January
2020  M  T  W  T  F  S  S    1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31          

Search the School of Mathematical SciencesEvents matching "Ktypes of tempered representations" 
Sloshing in tanks of liquefied natural gas (LNG) vessels 15:10 Wed 22 Apr, 2009 :: Napier LG29 :: Prof. Frederic Dias :: ENS, Cachan
The last scientific conversation I had with Ernie Tuck was on liquid impact. As a matter of fact, we discussed the paper by J.H. Milgram, Journal of Fluid Mechanics 37 (1969), entitled "The motion of a fluid in a cylindrical container with a free surface following vertical impact."
Liquid impact is a key issue in sloshing and in particular in sloshing in tanks of LNG vessels. Numerical simulations of sloshing have been performed by various groups, using various types of numerical methods. In terms of the numerical results, the outcome is often impressive, but the question remains of how relevant these results are when it comes to determining impact pressures. The numerical models are too simplified to reproduce the high variability of the measured pressures. In fact, for the time being, it is not possible to simulate accurately both global and local effects. Unfortunately it appears that local effects predominate over global effects when the behaviour of pressures is considered.
Having said this, it is important to point out that numerical studies can be quite useful to perform sensitivity analyses in idealized conditions such as a liquid mass falling under gravity on top of a horizontal wall and then spreading along the lateral sides. Simple analytical models inspired by numerical results on idealized problems can also be useful to predict trends.
The talk is organized as follows: After a brief introduction on the sloshing problem and on scaling laws, it will be explained to what extent numerical studies can be used to improve our understanding of impact pressures. Results on a liquid mass hitting a wall obtained by a finitevolume code with interface reconstruction as well as results obtained by a simple analytical model will be shown to reproduce the trends of experiments on sloshing.
This is joint work with L. Brosset (GazTransport & Technigaz), J.M. Ghidaglia (ENS Cachan) and J.P. Braeunig (INRIA). 

From linear algebra to knot theory 15:10 Fri 21 Aug, 2009 :: Badger Labs G13
Macbeth Lecture Theatre :: Prof Ross Street :: Macquarie University, Sydney
Vector spaces and linear functions form our paradigmatic monoidal category. The concepts underpinning linear algebra admit definitions, operations and constructions with analogues in many other parts of mathematics. We shall see how to generalize much of linear algebra to the context of monoidal categories. Traditional examples of such categories are obtained by replacing vector spaces by linear representations of a given compact group or by sheaves of vector spaces. More recent examples come from lowdimensional topology, in particular, from knot theory where the linear functions are replaced by braids or tangles. These geometric monoidal categories are often free in an appropriate sense, a fact that can be used to obtain algebraic invariants for manifolds. 

Stable commutator length 13:40 Fri 25 Sep, 2009 :: Napier 102 :: Prof Danny Calegari :: California Institute of Technology
Stable commutator length answers the question: "what is the simplest
surface in a given space with prescribed boundary?" where "simplest"
is interpreted in topological terms. This topological definition is
complemented by several equivalent definitions  in group theory, as a
measure of noncommutativity of a group; and in linear programming, as
the solution of a certain linear optimization problem. On the
topological side, scl is concerned with questions such as computing
the genus of a knot, or finding the simplest 4manifold that bounds a
given 3manifold. On the linear programming side, scl is measured in
terms of certain functions called quasimorphisms, which arise from
hyperbolic geometry (negative curvature) and symplectic geometry
(causal structures). In these talks we will discuss how scl in free
and surface groups is connected to such diverse phenomena as the
existence of closed surface subgroups in graphs of groups, rigidity
and discreteness of symplectic representations, bounding immersed
curves on a surface by immersed subsurfaces, and the theory of multi
dimensional continued fractions and Klein polyhedra.
Danny Calegari is the Richard Merkin Professor of Mathematics at the California Institute of Technology, and is one of the recipients of the 2009 Clay Research Award for his work in geometric topology and geometric group theory. He received a B.A. in 1994 from the University of Melbourne, and a Ph.D. in 2000 from the University of California, Berkeley under the joint supervision of Andrew Casson and William Thurston. From 2000 to 2002 he was Benjamin Peirce Assistant Professor at Harvard University, after which he joined the Caltech faculty; he became Richard Merkin Professor in 2007.


Contemporary frontiers in statistics 15:10 Mon 28 Sep, 2009 :: Badger Labs G31 Macbeth Lectrue :: Prof. Peter Hall :: University of Melbourne
The availability of powerful computing equipment has had a dramatic impact on statistical methods and thinking, changing forever the way data are analysed. New data types, larger quantities of data, and new classes of research problem are all motivating new statistical methods. We shall give examples of each of these issues, and discuss the current and future directions of frontier problems in statistics. 

Irreducible subgroups of SO(2,n) 13:10 Fri 16 Oct, 2009 :: School Board Room :: Dr Thomas Leistner :: University of Adelaide
Berger's classification of irreducibly represented Lie groups that can occur as holonomy groups of semiRiemannian manifolds is a remarkable result of modern differential geometry. What is remarkable about it is that it is so short and that only so few types of geometry can occur. In Riemannian signature this is even more remarkable, taking into account that any representation of a compact Lie group admits a positive definite invariant scalar product. Hence, for any not too small n there is an abundance of irreducible subgroups of SO(n). We show that in other signatures the situation is quite different with, for example, SO(1,n) having no proper irreducible subgroups. We will show how this and the corresponding result about irreducible subgroups of SO(2,n) follows from the KarpelevichMostov theorem. (This is joint work with Antonio J. Di Scala, Politecnico di Torino.) 

The Glass Bead Game 15:10 Fri 25 Jun, 2010 :: Napier G04 :: Prof Arun Ram :: University of Melbourne
This title is taken from the novel of Hermann Hesse. In joint work with A. Kleshchev, we were amused to discover a glass bead game for constructing representations of quiver Hecke algebras (algebras recently defined by KhovanovLauda and Rouquier whose representation theory categorifies quantum groups of KacMoody Lie algebras). In fact, the glass bead game is tantalizingly simple, and may soon be marketed in your local toy store. I will explain how this game works, and some of the fascinating numerology that appears in the scoring of the plays. 

Queues with skill based routing under FCFS–ALIS regime 15:10 Fri 11 Feb, 2011 :: B17 Ingkarni Wardli :: Prof Gideon Weiss :: The University of Haifa, Israel
We consider a system where jobs of several types are served by servers
of several types, and a bipartite graph between server types and job types
describes feasible assignments. This is a common situation in manufacturing,
call centers with skill based routing, matching of parentchild in adoption or
matching in kidney transplants etc. We consider the case of first come first
served policy: jobs are assigned to the first available feasible server in
order of their arrivals. We consider two types of policies for assigning
customers to idle servers  a random assignment and assignment to the longest
idle server (ALIS) We survey some results for four different situations:
 For a loss system we find conditions for reversibility and insensitivity.
 For a manufacturing type system, in which there is enough capacity to serve
all jobs, we discuss a product form solution and waiting times.
 For an infinite matching model in which an infinite sequence of customers of
IID types, and infinite sequence of servers of IID types are matched
according to first come first, we obtain a product form stationary
distribution for this system, which we use to calculate matching rates.
 For a call center model with overload and abandonments we make some plausible
observations.
This talk surveys joint work with Ivo Adan, Rene Caldentey, Cor Hurkens, Ed
Kaplan and Damon Wischik, as well as work by Jeremy Visschers, Rishy Talreja and
Ward Whitt.


Lorentzian manifolds with special holonomy 13:10 Fri 25 Mar, 2011 :: Mawson 208 :: Mr Kordian Laerz :: Humboldt University, Berlin
A parallel lightlike vector field on a Lorentzian manifold X naturally defines a foliation of codimension 1 on X and a 1dimensional subfoliation. In the first part we introduce Lorentzian metrics on the total space of certain circle bundles in order to construct weakly irreducible Lorentzian manifolds admitting a parallel lightlike vector field such that all leaves of the foliations are compact. Then we study which holonomy representations can be realized in this way. Finally, we consider the structure of arbitrary Lorentzian manifolds for which the leaves of the foliations are compact.


Spectra alignment/matching for the classification of cancer and control patients 12:10 Mon 8 Aug, 2011 :: 5.57 Ingkarni Wardli :: Mr Tyman Stanford :: University of Adelaide
Proteomic timeofflight mass spectrometry produces a spectrum based on the peptides (chains of amino acids) in each patientâs serum sample. The spectra contain data points for an xaxis (peptide weight) and a yaxis (peptide frequency/count/intensity). It is our end goal to differentiate cancer (and subtypes) and control patients using these spectra. Before we can do this, peaks in these data must be found and common peptides to different spectra must be found. The data are noisy because of biotechnological variation and calibration error; data points for different peptide weights may in fact be same peptide. An algorithm needs to be employed to find common peptides between spectra, as performing alignment âby handâ is almost infeasible. We borrow methods suggested in the literature by metabolomic gas chromatographymass spectrometry and extend the methods for our purposes. In this talk I will go over the basic tenets of what we hope to achieve and the process towards this.


Tduality via bundle gerbes I 13:10 Fri 23 Sep, 2011 :: B.19 Ingkarni Wardli :: Dr Raymond Vozzo :: University of Adelaide
In physics Tduality is a phenomenon which relates certain types of string theories to one another. From a topological point of view, one can view string theory as a duality between line bundles carrying a degree three cohomology class (the Hflux). In this talk we will use bundle gerbes to give a geometric realisation of the Hflux and explain how to construct the Tdual of a line bundle together with its Tdual bundle gerbe. 

Tduality via bundle gerbes II 13:10 Fri 21 Oct, 2011 :: B.19 Ingkarni Wardli :: Dr Raymond Vozzo :: University of Adelaide
In physics Tduality is a phenomenon which relates certain types of string theories to one another. From a topological point of view, one can view string theory as a duality between line bundles carrying a degree three cohomology class (the Hflux). In this talk we will use bundle gerbes to give a geometric realisation of the Hflux and explain how to construct the Tdual of a line bundle together with its Tdual bundle gerbe. 

Acyclic embeddings of open Riemann surfaces into new examples of elliptic manifolds 13:10 Fri 4 May, 2012 :: Napier LG28 :: Dr Tyson Ritter :: University of Adelaide
In complex geometry a manifold is Stein if there are, in a certain
sense, "many" holomorphic maps from the manifold into C^n. While this
has long been well understood, a fruitful definition of the dual
notion has until recently been elusive. In Oka theory, a manifold is
Oka if it satisfies several equivalent definitions, each stating that
the manifold has "many" holomorphic maps into it from C^n. Related to
this is the geometric condition of ellipticity due to Gromov, who
showed that it implies a complex manifold is Oka.
We present recent contributions to three open questions involving
elliptic and Oka manifolds. We show that affine quotients of C^n are
elliptic, and combine this with an example of Margulis to construct
new elliptic manifolds of interesting homotopy types. It follows that
every open Riemann surface properly acyclically embeds into an
elliptic manifold, extending an existing result for open Riemann
surfaces with abelian fundamental group.


Geometric modular representation theory 13:10 Fri 1 Jun, 2012 :: Napier LG28 :: Dr Anthony Henderson :: University of Sydney
Representation theory is one of the oldest areas of algebra, but many basic questions in it are still unanswered. This is especially true in the modular case, where one considers vector spaces over a field F of positive characteristic; typically, complications arise for particular small values of the characteristic. For example, from a vector space V one can construct the symmetric square S^2(V), which is one easy example of a representation of the group GL(V). One would like to say that this representation is irreducible, but that statement is not always true: if F has characteristic 2, there is a nontrivial invariant subspace. Even for GL(V), we do not know the dimensions of all irreducible representations in all characteristics.
In this talk, I will introduce some of the main ideas of geometric modular representation theory, a more recent approach which is making progress on some of these old problems. Essentially, the strategy is to reformulate everything in terms of homology of various topological spaces, where F appears only as the field of coefficients and the spaces themselves are independent of F; thus, the modular anomalies in representation theory arise because homology with modular coefficients is detecting something about the topology that rational coefficients do not. In practice, the spaces are usually varieties over the complex numbers, and homology is replaced by intersection cohomology to take into account the singularities of these varieties. 

Geometric quantisation in the noncompact setting 13:10 Fri 14 Sep, 2012 :: Engineering North 218 :: Dr Peter Hochs :: Leibniz University, Hannover
Traditionally, the geometric quantisation of an action by a compact Lie group on a compact symplectic manifold is defined as the equivariant index of a certain Dirac operator. This index is a welldefined formal difference of finitedimensional representations, since the Dirac operator is elliptic and the manifold and the group in question are compact. From a mathematical and physical point of view however, it is very desirable to extend geometric quantisation to noncompact groups and manifolds. Defining a suitable index is much harder in the noncompact setting, but several interesting results in this direction have been obtained. I will review the difficulties connected to noncompact geometric quantisation, and some of the solutions that have been proposed so far, mainly in connection to the "quantisation commutes with reduction" principle. (An introduction to this principle will be given in my talk at the Colloquium on the same day.)


Mathematics in Popular Culture: the Good, the Bad and the Ugly 12:30 Mon 22 Oct, 2012 :: B.21 Ingkarni Wardli :: Mr Patrick Korbel :: University of Adelaide
Media...A slightly unusual (for this School at least) and hopefully entertaining look at representations of mathematics and mathematicians in popular culture. Do these representations affect people's perceptions of mathematics and its mysterious practitioners? What examples of positive and negative representations are there? Should we care and should it affect our enjoyment those texts? All these questions and many more will remain hopelessly unanswered as we try to cover examples such as Numb3rs, Mean Girls, A Beautiful Mind, Good Will Hunting, 21, The Simpsons and Futurama. Feel free to come prepared with your own examples of egregious crimes against mathematics or refreshing beacons of hope. 

Neuronal excitability and canards 15:10 Fri 10 May, 2013 :: B.18 Ingkarni Wardli :: A/Prof Martin Wechselberger :: University of Sydney
Media...The notion of excitability was first introduced in an attempt to understand firing properties of neurons. It was Alan Hodgkin who identified three basic types (classes) of excitable axons (integrator, resonator and differentiator) distinguished by their different responses to injected steps of currents of various amplitudes.
Pioneered by Rinzel and Ermentrout, bifurcation theory explains repetitive (tonic) firing patterns for adequate steady inputs in integrator (type I) and resonator (type II) neuronal models. In contrast, the dynamic behavior of differentiator (type III) neurons cannot be explained by standard dynamical systems theory. This third type of excitable neuron encodes a dynamic change in the input and leads naturally to a transient response of the neuron.
In this talk, I will show that "canards"  peculiar mathematical creatures  are well suited to explain the nature of transient responses of neurons due to dynamic (smooth) inputs. I will apply this geometric theory to a simple driven FitzHughNagumo/MorrisLecar type neural model and to a more complicated neural model that describes paradoxical excitation due to propofol anesthesia. 

Quantization, Representations and the Orbit Philosophy 15:10 Fri 5 Jul, 2013 :: B.18 Ingkarni Wardli :: Prof Nigel Higson :: Pennsylvania State University
Media...This talk will be about the mathematics of quantization and about representation theory, where the concept of quantization seems to be especially relevant. It was discovered by Kirillov in the 1960's that the representation theory of nilpotent Lie groups (such as the group that encodes Heisenberg's commutation relations) can be beautifully and efficiently described using a vocabulary drawn from geometry and quantum mechanics. The description was soon adapted to other classes of Lie groups, and the expectation that it ought to apply almost universally has come to be called the "orbit philosophy." But despite early successes, the orbit philosophy is in a decidedly unfinished state. I'll try to explain some of the issues and some possible new directions. 

Symmetry gaps for geometric structures 15:10 Fri 20 Sep, 2013 :: B.18 Ingkarni Wardli :: Dr Dennis The :: Australian National University
Media...Klein's Erlangen program classified geometries based on their (transitive) groups of symmetries, e.g. Euclidean geometry is the quotient of the rigid motion group by the subgroup of rotations. While this perspective is homogeneous, Riemann's generalization of Euclidean geometry is in general very "lumpy"  i.e. there exist Riemannian manifolds that have no symmetries at all. A common generalization where a group still plays a dominant role is Cartan geometry, which first arose in Cartan's solution to the equivalence problem for geometric structures, and which articulates what a "curved version" of a flat (homogeneous) model means. Parabolic geometries are Cartan geometries modelled on (generalized) flag varieties (e.g. projective space, isotropic Grassmannians) which are wellknown objects from the representation theory of semisimple Lie groups. These curved versions encompass a zoo of interesting geometries, including conformal, projective, CR, systems of 2nd order ODE, etc. This interaction between differential geometry and representation theory has proved extremely fruitful in recent years. My talk will be an examplebased tour of various types of parabolic geometries, which I'll use to outline some of the main aspects of the theory (suppressing technical details). The main thread throughout the talk will be the symmetry gap problem: For a given type of Cartan geometry, the maximal symmetry dimension is realized by the flat model, but what is the next possible ("submaximal") symmetry dimension? I'll sketch a recent solution (in joint work with Boris Kruglikov) for a wide class of parabolic geometries which gives a combinatorial recipe for reading the submaximal symmetry dimension from a Dynkin diagram. 

How the leopard got his spots 14:10 Mon 14 Oct, 2013 :: 7.15 Ingkarni Wardli :: Dr Ed Green :: School of Mathematical Sciences
Media...Patterns are everywhere in nature, whether they be the spots and stripes on animals' coats, or the intricate arrangement of different cell types in a tissue. But how do these patterns arise? Whilst every cell contains a plan of the organism in its genes, the cells need to organise themselves so that each knows what it should do to achieve this plan. Mathematics can help biologists explore how different types of signals might be used to control the patterning process. In this talk, I will introduce two simple mathematical theories of biological pattern formation: Turing patterns where, surprisingly, the essential ingredient for producing the pattern is diffusion, which usually tends to make things more uniform; and the KellerSegel model, which provides a simple mechanism for the formation of multicellular structures from isolated single cells. These mathematical models can be used to explain how tissues develop, and why there are many spotted animals with a stripy tail, but no stripy animals with a spotted tail. 

Group meeting 15:10 Fri 25 Oct, 2013 :: 5.58 (Ingkarni Wardli) :: Dr Ben Binder and Mr David Wilke :: University of Adelaide
Dr Ben Binder :: 'An inverse approach for solutions to freesurface flow problems'
:: Abstract: Surface water waves are familiar to most people, for example, the wave
pattern generated at the stern of a ship. The boundary or interface
between the air and water is called the freesurface. When determining a
solution to a freesurface flow problem it is commonplace for the forcing
(eg. shape of ship or waterbed topography) that creates the surface waves
to be prescribed, with the freesurface coming as part of the solution.
Alternatively, one can choose to prescribe the shape of the freesurface
and find the forcing inversely. In this talk I will discuss my ongoing
work using an inverse approach to discover new types of solutions to
freesurface flow problems in two and three dimensions, and how the
predictions of the method might be verified with experiments. ::
Mr David Wilke:: 'A Computational Fluid Dynamic Study of Blood Flow Within the Coiled Umbilical Arteries'::
Abstract: The umbilical cord is the lifeline of the fetus throughout gestation. In a normal pregnancy it facilitates the supply of oxygen and nutrients from the placenta via a single vein, in addition to the return of deoxygenated blood from the developing embryo or fetus via two umbilical arteries. Despite the major role it plays in the growth of the fetus, pathologies of the umbilical cord are poorly understood. In particular, variations in the cord geometry, which typically forms a helical arrangement, have been correlated with adverse outcomes in pregnancy. Cords exhibiting either abnormally low or high levels of coiling have been associated with pathological results including growthrestriction and fetal demise. Despite this, the methodology currently employed by clinicians to characterise umbilical pathologies can misdiagnose cords and is prone to error. In this talk a computational model of blood flow within rigid threedimensional structures representative of the umbilical arteries will be presented. This study determined that the current characterization was unable to differentiate between cords which exhibited clinically distinguishable flow properties, including the cord pressure drop, which provides a measure of the loading on the fetal heart.


The structuring role of chaotic stirring on pelagic ecosystems 11:10 Fri 28 Feb, 2014 :: B19 Ingkarni Wardli :: Dr Francesco d'Ovidio :: Universite Pierre et Marie Curie (Paris VI)
The open ocean upper layer is characterized by a complex transport dynamics occuring over different spatiotemporal scales. At the scale of 10100 km  which covers the so called mesoscale and part of the submesoscale  in situ and remote sensing observations detect strong variability in physical and biogeochemical fields like sea surface temperature, salinity, and chlorophyll concentration. The calculation of Lyapunov exponent and other nonlinear diagnostics applied to the surface currents have allowed to show that an important part of this tracer variability is due to chaotic stirring. Here I will extend this analysis to marine ecosystems. For primary producers, I will show that stable and unstable manifolds of hyperbolic points embedded in the surface velocity field are able to structure the phytoplanktonic community in fluid dynamical niches of dominant types, where competition can locally occur during bloom events. By using data from tagged whales, frigatebirds, and elephant seals, I will also show that chaotic stirring affects the behaviour of higher trophic levels. In perspective, these relations between transport structures and marine ecosystems can be the base for a biodiversity index constructued from satellite information, and therefore able to monitor key aspects of the marine biodiversity and its temporal variability at the global scale. 

Flow barriers and flux in unsteady flows 15:10 Fri 4 Apr, 2014 :: B.21 Ingkarni Wardli :: Dr Sanjeeva Balasuriya :: The University of Adelaide
Media...How does one define the boundary of the ozone hole, an oceanic eddy, or Jupiter's Great Red Spot? These occur in flows which are unsteady (nonautonomous), that is, which change with time, and therefore any boundary must as well. In steady (autonomous) flows, defining flow boundaries is straightforward: one first finds fixed points of the flow, and then determines entities in space which are attracted to or repelled from these points as time progresses. These are respectively the stable and unstable manifolds of the fixed points, and can be shown to partition space into regions of different types of flow. This talk will focus on the required modifications to this idea for determining flow barriers in the more realistic unsteady context. An application to maximising mixing in microfluidic devices will also be presented. 

A generalised KacPeterson cocycle 11:10 Thu 17 Apr, 2014 :: Ingkarni Wardli B20 :: Pedram Hekmati :: University of Adelaide
The KacPeterson cocycle appears in the study of highest weight modules of infinite dimensional Lie algebras and determines a central extension. The vanishing of its cohomology class is tied to the existence of a cubic Dirac operator whose square is a quadratic Casimir element. I will introduce a closely related Lie algebra cocycle that comes about when constructing spin representations and gives rise to a Banach Lie group with a highly nontrivial topology. I will also explain how to make sense of the cubic Dirac operator in this setting and discuss its relation to twisted Ktheory. This is joint work with Jouko Mickelsson. 

Multiscale modelling of multicellular biological systems: mechanics, development and disease 03:10 Fri 6 Mar, 2015 :: Lower Napier LG24 :: Dr James Osborne :: University of Melbourne
When investigating the development and function of multicellular biological systems it is not enough to only consider the behaviour of individual cells in isolation. For example when studying tissue development, how individual cells interact, both mechanically and biochemically, influences the resulting tissues form and function. In this talk we present a multiscale modelling framework for simulating the development and function of multicellular biological systems (in particular tissues). Utilising the natural structural unit of the cell, the framework consists
of three main scales: the tissue level (macroscale); the cell level (mesoscale); and the subcellular level (microscale), with multiple interactions occurring between all scales. The cell level is central to the framework and cells are modelled as discrete interacting entities using one of a number of possible modelling paradigms, including lattice based models (cellular automata and cellular Potts) and offlattice based models (cell centre and vertex based representations). The subcellular level concerns numerous metabolic and biochemical processes represented by interaction networks rendered stochastically or into ODEs. The outputs from such systems influence the behaviour of the cell level affecting properties such as adhesion and also influencing cell mitosis and apoptosis. At the tissue level we consider factors or restraints that influence the cells, for example the distribution of a nutrient or messenger molecule, which is represented by field equations, on a growing domain, with individual cells functioning as
sinks and/or sources. The modular approach taken within the framework enables more realistic behaviour to be considered at each scale.
This framework is implemented within the Open Source Chaste library (Cancer Heart and Soft Tissue Environment, (http://www.cs.ox.ac.uk/chaste/)
and has been used to model biochemical and biomechanical interactions in various biological systems. In this talk we present the key ideas of the framework along with applications within the fields of development and disease. 

Tannaka duality for stacks 12:10 Fri 6 Mar, 2015 :: Ingkarni Wardli B20 :: Jack Hall :: Australian National University
Traditionally, Tannaka duality is used to reconstruct a
group from its representations. I will describe a reformulation of
this duality for stacks, which is due to Lurie, and briefly touch on
some applications. 

Symmetric groups via categorical representation theory 15:10 Fri 20 Mar, 2015 :: Engineering North N132 :: Dr Oded Yacobi :: University of Sydney
The symmetric groups play a fundamental role in representation theory and, while their characteristic zero representations are well understood, over fields of positive characteristic most foundational questions are still unanswered. In the 1990's Kleshchev made a spectacular breakthrough, and computed certain modular restriction multiplicities. It was observed by Lascoux, Leclerc, and Thibon that Kleshchev's numerology encodes a seemingly unrelated object: the crystal graph associated to an affine Lie algebra! We will explain how this mysterious connection opens the door to categorical representation theory, and, moreover, how the categorical perspective allows one to prove new theorems about representations of symmetric groups. We will also discuss other problems/applications in the landscape of categorical representation theory. 

Monodromy of the Hitchin system and components of representation varieties 12:10 Fri 29 May, 2015 :: Napier 144 :: David Baraglia :: University of Adelaide
Representations of the fundamental group of a compact Riemann surface into a reductive Lie group form a moduli space, called a representation variety. An outstanding problem in topology is to determine the number of components of these varieties. Through a deep result known as nonabelian Hodge theory, representation varieties are homeomorphic to moduli spaces of certain holomorphic objects called Higgs bundles. In this talk I will describe recent joint work with L. Schaposnik computing the monodromy of the Hitchin fibration for Higgs bundle moduli spaces. Our results give a new unified proof of the number of components of several representation varieties. 

In vitro models of colorectal cancer: why and how? 15:10 Fri 7 Aug, 2015 :: B19 Ingkarni Wardli :: Dr Tamsin Lannagan :: Gastrointestinal Cancer Biology Group, University of Adelaide / SAHMRI
1 in 20 Australians will develop colorectal cancer (CRC) and it is the second most common cause of cancer death. Similar to many other cancer types, it is the metastases rather than the primary tumour that are lethal, and prognosis is defined by Ã¢ÂÂhow farÃ¢ÂÂ the tumour has spread at time of diagnosis. Modelling in vivo behavior through rapid and relatively inexpensive in vitro assays would help better target therapies as well as help develop new treatments. One such new in vitro tool is the culture of 3D organoids. Organoids are a biologically stable means of growing, storing and testing treatments against bowel cancer. To this end, we have just set up a human colorectal organoid bank across Australia. This consortium will help us to relate in vitro growth patterns to in vivo behaviour and ultimately in the selection of patients for personalized therapies. Organoid growth, however, is complex. There appears to be variable growth rates and growth patterns. Together with members of the ECMS we recently gained funding to better quantify and model spatial structures in these colorectal organoids. This partnership will aim to directly apply the expertise within the ECMS to patient care. 

Base change and Ktheory 12:10 Fri 18 Sep, 2015 :: Ingkarni Wardli B17 :: Hang Wang :: The University of Adelaide
Media...Tempered representations of an algebraic group can be classified by Ktheory of the corresponding group C^*algebra. We use Archimedean base change between Langlands parameters of real and complex algebraic groups to compare Ktheory of the corresponding C^*algebras of groups over different number fields. This is work in progress with K.F. Chao.


Real Lie Groups and Complex Flag Manifolds 12:10 Fri 9 Oct, 2015 :: Ingkarni Wardli B17 :: Joseph A. Wolf :: University of California, Berkeley
Media...Let G be a complex simple direct limit group. Let G_R be a real form of G that corresponds to an hermitian symmetric space. I'll describe the corresponding bounded symmetric domain in the context of the Borel embedding, Cayley transforms, and the BergmanShilov boundary. Let Q be a parabolic subgroup of G. In finite dimensions this means that G/Q is a complex projective variety, or equivalently has a Kaehler metric invariant under a maximal compact subgroup of G. Then I'll show just how the bounded symmetric domains describe cycle spaces for open G_R orbits on G/Q. These cycle spaces include the complex bounded symmetric domains. In finite dimensions they are tightly related to moduli spaces for compact Kaehler manifolds and to representations of semisimple Lie groups; in infinite dimensions there are more problems than answers. Finally, time permitting, I'll indicate how some of this goes over to real and to quaternionic bounded symmetric domains.


A fixed point theorem on noncompact manifolds 12:10 Fri 12 Feb, 2016 :: Ingkarni Wardli B21 :: Peter Hochs :: University of Adelaide / Radboud University
Media...For an elliptic operator on a compact manifold acted on by a compact Lie group, the AtiyahSegalSinger fixed point formula expresses its equivariant index in terms of data on fixed point sets of group elements. This can for example be used to prove Weylâs character formula. We extend the definition of the equivariant index to noncompact manifolds, and prove a generalisation of the AtiyahSegalSinger formula, for group elements with compact fixed point sets. In one example, this leads to a relation with characters of discrete series representations of semisimple Lie groups. (This is joint work with Hang Wang.) 

Chaos in dimensions 2 and 3 15:10 Fri 18 Mar, 2016 :: Engineering South S112 :: Dr Andy Hammerlindl :: Monash University
Media...I will talk about known models of chaotic dynamical systems in dimensions two and three, and results which classify the types of chaotic dynamics that are robust under perturbation. I will also talk about my own work towards understanding chaotic dynamics for discretetime systems in dimension three.
This is joint work with C. Bonatti, A. Gogolev, and R. Potrie. 

Behavioural Microsimulation Approach to Social Policy and Behavioural Economics 15:10 Fri 20 May, 2016 :: S112 Engineering South :: Dr Drew Mellor :: Ernst & Young
SIMULAIT is a general purpose, behavioural microsimulation system designed to predict behavioural trends in human populations. This type of predictive capability grew out of original research initially conducted in conjunction with the Defence Science and Technology Group (DSTO) in South Australia, and has been fully commercialised and is in current use by a global customer base. To our customers, the principal value of the system lies in its ability to predict likely outcomes to scenarios that challenge conventional approaches based on extrapolation or generalisation. These types of scenarios include: the impact of disruptive technologies, such as the impact of widespread adoption of autonomous vehicles for transportation or batteries for household energy storage; and the impact of effecting policy elements or interventions, such as the impact of imposing water usage restrictions.
SIMULAIT employs a multidisciplinary methodology, drawing from agentbased modelling, behavioural science and psychology, microeconomics, artificial intelligence, simulation, game theory, engineering, mathematics and statistics. In this seminar, we start with a highlevel view of the system followed by a look under the hood to see how the various elements come together to answer questions about behavioural trends. The talk will conclude with a case study of a recent application of SIMULAIT to a significant policy problem  how to address the deficiency of STEM skilled teachers in the Victorian teaching workforce. 

Hilbert schemes of points of some surfaces and quiver representations 12:10 Fri 23 Sep, 2016 :: Ingkarni Wardli B17 :: Ugo Bruzzo :: International School for Advanced Studies, Trieste
Media...Hilbert schemes of points on the total spaces of the line bundles
O(n) on P1 (desingularizations of toric singularities of type (1/n)(1,1)) can be given
an ADHM description, and as a result, they can be realized as varieties
of quiver representations.


Character Formula for Discrete Series 12:10 Fri 14 Oct, 2016 :: Ingkarni Wardli B18 :: Hang Wang :: University of Adelaide
Media...Weyl character formula describes characters of irreducible representations of compact Lie groups. This formula can be obtained using geometric method, for example, from the AtiyahBott fixed point theorem or the AtiyahSegalSinger index theorem. HarishChandra character formula, the noncompact analogue of the Weyl character formula, can also be studied from the point of view of index theory. We apply orbital integrals on Ktheory of HarishChandra Schwartz algebra of a semisimple Lie group G, and then use geometric method to deduce HarishChandra character formulas for discrete series representations of G. This is work in progress with Peter Hochs.


Fast approximate inference for arbitrarily large statistical models via message passing 15:10 Fri 17 Mar, 2017 :: Engineering South S111 :: Prof Matt Wand :: University of Technology Sydney
We explain how the notion of message passing can be used
to streamline the algebra and computer coding for fast
approximate inference in large Bayesian statistical models.
In particular, this approach is amenable to handling
arbitrarily large models of particular types
once a set of primitive operations is established.
The approach is founded upon a message passing formulation
of mean field variational Bayes that utilizes
factor graph representations of statistical
models. The notion of factor graph fragments is introduced
and is shown to facilitate compartmentalization of the
required algebra and coding. 

Ktypes of tempered representations 12:10 Fri 7 Apr, 2017 :: Napier 209 :: Peter Hochs :: University of Adelaide
Media...Tempered representations of a reductive Lie group G are the irreducible unitary representations one needs in the Plancherel decomposition of L^2(G). They are relevant to harmonic analysis because of this, and also occur in the Langlands classification of the larger class of admissible representations. If K in G is a maximal compact subgroup, then there is a considerable amount of information in the restriction of a tempered representation to K. In joint work with Yanli Song and Shilin Yu, we give a geometric expression for the decomposition of such a restriction into irreducibles. The multiplicities of these irreducibles are expressed as indices of Dirac operators on reduced spaces of a coadjoint orbit of G corresponding to the representation. These reduced spaces are Spinc analogues of reduced spaces in symplectic geometry, defined in terms of moment maps that represent conserved quantities. This result involves a Spinc version of the quantisation commutes with reduction principle for noncompact manifolds. For discrete series representations, this was done by Paradan in 2003. 

Springer correspondence for symmetric spaces 12:10 Fri 17 Nov, 2017 :: Engineering Sth S111 :: Ting Xue :: University of Melbourne
Media...The Springer theory for reductive algebraic groups plays an important role in representation theory. It relates nilpotent orbits in the Lie algebra to irreducible representations of the Weyl group. We develop a Springer theory in the case of symmetric spaces using Fourier transform, which relates nilpotent orbits in this setting to irreducible representations of Hecke algebras of various Coxeter groups with specified parameters. This in turn gives rise to character sheaves on symmetric spaces, which we describe explicitly in the case of classical symmetric spaces. A key ingredient in the construction is the nearby cycle sheaves associated to the adjoint quotient map. The talk is based on joint work with Kari Vilonen and partly based on joint work with Misha Grinberg and Kari Vilonen. 

Cobordism maps on PFH induced by Lefschetz fibration over higher genus base 13:10 Fri 11 May, 2018 :: Barr Smith South Polygon Lecture theatre :: Guan Heng Chen :: University of Adelaide
In this talk, we will discuss the cobordism maps on periodic Floer homology(PFH) induced by Lefschetz fibration. Periodic Floer homology is a Gromov types invariant for three dimensional mapping torus and it is isomorphic to a version of Seiberg Witten Floer cohomology(SWF). Our result is to define the cobordism maps on PFH induced by certain types of Lefschetz fibration via using holomorphic curves method. Also, we show that the cobordism maps is equivalent to the cobordism maps on Seiberg Witten cohomology under the isomorphism PFH=SWF. 

Some advances in the formulation of analytical methods for linear and nonlinear dynamics 15:10 Tue 20 Nov, 2018 :: EMG07 :: Dr Vladislav Sorokin :: University of Auckland
In the modern engineering, it is often necessary to solve problems involving strong parametric excitation and (or) strong nonlinearity. Dynamics of micro and nanoscale electromechanical systems, wave propagation in structures made of corrugated composite materials are just examples of those. Numerical methods, although able to predict systems behavior for specific sets of parameters, fail to provide an insight into underlying physics. On the other hand, conventional analytical methods impose severe restrictions on the problem parameters space and (or) on types of the solutions.
Thus, the quest for advanced tools to deal with linear and nonlinear structural dynamics still continues, and the lecture is concerned with an advanced formulation of an analytical method. The principal novelty aspect is that the presence of a small parameter in governing equations is not requested, so that dynamic problems involving strong parametric excitation and (or) strong nonlinearity can be considered. Another advantage of the method is that it is free from conventional restrictions on the excitation frequency spectrum and applicable for problems involving combined multiple parametric and (or) direct excitations with incommensurate frequencies, essential for some applications.
A use of the method will be illustrated in several examples, including analysis of the effects of corrugation shapes on dispersion relation and frequency bandgaps of structures and dynamics of nonlinear parametric amplifiers. 
Publications matching "Ktypes of tempered representations"Publications 

Representations via overdetermined systems Eastwood, Michael, Contemporary Mathematics 368 (201–210) 2005  The unified treatment of some inequalities of Ostrowski and Simpson types Culjak, V; Pearce, Charles; Pecaric, Josip, Soochow Journal of Mathematics 26 (377–390) 2000 
Advanced search options
You may be able to improve your search results by using the following syntax:
Query  Matches the following 

Asymptotic Equation  Anything with "Asymptotic" or "Equation". 
+Asymptotic +Equation  Anything with "Asymptotic" and "Equation". 
+Stokes "NavierStokes"  Anything containing "Stokes" but not "NavierStokes". 
Dynam*  Anything containing "Dynamic", "Dynamical", "Dynamicist" etc. 
