpected and somewhat anti-intuitive results that might interest you.
T-Duality and its Generalizations
12:10 Fri 11 Apr, 2014 :: Ingkarni Wardli B20 :: Jarah Evslin :: Theoretical Physics Center for Science Facilities, CAS

Given a manifold M with a torus action and a choice of integral 3-cocycle H, T-duality yields another manifold with a torus action and integral 3-cocyle. It induces a number of surprising automorphisms between structures on these manifolds. In this talk I will review T-duality and describe some work on two generalizations which are realized in string theory: NS5-branes and heterotic strings. These respectively correspond to non-closed 3-classes H and to principal bundles fibered over M.
Bayesian Indirect Inference
12:10 Mon 14 Apr, 2014 :: B.19 Ingkarni Wardli :: Brock Hermans :: University of Adelaide

Media...
Bayesian likelihood-free methods saw the resurgence of Bayesian statistics through the use of computer sampling techniques. Since the resurgence, attention has focused on so-called 'summary statistics', that is, ways of summarising data that allow for accurate inference to be performed. However, it is not uncommon to find data sets in which the summary statistic approach is not sufficient. In this talk, I will be summarising some of the likelihood-free methods most commonly used (don't worry if you've never seen any Bayesian analysis before), as well as looking at Bayesian Indirect Likelihood, a new way of implementing Bayesian analysis which combines new inference methods with some of the older computational algorithms.
Outlier removal using the Bayesian information criterion for group-based trajectory modelling
12:10 Mon 28 Apr, 2014 :: B.19 Ingkarni Wardli :: Chris Davies :: University of Adelaide

Media...
Attributes measured longitudinally can be used to define discrete paths of measurements, or trajectories, for each individual in a given population. Group-based trajectory modelling methods can be used to identify subgroups of trajectories within a population, such that trajectories that are grouped together are more similar to each other than to trajectories in distinct groups. Existing methods generally allocate every individual trajectory into one of the estimated groups. However this does not allow for the possibility that some individuals may be following trajectories so different from the rest of the population that they should not be included in a group-based trajectory model. This results in these outlying trajectories being treated as though they belong to one of the groups, distorting the estimated trajectory groups and any subsequent analyses that use them. We have developed an algorithm for removing outlying trajectories based on the maximum change in Bayesian information criterion (BIC) due to removing a single trajectory. As well as deciding which trajectory to remove, the number of groups in the model can also change. The decision to remove an outlying trajectory is made by comparing the log-likelihood contributions of the observations to those of simulated samples from the estimated group-based trajectory model. In this talk the algorithm will be detailed and an application of its use will be demonstrated.
Lefschetz fixed point theorem and beyond
12:10 Fri 2 May, 2014 :: Ingkarni Wardli B20 :: Hang Wang :: University of Adelaide

A Lefschetz number associated to a continuous map on a closed manifold is a topological invariant determined by the geometric information near the neighbourhood of fixed point set of the map. After an introduction of the Lefschetz fixed point theorem, we shall use the Dirac-dual Dirac method to derive the Lefschetz number on K-theory level. The method concerns the comparison of the Dirac operator on the manifold and the Dirac operator on some submanifold. This method can be generalised to several interesting situations when the manifold is not necessarily compact.
Network-based approaches to classification and biomarker identification in metastatic melanoma
15:10 Fri 2 May, 2014 :: B.21 Ingkarni Wardli :: Associate Professor Jean Yee Hwa Yang :: The University of Sydney

Media...
Finding prognostic markers has been a central question in much of current research in medicine and biology. In the last decade, approaches to prognostic prediction within a genomics setting are primarily based on changes in individual genes / protein. Very recently, however, network based approaches to prognostic prediction have begun to emerge which utilize interaction information between genes. This is based on the believe that large-scale molecular interaction networks are dynamic in nature and changes in these networks, rather than changes in individual genes/proteins, are often drivers of complex diseases such as cancer. In this talk, I use data from stage III melanoma patients provided by Prof. Mann from Melanoma Institute of Australia to discuss how network information can be utilize in the analysis of gene expression analysis to aid in biological interpretation. Here, we explore a number of novel and previously published network-based prediction methods, which we will then compare to the common single-gene and gene-set methods with the aim of identifying more biologically interpretable biomarkers in the form of networks.
The Mandelbrot Set
12:10 Mon 5 May, 2014 :: B.19 Ingkarni Wardli :: David Bowman :: University of Adelaide

Media...
The Mandelbrot set is an icon of modern mathematics, an image which fires the popular imagination when accompanied by the words 'chaos' and 'fractal'. However, few could give even a vague definition of this mysterious set and fewer still know the mathematical meaning behind it. In this talk we will be looking at the role that the Mandelbrot set plays in complex dynamics, the study of iterated complex valued functions. We shall discuss attracting and repelling cycles and how they are related to the different components of the Mandelbrot set.
A geometric model for odd differential K-theory
12:10 Fri 9 May, 2014 :: Ingkarni Wardli B20 :: Raymond Vozzo :: University of Adelaide

Odd K-theory has the interesting property that-unlike even K-theory-it admits an infinite number of inequivalent differential refinements. In this talk I will give a description of odd differential K-theory using infinite rank bundles and explain why it is the correct differential refinement. This is joint work with Michael Murray, Pedram Hekmati and Vincent Schlegel.
Ergodicity and loss of capacity: a stochastic horseshoe?
15:10 Fri 9 May, 2014 :: B.21 Ingkarni Wardli :: Professor Ami Radunskaya :: Pomona College, the United States of America

Media...
Random fluctuations of an environment are common in ecological and economical settings. The resulting processes can be described by a stochastic dynamical system, where a family of maps parametrized by an independent, identically distributed random variable forms the basis for a Markov chain on a continuous state space. Random dynamical systems are a beautiful combination of deterministic and random processes, and they have received considerable interest since von Neuman and Ulam's seminal work in the 1940's. Key questions in the study of a stochastic dynamical system are: does the system have a well-defined average, i.e. is it ergodic? How does this long-term behavior compare to that of the state variable in a constant environment with the averaged parameter? In this talk we answer these questions for a family of maps on the unit interval that model self-limiting growth. The techniques used can be extended to study other families of concave maps, and so we conjecture the existence of a "stochastic horseshoe".
Ice floe collisions in the Marginal Ice Zone
12:10 Mon 12 May, 2014 :: B.19 Ingkarni Wardli :: Lucas Yiew :: University of Adelaide

Media...
In an era of climate change, it is becoming increasingly important to model the dynamics of sea-ice cover in the polar regions. The Marginal Ice Zone represents a vast region of ice cover strongly influenced by the effects of ocean waves. As ocean waves penetrate this region, wave energy is progressively dispersed through energy dissipative mechanisms such as collisions between ice floes (discrete chunks of ice). In this talk I will discuss the mathematical models required to build a collision model, and the validation of these models with experimental results.
Stochastic models of evolution: Trees and beyond
15:10 Fri 16 May, 2014 :: B.18 Ingkarni Wardli :: Dr Barbara Holland :: The University of Tasmania

Media...
In the first part of the talk I will give a general introduction to phylogenetics, and discuss some of the mathematical and statistical issues that arise in trying to infer evolutionary trees. In particular, I will discuss how we model the evolution of DNA along a phylogenetic tree using a continuous time Markov process. In the second part of the talk I will discuss how to express the two-state continuous-time Markov model on phylogenetic trees in such a way that allows its extension to more general models. In this framework we can model convergence of species as well as divergence (speciation). I will discuss the identifiability (or otherwise) of the models that arise in some simple cases. Use of a statistical framework means that we can use established techniques such as the AIC or likelihood ratio tests to decide if datasets show evidence of convergent evolution.
Computing with groups
15:10 Fri 30 May, 2014 :: B.21 Ingkarni Wardli :: Dr Heiko Dietrich :: Monash University

Media...
Groups are algebraic structures which show up in many branches of mathematics and other areas of science; Computational Group Theory is on the cutting edge of pure research in group theory and its interplay with computational methods. In this talk, we consider a practical aspect of Computational Group Theory: how to represent a group in a computer, and how to work with such a description efficiently. We will first recall some well-established methods for permutation group; we will then discuss some recent progress for matrix groups.
Oka properties of groups of holomorphic and algebraic automorphisms of complex affine space
12:10 Fri 6 Jun, 2014 :: Ingkarni Wardli B20 :: Finnur Larusson :: University of Adelaide

I will discuss new joint work with Franc Forstneric. The group of holomorphic automorphisms of complex affine space C^n, n>1, is huge. It is not an infinite-dimensional manifold in any recognised sense. Still, our work shows that in some ways it behaves like a finite-dimensional Oka manifold.
Group meeting
15:10 Fri 6 Jun, 2014 :: 5.58 Ingkarni Wardli :: Meng Cao and Trent Mattner :: University of Adelaide

Meng Cao:: Multiscale modelling couples patches of nonlinear wave-like simulations :: Abstract: The multiscale gap-tooth scheme is built from given microscale simulations of complicated physical processes to empower macroscale simulations. By coupling small patches of simulations over unsimulated physical gaps, large savings in computational time are possible. So far the gap-tooth scheme has been developed for dissipative systems, but wave systems are also of great interest. This article develops the gap-tooth scheme to the case of nonlinear microscale simulations of wave-like systems. Classic macroscale interpolation provides a generic coupling between patches that achieves arbitrarily high order consistency between the multiscale scheme and the underlying microscale dynamics. Eigen-analysis indicates that the resultant gap-tooth scheme empowers feasible computation of large scale simulations of wave-like dynamics with complicated underlying physics. As an pilot study, we implement numerical simulations of dam-breaking waves by the gap-tooth scheme. Comparison between a gap-tooth simulation, a microscale simulation over the whole domain, and some published experimental data on dam breaking, demonstrates that the gap-tooth scheme feasibly computes large scale wave-like dynamics with computational savings. Trent Mattner :: Coupled atmosphere-fire simulations of the Canberra 2003 bushfires using WRF-Sfire :: Abstract: The Canberra fires of January 18, 2003 are notorious for the extreme fire behaviour and fire-atmosphere-topography interactions that occurred, including lee-slope fire channelling, pyrocumulonimbus development and tornado formation. In this talk, I will discuss coupled fire-weather simulations of the Canberra fires using WRF-SFire. In these simulations, a fire-behaviour model is used to dynamically predict the evolution of the fire front according to local atmospheric and topographic conditions, as well as the associated heat and moisture fluxes to the atmosphere. It is found that the predicted fire front and heat flux is not too bad, bearing in mind the complexity of the problem and the severe modelling assumptions made. However, the predicted moisture flux is too low, which has some impact on atmospheric dynamics.
The p-Minkowski problem
12:10 Fri 13 Jun, 2014 :: Ingkarni Wardli B20 :: Xu-Jia Wang :: Australian National University

The p-Minkowski problem is an extension of the classical Minkowski problem. It concerns the existence, uniqueness, and regularity of closed convex hypersurfaces with prescribed Gauss curvature. The Minkowski problem has been studied by many people in the last century and has been completely resolved. The p-Minkowski problem involves more applications. In this talk we will review the development of the study of the p-Minkowski problem and discuss some recent works on the problem.​
Optimal transportation and Monge-Ampere type equation
15:10 Fri 13 Jun, 2014 :: B.21 Ingkarni Wardli :: Professor Xu-Jia Wang :: Centre for Mathematics and its Applications, Australian National University

Media...
The optimal transportation is to find an optimal mapping of transferring one mass density to another one such that the total cost is minimised. This problem was first introduced by Monge in 1781. Monge's cost function is propositional to the distance the mass is transferred, namely c(x,y)=|x-y|, but more general costs are allowed. The optimal transportation has found a variety of applications and has been extensively studied since then. In 1940s Kantorovich introduced a dual functional, by which one can determine the optimal mapping through the associated potential function, for a large class of cost functions. The potential function satisfies a Monge-Ampere type equation, which is a fully nonlinear partial differential equation arising also in geometric problems related to the Gauss curvature, and has been studied by Aleksandrov, Calabi, Nirenberg, Pogorelov, Cheng-Yau, and Caffarelli, among many others. In this talk we will first introduce the optimal transportation and review the existence of optimal mappings. We then focus on the regularity of the optimal mappings. By studying the associated Monge-Ampere equation, sharp conditions on the cost function have been found by the speaker and his collaborators. For Monge's cost function |x-y|, which does not satisfy the sharp conditions, we have also obtained the existence of optimal mappings, and established interesting regularity and singularity results for the mapping.
Not nots, knots.
12:10 Mon 16 Jun, 2014 :: B.19 Ingkarni Wardli :: Luke Keating-Hughes :: University of Adelaide

Media...
Although knot theory does not ordinarily arise in classical mathematics, the study of knots themselves proves to be very intricate and is certainly an area with promise for new developments. Ultimately, the study of knots boils down to problems of classification and when two knots are seen to be 'equivalent'. In this seminar we will first talk about some basic definitions and properties of knots, then move on to calculating the knot polynomial - a powerful invariant on knots.
Complexifications, Realifications, Real forms and Complex Structures
12:10 Mon 23 Jun, 2014 :: B.19 Ingkarni Wardli :: Kelli Francis-Staite :: University of Adelaide

Media...
Italian mathematicians Niccolò Fontana Tartaglia and Gerolamo Cardano introduced complex numbers to solve polynomial equations such as x^2+1=0. Solving a standard real differential equation often uses complex eigenvalues and eigenfunctions. In both cases, the solution space is expanded to include the complex numbers, solved, and then translated back to the real case. My talk aims to explain the process of complexification and related concepts. It will give vocabulary and some basic results about this important process. And it will contain cute cat pictures.
Jacques Hadamard: A useful Frenchman
12:10 Mon 30 Jun, 2014 :: B.19 Ingkarni Wardli :: Stephen Crotty :: University of Adelaide

Media...
In this talk we will learn* very little about Jacques Hadamard. We will then learn* a little more than very little about Hadamard Matrices. Finally, we will learn* nothing at all about how they can be helpful in a phylogenetic framework, other than the fact that they can be helpful in a phylogenetic framework. * In the loosest possible sense
The Bismut-Chern character as dimension reduction functor and its twisting
12:10 Fri 4 Jul, 2014 :: Ingkarni Wardli B20 :: Fei Han :: National University of Singapore

The Bismut-Chern character is a loop space refinement of the Chern character. It plays an essential role in the interpretation of the Atiyah-Singer index theorem from the point of view of loop space. In this talk, I will first briefly review the construction of the Bismut-Chern character and show how it can be viewed as a dimension reduction functor in the Stolz-Teichner program on supersymmetric quantum field theories. I will then introduce the construction of the twisted Bismut-Chern character, which represents our joint work with Varghese Mathai.
All's Fair in Love and Statistics
12:35 Mon 28 Jul, 2014 :: B.19 Ingkarni Wardli :: Annie Conway :: University of Adelaide

Media...
Earlier this year Wired.com published an article about a "math genius" who found true love after scraping and analysing data from a dating site. In this talk I will be investigating the actual mathematics that he used, in particular methods for clustering categorical data, and whether or not the approach was successful.
Estimates for eigenfunctions of the Laplacian on compact Riemannian manifolds
12:10 Fri 1 Aug, 2014 :: Ingkarni Wardli B20 :: Andrew Hassell :: Australian National University

I am interested in estimates on eigenfunctions, accurate in the high-eigenvalue limit. I will discuss estimates on the size (as measured by L^p norms) of eigenfunctions, on the whole Riemannian manifold, at the boundary, or at an interior hypersurface. The link between high-eigenvalue estimates, geometry, and the dynamics of geodesic flow will be emphasized.
Fast computation of eigenvalues and eigenfunctions on bounded plane domains
15:10 Fri 1 Aug, 2014 :: B.18 Ingkarni Wardli :: Professor Andrew Hassell :: Australian National University

Media...
I will describe a new method for numerically computing eigenfunctions and eigenvalues on certain plane domains, derived from the so-called "scaling method" of Vergini and Saraceno. It is based on properties of the Dirichlet-to-Neumann map on the domain, which relates a function f on the boundary of the domain to the normal derivative (at the boundary) of the eigenfunction with boundary data f. This is a topic of independent interest in pure mathematics. In my talk I will try to emphasize the inteplay between theory and applications, which is very rich in this situation. This is joint work with numerical analyst Alex Barnett (Dartmouth).
Modelling the mean-field behaviour of cellular automata
12:10 Mon 4 Aug, 2014 :: B.19 Ingkarni Wardli :: Kale Davies :: University of Adelaide

Media...
Cellular automata (CA) are lattice-based models in which agents fill the lattice sites and behave according to some specified rule. CA are particularly useful when modelling cell behaviour and as such many people consider CA model in which agents undergo motility and proliferation type events. We are particularly interested in predicting the average behaviour of these models. In this talk I will show how a system of differential equations can be derived for the system and discuss the difficulties that arise in even the seemingly simple case of a CA with motility and proliferation.
Hydrodynamics and rheology of self-propelled colloids
15:10 Fri 8 Aug, 2014 :: B17 Ingkarni Wardli :: Dr Sarthok Sircar :: University of Adelaide

The sub-cellular world has many components in common with soft condensed matter systems (polymers, colloids and liquid crystals). But it has novel properties, not present in traditional complex fluids, arising from a rich spectrum of non-equilibrium behavior: flocking, chemotaxis and bioconvection. The talk is divided into two parts. In the first half, we will (get an idea on how to) derive a hydrodynamic model for self-propelled particles of an arbitrary shape from first principles, in a sufficiently dilute suspension limit, moving in a 3-dimensional space inside a viscous solvent. The model is then restricted to particles with ellipsoidal geometry to quantify the interplay of the long-range excluded volume and the short-range self-propulsion effects. The expression for the constitutive stresses, relating the kinetic theory with the momentum transport equations, are derived using a combination of the virtual work principle (for extra elastic stresses) and symmetry arguments (for active stresses). The second half of the talk will highlight on my current numerical expertise. In particular we will exploit a specific class of spectral basis functions together with RK4 time-stepping to determine the dynamical phases/structures as well as phase-transitions of these ellipsoidal clusters. We will also discuss on how to define the order (or orientation) of these clusters and understand the other rheological quantities.
Approximate dynamic programming: An introduction
12:10 Mon 11 Aug, 2014 :: B.19 Ingkarni Wardli :: Mingmei Teo :: University of Adelaide

Media...
In this talk, I'll attempt to give insights into what is dynamic programming and a common method used to solve dynamic programming problems. Then, we'll explore some issues with this method and introduce the idea of approximate dynamic programming. Finally, I'll very briefly describe why I'm interested in approximate dynamic programming.
The Dirichlet problem for the prescribed Ricci curvature equation
12:10 Fri 15 Aug, 2014 :: Ingkarni Wardli B20 :: Artem Pulemotov :: University of Queensland

We will discuss the following question: is it possible to find a Riemannian metric whose Ricci curvature is equal to a given tensor on a manifold M? To answer this question, one must analyze a weakly elliptic second-order geometric PDE. In the first part of the talk, we will review the history of the subject and state several classical theorems. After that, our focus will be on new results concerning the case where M has nonempty boundary.
Boundary-value problems for the Ricci flow
15:10 Fri 15 Aug, 2014 :: B.18 Ingkarni Wardli :: Dr Artem Pulemotov :: The University of Queensland

Media...
The Ricci flow is a differential equation describing the evolution of a Riemannian manifold (i.e., a "curved" geometric object) into an Einstein manifold (i.e., an object with a "constant" curvature). This equation is particularly famous for its key role in the proof of the Poincare Conjecture. Understanding the Ricci flow on manifolds with boundary is a difficult problem with applications to a variety of fields, such as topology and mathematical physics. The talk will survey the current progress towards the resolution of this problem. In particular, we will discuss new results concerning spaces with symmetries.
Frequentist vs. Bayesian.
12:10 Mon 18 Aug, 2014 :: B.19 Ingkarni Wardli :: David Price :: University of Adelaide

Media...
Abstract: There are two frameworks in which we can do statistical analyses. Choosing one framework over the other can be* as controversial as choosing between team Jacob and... that other guy. In this talk, I aim to give a very very simple explanation of the main difference between frequentist and Bayesian methods. I'll probably flip a coin and show you a video too. * to people who really care.
T-duality and the chiral de Rham complex
12:10 Fri 22 Aug, 2014 :: Ingkarni Wardli B20 :: Andrew Linshaw :: University of Denver

The chiral de Rham complex of Malikov, Schechtman, and Vaintrob is a sheaf of vertex algebras that exists on any smooth manifold M. It has a square-zero differential D, and contains the algebra of differential forms on M as a subcomplex. In this talk, I'll give an introduction to vertex algebras and sketch this construction. Finally, I'll discuss a notion of T-duality in this setting. This is based on joint work in progress with V. Mathai.
Spherical T-duality
01:10 Mon 25 Aug, 2014 :: Ingkarni Wardli B18 :: Mathai Varghese :: University of Adelaide

I will talk on a new variant of T-duality, called spherical T-duality, which relates pairs of the form (P,H) consisting of a principal SU(2)-bundle P --> M and a 7-cocycle H on P. Intuitively spherical T-duality exchanges H with the second Chern class c_2(P). This is precisely true when M is compact oriented and dim(M) is at most 4. When M is higher dimensional, not all pairs (P,H) admit spherical T-duals and even when they exist, the spherical T-duals are not always unique. We will try and explain this phenomenon. Nonetheless, we prove that all spherical T-dualities induce a degree-shifting isomorphism on the 7-twisted cohomologies of the bundles and, when dim(M) is at most 7, also their integral twisted cohomologies and, when dim(M) is at most 4, even their 7-twisted K-theories. While the complete physical relevance of spherical T-duality is still being explored, it does provide an identification between conserved charges in certain distinct IIB supergravity and string compactifications. This is joint work with Peter Bouwknegt and Jarah Evslin.
Software and protocol verification using Alloy
12:10 Mon 25 Aug, 2014 :: B.19 Ingkarni Wardli :: Dinesha Ranathunga :: University of Adelaide

Media...
Reliable software isn't achieved by trial and error. It requires tools to support verification. Alloy is a tool based on set theory that allows expression of a logic-based model of software or a protocol, and hence allows checking of this model. In this talk, I will cover its key concepts, language syntax and analysis features.
Mathematics: a castle in the sky?
14:10 Mon 25 Aug, 2014 :: Ingkarni Wardli 715 Conference Room :: Dr. David Roberts :: School of Mathematical Sciences

Media...
At university you are exposed to more rigorous mathematics than at school, exemplified by definitions such as those of real numbers individually or as a whole. However, what does mathematics ultimately rest on? Definitions depend on things defined earlier, and this process must stop at some point. Mathematicians expended a lot of energy in the late 19th and early 20th centuries trying to pin down the absolutely fundamental ideas of mathematics, with unexpected results. The results of these efforts are called foundations and are still an area of active research today. This talk will explain what foundations are, some of the historical setting in which they arose, and several of the various systems on which mathematics can be built -- and why most of the mathematics you will do only uses a tiny portion of it!
Ideal membership on singular varieties by means of residue currents
12:10 Fri 29 Aug, 2014 :: Ingkarni Wardli B20 :: Richard Larkang :: University of Adelaide

On a complex manifold X, one can consider the following ideal membership problem: Does a holomorphic function on X belong to a given ideal of holomorphic functions on X? Residue currents give a way of expressing analytically this essentially algebraic problem. I will discuss some basic cases of this, why such an analytic description might be useful, and finish by discussing a generalization of this to singular varieties.
Neural Development of the Visual System: a laminar approach
15:10 Fri 29 Aug, 2014 :: N132 Engineering North :: Dr Andrew Oster :: Eastern Washington University

Media...
In this talk, we will introduce the architecture of the visual system in higher order primates and cats. Through activity-dependent plasticity mechanisms, the left and right eye streams segregate in the cortex in a stripe-like manner, resulting in a pattern called an ocular dominance map. We introduce a mathematical model to study how such a neural wiring pattern emerges. We go on to consider the joint development of the ocular dominance map with another feature of the visual system, the cytochrome oxidase blobs, which appear in the center of the ocular dominance stripes. Since cortex is in fact comprised of layers, we introduce a simple laminar model and perform a stability analysis of the wiring pattern. This intricate biological structure (ocular dominance stripes with "blobs" periodically distributed in their centers) can be understood as occurring due to two Turing instabilities combined with the leading-order dynamics of the system.
Neural Development of the Visual System: a laminar approach
15:10 Fri 29 Aug, 2014 :: This talk will now be given as a School Colloquium :: Dr Andrew Oster :: Eastern Washington University

In this talk, we will introduce the architecture of the visual system in higher order primates and cats. Through activity-dependent plasticity mechanisms, the left and right eye streams segregate in the cortex in a stripe-like manner, resulting in a pattern called an ocular dominance map. We introduce a mathematical model to study how such a neural wiring pattern emerges. We go on to consider the joint development of the ocular dominance map with another feature of the visual system, the cytochrome oxidase blobs, which appear in the center of the ocular dominance stripes. Since cortex is in fact comprised of layers, we introduce a simple laminar model and perform a stability analysis of the wiring pattern. This intricate biological structure (ocular dominance stripes with 'blobs' periodically distributed in their centers) can be understood as occurring due to two Turing instabilities combined with the leading-order dynamics of the system.
Modelling biological gel mechanics
12:10 Mon 8 Sep, 2014 :: B.19 Ingkarni Wardli :: James Reoch :: University of Adelaide

Media...
The behaviour of gels such as collagen is the result of complex interactions between mechanical and chemical forces. In this talk, I will outline the modelling approaches we are looking at in order to incorporate the influence of cell behaviour alongside chemical potentials, and the various circumstances which lead to gel swelling and contraction.
The FKMM invariant in low dimension
12:10 Fri 12 Sep, 2014 :: Ingkarni Wardli B20 :: Kiyonori Gomi (Shinshu University)

On a space with involutive action, the natural notion of vector bundles is equivariant vector bundles. But, there is an important variant called `Real' vector bundles in the sense of Atiyah, and, its cousin, `symplectic' or `Quaternionic' vector bundles in the sense of Dupont. The FKMM invariant is an invariant of `symplectic' vector bundles originally introduced by Furuta, Kametani, Matsue and Minami. The subject of my talk is recent development of this invariant in my joint work with Giuseppe De Nittis: The classifications of `symplectic' vector bundles in low dimension and the descriptions of some Z/2-invariants by using the FKMM invariant.
Problems in pandemic preparedness
15:10 Fri 12 Sep, 2014 :: N132 Engineering North :: Dr Joshua Ross :: The University of Adelaide

Media...
The emergence of novel strains of viruses pose an ever-present threat to our health and well-being. In this talk, I will provide an overview of work I have done, or am doing, in collaboration with colleagues and students on two topics related to pandemic preparedness: the first being antiviral usage for pre- and post-exposure prophylaxis; and the second being estimating transmissibility and severity from First Few Hundred (FF100) studies.
A Random Walk Through Discrete State Markov Chain Theory
12:10 Mon 22 Sep, 2014 :: B.19 Ingkarni Wardli :: James Walker :: University of Adelaide

Media...
This talk will go through the basics of Markov chain theory; including how to construct a continuous-time Markov chain (CTMC), how to adapt a Markov chain to include non-memoryless distributions, how to simulate CTMC's and some key results.
To Complex Analysis... and beyond!
12:10 Mon 29 Sep, 2014 :: B.19 Ingkarni Wardli :: Brett Chenoweth :: University of Adelaide

Media...
In the undergraduate complex analysis course students learn about complex valued functions on domains in C (the complex plane). Several interesting and surprising results come about from this study. In my talk I will introduce a more general setting where complex analysis can be done, namely Riemann surfaces (complex manifolds of dimension 1). I will then prove that all non-compact Riemann surfaces are Stein; which loosely speaking means that their function theory is similar to that of C.
A Hybrid Markov Model for Disease Dynamics
12:35 Mon 29 Sep, 2014 :: B.19 Ingkarni Wardli :: Nicolas Rebuli :: University of Adelaide

Media...
Modelling the spread of infectious diseases is fundamental to protecting ourselves from potentially devastating epidemics. Among other factors, two key indicators for the severity of an epidemic are the size of the epidemic and the time until the last infectious individual is removed. To estimate the distribution of the size and duration of an epidemic (within a realistic population) an epidemiologist will typically use Monte Carlo simulations of an appropriate Markov process. However, the number of states in the simplest Markov epidemic model, the SIR model, is quadratic in the population size and so Monte Carlo simulations are computationally expensive. In this talk I will discuss two methods for approximating the SIR Markov process and I will demonstrate the approximation error by comparing probability distributions and estimates of the distributions of the final size and duration of an SIR epidemic.
Topology, geometry, and moduli spaces
12:10 Fri 10 Oct, 2014 :: Ingkarni Wardli B20 :: Nick Buchdahl :: University of Adelaide

In recent years, moduli spaces of one kind or another have been shown to be of great utility, this quite apart from their inherent interest. Many of their applications involve their topology, but as we all know, understanding of topological structures is often facilitated through the use of geometric methods, and some of these moduli spaces carry geometric structures that are considerable interest in their own right. In this talk, I will describe some of the background and the ideas in this general context, focusing on questions that I have been considering lately together with my colleague Georg Schumacher from Marburg in Germany, who was visiting us recently.
Optimally Chosen Quadratic Forms for Partitioning Multivariate Data
13:10 Tue 14 Oct, 2014 :: Ingkarni Wardli 715 Conference Room :: Assoc. Prof. Inge Koch :: School of Mathematical Sciences

Media...
Quadratic forms are commonly used in linear algebra. For d-dimensional vectors they have a matrix representation, Q(x) = x'Ax, for some symmetric matrix A. In statistics quadratic forms are defined for d-dimensional random vectors, and one of the best-known quadratic forms is the Mahalanobis distance of two random vectors. In this talk we want to partition a quadratic form Q(X) = X'MX, where X is a random vector, and M a symmetric matrix, that is, we want to find a d-dimensional random vector W such that Q(X) = W'W. This problem has many solutions. We are interested in a solution or partition W of X such that pairs of corresponding variables (X_j, W_j) are highly correlated and such that W is simpler than the given X. We will consider some natural candidates for W which turn out to be suboptimal in the sense of the above constraints, and we will then exhibit the optimal solution. Solutions of this type are useful in the well-known T-square statistic. We will see in examples what these solutions look like.
Compact pseudo-Riemannian solvmanifolds
12:10 Fri 17 Oct, 2014 :: Ingkarni Wardli B20 :: Wolfgang Globke :: University of Adelaide

A compact solvmanifold M is a quotient of a solvable Lie group G by a cocompact closed subgroup H. A pseudo-Riemannian metric on M is induced by an H-invariant symmetric 2-tensor on G. In this talk I will describe some foundations and results of my ongoing work with Oliver Baues on the nature of this 2-tensor and what it can imply for the subgroup H.
Geometric singular perturbation theory and canard theory to study travelling waves in: 1) a model for tumor invasion; and 2) a model for wound healing angiogenesis.
15:10 Fri 17 Oct, 2014 :: EM 218 Engineering & Mathematics Building :: Dr Petrus (Peter) van Heijster :: QUT

In this talk, I will present results on the existence of smooth and shock-like travelling wave solutions for two advection-reaction-diffusion models. The first model describes malignant tumour (i.e. skin cancer) invasion, while the second one is a model for wound healing angiogenesis. Numerical solutions indicate that both smooth and shock-fronted travelling wave solutions exist for these two models. I will verify the existence of both type of these solutions using techniques from geometric singular perturbation theory and canard theory. Moreover, I will provide numerical results on the stability of the waves and the actual observed wave speeds. This is joint work with K. Harley, G. Pettet, R. Marangell and M. Wechselberger.
The Serre-Grothendieck theorem by geometric means
12:10 Fri 24 Oct, 2014 :: Ingkarni Wardli B20 :: David Roberts :: University of Adelaide

The Serre-Grothendieck theorem implies that every torsion integral 3rd cohomology class on a finite CW-complex is the invariant of some projective bundle. It was originally proved in a letter by Serre, used homotopical methods, most notably a Postnikov decomposition of a certain classifying space with divisible homotopy groups. In this talk I will outline, using work of the algebraic geometer Offer Gabber, a proof for compact smooth manifolds using geometric means and a little K-theory.
Micro Magnetofluidics - Wireless Manipulation for Microfluidics
15:10 Fri 24 Oct, 2014 :: N.132 Engineering North :: Professor Nam-Trung Nguyen :: Griffith University

Media...
Microfluidics is rich in multi-physics phenomena, which offer fundamentally new capabilities in the manipulation and detection of biological particles. Most current microfluidic applications are based on hydrodynamic, electrokinetic, acoustic and optic actuation. Implementing these concepts requires bulky external pumping/valving systems and energy supplies. The required wires and connectors make their fabrication and handling difficult. Most of the conventional approaches induce heat that may affect sensitive bio particles such as cells. There is a need for a technology for fluid handling in microfluidic devices that is of low-cost, simple, wireless, free of induced heat and independent of pH level or ion concentration. The use of magnetism would provide a wireless solution for this need. Micro magnetofluidics is a newly established research field that links magnetism and microfluidics to gain new capabilities. Magnetism provides a convenient and wireless way for control and manipulation of fluid flow in the microscale. Investigation of magnetism-induced phenomena in a microfluidic device has the advantage of well-defined experimental condition such as temperature and magnetic field because of the system size. This talk presents recent interesting phenomena in both continuous-flow and digital micro magnetofluidics.
What happens when you eat pizza?: the science and mathematics behind digestion
14:10 Mon 27 Oct, 2014 :: Ingkarni Wardli 715 Conference Room :: Dr. Sarthok Sircar :: School of Mathematical Sciences

Media...
Our stomach is an inferno with acidic juices that are strong enough to bore a hole through our hands. Ever wondered why the stomach does not digest itself ? The answer lies in an interesting defence mechanism along the stomach lining which also aids in digestion of food. In this talk I will present this mechanism and briefly present the physics, chemistry, biology and (off course !) the mathematics to describe this system. The talk may also answer your queries regarding heart-burn especially when you eat a lot of free-food !!
Happiness and social information flow: Computational social science through data.
15:10 Fri 7 Nov, 2014 :: EM G06 (Engineering & Maths Bldg) :: Dr Lewis Mitchell :: University of Adelaide

The recent explosion in big data coming from online social networks has led to an increasing interest in bringing quantitative methods to bear on questions in social science. A recent high-profile example is the study of emotional contagion, which has led to significant challenges and controversy. This talk will focus on two issues related to emotional contagion, namely remote-sensing of population-level wellbeing and the problem of information flow across a social network. We discuss some of the challenges in working with massive online data sets, and present a simple tool for measuring large-scale happiness from such data. By combining over 10 million geolocated messages collected from Twitter with traditional census data we uncover geographies of happiness at the scale of states and cities, and discuss how these patterns may be related to traditional wellbeing measures and public health outcomes. Using tools from information theory we also study information flow between individuals and how this may relate to the concept of predictability for human behaviour.
Happiness and social information flow: Computational social science through data.
15:10 Fri 7 Nov, 2014 :: EM G06 (Engineering & Maths Bldg) :: Dr Lewis Mitchell :: University of Adelaide

The recent explosion in big data coming from online social networks has led to an increasing interest in bringing quantitative methods to bear on questions in social science. A recent high-profile example is the study of emotional contagion, which has led to significant challenges and controversy. This talk will focus on two issues related to emotional contagion, namely remote-sensing of population-level wellbeing and the problem of information flow across a social network. We discuss some of the challenges in working with massive online data sets, and present a simple tool for measuring large-scale happiness from such data. By combining over 10 million geolocated messages collected from Twitter with traditional census data we uncover geographies of happiness at the scale of states and cities, and discuss how these patterns may be related to traditional wellbeing measures and public health outcomes. Using tools from information theory we also study information flow between individuals and how this may relate to the concept of predictability for human behaviour.
Extending holomorphic maps from Stein manifolds into affine toric varieties
12:10 Fri 14 Nov, 2014 :: Ingkarni Wardli B20 :: Richard Larkang :: University of Adelaide

One way of defining so-called Oka manifolds is by saying that they satisfy the following interpolation property (IP): Y satisfies the IP if any holomorphic map from a closed submanifold S of a Stein manifold X into Y which has a continuous extension to X also has a holomorphic extension. An ostensibly weaker property is the convex interpolation property (CIP), where S is assumed to be a contractible submanifold of X = C^n. By a deep theorem of Forstneric, these (and several other) properties are in fact equivalent. I will discuss a joint work with Finnur Larusson, where we consider the interpolation property when the target Y is a singular affine toric variety. We show that all affine toric varieties satisfy an interpolation property stronger than CIP, but that only in very special situations do they satisfy the full IP.
Nonlinear analysis over infinite dimensional spaces and its applications
12:10 Fri 6 Feb, 2015 :: Ingkarni Wardli B20 :: Tsuyoshi Kato :: Kyoto University

In this talk we develop moduli theory of holomorphic curves over infinite dimensional manifolds consisted by sequences of almost Kaehler manifolds. Under the assumption of high symmetry, we verify that many mechanisms of the standard moduli theory over closed symplectic manifolds also work over these infinite dimensional spaces. As an application, we study deformation theory of discrete groups acting on trees. There is a canonical way, up to conjugacy to embed such groups into the automorphism group over the infinite projective space. We verify that for some class of Hamiltonian functions, the deformed groups must be always asymptotically infinite.
Boundary behaviour of Hitchin and hypo flows with left-invariant initial data
12:10 Fri 27 Feb, 2015 :: Ingkarni Wardli B20 :: Vicente Cortes :: University of Hamburg

Hitchin and hypo flows constitute a system of first order pdes for the construction of Ricci-flat Riemannian mertrics of special holonomy in dimensions 6, 7 and 8. Assuming that the initial geometric structure is left-invariant, we study whether the resulting Ricci-flat manifolds can be extended in a natural way to complete Ricci-flat manifolds. This talk is based on joint work with Florin Belgun, Marco Freibert and Oliver Goertsches, see arXiv:1405.1866 (math.DG).
Predicting pressure drops in pipelines due to pump trip events
12:10 Mon 2 Mar, 2015 :: Napier LG29 :: David Arnold :: University of Adelaide

Media...
Sunwater is a Queensland company that designs, builds and manages large-scale water infrastructure such as dams, weirs and pipelines. In this talk, I will discuss one of the aspects that is crucial in the design stage of long pipelines, the pipelines ability to withstand large pressure disturbances caused by pump trip events. A pump trip is a sudden, unplanned shutdown of a pump, which causes potentially destructive pressure waves to propagate through the pipe network. Accurate simulation of such events is time consuming and costly, so rules of thumb and intuition are used during initial planning and design of a pipeline project. I will discuss some simple mathematical models for pump trip events, show some results, and discuss how they could be used in the initial design process.
Multiscale modelling of multicellular biological systems: mechanics, development and disease
03:10 Fri 6 Mar, 2015 :: Lower Napier LG24 :: Dr James Osborne :: University of Melbourne

When investigating the development and function of multicellular biological systems it is not enough to only consider the behaviour of individual cells in isolation. For example when studying tissue development, how individual cells interact, both mechanically and biochemically, influences the resulting tissues form and function. In this talk we present a multiscale modelling framework for simulating the development and function of multicellular biological systems (in particular tissues). Utilising the natural structural unit of the cell, the framework consists of three main scales: the tissue level (macro-scale); the cell level (meso-scale); and the sub-cellular level (micro-scale), with multiple interactions occurring between all scales. The cell level is central to the framework and cells are modelled as discrete interacting entities using one of a number of possible modelling paradigms, including lattice based models (cellular automata and cellular Potts) and off-lattice based models (cell centre and vertex based representations). The sub-cellular level concerns numerous metabolic and biochemical processes represented by interaction networks rendered stochastically or into ODEs. The outputs from such systems influence the behaviour of the cell level affecting properties such as adhesion and also influencing cell mitosis and apoptosis. At the tissue level we consider factors or restraints that influence the cells, for example the distribution of a nutrient or messenger molecule, which is represented by field equations, on a growing domain, with individual cells functioning as sinks and/or sources. The modular approach taken within the framework enables more realistic behaviour to be considered at each scale. This framework is implemented within the Open Source Chaste library (Cancer Heart and Soft Tissue Environment, (http://www.cs.ox.ac.uk/chaste/) and has been used to model biochemical and biomechanical interactions in various biological systems. In this talk we present the key ideas of the framework along with applications within the fields of development and disease.
Singular Pfaffian systems in dimension 6
12:10 Fri 20 Mar, 2015 :: Napier 144 :: Pawel Nurowski :: Center for Theoretical Physics, Polish Academy of Sciences

We consider a pair of rank 3 distributions in dimension 6 with some remarkable properties. They define an analog of the celebrated nearly-Kahler structure on the 6 sphere, with the exceptional simple Lie group G2 as a group of symmetries. In our case the metric associated with the structure is pseudo-Riemannian, of split signature. The 6 manifold has a 5-dimensional boundary with interesting induced geometry. This structure on the boundary has no analog in the Riemannian case.
The Mathematics behind the Ingkarni Wardli Quincunx
12:10 Mon 23 Mar, 2015 :: Napier LG29 :: Andrew Pfeiffer :: University of Adelaide

The quincunx is a fun machine on the ground floor of Ingkarni Wardli. Hopefully you've had a chance to play with it at some point. Perhaps you were waiting for your coffee, or just procrastinating. However, you may have no idea what I'm talking about. If so, read on. To operate the quincunx, you turn a handle and push balls into a sea of needles. The needles then pseudo-randomly direct each ball into one of eight bins. On the quincunx, there is a page of instructions that makes some mathematical claims. For example, it claims that the balls should look roughly like a normal distribution. In this talk, I will discuss some of the mathematics behind the quincunx. I will also seek to make the claims of the quincunx more precise.
Higher homogeneous bundles
12:10 Fri 27 Mar, 2015 :: Napier 144 :: David Roberts :: University of Adelaide

Historically, homogeneous bundles were among the first examples of principal bundles. This talk will cover a general method that gives rise to many homogeneous principal 2-bundles.
Dynamic programming and optimal scoring rates in cricket
12:10 Mon 30 Mar, 2015 :: Napier LG29 :: Mingmei Teo :: University of Adelaide

Media...
With the cricket world cup having reached it's exciting conclusion and many world cup batting records being re-written at this world cup, we look back to the year 1987 where batting occurred at a more sedate pace and totals of 300+ were a rarity. In this talk, I'll discuss how dynamic programming has been applied to one-day cricket to determine optimal scoring rates and I'll also attempt to give a brief introduction into what is dynamic programming and a common method used to solve dynamic programming problems.
How do we quantify the filamentous growth in yeast colony?
12:10 Mon 30 Mar, 2015 :: Ingkarni Wardli 715 Conference Room :: Dr. Benjamin Binder :: School of Mathematical Sciences

Media...
In this talk we will develop a systematic method to measure the spatial patterning of colony morphology. A hybrid modelling approach of the growth process will also be discussed.
A Model to Represent the Propagation of a Wave Over a Bovine Oocyte
12:10 Mon 20 Apr, 2015 :: Napier LG29 :: Amelia Thomas :: University of Adelaide

Media...
When the fertilization of egg cells is studied experimentally, generally the cumulus cells surrounding the egg are removed, for easier visualization of the egg itself. However, interesting phenomena are observed in the cumulus cells if they are left intact. In this talk I will present some models that can be used to describe the travelling wavelike movement of the cumulus cells away from the egg cell which occurs post-fertilisation.
Group Meeting
15:10 Fri 24 Apr, 2015 :: N218 Engineering North :: Dr Ben Binder :: University of Adelaide

Talk (Dr Ben Binder): How do we quantify the filamentous growth in a yeast colony? Abstract: In this talk we will develop a systematic method to measure the spatial patterning of yeast colony morphology. The methods are applicable to other physical systems with circular spatial domains, for example, batch mixing fluid devices. A hybrid modelling approach of the yeast growth process will also be discussed. After the seminar, Ben will start a group discussion by sharing some information and experiences on attracting honours/PhD students to the group.
Did the Legend of Zelda unfold in our Solar System?
12:10 Mon 27 Apr, 2015 :: Napier LG29 :: Adam Rohrlach :: University of Adelaide

Media...
Well, obviously not. We can see the other planets, and they're not terribly conducive to Elven based life. Still, I aim to exhaustively explore the topic, all the while avoiding conventional logic and reasoning. Clearly, one could roll out any number of 'telescope' based proofs, and 'video game characters aren't really real, even after a million wishes' arguments, but I want to tackle this hotly debated issue using physics (the ugly cousin of actual mathematics). Armed with a remedial understanding of year 12 physics, from the acclaimed 2000 South Australian syllabus, I can think of no one better qualified, or possibly willing, to give this talk.
Identifying the Missing Aspects of the ANSI/ISA Best Practices for Security Policy
12:10 Mon 27 Apr, 2015 :: Napier LG29 :: Dinesha Ranathunga :: University of Adelaide

Media...
Firewall configuration is a critical activity but it is often conducted manually, which often result in inaccurate, unreliable configurations that leave networks vulnerable to cyber attack. Firewall misconfigurations can have severe consequences in the context of critical infrastructure plants. Internal networks within these plants interconnect valuable industrial control equipment which often control safety critical processes. Security breaches here can result in disruption of critical services, cause severe environmental damage and at worse, loss of human lives. Automation can make designing firewall configurations less tedious and their deployment more reliable and increasingly cost-effective. In this talk I will discuss of our efforts to arrive at a high-level security policy description based on the ANSI/ISA standard, suitable for automation. In doing do, we identify the missing aspects of the existing best practices and propose solutions. We then apply the corrected best practice specifications to real SCADA firewall configurations and evaluate their usefulness in describing SCADA policies accurately.
Spherical T-duality: the non-principal case
12:10 Fri 1 May, 2015 :: Napier 144 :: Mathai Varghese :: University of Adelaide

Spherical T-duality is related to M-theory and was introduced in recent joint work with Bouwknegt and Evslin. I will begin by briefly reviewing the case of principal SU(2)-bundles with degree 7 flux, and then focus on the non-principal case for most of the talk, ending with the relation to SUGRA/M-theory.
Multivariate regression in quantitative finance: sparsity, structure, and robustness
15:10 Fri 1 May, 2015 :: Engineering North N132 :: A/Prof Mark Coates :: McGill University

Many quantitative hedge funds around the world strive to predict future equity and futures returns based on many sources of information, including historical returns and economic data. This leads to a multivariate regression problem. Compared to many regression problems, the signal-to-noise ratio is extremely low, and profits can be realized if even a small fraction of the future returns can be accurately predicted. The returns generally have heavy-tailed distributions, further complicating the regression procedure.

In this talk, I will describe how we can impose structure into the regression problem in order to make detection and estimation of the very weak signals feasible. Some of this structure consists of an assumption of sparsity; some of it involves identification of common factors to reduce the dimension of the problem. I will also describe how we can formulate alternative regression problems that lead to more robust solutions that better match the performance metrics of interest in the finance setting.

Indefinite spectral triples and foliations of spacetime
12:10 Fri 8 May, 2015 :: Napier 144 :: Koen van den Dungen :: Australian National University

Motivated by Dirac operators on Lorentzian manifolds, we propose a new framework to deal with non-symmetric and non-elliptic operators in noncommutative geometry. We provide a definition for indefinite spectral triples, which correspond bijectively with certain pairs of spectral triples. Next, we will show how a special case of indefinite spectral triples can be constructed from a family of spectral triples. In particular, this construction provides a convenient setting to study the Dirac operator on a spacetime with a foliation by spacelike hypersurfaces. This talk is based on joint work with Adam Rennie (arXiv:1503.06916).
Medical Decision Making
12:10 Mon 11 May, 2015 :: Napier LG29 :: Eka Baker :: University of Adelaide

Media...
Practicing physicians make treatment decisions based on clinical trial data every day. This data is based on trials primarily conducted on healthy volunteers, or on those with only the disease in question. In reality, patients do have existing conditions that can affect the benefits and risks associated with receiving these treatments. In this talk, I will explain how we modified an already existing Markov model to show the progression of treatment of a single condition over time. I will then explain how we adapted this to a different condition, and then created a combined model, which demonstrated how both diseases and treatments progressed on the same patient over their lifetime.
The twistor equation on Lorentzian Spin^c manifolds
12:10 Fri 15 May, 2015 :: Napier 144 :: Andree Lischewski :: University of Adelaide

In this talk I consider a conformally covariant spinor field equation, called the twistor equation, which can be formulated on any Lorentzian Spin^c manifold. Its solutions have become of importance in the study of supersymmetric field theories in recent years and were named "charged conformal Killing spinors". After a short review of conformal Spin^c geometry in Lorentzian signature, I will briefly discuss the emergence of charged conformal Killing spinors in supergravity. I will then focus on special geometric structures related to the twistor equation and use charged conformal Killing spinors in order to establish a link between conformal and CR geometry.
An Engineer-Mathematician Duality Approach to Finite Element Methods
12:10 Mon 18 May, 2015 :: Napier LG29 :: Jordan Belperio :: University of Adelaide

Media...
The finite element method has been a prominently used numerical technique for engineers solving solid mechanics, electro-magnetic and heat transfer problems for over 30 years. More recently the finite element method has been used to solve fluid mechanics problems, a field where finite difference methods are more commonly used. In this talk, I will introduce the basic mathematics behind the finite element method, the similarity between the finite element method and finite difference method and comparing how engineers and mathematicians use finite element methods. I will then demonstrate two solutions to the wave equation using the finite element method.
Can mathematics help save energy in computing?
15:10 Fri 22 May, 2015 :: Engineering North N132 :: Prof Markus Hegland :: ANU

Media...

Recent development of computational hardware is characterised by two trends: 1. High levels of duplication of computational capabilities in multicore, parallel and GPU processing, and, 2. Substantially faster development of the speed of computational technology compared to communication technology

A consequence of these two trends is that energy costs of modern computing devices from mobile phones to supercomputers are increasingly dominated by communication costs. In order to save energy one would thus need to reduce the amount of data movement within the computer. This can be achieved by recomputing results instead of communicating them. The resulting increase in computational redundancy may also be used to make the computations more robust against hardware faults. Paradoxically, by doing more (computations) we do use less (energy).

This talk will first discuss for a simple example how a mathematical understanding can be applied to improve computational results using extrapolation. Then the problem of energy consumption in computational hardware will be considered. Finally some recent work will be discussed which shows how redundant computing is used to mitigate computational faults and thus to save energy.

Big things are weird
12:10 Mon 25 May, 2015 :: Napier LG29 :: Luke Keating-Hughes :: University of Adelaide

Media...
The pyramids of Giza, the depths of the Mariana trench, the massive Einstein Cross Quasar; all of these things are big and weird. Big weird things aren't just apparent in the physical world though, they appear in mathematics too! In this talk I will try to motivate a mathematical big thing and then show that it is weird. In particular, we will introduce the necessary topology and homotopy theory in order to show that although all finite dimensional spheres are (almost canonically) non-contractible spaces - an infinite dimensional sphere IS contractible! This result's significance will then be explained in the context of Kuiper's Theorem if time permits.
Monodromy of the Hitchin system and components of representation varieties
12:10 Fri 29 May, 2015 :: Napier 144 :: David Baraglia :: University of Adelaide

Representations of the fundamental group of a compact Riemann surface into a reductive Lie group form a moduli space, called a representation variety. An outstanding problem in topology is to determine the number of components of these varieties. Through a deep result known as non-abelian Hodge theory, representation varieties are homeomorphic to moduli spaces of certain holomorphic objects called Higgs bundles. In this talk I will describe recent joint work with L. Schaposnik computing the monodromy of the Hitchin fibration for Higgs bundle moduli spaces. Our results give a new unified proof of the number of components of several representation varieties.
Group Meeting
15:10 Fri 29 May, 2015 :: EM 213 :: Dr Judy Bunder :: University of Adelaide

Talk : Patch dynamics for efficient exascale simulations Abstract Massive parallelisation has lead to a dramatic increase in available computational power. However, data transfer speeds have failed to keep pace and are the major limiting factor in the development of exascale computing. New algorithms must be developed which minimise the transfer of data. Patch dynamics is a computational macroscale modelling scheme which provides a coarse macroscale solution of a problem defined on a fine microscale by dividing the domain into many nonoverlapping, coupled patches. Patch dynamics is readily adaptable to massive parallelisation as each processor core can evaluate the dynamics on one, or a few, patches. However, patch coupling conditions interpolate across the unevaluated parts of the domain between patches and require almost continuous data transfer. We propose a modified patch dynamics scheme which minimises data transfer by only reevaluating the patch coupling conditions at `mesoscale' time scales which are significantly larger than the microscale time of the microscale problem. We analyse and quantify the error arising from patch dynamics with mesoscale temporal coupling.
Hillary Clinton was liberal. Hillary Clinton is liberal.
12:10 Mon 1 Jun, 2015 :: Napier LG29 :: Brock Hermans :: University of Adelaide

Media...
Didn't enjoy last weeks talk? Thought it was a bit too complicated in some areas? Too much pure maths? Well even if your answer is no you should still come along to mine. I will be talking about the most uniting, agreeable area of our lives; politics. By using rudimentary statistics I'll be looking at three things. One, a method for poll aggression as a tool to predict elections (using Bayesian statistics). Two, why the polls were so wrong in the U.K. election recently. And three, what claims (if any) can we make about the current 2016 U.S. presidential race. In one of the most exciting talks of the year so far, I'll be looking at 'Shy Torries', 'Freedom loving-libertarians' and answering the question "is Hilary Clinton the most liberal (that means left wing in America) candidate in the race?".
Some approaches toward a stronger Jacobian conjecture
12:10 Fri 5 Jun, 2015 :: Napier 144 :: Tuyen Truong :: University of Adelaide

The Jacobian conjecture states that if a polynomial self-map of C^n has invertible Jacobian, then the map has a polynomial inverse. Is it true, false or simply undecidable? In this talk I will propose a conjecture concerning general square matrices with complex coefficients, whose validity implies the Jacobian conjecture. The conjecture is checked in various cases, in particular it is true for generic matrices. Also, a heuristic argument is provided explaining why the conjecture (and thus, also the Jacobian conjecture) should be true.
Complex Systems, Chaotic Dynamics and Infectious Diseases
15:10 Fri 5 Jun, 2015 :: Engineering North N132 :: Prof Michael Small :: UWA

Media...
In complex systems, the interconnection between the components of the system determine the dynamics. The system is described by a very large and random mathematical graph and it is the topological structure of that graph which is important for understanding of the dynamical behaviour of the system. I will talk about two specific examples - (1) spread of infectious disease (where the connection between the agents in a population, rather than epidemic parameters, determine the endemic state); and, (2) a transformation to represent a dynamical system as a graph (such that the "statistical mechanics" of the graph characterise the dynamics).
Dirac operators and Hamiltonian loop group action
12:10 Fri 24 Jul, 2015 :: Engineering and Maths EM212 :: Yanli Song :: University of Toronto

A definition to the geometric quantization for compact Hamiltonian G-spaces is given by Bott, defined as the index of the Spinc-Dirac operator on the manifold. In this talk, I will explain how to generalize this idea to the Hamiltonian LG-spaces. Instead of quantizing infinite-dimensional manifolds directly, we use its equivalent finite-dimensional model, the quasi-Hamiltonian G-spaces. By constructing twisted spinor bundle and twisted pre-quantum bundle on the quasi-Hamiltonian G-space, we define a Dirac operator whose index are given by positive energy representation of loop groups. A key role in the construction will be played by the algebraic cubic Dirac operator for loop algebra. If time permitted, I will also explain how to prove the quantization commutes with reduction theorem for Hamiltonian LG-spaces under this framework.
Quantising proper actions on Spin-c manifolds
11:00 Fri 31 Jul, 2015 :: Ingkarni Wardli Level 7 Room 7.15 :: Peter Hochs :: The University of Adelaide

Media...
For a proper action by a Lie group on a Spin-c manifold (both of which may be noncompact), we study an index of deformations of the Spin-c Dirac operator, acting on the space of spinors invariant under the group action. When applied to spinors that are square integrable transversally to orbits in a suitable sense, the kernel of this operator turns out to be finite-dimensional, under certain hypotheses of the deformation. This also allows one to show that the index has the quantisation commutes with reduction property (as proved by Meinrenken in the compact symplectic case, and by Paradan-Vergne in the compact Spin-c case), for sufficiently large powers of the determinant line bundle. Furthermore, this result extends to Spin-c Dirac operators twisted by vector bundles. A key ingredient of the arguments is the use of a family of inner products on the Lie algebra, depending on a point in the manifold. This is joint work with Mathai Varghese.
Dynamics on Networks: The role of local dynamics and global networks on hypersynchronous neural activity
15:10 Fri 31 Jul, 2015 :: Ingkarni Wardli B21 :: Prof John Terry :: University of Exeter, UK

Media...

Graph theory has evolved into a useful tool for studying complex brain networks inferred from a variety of measures of neural activity, including fMRI, DTI, MEG and EEG. In the study of neurological disorders, recent work has discovered differences in the structure of graphs inferred from patient and control cohorts. However, most of these studies pursue a purely observational approach; identifying correlations between properties of graphs and the cohort which they describe, without consideration of the underlying mechanisms. To move beyond this necessitates the development of mathematical modelling approaches to appropriately interpret network interactions and the alterations in brain dynamics they permit.

In the talk we introduce some of these concepts with application to epilepsy, introducing a dynamic network approach to study resting state EEG recordings from a cohort of 35 people with epilepsy and 40 adult controls. Using this framework we demonstrate a strongly significant difference between networks inferred from the background activity of people with epilepsy in comparison to normal controls. Our findings demonstrate that a mathematical model based analysis of routine clinical EEG provides significant additional information beyond standard clinical interpretation, which may ultimately enable a more appropriate mechanistic stratification of people with epilepsy leading to improved diagnostics and therapeutics.

Bilinear L^p estimates for quasimodes
12:10 Fri 14 Aug, 2015 :: Ingkarni Wardli B17 :: Melissa Tacy :: The University of Adelaide

Media...
Understanding the growth of the product of eigenfunctions $$u\cdot{}v$$ $$\Delta{}u=-\lambda^{2}u\quad{}\Delta{}v=-\mu^{2}v$$ is vital to understanding the regularity properties of non-linear PDE such as the non-linear Schr\"{o}dinger equation. In this talk I will discuss some recent results that I have obtain in collaboration with Zihua Guo and Xiaolong Han which provide a full range of estimates of the form $$||uv||_{L^{p}}\leq{}G(\lambda,\mu)||u||_{L^{2}}||v||_{L^{2}}$$ where $u$ and $v$ are approximate eigenfunctions of the Laplacian. We obtain these results by re-casting the problem to a more general related semiclassical problem.
Non-crossing quantiles
15:10 Fri 14 Aug, 2015 :: Ingkarni Wardli B21 :: Dr Yanan Fan :: UNSW

Media...
Quantile regression has received increased attention in the statistics community in recent years. However, since the quantile regression curves are estimated separately, the curves can cross, leading to invalid response distribution. Many authors have proposed remedies for this in the context of frequentist estimation. In this talk, I will explain some of the existing approaches, and then describe a new Bayesian semi-parametric approach for fitting non-crossing quantile regression models simultaneously.
Deformation retractions from the space of continuous maps between domains in C onto the space of holomorphic maps
12:10 Mon 17 Aug, 2015 :: Benham Labs G10 :: Brett Chenoweth :: University of Adelaide

Media...
Mikhail Gromov proved in 1989 that every continuous map from a Stein manifold S to an elliptic manifold X could be deformed to a holomorphic map. More generally, it is true that if X is an Oka manifold then a continuous map from a Stein source into X can always be deformed to a holomorphic map. The question is whether we can do this for all continuous maps at once, in a `nice' way that does not change a map f if f is already holomorphic. In a recent paper by Larusson, we see that ANRs play an important in producing a partial answer to this question. In this talk we will explore the question in the relatively simple situation where the source and target are domains in the complex plane.
Be careful not to impute something ridiculous!
12:20 Mon 24 Aug, 2015 :: Benham Labs G10 :: Sarah James :: University of Adelaide

Media...
When learning how to make inferences about data, we are given all of the information with no missing values. In reality data sets are often missing data, anywhere from 5% of the data to extreme cases such as 70% of the data. Instead of getting rid of the incomplete cases we can impute predictions for each missing value and make inferences on the resulting data set. But just how sensible are our predictions? In this talk, we will learn how to deal with missing data and talk about why we have to be careful with our predictions.
Seeing the Unseeable
13:10 Mon 24 Aug, 2015 :: Ingkarni Wardli 715 Conference Room :: Prof. Mike Eastwood :: School of Mathematical Sciences

Media...
How do we know what's inside the earth? How do we know what's inside sick humans? We are all familiar with sophisticated scanning devices: this talk will explain roughly how they work and something of the mathematics built into them.
Vanishing lattices and moduli spaces
12:10 Fri 28 Aug, 2015 :: Ingkarni Wardli B17 :: David Baraglia :: The University of Adelaide

Media...
Vanishing lattices are symplectic analogues of root systems. As with roots systems, they admit a classification in terms of certain Dynkin diagrams (not the usual ones from Lie theory). In this talk I will discuss this classification and if there is time I will outline my work (in progress) showing that the monodromy of the SL(n,C) Hitchin fibration is essentially a vanishing lattice.
Pattern Formation in Nature
12:10 Mon 31 Aug, 2015 :: Benham Labs G10 :: Saber Dini :: University of Adelaide

Media...
Pattern formation is a ubiquitous process in nature: embryo development, animals skin pigmentation, etc. I will talk about how Alan Turing (the British genius known for the Turing Machine) explained pattern formation by linear stability analysis of reaction-diffusion systems.
The Calderon Problem: From the Past to the Present
15:10 Fri 11 Sep, 2015 :: Ingkarni Wardli B21 :: Dr Leo Tzou :: University of Sydney

The problem of determining the electrical conductivity of a body by making voltage and current measurements on the object's surface has various applications in fields such as oil exploration and early detection of malignant breast tumour. This classical problem posed by Calderon remained open until the late '80s when it was finally solved in a breakthrough paper by Sylvester-Uhlmann.

In the recent years, geometry has played an important role in this problem. The unexpected connection of this subject to fields such as dynamical systems, symplectic geometry, and Riemannian geometry has led to some interesting progress. This talk will be an overview of some of the recent results and an outline of the techniques used to treat this problem.

Mathematics in the Moonlight
13:10 Mon 14 Sep, 2015 :: Ingkarni Wardli 715 Conference Room :: Dr Giang Nguyen :: School of Mathematical Sciences

Media...
While everyone remembers that Neil Amstrong was the first man to walk on the moon, not many know the name of the second astronaut to do so. Possibly even smaller is the number of people who have heard of the mathematics that guided Apollo 11 to the moon and back. In this talk, we shall explore this mathematics.
Predicting the Winning Time of a Stage of the Tour de France
12:10 Mon 21 Sep, 2015 :: Benham Labs G10 :: Nic Rebuli :: University of Adelaide

Media...
Sports can be lucrative, especially popular ones. But for all of us mere mortals, the only money we will ever glean from sporting events is through gambling (responsibly). When it comes to cycling, people generally choose their favourites based on individual and team performance, throughout the world cycling calendar. But what can be said for the duration of a given stage or the winning time of the highly sort after General Classification? In this talk I discuss a basic model for predicting the winning time of the Tour de France. I then apply this model to predicting the outcome of the 2012 and 2013 Tour de France and discuss the results in context.
Natural Optimisation (No Artificial Colours, Flavours or Preservatives)
12:10 Mon 21 Sep, 2015 :: Benham Labs G10 :: James Walker :: University of Adelaide

Media...
Sometimes nature seems to have the best solutions to complicated optimisation problems. For example ant colonies have a clever way of optimising the amount of food brought to the colony using pheromones, the process of natural selection gives rise to species which are optimally suited to their environment and although this process is not technically natural, for centuries people have been using properties of crystal formation to make steel with optimal properties. In this talk I will discuss non-convex optimisation and some optimisation methods inspired by natural processes.
T-dual noncommutative principal torus bundles
12:10 Fri 25 Sep, 2015 :: Engineering Maths Building EMG07 :: Keith Hannabuss :: University of Oxford

Media...
Since the work of Mathai and Rosenberg it is known that the T-dual of a principal torus bundle can be described as a noncommutative torus bundle. This talk will look at a simple example of two T-dual bundles both of which are noncommutative. Then it will discuss a strategy for extending this to more general noncommutative bundles.
Can Facebook Change your Mood?
12:10 Mon 28 Sep, 2015 :: Benham Labs G10 :: Tessa Longstaff :: University of Adelaide

Media...
When studies are conducted on humans there are several ethical considerations that physicians must adhere to. Some people have argued that a recent study by Facebook has violated some of these ethical issues. In this talk I will introduce the ethics behind human clinical trials and then discuss a study conducted by Facebook, which considered emotional contagions on networks. The ethical considerations for this study will be explored and finally we can conclude if Facebook can change your mood.
Typhoons and Tigers
12:10 Fri 23 Oct, 2015 :: Hughes Lecture Room 322 :: Assoc. Prof. Andrew Metcalfe :: School of Mathematical Sciences

Media...
The Sundarbans, situated on the north coast of India and south west Bangladesh, are one of the world's largest mangrove regions (4100 square kilometres). In India, there are over 4 million inhabitants on the deltaic islands in the region. There is a diverse flora and fauna, and it is the only remaining habitat of the Bengal tiger. The Sundarbans is an UNESCO World Heritage Site and International Biodiversity Reserve. However, the Sundarbans are prone to flooding from the cyclones that regularly develop in the Bay of Bengal. In this talk I shall describe a stochastic model for the flood risk and explain how this can be used to make decisions about flood mitigation strategies and to provide estimates of the increase in flood risk due to rising sea levels and climate change.
The Mathematics of Crime
15:10 Fri 23 Oct, 2015 :: Ingkarni Wardli B21 :: Prof Andrea Bertozzi :: UCLA

Media...
Law enforcement agencies across the US have discovered that partnering with a team of mathematicians and social scientists from UCLA can help them determine where crime is likely to occur. Dr. Bertozzi will talk about the fascinating story behind her participation on the UCLA team that developed a “predictive policing” computer program that zeros-in on areas that have the highest probability of crime. In addition, the use of mathematics in studying gang crimes and other criminal activities will also be discussed. Commercial use of the "predictive-policing" program allows communities to put police officers in the right place at the right time, stopping crime before it happens.
Covariant model structures and simplicial localization
12:10 Fri 30 Oct, 2015 :: Ingkarni Wardli B17 :: Danny Stevenson :: The University of Adelaide

Media...
This talk will describe some aspects of the theory of quasi-categories, in particular the notion of left fbration and the allied covariant model structure. If B is a simplicial set, then I will describe some Quillen equivalences relating the covariant model structure on simplicial sets over B to a certain localization of simplicial presheaves on the simplex category of B. I will show how this leads to a new description of Lurie's simplicial rigidification functor as a hammock localization and describe some applications to Lurie's theory of straightening and unstraightening functors.
Near-motion-trapping in rings of cylinders (and why this is the worst possible wave energy device)
15:10 Fri 30 Oct, 2015 :: Ingkarni Wardli B21 :: Dr Hugh Wolgamot :: University of Western Australia

Motion trapping structures can oscillate indefinitely when floating in an ideal fluid. This talk discusses a simple structure which is predicted to have very close to perfect trapping behaviour, where the structure has been investigated numerically and (for the first time) experimentally. While endless oscillations were evidently not observed experimentally, remarkable differences between 'tuned' and 'detuned' structures were still apparent, and simple theory is sufficient to explain much of the behaviour. A connection with wave energy will be briefly explored, though the link is not fruitful!
Ocean dynamics of Gulf St Vincent: a numerical study
12:10 Mon 2 Nov, 2015 :: Benham Labs G10 :: Henry Ellis :: University of Adelaide

Media...
The aim of this research is to determine the physical dynamics of ocean circulation within Gulf St. Vincent, South Australia, and the exchange of momentum, nutrients, heat, salt and other water properties between the gulf and shelf via Investigator Strait and Backstairs Passage. The project aims to achieve this through the creation of high-resolution numerical models, combined with new and historical observations from a moored instrument package, satellite data, and shipboard surveys. The quasi-realistic high-resolution models are forced using boundary conditions generated by existing larger scale ROMS models, which in turn are forced at the boundary by a global model, creating a global to regional to local model network. Climatological forcing is done using European Centres for Medium range Weather Forecasting (ECMWF) data sets and is consistent over the regional and local models. A series of conceptual models are used to investigate the relative importance of separate physical processes in addition to fully forced quasi-realistic models. An outline of the research to be undertaken is given: • Connectivity of Gulf St. Vincent with shelf waters including seasonal variation due to wind and thermoclinic patterns; • The role of winter time cooling and formation of eddies in flushing the gulf; • The formation of a temperature front within the gulf during summer time; and • The connectivity and importance of nutrient rich, cool, water upwelling from the Bonney Coast with the gulf via Backstairs Passage during summer time.
A Semi-Markovian Modeling of Limit Order Markets
13:00 Fri 11 Dec, 2015 :: Ingkarni Wardli 5.57 :: Anatoliy Swishchuk :: University of Calgary

Media...
R. Cont and A. de Larrard (SIAM J. Financial Mathematics, 2013) introduced a tractable stochastic model for the dynamics of a limit order book, computing various quantities of interest such as the probability of a price increase or the diffusion limit of the price process. As suggested by empirical observations, we extend their framework to 1) arbitrary distributions for book events inter-arrival times (possibly non-exponential) and 2) both the nature of a new book event and its corresponding inter-arrival time depend on the nature of the previous book event. We do so by resorting to Markov renewal processes to model the dynamics of the bid and ask queues. We keep analytical tractability via explicit expressions for the Laplace transforms of various quantities of interest. Our approach is justified and illustrated by calibrating the model to the five stocks Amazon, Apple, Google, Intel and Microsoft on June 21st 2012. As in Cont and Larrard, the bid-ask spread remains constant equal to one tick, only the bid and ask queues are modelled (they are independent from each other and get reinitialized after a price change), and all orders have the same size. (This talk is based on our joint paper with Nelson Vadori (Morgan Stanley)).
Quantisation of Hitchin's moduli space
12:10 Fri 22 Jan, 2016 :: Engineering North N132 :: Siye Wu :: National Tsing Hua Univeristy

In this talk, I construct prequantum line bundles on Hitchin's moduli spaces of orientable and non-orientable surfaces and study the geometric quantisation and quantisation via branes by complexification of the moduli spaces.
A long C^2 without holomorphic functions
12:10 Fri 29 Jan, 2016 :: Engineering North N132 :: Franc Forstneric :: University of Ljubljana

Media...
For every integer n>1 we construct a complex manifold of dimension n which is exhausted by an increasing sequence of biholomorphic images of C^n (i.e., a long C^n), but it does not admit any nonconstant holomorphic functions. We also introduce new biholomorphic invariants of a complex manifold, the stable core and the strongly stable core, and we prove that every compact strongly pseudoconvex and polynomially convex domain B in C^n is the strongly stable core of a long C^n; in particular, non-equivalent domains give rise to non-equivalent long C^n's. Thus, for any n>1 there exist uncountably many pairwise non-equivalent long C^n's. These results answer several long standing open questions. (Joint work with Luka Boc Thaler.)
A fixed point theorem on noncompact manifolds
12:10 Fri 12 Feb, 2016 :: Ingkarni Wardli B21 :: Peter Hochs :: University of Adelaide / Radboud University

Media...
For an elliptic operator on a compact manifold acted on by a compact Lie group, the Atiyah-Segal-Singer fixed point formula expresses its equivariant index in terms of data on fixed point sets of group elements. This can for example be used to prove Weyl’s character formula. We extend the definition of the equivariant index to noncompact manifolds, and prove a generalisation of the Atiyah-Segal-Singer formula, for group elements with compact fixed point sets. In one example, this leads to a relation with characters of discrete series representations of semisimple Lie groups. (This is joint work with Hang Wang.)
T-duality for elliptic curve orientifolds
12:10 Fri 4 Mar, 2016 :: Ingkarni Wardli B17 :: Jonathan Rosenberg :: University of Maryland

Media...
Orientifold string theories are quantum field theories based on the geometry of a space with an involution. T-dualities are certain relationships between such theories that look different on the surface but give rise to the same observable physics. In this talk I will not assume any knowledge of physics but will concentrate on the associated geometry, in the case where the underlying space is a (complex) elliptic curve and the involution is either holomorphic or anti-holomorphic. The results blend algebraic topology and algebraic geometry. This is mostly joint work with Chuck Doran and Stefan Mendez-Diez.
Expanding maps
12:10 Fri 18 Mar, 2016 :: Eng & Maths EM205 :: Andy Hammerlindl :: Monash University

Media...
Consider a function from the circle to itself such that the derivative is greater than one at every point. Examples are maps of the form f(x) = mx for integers m > 1. In some sense, these are the only possible examples. This fact and the corresponding question for maps on higher dimensional manifolds was a major motivation for Gromov to develop pioneering results in the field of geometric group theory. In this talk, I'll give an overview of this and other results relating dynamical systems to the geometry of the manifolds on which they act and (time permitting) talk about my own work in the area.
Chaos in dimensions 2 and 3
15:10 Fri 18 Mar, 2016 :: Engineering South S112 :: Dr Andy Hammerlindl :: Monash University

Media...
I will talk about known models of chaotic dynamical systems in dimensions two and three, and results which classify the types of chaotic dynamics that are robust under perturbation. I will also talk about my own work towards understanding chaotic dynamics for discrete-time systems in dimension three. This is joint work with C. Bonatti, A. Gogolev, and R. Potrie.
Counting periodic points of plane Cremona maps
12:10 Fri 1 Apr, 2016 :: Eng & Maths EM205 :: Tuyen Truong :: University of Adelaide

Media...
In this talk, I will present recent results, join with Tien-Cuong Dinh and Viet-Anh Nguyen, on counting periodic points of plane Cremona maps (i.e. birational maps of P^2). The tools used include a Lefschetz fixed point formula of Saito, Iwasaki and Uehara for birational maps of surface whose fixed point set may contain curves; a bound on the arithmetic genus of curves of periodic points by Diller, Jackson and Sommerse; a result by Diller, Dujardin and Guedj on invariant (1,1) currents of meromorphic maps of compact Kahler surfaces; and a theory developed recently by Dinh and Sibony for non proper intersections of varieties. Among new results in the paper, we give a complete characterisation of when two positive closed (1,1) currents on a compact Kahler surface behave nicely in the view of Dinh and Sibony’s theory, even if their wedge intersection may not be well-defined with respect to the classical pluripotential theory. Time allows, I will present some generalisations to meromorphic maps (including an upper bound for the number of isolated periodic points which is sometimes overlooked in the literature) and open questions.
What is your favourite (4 dimensional) shape?
12:10 Mon 4 Apr, 2016 :: Ingkarni Wardli Conference Room 715 :: Dr Raymond Vozzo :: School of Mathematical Sciences

Media...
This is a circle, it lives in R^2: [picture of a circle]. This is a sphere, it lives in R^3: [picture of a sphere] In this talk I will (attempt to) give you a picture of what the next shape in this sequence (in R^4) looks like. I will also explain how all of this is related to a very important area of modern mathematics called topology.
Hot tube tau machine
15:10 Fri 15 Apr, 2016 :: B17 Ingkarni Wardli :: Dr Hayden Tronnolone :: University of Adelaide

Abstract: Microstructured optical fibres may be fabricated by first extruding molten material from a die to produce a macroscopic version of the final design, call a preform, and then stretching this to produce a fibre. In this talk I will demonstrate how to couple an existing model of the fluid flow during the extrusion stage to a basic model of the fluid temperature and present some preliminary conclusions. This work is still in progress and is being carried out in collaboration with Yvonne Stokes, Michael Chen and Jonathan Wylie. (+ Any items for group discussion)
How to count Betti numbers
12:10 Fri 6 May, 2016 :: Eng & Maths EM205 :: David Baraglia :: University of Adelaide

Media...
I will begin this talk by showing how to obtain the Betti numbers of certain smooth complex projective varieties by counting points over a finite field. For singular or non-compact varieties this motivates us to consider the "virtual Hodge numbers" encoded by the "Hodge-Deligne polynomial", a refinement of the topological Euler characteristic. I will then discuss the computation of Hodge-Deligne polynomials for certain singular character varieties (i.e. moduli spaces of flat connections).
Harmonic analysis of Hodge-Dirac operators
12:10 Fri 13 May, 2016 :: Eng & Maths EM205 :: Pierre Portal :: Australian National University

Media...
When the metric on a Riemannian manifold is perturbed in a rough (merely bounded and measurable) manner, do basic estimates involving the Hodge Dirac operator $D = d+d^*$ remain valid? Even in the model case of a perturbation of the euclidean metric on $\mathbb{R}^n$, this is a difficult question. For instance, the fact that the $L^2$ estimate $\|Du\|_2 \sim \|\sqrt{D^{2}}u\|_2$ remains valid for perturbed versions of $D$ was a famous conjecture made by Kato in 1961 and solved, positively, in a ground breaking paper of Auscher, Hofmann, Lacey, McIntosh and Tchamitchian in 2002. In the past fifteen years, a theory has emerged from the solution of this conjecture, making rough perturbation problems much more tractable. In this talk, I will give a general introduction to this theory, and present one of its latest results: a flexible approach to $L^p$ estimates for the holomorphic functional calculus of $D$. This is joint work with D. Frey (Delft) and A. McIntosh (ANU).
Harmonic Analysis in Rough Contexts
15:10 Fri 13 May, 2016 :: Engineering South S112 :: Dr Pierre Portal :: Australian National University

Media...
In recent years, perspectives on what constitutes the ``natural" framework within which to conduct various forms of mathematical analysis have shifted substantially. The common theme of these shifts can be described as a move towards roughness, i.e. the elimination of smoothness assumptions that had previously been considered fundamental. Examples include partial differential equations on domains with a boundary that is merely Lipschitz continuous, geometric analysis on metric measure spaces that do not have a smooth structure, and stochastic analysis of dynamical systems that have nowhere differentiable trajectories. In this talk, aimed at a general mathematical audience, I describe some of these shifts towards roughness, placing an emphasis on harmonic analysis, and on my own contributions. This includes the development of heat kernel methods in situations where such a kernel is merely a distribution, and applications to deterministic and stochastic partial differential equations.
Smooth mapping orbifolds
12:10 Fri 20 May, 2016 :: Eng & Maths EM205 :: David Roberts :: University of Adelaide

It is well-known that orbifolds can be represented by a special kind of Lie groupoid, namely those that are étale and proper. Lie groupoids themselves are one way of presenting certain nice differentiable stacks. In joint work with Ray Vozzo we have constructed a presentation of the mapping stack Hom(disc(M),X), for M a compact manifold and X a differentiable stack, by a Fréchet-Lie groupoid. This uses an apparently new result in global analysis about the map C^\infty(K_1,Y) \to C^\infty(K_2,Y) induced by restriction along the inclusion K_2 \to K_1, for certain compact K_1,K_2. We apply this to the case of X being an orbifold to show that the mapping stack is an infinite-dimensional orbifold groupoid. We also present results about mapping groupoids for bundle gerbes.
Behavioural Microsimulation Approach to Social Policy and Behavioural Economics
15:10 Fri 20 May, 2016 :: S112 Engineering South :: Dr Drew Mellor :: Ernst & Young

SIMULAIT is a general purpose, behavioural micro-simulation system designed to predict behavioural trends in human populations. This type of predictive capability grew out of original research initially conducted in conjunction with the Defence Science and Technology Group (DSTO) in South Australia, and has been fully commercialised and is in current use by a global customer base. To our customers, the principal value of the system lies in its ability to predict likely outcomes to scenarios that challenge conventional approaches based on extrapolation or generalisation. These types of scenarios include: the impact of disruptive technologies, such as the impact of wide-spread adoption of autonomous vehicles for transportation or batteries for household energy storage; and the impact of effecting policy elements or interventions, such as the impact of imposing water usage restrictions. SIMULAIT employs a multi-disciplinary methodology, drawing from agent-based modelling, behavioural science and psychology, microeconomics, artificial intelligence, simulation, game theory, engineering, mathematics and statistics. In this seminar, we start with a high-level view of the system followed by a look under the hood to see how the various elements come together to answer questions about behavioural trends. The talk will conclude with a case study of a recent application of SIMULAIT to a significant policy problem - how to address the deficiency of STEM skilled teachers in the Victorian teaching workforce.
Some free boundary value problems in mean curvature flow and fully nonlinear curvature flows
12:10 Fri 27 May, 2016 :: Eng & Maths EM205 :: Valentina Wheeler :: University of Wollongong

Media...
In this talk we present an overview of the current research in mean curvature flow and fully nonlinear curvature flows with free boundaries, with particular focus on our own results. Firstly we consider the scenario of a mean curvature flow solution with a ninety-degree angle condition on a fixed hypersurface in Euclidean space, that we call the contact hypersurface. We prove that under restrictions on either the initial hypersurface (such as rotational symmetry) or restrictions on the contact hypersurface the flow exists for all times and converges to a self-similar solution. We also discuss the possibility of a curvature singularity appearing on the free boundary contained in the contact hypersurface. We extend some of these results to the setting of a hypersurface evolving in its normal direction with speed given by a fully nonlinear functional of the principal curvatures.
Time series analysis of paleo-climate proxies (a mathematical perspective)
15:10 Fri 27 May, 2016 :: Engineering South S112 :: Dr Thomas Stemler :: University of Western Australia

Media...
In this talk I will present the work my colleagues from the School of Earth and Environment (UWA), the "trans disciplinary methods" group of the Potsdam Institute for Climate Impact Research, Germany, and I did to explain the dynamics of the Australian-South East Asian monsoon system during the last couple of thousand years. From a time series perspective paleo-climate proxy series are more or less the monsters moving under your bed that wake you up in the middle of the night. The data is clearly non-stationary, non-uniform sampled in time and the influence of stochastic forcing or the level of measurement noise are more or less unknown. Given these undesirable properties almost all traditional time series analysis methods fail. I will highlight two methods that allow us to draw useful conclusions from the data sets. The first one uses Gaussian kernel methods to reconstruct climate networks from multiple proxies. The coupling relationships in these networks change over time and therefore can be used to infer which areas of the monsoon system dominate the complex dynamics of the whole system. Secondly I will introduce the transformation cost time series method, which allows us to detect changes in the dynamics of a non-uniform sampled time series. Unlike the frequently used interpolation approach, our new method does not corrupt the data and therefore avoids biases in any subsequence analysis. While I will again focus on paleo-climate proxies, the method can be used in other applied areas, where regular sampling is not possible.
On the Strong Novikov Conjecture for Locally Compact Groups in Low Degree Cohomology Classes
12:10 Fri 3 Jun, 2016 :: Eng & Maths EM205 :: Yoshiyasu Fukumoto :: Kyoto University

Media...
The main result I will discuss is non-vanishing of the image of the index map from the G-equivariant K-homology of a G-manifold X to the K-theory of the C*-algebra of the group G. The action of G on X is assumed to be proper and cocompact. Under the assumption that the Kronecker pairing of a K-homology class with a low-dimensional cohomology class is non-zero, we prove that the image of this class under the index map is non-zero. Neither discreteness of the locally compact group G nor freeness of the action of G on X are required. The case of free actions of discrete groups was considered earlier by B. Hanke and T. Schick.
Twists over etale groupoids and twisted vector bundles
12:10 Fri 22 Jul, 2016 :: Ingkarni Wardli B18 :: Elizabeth Gillaspy :: University of Colorado, Boulder

Media...
Given a twist over an etale groupoid, one can construct an associated C*-algebra which carries a good deal of geometric and physical meaning; for example, the K-theory group of this C*-algebra classifies D-brane charges in string theory. Twisted vector bundles, when they exist, give rise to particularly important elements in this K-theory group. In this talk, we will explain how to use the classifying space of the etale groupoid to construct twisted vector bundles, under some mild hypotheses on the twist and the classifying space. My hope is that this talk will be accessible to a broad audience; in particular, no prior familiarity with groupoids, their twists, or the associated C*-algebras will be assumed. This is joint work with Carla Farsi.
Holomorphic Flexibility Properties of Spaces of Elliptic Functions
12:10 Fri 29 Jul, 2016 :: Ingkarni Wardli B18 :: David Bowman :: University of Adelaide

The set of meromorphic functions on an elliptic curve naturally possesses the structure of a complex manifold. The component of degree 3 functions is 6-dimensional and enjoys several interesting complex-analytic properties that make it, loosely speaking, the opposite of a hyperbolic manifold. Our main result is that this component has a 54-sheeted branched covering space that is an Oka manifold.
Etale ideas in topological and algebraic dynamical systems
12:10 Fri 5 Aug, 2016 :: Ingkarni Wardli B18 :: Tuyen Truong :: University of Adelaide

Media...
In etale topology, instead of considering open subsets of a space, we consider etale neighbourhoods lying over these open subsets. In this talk, I define an etale analog of dynamical systems: to understand a dynamical system f:(X,\Omega )->(X,\Omega ), we consider other dynamical systems lying over it. I then propose to use this to resolve the following two questions: Question 1: What should be the topological entropy of a dynamical system (f,X,\Omega ) when (X,\Omega ) is not a compact space? Question 2: What is the relation between topological entropy of a rational map or correspondence (over a field of arbitrary characteristic) to the pullback on cohomology groups and algebraic cycles?
Probabilistic Meshless Methods for Bayesian Inverse Problems
15:10 Fri 5 Aug, 2016 :: Engineering South S112 :: Dr Chris Oates :: University of Technology Sydney

Media...
This talk deals with statistical inverse problems that involve partial differential equations (PDEs) with unknown parameters. Our goal is to account, in a rigorous way, for the impact of discretisation error that is introduced at each evaluation of the likelihood due to numerical solution of the PDE. In the context of meshless methods, the proposed, model-based approach to discretisation error encourages statistical inferences to be more conservative in the presence of significant solver error. In addition, (i) a principled learning-theoretic approach to minimise the impact of solver error is developed, and (ii) the challenge of non-linear PDEs is considered. The method is applied to parameter inference problems in which non-negligible solver error must be accounted for in order to draw valid statistical conclusions.
Approaches to modelling cells and remodelling biological tissues
14:10 Wed 10 Aug, 2016 :: Ingkarni Wardli 5.57 :: Professor Helen Byrne :: University of Oxford

Biological tissues are complex structures, whose evolution is characterised by multiple biophysical processes that act across diverse space and time scales. For example, during normal wound healing, fibroblast cells located around the wound margin exert contractile forces to close the wound while those located in the surrounding tissue synthesise new tissue in response to local growth factors and mechanical stress created by wound contraction. In this talk I will illustrate how mathematical modelling can provide insight into such complex processes, taking my inspiration from recent studies of cell migration, vasculogenesis and wound healing.
Calculus on symplectic manifolds
12:10 Fri 12 Aug, 2016 :: Ingkarni Wardli B18 :: Mike Eastwood :: University of Adelaide

Media...
One can use the symplectic form to construct an elliptic complex replacing the de Rham complex. Then, under suitable curvature conditions, one can form coupled versions of this complex. Finally, on complex projective space, these constructions give rise to a series of elliptic complexes with geometric consequences for the Fubini-Study metric and its X-ray transform. This talk, which will start from scratch, is based on the work of many authors but, especially, current joint work with Jan Slovak.
Mathematical modelling of social spreading processes
15:10 Fri 19 Aug, 2016 :: Napier G03 :: Prof Hans De Sterck :: Monash University

Media...
Social spreading processes are intriguing manifestations of how humans interact and shape each others' lives. There is great interest in improving our understanding of these processes, and the increasing availability of empirical information in the era of big data and online social networks, combined with mathematical and computational modelling techniques, offer compelling new ways to study these processes. I will first discuss mathematical models for the spread of political revolutions on social networks. The influence of online social networks and social media on the dynamics of the Arab Spring revolutions of 2011 are of particular interest in our work. I will describe a hierarchy of models, starting from agent-based models realized on empirical social networks, and ending up with population-level models that summarize the dynamical behaviour of the spreading process. We seek to understand quantitatively how political revolutions may be facilitated by the modern online social networks of social media. The second part of the talk will describe a population-level model for the social dynamics that cause cigarette smoking to spread in a population. Our model predicts that more individualistic societies will show faster adoption and cessation of smoking. Evidence from a newly composed century-long composite data set on smoking prevalence in 25 countries supports the model, with potential implications for public health interventions around the world. Throughout the talk, I will argue that important aspects of social spreading processes can be revealed and understood via quantitative mathematical and computational models matched to empirical data. This talk describes joint work with John Lang and Danny Abrams.
Modelling evolution of post-menopausal human longevity: The Grandmother Hypothesis
15:10 Fri 2 Sep, 2016 :: Napier G03 :: Dr Peter Kim :: University of Sydney

Media...
Human post-menopausal longevity makes us unique among primates, but how did it evolve? One explanation, the Grandmother Hypothesis, proposes that as grasslands spread in ancient Africa displacing foods ancestral youngsters could effectively exploit, older females whose fertility was declining left more descendants by subsidizing grandchildren and allowing mothers to have new babies sooner. As more robust elders could help more descendants, selection favoured increased longevity while maintaining the ancestral end of female fertility. We develop a probabilistic agent-based model that incorporates two sexes and mating, fertility-longevity tradeoffs, and the possibility of grandmother help. Using this model, we show how the grandmother effect could have driven the evolution of human longevity. Simulations reveal two stable life-histories, one human-like and the other like our nearest cousins, the great apes. The probabilistic formulation shows how stochastic effects can slow down and prevent escape from the ancestral condition, and it allows us to investigate the effect of mutation rates on the trajectory of evolution.
SIR epidemics with stages of infection
12:10 Wed 28 Sep, 2016 :: EM218 :: Matthieu Simon :: Universite Libre de Bruxelles

Media...
This talk is concerned with a stochastic model for the spread of an epidemic in a closed homogeneously mixing population. The population is subdivided into three classes of individuals: the susceptibles, the infectives and the removed cases. In short, an infective remains infectious during a random period of time. While infected, it can contact all the susceptibles present, independently of the other infectives. At the end of the infectious period, it becomes a removed case and has no further part in the infection process.

We represent an infectious period as a set of different stages that an infective can go through before being removed. The transitions between stages are ruled by either a Markov process or a semi-Markov process. In each stage, an infective makes contaminations at the epochs of a Poisson process with a specific rate.

Our purpose is to derive closed expressions for a transform of different statistics related to the end of the epidemic, such as the final number of susceptibles and the area under the trajectories of all the infectives. The analysis is performed by using simple matrix analytic methods and martingale arguments. Numerical illustrations will be provided at the end of the talk.
On the Willmore energy
15:10 Fri 7 Oct, 2016 :: Napier G03 :: Dr Yann Bernard :: Monash University

Media...
The Willmore energy of a surface captures its bending. Originally discovered 200 years ago by Sophie Germain in the context of elasticity theory, it has since then been rediscovered numerous times in several areas of science: general relativity, optics, string theory, conformal geometry, and cell biology. For example, our red blood cells assume a peculiar shape that minimises the Willmore energy. In this talk, I will present the thrilling history of the Willmore energy, its applications, and its main properties. The presentation will be accessible to all mathematicians as well as to advanced undergraduate students.
Some results on the stability of flat Stokes layers
15:10 Fri 14 Oct, 2016 :: Ingkarni Wardli 5.57 :: Professor Andrew Bassom :: University of Tasmania

The flat Stokes layer is one of the relatively few exact solutions of the incompressible Navier-Stokes equations. For that reason the temporal stability of the layer has attracted considerable interest over the years. Fortunately, not only is the issue one solely of academic curiosity, but some kind of Stokes layer is likely to be set up at the boundaries of any physical time-periodic flow making its stability of practical interest as well. In this talk I shall review progress made in the understanding of the linear stability properties of the flow. In particular I will discuss the fact that theoretical predictions of critical conditions are wildly different from those observed in the laboratory.
Parahoric bundles, invariant theory and the Kazhdan-Lusztig map
12:10 Fri 21 Oct, 2016 :: Ingkarni Wardli B18 :: David Baraglia :: University of Adelaide

Media...
In this talk I will introduce the notion of parahoric groups, a loop group analogue of parabolic subgroups. I will also discuss a global version of this, namely parahoric bundles on a complex curve. This leads us to a problem concerning the behaviour of invariant polynomials on the dual of the Lie algebra, a kind of "parahoric invariant theory". The key to solving this problem turns out to be the Kazhdan-Lusztig map, which assigns to each nilpotent orbit in a semisimple Lie algebra a conjugacy class in the Weyl group. Based on joint work with Masoud Kamgarpour and Rohith Varma.
Measuring and mapping carbon dioxide from remote sensing satellite data
15:10 Fri 21 Oct, 2016 :: Napier G03 :: Prof Noel Cressie :: University of Wollongong

Media...
This talk is about environmental statistics for global remote sensing of atmospheric carbon dioxide, a leading greenhouse gas. An important compartment of the carbon cycle is atmospheric carbon dioxide (CO2), where it (and other gases) contribute to climate change through a greenhouse effect. There are a number of CO2 observational programs where measurements are made around the globe at a small number of ground-based locations at somewhat regular time intervals. In contrast, satellite-based programs are spatially global but give up some of the temporal richness. The most recent satellite launched to measure CO2 was NASA's Orbiting Carbon Observatory-2 (OCO-2), whose principal objective is to retrieve a geographical distribution of CO2 sources and sinks. OCO-2's measurement of column-averaged mole fraction, XCO2, is designed to achieve this, through a data-assimilation procedure that is statistical at its basis. Consequently, uncertainty quantification is key, starting with the spectral radiances from an individual sounding to borrowing of strength through spatial-statistical modelling.
Fault tolerant computation of hyperbolic PDEs with the sparse grid combination technique
15:10 Fri 28 Oct, 2016 :: Ingkarni Wardli 5.57 :: Dr Brendan Harding :: University of Adelaide

Computing solutions to high dimensional problems is challenging because of the curse of dimensionality. The sparse grid combination technique allows one to significantly reduce the cost of computing solutions such that they become manageable on current supercomputers. However, as these supercomputers increase in size the rate of failure also increases. This poses a challenge for our computations. In this talk we look at the problem of computing solutions to hyperbolic partial differential equations with the combination technique in an environment where faults occur. A fault tolerant generalisation of the combination technique will be presented along with results that demonstrate its effectiveness.
Leavitt path algebras
12:10 Fri 2 Dec, 2016 :: Engineering & Math EM213 :: Roozbeh Hazrat :: Western Sydney University

Media...
From a directed graph one can generate an algebra which captures the movements along the graph. One such algebras are Leavitt path algebras. Despite being introduced only 10 years ago, Leavitt path algebras have arisen in a variety of different contexts as diverse as analysis, symbolic dynamics, noncommutative geometry and representation theory. In fact, Leavitt path algebras are algebraic counterpart to graph C*-algebras, a theory which has become an area of intensive research globally. There are strikingly parallel similarities between these two theories. Even more surprisingly, one cannot (yet) obtain the results in one theory as a consequence of the other; the statements look the same, however the techniques to prove them are quite different (as the names suggest, one uses Algebra and other Analysis). These all suggest that there might be a bridge between Algebra and Analysis yet to be uncovered. In this talk, we introduce Leavitt path algebras and try to classify them by means of (graded) Grothendieck groups. We will ask nice questions!
Diffeomorphisms of discs, harmonic spinors and positive scalar curvature
11:10 Fri 17 Mar, 2017 :: Engineering Nth N218 :: Diarmuid Crowley :: University of Melbourne

Media...
Let Diff(D^k) be the space of diffeomorphisms of the k-disc fixing the boundary point wise. In this talk I will show for k > 5, that the homotopy groups \pi_*Diff(D^k) have non-zero 8-periodic 2-torsion detected in real K-theory. I will then discuss applications for spin manifolds M of dimension 6 or greater: 1) Our results input to arguments of Hitchin which now show that M admits a metric with a harmonic spinor. 2) If non-empty, space of positive scalar curvature metrics on M has non-zero 8-periodic 2-torsion in its homotopy groups which is detected in real K-theory. This is part of joint work with Thomas Schick and Wolfgang Steimle.
Geometric structures on moduli spaces
12:10 Fri 31 Mar, 2017 :: Napier 209 :: Nicholas Buchdahl :: University of Adelaide

Media...
Moduli spaces are used to classify various kinds of objects, often arising from solutions of certain differential equations on manifolds; for example, the complex structures on a compact surface or the anti-self-dual Yang-Mills equations on an oriented smooth 4-manifold. Sometimes these moduli spaces carry important information about the underlying manifold, manifested most clearly in the results of Donaldson and others on the topology of smooth 4-manifolds. It is also the case that these moduli spaces themselves carry interesting geometric structures; for example, the Weil-Petersson metric on moduli spaces of compact Riemann surfaces, exploited to great effect by Maryam Mirzakhani. In this talk, I shall elaborate on the theme of geometric structures on moduli spaces, with particular focus on some recent-ish work done in conjunction with Georg Schumacher.
Poisson-Lie T-duality and integrability
11:10 Thu 13 Apr, 2017 :: Engineering & Math EM213 :: Ctirad Klimcik :: Aix-Marseille University, Marseille

Media...
The Poisson-Lie T-duality relates sigma-models with target spaces symmetric with respect to mutually dual Poisson-Lie groups. In the special case if the Poisson-Lie symmetry reduces to the standard non-Abelian symmetry one of the corresponding mutually dual sigma-models is the standard principal chiral model which is known to enjoy the property of integrability. A natural question whether this non-Abelian integrability can be lifted to integrability of sigma model dualizable with respect to the general Poisson-Lie symmetry has been answered in the affirmative by myself in 2008. The corresponding Poisson-Lie symmetric and integrable model is a one-parameter deformation of the principal chiral model and features a remarkable explicit appearance of the standard Yang-Baxter operator in the target space geometry. Several distinct integrable deformations of the Yang-Baxter sigma model have been then subsequently uncovered which turn out to be related by the Poisson-Lie T-duality to the so called lambda-deformed sigma models. My talk gives a review of these developments some of which found applications in string theory in the framework of the AdS/CFT correspondence.
Geometric limits of knot complements
12:10 Fri 28 Apr, 2017 :: Napier 209 :: Jessica Purcell :: Monash University

Media...
The complement of a knot often admits a hyperbolic metric: a metric with constant curvature -1. In this talk, we will investigate sequences of hyperbolic knots, and the possible spaces they converge to as a geometric limit. In particular, we show that there exist hyperbolic knots in the 3-sphere such that the set of points of large injectivity radius in the complement take up the bulk of the volume. This is joint work with Autumn Kent.
Hyperbolic geometry and knots
15:10 Fri 28 Apr, 2017 :: Engineering South S111 :: A/Prof Jessica Purcell :: Monash University

It has been known since the early 1980s that the complement of a knot or link decomposes into geometric pieces, and the most common geometry is hyperbolic. However, the connections between hyperbolic geometry and other knot and link invariants are not well-understood. Conjectured connections have applications to quantum topology and physics, 3-manifold geometry and topology, and knot theory. In this talk, we will describe several results relating the hyperbolic geometry of a knot or link to other invariants, and their implications.
Hodge theory on the moduli space of Riemann surfaces
12:10 Fri 5 May, 2017 :: Napier 209 :: Jesse Gell-Redman :: University of Melbourne

Media...
The Hodge theorem on a closed Riemannian manifold identifies the deRham cohomology with the space of harmonic differential forms. Although there are various extensions of the Hodge theorem to singular or complete but non-compact spaces, when there is an identification of L^2 Harmonic forms with a topological feature of the underlying space, it is highly dependent on the nature of infinity (in the non-compact case) or the locus of incompleteness; no unifying theorem treats all cases. We will discuss work toward extending the Hodge theorem to singular Riemannian manifolds where the singular locus is an incomplete cusp edge. These can be pictured locally as a bundle of horns, and they provide a model for the behavior of the Weil-Petersson metric on the compactified Riemann moduli space near the interior of a divisor. Joint with J. Swoboda and R. Melrose.
Schubert Calculus on Lagrangian Grassmannians
12:10 Tue 23 May, 2017 :: EM 213 :: Hiep Tuan Dang :: National centre for theoretical sciences, Taiwan

Media...
The Lagrangian Grassmannian $LG = LG(n,2n)$ is the projective complex manifold which parametrizes Lagrangian (i.e. maximal isotropic) subspaces in a symplective vector space of dimension $2n$. This talk is mainly devoted to Schubert calculus on $LG$. We first recall the definition of Schubert classes in this context. Then we present basic results which are similar to the classical formulas due to Pieri and Giambelli. These lead to a presentation of the cohomology ring of $LG$. Finally, we will discuss recent results related to the Schubert structure constants and Gromov-Witten invariants of $LG$.
Holomorphic Legendrian curves
12:10 Fri 26 May, 2017 :: Napier 209 :: Franc Forstneric :: University of Ljubljana, Slovenia

Media...
I will present recent results on the existence and behaviour of noncompact holomorphic Legendrian curves in complex contact manifolds. We show that these curves are ubiquitous in \C^{2n+1} with the standard holomorphic contact form \alpha=dz+\sum_{j=1}^n x_jdy_j; in particular, every open Riemann surface embeds into \C^3 as a proper holomorphic Legendrian curves. On the other hand, for any integer n>= 1 there exist Kobayashi hyperbolic complex contact structures on \C^{2n+1} which do not admit any nonconstant Legendrian complex lines. Furthermore, we construct a holomorphic Darboux chart around any noncompact holomorphic Legendrian curve in an arbitrary complex contact manifold. As an application, we show that every bordered holomorphic Legendrian curve can be uniformly approximated by complete bounded Legendrian curves.
Probabilistic approaches to human cognition: What can the math tell us?
15:10 Fri 26 May, 2017 :: Engineering South S111 :: Dr Amy Perfors :: School of Psychology, University of Adelaide

Why do people avoid vaccinating their children? Why, in groups, does it seem like the most extreme positions are weighted more highly? On the surface, both of these examples look like instances of non-optimal or irrational human behaviour. This talk presents preliminary evidence suggesting, however, that in both cases this pattern of behaviour is sensible given certain assumptions about the structure of the world and the nature of beliefs. In the case of vaccination, we model people's choices using expected utility theory. This reveals that their ignorance about the nature of diseases like whooping cough makes them underweight the negative utility attached to contracting such a disease. When that ignorance is addressed, their values and utilities shift. In the case of extreme positions, we use simulations of chains of Bayesian learners to demonstrate that whenever information is propagated in groups, the views of the most extreme learners naturally gain more traction. This effect emerges as the result of basic mathematical assumptions rather than human irrationality.
Stokes' Phenomenon in Translating Bubbles
15:10 Fri 2 Jun, 2017 :: Ingkarni Wardli 5.57 :: Dr Chris Lustri :: Macquarie University

This study of translating air bubbles in a Hele-Shaw cell containing viscous fluid reveals the critical role played by surface tension in these systems. The standard zero-surface-tension model of Hele-Shaw flow predicts that a continuum of bubble solutions exists for arbitrary flow translation velocity. The inclusion of small surface tension, however, eliminates this continuum of solutions, instead producing a discrete, countably infinite family of solutions, each with distinct translation speeds. We are interested in determining this discrete family of solutions, and understanding why only these solutions are permitted. Studying this problem in the asymptotic limit of small surface tension does not seem to give any particular reason why only these solutions should be selected. It is only by using exponential asymptotic methods to study the Stokes’ structure hidden in the problem that we are able to obtain a complete picture of the bubble behaviour, and hence understand the selection mechanism that only permits certain solutions to exist. In the first half of my talk, I will explain the powerful ideas that underpin exponential asymptotic techniques, such as analytic continuation and optimal truncation. I will show how they are able to capture behaviour known as Stokes' Phenomenon, which is typically invisible to classical asymptotic series methods. In the second half of the talk, I will introduce the problem of a translating air bubble in a Hele-Shaw cell, and show that the behaviour can be fully understood by examining the Stokes' structure concealed within the problem. Finally, I will briefly showcase other important physical applications of exponential asymptotic methods, including submarine waves and particle chains.
Constructing differential string structures
14:10 Wed 7 Jun, 2017 :: EM213 :: David Roberts :: University of Adelaide

Media...
String structures on a manifold are analogous to spin structures, except instead of lifting the structure group through the extension Spin(n)\to SO(n) of Lie groups, we need to lift through the extension String(n)\to Spin(n) of Lie *2-groups*. Such a thing exists if the first fractional Pontryagin class (1/2)p_1 vanishes in cohomology. A differential string structure also lifts connection data, but this is rather complicated, involving a number of locally defined differential forms satisfying cocycle-like conditions. This is an expansion of the geometric string structures of Stolz and Redden, which is, for a given connection A, merely a 3-form R on the frame bundle such that dR = tr(F^2) for F the curvature of A; in other words a trivialisation of the de Rham class of (1/2)p_1. I will present work in progress on a framework (and specific results) that allows explicit calculation of the differential string structure for a large class of homogeneous spaces, which also yields formulas for the Stolz-Redden form. I will comment on the application to verifying the refined Stolz conjecture for our particular class of homogeneous spaces. Joint work with Ray Vozzo.
Complex methods in real integral geometry
12:10 Fri 28 Jul, 2017 :: Engineering Sth S111 :: Mike Eastwood :: University of Adelaide

There are well-known analogies between holomorphic integral transforms such as the Penrose transform and real integral transforms such as the Radon, Funk, and John transforms. In fact, one can make a precise connection between them and hence use complex methods to establish results in the real setting. This talk will introduce some simple integral transforms and indicate how complex analysis may be applied.
Weil's Riemann hypothesis (RH) and dynamical systems
12:10 Fri 11 Aug, 2017 :: Engineering Sth S111 :: Tuyen Truong :: University of Adelaide

Media...
Weil proposed an analogue of the RH in finite fields, aiming at counting asymptotically the number of solutions to a given system of polynomial equations (with coefficients in a finite field) in finite field extensions of the base field. This conjecture influenced the development of Algebraic Geometry since the 1950’s, most important achievements include: Grothendieck et al.’s etale cohomology, and Bombieri and Grothendieck’s standard conjectures on algebraic cycles (inspired by a Kahlerian analogue of a generalisation of Weil’s RH by Serre). Weil’s RH was solved by Deligne in the 70’s, but the finite field analogue of Serre’s result is still open (even in dimension 2). This talk presents my recent work proposing a generalisation of Weil’s RH by relating it to standard conjectures and a relatively new notion in complex dynamical systems called dynamical degrees. In the course of the talk, I will present the proof of a question proposed by Esnault and Srinivas (which is related to a result by Gromov and Yomdin on entropy of complex dynamical systems), which gives support to the finite field analogue of Serre’s result.
Mathematics is Biology's Next Microscope (Only Better!)
15:10 Fri 11 Aug, 2017 :: Ingkarni Wardli B17 :: Dr Robyn Araujo :: Queensland University of Technology

While mathematics has long been considered "an essential tool for physics", the foundations of biology and the life sciences have received significantly less influence from mathematical ideas and theory. In this talk, I will give a brief discussion of my recent research on robustness in molecular signalling networks, as an example of a complex biological question that calls for a mathematical answer. In particular, it has been a long-standing mystery how the extraordinarily complex communication networks inside living cells, comprising thousands of different interacting molecules, are able to function robustly since complexity is generally associated with fragility. Mathematics has now suggested a resolution to this paradox through the discovery that robust adaptive signalling networks must be constructed from a just small number of well-defined universal modules (or "motifs"), connected together. The existence of these newly-discovered modules has important implications for evolutionary biology, embryology and development, cancer research, and drug development.
Mathematics is Biology'€™s Next Microscope (Only Better!)
15:10 Fri 11 Aug, 2017 :: Ingkarni Wardli B17 :: Dr Robyn Araujo :: Queensland University of Technology

While mathematics has long been considered “an essential tool for physics", the foundations of biology and the life sciences have received significantly less influence from mathematical ideas and theory. In this talk, I will give a brief discussion of my recent research on robustness in molecular signalling networks, as an example of a complex biological question that calls for a mathematical answer. In particular, it has been a long-standing mystery how the extraordinarily complex communication networks inside living cells, comprising thousands of different interacting molecules, are able to function robustly since complexity is generally associated with fragility. Mathematics has now suggested a resolution to this paradox through the discovery that robust adaptive signalling networks must be constructed from a just small number of well-defined universal modules (or “motifs”), connected together. The existence of these newly-discovered modules has important implications for evolutionary biology, embryology and development, cancer research, and drug development.
Compact pseudo-Riemannian homogeneous spaces
12:10 Fri 18 Aug, 2017 :: Engineering Sth S111 :: Wolfgang Globke :: University of Adelaide

Media...
A pseudo-Riemannian homogeneous space $M$ of finite volume can be presented as $M=G/H$, where $G$ is a Lie group acting transitively and isometrically on $M$, and $H$ is a closed subgroup of $G$. The condition that $G$ acts isometrically and thus preserves a finite measure on $M$ leads to strong algebraic restrictions on $G$. In the special case where $G$ has no compact semisimple normal subgroups, it turns out that the isotropy subgroup $H$ is a lattice, and that the metric on $M$ comes from a bi-invariant metric on $G$. This result allows us to recover Zeghib’s classification of Lorentzian compact homogeneous spaces, and to move towards a classification for metric index 2. As an application we can investigate which pseudo-Riemannian homogeneous spaces of finite volume are Einstein spaces. Through the existence questions for lattice subgroups, this leads to an interesting connection with the theory of transcendental numbers, which allows us to characterize the Einstein cases in low dimensions. This talk is based on joint works with Oliver Baues, Yuri Nikolayevsky and Abdelghani Zeghib.
In space there is no-one to hear you scream
12:10 Tue 12 Sep, 2017 :: Inkgarni Wardli 5.57 :: A/Prof Gary Glonek :: School of Mathematical Sciences

Media...
Modern data problems often involve data in very high dimensions. For example, gene expression profiles, used to develop cancer screening models, typically have at least 30,000 dimensions. When dealing with such data, it is natural to apply intuition from low dimensional cases. For example, in a sample of normal observations, a typical data point will be near the centre of the distribution with only a small number of points at the edges. In this talk, simple probability theory will be used to show that the geometry of data in high dimensional space is very different from what we can see in one and two-dimensional examples. We will show that the typical data point is at the edge of the distribution, a long way from its centre and even further from any other points.
On the fundamental of Rayleigh-Taylor instability and interfacial mixing
15:10 Fri 15 Sep, 2017 :: Ingkarni Wardli B17 :: Prof Snezhana Abarzhi :: University of Western Australia

Rayleigh-Taylor instability (RTI) develops when fluids of different densities are accelerated against their density gradient. Extensive interfacial mixing of the fluids ensues with time. Rayleigh-Taylor (RT) mixing controls a broad variety of processes in fluids, plasmas and materials, in high and low energy density regimes, at astrophysical and atomistic scales. Examples include formation of hot spot in inertial confinement, supernova explosion, stellar and planetary convection, flows in atmosphere and ocean, reactive and supercritical fluids, material transformation under impact and light-material interaction. In some of these cases (e.g. inertial confinement fusion) RT mixing should be tightly mitigated; in some others (e.g. turbulent combustion) it should be strongly enhanced. Understanding the fundamentals of RTI is crucial for achieving a better control of non-equilibrium processes in nature and technology. Traditionally, it was presumed that RTI leads to uncontrolled growth of small-scale imperfections, single-scale nonlinear dynamics, and extensive mixing that is similar to canonical turbulence. The recent success of the theory and experiments in fluids and plasmas suggests an alternative scenario of RTI evolution. It finds that the interface is necessary for RT mixing to accelerate, the acceleration effects are strong enough to suppress the development of turbulence, and the RT dynamics is multi-scale and has significant degree of order. This talk presents a physics-based consideration of fundamentals of RTI and RT mixing, and summarizes what is certain and what is not so certain in our knowledge of RTI. The focus question - How to influence the regularization process in RT mixing? We also discuss new opportunities for improvements of predictive modeling capabilities, physical description, and control of RT mixing in fluids, plasmas and materials.
Dynamics of transcendental Hanon maps
11:10 Wed 20 Sep, 2017 :: Engineering & Math EM212 :: Leandro Arosio :: University of Rome

The dynamics of a polynomial in the complex plane is a classical topic studied already at the beginning of the 20th century by Fatou and Julia. The complex plane is partitioned in two natural invariant sets: a compact set called the Julia set, with (usually) fractal structure and chaotic behaviour, and the Fatou set, where dynamics has no sensitive dependence on initial conditions. The dynamics of a transcendental map was first studied by Baker fifty years ago, and shows striking differences with the polynomial case: for example, there are wandering Fatou components. Moving to C^2, an analogue of polynomial dynamics is given by Hanon maps, polynomial automorphisms with interesting dynamics. In this talk I will introduce a natural generalisation of transcendental dynamics to C^2, and show how to construct wandering domains for such maps.
An action of the Grothendieck-Teichmuller group on stable curves of genus zero
11:10 Fri 22 Sep, 2017 :: Engineering South S111 :: Marcy Robertson :: University of Melbourne

Media...
In this talk, we show that the group of homotopy automorphisms of the profinite completion of the framed little 2-discs operad is isomorphic to the (profinite) Grothendieck-Teichmuller group. We deduce that the Grothendieck-Teichmuller group acts nontrivially on an operadic model of the genus zero Teichmuller tower. This talk will be aimed at a general audience and will not assume previous knowledge of the Grothendieck-Teichmuller group or operads. This is joint work with Pedro Boavida and Geoffroy Horel.
On directions and operators
11:10 Wed 27 Sep, 2017 :: Engineering & Math EM213 :: Malabika Pramanik :: University of British Columbia

Media...
Many fundamental operators arising in harmonic analysis are governed by sets of directions that they are naturally associated with. This talk will survey a few representative results in this area, and report on some new developments.
Equivariant formality of homogeneous spaces
12:10 Fri 29 Sep, 2017 :: Engineering Sth S111 :: Alex Chi-Kwong Fok :: University of Adelaide

Equivariant formality, a notion in equivariant topology introduced by Goresky-Kottwitz-Macpherson, is a desirable property of spaces with group actions, which allows the application of localisation formula to evaluate integrals of any top closed forms and enables one to compute easily the equivariant cohomology. Broad classes of spaces of especial interest are well-known to be equivariantly formal, e.g., compact symplectic manifolds equipped with Hamiltonian compact Lie group actions and projective varieties equipped with linear algebraic torus actions, of which flag varieties are examples. Less is known about compact homogeneous spaces G/K equipped with the isotropy action of K, which is not necessarily of maximal rank. In this talk we will review previous attempts of characterizing equivariant formality of G/K, and present our recent results on this problem using an analogue of equivariant formality in K-theory. Part of the work presented in this talk is joint with Jeffrey Carlson.
End-periodic K-homology and spin bordism
12:10 Fri 20 Oct, 2017 :: Engineering Sth S111 :: Michael Hallam :: University of Adelaide

This talk introduces new "end-periodic" variants of geometric K-homology and spin bordism theories that are tailored to a recent index theorem for even-dimensional manifolds with periodic ends. This index theorem, due to Mrowka, Ruberman and Saveliev, is a generalisation of the Atiyah-Patodi-Singer index theorem for manifolds with odd-dimensional boundary. As in the APS index theorem, there is an (end-periodic) eta invariant that appears as a correction term for the periodic end. Invariance properties of the standard relative eta invariants are elegantly expressed using K-homology and spin bordism, and this continues to hold in the end-periodic case. In fact, there are natural isomorphisms between the standard K-homology/bordism theories and their end-periodic versions, and moreover these isomorphisms preserve relative eta invariants. The study is motivated by results on positive scalar curvature, namely obstructions and distinct path components of the moduli space of PSC metrics. Our isomorphisms provide a systematic method for transferring certain results on PSC from the odd-dimensional case to the even-dimensional case. This work is joint with Mathai Varghese.
How oligomerisation impacts steady state gradient in a morphogen-receptor system
15:10 Fri 20 Oct, 2017 :: Ingkarni Wardli 5.57 :: Mr Phillip Brown :: University of Adelaide

In developmental biology an important process is cell fate determination, where cells start to differentiate their form and function. This is an element of the broader concept of morphogenesis. It has long been held that cell differentiation can occur by a chemical signal providing positional information to 'undecided' cells. This chemical produces a gradient of concentration that indicates to a cell what path it should develop along. More recently it has been shown that in a particular system of this type, the chemical (protein) does not exist purely as individual molecules, but can exist in multi-protein complexes known as oligomers. Mathematical modelling has been performed on systems of oligomers to determine if this concept can produce useful gradients of concentration. However, there are wide range of possibilities when it comes to how oligomer systems can be modelled and most of them have not been explored. In this talk I will introduce a new monomer system and analyse it, before extending this model to include oligomers. A number of oligomer models are proposed based on the assumption that proteins are only produced in their oligomer form and can only break apart once they have left the producing cell. It will be shown that when oligomers are present under these conditions, but only monomers are permitted to bind with receptors, then the system can produce robust, biologically useful gradients for a significantly larger range of model parameters (for instance, degradation, production and binding rates) compared to the monomer system. We will also show that when oligomers are permitted to bind with receptors there is negligible difference compared to the monomer system.
Springer correspondence for symmetric spaces
12:10 Fri 17 Nov, 2017 :: Engineering Sth S111 :: Ting Xue :: University of Melbourne

Media...
The Springer theory for reductive algebraic groups plays an important role in representation theory. It relates nilpotent orbits in the Lie algebra to irreducible representations of the Weyl group. We develop a Springer theory in the case of symmetric spaces using Fourier transform, which relates nilpotent orbits in this setting to irreducible representations of Hecke algebras of various Coxeter groups with specified parameters. This in turn gives rise to character sheaves on symmetric spaces, which we describe explicitly in the case of classical symmetric spaces. A key ingredient in the construction is the nearby cycle sheaves associated to the adjoint quotient map. The talk is based on joint work with Kari Vilonen and partly based on joint work with Misha Grinberg and Kari Vilonen.
Stochastic Modelling of Urban Structure
11:10 Mon 20 Nov, 2017 :: Engineering Nth N132 :: Mark Girolami :: Imperial College London, and The Alan Turing Institute

Media...
Urban systems are complex in nature and comprise of a large number of individuals that act according to utility, a measure of net benefit pertaining to preferences. The actions of individuals give rise to an emergent behaviour, creating the so-called urban structure that we observe. In this talk, I develop a stochastic model of urban structure to formally account for uncertainty arising from the complex behaviour. We further use this stochastic model to infer the components of a utility function from observed urban structure. This is a more powerful modelling framework in comparison to the ubiquitous discrete choice models that are of limited use for complex systems, in which the overall preferences of individuals are difficult to ascertain. We model urban structure as a realization of a Boltzmann distribution that is the invariant distribution of a related stochastic differential equation (SDE) that describes the dynamics of the urban system. Our specification of Boltzmann distribution assigns higher probability to stable configurations, in the sense that consumer surplus (demand) is balanced with running costs (supply), as characterized by a potential function. We specify a Bayesian hierarchical model to infer the components of a utility function from observed structure. Our model is doubly-intractable and poses significant computational challenges that we overcome using recent advances in Markov chain Monte Carlo (MCMC) methods. We demonstrate our methodology with case studies on the London retail system and airports in England.
A Hecke module structure on the KK-theory of arithmetic groups
13:10 Fri 2 Mar, 2018 :: Barr Smith South Polygon Lecture theatre :: Bram Mesland :: University of Bonn

Media...
Let $G$ be a locally compact group, $\Gamma$ a discrete subgroup and $C_{G}(\Gamma)$ the commensurator of $\Gamma$ in $G$. The cohomology of $\Gamma$ is a module over the Shimura Hecke ring of the pair $(\Gamma,C_G(\Gamma))$. This construction recovers the action of the Hecke operators on modular forms for $SL(2,\mathbb{Z})$ as a particular case. In this talk I will discuss how the Shimura Hecke ring of a pair $(\Gamma, C_{G}(\Gamma))$ maps into the $KK$-ring associated to an arbitrary $\Gamma$-C*-algebra. From this we obtain a variety of $K$-theoretic Hecke modules. In the case of manifolds the Chern character provides a Hecke equivariant transformation into cohomology, which is an isomorphism in low dimensions. We discuss Hecke equivariant exact sequences arising from possibly noncommutative compactifications of $\Gamma$-spaces. Examples include the Borel-Serre and geodesic compactifications of the universal cover of an arithmetic manifold, and the totally disconnected boundary of the Bruhat-Tits tree of $SL(2,\mathbb{Z})$. This is joint work with M.H. Sengun (Sheffield).
Calculating optimal limits for transacting credit card customers
15:10 Fri 2 Mar, 2018 :: Horace Lamb 1022 :: Prof Peter Taylor :: University of Melbourne

Credit card users can roughly be divided into `transactors', who pay off their balance each month, and `revolvers', who maintain an outstanding balance, on which they pay substantial interest. In this talk, we focus on modelling the behaviour of an individual transactor customer. Our motivation is to calculate an optimal credit limit from the bank's point of view. This requires an expression for the expected outstanding balance at the end of a payment period. We establish a connection with the classical newsvendor model. Furthermore, we derive the Laplace transform of the outstanding balance, assuming that purchases are made according to a marked point process and that there is a simplified balance control policy which prevents all purchases in the rest of the payment period when the credit limit is exceeded. We then use the newsvendor model and our modified model to calculate bounds on the optimal credit limit for the more realistic balance control policy that accepts all purchases that do not exceed the limit. We illustrate our analysis using a compound Poisson process example and show that the optimal limit scales with the distribution of the purchasing process, while the probability of exceeding the optimal limit remains constant. Finally, we apply our model to some real credit card purchase data.
Computing trisections of 4-manifolds
13:10 Fri 23 Mar, 2018 :: Barr Smith South Polygon Lecture theatre :: Stephen Tillmann :: University of Sydney

Media...
Gay and Kirby recently generalised Heegaard splittings of 3-manifolds to trisections of 4-manifolds. A trisection describes a 4–dimensional manifold as a union of three 4–dimensional handlebodies. The complexity of the 4–manifold is captured in a collection of curves on a surface, which guide the gluing of the handelbodies. The minimal genus of such a surface is the trisection genus of the 4-manifold. After defining trisections and giving key examples and applications, I will describe an algorithm to compute trisections of 4–manifolds using arbitrary triangulations as input. This results in the first explicit complexity bounds for the trisection genus of a 4–manifold in terms of the number of pentachora (4–simplices) in a triangulation. This is joint work with Mark Bell, Joel Hass and Hyam Rubinstein. I will also describe joint work with Jonathan Spreer that determines the trisection genus for each of the standard simply connected PL 4-manifolds.
Complexity of 3-Manifolds
15:10 Fri 23 Mar, 2018 :: Horace Lamb 1022 :: A/Prof Stephan Tillmann :: University of Sydney

In this talk, I will give a general introduction to complexity of 3-manifolds and explain the connections between combinatorics, algebra, geometry, and topology that arise in its study. The complexity of a 3-manifold is the minimum number of tetrahedra in a triangulation of the manifold. It was defined and first studied by Matveev in 1990. The complexity is generally difficult to compute, and various upper and lower bounds have been derived during the last decades using fundamental group, homology or hyperbolic volume. Effective bounds have only been found in joint work with Jaco, Rubinstein and, more recently, Spreer. Our bounds not only allowed us to determine the first infinite classes of minimal triangulations of closed 3-manifolds, but they also lead to a structure theory of minimal triangulations of 3-manifolds.
Chaos in higher-dimensional complex dynamics
13:10 Fri 20 Apr, 2018 :: Barr Smith South Polygon Lecture theatre :: Finnur Larusson :: University of Adelaide

Media...
I will report on new joint work with Leandro Arosio (University of Rome, Tor Vergata). Complex manifolds can be thought of as laid out across a spectrum characterised by rigidity at one end and flexibility at the other. On the rigid side, Kobayashi-hyperbolic manifolds have at most a finite-dimensional group of symmetries. On the flexible side, there are manifolds with an extremely large group of holomorphic automorphisms, the prototypes being the affine spaces $\mathbb C^n$ for $n \geq 2$. From a dynamical point of view, hyperbolicity does not permit chaos. An endomorphism of a Kobayashi-hyperbolic manifold is non-expansive with respect to the Kobayashi distance, so every family of endomorphisms is equicontinuous. We show that not only does flexibility allow chaos: under a strong anti-hyperbolicity assumption, chaotic automorphisms are generic. A special case of our main result is that if $G$ is a connected complex linear algebraic group of dimension at least 2, not semisimple, then chaotic automorphisms are generic among all holomorphic automorphisms of $G$ that preserve a left- or right-invariant Haar form. For $G=\mathbb C^n$, this result was proved (although not explicitly stated) some 20 years ago by Fornaess and Sibony. Our generalisation follows their approach. I will give plenty of context and background, as well as some details of the proof of the main result.
Index of Equivariant Callias-Type Operators
13:10 Fri 27 Apr, 2018 :: Barr Smith South Polygon Lecture theatre :: Hao Guo :: University of Adelaide

Media...
Suppose M is a smooth Riemannian manifold on which a Lie group G acts properly and isometrically. In this talk I will explore properties of a particular class of G-invariant operators on M, called G-Callias-type operators. These are Dirac operators that have been given an additional Z_2-grading and a perturbation so as to be "invertible outside of a cocompact set in M". It turns out that G-Callias-type operators are equivariantly Fredholm and so have an index in the K-theory of the maximal group C*-algebra of G. This index can be expressed as a KK-product of a class in K-homology and a class in the K-theory of the Higson G-corona. In fact, one can show that the K-theory of the Higson G-corona is highly non-trivial, and thus the index theory of G-Callias-type operators is not obviously trivial. As an application of the index theory of G-Callias-type operators, I will mention an obstruction to the existence of G-invariant metrics of positive scalar curvature on M.
Braid groups and higher representation theory
13:10 Fri 4 May, 2018 :: Barr Smith South Polygon Lecture theatre :: Tony Licata :: Australian National University

Media...
The Artin braid group arise in a number of different parts of mathematics. The goal of this talk will be to explain how basic group-theoretic questions about the Artin braid group can be answered using some modern tools of linear and homological algebra, with an eye toward proving some open conjectures about other groups.
Knot homologies
15:10 Fri 4 May, 2018 :: Horace Lamb 1022 :: Dr Anthony Licata :: Australian National University

The last twenty years have seen a lot of interaction between low-dimensional topology and representation theory. One facet of this interaction concerns "knot homologies," which are homological invariants of knots; the most famous of these, Khovanov homology, comes from the higher representation theory of sl_2. The goal of this talk will be to give a gentle introduction to this subject to non-experts by telling you a bit about Khovanov homology.
Cobordism maps on PFH induced by Lefschetz fibration over higher genus base
13:10 Fri 11 May, 2018 :: Barr Smith South Polygon Lecture theatre :: Guan Heng Chen :: University of Adelaide

In this talk, we will discuss the cobordism maps on periodic Floer homology(PFH) induced by Lefschetz fibration. Periodic Floer homology is a Gromov types invariant for three dimensional mapping torus and it is isomorphic to a version of Seiberg Witten Floer cohomology(SWF). Our result is to define the cobordism maps on PFH induced by certain types of Lefschetz fibration via using holomorphic curves method. Also, we show that the cobordism maps is equivalent to the cobordism maps on Seiberg Witten cohomology under the isomorphism PFH=SWF.
Obstructions to smooth group actions on 4-manifolds from families Seiberg-Witten theory
13:10 Fri 25 May, 2018 :: Barr Smith South Polygon Lecture theatre :: David Baraglia :: University of Adelaide

Media...
Let X be a smooth, compact, oriented 4-manifold and consider the following problem. Let G be a group which acts on the second cohomology of X preserving the intersection form. Can this action of G on H^2(X) be lifted to an action of G on X by diffeomorphisms? We study a parametrised version of Seiberg-Witten theory for smooth families of 4-manifolds and obtain obstructions to the existence of such lifts. For example, we construct compact simply-connected 4-manifolds X and involutions on H^2(X) that can be realised by a continuous involution on X, or by a diffeomorphism, but not by an involutive diffeomorphism for any smooth structure on X.
Quantifying language change
15:10 Fri 1 Jun, 2018 :: Horace Lamb 1022 :: A/Prof Eduardo Altmann :: University of Sydney

Mathematical methods to study natural language are increasingly important because of the ubiquity of textual data in the Internet. In this talk I will discuss mathematical models and statistical methods to quantify the variability of language, with focus on two problems: (i) How the vocabulary of languages changed over the last centuries? (ii) How the language of scientific disciplines relate to each other and evolved in the last decades? One of the main challenges of these analyses stem from universal properties of word frequencies, which show high temporal variability and are fat-tailed distributed. The later feature dramatically affects the statistical properties of entropy-based estimators, which motivates us to compare vocabularies using a generalized Jenson-Shannon divergence (obtained from entropies of order alpha).
Quantifying language change
15:10 Fri 1 Jun, 2018 :: Napier 208 :: A/Prof Eduardo Altmann :: University of Sydney

Mathematical methods to study natural language are increasingly important because of the ubiquity of textual data in the Internet. In this talk I will discuss mathematical models and statistical methods to quantify the variability of language, with focus on two problems: (i) How the vocabulary of languages changed over the last centuries? (ii) How the language of scientific disciplines relate to each other and evolved in the last decades? One of the main challenges of these analyses stem from universal properties of word frequencies, which show high temporal variability and are fat-tailed distributed. The later feature dramatically affects the statistical properties of entropy-based estimators, which motivates us to compare vocabularies using a generalized Jenson-Shannon divergence (obtained from entropies of order alpha).
Hitchin's Projectively Flat Connection for the Moduli Space of Higgs Bundles
13:10 Fri 15 Jun, 2018 :: Barr Smith South Polygon Lecture theatre :: John McCarthy :: University of Adelaide

In this talk I will discuss the problem of geometrically quantizing the moduli space of Higgs bundles on a compact Riemann surface using Kahler polarisations. I will begin by introducing geometric quantization via Kahler polarisations for compact manifolds, leading up to the definition of a Hitchin connection as stated by Andersen. I will then describe the moduli spaces of stable bundles and Higgs bundles over a compact Riemann surface, and discuss their properties. The problem of geometrically quantizing the moduli space of stables bundles, a compact space, was solved independently by Hitchin and Axelrod, Del PIetra, and Witten. The Higgs moduli space is non-compact and therefore the techniques used do not apply, but carries an action of C*. I will finish the talk by discussing the problem of finding a Hitchin connection that preserves this C* action. Such a connection exists in the case of Higgs line bundles, and I will comment on the difficulties in higher rank.
The topology and geometry of spaces of Yang-Mills-Higgs flow lines
11:10 Fri 27 Jul, 2018 :: Barr Smith South Polygon Lecture theatre :: Graeme Wilkin :: National University of Singapore

Given a smooth complex vector bundle over a compact Riemann surface, one can define the space of Higgs bundles and an energy functional on this space: the Yang-Mills-Higgs functional. The gradient flow of this functional resembles a nonlinear heat equation, and the limit of the flow detects information about the algebraic structure of the initial Higgs bundle (e.g. whether or not it is semistable). In this talk I will explain my work to classify ancient solutions of the Yang-Mills-Higgs flow in terms of their algebraic structure, which leads to an algebro-geometric classification of Yang-Mills-Higgs flow lines. Critical points connected by flow lines can then be interpreted in terms of the Hecke correspondence, which appears in Witten’s recent work on Geometric Langlands. This classification also gives a geometric description of spaces of unbroken flow lines in terms of secant varieties of the underlying Riemann surface, and in the remaining time I will describe work in progress to relate the (analytic) Morse compactification of these spaces by broken flow lines to an algebro-geometric compactification by iterated blowups of secant varieties.
Carleman approximation of maps into Oka manifolds.
11:10 Fri 3 Aug, 2018 :: Barr Smith South Polygon Lecture theatre :: Brett Chenoweth :: University of Ljubljana

In 1927 Torsten Carleman proved a remarkable extension of the Stone-Weierstrass theorem. Carleman’s theorem is ostensibly the first result concerning the approximation of functions on unbounded closed subsets of C by entire functions. In this talk we introduce Carleman’s theorem and several of its recent generalisations including the titled generalisation which was proved by the speaker in arXiv:1804.10680.
Min-max theory for hypersurfaces of prescribed mean curvature
11:10 Fri 17 Aug, 2018 :: Barr Smith South Polygon Lecture theatre :: Jonathan Zhu :: Harvard University

We describe the construction of closed prescribed mean curvature (PMC) hypersurfaces using min-max methods. Our theory allows us to show the existence of closed PMC hypersurfaces in a given closed Riemannian manifold for a generic set of ambient prescription functions. This set includes, in particular, all constant functions as well as analytic functions if the manifold is real analytic. The described work is joint with Xin Zhou.
Tales of Multiple Regression: Informative Missingness, Recommender Systems, and R2-D2
15:10 Fri 17 Aug, 2018 :: Napier 208 :: Prof Howard Bondell :: University of Melbourne

In this talk, we briefly discuss two projects tangentially related under the umbrella of high-dimensional regression. The first part of the talk investigates informative missingness in the framework of recommender systems. In this setting, we envision a potential rating for every object-user pair. The goal of a recommender system is to predict the unobserved ratings in order to recommend an object that the user is likely to rate highly. A typically overlooked piece is that the combinations are not missing at random. For example, in movie ratings, a relationship between the user ratings and their viewing history is expected, as human nature dictates the user would seek out movies that they anticipate enjoying. We model this informative missingness, and place the recommender system in a shared-variable regression framework which can aid in prediction quality. The second part of the talk deals with a new class of prior distributions for shrinkage regularization in sparse linear regression, particularly the high dimensional case. Instead of placing a prior on the coefficients themselves, we place a prior on the regression R-squared. This is then distributed to the coefficients by decomposing it via a Dirichlet Distribution. We call the new prior R2-D2 in light of its R-Squared Dirichlet Decomposition. Compared to existing shrinkage priors, we show that the R2-D2 prior can simultaneously achieve both high prior concentration at zero, as well as heavier tails. These two properties combine to provide a higher degree of shrinkage on the irrelevant coefficients, along with less bias in estimation of the larger signals.
Geometry and Topology of Crystals
11:10 Fri 31 Aug, 2018 :: Barr Smith South Polygon Lecture theatre :: Vanessa Robins :: Australian National University

This talk will cover some highlights of the mathematical description of crystal structure from the platonic polyhedra of ancient Greece to the current picture of crystallographic groups as orbifolds. Modern materials synthesis raises fascinating questions about the enumeration and classification of periodic interwoven or entangled frameworks, that might be addressed by techniques from 3-manifold topology and knot theory.
Mathematical modelling of the emergence and spread of antimalarial drug resistance
15:10 Fri 14 Sep, 2018 :: Napier 208 :: Dr Jennifer Flegg :: University of Melbourne

Malaria parasites have repeatedly evolved resistance to antimalarial drugs, thwarting efforts to eliminate the disease and contributing to an increase in mortality. In this talk, I will introduce several statistical and mathematical models for monitoring the emergence and spread of antimalarial drug resistance. For example, results will be presented from Bayesian geostatistical models that have quantified the space-time trends in drug resistance in Africa and Southeast Asia. I will discuss how the results of these models have been used to update public health policy.
Twisted K-theory of compact Lie groups and extended Verlinde algebras
11:10 Fri 12 Oct, 2018 :: Barr Smith South Polygon Lecture theatre :: Chi-Kwong Fok :: University of Adelaide

In a series of recent papers, Freed, Hopkins and Teleman put forth a deep result which identifies the twisted K -theory of a compact Lie group G with the representation theory of its loop group LG. Under suitable conditions, both objects can be enhanced to the Verlinde algebra, which appears in mathematical physics as the Frobenius algebra of a certain topological quantum field theory, and in algebraic geometry as the algebra encoding information of moduli spaces of G-bundles over Riemann surfaces. The Verlinde algebra for G with nice connectedness properties have been well-known. However, explicit descriptions of such for disconnected G are lacking. In this talk, I will discuss the various aspects of the Freed-Hopkins-Teleman Theorem and partial results on an extension of the Verlinde algebra arising from a disconnected G. The talk is based on work in progress joint with David Baraglia and Varghese Mathai.
Random walks
15:10 Fri 12 Oct, 2018 :: Napier 208 :: A/Prof Kais Hamza :: Monash University

A random walk is arguably the most basic stochastic process one can define. It is also among the most intuitive objects in the theory of probability and stochastic processes. For these and other reasons, it is one of the most studied processes or rather family of processes, finding applications in all areas of science, technology and engineering. In this talk, I will start by recalling some of the classical results for random walks and then discuss some of my own recent explorations in this area of research that has maintained relevance for decades.
An Introduction to Ricci Flow
11:10 Fri 19 Oct, 2018 :: Barr Smith South Polygon Lecture theatre :: Miles Simon :: University of Magdeburg

In these three talks we give an introduction to Ricci flow and present some applications thereof. After introducing the Ricci flow we present some theorems and arguments from the theory of linear and non-linear parabolic equations. We explain why this theory guarantees that there is always a solution to the Ricci flow for a short time for any given smooth initial metric on a compact manifold without boundary. We calculate evolution equations for certain geometric quantities, and present some examples of maximum principle type arguments. In the last lecture we present some geometric results which are derived with the help of the Ricci flow.
Bayesian Synthetic Likelihood
15:10 Fri 26 Oct, 2018 :: Napier 208 :: A/Prof Chris Drovandi :: Queensland University of Technology

Complex stochastic processes are of interest in many applied disciplines. However, the likelihood function associated with such models is often computationally intractable, prohibiting standard statistical inference frameworks for estimating model parameters based on data. Currently, the most popular simulation-based parameter estimation method is approximate Bayesian computation (ABC). Despite the widespread applicability and success of ABC, it has some limitations. This talk will describe an alternative approach, called Bayesian synthetic likelihood (BSL), which overcomes some limitations of ABC and can be much more effective in certain classes of applications. The talk will also describe various extensions to the standard BSL approach. This project has been a joint effort with several academic collaborators, post-docs and PhD students.

News matching "Manifold destiny: a talk on water, fire and life"

Mathematics Building to be demolished
The existing mathematics building will be demolished to make way for a new 8-storey, 6-star building. The new building, which is expected to be completed for the start of semester 1, 2010, will house the Schools of Electrical and Electronic Engineering, Computer Science and Mathematical Sciences. The demolition will begin on 10th December 2007. See the Building Life Impact web-site for more details. Posted Mon 12 Nov 07.
Sam Cohen wins prize for best student talk at ANZIAM 2009
Congratulations to Mr Sam Cohen, a PhD student within the School, who was awarded the T. M. Cherry Prize for the best student paper at the 2009 meeting of ANZIAM for his talk on A general theory of backward stochastic difference equations. Posted Fri 6 Feb 09.
Sam Cohen wins prize for best student talk at Aust MS 2009
Congratulations to Mr Sam Cohen, a PhD student within the School, who was awarded the B. H. Neumann Prize for the best student paper at the 2009 meeting of the Australian Mathematical Society for his talk on Dynamic Risk Measures and Nonlinear Expectations with Markov Chain noise. Posted Tue 6 Oct 09.
ARC Grant successes
Congratulations to Tony Roberts, Charles Pearce, Robert Elliot, Andrew Metcalfe and all their collaborators on their success in the current round of ARC grants. The projects are "Development of innovative technologies for oil production based on the advanced theory of suspension flows in porous media" (Tony Roberts et al.), "Perturbation and approximation methods for linear operators with applications to train control, water resource management and evolution of physical systems" (Charles Pearce et al.), "Risk Measures and Management in Finance and Actuarial Science Under Regime-Switching Models" (Robert Elliott et al.) and "A new flood design methodology for a variable and changing climate" (Andrew Metcalfe et al.) Posted Mon 26 Oct 09.
CSIRO Mathematicians in Schools
Dr Rebecca Anderson will visit the School on Thursday 20 May to talk about the CSIRO Mathematicians in Schools program. Posted Wed 5 May 10.

More information...

Bushfire CRC post-graduate scholarship success
Congratulations to Mika Peace who has been awarded a PhD scholarship from the Bushfire Cooperative Research Centre. Mika is working with Trent Mattner and Graham Mills (from the Bureau of Meteorology) on coupled fire-weather modelling Posted Wed 6 Apr 11.
Hydrological Society of SA Ian Liang Prize
Congratulations to Hayden Tronnolone who has been awarded the 2011 Ian Laing Prize by the Hydrological Society of South Australia. The annual prize, awarded to a student undertaking the final year of an ordinary or honours degree course or post graduate diploma course which involves some study of hydrology, water resource management, or related sciences, was awarded to Hayden for the work he undertook in his honours project on the study of flow in spiral particle separators. Hayden ins currently undertaking a PhD under the supervision of Dr Yvonne Stokes and Dr Matt Finn. Posted Mon 30 May 11.
Best paper prize at Membrane Symposium
Congratulations to Wei Xian Lim who was awarded the prize for the best student presentation at the Membrane Society of Australasia 2011 ECR Membrane Symposium for her talk on "Mathematical modelling of gas capture in porous materials". Xian is working on her PhD with Jim Hill and Barry Cox. Posted Mon 28 Nov 11.
Summer Research Student Thomas Brown wins the AMSI/Cambridge University Press Prize for 2013
Congratulations to Thomas Brown, jointly supervised by Ed Green and Ben Binder who won the AMSI/Cambridge University Press Prize for the best talk at the 2013 CSIRO Big Day In, recently held this month. After completion of their summer project, vacation scholars must submit a project report which summarises the project and addresses the nature of the topic, methods of investigation, results found, and benefits of the experience. The scholars then present a 15-minute presentation about their project at the CSIRO Big Day In (BDI). This experience enables students to meet and socialise with their peers, gain experience presenting to their colleagues and supervisors and learn about a range of careers in science by interacting with several CSIRO scientists (including mathematicians) in a discussion panel. This is a very pleasing result for Thomas, Ed and Ben as well as for the School of Mathematical Sciences. Well done Thomas. Posted Fri 15 Feb 13.

Publications matching "Manifold destiny: a talk on water, fire and life"

Publications
Modelling Water Blending-Sensitivity of Optimal Policies
Webby, Roger; Green, David; Metcalfe, Andrew, 17th Biennial Congress on Modeling and Simulation, New Zealand 01/12/08
A space-time Neyman-Scott rainfall model with defined storm extent
Leonard, Michael; Lambert, Martin; Metcalfe, Andrew; Cowpertwait, P, Water Resources Research 44 (9402–9402) 2008
On spatiotemporal drought classification in New South Wales: Development and evaluation of alternative techniques
Osti, Alexander; Lambert, Martin; Metcalfe, Andrew, Australian Journal of Water Resources 12 (21–35) 2008
Stochastic dynamic programming (SDP) with a conditional value-at-risk (CVaR) criterion for management of storm-water
Piantadosi, J; Metcalfe, Andrew; Howlett, P, Journal of Hydrology 348 (320–329) 2008
Stochastic linear programming and conditional value-at-risk for water resources management
Webby, Roger; Boland, J; Howlett, P; Metcalfe, Andrew, The ANZIAM Journal - On-line full-text 48 (885–898) 2008
Variable pitch darrieus water turbines
Kirke, B; Lazauskas, Leo, Journal of Fluid Science and Technology 3 (430–438) 2008
Implementing a space-time rainfall model for the Sydney region
Leonard, Michael; Metcalfe, Andrew; Lambert, Martin; Kuczera, George, Water Science and Technology 55 (39–47) 2007
The Mekong-applications of value at risk (VAR) and conditional value at risk (CVAR) simulation to the benefits, costs and consequences of water resources development in a large river basin
Webby, Roger; Adamson, Peter; Boland, J; Howlett, P; Metcalfe, Andrew; Piantadosi, J, Ecological Modelling 201 (89–96) 2007
Conditional value-at-risk for water management in Lake Burley Griffin
Webby, Roger; Boland, J; Howlett, P; Metcalfe, Andrew; Sritharan, T, The ANZIAM Journal 47 (C116–C136) 2006
Efficient simulation of a space-time Neyman-Scott rainfall model
Leonard, Michael; Metcalfe, Andrew; Lambert, Martin, Water Resources Research 42 (11503–11503) 2006
Analysis of a practical control policy for water storage in two connected dams
Howlett, P; Piantadosi, J; Pearce, Charles, chapter in Continuous optimization: Current trends and modern applications (Springer) 435–450, 2005
Adaptive battle agents: Emergence in artificial life combat models
Baker, Thomas; Botting, Matthew Craig; Berryman, Matthew; Ryan, Alex; Grisogono, A; Abbott, Derek, The SPIE International Symposium on Smart Structures, Devices, and Systems II, Sydney, Australia 13/12/04
The effect of World War 1 and the 1918 influenza pandemic on cohort life expectancy of South Australian males born in 1881-1900
Leppard, Phillip; Tallis, George; Pearce, Charles, Journal of Population Research 21 (161–176) 2004
Numerical error in groundwater flow and solute transport simulation
Woods, Juliette; Teubner, Michael; Simmons, Craig; Narayan, K, Water Resources Research 39 (SBH 10-1–SBH 10-11) 2003
Groundwater flow and solute transport at the Mourquong saline-water disposal basin, Murray Basin, southeastern Australia
Simmons, Craig; Narayan, K; Woods, Juliette; Herczeg, A, Hydrogeology Journal 10 (278–295) 2002
On a generalized 2 + 1 dispersive water wave hierarchy
Gordoa, P; Joshi, Nalini; Pickering, A, Publications of the Research Institute for Mathematical Sciences 37 (327–347) 2001
Hamiltonian quantization of fermions on an odd dimensional manifold with boundary
Carey, Alan; Mickelsson, J, chapter in Proceedings of the International Symposium Quantum Theory and Symmetries (World Scientific Publishing) 46–51, 2000
Reciprocal link for 2 + 1-dimensional extensions of shallow water equations
Hone, Andrew, Applied Mathematics Letters 13 (37–42) 2000

Advanced search options

You may be able to improve your search results by using the following syntax:

QueryMatches the following
Asymptotic EquationAnything with "Asymptotic" or "Equation".
+Asymptotic +EquationAnything with "Asymptotic" and "Equation".
+Stokes -"Navier-Stokes"Anything containing "Stokes" but not "Navier-Stokes".
Dynam*Anything containing "Dynamic", "Dynamical", "Dynamicist" etc.