The University of Adelaide
You are here
Text size: S | M | L
Printer Friendly Version
August 2019
MTWTFSS
   1234
567891011
12131415161718
19202122232425
262728293031 
       

Search the School of Mathematical Sciences

Find in People Courses Events News Publications

Events matching "How the leopard got his spots"

How the leopard got his spots
14:10 Mon 14 Oct, 2013 :: 7.15 Ingkarni Wardli :: Dr Ed Green :: School of Mathematical Sciences

Media...
Patterns are everywhere in nature, whether they be the spots and stripes on animals' coats, or the intricate arrangement of different cell types in a tissue. But how do these patterns arise? Whilst every cell contains a plan of the organism in its genes, the cells need to organise themselves so that each knows what it should do to achieve this plan. Mathematics can help biologists explore how different types of signals might be used to control the patterning process. In this talk, I will introduce two simple mathematical theories of biological pattern formation: Turing patterns where, surprisingly, the essential ingredient for producing the pattern is diffusion, which usually tends to make things more uniform; and the Keller-Segel model, which provides a simple mechanism for the formation of multicellular structures from isolated single cells. These mathematical models can be used to explain how tissues develop, and why there are many spotted animals with a stripy tail, but no stripy animals with a spotted tail.

Advanced search options

You may be able to improve your search results by using the following syntax:

QueryMatches the following
Asymptotic EquationAnything with "Asymptotic" or "Equation".
+Asymptotic +EquationAnything with "Asymptotic" and "Equation".
+Stokes -"Navier-Stokes"Anything containing "Stokes" but not "Navier-Stokes".
Dynam*Anything containing "Dynamic", "Dynamical", "Dynamicist" etc.