The University of Adelaide
You are here
Text size: S | M | L
Printer Friendly Version
October 2018
MTWTFSS
1234567
891011121314
15161718192021
22232425262728
293031    
       

Search the School of Mathematical Sciences

Find in People Courses Events News Publications

Events matching "Conways Rational Tangle"

What is a p-adic number?
12:10 Mon 28 Feb, 2011 :: 5.57 Ingkarni Wardli :: Alexander Hanysz :: University of Adelaide

The p-adic numbers are: (a) something that visiting seminar speakers invoke when the want to frighten the audience; (b) a fascinating and useful concept in modern algebra; (c) alphabetically just before q-adic numbers? In this talk I hope to convince the audience that option (b) is worth considering. I will begin by reviewing how we get from integers via rational numbers to the real number system. Then we'll look at how this process can be "twisted" to produce something new.
Geometric modular representation theory
13:10 Fri 1 Jun, 2012 :: Napier LG28 :: Dr Anthony Henderson :: University of Sydney

Representation theory is one of the oldest areas of algebra, but many basic questions in it are still unanswered. This is especially true in the modular case, where one considers vector spaces over a field F of positive characteristic; typically, complications arise for particular small values of the characteristic. For example, from a vector space V one can construct the symmetric square S^2(V), which is one easy example of a representation of the group GL(V). One would like to say that this representation is irreducible, but that statement is not always true: if F has characteristic 2, there is a nontrivial invariant subspace. Even for GL(V), we do not know the dimensions of all irreducible representations in all characteristics. In this talk, I will introduce some of the main ideas of geometric modular representation theory, a more recent approach which is making progress on some of these old problems. Essentially, the strategy is to re-formulate everything in terms of homology of various topological spaces, where F appears only as the field of coefficients and the spaces themselves are independent of F; thus, the modular anomalies in representation theory arise because homology with modular coefficients is detecting something about the topology that rational coefficients do not. In practice, the spaces are usually varieties over the complex numbers, and homology is replaced by intersection cohomology to take into account the singularities of these varieties.
The motivic logarithm and its realisations
13:10 Fri 3 Aug, 2012 :: Engineering North 218 :: Dr James Borger :: Australian National University

When a complex manifold is defined by polynomial equations, its cohomology groups inherit extra structure. This was discovered by Hodge in the 1920s and 30s. When the defining polynomials have rational coefficients, there is some additional, arithmetic structure on the cohomology. This was discovered by Grothendieck and others in the 1960s. But here the situation is still quite mysterious because each cohomology group has infinitely many different arithmetic structures and while they are not directly comparable, they share many properties---with each other and with the Hodge structure. All written accounts of this that I'm aware of treat arbitrary varieties. They are beautifully abstract and non-explicit. In this talk, I'll take the opposite approach and try to give a flavour of the subject by working out a perhaps the simplest nontrivial example, the cohomology of C* relative to a subset of two points, in beautifully concrete and explicit detail. Here the common motif is the logarithm. In Hodge theory, it is realised as the complex logarithm; in the crystalline theory, it's as the p-adic logarithm; and in the etale theory, it's as Kummer theory. I'll assume you have some familiarity with usual, singular cohomology of topological spaces, but I won't assume that you know anything about these non-topological cohomology theories.
Geometry - algebraic to arithmetic to absolute
15:10 Fri 3 Aug, 2012 :: B.21 Ingkarni Wardli :: Dr James Borger :: Australian National University

Media...
Classical algebraic geometry is about studying solutions to systems of polynomial equations with complex coefficients. In arithmetic algebraic geometry, one digs deeper and studies the arithmetic properties of the solutions when the coefficients are rational, or even integral. From the usual point of view, it's impossible to go deeper than this for the simple reason that no smaller rings are available - the integers have no proper subrings. In this talk, I will explain how an emerging subject, lambda-algebraic geometry, allows one to do just this and why one might care.
Hodge numbers and cohomology of complex algebraic varieties
13:10 Fri 10 Aug, 2012 :: Engineering North 218 :: Prof Gus Lehrer :: University of Sydney

Let $X$ be a complex algebraic variety defined over the ring $\mathfrak{O}$ of integers in a number field $K$ and let $\Gamma$ be a group of $\mathfrak{O}$-automorphisms of $X$. I shall discuss how the counting of rational points over reductions mod $p$ of $X$, and an analysis of the Hodge structure of the cohomology of $X$, may be used to determine the cohomology as a $\Gamma$-module. This will include some joint work with Alex Dimca and with Mark Kisin, and some classical unsolved problems.
The space of cubic rational maps
13:10 Fri 26 Oct, 2012 :: Engineering North 218 :: Mr Alexander Hanysz :: University of Adelaide

For each natural number d, the space of rational maps of degree d on the Riemann sphere has the structure of a complex manifold. The topology of these manifolds has been extensively studied. The recent development of Oka theory raises some new and interesting questions about their complex structure. We apply geometric invariant theory to the degree 3 case, studying a double action of the Mobius group on the space of cubic rational maps. We show that the categorical quotient is C, and that the space of cubic rational maps enjoys the holomorphic flexibility properties of strong dominability and C-connectedness.
Etale ideas in topological and algebraic dynamical systems
12:10 Fri 5 Aug, 2016 :: Ingkarni Wardli B18 :: Tuyen Truong :: University of Adelaide

Media...
In etale topology, instead of considering open subsets of a space, we consider etale neighbourhoods lying over these open subsets. In this talk, I define an etale analog of dynamical systems: to understand a dynamical system f:(X,\Omega )->(X,\Omega ), we consider other dynamical systems lying over it. I then propose to use this to resolve the following two questions: Question 1: What should be the topological entropy of a dynamical system (f,X,\Omega ) when (X,\Omega ) is not a compact space? Question 2: What is the relation between topological entropy of a rational map or correspondence (over a field of arbitrary characteristic) to the pullback on cohomology groups and algebraic cycles?
Conway's Rational Tangle
12:10 Tue 15 Aug, 2017 :: Inkgarni Wardli 5.57 :: Dr Hang Wang :: School of Mathematical Sciences

Media...
Many researches in mathematics essentially feature some classification problems. In this context, invariants are created in order to associate algebraic quantities, such as numbers and groups, to elements of interested classes of geometric objects, such as surfaces. A key property of an invariant is that it does not change under ``allowable moves'' which can be specified in various geometric contexts. We demonstrate these lines of ideas by rational tangles, a notion in knot theory. A tangle is analogous to a link except that it has free ends. Conway's rational tangles are the simplest tangles that can be ``unwound'' under a finite sequence of two simple moves, and they arise as building blocks for knots. A numerical invariant will be introduced for Conway's rational tangles and it provides the only known example of a complete invariant in knot theory.

Publications matching "Conways Rational Tangle"

Publications
Monads and bundles on rational surfaces
Buchdahl, Nicholas, Rocky Mountain Journal of Mathematics 34 (513–540) 2004
Seiberg-Witten and Casson-Walker invariants for rational homology 3-spheres
Marcolli, M; Wang, Bai-Ling, Geometriae Dedicata 91 (45–58) 2002
Non-Schlesinger deformations of ordinary differential equations with rational coefficients
Kitaev, Alexandre, Journal of Physics A: Mathematical and Theoretical (Print Edition) 34 (2259–2272) 2001

Advanced search options

You may be able to improve your search results by using the following syntax:

QueryMatches the following
Asymptotic EquationAnything with "Asymptotic" or "Equation".
+Asymptotic +EquationAnything with "Asymptotic" and "Equation".
+Stokes -"Navier-Stokes"Anything containing "Stokes" but not "Navier-Stokes".
Dynam*Anything containing "Dynamic", "Dynamical", "Dynamicist" etc.