The University of Adelaide
You are here
Text size: S | M | L
Printer Friendly Version
August 2019
MTWTFSS
   1234
567891011
12131415161718
19202122232425
262728293031 
       

Search the School of Mathematical Sciences

Find in People Courses Events News Publications

People matching "Classification for high-dimensional data"

Associate Professor Gary Glonek
Associate Professor in Statistics


More about Gary Glonek...
Associate Professor Inge Koch
Associate Professor in Statistics


More about Inge Koch...
Professor Matthew Roughan
Professor of Applied Mathematics


More about Matthew Roughan...
Professor Patty Solomon
Professor of Statistical Bioinformatics


More about Patty Solomon...
Dr Simon Tuke
Lecturer in Statistics


More about Simon Tuke...

Courses matching "Classification for high-dimensional data"

Analysis of multivariable and high dimensional data

Multivariate analysis of data is performed with the aims to 1. understand the structure in data and summarise the data in simpler ways; 2. understand the relationship of one part of the data to another part; and 3. make decisions or draw inferences based on data. The statistical analyses of multivariate data extend those of univariate data, and in doing so require more advanced mathematical theory and computational techniques. The course begins with a discussion of the three classical methods Principal Component Analysis, Canonical Correlation Analysis and Discriminant Analysis which correspond to the aims above. We also learn about Cluster Analysis, Factor Analysis and newer methods including Independent Component Analysis. For most real data the underlying distribution is not known, but if the assumptions of multivariate normality of the data hold, extra properties can be derived. Our treatment combines ideas, theoretical properties and a strong computational component for each of the different methods we discuss. For the computational part -- with Matlab -- we make use of real data and learn the use of simulations in order to assess the performance of different methods in practice. Topics covered: 1. Introduction to multivariate data, the multivariate normal distribution 2. Principal Component Analysis, theory and practice 3. Canonical Correlation Analysis, theory and practice 4. Discriminant Analysis, Fisher's LDA, linear and quadratic DA 5. Cluster Analysis: hierarchical and k-means methods 6. Factor Analysis and latent variables 7. Independent Component Analysis including an Introduction to Information Theory The course will be based on my forthcoming monograph Analysis of Multivariate and High-Dimensional Data - Theory and Practice, to be published by Cambridge University Press.

More about this course...

Events matching "Classification for high-dimensional data"

Stability of time-periodic flows
15:10 Fri 10 Mar, 2006 :: G08 Mathematics Building University of Adelaide :: Prof. Andrew Bassom, School of Mathematics and Statistics, University of Western Australia

Time-periodic shear layers occur naturally in a wide range of applications from engineering to physiology. Transition to turbulence in such flows is of practical interest and there have been several papers dealing with the stability of flows composed of a steady component plus an oscillatory part with zero mean. In such flows a possible instability mechanism is associated with the mean component so that the stability of the flow can be examined using some sort of perturbation-type analysis. This strategy fails when the mean part of the flow is small compared with the oscillatory component which, of course, includes the case when the mean part is precisely zero.

This difficulty with analytical studies has meant that the stability of purely oscillatory flows has relied on various numerical methods. Until very recently such techniques have only ever predicted that the flow is stable, even though experiments suggest that they do become unstable at high enough speeds. In this talk I shall expand on this discrepancy with emphasis on the particular case of the so-called flat Stokes layer. This flow, which is generated in a deep layer of incompressible fluid lying above a flat plate which is oscillated in its own plane, represents one of the few exact solutions of the Navier-Stokes equations. We show theoretically that the flow does become unstable to waves which propagate relative to the basic motion although the theory predicts that this occurs much later than has been found in experiments. Reasons for this discrepancy are examined by reference to calculations for oscillatory flows in pipes and channels. Finally, we propose some new experiments that might reduce this disagreement between the theoretical predictions of instability and practical realisations of breakdown in oscillatory flows.
Watching evolution in real time; problems and potential research areas.
15:10 Fri 26 May, 2006 :: G08. Mathematics Building University of Adelaide :: Prof Alan Cooper (Federation Fellow)

Recent studies (1) have indicated problems with our ability to use the genetic distances between species to estimate the time since their divergence (so called molecular clocks). An exponential decay curve has been detected in comparisons of closely related taxa in mammal and bird groups, and rough approximations suggest that molecular clock calculations may be problematic for the recent past (eg <1 million years). Unfortunately, this period encompasses a number of key evolutionary events where estimates of timing are critical such as modern human evolutionary history, the domestication of animals and plants, and most issues involved in conservation biology. A solution (formulated at UA) will be briefly outlined. A second area of active interest is the recent suggestion (2) that mitochondrial DNA diversity does not track population size in several groups, in contrast to standard thinking. This finding has been interpreted as showing that mtDNA may not be evolving neutrally, as has long been assumed.
Large ancient DNA datasets provide a means to examine these issues, by revealing evolutionary processes in real time (3). The data also provide a rich area for mathematical investigation as temporal information provides information about several parameters that are unknown in serial coalescent calculations (4).
References:
  1. Ho SYW et al. Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol. Biol. Evol. 22, 1561-1568 (2005);
    Penny D, Nature 436, 183-184 (2005).
  2. Bazin E., et al. Population size does not influence mitochondrial genetic diversity in animals. Science 312, 570 (2006);
    Eyre-Walker A. Size does not matter for mitochondrial DNA, Science 312, 537 (2006).
  3. Shapiro B, et al. Rise and fall of the Beringian steppe bison. Science 306: 1561-1565 (2004);
    Chan et al. Bayesian estimation of the timing and severity of a population bottleneck from ancient DNA. PLoS Genetics, 2 e59 (2006).
  4. Drummond et al. Measurably evolving populations, Trends in Ecol. Evol. 18, 481-488 (2003);
    Drummond et al. Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology Evolution 22, 1185-92 (2005).
A Bivariate Zero-inflated Poisson Regression Model and application to some Dental Epidemiological data
14:10 Fri 27 Oct, 2006 :: G08 Mathematics Building University of Adelaide :: University Prof Sudhir Paul

Data in the form of paired (pre-treatment, post-treatment) counts arise in the study of the effects of several treatments after accounting for possible covariate effects. An example of such a data set comes from a dental epidemiological study in Belo Horizonte (the Belo Horizonte caries prevention study) which evaluated various programmes for reducing caries. Also, these data may show extra pairs of zeros than can be accounted for by a simpler model, such as, a bivariate Poisson regression model. In such situations we propose to use a zero-inflated bivariate Poisson regression (ZIBPR) model for the paired (pre-treatment, posttreatment) count data. We develop EM algorithm to obtain maximum likelihood estimates of the parameters of the ZIBPR model. Further, we obtain exact Fisher information matrix of the maximum likelihood estimates of the parameters of the ZIBPR model and develop a procedure for testing treatment effects. The procedure to detect treatment effects based on the ZIBPR model is compared, in terms of size, by simulations, with an earlier procedure using a zero-inflated Poisson regression (ZIPR) model of the post-treatment count with the pre-treatment count treated as a covariate. The procedure based on the ZIBPR model holds level most effectively. A further simulation study indicates good power property of the procedure based on the ZIBPR model. We then compare our analysis, of the decayed, missing and filled teeth (DMFT) index data from the caries prevention study, based on the ZIBPR model with the analysis using a zero-inflated Poisson regression model in which the pre-treatment DMFT index is taken to be a covariate
Flooding in the Sundarbans
15:10 Fri 18 May, 2007 :: G08 Mathematics Building University of Adelaide :: Steve Need

Media...
The Sunderbans is a region of deltaic isles formed in the mouth of the Ganges River on the border between India and Bangladesh. As the largest mangrove forest in the world it is a world heritage site, however it is also home to several remote communities who have long inhabited some regions. Many of the inhabited islands are low-lying and are particularly vulnerable to flooding, a major hazard of living in the region. Determining suitable levels of protection to be provided to these communities relies upon accurate assessment of the flood risk facing these communities. Only recently the Indian Government commissioned a study into flood risk in the Sunderbans with a view to determine where flood protection needed to be upgraded.

Flooding due to rainfall is limited due to the relatively small catchment sizes, so the primary causes of flooding in the Sunderbans are unnaturally high tides, tropical cyclones (which regularly sweep through the bay of Bengal) or some combination of the two. Due to the link between tidal anomaly and drops in local barometric pressure, the two causes of flooding may be highly correlated. I propose stochastic methods for analysing the flood risk and present the early work of a case study which shows the direction of investigation. The strategy involves linking several components; a stochastic approximation to a hydraulic flood routing model, FARIMA and GARCH models for storm surge and a stochastic model for cyclone occurrence and tracking. The methods suggested are general and should have applications in other cyclone affected regions.

An Introduction to invariant differential pairings
14:10 Tue 24 Jul, 2007 :: Mathematics G08 :: Jens Kroeske

On homogeneous spaces G/P, where G is a semi-simple Lie group and P is a parabolic subgroup (the ordinary sphere or projective spaces being examples), invariant operators, that is operators between certain homogeneous bundles (functions, vector fields or forms being amongst the typical examples) that are invariant under the action of the group G, have been studied extensively. Especially on so called hermitian symmetric spaces which arise through a 1-grading of the Lie algebra of G there exists a complete classification of first order invariant linear differential operators even on more general manifolds (that allow a so called almost hermitian structure).

This talk will introduce the notion of an invariant bilinear differential pairing between sections of the aforementioned homogeneous bundles. Moreover we will discuss a classification (excluding certain totally degenerate cases) of all first order invariant bilinear differential pairings on manifolds with an almost hermitian symmetric structure. The similarities and connections with the linear operator classification will be highlighted and discussed.

Likelihood inference for a problem in particle physics
15:10 Fri 27 Jul, 2007 :: G04 Napier Building University of Adelaide :: Prof. Anthony Davison

The Large Hadron Collider (LHC), a particle accelerator located at CERN, near Geneva, is (currently!) expected to start operation in early 2008. It is located in an underground tunnel 27km in circumference, and when fully operational, will be the world's largest and highest energy particle accelerator. It is hoped that it will provide evidence for the existence of the Higgs boson, the last remaining particle of the so-called Standard Model of particle physics. The quantity of data that will be generated by the LHC is roughly equivalent to that of the European telecommunications network, but this will be boiled down to just a few numbers. After a brief introduction, this talk will outline elements of the statistical problem of detecting the presence of a particle, and then sketch how higher order likelihood asymptotics may be used for signal detection in this context. The work is joint with Nicola Sartori, of the Università Ca' Foscari, in Venice.
Regression: a backwards step?
13:10 Fri 7 Sep, 2007 :: Maths G08 :: Dr Gary Glonek

Media...
Most students of high school mathematics will have encountered the technique of fitting a line to data by least squares. Those who have taken a university statistics course will also have heard this method referred to as regression. However, it is not obvious from common dictionary definitions why this should be the case. For example, "reversion to an earlier or less advanced state or form". In this talk, the mathematical phenomenon that gave regression its name will be explained and will be shown to have implications in some unexpected contexts.
Statistical Critique of the International Panel on Climate Change's work on Climate Change.
18:00 Wed 17 Oct, 2007 :: Union Hall University of Adelaide :: Mr Dennis Trewin

Climate change is one of the most important issues facing us today. Many governments have introduced or are developing appropriate policy interventions to (a) reduce the growth of greenhouse gas emissions in order to mitigate future climate change, or (b) adapt to future climate change. This important work deserves a high quality statistical data base but there are statistical shortcomings in the work of the International Panel on Climate Change (IPCC). There has been very little involvement of qualified statisticians in the very important work of the IPCC which appears to be scientifically meritorious in most other ways. Mr Trewin will explain these shortcomings and outline his views on likely future climate change, taking into account the statistical deficiencies. His conclusions suggest climate change is still an important issue that needs to be addressed but the range of likely outcomes is a lot lower than has been suggested by the IPCC. This presentation will be based on an invited paper presented at the OECD World Forum.
Moderated Statistical Tests for Digital Gene Expression Technologies
15:10 Fri 19 Oct, 2007 :: G04 Napier Building University of Adelaide :: Dr Gordon Smyth :: Walter and Eliza Hall Institute of Medical Research in Melbourne, Australia

Digital gene expression (DGE) technologies measure gene expression by counting sequence tags. They are sensitive technologies for measuring gene expression on a genomic scale, without the need for prior knowledge of the genome sequence. As the cost of DNA sequencing decreases, the number of DGE datasets is expected to grow dramatically. Various tests of differential expression have been proposed for replicated DGE data using over-dispersed binomial or Poisson models for the counts, but none of the these are usable when the number of replicates is very small. We develop tests using the negative binomial distribution to model overdispersion relative to the Poisson, and use conditional weighted likelihood to moderate the level of overdispersion across genes. A heuristic empirical Bayes algorithm is developed which is applicable to very general likelihood estimation contexts. Not only is our strategy applicable even with the smallest number of replicates, but it also proves to be more powerful than previous strategies when more replicates are available. The methodology is applicable to other counting technologies, such as proteomic spectral counts.
Global and Local stationary modelling in finance: Theory and empirical evidence
14:10 Thu 10 Apr, 2008 :: G04 Napier Building University of Adelaide :: Prof. Dominique Guégan :: Universite Paris 1 Pantheon-Sorbonne

To model real data sets using second order stochastic processes imposes that the data sets verify the second order stationarity condition. This stationarity condition concerns the unconditional moments of the process. It is in that context that most of models developed from the sixties' have been studied; We refer to the ARMA processes (Brockwell and Davis, 1988), the ARCH, GARCH and EGARCH models (Engle, 1982, Bollerslev, 1986, Nelson, 1990), the SETAR process (Lim and Tong, 1980 and Tong, 1990), the bilinear model (Granger and Andersen, 1978, Guégan, 1994), the EXPAR model (Haggan and Ozaki, 1980), the long memory process (Granger and Joyeux, 1980, Hosking, 1981, Gray, Zang and Woodward, 1989, Beran, 1994, Giraitis and Leipus, 1995, Guégan, 2000), the switching process (Hamilton, 1988). For all these models, we get an invertible causal solution under specific conditions on the parameters, then the forecast points and the forecast intervals are available.

Thus, the stationarity assumption is the basis for a general asymptotic theory for identification, estimation and forecasting. It guarantees that the increase of the sample size leads to more and more information of the same kind which is basic for an asymptotic theory to make sense.

Now non-stationarity modelling has also a long tradition in econometrics. This one is based on the conditional moments of the data generating process. It appears mainly in the heteroscedastic and volatility models, like the GARCH and related models, and stochastic volatility processes (Ghysels, Harvey and Renault 1997). This non-stationarity appears also in a different way with structural changes models like the switching models (Hamilton, 1988), the stopbreak model (Diebold and Inoue, 2001, Breidt and Hsu, 2002, Granger and Hyung, 2004) and the SETAR models, for instance. It can also be observed from linear models with time varying coefficients (Nicholls and Quinn, 1982, Tsay, 1987).

Thus, using stationary unconditional moments suggest a global stationarity for the model, but using non-stationary unconditional moments or non-stationary conditional moments or assuming existence of states suggest that this global stationarity fails and that we only observe a local stationary behavior.

The growing evidence of instability in the stochastic behavior of stocks, of exchange rates, of some economic data sets like growth rates for instance, characterized by existence of volatility or existence of jumps in the variance or on the levels of the prices imposes to discuss the assumption of global stationarity and its consequence in modelling, particularly in forecasting. Thus we can address several questions with respect to these remarks.

1. What kinds of non-stationarity affect the major financial and economic data sets? How to detect them?

2. Local and global stationarities: How are they defined?

3. What is the impact of evidence of non-stationarity on the statistics computed from the global non stationary data sets?

4. How can we analyze data sets in the non-stationary global framework? Does the asymptotic theory work in non-stationary framework?

5. What kind of models create local stationarity instead of global stationarity? How can we use them to develop a modelling and a forecasting strategy?

These questions began to be discussed in some papers in the economic literature. For some of these questions, the answers are known, for others, very few works exist. In this talk I will discuss all these problems and will propose 2 new stategies and modelling to solve them. Several interesting topics in empirical finance awaiting future research will also be discussed.

Elliptic equation for diffusion-advection flows
15:10 Fri 15 Aug, 2008 :: G03 Napier Building University of Adelaide :: Prof. Pavel Bedrikovsetsky :: Australian School of Petroleum Science, University of Adelaide.

The standard diffusion equation is obtained by Einstein's method and its generalisation, Fokker-Plank-Kolmogorov-Feller theory. The time between jumps in Einstein derivation is constant.

We discuss random walks with residence time distribution, which occurs for flows of solutes and suspensions/colloids in porous media, CO2 sequestration in coal mines, several processes in chemical, petroleum and environmental engineering. The rigorous application of the Einstein's method results in new equation, containing the time and the mixed dispersion terms expressing the dispersion of the particle time steps.

Usually, adding the second time derivative results in additional initial data. For the equation derived, the condition of limited solution when time tends to infinity provides with uniqueness of the Caushy problem solution.

The solution of the pulse injection problem describing a common tracer injection experiment is studied in greater detail. The new theory predicts delay of the maximum of the tracer, compared to the velocity of the flow, while its forward "tail" contains much more particles than in the solution of the classical parabolic (advection-dispersion) equation. This is in agreement with the experimental observations and predictions of the direct simulation.

Oceanographic Research at the South Australian Research and Development Institute: opportunities for collaborative research
15:10 Fri 21 Nov, 2008 :: Napier G04 :: Associate Prof John Middleton :: South Australian Research and Development Institute

Increasing threats to S.A.'s fisheries and marine environment have underlined the increasing need for soundly based research into the ocean circulation and ecosystems (phyto/zooplankton) of the shelf and gulfs. With support of Marine Innovation SA, the Oceanography Program has within 2 years, grown to include 6 FTEs and a budget of over $4.8M. The program currently leads two major research projects, both of which involve numerical and applied mathematical modelling of oceanic flow and ecosystems as well as statistical techniques for the analysis of data. The first is the implementation of the Southern Australian Integrated Marine Observing System (SAIMOS) that is providing data to understand the dynamics of shelf boundary currents, monitor for climate change and understand the phyto/zooplankton ecosystems that under-pin SA's wild fisheries and aquaculture. SAIMOS involves the use of ship-based sampling, the deployment of underwater marine moorings, underwater gliders, HF Ocean RADAR, acoustic tracking of tagged fish and Autonomous Underwater vehicles.

The second major project involves measuring and modelling the ocean circulation and biological systems within Spencer Gulf and the impact on prawn larval dispersal and on the sustainability of existing and proposed aquaculture sites. The discussion will focus on opportunities for collaborative research with both faculty and students in this exciting growth area of S.A. science.

Key Predistribution in Grid-Based Wireless Sensor Networks
15:10 Fri 12 Dec, 2008 :: Napier G03 :: Dr Maura Paterson :: Information Security Group at Royal Holloway, University of London.

Wireless sensors are small, battery-powered devices that are deployed to measure quantities such as temperature within a given region, then form a wireless network to transmit and process the data they collect. We discuss the problem of distributing symmetric cryptographic keys to the nodes of a wireless sensor network in the case where the sensors are arranged in a square or hexagonal grid, and we propose a key predistribution scheme for such networks that is based on Costas arrays. We introduce more general structures known as distinct-difference configurations, and show that they provide a flexible choice of parameters in our scheme, leading to more efficient performance than that achieved by prior schemes from the literature.
Noncommutative geometry of odd-dimensional quantum spheres
13:10 Fri 27 Feb, 2009 :: School Board Room :: Dr Partha Chakraborty :: University of Adelaide

We will report on our attempts to understand noncommutative geometry in the lights of the example of quantum spheres. We will see how to produce an equivariant fundamental class and also indicate some of the limitations of isospectral deformations.
From histograms to multivariate polynomial histograms and shape estimation
12:10 Thu 19 Mar, 2009 :: Napier 210 :: A/Prof Inge Koch

Media...
Histograms are convenient and easy-to-use tools for estimating the shape of data, but they have serious problems which are magnified for multivariate data. We combine classic histograms with shape estimation by polynomials. The new relatives, `polynomial histograms', have surprisingly nice mathematical properties, which we will explore in this talk. We also show how they can be used for real data of 10-20 dimensions to analyse and understand the shape of these data.
Classification and compact complex manifolds I
13:10 Fri 17 Apr, 2009 :: School Board Room :: A/Prof Nicholas Buchdahl :: University of Adelaide

Multi-scale tools for interpreting cell biology data
15:10 Fri 17 Apr, 2009 :: Napier LG29 :: Dr Matthew Simpson :: University of Melbourne

Trajectory data from observations of a random walk process are often used to characterize macroscopic transport coefficients and to infer motility mechanisms in cell biology. New continuum equations describing the average moments of the position of an individual agent in a population of interacting agents are derived and validated. Unlike standard noninteracting random walks, the new moment equations explicitly represent the interactions between agents as they are coupled to the macroscopic agent density. Key issues associated with the validity of the new continuum equations and the interpretation of experimental data will be explored.
Sloshing in tanks of liquefied natural gas (LNG) vessels
15:10 Wed 22 Apr, 2009 :: Napier LG29 :: Prof. Frederic Dias :: ENS, Cachan

The last scientific conversation I had with Ernie Tuck was on liquid impact. As a matter of fact, we discussed the paper by J.H. Milgram, Journal of Fluid Mechanics 37 (1969), entitled "The motion of a fluid in a cylindrical container with a free surface following vertical impact." Liquid impact is a key issue in sloshing and in particular in sloshing in tanks of LNG vessels. Numerical simulations of sloshing have been performed by various groups, using various types of numerical methods. In terms of the numerical results, the outcome is often impressive, but the question remains of how relevant these results are when it comes to determining impact pressures. The numerical models are too simplified to reproduce the high variability of the measured pressures. In fact, for the time being, it is not possible to simulate accurately both global and local effects. Unfortunately it appears that local effects predominate over global effects when the behaviour of pressures is considered. Having said this, it is important to point out that numerical studies can be quite useful to perform sensitivity analyses in idealized conditions such as a liquid mass falling under gravity on top of a horizontal wall and then spreading along the lateral sides. Simple analytical models inspired by numerical results on idealized problems can also be useful to predict trends. The talk is organized as follows: After a brief introduction on the sloshing problem and on scaling laws, it will be explained to what extent numerical studies can be used to improve our understanding of impact pressures. Results on a liquid mass hitting a wall obtained by a finite-volume code with interface reconstruction as well as results obtained by a simple analytical model will be shown to reproduce the trends of experiments on sloshing. This is joint work with L. Brosset (GazTransport & Technigaz), J.-M. Ghidaglia (ENS Cachan) and J.-P. Braeunig (INRIA).
Classification and compact complex manifolds II
13:10 Fri 24 Apr, 2009 :: School Board Room :: A/Prof Nicholas Buchdahl :: University of Adelaide

How to see in higher dimensions
12:10 Thu 7 May, 2009 :: Napier 210 :: Prof Michael Murray

Media...
The human brain has evolved to be able to think intuitively in three dimensions. Unfortunately the real world is at least four and maybe 10, 11 or 26 dimensional. In this talk I will discuss some of the tricks mathematicians have devised to think about higher dimensional objects.
Wall turbulence: from the laboratory to the atmosphere
15:00 Fri 29 May, 2009 :: Napier LG29 :: Prof Ivan Marusic :: The University of Melbourne

The study of wall-bounded turbulent flows has received great attention over the past few years as a result of high Reynolds number experiments conducted in new high Reynolds number facilities such as the Princeton "superpipe", the NDF facility in Chicago and the HRNBLWT at the University of Melbourne. These experiments have brought into question the fundamental scaling laws of the turbulence and mean flow quantities as well as revealed high Reynolds number phenomena, which make extrapolation of low Reynolds number results highly questionable. In this talk these issues will be reviewed and new results from the HRNBLWT and atmospheric surface layer on the salt-flats of Utah will be presented documenting unique high Reynolds number phenomena. The implications for skin-friction drag reduction technologies and improved near-wall models for large-eddy simulation will be discussed.
Lagrangian fibrations on holomorphic symplectic manifolds I: Holomorphic Lagrangian fibrations
13:10 Fri 5 Jun, 2009 :: School Board Room :: Dr Justin Sawon :: Colorado State University

A compact K{\"a}hler manifold $X$ is a holomorphic symplectic manifold if it admits a non-degenerate holomorphic two-form $\sigma$. According to a theorem of Matsushita, fibrations on $X$ must be of a very restricted type: the fibres must be Lagrangian with respect to $\sigma$ and the generic fibre must be a complex torus. Moreover, it is expected that the base of the fibration must be complex projective space, and this has been proved by Hwang when $X$ is projective. The simplest example of these {\em Lagrangian fibrations\/} are elliptic K3 surfaces. In this talk we will explain the role of elliptic K3s in the classification of K3 surfaces, and the (conjectural) generalization to higher dimensions.
Lagrangian fibrations on holomorphic symplectic manifolds III: Holomorphic coisotropic reduction
13:10 Fri 26 Jun, 2009 :: School Board Room :: Dr Justin Sawon :: Colorado State University

Given a certain kind of submanifold $Y$ of a symplectic manifold $(X,\omega)$ we can form its coisotropic reduction as follows. The null directions of $\omega|_Y$ define the characteristic foliation $F$ on $Y$. The space of leaves $Y/F$ then admits a symplectic form, descended from $\omega|_Y$. Locally, the coisotropic reduction $Y/F$ looks just like a symplectic quotient. This construction also work for holomorphic symplectic manifolds, though one of the main difficulties in practice is ensuring that the leaves of the foliation are compact. We will describe a criterion for compactness, and apply coisotropic reduction to produce a classification result for Lagrangian fibrations by Jacobians.
Predicting turbulence
12:10 Wed 12 Aug, 2009 :: Napier 210 :: Dr Trent Mattner :: University of Adelaide

Media...
Turbulence is characterised by three-dimensional unsteady fluid motion over a wide range of spatial and temporal scales. It is important in many problems of technological and scientific interest, such as drag reduction, energy production and climate prediction. In this talk, I will explain why turbulent flows are difficult to predict and describe a modern mathematical model of turbulence based on a random collection of fluid vortices.
From linear algebra to knot theory
15:10 Fri 21 Aug, 2009 :: Badger Labs G13 Macbeth Lecture Theatre :: Prof Ross Street :: Macquarie University, Sydney

Vector spaces and linear functions form our paradigmatic monoidal category. The concepts underpinning linear algebra admit definitions, operations and constructions with analogues in many other parts of mathematics. We shall see how to generalize much of linear algebra to the context of monoidal categories. Traditional examples of such categories are obtained by replacing vector spaces by linear representations of a given compact group or by sheaves of vector spaces. More recent examples come from low-dimensional topology, in particular, from knot theory where the linear functions are replaced by braids or tangles. These geometric monoidal categories are often free in an appropriate sense, a fact that can be used to obtain algebraic invariants for manifolds.
Modelling fluid-structure interactions in micro-devices
15:00 Thu 3 Sep, 2009 :: School Board Room :: Dr Richard Clarke :: University of Auckland

The flows generated in many modern micro-devices possess very little convective inertia, however, they can be highly unsteady and exert substantial hydrodynamic forces on the device components. Typically these components exhibit some degree of compliance, which traditionally has been treated using simple one-dimensional elastic beam models. However, recent findings have suggested that three-dimensional effects can be important and, accordingly, we consider the elastohydrodynamic response of a rapidly oscillating three-dimensional elastic plate that is immersed in a viscous fluid. In addition, a preliminary model will be presented which incorporates the presence of a nearby elastic wall.
Defect formulae for integrals of pseudodifferential symbols: applications to dimensional regularisation and index theory
13:10 Fri 4 Sep, 2009 :: School Board Room :: Prof Sylvie Paycha :: Universite Blaise Pascal, Clermont-Ferrand, France

The ordinary integral on L^1 functions on R^d unfortunately does not extend to a translation invariant linear form on the whole algebra of pseudodifferential symbols on R^d, forcing to work with ordinary linear extensions which fail to be translation invariant. Defect formulae which express the difference between various linear extensions, show that they differ by local terms involving the noncommutative residue. In particular, we shall show how integrals regularised by a "dimensional regularisation" procedure familiar to physicists differ from Hadamard finite part (or "cut-off" regularised) integrals by a residue. When extended to pseudodifferential operators on closed manifolds, these defect formulae express the zeta regularised traces of a differential operator in terms of a residue of its logarithm. In particular, we shall express the index of a Dirac type operator on a closed manifold in terms of a logarithm of a generalized Laplacian, thus giving an a priori local description of the index and shall discuss further applications.
The Monster
12:10 Thu 10 Sep, 2009 :: Napier 210 :: Dr David Parrott :: University of Adelaide

Media...
The simple groups are the building blocks of all finite groups. The classification of finite simple groups is a towering achievement of 20th century mathematics. In addition to 18 infinite families of finite simple groups, there are 26 sporadic groups. The biggest sporadic group, dubbed The Monster, has about 10^54 elements. The talk will give a glimpse of this deep area of mathematics.
Statistical analysis for harmonized development of systemic organs in human fetuses
11:00 Thu 17 Sep, 2009 :: School Board Room :: Prof Kanta Naito :: Shimane University

The growth processes of human babies have been studied sufficiently in scientific fields, but there have still been many issues about the developments of human fetus which are not clarified. The aim of this research is to investigate the developing process of systemic organs of human fetuses based on the data set of measurements of fetus's bodies and organs. Specifically, this talk is concerned with giving a mathematical understanding for the harmonized developments of the organs of human fetuses. The method to evaluate such harmonies is proposed by the use of the maximal dilatation appeared in the theory of quasi-conformal mapping.
Stable commutator length
13:40 Fri 25 Sep, 2009 :: Napier 102 :: Prof Danny Calegari :: California Institute of Technology

Stable commutator length answers the question: "what is the simplest surface in a given space with prescribed boundary?" where "simplest" is interpreted in topological terms. This topological definition is complemented by several equivalent definitions - in group theory, as a measure of non-commutativity of a group; and in linear programming, as the solution of a certain linear optimization problem. On the topological side, scl is concerned with questions such as computing the genus of a knot, or finding the simplest 4-manifold that bounds a given 3-manifold. On the linear programming side, scl is measured in terms of certain functions called quasimorphisms, which arise from hyperbolic geometry (negative curvature) and symplectic geometry (causal structures). In these talks we will discuss how scl in free and surface groups is connected to such diverse phenomena as the existence of closed surface subgroups in graphs of groups, rigidity and discreteness of symplectic representations, bounding immersed curves on a surface by immersed subsurfaces, and the theory of multi- dimensional continued fractions and Klein polyhedra. Danny Calegari is the Richard Merkin Professor of Mathematics at the California Institute of Technology, and is one of the recipients of the 2009 Clay Research Award for his work in geometric topology and geometric group theory. He received a B.A. in 1994 from the University of Melbourne, and a Ph.D. in 2000 from the University of California, Berkeley under the joint supervision of Andrew Casson and William Thurston. From 2000 to 2002 he was Benjamin Peirce Assistant Professor at Harvard University, after which he joined the Caltech faculty; he became Richard Merkin Professor in 2007.
The proof of the Poincare conjecture
15:10 Fri 25 Sep, 2009 :: Napier 102 :: Prof Terrence Tao :: UCLA

In a series of three papers from 2002-2003, Grigori Perelman gave a spectacular proof of the Poincare Conjecture (every smooth compact simply connected three-dimensional manifold is topologically isomorphic to a sphere), one of the most famous open problems in mathematics (and one of the seven Clay Millennium Prize Problems worth a million dollars each), by developing several new groundbreaking advances in Hamilton's theory of Ricci flow on manifolds. In this talk I describe in broad detail how the proof proceeds, and briefly discuss some of the key turning points in the argument. About the speaker: Terence Tao was born in Adelaide, Australia, in 1975. He has been a professor of mathematics at UCLA since 1999, having completed his PhD under Elias Stein at Princeton in 1996. Tao's areas of research include harmonic analysis, PDE, combinatorics, and number theory. He has received a number of awards, including the Salem Prize in 2000, the Bochner Prize in 2002, the Fields Medal and SASTRA Ramanujan Prize in 2006, and the MacArthur Fellowship and Ostrowski Prize in 2007. Terence Tao also currently holds the James and Carol Collins chair in mathematics at UCLA, and is a Fellow of the Royal Society and the Australian Academy of Sciences (Corresponding Member).
Contemporary frontiers in statistics
15:10 Mon 28 Sep, 2009 :: Badger Labs G31 Macbeth Lectrue :: Prof. Peter Hall :: University of Melbourne

The availability of powerful computing equipment has had a dramatic impact on statistical methods and thinking, changing forever the way data are analysed. New data types, larger quantities of data, and new classes of research problem are all motivating new statistical methods. We shall give examples of each of these issues, and discuss the current and future directions of frontier problems in statistics.
Irreducible subgroups of SO(2,n)
13:10 Fri 16 Oct, 2009 :: School Board Room :: Dr Thomas Leistner :: University of Adelaide

Berger's classification of irreducibly represented Lie groups that can occur as holonomy groups of semi-Riemannian manifolds is a remarkable result of modern differential geometry. What is remarkable about it is that it is so short and that only so few types of geometry can occur. In Riemannian signature this is even more remarkable, taking into account that any representation of a compact Lie group admits a positive definite invariant scalar product. Hence, for any not too small n there is an abundance of irreducible subgroups of SO(n). We show that in other signatures the situation is quite different with, for example, SO(1,n) having no proper irreducible subgroups. We will show how this and the corresponding result about irreducible subgroups of SO(2,n) follows from the Karpelevich-Mostov theorem. (This is joint work with Antonio J. Di Scala, Politecnico di Torino.)
Eigen-analysis of fluid-loaded compliant panels
15:10 Wed 9 Dec, 2009 :: Santos Lecture Theatre :: Prof Tony Lucey :: Curtin University of Technology

This presentation concerns the fluid-structure interaction (FSI) that occurs between a fluid flow and an arbitrarily deforming flexible boundary considered to be a flexible panel or a compliant coating that comprises the wetted surface of a marine vehicle. We develop and deploy an approach that is a hybrid of computational and theoretical techniques. The system studied is two-dimensional and linearised disturbances are assumed. Of particular novelty in the present work is the ability of our methods to extract a full set of fluid-structure eigenmodes for systems that have strong spatial inhomogeneity in the structure of the flexible wall.

We first present the approach and some results of the system in which an ideal, zero-pressure gradient, flow interacts with a flexible plate held at both its ends. We use a combination of boundary-element and finite-difference methods to express the FSI system as a single matrix equation in the interfacial variable. This is then couched in state-space form and standard methods used to extract the system eigenvalues. It is then shown how the incorporation of spatial inhomogeneity in the stiffness of the plate can be either stabilising or destabilising. We also show that adding a further restraint within the streamwise extent of a homogeneous panel can trigger an additional type of hydroelastic instability at low flow speeds. The mechanism for the fluid-to-structure energy transfer that underpins this instability can be explained in terms of the pressure-signal phase relative to that of the wall motion and the effect on this relationship of the added wall restraint.

We then show how the ideal-flow approach can be conceptually extended to include boundary-layer effects. The flow field is now modelled by the continuity equation and the linearised perturbation momentum equation written in velocity-velocity form. The near-wall flow field is spatially discretised into rectangular elements on an Eulerian grid and a variant of the discrete-vortex method is applied. The entire fluid-structure system can again be assembled as a linear system for a single set of unknowns - the flow-field vorticity and the wall displacements - that admits the extraction of eigenvalues. We then show how stability diagrams for the fully-coupled finite flow-structure system can be assembled, in doing so identifying classes of wall-based or fluid-based and spatio-temporal wave behaviour.

Critical sets of products of linear forms
13:10 Mon 14 Dec, 2009 :: School Board Room :: Dr Graham Denham :: University of Western Ontario, Canada

Suppose $f_1,f_2,\ldots,f_n$ are linear polynomials in $\ell$ variables and $\lambda_1,\lambda_2,\ldots,\lambda_n$ are nonzero complex numbers. The product $$ \Phi_\lambda=\Prod_{i=1}^n f_1^{\lambda_i}, $$ called a master function, defines a (multivalued) function on $\ell$-dimensional complex space, or more precisely, on the complement of a set of hyperplanes. Then it is easy to ask (but harder to answer) what the set of critical points of a master function looks like, in terms of some properties of the input polynomials and $\lambda_i$'s. In my talk I will describe the motivation for considering such a question. Then I will indicate how the geometry and combinatorics of hyperplane arrangements can be used to provide at least a partial answer.
Conformal structures with G_2 ambient metrics
13:10 Fri 19 Mar, 2010 :: School Board Room :: Dr Thomas Leistner :: University of Adelaide

The n-sphere considered as a conformal manifold can be viewed as the projectivisation of the light cone in n+2 Minkowski space. A construction that generalises this picture to arbitrary conformal classes is the ambient metric introduced by C. Fefferman and R. Graham. In the talk, I will explain the Fefferman-Graham ambient metric construction and how it detects the existence of certain metrics in the conformal class. Then I will present conformal classes of signature (3,2) for which the 7-dimensional ambient metric has the noncompact exceptional Lie group G_2 as its holonomy. This is joint work with P. Nurowski, Warsaw University.
The Jeffery–Hamel similarity solution and its relation to flow in a diverging channel
15:10 Fri 19 Mar, 2010 :: Santos Lecture Theatre :: Dr Phil Haines :: University of Adelaide

Jeffery–Hamel flows describe the steady two-dimensional flow of an incompressible viscous fluid between plane walls separated by an angle $\alpha$. They are often used to approximate the flow in domains of finite radial extent. However, whilst the base Jeffery–Hamel solution is characterised by a subcritical pitchfork bifurcation, studies in expanding channels of finite length typically find symmetry breaking via a supercritical bifurcation.

We use the finite element method to calculate solutions for flow in a two-dimensional wedge of finite length bounded by arcs of constant radii, $R_1$ and $R_2$. We present a comprehensive picture of the bifurcation structure and nonlinear states for a net radial outflow of fluid. We find a series of nested neutral curves in the Reynolds number-$\alpha$ plane corresponding to pitchfork bifurcations that break the midplane symmetry of the flow. We show that these finite domain bifurcations remain distinct from the similarity solution bifurcation even in the limit $R_2/R_1 \rightarrow \infty$.

We also discuss a class of stable steady solutions apparently related to a steady, spatially periodic, wave first observed by Tutty (1996). These solutions remain disconnected in our domain in the sense that they do not arise via a local bifurcation of the Stokes flow solution as the Reynolds number is increased.

The fluid mechanics of gels used in tissue engineering
15:10 Fri 9 Apr, 2010 :: Santos Lecture Theatre :: Dr Edward Green :: University of Western Australia

Tissue engineering could be called 'the science of spare parts'. Although currently in its infancy, its long-term aim is to grow functional tissues and organs in vitro to replace those which have become defective through age, trauma or disease. Recent experiments have shown that mechanical interactions between cells and the materials in which they are grown have an important influence on tissue architecture, but in order to understand these effects, we first need to understand the mechanics of the gels themselves.

Many biological gels (e.g. collagen) used in tissue engineering have a fibrous microstructure which affects the way forces are transmitted through the material, and which in turn affects cell migration and other behaviours. I will present a simple continuum model of gel mechanics, based on treating the gel as a transversely isotropic viscous material. Two canonical problems are considered involving thin two-dimensional films: extensional flow, and squeezing flow of the fluid between two rigid plates. Neglecting inertia, gravity and surface tension, in each regime we can exploit the thin geometry to obtain a leading-order problem which is sufficiently tractable to allow the use of analytical methods. I discuss how these results could be exploited practically to determine the mechanical properties of real gels. If time permits, I will also talk about work currently in progress which explores the interaction between gel mechanics and cell behaviour.

Random walk integrals
13:10 Fri 16 Apr, 2010 :: School Board Room :: Prof Jonathan Borwein :: University of Newcastle

Following Pearson in 1905, we study the expected distance of a two-dimensional walk in the plane with unit steps in random directions---what Pearson called a "ramble". A series evaluation and recursions are obtained making it possible to explicitly determine this distance for small number of steps. Closed form expressions for all the moments of a 2-step and a 3-step walk are given, and a formula is conjectured for the 4-step walk. Heavy use is made of the analytic continuation of the underlying integral.
Exploratory experimentation and computation
15:10 Fri 16 Apr, 2010 :: Napier LG29 :: Prof Jonathan Borwein :: University of Newcastle

Media...
The mathematical research community is facing a great challenge to re-evaluate the role of proof in light of the growing power of current computer systems, of modern mathematical computing packages, and of the growing capacity to data-mine on the Internet. Add to that the enormous complexity of many modern capstone results such as the Poincare conjecture, Fermat's last theorem, and the Classification of finite simple groups. As the need and prospects for inductive mathematics blossom, the requirement to ensure the role of proof is properly founded remains undiminished. I shall look at the philosophical context with examples and then offer some of five bench-marking examples of the opportunities and challenges we face.
Loop groups and characteristic classes
13:10 Fri 23 Apr, 2010 :: School Board Room :: Dr Raymond Vozzo :: University of Adelaide

Suppose $G$ is a compact Lie group, $LG$ its (free) loop group and $\Omega G \subseteq LG$ its based loop group. Let $P \to M$ be a principal bundle with structure group one of these loop groups. In general, differential form representatives of characteristic classes for principal bundles can be easily obtained using the Chern-Weil homomorphism, however for infinite-dimensional bundles such as $P$ this runs into analytical problems and classes are more difficult to construct. In this talk I will explain some new results on characteristic classes for loop group bundles which demonstrate how to construct certain classes---which we call string classes---for such bundles. These are obtained by making heavy use of a certain $G$-bundle associated to any loop group bundle (which allows us to avoid the problems of dealing with infinite-dimensional bundles). We shall see that the free loop group case naturally involves equivariant cohomology.
Estimation of sparse Bayesian networks using a score-based approach
15:10 Fri 30 Apr, 2010 :: School Board Room :: Dr Jessica Kasza :: University of Copenhagen

The estimation of Bayesian networks given high-dimensional data sets, with more variables than there are observations, has been the focus of much recent research. These structures provide a flexible framework for the representation of the conditional independence relationships of a set of variables, and can be particularly useful in the estimation of genetic regulatory networks given gene expression data.

In this talk, I will discuss some new research on learning sparse networks, that is, networks with many conditional independence restrictions, using a score-based approach. In the case of genetic regulatory networks, such sparsity reflects the view that each gene is regulated by relatively few other genes. The presented approach allows prior information about the overall sparsity of the underlying structure to be included in the analysis, as well as the incorporation of prior knowledge about the connectivity of individual nodes within the network.

The caloron transform
13:10 Fri 7 May, 2010 :: School Board Room :: Prof Michael Murray :: University of Adelaide

The caloron transform is a `fake' dimensional reduction which transforms a G-bundle over certain manifolds to a loop group of G bundle over a manifold of one lower dimension. This talk will review the caloron transform and show how it can be best understood using the language of pseudo-isomorphisms from category theory as well as considering its application to Bogomolny monopoles and string structures.
Holonomy groups
15:10 Fri 7 May, 2010 :: Napier LG24 :: Dr Thomas Leistner :: University of Adelaide

In the first part of the talk I will illustrate some basic concepts of differential geometry that lead to the notion of a holonomy group. Then I will explain Berger's classification of Riemannian holonomy groups and discuss questions that arose from it. Finally, I will focus on holonomy groups of Lorentzian manifolds and indicate briefly why all this is of relevance to present-day theoretical physics.
Understanding convergence of meshless methods: Vortex methods and smoothed particle hydrodynamics
15:10 Fri 14 May, 2010 :: Santos Lecture Theatre :: A/Prof Lou Rossi :: University of Delaware

Meshless methods such as vortex methods (VMs) and smoothed particle hydrodynamics (SPH) schemes offer many advantages in fluid flow computations. Particle-based computations naturally adapt to complex flow geometries and so provide a high degree of computational efficiency. Also, particle based methods avoid CFL conditions because flow quantities are integrated along characteristics. There are many approaches to improving numerical methods, but one of the most effective routes is quantifying the error through the direct estimate of residual quantities. Understanding the residual for particle schemes requires a different approach than for meshless schemes but the rewards are significant. In this seminar, I will outline a general approach to understanding convergence that has been effective in creating high spatial accuracy vortex methods, and then I will discuss some recent investigations in the accuracy of diffusion operators used in SPH computations. Finally, I will provide some sample Navier-Stokes computations of high Reynolds number flows using BlobFlow, an open source implementation of the high precision vortex method.
Spot the difference: how to tell when two things are the same (and when they're not!)
13:10 Wed 19 May, 2010 :: Napier 210 :: Dr Raymond Vozzo :: University of Adelaide

Media...
High on a mathematician's to-do list is classifying objects and structures that arise in mathematics. We see patterns in things and want to know what other sorts of things behave similarly. This poses several problems. How can you tell when two seemingly different mathematical objects are the same? Can you even tell when two seemingly similar mathematical objects are the same? In fact, what does "the same" even mean? How can you tell if two things are the same when you can't even see them! In this talk, we will take a walk through some areas of maths known as algebraic topology and category theory and I will show you some of the ways mathematicians have devised to tell when two things are "the same".
Functorial 2-connected covers
13:10 Fri 21 May, 2010 :: School Board Room :: David Roberts :: University of Adelaide

The Whitehead tower of a topological space seeks to resolve that space by successively removing homotopy groups from the 'bottom up'. For a path-connected space with no 1-dimensional local pathologies the first stage in the tower can be chosen to be the universal (=1-connected) covering space. This construction also works in the category Diff of manifolds. However, further stages in the two known constructions of the Whitehead tower do not work in Diff, being purely topological - and one of these is non-functorial, depending on a large number of choices. This talk will survey results from my thesis which constructs a new, functorial model for the 2-connected cover which will lift to a generalised (2-)category of smooth objects. This talk contains joint work with Andrew Stacey of the Norwegian University of Science and Technology.
Interpolation of complex data using spatio-temporal compressive sensing
13:00 Fri 28 May, 2010 :: Santos Lecture Theatre :: A/Prof Matthew Roughan :: School of Mathematical Sciences, University of Adelaide

Many complex datasets suffer from missing data, and interpolating these missing elements is a key task in data analysis. Moreover, it is often the case that we see only a linear combination of the desired measurements, not the measurements themselves. For instance, in network management, it is easy to count the traffic on a link, but harder to measure the end-to-end flows. Additionally, typical interpolation algorithms treat either the spatial, or the temporal components of data separately, but in many real datasets have strong spatio-temporal structure that we would like to exploit in reconstructing the missing data. In this talk I will describe a novel reconstruction algorithm that exploits concepts from the growing area of compressive sensing to solve all of these problems and more. The approach works so well on Internet traffic matrices that we can obtain a reasonable reconstruction with as much as 98% of the original data missing.
A variance constraining ensemble Kalman filter: how to improve forecast using climatic data of unobserved variables
15:10 Fri 28 May, 2010 :: Santos Lecture Theatre :: A/Prof Georg Gottwald :: The University of Sydney

Data assimilation aims to solve one of the fundamental problems ofnumerical weather prediction - estimating the optimal state of the atmosphere given a numerical model of the dynamics, and sparse, noisy observations of the system. A standard tool in attacking this filtering problem is the Kalman filter.

We consider the problem when only partial observations are available. In particular we consider the situation where the observational space consists of variables which are directly observable with known observational error, and of variables of which only their climatic variance and mean are given. We derive the corresponding Kalman filter in a variational setting.

We analyze the variance constraining Kalman filter (VCKF) filter for a simple linear toy model and determine its range of optimal performance. We explore the variance constraining Kalman filter in an ensemble transform setting for the Lorenz-96 system, and show that incorporating the information on the variance on some un-observable variables can improve the skill and also increase the stability of the data assimilation procedure.

Using methods from dynamical systems theory we then systems where the un-observed variables evolve deterministically but chaotically on a fast time scale.

This is joint work with Lewis Mitchell and Sebastian Reich.

Topological chaos in two and three dimensions
15:10 Fri 18 Jun, 2010 :: Santos Lecture Theatre :: Dr Matt Finn :: School of Mathematical Sciences

Research into two-dimensional laminar fluid mixing has enjoyed a renaissance in the last decade since the realisation that the Thurston–Nielsen theory of surface homeomorphisms can assist in designing efficient "topologically chaotic" batch mixers. In this talk I will survey some tools used in topological fluid kinematics, including braid groups, train-tracks, dynamical systems and topological index formulae. I will then make some speculations about topological chaos in three dimensions.
Meteorological drivers of extreme bushfire events in southern Australia
15:10 Fri 2 Jul, 2010 :: Benham Lecture Theatre :: Prof Graham Mills :: Centre for Australian Weather and Climate Research, Melbourne

Bushfires occur regularly during summer in southern Australia, but only a few of these fires become iconic due to their effects, either in terms of loss of life or economic and social cost. Such events include Black Friday (1939), the Hobart fires (1967), Ash Wednesday (1983), the Canberra bushfires (2003), and most recently Black Saturday in February 2009. In most of these events the weather of the day was statistically extreme in terms of heat, (low) humidity, and wind speed, and in terms of antecedent drought. There are a number of reasons for conducting post-event analyses of the meteorology of these events. One is to identify any meteorological circulation systems or dynamic processes occurring on those days that might not be widely or hitherto recognised, to document these, and to develop new forecast or guidance products. The understanding and prediction of such features can be used in the short term to assist in effective management of fires and the safety of firefighters and in the medium range to assist preparedness for the onset of extreme conditions. The results of such studies can also be applied to simulations of future climates to assess the likely changes in frequency of the most extreme fire weather events, and their documentary records provide a resource that can be used for advanced training purposes. In addition, particularly for events further in the past, revisiting these events using reanalysis data sets and contemporary NWP models can also provide insights unavailable at the time of the events. Over the past few years the Bushfire CRC's Fire Weather and Fire Danger project in CAWCR has studied the mesoscale meteorology of a number of major fire events, including the days of Ash Wednesday 1983, the Dandenong Ranges fire in January 1997, the Canberra fires and the Alpine breakout fires in January 2003, the Lower Eyre Peninsula fires in January 2005 and the Boorabbin fire in December 2007-January 2008. Various aspects of these studies are described below, including the structures of dry cold frontal wind changes, the particular character of the cold fronts associated with the most damaging fires in southeastern Australia, and some aspects of how the vertical temperature and humidity structure of the atmosphere may affect the fire weather at the surface. These studies reveal much about these major events, but also suggest future research directions, and some of these will be discussed.
Mathematica Seminar
15:10 Wed 28 Jul, 2010 :: Engineering Annex 314 :: Kim Schriefer :: Wolfram Research

The Mathematica Seminars 2010 offer an opportunity to experience the applicability, ease-of-use, as well as the advancements of Mathematica 7 in education and academic research. These seminars will highlight the latest directions in technical computing with Mathematica, and the impact this technology has across a wide range of academic fields, from maths, physics and biology to finance, economics and business. Those not yet familiar with Mathematica will gain an overview of the system and discover the breadth of applications it can address, while experts will get firsthand experience with recent advances in Mathematica like parallel computing, digital image processing, point-and-click palettes, built-in curated data, as well as courseware examples.
A spatial-temporal point process model for fine resolution multisite rainfall data from Roma, Italy
14:10 Thu 19 Aug, 2010 :: Napier G04 :: A/Prof Paul Cowpertwait :: Auckland University of Technology

A point process rainfall model is further developed that has storm origins occurring in space-time according to a Poisson process. Each storm origin has a random radius so that storms occur as circular regions in two-dimensional space, where the storm radii are taken to be independent exponential random variables. Storm origins are of random type z, where z follows a continuous probability distribution. Cell origins occur in a further spatial Poisson process and have arrival times that follow a Neyman-Scott point process. Cell origins have random radii so that cells form discs in two-dimensional space. Statistical properties up to third order are derived and used to fit the model to 10 min series taken from 23 sites across the Roma region, Italy. Distributional properties of the observed annual maxima are compared to equivalent values sampled from series that are simulated using the fitted model. The results indicate that the model will be of use in urban drainage projects for the Roma region.
Simultaneous confidence band and hypothesis test in generalised varying-coefficient models
15:05 Fri 10 Sep, 2010 :: Napier LG28 :: Prof Wenyang Zhang :: University of Bath

Generalised varying-coefficient models (GVC) are very important models. There are a considerable number of literature addressing these models. However, most of the existing literature are devoted to the estimation procedure. In this talk, I will systematically investigate the statistical inference for GVC, which includes confidence band as well as hypothesis test. I will show the asymptotic distribution of the maximum discrepancy between the estimated functional coefficient and the true functional coefficient. I will compare different approaches for the construction of confidence band and hypothesis test. Finally, the proposed statistical inference methods are used to analyse the data from China about contraceptive use there, which leads to some interesting findings.
Principal Component Analysis Revisited
15:10 Fri 15 Oct, 2010 :: Napier G04 :: Assoc. Prof Inge Koch :: University of Adelaide

Since the beginning of the 20th century, Principal Component Analysis (PCA) has been an important tool in the analysis of multivariate data. The principal components summarise data in fewer than the original number of variables without losing essential information, and thus allow a split of the data into signal and noise components. PCA is a linear method, based on elegant mathematical theory. The increasing complexity of data together with the emergence of fast computers in the later parts of the 20th century has led to a renaissance of PCA. The growing numbers of variables (in particular, high-dimensional low sample size problems), non-Gaussian data, and functional data (where the data are curves) are posing exciting challenges to statisticians, and have resulted in new research which extends the classical theory. I begin with the classical PCA methodology and illustrate the challenges presented by the complex data that we are now able to collect. The main part of the talk focuses on extensions of PCA: the duality of PCA and the Principal Coordinates of Multidimensional Scaling, Sparse PCA, and consistency results relating to principal components, as the dimension grows. We will also look at newer developments such as Principal Component Regression and Supervised PCA, nonlinear PCA and Functional PCA.
Statistical physics and behavioral adaptation to Creation's main stimuli: sex and food
15:10 Fri 29 Oct, 2010 :: E10 B17 Suite 1 :: Prof Laurent Seuront :: Flinders University and South Australian Research and Development Institute

Animals typically search for food and mates, while avoiding predators. This is particularly critical for keystone organisms such as intertidal gastropods and copepods (i.e. millimeter-scale crustaceans) as they typically rely on non-visual senses for detecting, identifying and locating mates in their two- and three-dimensional environments. Here, using stochastic methods derived from the field of nonlinear physics, we provide new insights into the nature (i.e. innate vs. acquired) of the motion behavior of gastropods and copepods, and demonstrate how changes in their behavioral properties can be used to identify the trade-offs between foraging for food or sex. The gastropod Littorina littorea hence moves according to fractional Brownian motions while foraging for food (in accordance with the fractal nature of food distributions), and switch to Brownian motion while foraging for sex. In contrast, the swimming behavior of the copepod Temora longicornis belongs to the class of multifractal random walks (MRW; i.e. a form of anomalous diffusion), characterized by a nonlinear moment scaling function for distance versus time. This clearly differs from the traditional Brownian and fractional Brownian walks expected or previously detected in animal behaviors. The divergence between MRW and Levy flight and walk is also discussed, and it is shown how copepod anomalous diffusion is enhanced by the presence and concentration of conspecific water-borne signals, and is dramatically increasing male-female encounter rates.
Heat transfer scaling and emergence of three-dimensional flow in horizontal convection
15:10 Fri 25 Feb, 2011 :: Conference Room Level 7 Ingkarni Wardli :: Dr Greg Sheard :: Monash University

Horizontal convecton refers to flows driven by uneven heating on a horizontal forcing boundary. Flows exhibiting these characteristics are prevalent in nature, and include the North-South Hadley circulation within the atmosphere between warmer and more temperate latitudes, as well as ocean currents driven by non-uniform heating via solar radiation.

Here a model for these generic convection flows is established featuring a rectangular enclosure, insulated on the side and top walls, and driven by a linear temperature gradient applied along the bottom wall. Rayleigh number dependence of heat transfer through the forcing boundary is computed and compared with theory. Attention is given to transitions in the flow, including the development of unsteady flow and three-dimensional flow: the effect of these transitions on the Nusselt-Rayleigh number scaling exponents is described.

Mathematical modelling in nanotechnology
15:10 Fri 4 Mar, 2011 :: 7.15 Ingkarni Wardli :: Prof Jim Hill :: University of Adelaide

Media...
In this talk we present an overview of the mathematical modelling contributions of the Nanomechanics Groups at the Universities of Adelaide and Wollongong. Fullerenes and carbon nanotubes have unique properties, such as low weight, high strength, flexibility, high thermal conductivity and chemical stability, and they have many potential applications in nano-devices. In this talk we first present some new results on the geometric structure of carbon nanotubes and on related nanostructures. One concept that has attracted much attention is the creation of nano-oscillators, to produce frequencies in the gigahertz range, for applications such as ultra-fast optical filters and nano-antennae. The sliding of an inner shell inside an outer shell of a multi-walled carbon nanotube can generate oscillatory frequencies up to several gigahertz, and the shorter the inner tube the higher the frequency. A C60-nanotube oscillator generates high frequencies by oscillating a C60 fullerene inside a single-walled carbon nanotube. Here we discuss the underlying mechanisms of nano-oscillators and using the Lennard-Jones potential together with the continuum approach, to mathematically model the C60-nanotube nano-oscillator. Finally, three illustrative examples of recent modelling in hydrogen storage, nanomedicine and nanocomputing are discussed.
Lorentzian manifolds with special holonomy
13:10 Fri 25 Mar, 2011 :: Mawson 208 :: Mr Kordian Laerz :: Humboldt University, Berlin

A parallel lightlike vector field on a Lorentzian manifold X naturally defines a foliation of codimension 1 on X and a 1-dimensional subfoliation. In the first part we introduce Lorentzian metrics on the total space of certain circle bundles in order to construct weakly irreducible Lorentzian manifolds admitting a parallel lightlike vector field such that all leaves of the foliations are compact. Then we study which holonomy representations can be realized in this way. Finally, we consider the structure of arbitrary Lorentzian manifolds for which the leaves of the foliations are compact.
Heat transfer scaling and emergence of three-dimensional flow in horizontal convection
15:10 Fri 25 Mar, 2011 :: Conference Room Level 7 Ingkarni Wardli :: Dr Greg Sheard :: Monash University

Operator algebra quantum groups
13:10 Fri 1 Apr, 2011 :: Mawson 208 :: Dr Snigdhayan Mahanta :: University of Adelaide

Woronowicz initiated the study of quantum groups using C*-algebras. His framework enabled him to deal with compact (linear) quantum groups. In this talk we shall introduce a notion of quantum groups that can handle infinite dimensional examples like SU(\infty). We shall also study some quantum homogeneous spaces associated to this group and compute their K-theory groups. This is joint work with V. Mathai.
Classification for high-dimensional data
15:10 Fri 1 Apr, 2011 :: Conference Room Level 7 Ingkarni Wardli :: Associate Prof Inge Koch :: The University of Adelaide

For two-class classification problems Fisher's discriminant rule performs well in many scenarios provided the dimension, d, is much smaller than the sample size n. As the dimension increases, Fisher's rule may no longer be adequate, and can perform as poorly as random guessing. In this talk we look at new ways of overcoming this poor performance for high-dimensional data by suitably modifying Fisher's rule, and in particular we describe the 'Features Annealed Independence Rule (FAIR)? of Fan and Fan (2008) and a rule based on canonical correlation analysis. I describe some theoretical developments, and also show analysis of data which illustrate the performance of these modified rule.
Comparison of Spectral and Wavelet Estimation of the Dynamic Linear System of a Wade Energy Device
12:10 Mon 2 May, 2011 :: 5.57 Ingkarni Wardli :: Mohd Aftar :: University of Adelaide

Renewable energy has been one of the main issues nowadays. The implications of fossil energy and nuclear energy along with its limited source have triggered researchers and industries to find another source of renewable energy for example hydro energy, wind energy and also wave energy. In this seminar, I will talk about the spectral estimation and wavelet estimation of a linear dynamical system of motion for a heaving buoy wave energy device. The spectral estimates was based on the Fourier transform, while the wavelet estimate was based on the wavelet transform. Comparisons between two spectral estimates with a wavelet estimate of the amplitude response operator(ARO) for the dynamical system of the wave energy device shows that the wavelet estimate ARO is much better for data with and without noise.
On parameter estimation in population models
15:10 Fri 6 May, 2011 :: 715 Ingkarni Wardli :: Dr Joshua Ross :: The University of Adelaide

Essential to applying a mathematical model to a real-world application is calibrating the model to data. Methods for calibrating population models often become computationally infeasible when the populations size (more generally the size of the state space) becomes large, or other complexities such as time-dependent transition rates, or sampling error, are present. Here we will discuss the use of diffusion approximations to perform estimation in several scenarios, with successively reduced assumptions: (i) under the assumption of stationarity (the process had been evolving for a very long time with constant parameter values); (ii) transient dynamics (the assumption of stationarity is invalid, and thus only constant parameter values may be assumed); and, (iii) time-inhomogeneous chains (the parameters may vary with time) and accounting for observation error (a sample of the true state is observed).
When statistics meets bioinformatics
12:10 Wed 11 May, 2011 :: Napier 210 :: Prof Patty Solomon :: School of Mathematical Sciences

Media...
Bioinformatics is a new field of research which encompasses mathematics, computer science, biology, medicine and the physical sciences. It has arisen from the need to handle and analyse the vast amounts of data being generated by the new genomics technologies. The interface of these disciplines used to be information-poor, but is now information-mega-rich, and statistics plays a central role in processing this information and making it intelligible. In this talk, I will describe a published bioinformatics study which claimed to have developed a simple test for the early detection of ovarian cancer from a blood sample. The US Food and Drug Administration was on the verge of approving the test kits for market in 2004 when demonstrated flaws in the study design and analysis led to its withdrawal. We are still waiting for an effective early biomarker test for ovarian cancer.
Statistical challenges in molecular phylogenetics
15:10 Fri 20 May, 2011 :: Mawson Lab G19 lecture theatre :: Dr Barbara Holland :: University of Tasmania

Media...
This talk will give an introduction to the ways that mathematics and statistics gets used in the inference of evolutionary (phylogenetic) trees. Taking a model-based approach to estimating the relationships between species has proven to be an enormously effective, however, there are some tricky statistical challenges that remain. The increasingly plentiful amount of DNA sequence data is a boon, but it is also throwing a spotlight on some of the shortcomings of current best practice particularly in how we (1) assess the reliability of our phylogenetic estimates, and (2) how we choose appropriate models. This talk will aim to give a general introduction this area of research and will also highlight some results from two of my recent PhD students.
Permeability of heterogeneous porous media - experiments, mathematics and computations
15:10 Fri 27 May, 2011 :: B.21 Ingkarni Wardli :: Prof Patrick Selvadurai :: Department of Civil Engineering and Applied Mechanics, McGill University

Permeability is a key parameter important to a variety of applications in geological engineering and in the environmental geosciences. The conventional definition of Darcy flow enables the estimation of permeability at different levels of detail. This lecture will focus on the measurement of surface permeability characteristics of a large cuboidal block of Indiana Limestone, using a surface permeameter. The paper discusses the theoretical developments, the solution of the resulting triple integral equations and associated computational treatments that enable the mapping of the near surface permeability of the cuboidal region. This data combined with a kriging procedure is used to develop results for the permeability distribution at the interior of the cuboidal region. Upon verification of the absence of dominant pathways for fluid flow through the cuboidal region, estimates are obtained for the "Effective Permeability" of the cuboid using estimates proposed by Wiener, Landau and Lifschitz, King, Matheron, Journel et al., Dagan and others. The results of these estimates are compared with the geometric mean, derived form the computational estimates.
Optimal experimental design for stochastic population models
15:00 Wed 1 Jun, 2011 :: 7.15 Ingkarni Wardli :: Dr Dan Pagendam :: CSIRO, Brisbane

Markov population processes are popular models for studying a wide range of phenomena including the spread of disease, the evolution of chemical reactions and the movements of organisms in population networks (metapopulations). Our ability to use these models effectively can be limited by our knowledge about parameters, such as disease transmission and recovery rates in an epidemic. Recently, there has been interest in devising optimal experimental designs for stochastic models, so that practitioners can collect data in a manner that maximises the precision of maximum likelihood estimates of the parameters for these models. I will discuss some recent work on optimal design for a variety of population models, beginning with some simple one-parameter models where the optimal design can be obtained analytically and moving on to more complicated multi-parameter models in epidemiology that involve latent states and non-exponentially distributed infectious periods. For these more complex models, the optimal design must be arrived at using computational methods and we rely on a Gaussian diffusion approximation to obtain analytical expressions for Fisher's information matrix, which is at the heart of most optimality criteria in experimental design. I will outline a simple cross-entropy algorithm that can be used for obtaining optimal designs for these models. We will also explore the improvements in experimental efficiency when using the optimal design over some simpler designs, such as the design where observations are spaced equidistantly in time.
From group action to Kontsevich's Swiss-Cheese conjecture through categorification
15:10 Fri 3 Jun, 2011 :: Mawson Lab G19 :: Dr Michael Batanin :: Macquarie University

Media...
The Kontsevich Swiss-Cheese conjecture is a deep generalization of the Deligne conjecture on Hochschild cochains which plays an important role in the deformation quantization theory. Categorification is a method of thinking about mathematics by replacing set theoretical concepts by some higher dimensional objects. Categorification is somewhat of an art because there is no exact recipe for doing this. It is, however, a very powerful method of understanding (and producing) many deep results starting from simple facts we learned as undergraduate students. In my talk I will explain how Kontsevich Swiss-Cheese conjecture can be easily understood as a special case of categorification of a very familiar statement: an action of a group G (more generally, a monoid) on a set X is the same as group homomorphism from G to the group of automorphisms of X (monoid of endomorphisms of X in the case of a monoid action).
Inference and optimal design for percolation and general random graph models (Part I)
09:30 Wed 8 Jun, 2011 :: 7.15 Ingkarni Wardli :: Dr Andrei Bejan :: The University of Cambridge

The problem of optimal arrangement of nodes of a random weighted graph is discussed in this workshop. The nodes of graphs under study are fixed, but their edges are random and established according to the so called edge-probability function. This function is assumed to depend on the weights attributed to the pairs of graph nodes (or distances between them) and a statistical parameter. It is the purpose of experimentation to make inference on the statistical parameter and thus to extract as much information about it as possible. We also distinguish between two different experimentation scenarios: progressive and instructive designs.

We adopt a utility-based Bayesian framework to tackle the optimal design problem for random graphs of this kind. Simulation based optimisation methods, mainly Monte Carlo and Markov Chain Monte Carlo, are used to obtain the solution. We study optimal design problem for the inference based on partial observations of random graphs by employing data augmentation technique. We prove that the infinitely growing or diminishing node configurations asymptotically represent the worst node arrangements. We also obtain the exact solution to the optimal design problem for proximity (geometric) graphs and numerical solution for graphs with threshold edge-probability functions.

We consider inference and optimal design problems for finite clusters from bond percolation on the integer lattice $\mathbb{Z}^d$ and derive a range of both numerical and analytical results for these graphs. We introduce inner-outer plots by deleting some of the lattice nodes and show that the ëmostly populatedí designs are not necessarily optimal in the case of incomplete observations under both progressive and instructive design scenarios. Some of the obtained results may generalise to other lattices.

Inference and optimal design for percolation and general random graph models (Part II)
10:50 Wed 8 Jun, 2011 :: 7.15 Ingkarni Wardli :: Dr Andrei Bejan :: The University of Cambridge

The problem of optimal arrangement of nodes of a random weighted graph is discussed in this workshop. The nodes of graphs under study are fixed, but their edges are random and established according to the so called edge-probability function. This function is assumed to depend on the weights attributed to the pairs of graph nodes (or distances between them) and a statistical parameter. It is the purpose of experimentation to make inference on the statistical parameter and thus to extract as much information about it as possible. We also distinguish between two different experimentation scenarios: progressive and instructive designs.

We adopt a utility-based Bayesian framework to tackle the optimal design problem for random graphs of this kind. Simulation based optimisation methods, mainly Monte Carlo and Markov Chain Monte Carlo, are used to obtain the solution. We study optimal design problem for the inference based on partial observations of random graphs by employing data augmentation technique. We prove that the infinitely growing or diminishing node configurations asymptotically represent the worst node arrangements. We also obtain the exact solution to the optimal design problem for proximity (geometric) graphs and numerical solution for graphs with threshold edge-probability functions.

We consider inference and optimal design problems for finite clusters from bond percolation on the integer lattice $\mathbb{Z}^d$ and derive a range of both numerical and analytical results for these graphs. We introduce inner-outer plots by deleting some of the lattice nodes and show that the ëmostly populatedí designs are not necessarily optimal in the case of incomplete observations under both progressive and instructive design scenarios. Some of the obtained results may generalise to other lattices.

Quantitative proteomics: data analysis and statistical challenges
10:10 Thu 30 Jun, 2011 :: 7.15 Ingkarni Wardli :: Dr Peter Hoffmann :: Adelaide Proteomics Centre

Introduction to functional data analysis with applications to proteomics data
11:10 Thu 30 Jun, 2011 :: 7.15 Ingkarni Wardli :: A/Prof Inge Koch :: School of Mathematical Sciences

Object oriented data analysis
14:10 Thu 30 Jun, 2011 :: 7.15 Ingkarni Wardli :: Prof Steve Marron :: The University of North Carolina at Chapel Hill

Object Oriented Data Analysis is the statistical analysis of populations of complex objects. In the special case of Functional Data Analysis, these data objects are curves, where standard Euclidean approaches, such as principal components analysis, have been very successful. Recent developments in medical image analysis motivate the statistical analysis of populations of more complex data objects which are elements of mildly non-Euclidean spaces, such as Lie Groups and Symmetric Spaces, or of strongly non-Euclidean spaces, such as spaces of tree-structured data objects. These new contexts for Object Oriented Data Analysis create several potentially large new interfaces between mathematics and statistics. Even in situations where Euclidean analysis makes sense, there are statistical challenges because of the High Dimension Low Sample Size problem, which motivates a new type of asymptotics leading to non-standard mathematical statistics.
Object oriented data analysis of tree-structured data objects
15:10 Fri 1 Jul, 2011 :: 7.15 Ingkarni Wardli :: Prof Steve Marron :: The University of North Carolina at Chapel Hill

The field of Object Oriented Data Analysis has made a lot of progress on the statistical analysis of the variation in populations of complex objects. A particularly challenging example of this type is populations of tree-structured objects. Deep challenges arise, which involve a marriage of ideas from statistics, geometry, and numerical analysis, because the space of trees is strongly non-Euclidean in nature. These challenges, together with three completely different approaches to addressing them, are illustrated using a real data example, where each data point is the tree of blood arteries in one person's brain.
Heads of Mathematics
12:00 Thu 7 Jul, 2011 :: N132 Engineering North :: School outreach event

This collaboration with MASA is aimed at high school teachers of mathematics. A mixture of workshops, lectures and discussion sessions is given to expose the teachers to new ideas for teaching mathematics.
The (dual) local cyclic homology valued Chern-Connes character for some infinite dimensional spaces
13:10 Fri 29 Jul, 2011 :: B.19 Ingkarni Wardli :: Dr Snigdhayan Mahanta :: School of Mathematical Sciences

I will explain how to construct a bivariant Chern-Connes character on the category of sigma-C*-algebras taking values in Puschnigg's local cyclic homology. Roughly, setting the first (resp. the second) variable to complex numbers one obtains the K-theoretic (resp. dual K-homological) Chern-Connes character in one variable. We shall focus on the dual K-homological Chern-Connes character and investigate it in the example of SU(infty).
Modelling computer network topologies through optimisation
12:10 Mon 1 Aug, 2011 :: 5.57 Ingkarni Wardli :: Mr Rhys Bowden :: University of Adelaide

The core of the Internet is made up of many different computers (called routers) in many different interconnected networks, owned and operated by many different organisations. A popular and important field of study in the past has been "network topology": for instance, understanding which routers are connected to which other routers, or which networks are connected to which other networks; that is, studying and modelling the connection structure of the Internet. Previous study in this area has been plagued by unreliable or flawed experimental data and debate over appropriate models to use. The Internet Topology Zoo is a new source of network data created from the information that network operators make public. In order to better understand this body of network information we would like the ability to randomly generate network topologies resembling those in the zoo. Leveraging previous wisdom on networks produced as a result of optimisation processes, we propose a simple objective function based on possible economic constraints. By changing the relative costs in the objective function we can change the form of the resulting networks, and we compare these optimised networks to a variety of networks found in the Internet Topology Zoo.
Spectra alignment/matching for the classification of cancer and control patients
12:10 Mon 8 Aug, 2011 :: 5.57 Ingkarni Wardli :: Mr Tyman Stanford :: University of Adelaide

Proteomic time-of-flight mass spectrometry produces a spectrum based on the peptides (chains of amino acids) in each patient’s serum sample. The spectra contain data points for an x-axis (peptide weight) and a y-axis (peptide frequency/count/intensity). It is our end goal to differentiate cancer (and sub-types) and control patients using these spectra. Before we can do this, peaks in these data must be found and common peptides to different spectra must be found. The data are noisy because of biotechnological variation and calibration error; data points for different peptide weights may in fact be same peptide. An algorithm needs to be employed to find common peptides between spectra, as performing alignment ‘by hand’ is almost infeasible. We borrow methods suggested in the literature by metabolomic gas chromatography-mass spectrometry and extend the methods for our purposes. In this talk I will go over the basic tenets of what we hope to achieve and the process towards this.
Dealing with the GC-content bias in second-generation DNA sequence data
15:10 Fri 12 Aug, 2011 :: Horace Lamb :: Prof Terry Speed :: Walter and Eliza Hall Institute

Media...
The field of genomics is currently dealing with an explosion of data from so-called second-generation DNA sequencing machines. This is creating many challenges and opportunities for statisticians interested in the area. In this talk I will outline the technology and the data flood, and move on to one particular problem where the technology is used: copy-number analysis. There we find a novel bias, which, if not dealt with properly, can dominate the signal of interest. I will describe how we think about and summarize it, and go on to identify a plausible source of this bias, leading up to a way of removing it. Our approach makes use of the total variation metric on discrete measures, but apart from this, is largely descriptive.
Blood flow in the coiled umbilical cord
12:10 Mon 22 Aug, 2011 :: 5.57 Ingkarni Wardli :: Mr David Wilke :: University of Adelaide

The umbilical cord is the connecting cord between the developing embryo or fetus and the placenta. In a normal pregnancy it facilitates the supply of oxygen and nutrients from the placenta, in addition to the return of deoxygenated blood from the fetus. One of the most striking features of the umbilical cord is it's coiled structure, which allows the vasculature to withstand tensile and compressive forces in utero. The level of coiling also has a significant effect on the blood flow and cords exhibiting abnormally high or low levels are known to correlate well with adverse outcomes in pregancy, including fetal demise. In this talk I will discuss the complexities associated with numerically modeling blood flow within the umbilical cord, and provide an outline of the key features which will be investigated throughout my research.
MiS information night
16:00 Tue 23 Aug, 2011 :: 7.15 Ingkarni Wardli

Mathematicians in Schools (MiS) is a CSIRO-supported endeavour that entails partnerships between mathematicians and high-schools. This relationship helps promote mathematics to high-school students. The MiS information night will consist of participants in established partnerships discussing their experiences and also an opportunity to ask about future participation.
Laplace's equation on multiply-connected domains
12:10 Mon 29 Aug, 2011 :: 5.57 Ingkarni Wardli :: Mr Hayden Tronnolone :: University of Adelaide

Various physical processes take place on multiply-connected domains (domains with some number of 'holes'), such as the stirring of a fluid with paddles or the extrusion of material from a die. These systems may be described by partial differential equations (PDEs). However, standard numerical methods for solving PDEs are not well-suited to such examples: finite difference methods are difficult to implement on multiply-connected domains, especially when the boundaries are irregular or moving, while finite element methods are computationally expensive. In this talk I will describe a fast and accurate numerical method for solving certain PDEs on two-dimensional multiply-connected domains, considering Laplace's equation as an example. This method takes advantage of complex variable techniques which allow the solution to be found with spectral accuracy provided the boundary data is smooth. Other advantages over traditional numerical methods will also be discussed.
Oka properties of some hypersurface complements
13:10 Fri 2 Sep, 2011 :: B.19 Ingkarni Wardli :: Mr Alexander Hanysz :: University of Adelaide

Oka manifolds can be viewed as the "opposite" of Kobayashi hyperbolic manifolds. Kobayashi conjectured that the complement of a generic algebraic hypersurface of sufficiently high degree is hyperbolic. Therefore it is natural to ask whether the complement is Oka for the case of low degree or non-algebraic hypersurfaces. We provide a complete answer to this question for complements of hyperplane arrangements, and some results for graphs of meromorphic functions.
Alignment of time course gene expression data sets using Hidden Markov Models
12:10 Mon 5 Sep, 2011 :: 5.57 Ingkarni Wardli :: Mr Sean Robinson :: University of Adelaide

Time course microarray experiments allow for insight into biological processes by measuring gene expression over a time period of interest. This project is concerned with time course data from a microarray experiment conducted on a particular variety of grapevine over the development of the grape berries at a number of different vineyards in South Australia. The aim of the project is to construct a methodology for combining the data from the different vineyards in order to obtain more precise estimates of the underlying behaviour of the genes over the development process. A major issue in doing so is that the rate of development of the grape berries is different at different vineyards. Hidden Markov models (HMMs) are a well established methodology for modelling time series data in a number of domains and have been previously used for gene expression analysis. Modelling the grapevine data presents a unique modelling issue, namely the alignment of the expression profiles needed to combine the data from different vineyards. In this seminar, I will describe our problem, review HMMs, present an extension to HMMs and show some preliminary results modelling the grapevine data.
Twisted Morava K-theory
13:10 Fri 9 Sep, 2011 :: 7.15 Ingkarni Wardli :: Dr Craig Westerland :: University of Melbourne

Morava's extraordinary K-theories K(n) are a family of generalized cohomology theories which behave in some ways like K-theory (indeed, K(1) is mod 2 K-theory). Their construction exploits Quillen's description of cobordism in terms of formal group laws and Lubin-Tate's methods in class field theory for constructing abelian extensions of number fields. Constructed from homotopy-theoretic methods, they do not admit a geometric description (like deRham cohomology, K-theory, or cobordism), but are nonetheless subtle, computable invariants of topological spaces. In this talk, I will give an introduction to these theories, and explain how it is possible to define an analogue of twisted K-theory in this setting. Traditionally, K-theory is twisted by a three-dimensional cohomology class; in this case, K(n) admits twists by (n+2)-dimensional classes. This work is joint with Hisham Sati.
Statistical analysis of metagenomic data from the microbial community involved in industrial bioleaching
12:10 Mon 19 Sep, 2011 :: 5.57 Ingkarni Wardli :: Ms Susana Soto-Rojo :: University of Adelaide

In the last two decades heap bioleaching has become established as a successful commercial option for recovering copper from low-grade secondary sulfide ores. Genetics-based approaches have recently been employed in the task of characterizing mineral processing bacteria. Data analysis is a key issue and thus the implementation of adequate mathematical and statistical tools is of fundamental importance to draw reliable conclusions. In this talk I will give a recount of two specific problems that we have been working on. The first regarding experimental design and the latter on modeling composition and activity of the microbial consortium.
Can statisticians do better than random guessing?
12:10 Tue 20 Sep, 2011 :: Napier 210 :: A/Prof Inge Koch :: School of Mathematical Sciences

In the finance or credit risk area, a bank may want to assess whether a client is going to default, or be able to meet the repayments. In the assessment of benign or malignant tumours, a correct diagnosis is required. In these and similar examples, we make decisions based on data. The classical t-tests provide a tool for making such decisions. However, many modern data sets have more variables than observations, and the classical rules may not be any better than random guessing. We consider Fisher's rule for classifying data into two groups, and show that it can break down for high-dimensional data. We then look at ways of overcoming some of the weaknesses of the classical rules, and I show how these "post-modern" rules perform in practice.
Estimating transmission parameters for the swine flu pandemic
15:10 Fri 23 Sep, 2011 :: 7.15 Ingkarni Wardli :: Dr Kathryn Glass :: Australian National University

Media...
Following the onset of a new strain of influenza with pandemic potential, policy makers need specific advice on how fast the disease is spreading, who is at risk, and what interventions are appropriate for slowing transmission. Mathematical models play a key role in comparing interventions and identifying the best response, but models are only as good as the data that inform them. In the early stages of the 2009 swine flu outbreak, many researchers estimated transmission parameters - particularly the reproduction number - from outbreak data. These estimates varied, and were often biased by data collection methods, misclassification of imported cases or as a result of early stochasticity in case numbers. I will discuss a number of the pitfalls in achieving good quality parameter estimates from early outbreak data, and outline how best to avoid them. One of the early indications from swine flu data was that children were disproportionately responsible for disease spread. I will introduce a new method for estimating age-specific transmission parameters from both outbreak and seroprevalence data. This approach allows us to take account of empirical data on human contact patterns, and highlights the need to allow for asymmetric mixing matrices in modelling disease transmission between age groups. Applied to swine flu data from a number of different countries, it presents a consistent picture of higher transmission from children.
Statistical analysis of school-based student performance data
12:10 Mon 10 Oct, 2011 :: 5.57 Ingkarni Wardli :: Ms Jessica Tan :: University of Adelaide

Join me in the journey of being a statistician for 15 minutes of your day (if you are not already one) and experience the task of data cleaning without having to get your own hands dirty. Most of you may have sat the Basic Skills Tests when at school or know someone who currently has to do the NAPLAN (National Assessment Program - Literacy and Numeracy) tests. Tests like these assess student progress and can be used to accurately measure school performance. In trying to answer the research question: "what conclusions about student progress and school performance can be drawn from NAPLAN data or data of a similar nature, using mathematical and statistical modelling and analysis techniques?", I have uncovered some interesting results about the data in my initial data analysis which I shall explain in this talk.
Statistical modelling for some problems in bioinformatics
11:10 Fri 14 Oct, 2011 :: B.17 Ingkarni Wardli :: Professor Geoff McLachlan :: The University of Queensland

Media...
In this talk we consider some statistical analyses of data arising in bioinformatics. The problems include the detection of differential expression in microarray gene-expression data, the clustering of time-course gene-expression data and, lastly, the analysis of modern-day cytometric data. Extensions are considered to the procedures proposed for these three problems in McLachlan et al. (Bioinformatics, 2006), Ng et al. (Bioinformatics, 2006), and Pyne et al. (PNAS, 2009), respectively. The latter references are available at http://www.maths.uq.edu.au/~gjm/.
On the role of mixture distributions in the modelling of heterogeneous data
15:10 Fri 14 Oct, 2011 :: 7.15 Ingkarni Wardli :: Prof Geoff McLachlan :: University of Queensland

Media...
We consider the role that finite mixture distributions have played in the modelling of heterogeneous data, in particular for clustering continuous data via mixtures of normal distributions. A very brief history is given starting with the seminal papers by Day and Wolfe in the sixties before the appearance of the EM algorithm. It was the publication in 1977 of the latter algorithm by Dempster, Laird, and Rubin that greatly stimulated interest in the use of finite mixture distributions to model heterogeneous data. This is because the fitting of mixture models by maximum likelihood is a classic example of a problem that is simplified considerably by the EM's conceptual unification of maximum likelihood estimation from data that can be viewed as being incomplete. In recent times there has been a proliferation of applications in which the number of experimental units n is comparatively small but the underlying dimension p is extremely large as, for example, in microarray-based genomics and other high-throughput experimental approaches. Hence there has been increasing attention given not only in bioinformatics and machine learning, but also in mainstream statistics, to the analysis of complex data in this situation where n is small relative to p. The latter part of the talk shall focus on the modelling of such high-dimensional data using mixture distributions.
Metric geometry in data analysis
13:10 Fri 11 Nov, 2011 :: B.19 Ingkarni Wardli :: Dr Facundo Memoli :: University of Adelaide

The problem of object matching under invariances can be studied using certain tools from metric geometry. The central idea is to regard objects as metric spaces (or metric measure spaces). The type of invariance that one wishes to have in the matching is encoded by the choice of the metrics with which one endows the objects. The standard example is matching objects in Euclidean space under rigid isometries: in this situation one would endow the objects with the Euclidean metric. More general scenarios are possible in which the desired invariance cannot be reflected by the preservation of an ambient space metric. Several ideas due to M. Gromov are useful for approaching this problem. The Gromov-Hausdorff distance is a natural candidate for doing this. However, this metric leads to very hard combinatorial optimization problems and it is difficult to relate to previously reported practical approaches to the problem of object matching. I will discuss different variations of these ideas, and in particular will show a construction of an L^p version of the Gromov-Hausdorff metric, called the Gromov-Wassestein distance, which is based on mass transportation ideas. This new metric directly leads to quadratic optimization problems on continuous variables with linear constraints. As a consequence of establishing several lower bounds, it turns out that several invariants of metric measure spaces turn out to be quantitatively stable in the GW sense. These invariants provide practical tools for the discrimination of shapes and connect the GW ideas to a number of pre-existing approaches.
Stability analysis of nonparallel unsteady flows via separation of variables
15:30 Fri 18 Nov, 2011 :: 7.15 Ingkarni Wardli :: Prof Georgy Burde :: Ben-Gurion University

Media...
The problem of variables separation in the linear stability equations, which govern the disturbance behavior in viscous incompressible fluid flows, is discussed. Stability of some unsteady nonparallel three-dimensional flows (exact solutions of the Navier-Stokes equations) is studied via separation of variables using a semi-analytical, semi-numerical approach. In this approach, a solution with separated variables is defined in a new coordinate system which is sought together with the solution form. As the result, the linear stability problems are reduced to eigenvalue problems for ordinary differential equations which can be solved numerically. In some specific cases, the eigenvalue problems can be solved analytically. Those unique examples of exact (explicit) solution of the nonparallel unsteady flow stability problems provide a very useful test for methods used in the hydrodynamic stability theory. Exact solutions of the stability problems for some stagnation-type flows are presented.
Applications of tropical geometry to groups and manifolds
13:10 Mon 21 Nov, 2011 :: B.19 Ingkarni Wardli :: Dr Stephan Tillmann :: University of Queensland

Tropical geometry is a young field with multiple origins. These include the work of Bergman on logarithmic limit sets of algebraic varieties; the work of the Brazilian computer scientist Simon on discrete mathematics; the work of Bieri, Neumann and Strebel on geometric invariants of groups; and, of course, the work of Newton on polynomials. Even though there is still need for a unified foundation of the field, there is an abundance of applications of tropical geometry in group theory, combinatorics, computational algebra and algebraic geometry. In this talk I will give an overview of (what I understand to be) tropical geometry with a bias towards applications to group theory and low-dimensional topology.
Fluid flows in microstructured optical fibre fabrication
15:10 Fri 25 Nov, 2011 :: B.17 Ingkarni Wardli :: Mr Hayden Tronnolone :: University of Adelaide

Optical fibres are used extensively in modern telecommunications as they allow the transmission of information at high speeds. Microstructured optical fibres are a relatively new fibre design in which a waveguide for light is created by a series of air channels running along the length of the material. The flexibility of this design allows optical fibres to be created with adaptable (and previously unrealised) optical properties. However, the fluid flows that arise during fabrication can greatly distort the geometry, which can reduce the effectiveness of a fibre or render it useless. I will present an overview of the manufacturing process and highlight the difficulties. I will then focus on surface-tension driven deformation of the macroscopic version of the fibre extruded from a reservoir of molten glass, occurring during fabrication, which will be treated as a two-dimensional Stokes flow problem. I will outline two different complex-variable numerical techniques for solving this problem along with comparisons of the results, both to other models and to experimental data.
The Lorentzian conformal analogue of Calabi-Yau manifolds
13:10 Fri 16 Mar, 2012 :: B.20 Ingkarni Wardli :: Prof Helga Baum :: Humboldt University

Calabi-Yau manifolds are Riemannian manifolds with holonomy group SU(m). They are Ricci-flat and Kahler and admit a 2-parameter family of parallel spinors. In the talk we will discuss the Lorentzian conformal analogue of this situation. If on a manifold a class of conformally equivalent metrics [g] is given, then one can consider the holonomy group of the conformal manifold (M,[g]), which is a subgroup of O(p+1,q+1) if the metric g has signature (p,q). There is a close relation between algebraic properties of the conformal holonomy group and the existence of Einstein metrics in the conformal class as well as to the existence of conformal Killing spinors. In the talk I will explain classification results for conformal holonomy groups of Lorentzian manifolds. In particular, I will describe Lorentzian manifolds (M,g) with conformal holonomy group SU(1,m), which can be viewed as the conformal analogue of Calabi-Yau manifolds. Such Lorentzian metrics g, known as Fefferman metrics, appear on S^1-bundles over strictly pseudoconvex CR spin manifolds and admit a 2-parameter family of conformal Killing spinors.
The mechanics of plant root growth
15:10 Fri 30 Mar, 2012 :: B.21 Ingkarni Wardli :: Dr Rosemary Dyson :: University of Birmingham

Media...
Growing plant cells undergo rapid axial elongation with negligible radial expansion: high internal turgor pressure causes viscous stretching of the cell wall. We represent the cell wall as a thin fibre-reinforced viscous sheet, providing insight into the geometric and biomechanical parameters underlying bulk quantities such as wall extensibility and showing how either dynamical changes in material properties, achieved through changes in the cell-wall microstructure, or passive fibre reorientation may suppress cell elongation. We then investigate how the action of enzymes on the cell wall microstructure can lead to the required dynamic changes in macroscale wall material properties, and thus demonstrate a mechanism by which hormones may regulate plant growth.
A Problem of Siegel
13:10 Fri 27 Apr, 2012 :: B.20 Ingkarni Wardli :: Dr Brent Everitt :: University of York

The first explicit examples of orientable hyperbolic 3-manifolds were constructed by Weber, Siefert, and Lobell in the early 1930's. In the subsequent decades the world of hyperbolic n-manifolds has grown into an extraordinarily rich one. Its sociology is best understood through the eyes of invariants, and for hyperbolic manifolds the most important invariant is volume. Viewed this way the n-dimensional hyperbolic manifolds, for fixed n, look like a well-ordered subset of the reals (a discrete set even, when n is not 3). So we are naturally led to the (manifold) Siegel problem: for a given n, determine the minimum possible volume obtained by an orientable hyperbolic n-manifold. It is a problem with a long and venerable history. In this talk I will describe a unified solution to the problem in low even dimensions, one of which at least is new. Joint work with John Ratcliffe and Steve Tschantz (Vanderbilt).
Spatial-point data sets and the Polya distribution
15:10 Fri 27 Apr, 2012 :: B.21 Ingkarni Wardli :: Dr Benjamin Binder :: The University of Adelaide

Media...
Spatial-point data sets, generated from a wide range of physical systems and mathematical models, can be analyzed by counting the number of objects in equally sized bins. We find that the bin counts are related to the Polya distribution. New indexes are developed which quantify whether or not a spatial data set is at its most evenly distributed state. Using three case studies (Lagrangian fluid particles in chaotic laminar flows, cellular automata agents in discrete models, and biological cells within colonies), we calculate the indexes and predict the spatial-state of the system.
Computational complexity, taut structures and triangulations
13:10 Fri 18 May, 2012 :: Napier LG28 :: Dr Benjamin Burton :: University of Queensland

There are many interesting and difficult algorithmic problems in low-dimensional topology. Here we study the problem of finding a taut structure on a 3-manifold triangulation, whose existence has implications for both the geometry and combinatorics of the triangulation. We prove that detecting taut structures is "hard", in the sense that it is NP-complete. We also prove that detecting taut structures is "not too hard", by showing it to be fixed-parameter tractable. This is joint work with Jonathan Spreer.
Unknot recognition and the elusive polynomial time algorithm
15:10 Fri 18 May, 2012 :: B.21 Ingkarni Wardli :: Dr Benjamin Burton :: The University of Queensland

Media...
What do practical topics such as linear programming and greedy heuristics have to do with theoretical problems such as unknot recognition and the Poincare conjecture? In this talk we explore new approaches to old and difficult computational problems from geometry and topology: how to tell whether a loop of string is knotted, or whether a 3-dimensional space has no interesting topological features. Although the best known algorithms for these problems run in exponential time, there is increasing evidence that a polynomial time solution might be possible. We outline several promising approaches in which computational geometry, linear programming and greedy algorithms all play starring roles.
The classification of Dynkin diagrams
12:10 Mon 21 May, 2012 :: 5.57 Ingkarni Wardli :: Mr Alexander Hanysz :: University of Adelaide

Media...
The idea of continuous symmetry is often described in mathematics via Lie groups. These groups can be classified by their root systems: collections of vectors satisfying certain symmetry properties. The root systems are described in a concise way by Dynkin diagrams, and it turns out, roughly speaking, that there are only seven possible shapes for a Dynkin diagram. In this talk I'll describe some simple examples of Lie groups, explain what a root system is, and show how a Dynkin diagram encodes this information. Then I'll give a very brief sketch of the methods used to classify Dynkin diagrams.
On the full holonomy group of special Lorentzian manifolds
13:10 Fri 25 May, 2012 :: Napier LG28 :: Dr Thomas Leistner :: University of Adelaide

The holonomy group of a semi-Riemannian manifold is defined as the group of parallel transports along loops based at a point. Its connected component, the `restricted holonomy group', is given by restricting in this definition to contractible loops. The restricted holonomy can essentially be described by its Lie algebra and many classification results are obtained in this way. In contrast, the `full' holonomy group is a more global object and classification results are out of reach. In the talk I will describe recent results with H. Baum and K. Laerz (both HU Berlin) about the full holonomy group of so-called `indecomposable' Lorentzian manifolds. I will explain a construction method that arises from analysing the effects on holonomy when dividing the manifold by the action of a properly discontinuous group of isometries and present several examples of Lorentzian manifolds with disconnected holonomy groups.
Enhancing the Jordan canonical form
15:10 Fri 1 Jun, 2012 :: B.21 Ingkarni Wardli :: A/Prof Anthony Henderson :: The University of Sydney

Media...
In undergraduate linear algebra, we teach the Jordan canonical form theorem: that every similarity class of n x n complex matrices contains a special matrix which is block-diagonal with each block having a very simple form (a single eigenvalue repeated down the diagonal, ones on the super-diagonal, and zeroes elsewhere). This is of course very useful for matrix calculations. After explaining some of the general context of this result, I will focus on a case which, despite its close proximity to the Jordan canonical form theorem, has only recently been worked out: the classification of pairs of a vector and a matrix.
A brief introduction to Support Vector Machines
12:30 Mon 4 Jun, 2012 :: 5.57 Ingkarni Wardli :: Mr Tyman Stanford :: University of Adelaide

Media...
Support Vector Machines (SVMs) are used in a variety of contexts for a range of purposes including regression, feature selection and classification. To convey the basic principles of SVMs, this presentation will focus on the application of SVMs to classification. Classification (or discrimination), in a statistical sense, is supervised model creation for the purpose of assigning future observations to a group or class. An example might be determining healthy or diseased labels to patients from p characteristics obtained from a blood sample. While SVMs are widely used, they are most successful when the data have one or more of the following properties: The data are not consistent with a standard probability distribution. The number of observations, n, used to create the model is less than the number of predictive features, p. (The so-called small-n, big-p problem.) The decision boundary between the classes is likely to be non-linear in the feature space. I will present a short overview of how SVMs are constructed, keeping in mind their purpose. As this presentation is part of a double post-grad seminar, I will keep it to a maximum of 15 minutes.
Comparison of spectral and wavelet estimators of transfer function for linear systems
12:10 Mon 18 Jun, 2012 :: B.21 Ingkarni Wardli :: Mr Mohd Aftar Abu Bakar :: University of Adelaide

Media...
We compare spectral and wavelet estimators of the response amplitude operator (RAO) of a linear system, with various input signals and added noise scenarios. The comparison is based on a model of a heaving buoy wave energy device (HBWED), which oscillates vertically as a single mode of vibration linear system. HBWEDs and other single degree of freedom wave energy devices such as the oscillating wave surge convertors (OWSC) are currently deployed in the ocean, making single degree of freedom wave energy devices important systems to both model and analyse in some detail. However, the results of the comparison relate to any linear system. It was found that the wavelet estimator of the RAO offers no advantage over the spectral estimators if both input and response time series data are noise free and long time series are available. If there is noise on only the response time series, only the wavelet estimator or the spectral estimator that uses the cross-spectrum of the input and response signals in the numerator should be used. For the case of noise on only the input time series, only the spectral estimator that uses the cross-spectrum in the denominator gives a sensible estimate of the RAO. If both the input and response signals are corrupted with noise, a modification to both the input and response spectrum estimates can provide a good estimator of the RAO. However, a combination of wavelet and spectral methods is introduced as an alternative RAO estimator. The conclusions apply for autoregressive emulators of sea surface elevation, impulse, and pseudorandom binary sequences (PRBS) inputs. However, a wavelet estimator is needed in the special case of a chirp input where the signal has a continuously varying frequency.
K-theory and unbounded Fredholm operators
13:10 Mon 9 Jul, 2012 :: Ingkarni Wardli B19 :: Dr Jerry Kaminker :: University of California, Davis

There are several ways of viewing elements of K^1(X). One of these is via families of unbounded self-adjoint Fredholm operators on X. Each operator will have discrete spectrum, with infinitely many positive and negative eigenvalues of finite multiplicity. One can associate to such a family a geometric object, its graph, and the Chern character and other invariants of the family can be studied from this perspective. By restricting the dimension of the eigenspaces one may sometimes use algebraic topology to completely determine the family up to equivalence. This talk will describe the general framework and some applications to families on low-dimensional manifolds where the methods work well. Various notions related to spectral flow, the index gerbe and Berry phase play roles which will be discussed. This is joint work with Ron Douglas.
AFL Tipping isn't all about numbers and stats...or is it.....
12:10 Mon 6 Aug, 2012 :: B.21 Ingkarni Wardli :: Ms Jessica Tan :: University of Adelaide

Media...
The result of an AFL game is always unpredictable - we all know that. Hence why we discuss the weekend's upsets and the local tipping competition as part of the "water-cooler and weekend" conversation on a Monday morning. Different people use various weird and wonderful techniques or criteria to predict the winning team. With readily available data, I will investigate and compare various strategies and define a measure of the hardness of a round (full acknowledgements will be made in my presentation). Hopefully this will help me for next year's tipping competition...
Differential topology 101
13:10 Fri 17 Aug, 2012 :: Engineering North 218 :: Dr Nicholas Buchdahl :: University of Adelaide

Much of my recent research been directed at a problem in the theory of compact complex surfaces---trying to fill in a gap in the Enriques-Kodaira classification. Attempting to classify some collection of mathematical objects is a very common activity for pure mathematicians, and there are many well-known examples of successful classification schemes; for example, the classification of finite simple groups, and the classification of simply connected topological 4-manifolds. The aim of this talk will be to illustrate how techniques from differential geometry can be used to classify compact surfaces. The level of the talk will be very elementary, and the material is all very well known, but it is sometimes instructive to look back over simple cases of a general problem with the benefit of experience to gain greater insight into the more general and difficult cases.
Star Wars Vs The Lord of the Rings: A Survival Analysis
12:10 Mon 27 Aug, 2012 :: B.21 Ingkarni Wardli :: Mr Christopher Davies :: University of Adelaide

Media...
Ever wondered whether you are more likely to die in the Galactic Empire or Middle Earth? Well this is the postgraduate seminar for you! I'll be attempting to answer this question using survival analysis, the statistical method of choice for investigating time to event data. Spoiler Warning: This talk will contain references to the deaths of characters in the above movie sagas.
Holomorphic flexibility properties of compact complex surfaces
13:10 Fri 31 Aug, 2012 :: Engineering North 218 :: A/Prof Finnur Larusson :: University of Adelaide

I will describe recent joint work with Franc Forstneric (arXiv, July 2012). We introduce a new property, called the stratified Oka property, which fits into a hierarchy of anti-hyperbolicity properties that includes the Oka property. We show that stratified Oka manifolds are strongly dominable by affine spaces. It follows that Kummer surfaces are strongly dominable. We determine which minimal surfaces of class VII are Oka (assuming the global spherical shell conjecture). We deduce that the Oka property and several other anti-hyperbolicity properties are in general not closed in families of compact complex manifolds. I will summarise what is known about how the Oka property fits into the Enriques-Kodaira classification of surfaces.
Principal Component Analysis (PCA)
12:30 Mon 3 Sep, 2012 :: B.21 Ingkarni Wardli :: Mr Lyron Winderbaum :: University of Adelaide

Media...
Principal Component Analysis (PCA) has become something of a buzzword recently in a number of disciplines including the gene expression and facial recognition. It is a classical, and fundamentally simple, concept that has been around since the early 1900's, its recent popularity largely due to the need for dimension reduction techniques in analyzing high dimensional data that has become more common in the last decade, and the availability of computing power to implement this. I will explain the concept, prove a result, and give a couple of examples. The talk should be accessible to all disciplines as it (should?) only assume first year linear algebra, the concept of a random variable, and covariance.
Classification of a family of symmetric graphs with complete quotients
13:10 Fri 7 Sep, 2012 :: Engineering North 218 :: A/Prof Sanming Zhou :: University of Melbourne

A finite graph is called symmetric if its automorphism group is transitive on the set of arcs (ordered pairs of adjacent vertices) of the graph. This is to say that all arcs have the same status in the graph. I will talk about recent results on the classification of a family of symmetric graphs with complete quotients. The most interesting graphs arising from this classification are defined in terms of Hermitian unitals (which are specific block designs), and they admit unitary groups as groups of automorphisms. I will also talk about applications of our results in constructing large symmetric graphs of given degree and diameter. This talk contains joint work with M. Giulietti, S. Marcugini and F. Pambianco.
Knot Theory
12:10 Mon 10 Sep, 2012 :: B.21 Ingkarni Wardli :: Mr Konrad Pilch :: University of Adelaide

Media...
The ancient Chinese used it, the Celts had this skill in spades, it was a big skill of seafarers and pirates, and even now we need it if only to be able to wear shoes! This talk will be about Knot Theory. Knot theory has a colourful and interesting past and I will touch on the why, the what and the when of knots in mathematics. I shall also discuss the major problems concerning knots including the different methods of classification of knots, the unresolved questions about knots, and why have they even been studied. It will be a thorough immersion that will leave you knotted!
Geometric quantisation in the noncompact setting
13:10 Fri 14 Sep, 2012 :: Engineering North 218 :: Dr Peter Hochs :: Leibniz University, Hannover

Traditionally, the geometric quantisation of an action by a compact Lie group on a compact symplectic manifold is defined as the equivariant index of a certain Dirac operator. This index is a well-defined formal difference of finite-dimensional representations, since the Dirac operator is elliptic and the manifold and the group in question are compact. From a mathematical and physical point of view however, it is very desirable to extend geometric quantisation to noncompact groups and manifolds. Defining a suitable index is much harder in the noncompact setting, but several interesting results in this direction have been obtained. I will review the difficulties connected to noncompact geometric quantisation, and some of the solutions that have been proposed so far, mainly in connection to the "quantisation commutes with reduction" principle. (An introduction to this principle will be given in my talk at the Colloquium on the same day.)
Electrokinetics of concentrated suspensions of spherical particles
15:10 Fri 28 Sep, 2012 :: B.21 Ingkarni Wardli :: Dr Bronwyn Bradshaw-Hajek :: University of South Australia

Electrokinetic techniques are used to gather specific information about concentrated dispersions such as electronic inks, mineral processing slurries, pharmaceutical products and biological fluids (e.g. blood). But, like most experimental techniques, intermediate quantities are measured, and consequently the method relies explicitly on theoretical modelling to extract the quantities of experimental interest. A self-consistent cell-model theory of electrokinetics can be used to determine the electrical conductivity of a dense suspension of spherical colloidal particles, and thereby determine the quantities of interest (such as the particle surface potential). The numerical predictions of this model compare well with published experimental results. High frequency asymptotic analysis of the cell-model leads to some interesting conclusions.
Epidemic models in socially structured populations: when are simple models too simple?
14:00 Thu 25 Oct, 2012 :: 5.56 Ingkarni Wardli :: Dr Lorenzo Pellis :: The University of Warwick

Both age and household structure are recognised as important heterogeneities affecting epidemic spread of infectious pathogens, and many models exist nowadays that include either or both forms of heterogeneity. However, different models may fit aggregate epidemic data equally well and nevertheless lead to different predictions of public health interest. I will here present an overview of stochastic epidemic models with increasing complexity in their social structure, focusing in particular on households models. For these models, I will present recent results about the definition and computation of the basic reproduction number R0 and its relationship with other threshold parameters. Finally, I will use these results to compare models with no, either or both age and household structure, with the aim of quantifying the conditions under which each form of heterogeneity is relevant and therefore providing some criteria that can be used to guide model design for real-time predictions.
Epidemic models in socially structured populations: when are simple models too simple?
14:00 Thu 25 Oct, 2012 :: 5.56 Ingkarni Wardli :: Dr Lorenzo Pellis :: The University of Warwick

Both age and household structure are recognised as important heterogeneities affecting epidemic spread of infectious pathogens, and many models exist nowadays that include either or both forms of heterogeneity. However, different models may fit aggregate epidemic data equally well and nevertheless lead to different predictions of public health interest. I will here present an overview of stochastic epidemic models with increasing complexity in their social structure, focusing in particular on households models. For these models, I will present recent results about the definition and computation of the basic reproduction number R0 and its relationship with other threshold parameters. Finally, I will use these results to compare models with no, either or both age and household structure, with the aim of quantifying the conditions under which each form of heterogeneity is relevant and therefore providing some criteria that can be used to guide model design for real-time predictions.
Thin-film flow in helically-wound channels with small torsion
15:10 Fri 26 Oct, 2012 :: B.21 Ingkarni Wardli :: Dr Yvonne Stokes :: University of Adelaide

The study of flow in open helically-wound channels has application to many natural and industrial flows. We will consider laminar flow down helically-wound channels of rectangular cross section and with small torsion, in which the fluid depth is small. Assuming a steady-state flow that is independent of position along the axis of the channel, the flow solution may be determined in the two-dimensional cross section of the channel. A thin-film approximation yields explicit expressions for the fluid velocity in terms of the free-surface shape. The latter satisfies an interesting non-linear ordinary differential equation that, for a channel of rectangular cross section, has an analytical solution. The predictions of the thin-film model are shown to be in good agreement with much more computationally intensive solutions of the small-helix-torsion Navier-Stokes equations. This work has particular relevance to spiral particle separators used in the minerals processing industry. Early work on modelling of particle-laden thin-film flow in spiral channels will also be discussed.
Thin-film flow in helically-wound channels with small torsion
15:10 Fri 26 Oct, 2012 :: B.21 Ingkarni Wardli :: Dr Yvonne Stokes :: University of Adelaide

The study of flow in open helically-wound channels has application to many natural and industrial flows. We will consider laminar flow down helically-wound channels of rectangular cross section and with small torsion, in which the fluid depth is small. Assuming a steady-state flow that is independent of position along the axis of the channel, the flow solution may be determined in the two-dimensional cross section of the channel. A thin-film approximation yields explicit expressions for the fluid velocity in terms of the free-surface shape. The latter satisfies an interesting non-linear ordinary differential equation that, for a channel of rectangular cross section, has an analytical solution. The predictions of the thin-film model are shown to be in good agreement with much more computationally intensive solutions of the small-helix-torsion Navier-Stokes equations. This work has particular relevance to spiral particle separators used in the minerals processing industry. Early work on modelling of particle-laden thin-film flow in spiral channels will also be discussed.
Spatiotemporally Autoregressive Partially Linear Models with Application to the Housing Price Indexes of the United States
12:10 Mon 12 Nov, 2012 :: B.21 Ingkarni Wardli :: Ms Dawlah Alsulami :: University of Adelaide

Media...
We propose a Spatiotemporal Autoregressive Partially Linear Regression ( STARPLR) model for data observed irregularly over space and regularly in time. The model is capable of catching possible non linearity and nonstationarity in space by coefficients to depend on locations. We suggest two-step procedure to estimate both the coefficients and the unknown function, which is readily implemented and can be computed even for large spatio-temoral data sets. As an illustration, we apply our model to analyze the 51 States' House Price Indexes (HPIs) in USA.
Asymptotic independence of (simple) two-dimensional Markov processes
15:10 Fri 1 Mar, 2013 :: B.18 Ingkarni Wardli :: Prof Guy Latouche :: Universite Libre de Bruxelles

Media...
The one-dimensional birth-and death model is one of the basic processes in applied probability but difficulties appear as one moves to higher dimensions. In the positive recurrent case, the situation is singularly simplified if the stationary distribution has product-form. We investigate the conditions under which this property holds, and we show how to use the knowledge to find product-form approximations for otherwise unmanageable random walks. This is joint work with Masakiyo Miyazawa and Peter Taylor.
Gauge groupoid cocycles and Cheeger-Simons differential characters
13:10 Fri 5 Apr, 2013 :: Ingkarni Wardli B20 :: Prof Jouko Mickelsson :: Royal Institute of Technology, Stockholm

Groups of gauge transformations in quantum field theory are typically extended by a 2-cocycle with values in a certain abelian group due to chiral symmetry breaking. For these extensions there exist a global explicit construction since the 1980's. I shall study the higher group cocycles following a recent paper by F. Wagemann and C. Wockel, but extending to the transformation groupoid setting (motivated by QFT) and discussing potential obstructions in the construction due to a nonvanishing of low dimensional homology groups of the gauge group. The resolution of the obstruction is obtained by an application of the Cheeger-Simons differential characters.
A glimpse at the Langlands program
15:10 Fri 12 Apr, 2013 :: B.18 Ingkarni Wardli :: Dr Masoud Kamgarpour :: University of Queensland

Media...
Abstract: In the late 1960s, Robert Langlands made a series of surprising conjectures relating fundamental concepts from number theory, representation theory, and algebraic geometry. Langlands' conjectures soon developed into a high-profile international research program known as the Langlands program. Many fundamental problems, including the Shimura-Taniyama-Weil conjecture (partially settled by Andrew Wiles in his proof of the Fermat's Last Theorem), are particular cases of the Langlands program. In this talk, I will discuss some of the motivation and results in this program.
Conformal Killing spinors in Riemannian and Lorentzian geometry
12:10 Fri 19 Apr, 2013 :: Ingkarni Wardli B19 :: Prof Helga Baum :: Humboldt University

Conformal Killing spinors are the solutions of the conformally covariant twistor equation on spinors. Special cases are parallel and Killing spinors, the latter appear as eigenspinors of the Dirac operator on compact Riemannian manifolds of positive scalar curvature for the smallest possible positive eigenvalue. In the talk I will discuss geometric properties of manifolds admitting (conformal) Killing spinors. In particular, I will explain a local classification of the special geometric structures admitting conformal Killing spinors without zeros in the Riemannian as well as in the Lorentzian setting.
Diffeological spaces and differentiable stacks
12:10 Fri 10 May, 2013 :: Ingkarni Wardli B19 :: Dr David Roberts :: University of Adelaide

The category of finite-dimensional smooth manifolds gives rise to interesting structures outside of itself, two examples being mapping spaces and classifying spaces. Diffeological spaces are a notion of generalised smooth space which form a cartesian closed category, so all fibre products and all mapping spaces of smooth manifolds exist as diffeological spaces. Differentiable stacks are a further generalisation that can also deal with moduli spaces (including classifying spaces) for objects with automorphisms. This talk will give an introduction to this circle of ideas.
Colour
12:10 Mon 13 May, 2013 :: B.19 Ingkarni Wardli :: Lyron Winderbaum :: University of Adelaide

Media...
Colour is a powerful tool in presenting data, but it can be tricky to choose just the right colours to represent your data honestly - do the colours used in your heatmap overemphasise the differences between particular values over others? does your choice of colours overemphasize one when they should be represented as equal? etc. All these questions are fundamentally based in how we perceive colour. There has been alot of research into how we perceive colour in the past century, and some interesting results. I will explain how a `standard observer' was found empirically and used to develop an absolute reference standard for colour in 1931. How although the common Red-Green-Blue representation of colour is useful and intuitive, distances between colours in this space do not reflect our perception of difference between colours and how alternative, perceptually focused colourspaces where introduced in 1976. I will go on to explain how these results can be used to provide simple mechanisms by which to choose colours that satisfy particular properties such as being equally different from each other, or being linearly more different in sequence, or maintaining such properties when transferred to greyscale, or for a colourblind person.
Crystallographic groups I: the classical theory
12:10 Fri 17 May, 2013 :: Ingkarni Wardli B19 :: Dr Wolfgang Globke :: University of Adelaide

A discrete isometry group acting properly discontinuously on the n-dimensional Euclidean space with compact quotient is called a crystallographic group. This name reflects the fact that in dimension n=3 their compact fundamental domains resemble a space-filling crystal pattern. For higher dimensions, Hilbert posed his famous 18th problem: "Is there in n-dimensional Euclidean space only a finite number of essentially different kinds of groups of motions with a [compact] fundamental region?" This problem was solved by Bieberbach when he proved that in every dimension n there exists only a finite number of isomorphic crystallographic groups and also gave a description of these groups. From the perspective of differential geometry these results are of major importance, as crystallographic groups are precisely the fundamental groups of compact flat Riemannian orbifolds. The quotient is even a manifold if the fundamental group is required to be torsion-free, in which case it is called a Bieberbach group. Moreover, for a flat manifold the fundamental group completely determines the holonomy group. In this talk I will discuss the properties of crystallographic groups, study examples in dimension n=2 and n=3, and present the three Bieberbach theorems on the structure of crystallographic groups.
Progress in the prediction of buoyancy-affected turbulence
15:10 Fri 17 May, 2013 :: B.18 Ingkarni Wardli :: Dr Daniel Chung :: University of Melbourne

Media...
Buoyancy-affected turbulence represents a significant challenge to our understanding, yet it dominates many important flows that occur in the ocean and atmosphere. The presentation will highlight some recent progress in the characterisation, modelling and prediction of buoyancy-affected turbulence using direct and large-eddy simulations, along with implications for the characterisation of mixing in the ocean and the low-cloud feedback in the atmosphere. Specifically, direct numerical simulation data of stratified turbulence will be employed to highlight the importance of boundaries in the characterisation of turbulent mixing in the ocean. Then, a subgrid-scale model that captures the anisotropic character of stratified mixing will be developed for large-eddy simulation of buoyancy-affected turbulence. Finally, the subgrid-scale model is utilised to perform a systematic large-eddy simulation investigation of the archetypal low-cloud regimes, from which the link between the lower-tropospheric stability criterion and the cloud fraction interpreted.
Coincidences
14:10 Mon 20 May, 2013 :: 7.15 Ingkarni Wardli :: A/Prof. Robb Muirhead :: School of Mathematical Sciences

Media...
This is a lighthearted (some would say content-free) talk about coincidences, those surprising concurrences of events that are often perceived as meaningfully related, with no apparent causal connection. Time permitting, it will touch on topics like:
Patterns in data and the dangers of looking for patterns, unspecified ahead of time, and trying to "explain" them; e.g. post hoc subgroup analyses, cancer clusters, conspiracy theories ...
Matching problems; e.g. the birthday problem and extensions
People who win a lottery more than once -- how surprised should we really be? What's the question we should be asking?
When you become familiar with a new word, and see it again soon afterwards, how surprised should you be?
Caution: This is a shortened version of a talk that was originally prepared for a group of non-mathematicians and non-statisticians, so it's mostly non-technical. It probably does not contain anything you don't already know -- it will be an amazing coincidence if it does!
Birational geometry of M_g
12:10 Fri 21 Jun, 2013 :: Ingkarni Wardli B19 :: Dr Jarod Alper :: Australian National University

In 1969, Deligne and Mumford introduced a beautiful compactification of the moduli space of smooth curves which has proved extremely influential in geometry, topology and physics. Using recent advances in higher dimensional geometry and the minimal model program, we study the birational geometry of M_g. In particular, in an effort to understand the canonical model of M_g, we study the log canonical models as well as the associated divisorial contractions and flips by interpreting these models as moduli spaces of particular singular curves.
Fire-Atmosphere Models
12:10 Mon 29 Jul, 2013 :: B.19 Ingkarni Wardli :: Mika Peace :: University of Adelaide

Media...
Fire behaviour models are increasingly being used to assist in planning and operational decisions for bush fires and fuel reduction burns. Rate of spread (ROS) of the fire front is a key output of such models. The ROS value is typically calculated from a formula which has been derived from empirical data, using very simple meteorological inputs. We have used a coupled fire-atmosphere model to simulate real bushfire events. The results show that complex interactions between a fire and the atmosphere can have a significant influence on fire spread, thus highlighting the limitations of a model that uses simple meteorological inputs.
Symplectic Lie groups
12:10 Fri 9 Aug, 2013 :: Ingkarni Wardli B19 :: Dr Wolfgang Globke :: University of Adelaide

A "symplectic Lie group" is a Lie group G with a symplectic form such that G acts by symplectic transformations on itself. Such a G cannot be semisimple, so the research focuses on solvable symplectic Lie groups. In the compact case, a classification of these groups is known. In many cases, a solvable symplectic Lie group G is a cotangent bundle of a flat Lie group H. Then H is a Lagrange subgroup of G, meaning its Lie algebra h is isotropic in the Lie algebra g of G. The existence of Lagrange subalgebras or ideals in g is an important question which relates to many problems in the general structure theory of symplectic Lie groups. In my talk, I will give a brief overview of the known results in this field, ranging from the 1970s to a very recent structure theory.
Privacy-Preserving Computation: Not just for secretive millionaires*
12:10 Mon 19 Aug, 2013 :: B.19 Ingkarni Wardli :: Wilko Henecka :: University of Adelaide

Media...
PPC enables parties to share information while preserving their data privacy. I will introduce the concept, show a common ingredient and illustrate its use in an example. *See Yao's Millionaires Problem.
Medical Decision Analysis
12:10 Mon 2 Sep, 2013 :: B.19 Ingkarni Wardli :: Eka Baker :: University of Adelaide

Doctors make life changing decisions every day based on clinical trial data. However, this data is often obtained from studies on healthy individuals or on patients with only the disease that a treatment is targeting. Outside of these studies, many patients will have other conditions that may affect the predicted benefit of receiving a certain treatment. I will talk about what clinical trials are, how to measure the benefit of treatments, and how having multiple conditions (comorbidities) will affect the benefit of treatments.
K-theory and solid state physics
12:10 Fri 13 Sep, 2013 :: Ingkarni Wardli B19 :: Dr Keith Hannabuss :: Balliol College, Oxford

More than 50 years ago Dyson showed that there is a nine-fold classification of random matrix models, the classes of which are each associated with Riemannian symmetric spaces. More recently it was realised that a related argument enables one to classify the insulating properties of fermionic systems (with the addition of an extra class to give 10 in all), and can be described using K-theory. In this talk I shall give a survey of the ideas, and a brief outline of work with Guo Chuan Thiang.
How to see in many dimensions
14:10 Mon 16 Sep, 2013 :: 7.15 Ingkarni Wardli :: Prof. Michael Murray :: School of Mathematical Sciences

Media...
The human brain has evolved to be able to think intuitively in three dimensions. Unfortunately the real world is at least four and maybe 10, 11 or 26 dimensional. In this talk I will show how mathematics can be used to develop your ability to think in more than three dimensions.
Conformal geometry in four variables and a special geometry in five
12:10 Fri 20 Sep, 2013 :: Ingkarni Wardli B19 :: Dr Dennis The :: Australian National University

Starting with a split signature 4-dimensional conformal manifold, one can build a 5-dimensional bundle over it equipped with a 2-plane distribution. Generically, this is a (2,3,5)-distribution in the sense of Cartan's five variables paper, an aspect that was recently pursued by Daniel An and Pawel Nurowski (finding new examples concerning the geometry of rolling bodies where the (2,3,5)-distribution has G2-symmetry). I shall explain how to understand some elementary aspects of this "twistor construction" from the perspective of parabolic geometry. This is joint work with Michael Eastwood and Katja Sagerschnig.
How to stack oranges in three dimensions, 24 dimensions and beyond
18:00 Thu 26 Sep, 2013 :: Horace Lamb Lecture Theatre :: Prof Akshay Venkatesh :: Stanford University

Media...
How can we pack balls as tightly as possible? In other words: to squeeze as many balls as possible into a limited space, what's the best way of arranging the balls? It's not hard to guess what the answer should be - but it's very hard to be sure that it really is the answer! I'll tell the interesting story of this problem, going back to the astronomer Kepler, and ending almost four hundred years later with Thomas Hales. I will then talk about stacking 24-dimensional oranges: what this means, how it relates to the Voyager spacecraft, and the many things we don't know beyond this.
Lost in Space: Point Pattern Matching and Astrometry
12:35 Mon 14 Oct, 2013 :: B.19 Ingkarni Wardli :: Annie Conway :: University of Adelaide

Astrometry is the field of research that concerns the positions of objects in space. This can be useful for satellite tracking where we would like to know accurate positions of satellites at given times. Telescopes give us some idea of the position, but unfortunately they are not very precise. However, if a photograph of a satellite has stars in the background, we can use that information to refine our estimate of the location of the image, since the positions of stars are known to high accuracy and are readily available in star catalogues. But there are billions of stars in the sky so first we would need to determine which ones we're actually looking at. In this talk I will give a brief introduction to astrometry and walk through a point pattern matching algorithm for identifying stars in a photograph.
Classification Using Censored Functional Data
15:10 Fri 18 Oct, 2013 :: B.18 Ingkarni Wardli :: A/Prof Aurore Delaigle :: University of Melbourne

Media...
We consider classification of functional data. This problem has received a lot of attention in the literature in the case where the curves are all observed on the same interval. A difficulty in applications is that the functional curves can be supported on quite different intervals, in which case standard methods of analysis cannot be used. We are interested in constructing classifiers for curves of this type. More precisely, we consider classification of functions supported on a compact interval, in cases where the training sample consists of functions observed on other intervals, which may differ among the training curves. We propose several methods, depending on whether or not the observable intervals overlap by a significant amount. In the case where these intervals differ a lot, our procedure involves extending the curves outside the interval where they were observed. We suggest a new nonparametric approach for doing this. We also introduce flexible ways of combining potential differences in shapes of the curves from different populations, and potential differences between the endpoints of the intervals where the curves from each population are observed.
Group meeting
15:10 Fri 25 Oct, 2013 :: 5.58 (Ingkarni Wardli) :: Dr Ben Binder and Mr David Wilke :: University of Adelaide

Dr Ben Binder :: 'An inverse approach for solutions to free-surface flow problems' :: Abstract: Surface water waves are familiar to most people, for example, the wave pattern generated at the stern of a ship. The boundary or interface between the air and water is called the free-surface. When determining a solution to a free-surface flow problem it is commonplace for the forcing (eg. shape of ship or waterbed topography) that creates the surface waves to be prescribed, with the free-surface coming as part of the solution. Alternatively, one can choose to prescribe the shape of the free-surface and find the forcing inversely. In this talk I will discuss my ongoing work using an inverse approach to discover new types of solutions to free-surface flow problems in two and three dimensions, and how the predictions of the method might be verified with experiments. :: Mr David Wilke:: 'A Computational Fluid Dynamic Study of Blood Flow Within the Coiled Umbilical Arteries':: Abstract: The umbilical cord is the lifeline of the fetus throughout gestation. In a normal pregnancy it facilitates the supply of oxygen and nutrients from the placenta via a single vein, in addition to the return of deoxygenated blood from the developing embryo or fetus via two umbilical arteries. Despite the major role it plays in the growth of the fetus, pathologies of the umbilical cord are poorly understood. In particular, variations in the cord geometry, which typically forms a helical arrangement, have been correlated with adverse outcomes in pregnancy. Cords exhibiting either abnormally low or high levels of coiling have been associated with pathological results including growth-restriction and fetal demise. Despite this, the methodology currently employed by clinicians to characterise umbilical pathologies can misdiagnose cords and is prone to error. In this talk a computational model of blood flow within rigid three-dimensional structures representative of the umbilical arteries will be presented. This study determined that the current characterization was unable to differentiate between cords which exhibited clinically distinguishable flow properties, including the cord pressure drop, which provides a measure of the loading on the fetal heart.
Recent developments in special holonomy manifolds
12:10 Fri 1 Nov, 2013 :: Ingkarni Wardli 7.15 :: Prof Robert Bryant :: Duke University

One of the big classification results in differential geometry from the past century has been the classification of the possible holonomies of affine manifolds, with the major first step having been taken by Marcel Berger in his 1954 thesis. However, Berger's classification was only partial, and, in the past 20 years, an extensive research effort has been expended to complete this classification and extend it in a number of ways. In this talk, after recounting the major parts of the history of the subject, I will discuss some of the recent results and surprising new examples discovered as a by-product of research into Finsler geometry. If time permits, I will also discuss some of the open problems in the subject.
All at sea with spectral analysis
11:10 Tue 19 Nov, 2013 :: Ingkarni Wardli Level 5 Room 5.56 :: A/Prof Andrew Metcalfe :: The University of Adelaide

The steady state response of a single degree of freedom damped linear stystem to a sinusoidal input is a sinusoidal function at the same frequency, but generally with a different amplitude and a phase shift. The analogous result for a random stationary input can be described in terms of input and response spectra and a transfer function description of the linear system. The practical use of this result is that the parameters of a linear system can be estimated from the input and response spectra, and the response spectrum can be predicted if the transfer function and input spectrum are known. I shall demonstrate these results with data from a small ship in the North Sea. The results from the sea trial raise the issue of non-linearity, and second order amplitude response functons are obtained using auto-regressive estimators. The possibility of using wavelets rather than spectra is consedred in the context of single degree of freedom linear systems. Everybody welcome to attend. Please not a change of venue - we will be in room 5.56
A gentle introduction to bubble evolution in Hele-Shaw flows
15:10 Fri 22 Nov, 2013 :: 5.58 (Ingkarni Wardli) :: Dr Scott McCue :: QUT

A Hele-Shaw cell is easy to make and serves as a fun toy for an applied mathematician to play with. If we inject air into a Hele-Shaw cell that is otherwise filled with viscous fluid, we can observe a bubble of air growing in size. The process is highly unstable, and the bubble boundary expands in an uneven fashion, leading to striking fingering patterns (look up Hele-Shaw cell or Saffman-Taylor instability on YouTube). From a mathematical perspective, modelling these Hele-Shaw flows is interesting because the governing equations are sufficiently ``simple'' that a considerable amount of analytical progress is possible. Indeed, there is no other context in which (genuinely) two-dimensional moving boundary problems are so tractable. More generally, Hele-Shaw flows are important as they serve as prototypes for more complicated (and important) physical processes such as crystal growth and diffusion limited aggregation. I will give an introduction to some of the main ideas and summarise some of my present research in this area.
The density property for complex manifolds: a strong form of holomorphic flexibility
12:10 Fri 24 Jan, 2014 :: Ingkarni Wardli B20 :: Prof Frank Kutzschebauch :: University of Bern

Compared with the real differentiable case, complex manifolds in general are more rigid, their groups of holomorphic diffeomorphisms are rather small (in general trivial). A long known exception to this behavior is affine n-space C^n for n at least 2. Its group of holomorphic diffeomorphisms is infinite dimensional. In the late 1980s Andersen and Lempert proved a remarkable theorem which stated in its generalized version due to Forstneric and Rosay that any local holomorphic phase flow given on a Runge subset of C^n can be locally uniformly approximated by a global holomorphic diffeomorphism. The main ingredient in the proof was formalized by Varolin and called the density property: The Lie algebra generated by complete holomorphic vector fields is dense in the Lie algebra of all holomorphic vector fields. In these manifolds a similar local to global approximation of Andersen-Lempert type holds. It is a precise way of saying that the group of holomorphic diffeomorphisms is large. In the talk we will explain how this notion is related to other more recent flexibility notions in complex geometry, in particular to the notion of a Oka-Forstneric manifold. We will give examples of manifolds with the density property and sketch applications of the density property. If time permits we will explain criteria for the density property developed by Kaliman and the speaker.
Integrability of infinite-dimensional Lie algebras and Lie algebroids
12:10 Fri 7 Feb, 2014 :: Ingkarni Wardli B20 :: Christoph Wockel :: Hamburg University

Lie's Third Theorem states that each finite-dimensional Lie algebra is the Lie algebra of a Lie group (we also say "integrates to a Lie group"). The corresponding statement for infinite-dimensional Lie algebras or Lie algebroids is false and we will explain geometrically why this is the case. The underlying pattern is that of integration of central extensions of Lie algebras and Lie algebroids. This also occurs in other contexts, and we will explain some aspects of string group models in these terms. In the end we will sketch how the non-integrability of Lie algebras and Lie algebroids can be overcome by passing to higher categorical objects (such as smooth stacks) and give a panoramic (but still conjectural) perspective on the precise relation of the various integrability problems.
Hormander's estimate, some generalizations and new applications
12:10 Mon 17 Feb, 2014 :: Ingkarni Wardli B20 :: Prof Zbigniew Blocki :: Jagiellonian University

Lars Hormander proved his estimate for the d-bar equation in 1965. It is one the most important results in several complex variables (SCV). New applications have emerged recently, outside of SCV. We will present three of them: the Ohsawa-Takegoshi extension theorem with optimal constant, the one-dimensional Suita Conjecture, and Nazarov's approach to the Bourgain-Milman inequality from convex analysis.
The structuring role of chaotic stirring on pelagic ecosystems
11:10 Fri 28 Feb, 2014 :: B19 Ingkarni Wardli :: Dr Francesco d'Ovidio :: Universite Pierre et Marie Curie (Paris VI)

The open ocean upper layer is characterized by a complex transport dynamics occuring over different spatiotemporal scales. At the scale of 10-100 km - which covers the so called mesoscale and part of the submesoscale - in situ and remote sensing observations detect strong variability in physical and biogeochemical fields like sea surface temperature, salinity, and chlorophyll concentration. The calculation of Lyapunov exponent and other nonlinear diagnostics applied to the surface currents have allowed to show that an important part of this tracer variability is due to chaotic stirring. Here I will extend this analysis to marine ecosystems. For primary producers, I will show that stable and unstable manifolds of hyperbolic points embedded in the surface velocity field are able to structure the phytoplanktonic community in fluid dynamical niches of dominant types, where competition can locally occur during bloom events. By using data from tagged whales, frigatebirds, and elephant seals, I will also show that chaotic stirring affects the behaviour of higher trophic levels. In perspective, these relations between transport structures and marine ecosystems can be the base for a biodiversity index constructued from satellite information, and therefore able to monitor key aspects of the marine biodiversity and its temporal variability at the global scale.
The phase of the scattering operator from the geometry of certain infinite dimensional Lie groups
12:10 Fri 14 Mar, 2014 :: Ingkarni Wardli B20 :: Jouko Mickelsson :: University of Helsinki

This talk is about some work on the phase of the time evolution operator in QED and QCD, related to the geometry of certain infinite-dimensional groups (essentially modelled by PSDO's).
Viscoelastic fluids: mathematical challenges in determining their relaxation spectra
15:10 Mon 17 Mar, 2014 :: 5.58 Ingkarni Wardli :: Professor Russell Davies :: Cardiff University

Determining the relaxation spectrum of a viscoelastic fluid is a crucial step before a linear or nonlinear constitutive model can be applied. Information about the relaxation spectrum is obtained from simple flow experiments such as creep or oscillatory shear. However, the determination process involves the solution of one or more highly ill-posed inverse problems. The availability of only discrete data, the presence of noise in the data, as well as incomplete data, collectively make the problem very hard to solve. In this talk I will illustrate the mathematical challenges inherent in determining relaxation spectra, and also introduce the method of wavelet regularization which enables the representation of a continuous relaxation spectrum by a set of hyperbolic scaling functions.
Moduli spaces of contact instantons
12:10 Fri 28 Mar, 2014 :: Ingkarni Wardli B20 :: David Baraglia :: University of Adelaide

In dimensions greater than four there are several notions of higher Yang-Mills instantons. This talk concerns one such case, contact instantons, defined for 5-dimensional contact manifolds. The geometry transverse to the Reeb foliation turns out to be important in understanding the moduli space. For example, we show the dimension of the moduli space is the index of a transverse elliptic complex. This is joint work with Pedram Hekmati.
Semiclassical restriction estimates
12:10 Fri 4 Apr, 2014 :: Ingkarni Wardli B20 :: Melissa Tacy :: University of Adelaide

Eigenfunctions of Hamiltonians arise naturally in the theory of quantum mechanics as stationary states of quantum systems. Their eigenvalues have an interpretation as the square root of E, where E is the energy of the system. We wish to better understand the high energy limit which defines the boundary between quantum and classical mechanics. In this talk I will focus on results regarding the restriction of eigenfunctions to lower dimensional subspaces, in particular to hypersurfaces. A convenient way to study such problems is to reframe them as problems in semiclassical analysis.
CARRYING CAPACITY FOR FINFISH AQUACULTURE IN SPENCER GULF: RAPID ASSESSMENT USING HYDRODYNAMIC AND NEAR-FIELD, SEMI - ANALYTIC SOLUTIONS
15:10 Fri 11 Apr, 2014 :: 5.58 Ingkarni Wardli :: Associate Professor John Middleton :: SARDI Aquatic Sciences and University of Adelaide

Aquaculture farming involves daily feeding of finfish and a subsequent excretion of nutrients into Spencer Gulf. Typically, finfish farming is done in six or so 50m diameter cages and over 600m X 600m lease sites. To help regulate the industry, it is desired that the finfish feed rates and the associated nutrient flux into the ocean are determined such that the maximum nutrient concentration c does not exceed a prescribed value (say cP) for ecosystem health. The prescribed value cP is determined by guidelines from the E.P.A. The concept is known as carrying capacity since limiting the feed rates limits the biomass of the farmed finfish. Here, we model the concentrations that arise from a constant input flux (F) of nutrients in a source region (the cage or lease) using the (depth-averaged) two dimensional, advection diffusion equation for constant and sinusoidal (tides) currents. Application of the divergence theorem to this equation results in a new scale estimate of the maximum flux F (and thus feed rate) that is given by F= cP /T* (1) where cP is the maximum allowed concentration and T* is a new time scale of “flushing” that involves both advection and diffusion. The scale estimate (1) is then shown to compare favourably with mathematically exact solutions of the advection diffusion equation that are obtained using Green’s functions and Fourier transforms. The maximum nutrient flux and associated feed rates are then estimated everywhere in Spencer Gulf through the development and validation of a hydrodynamic model. The model provides seasonal averages of the mean currents U and horizontal diffusivities KS that are needed to estimate T*. The diffusivities are estimated from a shear dispersal model of the tides which are very large in the gulf. The estimates have been provided to PIRSA Fisheries and Aquaculture to assist in the sustainable expansion of finfish aquaculture.
Bayesian Indirect Inference
12:10 Mon 14 Apr, 2014 :: B.19 Ingkarni Wardli :: Brock Hermans :: University of Adelaide

Media...
Bayesian likelihood-free methods saw the resurgence of Bayesian statistics through the use of computer sampling techniques. Since the resurgence, attention has focused on so-called 'summary statistics', that is, ways of summarising data that allow for accurate inference to be performed. However, it is not uncommon to find data sets in which the summary statistic approach is not sufficient. In this talk, I will be summarising some of the likelihood-free methods most commonly used (don't worry if you've never seen any Bayesian analysis before), as well as looking at Bayesian Indirect Likelihood, a new way of implementing Bayesian analysis which combines new inference methods with some of the older computational algorithms.
A generalised Kac-Peterson cocycle
11:10 Thu 17 Apr, 2014 :: Ingkarni Wardli B20 :: Pedram Hekmati :: University of Adelaide

The Kac-Peterson cocycle appears in the study of highest weight modules of infinite dimensional Lie algebras and determines a central extension. The vanishing of its cohomology class is tied to the existence of a cubic Dirac operator whose square is a quadratic Casimir element. I will introduce a closely related Lie algebra cocycle that comes about when constructing spin representations and gives rise to a Banach Lie group with a highly nontrivial topology. I will also explain how to make sense of the cubic Dirac operator in this setting and discuss its relation to twisted K-theory. This is joint work with Jouko Mickelsson.
Network-based approaches to classification and biomarker identification in metastatic melanoma
15:10 Fri 2 May, 2014 :: B.21 Ingkarni Wardli :: Associate Professor Jean Yee Hwa Yang :: The University of Sydney

Media...
Finding prognostic markers has been a central question in much of current research in medicine and biology. In the last decade, approaches to prognostic prediction within a genomics setting are primarily based on changes in individual genes / protein. Very recently, however, network based approaches to prognostic prediction have begun to emerge which utilize interaction information between genes. This is based on the believe that large-scale molecular interaction networks are dynamic in nature and changes in these networks, rather than changes in individual genes/proteins, are often drivers of complex diseases such as cancer. In this talk, I use data from stage III melanoma patients provided by Prof. Mann from Melanoma Institute of Australia to discuss how network information can be utilize in the analysis of gene expression analysis to aid in biological interpretation. Here, we explore a number of novel and previously published network-based prediction methods, which we will then compare to the common single-gene and gene-set methods with the aim of identifying more biologically interpretable biomarkers in the form of networks.
Oka properties of groups of holomorphic and algebraic automorphisms of complex affine space
12:10 Fri 6 Jun, 2014 :: Ingkarni Wardli B20 :: Finnur Larusson :: University of Adelaide

I will discuss new joint work with Franc Forstneric. The group of holomorphic automorphisms of complex affine space C^n, n>1, is huge. It is not an infinite-dimensional manifold in any recognised sense. Still, our work shows that in some ways it behaves like a finite-dimensional Oka manifold.
Group meeting
15:10 Fri 6 Jun, 2014 :: 5.58 Ingkarni Wardli :: Meng Cao and Trent Mattner :: University of Adelaide

Meng Cao:: Multiscale modelling couples patches of nonlinear wave-like simulations :: Abstract: The multiscale gap-tooth scheme is built from given microscale simulations of complicated physical processes to empower macroscale simulations. By coupling small patches of simulations over unsimulated physical gaps, large savings in computational time are possible. So far the gap-tooth scheme has been developed for dissipative systems, but wave systems are also of great interest. This article develops the gap-tooth scheme to the case of nonlinear microscale simulations of wave-like systems. Classic macroscale interpolation provides a generic coupling between patches that achieves arbitrarily high order consistency between the multiscale scheme and the underlying microscale dynamics. Eigen-analysis indicates that the resultant gap-tooth scheme empowers feasible computation of large scale simulations of wave-like dynamics with complicated underlying physics. As an pilot study, we implement numerical simulations of dam-breaking waves by the gap-tooth scheme. Comparison between a gap-tooth simulation, a microscale simulation over the whole domain, and some published experimental data on dam breaking, demonstrates that the gap-tooth scheme feasibly computes large scale wave-like dynamics with computational savings. Trent Mattner :: Coupled atmosphere-fire simulations of the Canberra 2003 bushfires using WRF-Sfire :: Abstract: The Canberra fires of January 18, 2003 are notorious for the extreme fire behaviour and fire-atmosphere-topography interactions that occurred, including lee-slope fire channelling, pyrocumulonimbus development and tornado formation. In this talk, I will discuss coupled fire-weather simulations of the Canberra fires using WRF-SFire. In these simulations, a fire-behaviour model is used to dynamically predict the evolution of the fire front according to local atmospheric and topographic conditions, as well as the associated heat and moisture fluxes to the atmosphere. It is found that the predicted fire front and heat flux is not too bad, bearing in mind the complexity of the problem and the severe modelling assumptions made. However, the predicted moisture flux is too low, which has some impact on atmospheric dynamics.
Not nots, knots.
12:10 Mon 16 Jun, 2014 :: B.19 Ingkarni Wardli :: Luke Keating-Hughes :: University of Adelaide

Media...
Although knot theory does not ordinarily arise in classical mathematics, the study of knots themselves proves to be very intricate and is certainly an area with promise for new developments. Ultimately, the study of knots boils down to problems of classification and when two knots are seen to be 'equivalent'. In this seminar we will first talk about some basic definitions and properties of knots, then move on to calculating the knot polynomial - a powerful invariant on knots.
Higher-Dimensional Geometry
12:10 Mon 28 Jul, 2014 :: B.19 Ingkarni Wardli :: Ashley Gibson :: University of Adelaide

Media...
Since the first millennium BC, geometers have been fascinated by convex regular polytopes. The two- and three-dimensional cases are well-known, with the latter being named after the Greek philosopher Plato. Much less attention has been paid to the higher-dimensional cases, so this seminar will investigate the existence of convex regular polytopes in four or more dimensions. It will also cover the existence of higher-dimensional versions of the cross product, which most people are only familiar with in three dimensions.
All's Fair in Love and Statistics
12:35 Mon 28 Jul, 2014 :: B.19 Ingkarni Wardli :: Annie Conway :: University of Adelaide

Media...
Earlier this year Wired.com published an article about a "math genius" who found true love after scraping and analysing data from a dating site. In this talk I will be investigating the actual mathematics that he used, in particular methods for clustering categorical data, and whether or not the approach was successful.
Estimates for eigenfunctions of the Laplacian on compact Riemannian manifolds
12:10 Fri 1 Aug, 2014 :: Ingkarni Wardli B20 :: Andrew Hassell :: Australian National University

I am interested in estimates on eigenfunctions, accurate in the high-eigenvalue limit. I will discuss estimates on the size (as measured by L^p norms) of eigenfunctions, on the whole Riemannian manifold, at the boundary, or at an interior hypersurface. The link between high-eigenvalue estimates, geometry, and the dynamics of geodesic flow will be emphasized.
Fast computation of eigenvalues and eigenfunctions on bounded plane domains
15:10 Fri 1 Aug, 2014 :: B.18 Ingkarni Wardli :: Professor Andrew Hassell :: Australian National University

Media...
I will describe a new method for numerically computing eigenfunctions and eigenvalues on certain plane domains, derived from the so-called "scaling method" of Vergini and Saraceno. It is based on properties of the Dirichlet-to-Neumann map on the domain, which relates a function f on the boundary of the domain to the normal derivative (at the boundary) of the eigenfunction with boundary data f. This is a topic of independent interest in pure mathematics. In my talk I will try to emphasize the inteplay between theory and applications, which is very rich in this situation. This is joint work with numerical analyst Alex Barnett (Dartmouth).
Hydrodynamics and rheology of self-propelled colloids
15:10 Fri 8 Aug, 2014 :: B17 Ingkarni Wardli :: Dr Sarthok Sircar :: University of Adelaide

The sub-cellular world has many components in common with soft condensed matter systems (polymers, colloids and liquid crystals). But it has novel properties, not present in traditional complex fluids, arising from a rich spectrum of non-equilibrium behavior: flocking, chemotaxis and bioconvection. The talk is divided into two parts. In the first half, we will (get an idea on how to) derive a hydrodynamic model for self-propelled particles of an arbitrary shape from first principles, in a sufficiently dilute suspension limit, moving in a 3-dimensional space inside a viscous solvent. The model is then restricted to particles with ellipsoidal geometry to quantify the interplay of the long-range excluded volume and the short-range self-propulsion effects. The expression for the constitutive stresses, relating the kinetic theory with the momentum transport equations, are derived using a combination of the virtual work principle (for extra elastic stresses) and symmetry arguments (for active stresses). The second half of the talk will highlight on my current numerical expertise. In particular we will exploit a specific class of spectral basis functions together with RK4 time-stepping to determine the dynamical phases/structures as well as phase-transitions of these ellipsoidal clusters. We will also discuss on how to define the order (or orientation) of these clusters and understand the other rheological quantities.
Spherical T-duality
01:10 Mon 25 Aug, 2014 :: Ingkarni Wardli B18 :: Mathai Varghese :: University of Adelaide

I will talk on a new variant of T-duality, called spherical T-duality, which relates pairs of the form (P,H) consisting of a principal SU(2)-bundle P --> M and a 7-cocycle H on P. Intuitively spherical T-duality exchanges H with the second Chern class c_2(P). This is precisely true when M is compact oriented and dim(M) is at most 4. When M is higher dimensional, not all pairs (P,H) admit spherical T-duals and even when they exist, the spherical T-duals are not always unique. We will try and explain this phenomenon. Nonetheless, we prove that all spherical T-dualities induce a degree-shifting isomorphism on the 7-twisted cohomologies of the bundles and, when dim(M) is at most 7, also their integral twisted cohomologies and, when dim(M) is at most 4, even their 7-twisted K-theories. While the complete physical relevance of spherical T-duality is still being explored, it does provide an identification between conserved charges in certain distinct IIB supergravity and string compactifications. This is joint work with Peter Bouwknegt and Jarah Evslin.
Inferring absolute population and recruitment of southern rock lobster using only catch and effort data
12:35 Mon 22 Sep, 2014 :: B.19 Ingkarni Wardli :: John Feenstra :: University of Adelaide

Media...
Abundance estimates from a data-limited version of catch survey analysis are compared to those from a novel one-parameter deterministic method. Bias of both methods is explored using simulation testing based on a more complex data-rich stock assessment population dynamics fishery operating model, exploring the impact of both varying levels of observation error in data as well as model process error. Recruitment was consistently better estimated than legal size population, the latter most sensitive to increasing observation errors. A hybrid of the data-limited methods is proposed as the most robust approach. A more statistically conventional error-in-variables approach may also be touched upon if enough time.
Exploration vs. Exploitation with Partially Observable Gaussian Autoregressive Arms
15:00 Mon 29 Sep, 2014 :: Engineering North N132 :: Julia Kuhn :: The University of Queensland & The University of Amsterdam

Media...
We consider a restless bandit problem with Gaussian autoregressive arms, where the state of an arm is only observed when it is played and the state-dependent reward is collected. Since arms are only partially observable, a good decision policy needs to account for the fact that information about the state of an arm becomes more and more obsolete while the arm is not being played. Thus, the decision maker faces a tradeoff between exploiting those arms that are believed to be currently the most rewarding (i.e. those with the largest conditional mean), and exploring arms with a high conditional variance. Moreover, one would like the decision policy to remain tractable despite the infinite state space and also in systems with many arms. A policy that gives some priority to exploration is the Whittle index policy, for which we establish structural properties. These motivate a parametric index policy that is computationally much simpler than the Whittle index but can still outperform the myopic policy. Furthermore, we examine the many-arm behavior of the system under the parametric policy, identifying equations describing its asymptotic dynamics. Based on these insights we provide a simple heuristic algorithm to evaluate the performance of index policies; the latter is used to optimize the parametric index.
Visualising the diversity of benchmark instances and generating new test instances to elicit insights into algorithm performance
15:10 Fri 10 Oct, 2014 :: Napier 102 :: Professor Kate Smith-Miles :: Monash University

Media...
Objective assessment of optimization algorithm performance is notoriously difficult, with conclusions often inadvertently biased towards the chosen test instances. Rather than reporting average performance of algorithms across a set of chosen instances, we discuss a new methodology to enable the strengths and weaknesses of different optimization algorithms to be compared across a broader instance space. Results will be presented on timetabling, graph colouring and the TSP to demonstrate: (i) how pockets of the instance space can be found where algorithm performance varies significantly from the average performance of an algorithm; (ii) how the properties of the instances can be used to predict algorithm performance on previously unseen instances with high accuracy; (iii) how the relative strengths and weaknesses of each algorithm can be visualized and measured objectively; and (iv) how new test instances can be generated to fill the instance space and provide desired insights into algorithmic power.
Optimally Chosen Quadratic Forms for Partitioning Multivariate Data
13:10 Tue 14 Oct, 2014 :: Ingkarni Wardli 715 Conference Room :: Assoc. Prof. Inge Koch :: School of Mathematical Sciences

Media...
Quadratic forms are commonly used in linear algebra. For d-dimensional vectors they have a matrix representation, Q(x) = x'Ax, for some symmetric matrix A. In statistics quadratic forms are defined for d-dimensional random vectors, and one of the best-known quadratic forms is the Mahalanobis distance of two random vectors. In this talk we want to partition a quadratic form Q(X) = X'MX, where X is a random vector, and M a symmetric matrix, that is, we want to find a d-dimensional random vector W such that Q(X) = W'W. This problem has many solutions. We are interested in a solution or partition W of X such that pairs of corresponding variables (X_j, W_j) are highly correlated and such that W is simpler than the given X. We will consider some natural candidates for W which turn out to be suboptimal in the sense of the above constraints, and we will then exhibit the optimal solution. Solutions of this type are useful in the well-known T-square statistic. We will see in examples what these solutions look like.
Happiness and social information flow: Computational social science through data.
15:10 Fri 7 Nov, 2014 :: EM G06 (Engineering & Maths Bldg) :: Dr Lewis Mitchell :: University of Adelaide

The recent explosion in big data coming from online social networks has led to an increasing interest in bringing quantitative methods to bear on questions in social science. A recent high-profile example is the study of emotional contagion, which has led to significant challenges and controversy. This talk will focus on two issues related to emotional contagion, namely remote-sensing of population-level wellbeing and the problem of information flow across a social network. We discuss some of the challenges in working with massive online data sets, and present a simple tool for measuring large-scale happiness from such data. By combining over 10 million geolocated messages collected from Twitter with traditional census data we uncover geographies of happiness at the scale of states and cities, and discuss how these patterns may be related to traditional wellbeing measures and public health outcomes. Using tools from information theory we also study information flow between individuals and how this may relate to the concept of predictability for human behaviour.
Happiness and social information flow: Computational social science through data.
15:10 Fri 7 Nov, 2014 :: EM G06 (Engineering & Maths Bldg) :: Dr Lewis Mitchell :: University of Adelaide

The recent explosion in big data coming from online social networks has led to an increasing interest in bringing quantitative methods to bear on questions in social science. A recent high-profile example is the study of emotional contagion, which has led to significant challenges and controversy. This talk will focus on two issues related to emotional contagion, namely remote-sensing of population-level wellbeing and the problem of information flow across a social network. We discuss some of the challenges in working with massive online data sets, and present a simple tool for measuring large-scale happiness from such data. By combining over 10 million geolocated messages collected from Twitter with traditional census data we uncover geographies of happiness at the scale of states and cities, and discuss how these patterns may be related to traditional wellbeing measures and public health outcomes. Using tools from information theory we also study information flow between individuals and how this may relate to the concept of predictability for human behaviour.
Modelling segregation distortion in multi-parent crosses
15:00 Mon 17 Nov, 2014 :: 5.57 Ingkarni Wardli :: Rohan Shah (joint work with B. Emma Huang and Colin R. Cavanagh) :: The University of Queensland

Construction of high-density genetic maps has been made feasible by low-cost high-throughput genotyping technology; however, the process is still complicated by biological, statistical and computational issues. A major challenge is the presence of segregation distortion, which can be caused by selection, difference in fitness, or suppression of recombination due to introgressed segments from other species. Alien introgressions are common in major crop species, where they have often been used to introduce beneficial genes from wild relatives. Segregation distortion causes problems at many stages of the map construction process, including assignment to linkage groups and estimation of recombination fractions. This can result in incorrect ordering and estimation of map distances. While discarding markers will improve the resulting map, it may result in the loss of genomic regions under selection or containing beneficial genes (in the case of introgression). To correct for segregation distortion we model it explicitly in the estimation of recombination fractions. Previously proposed methods introduce additional parameters to model the distortion, with a corresponding increase in computing requirements. This poses difficulties for large, densely genotyped experimental populations. We propose a method imposing minimal additional computational burden which is suitable for high-density map construction in large multi-parent crosses. We demonstrate its use modelling the known Sr36 introgression in wheat for an eight-parent complex cross.
Nonlinear analysis over infinite dimensional spaces and its applications
12:10 Fri 6 Feb, 2015 :: Ingkarni Wardli B20 :: Tsuyoshi Kato :: Kyoto University

In this talk we develop moduli theory of holomorphic curves over infinite dimensional manifolds consisted by sequences of almost Kaehler manifolds. Under the assumption of high symmetry, we verify that many mechanisms of the standard moduli theory over closed symplectic manifolds also work over these infinite dimensional spaces. As an application, we study deformation theory of discrete groups acting on trees. There is a canonical way, up to conjugacy to embed such groups into the automorphism group over the infinite projective space. We verify that for some class of Hamiltonian functions, the deformed groups must be always asymptotically infinite.
Boundary behaviour of Hitchin and hypo flows with left-invariant initial data
12:10 Fri 27 Feb, 2015 :: Ingkarni Wardli B20 :: Vicente Cortes :: University of Hamburg

Hitchin and hypo flows constitute a system of first order pdes for the construction of Ricci-flat Riemannian mertrics of special holonomy in dimensions 6, 7 and 8. Assuming that the initial geometric structure is left-invariant, we study whether the resulting Ricci-flat manifolds can be extended in a natural way to complete Ricci-flat manifolds. This talk is based on joint work with Florin Belgun, Marco Freibert and Oliver Goertsches, see arXiv:1405.1866 (math.DG).
Singular Pfaffian systems in dimension 6
12:10 Fri 20 Mar, 2015 :: Napier 144 :: Pawel Nurowski :: Center for Theoretical Physics, Polish Academy of Sciences

We consider a pair of rank 3 distributions in dimension 6 with some remarkable properties. They define an analog of the celebrated nearly-Kahler structure on the 6 sphere, with the exceptional simple Lie group G2 as a group of symmetries. In our case the metric associated with the structure is pseudo-Riemannian, of split signature. The 6 manifold has a 5-dimensional boundary with interesting induced geometry. This structure on the boundary has no analog in the Riemannian case.
Identifying the Missing Aspects of the ANSI/ISA Best Practices for Security Policy
12:10 Mon 27 Apr, 2015 :: Napier LG29 :: Dinesha Ranathunga :: University of Adelaide

Media...
Firewall configuration is a critical activity but it is often conducted manually, which often result in inaccurate, unreliable configurations that leave networks vulnerable to cyber attack. Firewall misconfigurations can have severe consequences in the context of critical infrastructure plants. Internal networks within these plants interconnect valuable industrial control equipment which often control safety critical processes. Security breaches here can result in disruption of critical services, cause severe environmental damage and at worse, loss of human lives. Automation can make designing firewall configurations less tedious and their deployment more reliable and increasingly cost-effective. In this talk I will discuss of our efforts to arrive at a high-level security policy description based on the ANSI/ISA standard, suitable for automation. In doing do, we identify the missing aspects of the existing best practices and propose solutions. We then apply the corrected best practice specifications to real SCADA firewall configurations and evaluate their usefulness in describing SCADA policies accurately.
Multivariate regression in quantitative finance: sparsity, structure, and robustness
15:10 Fri 1 May, 2015 :: Engineering North N132 :: A/Prof Mark Coates :: McGill University

Many quantitative hedge funds around the world strive to predict future equity and futures returns based on many sources of information, including historical returns and economic data. This leads to a multivariate regression problem. Compared to many regression problems, the signal-to-noise ratio is extremely low, and profits can be realized if even a small fraction of the future returns can be accurately predicted. The returns generally have heavy-tailed distributions, further complicating the regression procedure.

In this talk, I will describe how we can impose structure into the regression problem in order to make detection and estimation of the very weak signals feasible. Some of this structure consists of an assumption of sparsity; some of it involves identification of common factors to reduce the dimension of the problem. I will also describe how we can formulate alternative regression problems that lead to more robust solutions that better match the performance metrics of interest in the finance setting.

Medical Decision Making
12:10 Mon 11 May, 2015 :: Napier LG29 :: Eka Baker :: University of Adelaide

Media...
Practicing physicians make treatment decisions based on clinical trial data every day. This data is based on trials primarily conducted on healthy volunteers, or on those with only the disease in question. In reality, patients do have existing conditions that can affect the benefits and risks associated with receiving these treatments. In this talk, I will explain how we modified an already existing Markov model to show the progression of treatment of a single condition over time. I will then explain how we adapted this to a different condition, and then created a combined model, which demonstrated how both diseases and treatments progressed on the same patient over their lifetime.
Can mathematics help save energy in computing?
15:10 Fri 22 May, 2015 :: Engineering North N132 :: Prof Markus Hegland :: ANU

Media...

Recent development of computational hardware is characterised by two trends: 1. High levels of duplication of computational capabilities in multicore, parallel and GPU processing, and, 2. Substantially faster development of the speed of computational technology compared to communication technology

A consequence of these two trends is that energy costs of modern computing devices from mobile phones to supercomputers are increasingly dominated by communication costs. In order to save energy one would thus need to reduce the amount of data movement within the computer. This can be achieved by recomputing results instead of communicating them. The resulting increase in computational redundancy may also be used to make the computations more robust against hardware faults. Paradoxically, by doing more (computations) we do use less (energy).

This talk will first discuss for a simple example how a mathematical understanding can be applied to improve computational results using extrapolation. Then the problem of energy consumption in computational hardware will be considered. Finally some recent work will be discussed which shows how redundant computing is used to mitigate computational faults and thus to save energy.

Big things are weird
12:10 Mon 25 May, 2015 :: Napier LG29 :: Luke Keating-Hughes :: University of Adelaide

Media...
The pyramids of Giza, the depths of the Mariana trench, the massive Einstein Cross Quasar; all of these things are big and weird. Big weird things aren't just apparent in the physical world though, they appear in mathematics too! In this talk I will try to motivate a mathematical big thing and then show that it is weird. In particular, we will introduce the necessary topology and homotopy theory in order to show that although all finite dimensional spheres are (almost canonically) non-contractible spaces - an infinite dimensional sphere IS contractible! This result's significance will then be explained in the context of Kuiper's Theorem if time permits.
Group Meeting
15:10 Fri 29 May, 2015 :: EM 213 :: Dr Judy Bunder :: University of Adelaide

Talk : Patch dynamics for efficient exascale simulations Abstract Massive parallelisation has lead to a dramatic increase in available computational power. However, data transfer speeds have failed to keep pace and are the major limiting factor in the development of exascale computing. New algorithms must be developed which minimise the transfer of data. Patch dynamics is a computational macroscale modelling scheme which provides a coarse macroscale solution of a problem defined on a fine microscale by dividing the domain into many nonoverlapping, coupled patches. Patch dynamics is readily adaptable to massive parallelisation as each processor core can evaluate the dynamics on one, or a few, patches. However, patch coupling conditions interpolate across the unevaluated parts of the domain between patches and require almost continuous data transfer. We propose a modified patch dynamics scheme which minimises data transfer by only reevaluating the patch coupling conditions at `mesoscale' time scales which are significantly larger than the microscale time of the microscale problem. We analyse and quantify the error arising from patch dynamics with mesoscale temporal coupling.
Instantons and Geometric Representation Theory
12:10 Thu 23 Jul, 2015 :: Engineering and Maths EM212 :: Professor Richard Szabo :: Heriot-Watt University

We give an overview of the various approaches to studying supersymmetric quiver gauge theories on ALE spaces, and their conjectural connections to two-dimensional conformal field theory via AGT-type dualities. From a mathematical perspective, this is formulated as a relationship between the equivariant cohomology of certain moduli spaces of sheaves on stacks and the representation theory of infinite-dimensional Lie algebras. We introduce an orbifold compactification of the minimal resolution of the A-type toric singularity in four dimensions, and then construct a moduli space of framed sheaves which is conjecturally isomorphic to a Nakajima quiver variety. We apply this construction to derive relations between the equivariant cohomology of these moduli spaces and the representation theory of the affine Lie algebra of type A.
Dirac operators and Hamiltonian loop group action
12:10 Fri 24 Jul, 2015 :: Engineering and Maths EM212 :: Yanli Song :: University of Toronto

A definition to the geometric quantization for compact Hamiltonian G-spaces is given by Bott, defined as the index of the Spinc-Dirac operator on the manifold. In this talk, I will explain how to generalize this idea to the Hamiltonian LG-spaces. Instead of quantizing infinite-dimensional manifolds directly, we use its equivalent finite-dimensional model, the quasi-Hamiltonian G-spaces. By constructing twisted spinor bundle and twisted pre-quantum bundle on the quasi-Hamiltonian G-space, we define a Dirac operator whose index are given by positive energy representation of loop groups. A key role in the construction will be played by the algebraic cubic Dirac operator for loop algebra. If time permitted, I will also explain how to prove the quantization commutes with reduction theorem for Hamiltonian LG-spaces under this framework.
Quantising proper actions on Spin-c manifolds
11:00 Fri 31 Jul, 2015 :: Ingkarni Wardli Level 7 Room 7.15 :: Peter Hochs :: The University of Adelaide

Media...
For a proper action by a Lie group on a Spin-c manifold (both of which may be noncompact), we study an index of deformations of the Spin-c Dirac operator, acting on the space of spinors invariant under the group action. When applied to spinors that are square integrable transversally to orbits in a suitable sense, the kernel of this operator turns out to be finite-dimensional, under certain hypotheses of the deformation. This also allows one to show that the index has the quantisation commutes with reduction property (as proved by Meinrenken in the compact symplectic case, and by Paradan-Vergne in the compact Spin-c case), for sufficiently large powers of the determinant line bundle. Furthermore, this result extends to Spin-c Dirac operators twisted by vector bundles. A key ingredient of the arguments is the use of a family of inner products on the Lie algebra, depending on a point in the manifold. This is joint work with Mathai Varghese.
Be careful not to impute something ridiculous!
12:20 Mon 24 Aug, 2015 :: Benham Labs G10 :: Sarah James :: University of Adelaide

Media...
When learning how to make inferences about data, we are given all of the information with no missing values. In reality data sets are often missing data, anywhere from 5% of the data to extreme cases such as 70% of the data. Instead of getting rid of the incomplete cases we can impute predictions for each missing value and make inferences on the resulting data set. But just how sensible are our predictions? In this talk, we will learn how to deal with missing data and talk about why we have to be careful with our predictions.
Vanishing lattices and moduli spaces
12:10 Fri 28 Aug, 2015 :: Ingkarni Wardli B17 :: David Baraglia :: The University of Adelaide

Media...
Vanishing lattices are symplectic analogues of root systems. As with roots systems, they admit a classification in terms of certain Dynkin diagrams (not the usual ones from Lie theory). In this talk I will discuss this classification and if there is time I will outline my work (in progress) showing that the monodromy of the SL(n,C) Hitchin fibration is essentially a vanishing lattice.
Predicting the Winning Time of a Stage of the Tour de France
12:10 Mon 21 Sep, 2015 :: Benham Labs G10 :: Nic Rebuli :: University of Adelaide

Media...
Sports can be lucrative, especially popular ones. But for all of us mere mortals, the only money we will ever glean from sporting events is through gambling (responsibly). When it comes to cycling, people generally choose their favourites based on individual and team performance, throughout the world cycling calendar. But what can be said for the duration of a given stage or the winning time of the highly sort after General Classification? In this talk I discuss a basic model for predicting the winning time of the Tour de France. I then apply this model to predicting the outcome of the 2012 and 2013 Tour de France and discuss the results in context.
Chern-Simons classes on loop spaces and diffeomorphism groups
12:10 Fri 16 Oct, 2015 :: Ingkarni Wardli B17 :: Steve Rosenberg :: Boston University

Media...
Not much is known about the topology of the diffeomorphism group Diff(M) of manifolds M of dimension four and higher. We'll show that for a class of manifolds of dimension 4k+1, Diff(M) has infinite fundamental group. This is proved by translating the problem into a question about Chern-Simons classes on the tangent bundle to the loop space LM. To build the CS classes, we use a family of metrics on LM associated to a Riemannian metric on M. The curvature of these metrics takes values in an algebra of pseudodifferential operators. The main technical step in the CS construction is to replace the ordinary matrix trace in finite dimensions with the Wodzicki residue, the unique trace on this algebra. The moral is that some techniques in finite dimensional Riemannian geometry can be extended to some examples in infinite dimensional geometry.
Quasi-isometry classification of certain hyperbolic Coxeter groups
11:00 Fri 23 Oct, 2015 :: Ingkarni Wardli Conference Room 7.15 (Level 7) :: Anne Thomas :: University of Sydney

Media...
Let Gamma be a finite simple graph with vertex set S. The associated right-angled Coxeter group W is the group with generating set S, so that s^2 = 1 for all s in S and st = ts if and only if s and t are adjacent vertices in Gamma. Moussong proved that the group W is hyperbolic in the sense of Gromov if and only if Gamma has no "empty squares". We consider the quasi-isometry classification of such Coxeter groups using the local cut point structure of their visual boundaries. In particular, we find an algorithm for computing Bowditch's JSJ tree for a class of these groups, and prove that two such groups are quasi-isometric if and only if their JSJ trees are the same. This is joint work with Pallavi Dani (Louisiana State University).
Ocean dynamics of Gulf St Vincent: a numerical study
12:10 Mon 2 Nov, 2015 :: Benham Labs G10 :: Henry Ellis :: University of Adelaide

Media...
The aim of this research is to determine the physical dynamics of ocean circulation within Gulf St. Vincent, South Australia, and the exchange of momentum, nutrients, heat, salt and other water properties between the gulf and shelf via Investigator Strait and Backstairs Passage. The project aims to achieve this through the creation of high-resolution numerical models, combined with new and historical observations from a moored instrument package, satellite data, and shipboard surveys. The quasi-realistic high-resolution models are forced using boundary conditions generated by existing larger scale ROMS models, which in turn are forced at the boundary by a global model, creating a global to regional to local model network. Climatological forcing is done using European Centres for Medium range Weather Forecasting (ECMWF) data sets and is consistent over the regional and local models. A series of conceptual models are used to investigate the relative importance of separate physical processes in addition to fully forced quasi-realistic models. An outline of the research to be undertaken is given: • Connectivity of Gulf St. Vincent with shelf waters including seasonal variation due to wind and thermoclinic patterns; • The role of winter time cooling and formation of eddies in flushing the gulf; • The formation of a temperature front within the gulf during summer time; and • The connectivity and importance of nutrient rich, cool, water upwelling from the Bonney Coast with the gulf via Backstairs Passage during summer time.
Locally homogeneous pp-waves
12:10 Fri 6 Nov, 2015 :: Ingkarni Wardli B17 :: Thomas Leistner :: The University of Adelaide

Media...
For a certain type of Lorentzian manifolds, the so-called pp-waves, we study the conditions implied on the curvature by local homogeneity of the metric. We show that under some mild genericity assumptions, these conditions are quite strong, forcing the pp-wave to be a plane wave, and yielding a classification of homogeneous pp-waves. This also leads to a generalisation of a classical result by Jordan, Ehlers and Kundt about vacuum pp-waves in dimension 4 to arbitrary dimensions. Several examples show that our genericity assumptions are essential. This is joint work with W. Globke.
Modelling Coverage in RNA Sequencing
09:00 Mon 9 Nov, 2015 :: Ingkarni Wardli 5.57 :: Arndt von Haeseler :: Max F Perutz Laboratories, University of Vienna

Media...
RNA sequencing (RNA-seq) is the method of choice for measuring the expression of RNAs in a cell population. In an RNA-seq experiment, sequencing the full length of larger RNA molecules requires fragmentation into smaller pieces to be compatible with limited read lengths of most deep-sequencing technologies. Unfortunately, the issue of non-uniform coverage across a genomic feature has been a concern in RNA-seq and is attributed to preferences for certain fragments in steps of library preparation and sequencing. However, the disparity between the observed non-uniformity of read coverage in RNA-seq data and the assumption of expected uniformity elicits a query on the read coverage profile one should expect across a transcript, if there are no biases in the sequencing protocol. We propose a simple model of unbiased fragmentation where we find that the expected coverage profile is not uniform and, in fact, depends on the ratio of fragment length to transcript length. To compare the non-uniformity proposed by our model with experimental data, we extended this simple model to incorporate empirical attributes matching that of the sequenced transcript in an RNA-seq experiment. In addition, we imposed an experimentally derived distribution on the frequency at which fragment lengths occur.

We used this model to compare our theoretical prediction with experimental data and with the uniform coverage model. If time permits, we will also discuss a potential application of our model.
Use of epidemic models in optimal decision making
15:00 Thu 19 Nov, 2015 :: Ingkarni Wardli 5.57 :: Tim Kinyanjui :: School of Mathematics, The University of Manchester

Media...
Epidemic models have proved useful in a number of applications in epidemiology. In this work, I will present two areas that we have used modelling to make informed decisions. Firstly, we have used an age structured mathematical model to describe the transmission of Respiratory Syncytial Virus in a developed country setting and to explore different vaccination strategies. We found that delayed infant vaccination has significant potential in reducing the number of hospitalisations in the most vulnerable group and that most of the reduction is due to indirect protection. It also suggests that marked public health benefit could be achieved through RSV vaccine delivered to age groups not seen as most at risk of severe disease. The second application is in the optimal design of studies aimed at collection of household-stratified infection data. A design decision involves making a trade-off between the number of households to enrol and the sampling frequency. Two commonly used study designs are considered: cross-sectional and cohort. The search for an optimal design uses Bayesian methods to explore the joint parameter-design space combined with Shannon entropy of the posteriors to estimate the amount of information for each design. We found that for the cross-sectional designs, the amount of information increases with the sampling intensity while the cohort design often exhibits a trade-off between the number of households sampled and the intensity of follow-up. Our results broadly support the choices made in existing data collection studies.
Group meeting
15:10 Fri 20 Nov, 2015 :: Ingkarni Wardli B17 :: Mr Jack Keeler :: University of East Anglia / University of Adelaide

Title: Stability of free-surface flow over topography Abstract: The forced KdV equation is used as a model to analyse the wave behaviour on the free surface in response to prescribed topographic forcing. The research involves computing steady solutions using numeric and asymptotic techniques and then analysing the stability of these steady solutions in time-dependent calculations. Stability is analysed by computing the eigenvalue spectra of the linearised fKdV operator and by exploiting the Hamiltonian structure of the fKdV. Future work includes analysing the solution space for a corrugated topography and investigating the 3 dimensional problem using the KP equation. + Any items for group discussion
Group meeting
15:10 Fri 20 Nov, 2015 :: Ingkarni Wardli B17 :: Mr Jack Keeler :: University of East Anglia / University of Adelaide

Title: Stability of free-surface flow over topography Abstract: The forced KdV equation is used as a model to analyse the wave behaviour on the free surface in response to prescribed topographic forcing. The research involves computing steady solutions using numeric and asymptotic techniques and then analysing the stability of these steady solutions in time-dependent calculations. Stability is analysed by computing the eigenvalue spectra of the linearised fKdV operator and by exploiting the Hamiltonian structure of the fKdV. Future work includes analysing the solution space for a corrugated topography and investigating the 3 dimensional problem using the KP equation. + Any items for group discussion
A fibered density property and the automorphism group of the spectral ball
12:10 Fri 15 Jan, 2016 :: Engineering North N132 :: Frank Kutzschebauch :: University of Bern

Media...
The spectral ball is defined as the set of complex n by n matrices whose eigenvalues are all less than 1 in absolute value. Its group of holomorphic automorphisms has been studied over many decades in several papers and a precise conjecture about its structure has been formulated. In dimension 2 this conjecture was recently disproved by Kosinski. We not only disprove the conjecture in all dimensions but also give the best possible description of the automorphism group. Namely we explain how the invariant theoretic quotient map divides the automorphism group of the spectral ball into a finite dimensional part of symmetries which lift from the quotient and an infinite dimensional part which leaves the fibration invariant. We prove a precise statement as to how hopelessly huge this latter part is. This is joint work with R. Andrist.
A fixed point theorem on noncompact manifolds
12:10 Fri 12 Feb, 2016 :: Ingkarni Wardli B21 :: Peter Hochs :: University of Adelaide / Radboud University

Media...
For an elliptic operator on a compact manifold acted on by a compact Lie group, the Atiyah-Segal-Singer fixed point formula expresses its equivariant index in terms of data on fixed point sets of group elements. This can for example be used to prove Weyl’s character formula. We extend the definition of the equivariant index to noncompact manifolds, and prove a generalisation of the Atiyah-Segal-Singer formula, for group elements with compact fixed point sets. In one example, this leads to a relation with characters of discrete series representations of semisimple Lie groups. (This is joint work with Hang Wang.)
The parametric h-principle for minimal surfaces in R^n and null curves in C^n
12:10 Fri 11 Mar, 2016 :: Ingkarni Wardli B17 :: Finnur Larusson :: University of Adelaide

Media...
I will describe new joint work with Franc Forstneric (arXiv:1602.01529). This work brings together four diverse topics from differential geometry, holomorphic geometry, and topology; namely the theory of minimal surfaces, Oka theory, convex integration theory, and the theory of absolute neighborhood retracts. Our goal is to determine the rough shape of several infinite-dimensional spaces of maps of geometric interest. It turns out that they all have the same rough shape.
Expanding maps
12:10 Fri 18 Mar, 2016 :: Eng & Maths EM205 :: Andy Hammerlindl :: Monash University

Media...
Consider a function from the circle to itself such that the derivative is greater than one at every point. Examples are maps of the form f(x) = mx for integers m > 1. In some sense, these are the only possible examples. This fact and the corresponding question for maps on higher dimensional manifolds was a major motivation for Gromov to develop pioneering results in the field of geometric group theory. In this talk, I'll give an overview of this and other results relating dynamical systems to the geometry of the manifolds on which they act and (time permitting) talk about my own work in the area.
How predictable are you? Information and happiness in social media.
12:10 Mon 21 Mar, 2016 :: Ingkarni Wardli Conference Room 715 :: Dr Lewis Mitchell :: School of Mathematical Sciences

Media...
The explosion of ``Big Data'' coming from online social networks and the like has opened up the new field of ``computational social science'', which applies a quantitative lens to problems traditionally in the domain of psychologists, anthropologists and social scientists. What does it mean to be influential? How do ideas propagate amongst populations? Is happiness contagious? For the first time, mathematicians, statisticians, and computer scientists can provide insight into these and other questions. Using data from social networks such as Facebook and Twitter, I will give an overview of recent research trends in computational social science, describe some of my own work using techniques like sentiment analysis and information theory in this realm, and explain how you can get involved with this highly rewarding research field as well.
Connecting within-host and between-host dynamics to understand how pathogens evolve
15:10 Fri 1 Apr, 2016 :: Engineering South S112 :: A/Prof Mark Tanaka :: University of New South Wales

Media...
Modern molecular technologies enable a detailed examination of the extent of genetic variation among isolates of bacteria and viruses. Mathematical models can help make inferences about pathogen evolution from such data. Because the evolution of pathogens ultimately occurs within hosts, it is influenced by dynamics within hosts including interactions between pathogens and hosts. Most models of pathogen evolution focus on either the within-host or the between-host level. Here I describe steps towards bridging the two scales. First, I present a model of influenza virus evolution that incorporates within-host dynamics to obtain the between-host rate of molecular substitution as a function of the mutation rate, the within-host reproduction number and other factors. Second, I discuss a model of viral evolution in which some hosts are immunocompromised, thereby extending opportunities for within-host virus evolution which then affects population-level evolution. Finally, I describe a model of Mycobacterium tuberculosis in which multi-drug resistance evolves within hosts and spreads by transmission between hosts.
What is your favourite (4 dimensional) shape?
12:10 Mon 4 Apr, 2016 :: Ingkarni Wardli Conference Room 715 :: Dr Raymond Vozzo :: School of Mathematical Sciences

Media...
This is a circle, it lives in R^2: [picture of a circle]. This is a sphere, it lives in R^3: [picture of a sphere] In this talk I will (attempt to) give you a picture of what the next shape in this sequence (in R^4) looks like. I will also explain how all of this is related to a very important area of modern mathematics called topology.
Mathematical modelling of the immune response to influenza
15:00 Thu 12 May, 2016 :: Ingkarni Wardli B20 :: Ada Yan :: University of Melbourne

Media...
The immune response plays an important role in the resolution of primary influenza infection and prevention of subsequent infection in an individual. However, the relative roles of each component of the immune response in clearing infection, and the effects of interaction between components, are not well quantified.

We have constructed a model of the immune response to influenza based on data from viral interference experiments, where ferrets were exposed to two influenza strains within a short time period. The changes in viral kinetics of the second virus due to the first virus depend on the strains used as well as the interval between exposures, enabling inference of the timing of innate and adaptive immune response components and the role of cross-reactivity in resolving infection. Our model provides a mechanistic explanation for the observed variation in viruses' abilities to protect against subsequent infection at short inter-exposure intervals, either by delaying the second infection or inducing stochastic extinction of the second virus. It also explains the decrease in recovery time for the second infection when the two strains elicit cross-reactive cellular adaptive immune responses. To account for inter-subject as well as inter-virus variation, the model is formulated using a hierarchical framework. We will fit the model to experimental data using Markov Chain Monte Carlo methods; quantification of the model will enable a deeper understanding of the effects of potential new treatments.
Smooth mapping orbifolds
12:10 Fri 20 May, 2016 :: Eng & Maths EM205 :: David Roberts :: University of Adelaide

It is well-known that orbifolds can be represented by a special kind of Lie groupoid, namely those that are étale and proper. Lie groupoids themselves are one way of presenting certain nice differentiable stacks. In joint work with Ray Vozzo we have constructed a presentation of the mapping stack Hom(disc(M),X), for M a compact manifold and X a differentiable stack, by a Fréchet-Lie groupoid. This uses an apparently new result in global analysis about the map C^\infty(K_1,Y) \to C^\infty(K_2,Y) induced by restriction along the inclusion K_2 \to K_1, for certain compact K_1,K_2. We apply this to the case of X being an orbifold to show that the mapping stack is an infinite-dimensional orbifold groupoid. We also present results about mapping groupoids for bundle gerbes.
Behavioural Microsimulation Approach to Social Policy and Behavioural Economics
15:10 Fri 20 May, 2016 :: S112 Engineering South :: Dr Drew Mellor :: Ernst & Young

SIMULAIT is a general purpose, behavioural micro-simulation system designed to predict behavioural trends in human populations. This type of predictive capability grew out of original research initially conducted in conjunction with the Defence Science and Technology Group (DSTO) in South Australia, and has been fully commercialised and is in current use by a global customer base. To our customers, the principal value of the system lies in its ability to predict likely outcomes to scenarios that challenge conventional approaches based on extrapolation or generalisation. These types of scenarios include: the impact of disruptive technologies, such as the impact of wide-spread adoption of autonomous vehicles for transportation or batteries for household energy storage; and the impact of effecting policy elements or interventions, such as the impact of imposing water usage restrictions. SIMULAIT employs a multi-disciplinary methodology, drawing from agent-based modelling, behavioural science and psychology, microeconomics, artificial intelligence, simulation, game theory, engineering, mathematics and statistics. In this seminar, we start with a high-level view of the system followed by a look under the hood to see how the various elements come together to answer questions about behavioural trends. The talk will conclude with a case study of a recent application of SIMULAIT to a significant policy problem - how to address the deficiency of STEM skilled teachers in the Victorian teaching workforce.
Time series analysis of paleo-climate proxies (a mathematical perspective)
15:10 Fri 27 May, 2016 :: Engineering South S112 :: Dr Thomas Stemler :: University of Western Australia

Media...
In this talk I will present the work my colleagues from the School of Earth and Environment (UWA), the "trans disciplinary methods" group of the Potsdam Institute for Climate Impact Research, Germany, and I did to explain the dynamics of the Australian-South East Asian monsoon system during the last couple of thousand years. From a time series perspective paleo-climate proxy series are more or less the monsters moving under your bed that wake you up in the middle of the night. The data is clearly non-stationary, non-uniform sampled in time and the influence of stochastic forcing or the level of measurement noise are more or less unknown. Given these undesirable properties almost all traditional time series analysis methods fail. I will highlight two methods that allow us to draw useful conclusions from the data sets. The first one uses Gaussian kernel methods to reconstruct climate networks from multiple proxies. The coupling relationships in these networks change over time and therefore can be used to infer which areas of the monsoon system dominate the complex dynamics of the whole system. Secondly I will introduce the transformation cost time series method, which allows us to detect changes in the dynamics of a non-uniform sampled time series. Unlike the frequently used interpolation approach, our new method does not corrupt the data and therefore avoids biases in any subsequence analysis. While I will again focus on paleo-climate proxies, the method can be used in other applied areas, where regular sampling is not possible.
On the Strong Novikov Conjecture for Locally Compact Groups in Low Degree Cohomology Classes
12:10 Fri 3 Jun, 2016 :: Eng & Maths EM205 :: Yoshiyasu Fukumoto :: Kyoto University

Media...
The main result I will discuss is non-vanishing of the image of the index map from the G-equivariant K-homology of a G-manifold X to the K-theory of the C*-algebra of the group G. The action of G on X is assumed to be proper and cocompact. Under the assumption that the Kronecker pairing of a K-homology class with a low-dimensional cohomology class is non-zero, we prove that the image of this class under the index map is non-zero. Neither discreteness of the locally compact group G nor freeness of the action of G on X are required. The case of free actions of discrete groups was considered earlier by B. Hanke and T. Schick.
Student Performance Issues in First Year University Calculus
15:10 Fri 10 Jun, 2016 :: Engineering South S112 :: Dr Christine Mangelsdorf :: University of Melbourne

Media...
MAST10006 Calculus 2 is the largest subject in the School of Mathematics and Statistics at the University of Melbourne, accounting for about 2200 out of 7400 first year enrolments. Despite excellent and consistent feedback from students on lectures, tutorials and teaching materials, scaled failure rates in Calculus 2 averaged an unacceptably high 29.4% (with raw failure rates reaching 40%) by the end of 2014. To understand the issues behind the poor student performance, we studied the exam papers of students with grades of 40-49% over a three-year period. In this presentation, I will present data on areas of poor performance in the final exam, show samples of student work, and identify possible causes for their errors. Many of the performance issues are found to relate to basic weaknesses in the students’ secondary school mathematical skills that inhibit their ability to successfully complete Calculus 2. Since 2015, we have employed a number of approaches to support students’ learning that significantly improved student performance in assessment. I will discuss the changes made to assessment practices and extra support materials provided online and in person, that are driving the improvement.
Multi-scale modeling in biofluids and particle aggregation
15:10 Fri 17 Jun, 2016 :: B17 Ingkarni Wardli :: Dr Sarthok Sircar :: University of Adelaide

In today's seminar I will give 2 examples in mathematical biology which describes the multi-scale organization at 2 levels: the meso/micro level and the continuum/macro level. I will then detail suitable tools in statistical mechanics to link these different scales. The first problem arises in mathematical physiology: swelling-de-swelling mechanism of mucus, an ionic gel. Mucus is packaged inside cells at high concentration (volume fraction) and when released into the extracellular environment, it expands in volume by two orders of magnitude in a matter of seconds. This rapid expansion is due to the rapid exchange of calcium and sodium that changes the cross-linked structure of the mucus polymers, thereby causing it to swell. Modeling this problem involves a two-phase, polymer/solvent mixture theory (in the continuum level description), together with the chemistry of the polymer, its nearest neighbor interaction and its binding with the dissolved ionic species (in the micro-scale description). The problem is posed as a free-boundary problem, with the boundary conditions derived from a combination of variational principle and perturbation analysis. The dynamics of neutral gels and the equilibrium-states of the ionic gels are analyzed. In the second example, we numerically study the adhesion fragmentation dynamics of rigid, round particles clusters subject to a homogeneous shear flow. In the macro level we describe the dynamics of the number density of these cluster. The description in the micro-scale includes (a) binding/unbinding of the bonds attached on the particle surface, (b) bond torsion, (c) surface potential due to ionic medium, and (d) flow hydrodynamics due to shear flow.
Chern-Simons invariants of Seifert manifolds via Loop spaces
14:10 Tue 28 Jun, 2016 :: Ingkarni Wardli B17 :: Ryan Mickler :: Northeastern University

Over the past 30 years the Chern-Simons functional for connections on G-bundles over three-manfolds has lead to a deep understanding of the geometry of three-manfiolds, as well as knot invariants such as the Jones polynomial. Here we study this functional for three-manfolds that are topologically given as the total space of a principal circle bundle over a compact Riemann surface base, which are known as Seifert manifolds. We show that on such manifolds the Chern-Simons functional reduces to a particular gauge-theoretic functional on the 2d base, that describes a gauge theory of connections on an infinite dimensional bundle over this base with structure group given by the level-k affine central extension of the loop group LG. We show that this formulation gives a new understanding of results of Beasley-Witten on the computability of quantum Chern-Simons invariants of these manifolds as well as knot invariants for knots that wrap a single fiber of the circle bundle. A central tool in our analysis is the Caloron correspondence of Murray-Stevenson-Vozzo.
Holomorphic Flexibility Properties of Spaces of Elliptic Functions
12:10 Fri 29 Jul, 2016 :: Ingkarni Wardli B18 :: David Bowman :: University of Adelaide

The set of meromorphic functions on an elliptic curve naturally possesses the structure of a complex manifold. The component of degree 3 functions is 6-dimensional and enjoys several interesting complex-analytic properties that make it, loosely speaking, the opposite of a hyperbolic manifold. Our main result is that this component has a 54-sheeted branched covering space that is an Oka manifold.
Mathematical modelling of social spreading processes
15:10 Fri 19 Aug, 2016 :: Napier G03 :: Prof Hans De Sterck :: Monash University

Media...
Social spreading processes are intriguing manifestations of how humans interact and shape each others' lives. There is great interest in improving our understanding of these processes, and the increasing availability of empirical information in the era of big data and online social networks, combined with mathematical and computational modelling techniques, offer compelling new ways to study these processes. I will first discuss mathematical models for the spread of political revolutions on social networks. The influence of online social networks and social media on the dynamics of the Arab Spring revolutions of 2011 are of particular interest in our work. I will describe a hierarchy of models, starting from agent-based models realized on empirical social networks, and ending up with population-level models that summarize the dynamical behaviour of the spreading process. We seek to understand quantitatively how political revolutions may be facilitated by the modern online social networks of social media. The second part of the talk will describe a population-level model for the social dynamics that cause cigarette smoking to spread in a population. Our model predicts that more individualistic societies will show faster adoption and cessation of smoking. Evidence from a newly composed century-long composite data set on smoking prevalence in 25 countries supports the model, with potential implications for public health interventions around the world. Throughout the talk, I will argue that important aspects of social spreading processes can be revealed and understood via quantitative mathematical and computational models matched to empirical data. This talk describes joint work with John Lang and Danny Abrams.
Predicting turbulence
14:10 Tue 30 Aug, 2016 :: Napier 209 :: Dr Trent Mattner :: School of Mathematical Sciences

Media...
Turbulence is characterised by three-dimensional unsteady fluid motion over a wide range of spatial and temporal scales. It is important in many problems of technological and scientific interest, such as drag reduction, energy production and climate prediction. Turbulent flows are governed by the Navier--Stokes equations, which are a nonlinear system of partial differential equations. Typically, numerical methods are needed to find solutions to these equations. In turbulent flows, however, the resulting computational problem is usually intractable. Filtering or averaging the Navier--Stokes equations mitigates the computational problem, but introduces new quantities into the equations. Mathematical models of turbulence are needed to estimate these quantities. One promising turbulence model consists of a random collection of fluid vortices, which are themselves approximate solutions of the Navier--Stokes equations.
Geometry of pseudodifferential algebra bundles
12:10 Fri 16 Sep, 2016 :: Ingkarni Wardli B18 :: Mathai Varghese :: University of Adelaide

Media...
I will motivate the construction of pseudodifferential algebra bundles arising in index theory, and also outline the construction of general pseudodifferential algebra bundles (and the associated sphere bundles), showing that there are many that are purely infinite dimensional that do not come from usual constructions in index theory. I will also discuss characteristic classes of such bundles. This is joint work with Richard Melrose.
The mystery of colony collapse: Mathematics and honey bee loss
15:10 Fri 16 Sep, 2016 :: Napier G03 :: Prof Mary Myerscough :: University of Sydney

Media...
Honey bees are vital to the production of many foods which need to be pollinated by insects. Yet in many parts of the world honey bee colonies are in decline. A crucial contributor to hive well-being is the health, productivity and longevity of its foragers. When forager numbers are depleted due to stressors in the colony (such as disease or malnutrition) or in the environment (such as pesticides) there is a significant effect, not only on the amount of food (nectar and pollen) that can be collected but also on the colony's capacity to raise brood (eggs, larvae and pupae) to produce new adult bees to replace lost or aged bees. We use a set of differential equation models to explore the effect on the hive of high forager death rates. In particular we examine what happens when bees become foragers at a comparatively young age and how this can lead to a sudden rapid decline of adult bees and the death of the colony.
A principled experimental design approach to big data analysis
15:10 Fri 23 Sep, 2016 :: Napier G03 :: Prof Kerrie Mengersen :: Queensland University of Technology

Media...
Big Datasets are endemic, but they are often notoriously difficult to analyse because of their size, complexity, history and quality. The purpose of this paper is to open a discourse on the use of modern experimental design methods to analyse Big Data in order to answer particular questions of interest. By appeal to a range of examples, it is suggested that this perspective on Big Data modelling and analysis has wide generality and advantageous inferential and computational properties. In particular, the principled experimental design approach is shown to provide a flexible framework for analysis that, for certain classes of objectives and utility functions, delivers equivalent answers compared with analyses of the full dataset. It can also provide a formalised method for iterative parameter estimation, model checking, identification of data gaps and evaluation of data quality. Finally it has the potential to add value to other Big Data sampling algorithms, in particular divide-and-conquer strategies, by determining efficient sub-samples.
Transmission Dynamics of Visceral Leishmaniasis: designing a test and treat control strategy
12:10 Thu 29 Sep, 2016 :: EM218 :: Graham Medley :: London School of Hygiene & Tropical Medicine

Media...
Visceral Leishmaniasis (VL) is targeted for elimination from the Indian Sub-Continent. Progress has been much better in some areas than others. Current control is based on earlier diagnosis and treatment and on insecticide spraying to reduce the density of the vector. There is a surprising dearth of specific information on the epidemiology of VL, which makes modelling more difficult. In this seminar, I describe a simple framework that gives some insight into the transmission dynamics. We conclude that the majority of infection comes from cases prior to diagnosis. If this is the case then, early diagnosis will be advantageous, but will require a test with high specificity. This is a paradox for many clinicians and public health workers, who tend to prioritise high sensitivity.

Medley, G.F., Hollingsworth, T.D., Olliaro, P.L. & Adams, E.R. (2015) Health-seeking, diagnostics and transmission in the control of visceral leishmaniasis. Nature 528, S102-S108 (3 December 2015), DOI: 10.1038/nature16042
Symmetric functions and quantum integrability
15:10 Fri 30 Sep, 2016 :: Napier G03 :: Dr Paul Zinn-Justin :: University of Melbourne/Universite Pierre et Marie Curie

Media...
We'll discuss an approach to studying families of symmetric polynomials which is based on ''quantum integrability'', that is, on the use of exactly solvable two-dimensional lattice models. We'll first explain the general strategy on the simplest case, namely Schur polynomials, with the introduction of a model of lattice paths (a.k.a. five-vertex model). We'll then discuss recent work (in collaboration with M. Wheeler) that extends this approach to Hall--Littlewood polynomials and Grothendieck polynomials, and some applications of it.
Measuring and mapping carbon dioxide from remote sensing satellite data
15:10 Fri 21 Oct, 2016 :: Napier G03 :: Prof Noel Cressie :: University of Wollongong

Media...
This talk is about environmental statistics for global remote sensing of atmospheric carbon dioxide, a leading greenhouse gas. An important compartment of the carbon cycle is atmospheric carbon dioxide (CO2), where it (and other gases) contribute to climate change through a greenhouse effect. There are a number of CO2 observational programs where measurements are made around the globe at a small number of ground-based locations at somewhat regular time intervals. In contrast, satellite-based programs are spatially global but give up some of the temporal richness. The most recent satellite launched to measure CO2 was NASA's Orbiting Carbon Observatory-2 (OCO-2), whose principal objective is to retrieve a geographical distribution of CO2 sources and sinks. OCO-2's measurement of column-averaged mole fraction, XCO2, is designed to achieve this, through a data-assimilation procedure that is statistical at its basis. Consequently, uncertainty quantification is key, starting with the spectral radiances from an individual sounding to borrowing of strength through spatial-statistical modelling.
Toroidal Soap Bubbles: Constant Mean Curvature Tori in S ^ 3 and R ^3
12:10 Fri 28 Oct, 2016 :: Ingkarni Wardli B18 :: Emma Carberry :: University of Sydney

Media...
Constant mean curvature (CMC) tori in S ^ 3, R ^ 3 or H ^ 3 are in bijective correspondence with spectral curve data, consisting of a hyperelliptic curve, a line bundle on this curve and some additional data, which in particular determines the relevant space form. This point of view is particularly relevant for considering moduli-space questions, such as the prevalence of tori amongst CMC planes and whether tori can be deformed. I will address these questions for the spherical and Euclidean cases, using Whitham deformations.
Fault tolerant computation of hyperbolic PDEs with the sparse grid combination technique
15:10 Fri 28 Oct, 2016 :: Ingkarni Wardli 5.57 :: Dr Brendan Harding :: University of Adelaide

Computing solutions to high dimensional problems is challenging because of the curse of dimensionality. The sparse grid combination technique allows one to significantly reduce the cost of computing solutions such that they become manageable on current supercomputers. However, as these supercomputers increase in size the rate of failure also increases. This poses a challenge for our computations. In this talk we look at the problem of computing solutions to hyperbolic partial differential equations with the combination technique in an environment where faults occur. A fault tolerant generalisation of the combination technique will be presented along with results that demonstrate its effectiveness.
Segregation of particles in incompressible flows due to streamline topology and particle-boundary interaction
15:10 Fri 2 Dec, 2016 :: Ingkarni Wardli 5.57 :: Professor Hendrik C. Kuhlmann :: Institute of Fluid Mechanics and Heat Transfer, TU Wien, Vienna, Austria

Media...
The incompressible flow in a number of classical benchmark problems (e.g. lid-driven cavity, liquid bridge) undergoes an instability from a two-dimensional steady to a periodic three-dimensional flow, which is steady or in form of a traveling wave, if the Reynolds number is increased. In the supercritical regime chaotic as well as regular (quasi-periodic) streamlines can coexist for a range of Reynolds numbers. The spatial structures of the regular regions in three-dimensional Navier-Stokes flows has received relatively little attention, partly because of the high numerical effort required for resolving these structures. Particles whose density does not differ much from that of the liquid approximately follow the chaotic or regular streamlines in the bulk. Near the boundaries, however, their trajectories strongly deviate from the streamlines, in particular if the boundary (wall or free surface) is moving tangentially. As a result of this particle-boundary interaction particles can rapidly segregate and be attracted to periodic or quasi-periodic orbits, yielding particle accumulation structures (PAS). The mechanism of PAS will be explained and results from experiments and numerical modelling will be presented to demonstrate the generic character of the phenomenon.
K-types of tempered representations
12:10 Fri 7 Apr, 2017 :: Napier 209 :: Peter Hochs :: University of Adelaide

Media...
Tempered representations of a reductive Lie group G are the irreducible unitary representations one needs in the Plancherel decomposition of L^2(G). They are relevant to harmonic analysis because of this, and also occur in the Langlands classification of the larger class of admissible representations. If K in G is a maximal compact subgroup, then there is a considerable amount of information in the restriction of a tempered representation to K. In joint work with Yanli Song and Shilin Yu, we give a geometric expression for the decomposition of such a restriction into irreducibles. The multiplicities of these irreducibles are expressed as indices of Dirac operators on reduced spaces of a coadjoint orbit of G corresponding to the representation. These reduced spaces are Spin-c analogues of reduced spaces in symplectic geometry, defined in terms of moment maps that represent conserved quantities. This result involves a Spin-c version of the quantisation commutes with reduction principle for noncompact manifolds. For discrete series representations, this was done by Paradan in 2003.
Algae meet the mathematics of multiplicative multifractals
12:10 Tue 2 May, 2017 :: Inkgarni Wardli Conference Room 715 :: Professor Tony Roberts :: School of Mathematical Sciences

Media...
There is much that is fragmented and rough in the world around us: clouds and landscapes are examples, as is algae. We need fractal geometry to encompass these. In practice we need multifractals: a composite of interwoven sets, each with their own fractal structure. Multiplicative multifractals have known properties. Optimising a fit between them and the data then empowers us to quantify subtle details of fractal geometry in applications, such as in algae distribution.
Lagrangian transport in deterministic flows: from theory to experiment
16:10 Tue 16 May, 2017 :: Engineering North N132 :: Dr Michel Speetjens :: Eindhoven University of Technology

Transport of scalar quantities (e.g. chemical species, nutrients, heat) in deterministic flows is key to a wide range of phenomena and processes in industry and Nature. This encompasses length scales ranging from microns to hundreds of kilometres, and includes systems as diverse as viscous flows in the processing industry, micro-fluidic flows in labs-on-a-chip and porous media, large-scale geophysical and environmental flows, physiological and biological flows and even continuum descriptions of granular flows. Essential to the net transport of a scalar quantity is its advection by the fluid motion. The Lagrangian perspective (arguably) is the most natural way to investigate advection and leans on the fact that fluid trajectories are organized into coherent structures that geometrically determine the advective transport properties. Lagrangian transport is typically investigated via theoretical and computational studies and often concerns idealized flow situations that are difficult (or even impossible) to create in laboratory experiments. However, bridging the gap from theoretical and computational results to realistic flows is essential for their physical meaningfulness and practical relevance. This presentation highlights a number of fundamental Lagrangian transport phenomena and properties in both two-dimensional and three-dimensional flows and demonstrates their physical validity by way of representative and experimentally realizable flows.
Constructing differential string structures
14:10 Wed 7 Jun, 2017 :: EM213 :: David Roberts :: University of Adelaide

Media...
String structures on a manifold are analogous to spin structures, except instead of lifting the structure group through the extension Spin(n)\to SO(n) of Lie groups, we need to lift through the extension String(n)\to Spin(n) of Lie *2-groups*. Such a thing exists if the first fractional Pontryagin class (1/2)p_1 vanishes in cohomology. A differential string structure also lifts connection data, but this is rather complicated, involving a number of locally defined differential forms satisfying cocycle-like conditions. This is an expansion of the geometric string structures of Stolz and Redden, which is, for a given connection A, merely a 3-form R on the frame bundle such that dR = tr(F^2) for F the curvature of A; in other words a trivialisation of the de Rham class of (1/2)p_1. I will present work in progress on a framework (and specific results) that allows explicit calculation of the differential string structure for a large class of homogeneous spaces, which also yields formulas for the Stolz-Redden form. I will comment on the application to verifying the refined Stolz conjecture for our particular class of homogeneous spaces. Joint work with Ray Vozzo.
Exact coherent structures in high speed flows
15:10 Fri 28 Jul, 2017 :: Ingkarni Wardli B17 :: Prof Philip Hall :: Monash University

In recent years, there has been much interest in the relevance of nonlinear solutions of the Navier-Stokes equations to fully turbulent flows. The solutions must be calculated numerically at moderate Reynolds numbers but in the limit of high Reynolds numbers asymptotic methods can be used to greatly simplify the computational task and to uncover the key physical processes sustaining the nonlinear states. In particular, in confined flows exact coherent structures defining the boundary between the laminar and turbulent attractors can be constructed. In addition, structures which capture the essential physical properties of fully turbulent flows can be found. The extension of the ideas to boundary layer flows and current work attempting to explain the law of the wall will be discussed.
Conway's Rational Tangle
12:10 Tue 15 Aug, 2017 :: Inkgarni Wardli 5.57 :: Dr Hang Wang :: School of Mathematical Sciences

Media...
Many researches in mathematics essentially feature some classification problems. In this context, invariants are created in order to associate algebraic quantities, such as numbers and groups, to elements of interested classes of geometric objects, such as surfaces. A key property of an invariant is that it does not change under ``allowable moves'' which can be specified in various geometric contexts. We demonstrate these lines of ideas by rational tangles, a notion in knot theory. A tangle is analogous to a link except that it has free ends. Conway's rational tangles are the simplest tangles that can be ``unwound'' under a finite sequence of two simple moves, and they arise as building blocks for knots. A numerical invariant will be introduced for Conway's rational tangles and it provides the only known example of a complete invariant in knot theory.
Compact pseudo-Riemannian homogeneous spaces
12:10 Fri 18 Aug, 2017 :: Engineering Sth S111 :: Wolfgang Globke :: University of Adelaide

Media...
A pseudo-Riemannian homogeneous space $M$ of finite volume can be presented as $M=G/H$, where $G$ is a Lie group acting transitively and isometrically on $M$, and $H$ is a closed subgroup of $G$. The condition that $G$ acts isometrically and thus preserves a finite measure on $M$ leads to strong algebraic restrictions on $G$. In the special case where $G$ has no compact semisimple normal subgroups, it turns out that the isotropy subgroup $H$ is a lattice, and that the metric on $M$ comes from a bi-invariant metric on $G$. This result allows us to recover Zeghib’s classification of Lorentzian compact homogeneous spaces, and to move towards a classification for metric index 2. As an application we can investigate which pseudo-Riemannian homogeneous spaces of finite volume are Einstein spaces. Through the existence questions for lattice subgroups, this leads to an interesting connection with the theory of transcendental numbers, which allows us to characterize the Einstein cases in low dimensions. This talk is based on joint works with Oliver Baues, Yuri Nikolayevsky and Abdelghani Zeghib.
In space there is no-one to hear you scream
12:10 Tue 12 Sep, 2017 :: Inkgarni Wardli 5.57 :: A/Prof Gary Glonek :: School of Mathematical Sciences

Media...
Modern data problems often involve data in very high dimensions. For example, gene expression profiles, used to develop cancer screening models, typically have at least 30,000 dimensions. When dealing with such data, it is natural to apply intuition from low dimensional cases. For example, in a sample of normal observations, a typical data point will be near the centre of the distribution with only a small number of points at the edges. In this talk, simple probability theory will be used to show that the geometry of data in high dimensional space is very different from what we can see in one and two-dimensional examples. We will show that the typical data point is at the edge of the distribution, a long way from its centre and even further from any other points.
On the fundamental of Rayleigh-Taylor instability and interfacial mixing
15:10 Fri 15 Sep, 2017 :: Ingkarni Wardli B17 :: Prof Snezhana Abarzhi :: University of Western Australia

Rayleigh-Taylor instability (RTI) develops when fluids of different densities are accelerated against their density gradient. Extensive interfacial mixing of the fluids ensues with time. Rayleigh-Taylor (RT) mixing controls a broad variety of processes in fluids, plasmas and materials, in high and low energy density regimes, at astrophysical and atomistic scales. Examples include formation of hot spot in inertial confinement, supernova explosion, stellar and planetary convection, flows in atmosphere and ocean, reactive and supercritical fluids, material transformation under impact and light-material interaction. In some of these cases (e.g. inertial confinement fusion) RT mixing should be tightly mitigated; in some others (e.g. turbulent combustion) it should be strongly enhanced. Understanding the fundamentals of RTI is crucial for achieving a better control of non-equilibrium processes in nature and technology. Traditionally, it was presumed that RTI leads to uncontrolled growth of small-scale imperfections, single-scale nonlinear dynamics, and extensive mixing that is similar to canonical turbulence. The recent success of the theory and experiments in fluids and plasmas suggests an alternative scenario of RTI evolution. It finds that the interface is necessary for RT mixing to accelerate, the acceleration effects are strong enough to suppress the development of turbulence, and the RT dynamics is multi-scale and has significant degree of order. This talk presents a physics-based consideration of fundamentals of RTI and RT mixing, and summarizes what is certain and what is not so certain in our knowledge of RTI. The focus question - How to influence the regularization process in RT mixing? We also discuss new opportunities for improvements of predictive modeling capabilities, physical description, and control of RT mixing in fluids, plasmas and materials.
Understanding burn injuries and first aid treatment using simple mathematical models
15:10 Fri 13 Oct, 2017 :: Ingkarni Wardli B17 :: Prof Mat Simpson :: Queensland University of Technology

Scald burns from accidental exposure to hot liquids are the most common cause of burn injury in children. Over 2000 children are treated for accidental burn injuries in Australia each year. Despite the frequency of these injuries, basic questions about the physics of heat transfer in living tissues remain unanswered. For example, skin thickness varies with age and anatomical location, yet our understanding of how tissue damage from thermal injury is influenced by skin thickness is surprisingly limited. In this presentation we will consider a series of porcine experiments to study heat transfer in living tissues. We consider burning the living tissue, as well as applying various first aid treatment strategies to cool the living tissue after injury. By calibrating solutions of simple mathematical models to match the experimental data we provide insight into how thermal energy propagates through living tissues, as well as exploring different first aid strategies. We conclude by outlining some of our current work that aims to produce more realistic mathematical models.
End-periodic K-homology and spin bordism
12:10 Fri 20 Oct, 2017 :: Engineering Sth S111 :: Michael Hallam :: University of Adelaide

This talk introduces new "end-periodic" variants of geometric K-homology and spin bordism theories that are tailored to a recent index theorem for even-dimensional manifolds with periodic ends. This index theorem, due to Mrowka, Ruberman and Saveliev, is a generalisation of the Atiyah-Patodi-Singer index theorem for manifolds with odd-dimensional boundary. As in the APS index theorem, there is an (end-periodic) eta invariant that appears as a correction term for the periodic end. Invariance properties of the standard relative eta invariants are elegantly expressed using K-homology and spin bordism, and this continues to hold in the end-periodic case. In fact, there are natural isomorphisms between the standard K-homology/bordism theories and their end-periodic versions, and moreover these isomorphisms preserve relative eta invariants. The study is motivated by results on positive scalar curvature, namely obstructions and distinct path components of the moduli space of PSC metrics. Our isomorphisms provide a systematic method for transferring certain results on PSC from the odd-dimensional case to the even-dimensional case. This work is joint with Mathai Varghese.
The Markovian binary tree applied to demography and conservation biology
15:10 Fri 27 Oct, 2017 :: Ingkarni Wardli B17 :: Dr Sophie Hautphenne :: University of Melbourne

Markovian binary trees form a general and tractable class of continuous-time branching processes, which makes them well-suited for real-world applications. Thanks to their appealing probabilistic and computational features, these processes have proven to be an excellent modelling tool for applications in population biology. Typical performance measures of these models include the extinction probability of a population, the distribution of the population size at a given time, the total progeny size until extinction, and the asymptotic population composition. Besides giving an overview of the main performance measures and the techniques involved to compute them, we discuss recently developed statistical methods to estimate the model parameters, depending on the accuracy of the available data. We illustrate our results in human demography and in conservation biology.
Calculating optimal limits for transacting credit card customers
15:10 Fri 2 Mar, 2018 :: Horace Lamb 1022 :: Prof Peter Taylor :: University of Melbourne

Credit card users can roughly be divided into `transactors', who pay off their balance each month, and `revolvers', who maintain an outstanding balance, on which they pay substantial interest. In this talk, we focus on modelling the behaviour of an individual transactor customer. Our motivation is to calculate an optimal credit limit from the bank's point of view. This requires an expression for the expected outstanding balance at the end of a payment period. We establish a connection with the classical newsvendor model. Furthermore, we derive the Laplace transform of the outstanding balance, assuming that purchases are made according to a marked point process and that there is a simplified balance control policy which prevents all purchases in the rest of the payment period when the credit limit is exceeded. We then use the newsvendor model and our modified model to calculate bounds on the optimal credit limit for the more realistic balance control policy that accepts all purchases that do not exceed the limit. We illustrate our analysis using a compound Poisson process example and show that the optimal limit scales with the distribution of the purchasing process, while the probability of exceeding the optimal limit remains constant. Finally, we apply our model to some real credit card purchase data.
Family gauge theory and characteristic classes of bundles of 4-manifolds
13:10 Fri 16 Mar, 2018 :: Barr Smith South Polygon Lecture theatre :: Hokuto Konno :: University of Tokyo

Media...
I will define a non-trivial characteristic class of bundles of 4-manifolds using families of Seiberg-Witten equations. The basic idea of the construction is to consider an infinite dimensional analogue of the Euler class used in the usual theory of characteristic classes. I will also explain how to prove the non-triviality of this characteristic class. If time permits, I will mention a relation between our characteristic class and positive scalar curvature metrics.
Models, machine learning, and robotics: understanding biological networks
15:10 Fri 16 Mar, 2018 :: Horace Lamb 1022 :: Prof Steve Oliver :: University of Cambridge

The availability of complete genome sequences has enabled the construction of computer models of metabolic networks that may be used to predict the impact of genetic mutations on growth and survival. Both logical and constraint-based models of the metabolic network of the model eukaryote, the ale yeast Saccharomyces cerevisiae, have been available for some time and are continually being improved by the research community. While such models are very successful at predicting the impact of deleting single genes, the prediction of the impact of higher order genetic interactions is a greater challenge. Initial studies of limited gene sets provided encouraging results. However, the availability of comprehensive experimental data for the interactions between genes involved in metabolism demonstrated that, while the models were able to predict the general properties of the genetic interaction network, their ability to predict interactions between specific pairs of metabolic genes was poor. I will examine the reasons for this poor performance and demonstrate ways of improving the accuracy of the models by exploiting the techniques of machine learning and robotics. The utility of these metabolic models rests on the firm foundations of genome sequencing data. However, there are two major problems with these kinds of network models - there is no dynamics, and they do not deal with the uncertain and incomplete nature of much biological data. To deal with these problems, we have developed the Flexible Nets (FNs) modelling formalism. FNs were inspired by Petri Nets and can deal with missing or uncertain data, incorporate both dynamics and regulation, and also have the potential for model predictive control of biotechnological processes.
Computing trisections of 4-manifolds
13:10 Fri 23 Mar, 2018 :: Barr Smith South Polygon Lecture theatre :: Stephen Tillmann :: University of Sydney

Media...
Gay and Kirby recently generalised Heegaard splittings of 3-manifolds to trisections of 4-manifolds. A trisection describes a 4–dimensional manifold as a union of three 4–dimensional handlebodies. The complexity of the 4–manifold is captured in a collection of curves on a surface, which guide the gluing of the handelbodies. The minimal genus of such a surface is the trisection genus of the 4-manifold. After defining trisections and giving key examples and applications, I will describe an algorithm to compute trisections of 4–manifolds using arbitrary triangulations as input. This results in the first explicit complexity bounds for the trisection genus of a 4–manifold in terms of the number of pentachora (4–simplices) in a triangulation. This is joint work with Mark Bell, Joel Hass and Hyam Rubinstein. I will also describe joint work with Jonathan Spreer that determines the trisection genus for each of the standard simply connected PL 4-manifolds.
Chaos in higher-dimensional complex dynamics
13:10 Fri 20 Apr, 2018 :: Barr Smith South Polygon Lecture theatre :: Finnur Larusson :: University of Adelaide

Media...
I will report on new joint work with Leandro Arosio (University of Rome, Tor Vergata). Complex manifolds can be thought of as laid out across a spectrum characterised by rigidity at one end and flexibility at the other. On the rigid side, Kobayashi-hyperbolic manifolds have at most a finite-dimensional group of symmetries. On the flexible side, there are manifolds with an extremely large group of holomorphic automorphisms, the prototypes being the affine spaces $\mathbb C^n$ for $n \geq 2$. From a dynamical point of view, hyperbolicity does not permit chaos. An endomorphism of a Kobayashi-hyperbolic manifold is non-expansive with respect to the Kobayashi distance, so every family of endomorphisms is equicontinuous. We show that not only does flexibility allow chaos: under a strong anti-hyperbolicity assumption, chaotic automorphisms are generic. A special case of our main result is that if $G$ is a connected complex linear algebraic group of dimension at least 2, not semisimple, then chaotic automorphisms are generic among all holomorphic automorphisms of $G$ that preserve a left- or right-invariant Haar form. For $G=\mathbb C^n$, this result was proved (although not explicitly stated) some 20 years ago by Fornaess and Sibony. Our generalisation follows their approach. I will give plenty of context and background, as well as some details of the proof of the main result.
Knot homologies
15:10 Fri 4 May, 2018 :: Horace Lamb 1022 :: Dr Anthony Licata :: Australian National University

The last twenty years have seen a lot of interaction between low-dimensional topology and representation theory. One facet of this interaction concerns "knot homologies," which are homological invariants of knots; the most famous of these, Khovanov homology, comes from the higher representation theory of sl_2. The goal of this talk will be to give a gentle introduction to this subject to non-experts by telling you a bit about Khovanov homology.
Cobordism maps on PFH induced by Lefschetz fibration over higher genus base
13:10 Fri 11 May, 2018 :: Barr Smith South Polygon Lecture theatre :: Guan Heng Chen :: University of Adelaide

In this talk, we will discuss the cobordism maps on periodic Floer homology(PFH) induced by Lefschetz fibration. Periodic Floer homology is a Gromov types invariant for three dimensional mapping torus and it is isomorphic to a version of Seiberg Witten Floer cohomology(SWF). Our result is to define the cobordism maps on PFH induced by certain types of Lefschetz fibration via using holomorphic curves method. Also, we show that the cobordism maps is equivalent to the cobordism maps on Seiberg Witten cohomology under the isomorphism PFH=SWF.
Stability Through a Geometric Lens
15:10 Fri 18 May, 2018 :: Horace Lamb 1022 :: Dr Robby Marangell :: University of Sydney

Focussing on the example of the Fisher/KPP equation, I will show how geometric information can be used to establish (in)stability results in some partial differential equations (PDEs). Viewing standing and travelling waves as fixed points of a flow in an infinite dimensional system, leads to a reduction of the linearised stability problem to a boundary value problem in a linear non-autonomous ordinary differential equation (ODE). Next, by exploiting the linearity of the system, one can use geometric ideas to reveal additional structure underlying the determination of stability. I will show how the Riccati equation can be used to produce a reasonably computable detector of eigenvalues and how such a detector is related to another, well-known eigenvalue detector, the Evans function. If there is time, I will try to expand on how to generalise these ideas to systems of PDEs.
Quantifying language change
15:10 Fri 1 Jun, 2018 :: Horace Lamb 1022 :: A/Prof Eduardo Altmann :: University of Sydney

Mathematical methods to study natural language are increasingly important because of the ubiquity of textual data in the Internet. In this talk I will discuss mathematical models and statistical methods to quantify the variability of language, with focus on two problems: (i) How the vocabulary of languages changed over the last centuries? (ii) How the language of scientific disciplines relate to each other and evolved in the last decades? One of the main challenges of these analyses stem from universal properties of word frequencies, which show high temporal variability and are fat-tailed distributed. The later feature dramatically affects the statistical properties of entropy-based estimators, which motivates us to compare vocabularies using a generalized Jenson-Shannon divergence (obtained from entropies of order alpha).
Quantifying language change
15:10 Fri 1 Jun, 2018 :: Napier 208 :: A/Prof Eduardo Altmann :: University of Sydney

Mathematical methods to study natural language are increasingly important because of the ubiquity of textual data in the Internet. In this talk I will discuss mathematical models and statistical methods to quantify the variability of language, with focus on two problems: (i) How the vocabulary of languages changed over the last centuries? (ii) How the language of scientific disciplines relate to each other and evolved in the last decades? One of the main challenges of these analyses stem from universal properties of word frequencies, which show high temporal variability and are fat-tailed distributed. The later feature dramatically affects the statistical properties of entropy-based estimators, which motivates us to compare vocabularies using a generalized Jenson-Shannon divergence (obtained from entropies of order alpha).
The topology and geometry of spaces of Yang-Mills-Higgs flow lines
11:10 Fri 27 Jul, 2018 :: Barr Smith South Polygon Lecture theatre :: Graeme Wilkin :: National University of Singapore

Given a smooth complex vector bundle over a compact Riemann surface, one can define the space of Higgs bundles and an energy functional on this space: the Yang-Mills-Higgs functional. The gradient flow of this functional resembles a nonlinear heat equation, and the limit of the flow detects information about the algebraic structure of the initial Higgs bundle (e.g. whether or not it is semistable). In this talk I will explain my work to classify ancient solutions of the Yang-Mills-Higgs flow in terms of their algebraic structure, which leads to an algebro-geometric classification of Yang-Mills-Higgs flow lines. Critical points connected by flow lines can then be interpreted in terms of the Hecke correspondence, which appears in Witten’s recent work on Geometric Langlands. This classification also gives a geometric description of spaces of unbroken flow lines in terms of secant varieties of the underlying Riemann surface, and in the remaining time I will describe work in progress to relate the (analytic) Morse compactification of these spaces by broken flow lines to an algebro-geometric compactification by iterated blowups of secant varieties.
Tales of Multiple Regression: Informative Missingness, Recommender Systems, and R2-D2
15:10 Fri 17 Aug, 2018 :: Napier 208 :: Prof Howard Bondell :: University of Melbourne

In this talk, we briefly discuss two projects tangentially related under the umbrella of high-dimensional regression. The first part of the talk investigates informative missingness in the framework of recommender systems. In this setting, we envision a potential rating for every object-user pair. The goal of a recommender system is to predict the unobserved ratings in order to recommend an object that the user is likely to rate highly. A typically overlooked piece is that the combinations are not missing at random. For example, in movie ratings, a relationship between the user ratings and their viewing history is expected, as human nature dictates the user would seek out movies that they anticipate enjoying. We model this informative missingness, and place the recommender system in a shared-variable regression framework which can aid in prediction quality. The second part of the talk deals with a new class of prior distributions for shrinkage regularization in sparse linear regression, particularly the high dimensional case. Instead of placing a prior on the coefficients themselves, we place a prior on the regression R-squared. This is then distributed to the coefficients by decomposing it via a Dirichlet Distribution. We call the new prior R2-D2 in light of its R-Squared Dirichlet Decomposition. Compared to existing shrinkage priors, we show that the R2-D2 prior can simultaneously achieve both high prior concentration at zero, as well as heavier tails. These two properties combine to provide a higher degree of shrinkage on the irrelevant coefficients, along with less bias in estimation of the larger signals.
Geometry and Topology of Crystals
11:10 Fri 31 Aug, 2018 :: Barr Smith South Polygon Lecture theatre :: Vanessa Robins :: Australian National University

This talk will cover some highlights of the mathematical description of crystal structure from the platonic polyhedra of ancient Greece to the current picture of crystallographic groups as orbifolds. Modern materials synthesis raises fascinating questions about the enumeration and classification of periodic interwoven or entangled frameworks, that might be addressed by techniques from 3-manifold topology and knot theory.
Topological Data Analysis
15:10 Fri 31 Aug, 2018 :: Napier 208 :: Dr Vanessa Robins :: Australian National University

Topological Data Analysis has grown out of work focussed on deriving qualitative and yet quantifiable information about the shape of data. The underlying assumption is that knowledge of shape - the way the data are distributed - permits high-level reasoning and modelling of the processes that created this data. The 0-th order aspect of shape is the number pieces: "connected components" to a topologist; "clustering" to a statistician. Higher-order topological aspects of shape are holes, quantified as "non-bounding cycles" in homology theory. These signal the existence of some type of constraint on the data-generating process. Homology lends itself naturally to computer implementation, but its naive application is not robust to noise. This inspired the development of persistent homology: an algebraic topological tool that measures changes in the topology of a growing sequence of spaces (a filtration). Persistent homology provides invariants called the barcodes or persistence diagrams that are sets of intervals recording the birth and death parameter values of each homology class in the filtration. It captures information about the shape of data over a range of length scales, and enables the identification of "noisy" topological structure. Statistical analysis of persistent homology has been challenging because the raw information (the persistence diagrams) are provided as sets of intervals rather than functions. Various approaches to converting persistence diagrams to functional forms have been developed recently, and have found application to data ranging from the distribution of galaxies, to porous materials, and cancer detection.
Exceptional quantum symmetries
11:10 Fri 5 Oct, 2018 :: Barr Smith South Polygon Lecture theatre :: Scott Morrison :: Australian National University

I will survey our current understanding of "quantum symmetries", the mathematical models of topological order, in particular through the formalism of fusion categories. Our very limited classification results to date point to nearly all examples being built out of data coming from finite groups, quantum groups at roots of unity, and cohomological data. However, there are a small number of "exceptional" quantum symmetries that so far appear to be disconnected from the world of classical symmetries as studied in representation theory and group theory. I'll give an update on recent progress understanding these examples.
Bayesian Synthetic Likelihood
15:10 Fri 26 Oct, 2018 :: Napier 208 :: A/Prof Chris Drovandi :: Queensland University of Technology

Complex stochastic processes are of interest in many applied disciplines. However, the likelihood function associated with such models is often computationally intractable, prohibiting standard statistical inference frameworks for estimating model parameters based on data. Currently, the most popular simulation-based parameter estimation method is approximate Bayesian computation (ABC). Despite the widespread applicability and success of ABC, it has some limitations. This talk will describe an alternative approach, called Bayesian synthetic likelihood (BSL), which overcomes some limitations of ABC and can be much more effective in certain classes of applications. The talk will also describe various extensions to the standard BSL approach. This project has been a joint effort with several academic collaborators, post-docs and PhD students.

News matching "Classification for high-dimensional data"

ARC Grant successes
The School of Mathematical Sciences has again had outstanding success in the ARC Discovery and Linkage Projects schemes. Congratulations to the following staff for their success in the Discovery Project scheme: Prof Nigel Bean, Dr Josh Ross, Prof Phil Pollett, Prof Peter Taylor, New methods for improving active adaptive management in biological systems, $255,000 over 3 years; Dr Josh Ross, New methods for integrating population structure and stochasticity into models of disease dynamics, $248,000 over three years; A/Prof Matt Roughan, Dr Walter Willinger, Internet traffic-matrix synthesis, $290,000 over three years; Prof Patricia Solomon, A/Prof John Moran, Statistical methods for the analysis of critical care data, with application to the Australian and New Zealand Intensive Care Database, $310,000 over 3 years; Prof Mathai Varghese, Prof Peter Bouwknegt, Supersymmetric quantum field theory, topology and duality, $375,000 over 3 years; Prof Peter Taylor, Prof Nigel Bean, Dr Sophie Hautphenne, Dr Mark Fackrell, Dr Malgorzata O'Reilly, Prof Guy Latouche, Advanced matrix-analytic methods with applications, $600,000 over 3 years. Congratulations to the following staff for their success in the Linkage Project scheme: Prof Simon Beecham, Prof Lee White, A/Prof John Boland, Prof Phil Howlett, Dr Yvonne Stokes, Mr John Wells, Paving the way: an experimental approach to the mathematical modelling and design of permeable pavements, $370,000 over 3 years; Dr Amie Albrecht, Prof Phil Howlett, Dr Andrew Metcalfe, Dr Peter Pudney, Prof Roderick Smith, Saving energy on trains - demonstration, evaluation, integration, $540,000 over 3 years Posted Fri 29 Oct 10.

Publications matching "Classification for high-dimensional data"

Publications
A high resolution large-scale gaussian random field rainfall model for Australian monthly rainfall
Osti, Alexander; Leonard, Michael; Lambert, Martin; Metcalfe, Andrew, Water Down Under 2008, Adelaide 14/04/08
A high resolution spatio-temporal model for single storm events based on radar images
Qin, J; Leonard, Michael; Kuczera, George; Thyer, M; Metcalfe, Andrew; Lambert, Martin, Water Down Under 2008, Adelaide 14/04/08
A temporally heterogeneous high-resolution large-scale gaussian random field model for Australian rainfall
Osti, Alexander; Leonard, Michael; Lambert, Martin; Metcalfe, Andrew, 17th IASTED International Conference on Applied Simulation and Modelling, Greece 23/06/08
CleanBGP: Verifying the consistency of BGP data
Flavel, Ashley; Maennel, Olaf; Chiera, Belinda; Roughan, Matthew; Bean, Nigel, International Network Management Workshop, Orlando, Florida 19/10/08
Energy balanced data gathering in WSNs with grid topologies
Chen, J; Shen, Hong; Tian, Hui, 7th International Conference on Grid and Cooperative Computing, China 24/10/08
Holomorphic classification of four-dimensional surfaces in C3
Beloshapka, V; Ezhov, Vladimir; Schmalz, G, Izvestiya Mathematics 72 (413–427) 2008
On spatiotemporal drought classification in New South Wales: Development and evaluation of alternative techniques
Osti, Alexander; Lambert, Martin; Metcalfe, Andrew, Australian Journal of Water Resources 12 (21–35) 2008
Data fusion without data fusion: localization and tracking without sharing sensitive information
Roughan, Matthew; Arnold, Jonathan, Information, Decision and Control 2007, Adelaide, Australia 12/02/07
Finding keywords amongst noise: Automatic text classification without parsing
Allison, Andrew; Pearce, Charles; Abbott, Derek, Noise and Stochastics in Complex Systems and Finance, Florence 21/05/07
Computation of extensional fall of slender viscous drops by a one-dimensional eulerian method
Hajek, Bronwyn; Stokes, Yvonne; Tuck, Ernest, Siam Journal on Applied Mathematics 67 (1166–1182) 2007
Optimal multilinear estimation of a random vector under constraints of casualty and limited memory
Howlett, P; Torokhti, Anatoli; Pearce, Charles, Computational Statistics & Data Analysis 52 (869–878) 2007
Statistics in review; Part 1: graphics, data summary and linear models
Moran, John; Solomon, Patricia, Critical care and Resuscitation 9 (81–90) 2007
Two-dimensional Stokes flow driven by elliptical paddles
Cox, Stephen; Finn, Matthew, Physics of Fluids 19 (113102-1–113102-12) 2007
Experimental Design and Analysis of Microarray Data
Wilson, C; Tsykin, Anna; Wilkinson, Christopher; Abbott, C, chapter in Bioinformatics (Elsevier Ltd) 1–36, 2006
Is BGP update storm a sign of trouble: Observing the internet control and data planes during internet worms
Roughan, Matthew; Li, J; Bush, R; Mao, Z; Griffin, T, SPECTS 2006, Calgary, Canada 31/07/06
Watching data streams toward a multi-homed sink under routing changes introduced by a BGP beacon
Li, J; Bush, R; Mao, Z; Griffin, T; Roughan, Matthew; Stutzbach, D; Purpus, E, PAM2006, Adelaide, Australia 30/03/06
Can D-branes wrap nonrepresentable cycles?
Evslin, J; Sati, Hicham, The Journal of High Energy Physics (Online Editions) 10 (WWW 1–WWW 10) 2006
Data-recursive smoother formulae for partially observed discrete-time Markov chains
Elliott, Robert; Malcolm, William, Stochastic Analysis and Applications 24 (579–597) 2006
Duality symmetry and the form fields of M-theory
Sati, Hicham, The Journal of High Energy Physics (Print Edition) 6 (0–10) 2006
Optimal linear estimation and data fusion
Elliott, Robert; Van Der Hoek, John, IEEE Transactions on Automatic Control 51 (686–689) 2006
Secure distributed data-mining and its application to large-scale network measurements
Roughan, Matthew; Zhang, Y, Computer Communication Review 36 (7–14) 2006
T-duality for torus bundles with H-fluxes via noncommutative topology, II: the high-dimensional case and the T-duality group
Varghese, Mathai; Rosenberg, J, Advances in Theoretical and Mathematical Physics 10 (123–158) 2006
The elliptic curves in gauge theory, string theory, and cohomology
Sati, Hicham, The Journal of High Energy Physics (Print Edition) 3 (0–19) 2006
Optimal estimation of a random signal from partially missed data
Torokhti, Anatoli; Howlett, P; Pearce, Charles, EUSIPCO 2006, Florence, Italy 04/09/06
Three-dimensional flow due to a microcantilever oscillating near a wall: an unsteady slender-body analysis
Clarke, Richard; Jensen, O; Billingham, J; Williams, P, Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences 462 (913–933) 2006
Cavities at atmospheric pressure behind two-dimensional bodies at an angle of attack
Haese, Peter, The ANZIAM Journal 47 (103–119) 2005
M-theory and characteristic classes
Sati, Hicham, The Journal of High Energy Physics (Online Editions) 8 (020-1–020-8) 2005
Optimal recursive estimation of raw data
Torokhti, Anatoli; Howlett, P; Pearce, Charles, Annals of Operations Research 133 (285–302) 2005
Type II string theory and modularity
Kriz, I; Sati, Hicham, The Journal of High Energy Physics (Online Editions) 8 (038-1–038-30) 2005
Finite-dimensional filtering and control for continuous-time nonlinear systems
Elliott, Robert; Aggoun, L; Benmerzouga, A, Stochastic Analysis and Applications 22 (499–505) 2005
Class-of-service mapping for QoS: A statistical signature-based approach to IP traffic classification
Roughan, Matthew; Sen, S; Spatscheck, O; Duffield, N, ACM SIG COMM 2004, Taormina, Sicily, Italy 25/10/04
Combining routing and traffic data for detection of IP forwarding anomalies
Roughan, Matthew; Griffin, T; Mao, M; Greenberg, A; Freeman, B, Sigmetrics - Performance 2004, New York, USA 12/06/04
IP forwarding anomalies and improving their detection using multiple data sources
Roughan, Matthew; Griffin, T; Mao, M; Greenberg, A; Freeman, B, SIGCOMM 2004, Oregon, USA 30/08/04
Mixing measures for a two-dimensional chaotic Stokes flow
Finn, Matthew; Cox, Stephen; Byrne, H, Journal of Engineering Mathematics 48 (129–155) 2004
Some relations between twisted K-theory and E8 gauge theory
Varghese, Mathai; Sati, Hicham, The Journal of High Energy Physics (Online Editions) 3 (WWW 1–WWW 22) 2004
T-duality for principal torus bundles
Bouwknegt, Pier; Hannabuss, K; Varghese, Mathai, The Journal of High Energy Physics (Online Editions) 3 (WWW 1–WWW 10) 2004
The envelope of a one-dimensional pattern in the presence of a conserved quantity
Cox, Stephen, Physics Letters A 333 (91–101) 2004
Some relations between twisted K-theory and E-8 gauge theory
Mathai, V; Sati, Hicham, The Journal of High Energy Physics (Online Editions) (WWW1–WWW22) 2004
Towards a Classification of Homogeneous Tube Domains in C(4)
Eastwood, Michael; Ezhov, Vladimir; Isaev, A, Journal of Differential Geometry 68 (553–569) 2004
The data processing inequality and stochastic resonance
McDonnell, Mark; Stocks, N; Pearce, Charles; Abbott, Derek, Noise in Complex Systems and Stochastic Dynamics, Santa Fe, New Mexico, USA 01/06/03
A genetic algorithm based on nearest neighbour classification to breast cancer diagnosis
Jain, R; Mazumdar, Jagan, Australasian Physical and Engineering Sciences in Medicine 26 (6–11) 2003
Stochastic resonance and data processing inequality
McDonnell, Mark; Stocks, N; Pearce, Charles; Abbott, Derek, Electronics Letters 39 (1287–1288) 2003
The geometric triangle for 3-dimensional Seiberg-Witten monopoles
Carey, Alan; Marcolli, M; Wang, Bai-Ling, Communications in Contemporary Mathematics 5 (197–250) 2003
Type-1 D-branes in an H-flux and twisted KO-theory
Varghese, Mathai; Murray, Michael; Stevenson, Daniel, The Journal of High Energy Physics (Online Editions) 11 (www 1–www 22) 2003
Low-dimensional modelling of dynamical systems applied to some dissipative fluid mechanics
Roberts, Anthony John, chapter in Nonlinear dynamics: from lasers to butterflies (World Scientific Publishing) 257–313, 2003
Holistic discretisation of shear dispersion in a two-dimensional channel
MacKenzie, T; Roberts, Anthony John, The ANZIAM Journal - On-line full-text 44 (C512–C530) 2003
Resampling-based multiple testing for microarray data analysis (Invited discussion of paper by Ge, Dudoit and Speed)
Glonek, Garique; Solomon, Patricia, Test 12 (50–53) 2003
A classification of non-degenerate homogeneous equiaffine hypersurfaces in four complex dimensions
Eastwood, Michael; Ezhov, Vladimir, The Asian Journal of Mathematics 5 (721–740) 2001
The supercritical bore produced by a high-speed ship in a channel
Gourlay, Timothy, Journal of Fluid Mechanics 434 (399–409) 2001
Three-dimensional inviscid waves in buoyant boundary layer flows
Denier, James; Stott, Jillian; Bassom, A, Fluid Dynamics Research 28 (89–109) 2001
Best estimators of second degree for data analysis
Howlett, P; Pearce, Charles; Torokhti, Anatoli, ASMDA 2001, Compiegne, France 12/06/01
Optimal successive estimation of observed data
Torokhti, Anatoli; Howlett, P; Pearce, Charles, International Conference on Optimization: Techniques and Applications (5th: 2001), Hong Kong, China 15/12/01
Statistical analysis of medical data: New developments - Book review
Solomon, Patricia, Biometrics 57 (327–328) 2001
Hamiltonian quantization of fermions on an odd dimensional manifold with boundary
Carey, Alan; Mickelsson, J, chapter in Proceedings of the International Symposium Quantum Theory and Symmetries (World Scientific Publishing) 46–51, 2000
A family of 2-dimensional laguerre planes of generalised shear type
Polster, Burkhard; Steinke, G, Bulletin of the Australian Mathematical Society 61 (69–83) 2000
A gerbe obstruction to quantization of fermions on odd-dimensional manifolds with boundary
Carey, Alan; Mickelsson, J, Letters in Mathematical Physics 51 (145–160) 2000
D-Branes, B-Fields and twisted K-theory
Bouwknegt, Pier; Varghese, Mathai, The Journal of High Energy Physics (Online Editions) 3 (1–11) 2000
Disease surveillance and data collection issues in epidemic modelling
Solomon, Patricia; Isham, V, Statistical Methods in Medical Research 9 (259–277) 2000
Local Constraints on Einstein-Weyl geometries: The 3-dimensional case
Eastwood, Michael; Tod, K, Annals of Global Analysis and Geometry 18 (1–27) 2000
Reciprocal link for 2 + 1-dimensional extensions of shallow water equations
Hone, Andrew, Applied Mathematics Letters 13 (37–42) 2000

Advanced search options

You may be able to improve your search results by using the following syntax:

QueryMatches the following
Asymptotic EquationAnything with "Asymptotic" or "Equation".
+Asymptotic +EquationAnything with "Asymptotic" and "Equation".
+Stokes -"Navier-Stokes"Anything containing "Stokes" but not "Navier-Stokes".
Dynam*Anything containing "Dynamic", "Dynamical", "Dynamicist" etc.