The University of Adelaide
You are here
Text size: S | M | L
Printer Friendly Version
December 2018

Search the School of Mathematical Sciences

Find in People Courses Events News Publications

Events matching "End-periodic K-homology and spin bordism"

Stability of time-periodic flows
15:10 Fri 10 Mar, 2006 :: G08 Mathematics Building University of Adelaide :: Prof. Andrew Bassom, School of Mathematics and Statistics, University of Western Australia

Time-periodic shear layers occur naturally in a wide range of applications from engineering to physiology. Transition to turbulence in such flows is of practical interest and there have been several papers dealing with the stability of flows composed of a steady component plus an oscillatory part with zero mean. In such flows a possible instability mechanism is associated with the mean component so that the stability of the flow can be examined using some sort of perturbation-type analysis. This strategy fails when the mean part of the flow is small compared with the oscillatory component which, of course, includes the case when the mean part is precisely zero.

This difficulty with analytical studies has meant that the stability of purely oscillatory flows has relied on various numerical methods. Until very recently such techniques have only ever predicted that the flow is stable, even though experiments suggest that they do become unstable at high enough speeds. In this talk I shall expand on this discrepancy with emphasis on the particular case of the so-called flat Stokes layer. This flow, which is generated in a deep layer of incompressible fluid lying above a flat plate which is oscillated in its own plane, represents one of the few exact solutions of the Navier-Stokes equations. We show theoretically that the flow does become unstable to waves which propagate relative to the basic motion although the theory predicts that this occurs much later than has been found in experiments. Reasons for this discrepancy are examined by reference to calculations for oscillatory flows in pipes and channels. Finally, we propose some new experiments that might reduce this disagreement between the theoretical predictions of instability and practical realisations of breakdown in oscillatory flows.
Spin-up in a torus
16:00 Thu 3 Sep, 2009 :: School Board Room :: Dr Richard Hewitt :: University of Manchester

The Jeffery–Hamel similarity solution and its relation to flow in a diverging channel
15:10 Fri 19 Mar, 2010 :: Santos Lecture Theatre :: Dr Phil Haines :: University of Adelaide

Jeffery–Hamel flows describe the steady two-dimensional flow of an incompressible viscous fluid between plane walls separated by an angle $\alpha$. They are often used to approximate the flow in domains of finite radial extent. However, whilst the base Jeffery–Hamel solution is characterised by a subcritical pitchfork bifurcation, studies in expanding channels of finite length typically find symmetry breaking via a supercritical bifurcation.

We use the finite element method to calculate solutions for flow in a two-dimensional wedge of finite length bounded by arcs of constant radii, $R_1$ and $R_2$. We present a comprehensive picture of the bifurcation structure and nonlinear states for a net radial outflow of fluid. We find a series of nested neutral curves in the Reynolds number-$\alpha$ plane corresponding to pitchfork bifurcations that break the midplane symmetry of the flow. We show that these finite domain bifurcations remain distinct from the similarity solution bifurcation even in the limit $R_2/R_1 \rightarrow \infty$.

We also discuss a class of stable steady solutions apparently related to a steady, spatially periodic, wave first observed by Tutty (1996). These solutions remain disconnected in our domain in the sense that they do not arise via a local bifurcation of the Stokes flow solution as the Reynolds number is increased.

Knots, posets and sheaves
13:10 Fri 20 May, 2011 :: Mawson 208 :: Dr Brent Everitt :: University of York

The Euler characteristic is a nice simple integer invariant that one can attach to a space. Unfortunately, it is not natural: maps between spaces do not induce maps between their Euler characteristics, because it makes no sense to talk of a map between integers. This shortcoming is fixed by homology. Maps between spaces induce maps between their homologies, with the Euler characteristic encoded inside the homology. Recently it has become possible to play the same game with knots and the Jones polynomial: the Khovanov homology of a knot both encodes the Jones polynomial and is a natural invariant of the knot. After saying what all this means, this talk will observe that Khovanov homology is just a special case of sheaf homology on a poset, and we will explore some of the ramifications of this observation. This is joint work with Paul Turner (Geneva/Fribourg).
The (dual) local cyclic homology valued Chern-Connes character for some infinite dimensional spaces
13:10 Fri 29 Jul, 2011 :: B.19 Ingkarni Wardli :: Dr Snigdhayan Mahanta :: School of Mathematical Sciences

I will explain how to construct a bivariant Chern-Connes character on the category of sigma-C*-algebras taking values in Puschnigg's local cyclic homology. Roughly, setting the first (resp. the second) variable to complex numbers one obtains the K-theoretic (resp. dual K-homological) Chern-Connes character in one variable. We shall focus on the dual K-homological Chern-Connes character and investigate it in the example of SU(infty).
Cohomology of higher-rank graphs and twisted C*-algebras
13:10 Fri 16 Sep, 2011 :: B.19 Ingkarni Wardli :: Dr Aidan Sims :: University of Wollongong

Higher-rank graphs and their $C^*$-algebras were introduced by Kumjian and Pask in 2000. They have provided a rich source of tractable examples of $C^*$-algebras, the most elementary of which are the commutative algebras $C(\mathbb{T}^k)$ of continuous functions on $k$-tori. In this talk we shall describe how to define the homology and cohomology of a higher-rank graph, and how to associate to each higher-rank graph $\Lambda$ and $\mathbb{T}$-valued cocycle on $\Lambda$ a twisted higher-rank graph $C^*$-algebra. As elementary examples, we obtain all noncommutative tori. This is a preleminary report on ongoing joint work with Alex Kumjian and David Pask.
The Lorentzian conformal analogue of Calabi-Yau manifolds
13:10 Fri 16 Mar, 2012 :: B.20 Ingkarni Wardli :: Prof Helga Baum :: Humboldt University

Calabi-Yau manifolds are Riemannian manifolds with holonomy group SU(m). They are Ricci-flat and Kahler and admit a 2-parameter family of parallel spinors. In the talk we will discuss the Lorentzian conformal analogue of this situation. If on a manifold a class of conformally equivalent metrics [g] is given, then one can consider the holonomy group of the conformal manifold (M,[g]), which is a subgroup of O(p+1,q+1) if the metric g has signature (p,q). There is a close relation between algebraic properties of the conformal holonomy group and the existence of Einstein metrics in the conformal class as well as to the existence of conformal Killing spinors. In the talk I will explain classification results for conformal holonomy groups of Lorentzian manifolds. In particular, I will describe Lorentzian manifolds (M,g) with conformal holonomy group SU(1,m), which can be viewed as the conformal analogue of Calabi-Yau manifolds. Such Lorentzian metrics g, known as Fefferman metrics, appear on S^1-bundles over strictly pseudoconvex CR spin manifolds and admit a 2-parameter family of conformal Killing spinors.
Geometric modular representation theory
13:10 Fri 1 Jun, 2012 :: Napier LG28 :: Dr Anthony Henderson :: University of Sydney

Representation theory is one of the oldest areas of algebra, but many basic questions in it are still unanswered. This is especially true in the modular case, where one considers vector spaces over a field F of positive characteristic; typically, complications arise for particular small values of the characteristic. For example, from a vector space V one can construct the symmetric square S^2(V), which is one easy example of a representation of the group GL(V). One would like to say that this representation is irreducible, but that statement is not always true: if F has characteristic 2, there is a nontrivial invariant subspace. Even for GL(V), we do not know the dimensions of all irreducible representations in all characteristics. In this talk, I will introduce some of the main ideas of geometric modular representation theory, a more recent approach which is making progress on some of these old problems. Essentially, the strategy is to re-formulate everything in terms of homology of various topological spaces, where F appears only as the field of coefficients and the spaces themselves are independent of F; thus, the modular anomalies in representation theory arise because homology with modular coefficients is detecting something about the topology that rational coefficients do not. In practice, the spaces are usually varieties over the complex numbers, and homology is replaced by intersection cohomology to take into account the singularities of these varieties.
Noncommutative geometry and conformal geometry
13:10 Fri 24 Aug, 2012 :: Engineering North 218 :: Dr Hang Wang :: Tsinghua University

In this talk, we shall use noncommutative geometry to obtain an index theorem in conformal geometry. This index theorem follows from an explicit and geometric computation of the Connes-Chern character of the spectral triple in conformal geometry, which was introduced recently by Connes and Moscovici. This (twisted) spectral triple encodes the geometry of the group of conformal diffeomorphisms on a spin manifold. The crux of of this construction is the conformal invariance of the Dirac operator. As a result, the Connes-Chern character is intimately related to the CM cocycle of an equivariant Dirac spectral triple. We compute this equivariant CM cocycle by heat kernel techniques. On the way we obtain a new heat kernel proof of the equivariant index theorem for Dirac operators. (Joint work with Raphael Ponge.)
A multiscale approach to reaction-diffusion processes in domains with microstructure
15:10 Fri 15 Mar, 2013 :: B.18 Ingkarni Wardli :: Prof Malte Peter :: University of Augsburg

Reaction-diffusion processes occur in many materials with microstructure such as biological cells, steel or concrete. The main difficulty in modelling and simulating accurately such processes is to account for the fine microstructure of the material. One method of upscaling multi-scale problems, which has proven reliable for obtaining feasible macroscopic models, is the method of periodic homogenisation. The talk will give an introduction to multi-scale modelling of chemical mechanisms in domains with microstructure as well as to the method of periodic homogenisation. Moreover, a few aspects of solving the resulting systems of equations numerically will also be discussed.
Gauge groupoid cocycles and Cheeger-Simons differential characters
13:10 Fri 5 Apr, 2013 :: Ingkarni Wardli B20 :: Prof Jouko Mickelsson :: Royal Institute of Technology, Stockholm

Groups of gauge transformations in quantum field theory are typically extended by a 2-cocycle with values in a certain abelian group due to chiral symmetry breaking. For these extensions there exist a global explicit construction since the 1980's. I shall study the higher group cocycles following a recent paper by F. Wagemann and C. Wockel, but extending to the transformation groupoid setting (motivated by QFT) and discussing potential obstructions in the construction due to a nonvanishing of low dimensional homology groups of the gauge group. The resolution of the obstruction is obtained by an application of the Cheeger-Simons differential characters.
The boundary conditions for macroscale modelling of a discrete diffusion system with periodic diffusivity
12:10 Mon 29 Apr, 2013 :: B.19 Ingkarni Wardli :: Chen Chen :: University of Adelaide

Many mathematical and engineering problems have a multiscale nature. There are a vast of theories supporting multiscale modelling on infinite domain, such as homogenization theory and centre manifold theory. To date, there are little consideration of the correct boundary conditions to be used at the edge of macroscale model. In this seminar, I will present how to derive macroscale boundary conditions for the diffusion system.
K-homology and the quantization commutes with reduction problem
12:10 Fri 5 Jul, 2013 :: 7.15 Ingkarni Wardli :: Prof Nigel Higson :: Pennsylvania State University

The quantization commutes with reduction problem for Hamiltonian actions of compact Lie groups was solved by Meinrenken in the mid-1990s using geometric techniques, and solved again shortly afterwards by Tian and Zhang using analytic methods. In this talk I shall outline some of the close links that exist between the problem, the two solutions, and the geometric and analytic versions of K-homology theory that are studied in noncommutative geometry. I shall try to make the case for K-homology as a useful conceptual framework for the solutions and (at least some of) their various generalizations.
A generalised Kac-Peterson cocycle
11:10 Thu 17 Apr, 2014 :: Ingkarni Wardli B20 :: Pedram Hekmati :: University of Adelaide

The Kac-Peterson cocycle appears in the study of highest weight modules of infinite dimensional Lie algebras and determines a central extension. The vanishing of its cohomology class is tied to the existence of a cubic Dirac operator whose square is a quadratic Casimir element. I will introduce a closely related Lie algebra cocycle that comes about when constructing spin representations and gives rise to a Banach Lie group with a highly nontrivial topology. I will also explain how to make sense of the cubic Dirac operator in this setting and discuss its relation to twisted K-theory. This is joint work with Jouko Mickelsson.
Factorisations of Distributive Laws
12:10 Fri 19 Dec, 2014 :: Ingkarni Wardli B20 :: Paul Slevin :: University of Glasgow

Recently, distributive laws have been used by Boehm and Stefan to construct new examples of duplicial (paracyclic) objects, and hence cyclic homology theories. The paradigmatic example of such a theory is the cyclic homology HC(A) of an associative algebra A. It was observed by Kustermans, Murphy, and Tuset that the functor HC can be twisted by automorphisms of A. It turns out that this twisting procedure can be applied to any duplicial object defined by a distributive law. I will begin by defining duplicial objects and cyclic homology, as well as discussing some categorical concepts, then describe the construction of Boehm and Stefan. I will then define the category of factorisations of a distributive law and explain how this acts on their construction, and give some examples, making explicit how the action of this category generalises the twisting of an associative algebra.
The twistor equation on Lorentzian Spin^c manifolds
12:10 Fri 15 May, 2015 :: Napier 144 :: Andree Lischewski :: University of Adelaide

In this talk I consider a conformally covariant spinor field equation, called the twistor equation, which can be formulated on any Lorentzian Spin^c manifold. Its solutions have become of importance in the study of supersymmetric field theories in recent years and were named "charged conformal Killing spinors". After a short review of conformal Spin^c geometry in Lorentzian signature, I will briefly discuss the emergence of charged conformal Killing spinors in supergravity. I will then focus on special geometric structures related to the twistor equation and use charged conformal Killing spinors in order to establish a link between conformal and CR geometry.
Quantising proper actions on Spin-c manifolds
11:00 Fri 31 Jul, 2015 :: Ingkarni Wardli Level 7 Room 7.15 :: Peter Hochs :: The University of Adelaide

For a proper action by a Lie group on a Spin-c manifold (both of which may be noncompact), we study an index of deformations of the Spin-c Dirac operator, acting on the space of spinors invariant under the group action. When applied to spinors that are square integrable transversally to orbits in a suitable sense, the kernel of this operator turns out to be finite-dimensional, under certain hypotheses of the deformation. This also allows one to show that the index has the quantisation commutes with reduction property (as proved by Meinrenken in the compact symplectic case, and by Paradan-Vergne in the compact Spin-c case), for sufficiently large powers of the determinant line bundle. Furthermore, this result extends to Spin-c Dirac operators twisted by vector bundles. A key ingredient of the arguments is the use of a family of inner products on the Lie algebra, depending on a point in the manifold. This is joint work with Mathai Varghese.
Counting periodic points of plane Cremona maps
12:10 Fri 1 Apr, 2016 :: Eng & Maths EM205 :: Tuyen Truong :: University of Adelaide

In this talk, I will present recent results, join with Tien-Cuong Dinh and Viet-Anh Nguyen, on counting periodic points of plane Cremona maps (i.e. birational maps of P^2). The tools used include a Lefschetz fixed point formula of Saito, Iwasaki and Uehara for birational maps of surface whose fixed point set may contain curves; a bound on the arithmetic genus of curves of periodic points by Diller, Jackson and Sommerse; a result by Diller, Dujardin and Guedj on invariant (1,1) currents of meromorphic maps of compact Kahler surfaces; and a theory developed recently by Dinh and Sibony for non proper intersections of varieties. Among new results in the paper, we give a complete characterisation of when two positive closed (1,1) currents on a compact Kahler surface behave nicely in the view of Dinh and Sibony’s theory, even if their wedge intersection may not be well-defined with respect to the classical pluripotential theory. Time allows, I will present some generalisations to meromorphic maps (including an upper bound for the number of isolated periodic points which is sometimes overlooked in the literature) and open questions.
On the Strong Novikov Conjecture for Locally Compact Groups in Low Degree Cohomology Classes
12:10 Fri 3 Jun, 2016 :: Eng & Maths EM205 :: Yoshiyasu Fukumoto :: Kyoto University

The main result I will discuss is non-vanishing of the image of the index map from the G-equivariant K-homology of a G-manifold X to the K-theory of the C*-algebra of the group G. The action of G on X is assumed to be proper and cocompact. Under the assumption that the Kronecker pairing of a K-homology class with a low-dimensional cohomology class is non-zero, we prove that the image of this class under the index map is non-zero. Neither discreteness of the locally compact group G nor freeness of the action of G on X are required. The case of free actions of discrete groups was considered earlier by B. Hanke and T. Schick.
Some results on the stability of flat Stokes layers
15:10 Fri 14 Oct, 2016 :: Ingkarni Wardli 5.57 :: Professor Andrew Bassom :: University of Tasmania

The flat Stokes layer is one of the relatively few exact solutions of the incompressible Navier-Stokes equations. For that reason the temporal stability of the layer has attracted considerable interest over the years. Fortunately, not only is the issue one solely of academic curiosity, but some kind of Stokes layer is likely to be set up at the boundaries of any physical time-periodic flow making its stability of practical interest as well. In this talk I shall review progress made in the understanding of the linear stability properties of the flow. In particular I will discuss the fact that theoretical predictions of critical conditions are wildly different from those observed in the laboratory.
Segregation of particles in incompressible flows due to streamline topology and particle-boundary interaction
15:10 Fri 2 Dec, 2016 :: Ingkarni Wardli 5.57 :: Professor Hendrik C. Kuhlmann :: Institute of Fluid Mechanics and Heat Transfer, TU Wien, Vienna, Austria

The incompressible flow in a number of classical benchmark problems (e.g. lid-driven cavity, liquid bridge) undergoes an instability from a two-dimensional steady to a periodic three-dimensional flow, which is steady or in form of a traveling wave, if the Reynolds number is increased. In the supercritical regime chaotic as well as regular (quasi-periodic) streamlines can coexist for a range of Reynolds numbers. The spatial structures of the regular regions in three-dimensional Navier-Stokes flows has received relatively little attention, partly because of the high numerical effort required for resolving these structures. Particles whose density does not differ much from that of the liquid approximately follow the chaotic or regular streamlines in the bulk. Near the boundaries, however, their trajectories strongly deviate from the streamlines, in particular if the boundary (wall or free surface) is moving tangentially. As a result of this particle-boundary interaction particles can rapidly segregate and be attracted to periodic or quasi-periodic orbits, yielding particle accumulation structures (PAS). The mechanism of PAS will be explained and results from experiments and numerical modelling will be presented to demonstrate the generic character of the phenomenon.
Diffeomorphisms of discs, harmonic spinors and positive scalar curvature
11:10 Fri 17 Mar, 2017 :: Engineering Nth N218 :: Diarmuid Crowley :: University of Melbourne

Let Diff(D^k) be the space of diffeomorphisms of the k-disc fixing the boundary point wise. In this talk I will show for k > 5, that the homotopy groups \pi_*Diff(D^k) have non-zero 8-periodic 2-torsion detected in real K-theory. I will then discuss applications for spin manifolds M of dimension 6 or greater: 1) Our results input to arguments of Hitchin which now show that M admits a metric with a harmonic spinor. 2) If non-empty, space of positive scalar curvature metrics on M has non-zero 8-periodic 2-torsion in its homotopy groups which is detected in real K-theory. This is part of joint work with Thomas Schick and Wolfgang Steimle.
K-types of tempered representations
12:10 Fri 7 Apr, 2017 :: Napier 209 :: Peter Hochs :: University of Adelaide

Tempered representations of a reductive Lie group G are the irreducible unitary representations one needs in the Plancherel decomposition of L^2(G). They are relevant to harmonic analysis because of this, and also occur in the Langlands classification of the larger class of admissible representations. If K in G is a maximal compact subgroup, then there is a considerable amount of information in the restriction of a tempered representation to K. In joint work with Yanli Song and Shilin Yu, we give a geometric expression for the decomposition of such a restriction into irreducibles. The multiplicities of these irreducibles are expressed as indices of Dirac operators on reduced spaces of a coadjoint orbit of G corresponding to the representation. These reduced spaces are Spin-c analogues of reduced spaces in symplectic geometry, defined in terms of moment maps that represent conserved quantities. This result involves a Spin-c version of the quantisation commutes with reduction principle for noncompact manifolds. For discrete series representations, this was done by Paradan in 2003.
Constructing differential string structures
14:10 Wed 7 Jun, 2017 :: EM213 :: David Roberts :: University of Adelaide

String structures on a manifold are analogous to spin structures, except instead of lifting the structure group through the extension Spin(n)\to SO(n) of Lie groups, we need to lift through the extension String(n)\to Spin(n) of Lie *2-groups*. Such a thing exists if the first fractional Pontryagin class (1/2)p_1 vanishes in cohomology. A differential string structure also lifts connection data, but this is rather complicated, involving a number of locally defined differential forms satisfying cocycle-like conditions. This is an expansion of the geometric string structures of Stolz and Redden, which is, for a given connection A, merely a 3-form R on the frame bundle such that dR = tr(F^2) for F the curvature of A; in other words a trivialisation of the de Rham class of (1/2)p_1. I will present work in progress on a framework (and specific results) that allows explicit calculation of the differential string structure for a large class of homogeneous spaces, which also yields formulas for the Stolz-Redden form. I will comment on the application to verifying the refined Stolz conjecture for our particular class of homogeneous spaces. Joint work with Ray Vozzo.
Topology as a tool in algebra
15:10 Fri 8 Sep, 2017 :: Ingkarni Wardli B17 :: Dr Zsuzsanna Dancso :: University of Sydney

Topologists often use algebra in order to understand the shape of a space: invariants such as homology and cohomology are basic, and very successful, examples of this principle. Although topology is used as a tool in algebra less often, I will describe a recurring pattern on the border of knot theory and quantum algebra where this is possible. We will explore how the tangled topology of "flying circles in R^3" is deeply related to a famous problem in Lie theory: the Kashiwara-Vergne (KV) problem (first solved in 2006 by Alekseev-Meinrenken). I will explain how this relationship illuminates the intricate algebra of the KV problem.
End-periodic K-homology and spin bordism
12:10 Fri 20 Oct, 2017 :: Engineering Sth S111 :: Michael Hallam :: University of Adelaide

This talk introduces new "end-periodic" variants of geometric K-homology and spin bordism theories that are tailored to a recent index theorem for even-dimensional manifolds with periodic ends. This index theorem, due to Mrowka, Ruberman and Saveliev, is a generalisation of the Atiyah-Patodi-Singer index theorem for manifolds with odd-dimensional boundary. As in the APS index theorem, there is an (end-periodic) eta invariant that appears as a correction term for the periodic end. Invariance properties of the standard relative eta invariants are elegantly expressed using K-homology and spin bordism, and this continues to hold in the end-periodic case. In fact, there are natural isomorphisms between the standard K-homology/bordism theories and their end-periodic versions, and moreover these isomorphisms preserve relative eta invariants. The study is motivated by results on positive scalar curvature, namely obstructions and distinct path components of the moduli space of PSC metrics. Our isomorphisms provide a systematic method for transferring certain results on PSC from the odd-dimensional case to the even-dimensional case. This work is joint with Mathai Varghese.
A multiscale approximation of a Cahn-Larche system with phase separation on the microscale
15:10 Thu 22 Feb, 2018 :: Ingkarni Wardli 5.57 :: Ms Lisa Reischmann :: University of Augsberg

We consider the process of phase separation of a binary system under the influence of mechanical deformation and we derive a mathematical multiscale model, which describes the evolving microstructure taking into account the elastic properties of the involved materials. Motivated by phase-separation processes observed in lipid monolayers in film-balance experiments, the starting point of the model is the Cahn-Hilliard equation coupled with the equations of linear elasticity, the so-called Cahn-Larche system. Owing to the fact that the mechanical deformation takes place on a macrosopic scale whereas the phase separation happens on a microscopic level, a multiscale approach is imperative. We assume the pattern of the evolving microstructure to have an intrinsic length scale associated with it, which, after nondimensionalisation, leads to a scaled model involving a small parameter epsilon>0, which is suitable for periodic-homogenisation techniques. For the full nonlinear problem the so-called homogenised problem is then obtained by letting epsilon tend to zero using the method of asymptotic expansion. Furthermore, we present a linearised Cahn-Larche system and use the method of two-scale convergence to obtain the associated limit problem, which turns out to have the same structure as in the nonlinear case, in a mathematically rigorous way. Properties of the limit model will be discussed.
Complexity of 3-Manifolds
15:10 Fri 23 Mar, 2018 :: Horace Lamb 1022 :: A/Prof Stephan Tillmann :: University of Sydney

In this talk, I will give a general introduction to complexity of 3-manifolds and explain the connections between combinatorics, algebra, geometry, and topology that arise in its study. The complexity of a 3-manifold is the minimum number of tetrahedra in a triangulation of the manifold. It was defined and first studied by Matveev in 1990. The complexity is generally difficult to compute, and various upper and lower bounds have been derived during the last decades using fundamental group, homology or hyperbolic volume. Effective bounds have only been found in joint work with Jaco, Rubinstein and, more recently, Spreer. Our bounds not only allowed us to determine the first infinite classes of minimal triangulations of closed 3-manifolds, but they also lead to a structure theory of minimal triangulations of 3-manifolds.
Index of Equivariant Callias-Type Operators
13:10 Fri 27 Apr, 2018 :: Barr Smith South Polygon Lecture theatre :: Hao Guo :: University of Adelaide

Suppose M is a smooth Riemannian manifold on which a Lie group G acts properly and isometrically. In this talk I will explore properties of a particular class of G-invariant operators on M, called G-Callias-type operators. These are Dirac operators that have been given an additional Z_2-grading and a perturbation so as to be "invertible outside of a cocompact set in M". It turns out that G-Callias-type operators are equivariantly Fredholm and so have an index in the K-theory of the maximal group C*-algebra of G. This index can be expressed as a KK-product of a class in K-homology and a class in the K-theory of the Higson G-corona. In fact, one can show that the K-theory of the Higson G-corona is highly non-trivial, and thus the index theory of G-Callias-type operators is not obviously trivial. As an application of the index theory of G-Callias-type operators, I will mention an obstruction to the existence of G-invariant metrics of positive scalar curvature on M.
Knot homologies
15:10 Fri 4 May, 2018 :: Horace Lamb 1022 :: Dr Anthony Licata :: Australian National University

The last twenty years have seen a lot of interaction between low-dimensional topology and representation theory. One facet of this interaction concerns "knot homologies," which are homological invariants of knots; the most famous of these, Khovanov homology, comes from the higher representation theory of sl_2. The goal of this talk will be to give a gentle introduction to this subject to non-experts by telling you a bit about Khovanov homology.
Cobordism maps on PFH induced by Lefschetz fibration over higher genus base
13:10 Fri 11 May, 2018 :: Barr Smith South Polygon Lecture theatre :: Guan Heng Chen :: University of Adelaide

In this talk, we will discuss the cobordism maps on periodic Floer homology(PFH) induced by Lefschetz fibration. Periodic Floer homology is a Gromov types invariant for three dimensional mapping torus and it is isomorphic to a version of Seiberg Witten Floer cohomology(SWF). Our result is to define the cobordism maps on PFH induced by certain types of Lefschetz fibration via using holomorphic curves method. Also, we show that the cobordism maps is equivalent to the cobordism maps on Seiberg Witten cohomology under the isomorphism PFH=SWF.
Geometry and Topology of Crystals
11:10 Fri 31 Aug, 2018 :: Barr Smith South Polygon Lecture theatre :: Vanessa Robins :: Australian National University

This talk will cover some highlights of the mathematical description of crystal structure from the platonic polyhedra of ancient Greece to the current picture of crystallographic groups as orbifolds. Modern materials synthesis raises fascinating questions about the enumeration and classification of periodic interwoven or entangled frameworks, that might be addressed by techniques from 3-manifold topology and knot theory.
Topological Data Analysis
15:10 Fri 31 Aug, 2018 :: Napier 208 :: Dr Vanessa Robins :: Australian National University

Topological Data Analysis has grown out of work focussed on deriving qualitative and yet quantifiable information about the shape of data. The underlying assumption is that knowledge of shape - the way the data are distributed - permits high-level reasoning and modelling of the processes that created this data. The 0-th order aspect of shape is the number pieces: "connected components" to a topologist; "clustering" to a statistician. Higher-order topological aspects of shape are holes, quantified as "non-bounding cycles" in homology theory. These signal the existence of some type of constraint on the data-generating process. Homology lends itself naturally to computer implementation, but its naive application is not robust to noise. This inspired the development of persistent homology: an algebraic topological tool that measures changes in the topology of a growing sequence of spaces (a filtration). Persistent homology provides invariants called the barcodes or persistence diagrams that are sets of intervals recording the birth and death parameter values of each homology class in the filtration. It captures information about the shape of data over a range of length scales, and enables the identification of "noisy" topological structure. Statistical analysis of persistent homology has been challenging because the raw information (the persistence diagrams) are provided as sets of intervals rather than functions. Various approaches to converting persistence diagrams to functional forms have been developed recently, and have found application to data ranging from the distribution of galaxies, to porous materials, and cancer detection.

Publications matching "End-periodic K-homology and spin bordism"

Unsteady fronts in the spin-down of a fluid-filled torus
del Pino, C; Hewitt, R; Clarke, Richard; Mullin, T; Denier, James, Physics of Fluids 20 (124104-1–124104-5) 2008
A hypersingular boundary integral equation for a class of problems conderning infiltration from periodic channels
Clements, David; Lobo, Maria; Widana, N, Electronic Journal of Boundary Elements 5 (1–16) 2007
Entire cyclic homology of stable continuous trace algebras
Varghese, Mathai; Stevenson, Daniel, Bulletin of the London Mathematical Society 39 (71–75) 2007
Quantum discontinuity for massive spin-3/2 with a L term
Duff, M; Liu, J; Sati, Hicham, Nuclear Physics B 680 (117–130) 2004
A boundary element method for steady infiltration from periodic channels
Azis, Mohammad; Clements, David; Lobo, Maria, The ANZIAM Journal 44 (C61–C68) 2003
Seiberg-Witten-Floer homology and Gluing formulae
Carey, Alan; Wang, Bai-Ling, Acta Mathematica Sinica, English Series 19 (245–296) 2003
Seiberg-Witten and Casson-Walker invariants for rational homology 3-spheres
Marcolli, M; Wang, Bai-Ling, Geometriae Dedicata 91 (45–58) 2002
Commutative geometries are spin manifolds
Rennie, Adam, Reviews in Mathematical Physics 13 (409–464) 2001
Equivariant Seiberg-Witten Floer homology
Marcolli, M; Wang, Bai-Ling, Communications in Analysis and Geometry 9 (451–639) 2001
Conformally invariant differential operators on spin bundles
Eastwood, Michael, chapter in Further advances in twistor theory. Vol. III, Curved twistor spaces (Chapman & Hall/CRC) 72–74, 2001

Advanced search options

You may be able to improve your search results by using the following syntax:

QueryMatches the following
Asymptotic EquationAnything with "Asymptotic" or "Equation".
+Asymptotic +EquationAnything with "Asymptotic" and "Equation".
+Stokes -"Navier-Stokes"Anything containing "Stokes" but not "Navier-Stokes".
Dynam*Anything containing "Dynamic", "Dynamical", "Dynamicist" etc.