January
2020  M  T  W  T  F  S  S    1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31          

Search the School of Mathematical SciencesPeople matching "Classification and compact complex manifolds I"Courses matching "Classification and compact complex manifolds I" 
Complex Analysis III When the real numbers are replaced by the complex numbers in the definition of the derivative of a function, the resulting (complex)differentiable functions turn out to have many remarkable properties not enjoyed by their real analogues. These functions, usually known as holomorphic functions, have numerous applications in areas such as engineering, physics, differential equations and number theory, to name just a few. The focus of this course is on the study of holomorphic functions and their most important basic properties. Topics covered are: Complex numbers and functions; complex limits and differentiability; elementary examples; analytic functions; complex line integrals; Cauchy's theorem and the Cauchy integral formula; Taylor's theorem; zeros of holomorphic functions; Rouche's Theorem; the Open Mapping theorem and Inverse Function theorem; Schwarz' Lemma; automorphisms of the ball, the plane and the Riemann sphere; isolated singularities and their classification; Laurent series; the Residue Theorem; calculation of definite integrals and evaluation of infinite series using residues; outlines of the Jordan Curve Theorem, Montel's Theorem and the Riemann Mapping Theorem.
More about this course... 

Manifolds, lie groups and lie algebras Lie
groups
and
Lie
algebras
are
fundamental
concepts
in
both
mathematics
and
theoretical
physics.
The
theory
of
Lie
groups
and
Lie
algebras
was
developed
in
the
late
nineteenth
century
by
Sophus
Lie,
Wilhelm
Killing
and
others,
when
groups
appeared
as
symmetries
of
differential
equations.
Soon
it
was
realised
that
they
can
be
treated
by
purely
algebraic
means
yielding
the
concept
of
a
Lie
algebra.
In
physics
Lie
groups
and
Lie
algebras
are
important
in
describing
symmetries
of
physical
systems
and
in
gauge
theories.
As
preparation
for
the
theory
of
Lie
groups
the
course
will
start
off
with
an
introduction
to
the
basic
notions
of
differential
geometry,
including
smooth
manifolds,
tangent
spaces
and
vector
fields.
This
will
enable
us
to
understand
the
concept
of
a
Lie
group
in
a
very
general
setting.
The
second
part
of
the
course
will
be
an
introduction
the
theory
of
Lie
groups.
I
will
focus
mainly
on
the
relation
between
Lie
groups
and
Lie
algebras
and
cover
the
following
topics:
the
Lie
algebra
of
a
Lie
group
and
the
exponential
map;
Lie
group
homomorphisms;
Lie
subgroups
and
Cartan's
theorem.
The
third
part
of
the
course
is
devoted
to
the
structure
theory
of
Lie
algebras
and
will
present
the
classification
of
finite
dimensional
complex
semisimple
Lie
algebras.
To
this
end
we
will
cover
the
following
topics:
structure
theory
of
Lie
algebras:
nilpotent,
solvable
and
semiÃÂÃ¢ÂÂ
simple
Lie
algebras;
toral
subalgebras;
root
systems
and
their
classification
by
means
of
Dynkin
diagrams.
1. Introduction, motivation and examples of matrix groups and algebras
2. Smooth manifolds and vector fields
3. Lie groups and their Lie algebras
4. Cartan's Theorem and the classical Lie groups ÃÂ
5. The Lie group  Lie algebras correspondence
6. Homogeneous spaces
7. Structure Theory of Lie algebras
8. Complex semisimple Lie algebras
More about this course... 

Multivariable and Complex Calculus The mathematics required to describe most "real life" systems involves functions of more than one variable, so the differential and integral calculus developed in a first course in Calculus must be extended to functions of more variables. In this course, the key results of onevariable calculus are extended to higher dimensions: differentiation, integration, and the link between them provided by the Fundamental Theorem of Calculus are all generalised. The machinery developed can be applied to another generalisation of onevariable Calculus, namely to complex calculus, and the course also provides an introduction to this subject. The material covered in this course forms the basis for mathematical analysis and application across an extremely broad range of areas, essential for anyone studying the hard sciences, engineering, or mathematical economics/finance. Topics covered are: introduction to multivariable calculus; differentiation of scalar and vectorvalued functions; higherorder derivatives, extrema, Lagrange multipliers and the implicit function theorem; integration over regions, volumes, paths and surfaces; Green's, Stokes' and Gauss's theorems; differential forms; curvilinear coordinates; an introduction to complex numbers and functions; complex differentiation; complex integration and Cauchy's theorems; and conformal mappings.
More about this course... 
Events matching "Classification and compact complex manifolds I" 
Homological algebra and applications  a historical survey 15:10 Fri 19 May, 2006 :: G08 Mathematics Building University of Adelaide :: Prof. Amnon Neeman
Homological algebra is a curious branch of
mathematics; it is a powerful tool which has been used in many diverse
places, without any clear understanding why it should be so useful.
We will give a list of applications, proceeding chronologically: first
to topology, then to complex analysis, then to algebraic geometry,
then to commutative algebra and finally (if we have time) to
noncommutative algebra. At the end of the talk I hope to be able to
say something about the part of homological algebra on which I have
worked, and its applications. That part is derived categories. 

Statistical convergence of sequences of complex numbers with application to Fourier series 15:10 Tue 27 Mar, 2007 :: G08 Mathematics Building University of Adelaide :: Prof. Ferenc Morics
Media...The concept of statistical convergence was introduced by Henry Fast and Hugo Steinhaus in 1951. But in fact, it was Antoni Zygmund who first proved theorems on the statistical convergence of Fourier series, using the term \"almost convergence\". A sequence $\\{x_k : k=1,2\\ldots\\}$ of complex numbers is said to be statistically convergent to $\\xi$ if for every $\\varepsilon >0$ we have $$\\lim_{n\\to \\infty} n^{1} \\{1\\le k\\le n: x_k\\xi > \\varepsilon\\} = 0.$$ We present the basic properties of statistical convergence, and extend it to multiple sequences. We also discuss the convergence behavior of Fourier series. 

An Introduction to invariant differential pairings 14:10 Tue 24 Jul, 2007 :: Mathematics G08 :: Jens Kroeske
On homogeneous spaces G/P, where G is a semisimple Lie group and P is a
parabolic subgroup (the ordinary sphere or projective spaces being
examples), invariant operators, that is operators between certain
homogeneous bundles (functions, vector fields or forms being amongst the
typical examples) that are invariant under the action of the group G, have
been studied extensively. Especially on so called hermitian symmetric spaces
which arise through a 1grading of the Lie algebra of G there exists a
complete classification of first order invariant linear differential
operators even on more general manifolds (that allow a so called almost
hermitian structure).
This talk will introduce the notion of an invariant bilinear differential
pairing between sections of the aforementioned homogeneous bundles. Moreover
we will discuss a classification (excluding certain totally degenerate
cases) of all first order invariant bilinear differential pairings on
manifolds with an almost hermitian symmetric structure. The similarities and
connections with the linear operator classification will be highlighted and
discussed.


Rubber Ballons  Prototypes of Hysteresis
15:10 Fri 16 Nov, 2007 :: G04 Napier Building University of Adelaide :: Emeritus Prof. Ingo Muller :: Technical University Berlin
Rubber balloons are characterized by a nonmonotone pressureradius relation which presages interesting nontrivial stability problems. A stability criterion is developed and exploited in order to show that the balloon may be stabilized at any radius by loading it with a piston under an elastic spring, if only the spring is hard enough.
If two connected balloons are subject to an inflationdeflation cycle, the pressureradius curve exhibits a fairly simple hysteresis loop. More complex hysteresis loops appear when more balloons are all inflated together. And if many balloons are inflated and deflated at the same time, the hysteresis loop assumes the form reminiscent of pseudoelasticity. Stability in those complex cases is determined by a simple suggestive argument.
References:
[1] W.Kitsche, I.Muller, P.Strehlow. Simulation of pseudoelastic behaviour in a system of rubber balloons. In: Metastability and Incompletely Posed Problems, S.Antman, J.L.Ericksen, D.Kinderlehrer, I.Muller (eds.) IMA Volume No.3, Springer Verlag, New York (1987)
[2] I.Muller, P.Strehlow, Rubber and Rubber Balloons, Springer Lecture Notes on Physics, Springer Verlag, Heidelberg (2004) 

Betti's Reciprocal Theorem for Inclusion and Contact Problems 15:10 Fri 1 Aug, 2008 :: G03 Napier Building University of Adelaide :: Prof. Patrick Selvadurai :: Department of Civil Engineering and Applied Mechanics, McGill University
Enrico Betti (18231892) is recognized in the mathematics community for his pioneering contributions to topology. An equally important contribution is his formulation of the reciprocity theorem applicable to elastic bodies that satisfy the classical equations of linear elasticity. Although James Clerk Maxwell (18311879) proposed a law of reciprocal displacements and rotations in 1864, the contribution of Betti is acknowledged for its underlying formal mathematical basis and generality. The purpose of this lecture is to illustrate how Betti's reciprocal theorem can be used to full advantage to develop compact analytical results for certain contact and inclusion problems in the classical theory of elasticity. Inclusion problems are encountered in number of areas in applied mechanics ranging from composite materials to geomechanics. In composite materials, the inclusion represents an inhomogeneity that is introduced to increase either the strength or the deformability characteristics of resulting material. In geomechanics, the inclusion represents a constructed material region, such as a ground anchor, that is introduced to provide load transfer from structural systems. Similarly, contact problems have applications to the modelling of the behaviour of indentors used in materials testing to the study of foundations used to distribute loads transmitted from structures. In the study of conventional problems the inclusions and the contact regions are directly loaded and this makes their analysis quite straightforward. When the interaction is induced by loads that are placed exterior to the indentor or inclusion, the direct analysis of the problem becomes inordinately complicated both in terns of formulation of the integral equations and their numerical solution. It is shown by a set of selected examples that the application of Betti's reciprocal theorem leads to the development of exact closed form solutions to what would otherwise be approximate solutions achievable only through the numerical solution of a set of coupled integral equations. 

Probabilistic models of human cognition 15:10 Fri 29 Aug, 2008 :: G03 Napier Building University of Adelaide :: Dr Daniel Navarro :: School of Psychology, University of Adelaide
Over the last 15 years a fairly substantial psychological literature has developed in which human reasoning and decisionmaking is viewed as the solution to a variety of statistical problems posed by the environments in which we operate. In this talk, I briefly outline the general approach to cognitive modelling that is adopted in this literature, which relies heavily on Bayesian statistics, and introduce a little of the current research in this field. In particular, I will discuss work by myself and others on the statistical basis of how people make simple inductive leaps and generalisations, and the links between these generalisations and how people acquire word meanings and learn new concepts. If time permits, the extensions of the work in which complex concepts may be characterised with the aid of nonparametric Bayesian tools such as Dirichlet processes will be briefly mentioned. 

Free surface Stokes flows with surface tension 15:10 Fri 5 Sep, 2008 :: G03 Napier Building University of Adelaide :: Prof. Darren Crowdy :: Imperial College London
In this talk, we will survey a number of different
free boundary problems involving slow viscous (Stokes) flows
in which surface tension is active on the free boundary. Both steady
and unsteady flows will be considered. Motivating applications
range from industrial processes such as viscous sintering (where
endproducts are formed as a result of the surfacetensiondriven densification
of a compact of smaller particles that are heated in order that they
coalesce) to biological phenomena such as understanding how
organisms swim (i.e. propel themselves) at low Reynolds numbers.
Common to our approach to all these problems will be an
analytical/theoretical treatment of model problems via complex variable methods 
techniques wellknown at infinite Reynolds numbers
but used much less often in the Stokes regime. These model
problems can give helpful insights into the behaviour of the true
physical systems. 

Geometric analysis on the noncommutative torus 13:10 Fri 20 Mar, 2009 :: School Board Room :: Prof Jonathan Rosenberg :: University of Maryland
Noncommutative geometry (in the sense of Alain Connes) involves
replacing a conventional space by a "space" in which the algebra of
functions is noncommutative. The simplest truly nontrivial
noncommutative manifold is the noncommutative 2torus, whose algebra
of functions is also called the irrational rotation algebra. I will
discuss a number of recent results on geometric analysis on the
noncommutative torus, including the study of nonlinear noncommutative
elliptic PDEs (such as the noncommutative harmonic map equation) and
noncommutative complex analysis (with noncommutative elliptic
functions). 

Understanding optimal linear transient growth in complexgeometry flows 15:00 Fri 27 Mar, 2009 :: Napier LG29 :: Associate Prof Hugh Blackburn :: Monash University


Classification and compact complex manifolds I 13:10 Fri 17 Apr, 2009 :: School Board Room :: A/Prof Nicholas Buchdahl :: University of Adelaide


Classification and compact complex manifolds II 13:10 Fri 24 Apr, 2009 :: School Board Room :: A/Prof Nicholas Buchdahl :: University of Adelaide


String structures and characteristic classes for loop group bundles 13:10 Fri 1 May, 2009 :: School Board Room :: Mr Raymond Vozzo :: University of Adelaide
The ChernWeil homomorphism gives a geometric method for calculating characteristic classes for principal bundles. In infinite dimensions, however, the standard theory fails due to analytical problems. In this talk I shall give a geometric method for calculating characteristic classes for principal bundle with structure group the loop group of a compact group which sidesteps these complications. This theory is inspired in some sense by results on the string class (a certain cohomology class on the base of a loop group bundle) which I shall outline. 

Four classes of complex manifolds 13:10 Fri 8 May, 2009 :: School Board Room :: A/Prof Finnur Larusson :: University of Adelaide
We introduce the four classes of complex manifolds defined by having few or many holomorphic maps to or from the complex plane. Two of these classes have played an important role in complex geometry for a long time. A third turns out to be too large to be of much interest. The fourth class has only recently emerged from work of Abel Prize winner Mikhail Gromov. 

Lagrangian fibrations on holomorphic symplectic manifolds I: Holomorphic Lagrangian fibrations 13:10 Fri 5 Jun, 2009 :: School Board Room :: Dr Justin Sawon :: Colorado State University
A compact K{\"a}hler manifold $X$ is a holomorphic symplectic manifold if it admits a nondegenerate holomorphic twoform $\sigma$. According to a theorem of Matsushita, fibrations on $X$ must be of a very restricted type: the fibres must be Lagrangian with respect to $\sigma$ and the generic fibre must be a complex torus. Moreover, it is expected that the base of the fibration must be complex projective space, and this has been proved by Hwang when $X$ is projective. The simplest example of these {\em Lagrangian fibrations\/} are elliptic K3 surfaces. In this talk we will explain the role of elliptic K3s in the classification of K3 surfaces, and the (conjectural) generalization to higher dimensions. 

ChernSimons classes on loop spaces and diffeomorphism groups 13:10 Fri 12 Jun, 2009 :: School Board Room :: Prof Steve Rosenberg :: Boston University
The loop space LM of a Riemannian manifold M comes with a family of Riemannian metrics indexed by a Sobolev parameter. We can construct characteristic classes for LM using the Wodzicki residue instead of the usual matrix trace. The Pontrjagin classes of LM vanish, but the secondary or ChernSimons classes may be nonzero and may distinguish circle actions on M. There are similar results for diffeomorphism groups of manifolds. 

Lagrangian fibrations on holomorphic symplectic manifolds II: Existence of Lagrangian fibrations 13:10 Fri 19 Jun, 2009 :: School Board Room :: Dr Justin Sawon :: Colorado State University
The Hilbert scheme ${\mathrm Hilb}^nS$ of points on a K3 surface $S$ is a wellknown holomorphic symplectic manifold. When does ${\mathrm Hilb}^nS$ admit a Lagrangian fibration? The existence of a Lagrangian fibration places some conditions on the Hodge structure, since the pull back of a hyperplane from the base gives a special divisor on ${\mathrm Hilb}^nS$, and in turn a special divisor on $S$. The converse is more difficult, but using FourierMukai transforms we will show that if $S$ admits a divisor of a certain degree then ${\mathrm Hilb}^nS$ admits a Lagrangian fibration. 

Lagrangian fibrations on holomorphic symplectic manifolds III: Holomorphic coisotropic reduction 13:10 Fri 26 Jun, 2009 :: School Board Room :: Dr Justin Sawon :: Colorado State University
Given a certain kind of submanifold $Y$ of a symplectic manifold $(X,\omega)$ we can form its coisotropic reduction as follows. The null directions of $\omega_Y$ define the characteristic foliation $F$ on $Y$. The space of leaves $Y/F$ then admits a symplectic form, descended from $\omega_Y$. Locally, the coisotropic reduction $Y/F$ looks just like a symplectic quotient. This construction also work for holomorphic symplectic manifolds, though one of the main difficulties in practice is ensuring that the leaves of the foliation are compact. We will describe a criterion for compactness, and apply coisotropic reduction to produce a classification result for Lagrangian fibrations by Jacobians. 

Generalizations of the SteinTomas restriction theorem 13:10 Fri 7 Aug, 2009 :: School Board Room :: Prof Andrew Hassell :: Australian National University
The SteinTomas restriction theorem says that the
Fourier transform of a function in L^p(R^n) restricts to an
L^2 function on the unit sphere, for p in some range [1, 2(n+1)/(n+3)].
I will discuss geometric generalizations of this result, by interpreting
it as a property of the spectral measure of the Laplace operator on
R^n, and then generalizing to the LaplaceBeltrami operator on
certain complete Riemannian manifolds. It turns out that dynamical
properties of the geodesic flow play a crucial role in determining whether
a restrictiontype theorem holds for these manifolds.


From linear algebra to knot theory 15:10 Fri 21 Aug, 2009 :: Badger Labs G13
Macbeth Lecture Theatre :: Prof Ross Street :: Macquarie University, Sydney
Vector spaces and linear functions form our paradigmatic monoidal category. The concepts underpinning linear algebra admit definitions, operations and constructions with analogues in many other parts of mathematics. We shall see how to generalize much of linear algebra to the context of monoidal categories. Traditional examples of such categories are obtained by replacing vector spaces by linear representations of a given compact group or by sheaves of vector spaces. More recent examples come from lowdimensional topology, in particular, from knot theory where the linear functions are replaced by braids or tangles. These geometric monoidal categories are often free in an appropriate sense, a fact that can be used to obtain algebraic invariants for manifolds. 

Defect formulae for integrals of pseudodifferential symbols:
applications to dimensional regularisation and index theory 13:10 Fri 4 Sep, 2009 :: School Board Room :: Prof Sylvie Paycha :: Universite Blaise Pascal, ClermontFerrand, France
The ordinary integral on L^1 functions on R^d unfortunately does not
extend to a translation invariant linear form on the whole algebra of
pseudodifferential symbols on R^d, forcing to work with ordinary linear
extensions which fail to be translation invariant. Defect formulae which express the difference between various linear extensions, show that they differ by local terms involving the noncommutative residue. In particular, we shall show how integrals regularised by a "dimensional regularisation" procedure familiar to physicists differ from Hadamard finite part (or "cutoff" regularised) integrals by a residue. When extended to pseudodifferential operators on closed manifolds, these defect formulae express the zeta regularised traces of a differential
operator in terms of a residue of its logarithm. In particular, we shall express the index of a Dirac type operator on a closed manifold in
terms of a logarithm of a generalized Laplacian, thus giving an a priori local
description of the index and shall discuss further applications.


The Monster 12:10 Thu 10 Sep, 2009 :: Napier 210 :: Dr David Parrott :: University of Adelaide
Media...The simple groups are the building blocks of all finite groups. The classification of finite simple groups is a towering achievement of 20th century mathematics. In addition to 18 infinite families of finite simple groups, there are 26 sporadic groups. The biggest sporadic group, dubbed The Monster, has about 10^54 elements. The talk will give a glimpse of this deep area of mathematics.


The proof of the Poincare conjecture 15:10 Fri 25 Sep, 2009 :: Napier 102 :: Prof Terrence Tao :: UCLA
In a series of three papers from 20022003, Grigori Perelman gave a spectacular proof of the Poincare Conjecture (every smooth compact simply connected threedimensional manifold is topologically isomorphic to a sphere), one of the most famous open problems in mathematics (and one of the seven Clay Millennium Prize Problems worth a million dollars each), by developing several new groundbreaking advances in Hamilton's theory of Ricci flow on manifolds. In this talk I describe in broad detail how the proof proceeds, and briefly discuss some of the key turning points in the argument.
About the speaker:
Terence Tao was born in Adelaide, Australia, in 1975. He has been a professor of mathematics at UCLA since 1999, having completed his PhD under Elias Stein at Princeton in 1996. Tao's areas of research include harmonic analysis, PDE, combinatorics, and number theory. He has received a number of awards, including the Salem Prize in 2000, the Bochner Prize in 2002, the Fields Medal and SASTRA Ramanujan Prize in 2006, and the MacArthur Fellowship and Ostrowski Prize in 2007. Terence Tao also currently holds the James and Carol Collins chair in mathematics at UCLA, and is a Fellow of the Royal Society and the Australian Academy of Sciences (Corresponding Member). 

Irreducible subgroups of SO(2,n) 13:10 Fri 16 Oct, 2009 :: School Board Room :: Dr Thomas Leistner :: University of Adelaide
Berger's classification of irreducibly represented Lie groups that can occur as holonomy groups of semiRiemannian manifolds is a remarkable result of modern differential geometry. What is remarkable about it is that it is so short and that only so few types of geometry can occur. In Riemannian signature this is even more remarkable, taking into account that any representation of a compact Lie group admits a positive definite invariant scalar product. Hence, for any not too small n there is an abundance of irreducible subgroups of SO(n). We show that in other signatures the situation is quite different with, for example, SO(1,n) having no proper irreducible subgroups. We will show how this and the corresponding result about irreducible subgroups of SO(2,n) follows from the KarpelevichMostov theorem. (This is joint work with Antonio J. Di Scala, Politecnico di Torino.) 

Modelling and pricing for portfolio credit derivatives 15:10 Fri 16 Oct, 2009 :: MacBeth Lecture Theatre :: Dr Ben Hambly :: University of Oxford
The current financial crisis has been in part precipitated by the
growth of complex credit derivatives and their mispricing. This talk
will discuss some of the background to the `credit crunch', as well as
the models and methods used currently. We will then develop an alternative
view of large basket credit derivatives, as functions of a stochastic
partial differential equation, which addresses some of the shortcomings. 

Analytic torsion for twisted de Rham complexes 13:10 Fri 30 Oct, 2009 :: School Board Room :: Prof Mathai Varghese :: University of Adelaide
We define analytic torsion for the twisted de Rham complex, consisting of differential forms on a compact Riemannian manifold X with coefficients in a flat vector bundle E, with a differential given by a flat connection on E plus a closed odd degree differential form on X. The definition in our case is more complicated than in the case discussed by RaySinger, as it uses pseudodifferential operators. We show that this analytic torsion is independent of the choice of metrics on X and E, establish some basic functorial properties, and compute it in many examples. We also establish the relationship of an invariant version of analytic torsion for Tdual circle bundles with closed 3form flux. This is joint work with Siye Wu. 

Manifold destiny: a talk on water, fire and life 15:10 Fri 6 Nov, 2009 :: MacBeth Lecture Theatre :: Dr Sanjeeva Balasuriya :: University of Adelaide
Manifolds are important entities in dynamical systems, and organise space
into regions in which different motions occur. For example, intersections
between stable and unstable manifolds in discrete systems result in
chaotic motion. This talk will focus on manifolds and their locations in
continuous dynamical systems, and in particular on Melnikov's method and its adaptations for determining the effect of perturbations on manifolds.
The relevance of such adaptations to a surprising range of applications will be shown, in addition to recent theoretical developments inspired by such problems. The applications addressed in this talk include understanding the motion of fluid near oceanic eddies and currents, optimising mixing in nanofluidic devices in order to improve reactions, computing the speed of a flame front, and finding the spreading rate of bacterial colonies. 

Critical sets of products of linear forms 13:10 Mon 14 Dec, 2009 :: School Board Room :: Dr Graham Denham :: University of Western Ontario, Canada
Suppose $f_1,f_2,\ldots,f_n$ are linear polynomials in $\ell$
variables and $\lambda_1,\lambda_2,\ldots,\lambda_n$ are nonzero complex numbers. The product
$$
\Phi_\lambda=\Prod_{i=1}^n f_1^{\lambda_i},
$$
called a master function,
defines a (multivalued) function on $\ell$dimensional complex space, or more precisely, on the complement of a set of hyperplanes. Then it is easy to ask (but harder to answer) what the set of critical points of a master function looks like, in terms of some properties of the input polynomials and $\lambda_i$'s.
In my talk I will describe the motivation for considering such a question. Then I will indicate how the geometry and combinatorics of hyperplane arrangements can be used to provide at least a partial answer. 

Hartogstype holomorphic extensions 13:10 Tue 15 Dec, 2009 :: School Board Room :: Prof Roman Dwilewicz :: Missouri University of Science and Technology
We will review holomorphic extension problems starting with the famous Hartogs extension theorem (1906), via SeveriKneserFicheraMartinelli theorems, up to some recent (partial) results of Al Boggess (Texas A&M Univ.), Zbigniew Slodkowski (Univ. Illinois at Chicago), and the speaker. The holomorphic extension problems for holomorphic or CauchyRiemann functions are fundamental problems in complex analysis of several variables. The talk will be very elementary, with many figures, and accessible to graduate and even advanced undergraduate students. 

Group actions in complex geometry, I and II 13:10 Fri 8 Jan, 2010 :: School Board Room :: Prof Frank Kutzschebauch, IGA Lecturer :: University of Berne
Media... 

Group actions in complex geometry, III and IV 10:10 Fri 15 Jan, 2010 :: School Board Room :: Prof Frank Kutzschebauch, IGA Lecturer :: University of Berne
Media... 

Group actions in complex geometry, V and VI 10:10 Fri 22 Jan, 2010 :: School Board Room :: Prof Frank Kutzschebauch, IGA Lecturer :: University of Berne
Media... 

Group actions in complex geometry, VII and VIII 10:10 Fri 29 Jan, 2010 :: Napier LG 23 :: Prof Frank Kutzschebauch, IGA Lecturer :: University of Berne
Media... 

Oka manifolds and Oka maps 13:10 Fri 29 Jan, 2010 :: Napier LG 23 :: Prof Franc Forstneric :: University of Ljubljana
In this survey lecture I will discuss a
new class of complex manifolds and of holomorphic maps
between them which I introduced in 2009
(F. Forstneric, Oka Manifolds, C. R. Acad. Sci. Paris,
Ser. I, 347 (2009) 10171020).
Roughly speaking, a complex manifold Y is said to be
an Oka manifold if Y admits plenty of holomorphic maps
from any Stein manifold (or Stein space) X to Y,
in a certain precise sense. In particular, the inclusion
of the space of holomorphic maps of X to Y into the space of
continuous maps must be a weak homotopy equivalence.
One of the main results is that this class of manifolds
can be characterized by a simple Runge approximation property
for holomorphic maps from complex Euclidean spaces C^n to Y,
with approximation on compact convex subsets of C^n.
This answers in the affirmative a question posed by
M. Gromov in 1989. I will also discuss the Oka properties
of holomorphic maps and their characterization by
approximation properties. 

A solution to the GromovVaserstein problem 15:10 Fri 29 Jan, 2010 :: Engineering North N 158 Chapman Lecture Theatre :: Prof Frank Kutzschebauch :: University of Berne, Switzerland
Any matrix in $SL_n (\mathbb C)$ can be written as a product of elementary matrices using the Gauss elimination process. If instead of the field of complex numbers, the entries in the matrix are elements of a more general ring, this becomes a delicate question. In particular, rings of complexvalued functions on a space are interesting cases. A deep result of Suslin gives an affirmative answer for the polynomial ring in $m$ variables in case the size $n$ of the matrix is at least 3. In the topological category, the problem was solved by Thurston and Vaserstein. For holomorphic functions on $\mathbb C^m$, the problem was posed by Gromov in the 1980s. We report on a complete solution to Gromov's problem. A main tool is the OkaGrauertGromov hprinciple in complex analysis. Our main theorem can be formulated as follows: In the absence of obvious topological obstructions, the Gauss elimination process can be performed in a way that depends holomorphically on the matrix. This is joint work with Bj\"orn Ivarsson. 

Proper holomorphic maps from strongly pseudoconvex domains to qconvex manifolds 13:10 Fri 5 Feb, 2010 :: School Board Room :: Prof Franc Forstneric :: University of Ljubljana
(Joint work with B. Drinovec Drnovsek, Amer. J. Math., in press.)
I will discuss the existence of closed complex subvarieties
of a complex manifold X that are proper holomorphic images
of strongly pseudoconvex Stein domains. The main
sufficient condition is expressed in terms of
the Morse indices and of the number of positive
Levi eigenvalues of an exhaustion function on X.
Examples show that our condition cannot be weakened in general.
I will describe optimal results for subvarieties of this type in
complements of compact complex submanifolds with Griffiths
positive normal bundle; in the projective case these
generalize classical theorems of Remmert, Bishop and
Narasimhan concerning proper holomorphic maps and embeddings
to complex Euclidean spaces. 

Holomorphic extension on complex spaces 14:10 Fri 5 Mar, 2010 :: School Board Room :: Prof Egmont Porten :: Mid Sweden University


Exploratory experimentation and computation 15:10 Fri 16 Apr, 2010 :: Napier LG29 :: Prof Jonathan Borwein :: University of Newcastle
Media...The mathematical research community is facing a great challenge to reevaluate the role of proof in light of the growing power of current computer systems, of modern mathematical computing packages, and of the growing capacity to datamine on the Internet. Add to that the enormous complexity of many modern capstone results such as the Poincare conjecture, Fermat's last theorem, and the Classification of finite simple groups. As the need and prospects for inductive mathematics blossom, the requirement to ensure the role of proof is properly founded remains undiminished. I shall look at the philosophical context with examples and then offer some of five benchmarking examples of the opportunities and challenges we face. 

Loop groups and characteristic classes 13:10 Fri 23 Apr, 2010 :: School Board Room :: Dr Raymond Vozzo :: University of Adelaide
Suppose $G$ is a compact Lie group, $LG$ its (free) loop group and $\Omega G \subseteq LG$ its based loop group. Let $P \to M$ be a principal bundle with structure group one of these loop groups. In general, differential form representatives of characteristic classes for principal bundles can be easily obtained using the ChernWeil homomorphism, however for infinitedimensional bundles such as $P$ this runs into analytical problems and classes are more difficult to construct. In this talk I will explain some new results on characteristic classes for loop group bundles which demonstrate how to construct certain classeswhich we call string classesfor such bundles. These are obtained by making heavy use of a certain $G$bundle associated to any loop group bundle (which allows us to avoid the problems of dealing with infinitedimensional bundles). We shall see that the free loop group case naturally involves equivariant cohomology. 

Moduli spaces of stable holomorphic vector bundles II 13:10 Fri 30 Apr, 2010 :: School Board Room :: A/Prof Nicholas Buchdahl :: University of Adelaide
In this talk, I shall briefly review the notion of
stability for holomorphic vector bundles on compact
complex manifolds as discussed in the first part of this
talk (28 August 2009). Then I shall attempt to compute
some explicit examples in simple situations, illustrating
the use of basic algebraicgeometric tools.
The level of the talk will be appropriate for graduate
students, particularly those who have been taking part
in the algebraic geometry reading group meetings. 

The caloron transform 13:10 Fri 7 May, 2010 :: School Board Room :: Prof Michael Murray :: University of Adelaide
The caloron transform is a `fake' dimensional reduction which transforms a Gbundle over certain
manifolds to a loop group of G bundle over a manifold of one lower dimension. This talk will review the
caloron transform and show how it can be best understood using the language of pseudoisomorphisms
from category theory as well as considering its application to Bogomolny monopoles and string
structures.


Holonomy groups 15:10 Fri 7 May, 2010 :: Napier LG24 :: Dr Thomas Leistner :: University of Adelaide
In the first part of the talk I will illustrate some basic concepts of differential geometry that lead to the notion of a holonomy group. Then I will explain Berger's classification of Riemannian holonomy groups and discuss questions that arose from it. Finally, I will focus on holonomy groups of Lorentzian manifolds and indicate briefly why all this is of relevance to presentday theoretical physics. 

Moduli spaces of stable holomorphic vector bundles III 13:10 Fri 14 May, 2010 :: School Board Room :: A/Prof Nicholas Buchdahl :: University of Adelaide
This talk is a continuation of the talk on 30 April. The same abstract applies:
In this talk, I shall briefly review the notion of
stability for holomorphic vector bundles on compact
complex manifolds as discussed in the first part of this
talk (28 August 2009). Then I shall attempt to compute
some explicit examples in simple situations, illustrating
the use of basic algebraicgeometric tools.
The level of the talk will be appropriate for graduate
students, particularly those who have been taking part
in the algebraic geometry reading group meetings. 

Understanding convergence of meshless methods: Vortex methods and smoothed particle hydrodynamics 15:10 Fri 14 May, 2010 :: Santos Lecture Theatre :: A/Prof Lou Rossi :: University of Delaware
Meshless methods such as vortex methods (VMs) and smoothed particle
hydrodynamics (SPH) schemes offer many advantages in fluid flow computations.
Particlebased computations naturally adapt to complex flow geometries
and so provide a high degree of computational efficiency. Also, particle
based methods avoid CFL conditions because flow quantities are
integrated along characteristics. There are many approaches to
improving numerical methods, but one of the most effective routes
is quantifying the error through the direct estimate of residual
quantities. Understanding the residual for particle schemes requires
a different approach than for meshless schemes but the rewards are
significant. In this seminar, I will outline a general approach to
understanding convergence that has been effective in creating high
spatial accuracy vortex methods, and then I will discuss some recent
investigations in the accuracy of diffusion operators used in SPH
computations. Finally, I will provide some sample NavierStokes
computations of high Reynolds number flows using BlobFlow, an open
source implementation of the high precision vortex method. 

Functorial 2connected covers 13:10 Fri 21 May, 2010 :: School Board Room :: David Roberts :: University of Adelaide
The Whitehead tower of a topological space seeks to resolve that space by successively removing homotopy groups from the 'bottom up'. For a pathconnected space with no 1dimensional local pathologies the first stage in the tower can be chosen to be the universal (=1connected) covering space. This construction also works in the category Diff of manifolds. However, further stages in the two known constructions of the Whitehead tower do not work in Diff, being purely topological  and one of these is nonfunctorial, depending on a large number of choices. This talk will survey results from my thesis which constructs a new, functorial model for the 2connected cover which will lift to a generalised (2)category of smooth objects.
This talk contains joint work with Andrew Stacey of the Norwegian University of Science and Technology. 

Interpolation of complex data using spatiotemporal compressive sensing 13:00 Fri 28 May, 2010 :: Santos Lecture Theatre :: A/Prof Matthew Roughan :: School of Mathematical Sciences, University of Adelaide
Many complex datasets suffer from missing data, and interpolating these missing
elements is a key task in data analysis. Moreover, it is often the case that we
see only a linear combination of the desired measurements, not the measurements
themselves. For instance, in network management, it is easy to count the traffic
on a link, but harder to measure the endtoend flows. Additionally, typical
interpolation algorithms treat either the spatial, or the temporal
components of data separately, but in many real datasets have strong
spatiotemporal structure that we would like to exploit in reconstructing the
missing data. In this talk I will describe a novel reconstruction algorithm that
exploits concepts from the growing area of compressive sensing to solve all of
these problems and more. The approach works so well on Internet traffic matrices
that we can obtain a reasonable reconstruction with as much as 98% of the
original data missing. 

Vertex algebras and variational calculus I 13:10 Fri 4 Jun, 2010 :: School Board Room :: Dr Pedram Hekmati :: University of Adelaide
A basic operation in calculus of variations is the EulerLagrange variational
derivative, whose kernel determines the extremals of functionals. There exists a
natural resolution of this operator, called the variational complex.
In this talk, I shall explain how to use tools from the theory of vertex
algebras
to explicitly construct the variational complex. This also provides a very
convenient language for classifying and constructing integrable Hamiltonian
evolution equations. 

Vertex algebras and variational calculus II 13:10 Fri 11 Jun, 2010 :: School Board Room :: Dr Pedram Hekmati :: University of Adelaide
Last time I introduced the variational complex of an algebra of differential
functions and gave a sketchy definition of a vertex algebra. This week I will
make this notion more precise and explain how to apply it to the calculus of
variations. 

Some thoughts on wine production 15:05 Fri 18 Jun, 2010 :: School Board Room :: Prof Zbigniew Michalewicz :: School of Computer Science, University of Adelaide
In the modern information era, managers (e.g. winemakers) recognize the
competitive opportunities represented by decisionsupport tools which can
provide a significant cost savings & revenue increases for their businesses.
Wineries make daily decisions on the processing of grapes, from harvest time
(prediction of maturity of grapes, scheduling of equipment and labour, capacity
planning, scheduling of crushers) through tank farm activities (planning and
scheduling of wine and juice transfers on the tank farm) to packaging processes
(bottling and storage activities). As such operation is quite complex, the whole
area is loaded with interesting ORrelated issues. These include the issues of
global vs. local optimization, relationship between prediction and optimization,
operating in dynamic environments, strategic vs. tactical optimization, and
multiobjective optimization & tradeoff analysis. During the talk we address
the above issues; a few realworld applications will be shown and discussed to
emphasize some of the presented material. 

EynardOrantin invariants and enumerative geometry 13:10 Fri 6 Aug, 2010 :: Ingkarni Wardli B20 (Suite 4) :: Dr Paul Norbury :: University of Melbourne
As a tool for studying enumerative problems in geometry Eynard and Orantin associate multilinear differentials to any plane curve. Their work comes from matrix models but does not require matrix models (for understanding or calculations). In some sense they describe deformations of complex structures of a curve and conjectural relationships to deformations of Kahler structures of an associated object. I will give an introduction to their invariants via explicit examples, mainly to do with the moduli space of Riemann surfaces, in which the plane curve has genus zero. 

Contraction subgroups in locally compact groups 13:10 Fri 17 Sep, 2010 :: Ingkarni Wardli B20 (Suite 4) :: Prof George Willis :: University of Newcastle
For each automorphism, $\alpha$, of the locally compact group $G$ there is a corresponding {\sl contraction subgroup\/}, $\hbox{con}(\alpha)$, which is the set of $x\in G$ such that $\alpha^n(x)$ converges to the identity as $n\to \infty$. Contractions subgroups are important in representation theory, through the Mautner phenomenon, and in the study of convolution semigroups.
If $G$ is a Lie group, then $\hbox{con}(\alpha)$ is automatically closed, can be described in terms of eigenvalues of $\hbox{ad}(\alpha)$, and is nilpotent. Since any connected group may be approximated by Lie groups, contraction subgroups of connected groups are thus well understood. Following a general introduction, the talk will focus on contraction subgroups of totally disconnected groups. A criterion for nontriviality of $\hbox{con}(\alpha)$ will be described (joint work with U.~Baumgartner) and a structure theorem for $\hbox{con}(\alpha)$ when it is closed will be presented (joint with H.~Gl\"oeckner). 

Totally disconnected, locally compact groups 15:10 Fri 17 Sep, 2010 :: Napier G04 :: Prof George Willis :: University of Newcastle
Locally compact groups occur in many branches of mathematics. Their study falls into two cases: connected groups, which occur as automorphisms of smooth structures such as spheres for example; and totally disconnected groups, which occur as automorphisms of discrete structures such as trees. The talk will give an overview of the currently developing structure theory of totally disconnected locally compact groups.
Techniques for analysing totally disconnected groups will be described that correspond to the familiar Lie group methods used to treat connected groups. These techniques played an essential role in the recent solution of a problem raised by R. Zimmer and G. Margulis concerning commensurated subgroups of arithmetic groups.


Principal Component Analysis Revisited 15:10 Fri 15 Oct, 2010 :: Napier G04 :: Assoc. Prof Inge Koch :: University of Adelaide
Since the beginning of the 20th century, Principal Component Analysis (PCA) has been an important tool in the analysis of multivariate data. The principal components summarise data in fewer than the original number of variables without losing essential information, and thus allow a split of the data into signal and noise components. PCA is a linear method, based on elegant mathematical theory.
The increasing complexity of data together with the emergence of fast computers in the later parts of the 20th century has led to a renaissance of PCA. The growing numbers of variables (in particular, highdimensional low sample size problems), nonGaussian data, and functional data (where the data are curves) are posing exciting challenges to statisticians, and have resulted in new research which extends the classical theory.
I begin with the classical PCA methodology and illustrate the challenges presented by the complex data that we are now able to collect. The main part of the talk focuses on extensions of PCA: the duality of PCA and the Principal Coordinates of Multidimensional Scaling, Sparse PCA, and consistency results relating to principal components, as the dimension grows. We will also look at newer developments such as Principal Component Regression and Supervised PCA, nonlinear PCA and Functional PCA.


IGAAMSI Workshop: Dirac operators in geometry, topology, representation theory, and physics 10:00 Mon 18 Oct, 2010 :: 7.15 Ingkarni Wardli :: Prof Dan Freed :: University of Texas, Austin
Lecture Series by Dan Freed (University of Texas, Austin).
Dirac introduced his eponymous operator to describe electrons in quantum theory.
It was rediscovered by Atiyah and Singer in their study of the index problem on
manifolds. In these lectures we explore new theorems and applications. Several
of these also involve Ktheory in its recent twisted and differential
variations.
These lectures will be supplemented by additional talks by invited speakers. For more details, please see the conference webpage:
http://www.iga.adelaide.edu.au/workshops/WorkshopOct2010/ 

Complete quaternionic Kahler manifolds associated to cubic polynomials 13:10 Fri 11 Feb, 2011 :: Ingkarni Wardli B18 :: Prof Vicente Cortes :: University of Hamburg
We prove that the supergravity r and cmaps preserve completeness. As a consequence, any component H of a hypersurface {h = 1} defined by a homogeneous cubic polynomial h such that \partial^2 h is a complete Riemannian metric on H defines a complete projective special Kahler manifold and any complete projective special
Kahler manifold defines a complete quaternionic Kahler manifold of negative scalar curvature. We classify all complete quaternionic Kahler manifolds of dimension less or equal to 12 which are obtained in this way and describe some complete examples in 16 dimensions.


Real analytic sets in complex manifolds I: holomorphic closure dimension 13:10 Fri 4 Mar, 2011 :: Mawson 208 :: Dr Rasul Shafikov :: University of Western Ontario
After a quick introduction to real and complex analytic sets,
I will discuss possible notions of complex dimension of real sets, and then discuss a structure theorem for the holomorphic closure dimension which is defined as the dimension of the smallest complex analytic germ containing the real germ. 

Real analytic sets in complex manifolds II: complex dimension 13:10 Fri 11 Mar, 2011 :: Mawson 208 :: Dr Rasul Shafikov :: University of Western Ontario
Given a real analytic set R, denote by A the subset of R of points through which there is a nontrivial complex variety contained in R, i.e., A consists of points in R of positive complex dimension. I will discuss the structure of the set A. 

Bioinspired computation in combinatorial optimization: algorithms and their computational complexity 15:10 Fri 11 Mar, 2011 :: 7.15 Ingkarni Wardli :: Dr Frank Neumann :: The University of Adelaide
Media...Bioinspired computation methods, such as evolutionary algorithms and ant colony
optimization, are being applied successfully to complex engineering and
combinatorial optimization problems. The computational complexity analysis of
this type of algorithms has significantly increased the theoretical
understanding of these successful algorithms. In this talk, I will give an
introduction into this field of research and present some important results
that we achieved for problems from combinatorial optimization. These results
can also be found in my recent textbook "Bioinspired Computation in
Combinatorial Optimization  Algorithms and Their Computational Complexity". 

Surface quotients of hyperbolic buildings 13:10 Fri 18 Mar, 2011 :: Mawson 208 :: Dr Anne Thomas :: University of Sydney
Let I(p,v) be Bourdon's building, the unique simplyconnected 2complex such that all 2cells are regular rightangled hyperbolic pgons, and the link at each vertex is the complete bipartite graph K_{v,v}. We investigate and mostly determine the set of triples (p,v,g) for which there is a discrete group acting on I(p,v) so that the quotient is a compact orientable surface of genus g. Surprisingly, the existence of such a quotient depends upon the value of v. The remaining cases lead to open questions in tessellations of surfaces and in number theory. We use elementary group theory, combinatorics, algebraic topology and number theory. This is joint work with David Futer. 

Lattices in exotic groups 15:10 Fri 18 Mar, 2011 :: 7.15 Ingkarni Wardli :: Dr Anne Thomas :: University of Sydney
Media...A lattice in a locally compact group G is a discrete subgroup of cofinite volume. Lattices in Lie groups are wellstudied, but little is known about lattices in other, "exotic", locally compact groups. Examples of exotic groups include isometry groups of trees, buildings, polyhedral complexes and CAT(0) spaces, and KacMoody groups. We will survey known results, which include both rigidity and surprising examples of flexibility, and discuss the wide range of tools used to investigate lattices in these nonclassical settings. 

Lorentzian manifolds with special holonomy 13:10 Fri 25 Mar, 2011 :: Mawson 208 :: Mr Kordian Laerz :: Humboldt University, Berlin
A parallel lightlike vector field on a Lorentzian manifold X naturally defines a foliation of codimension 1 on X and a 1dimensional subfoliation. In the first part we introduce Lorentzian metrics on the total space of certain circle bundles in order to construct weakly irreducible Lorentzian manifolds admitting a parallel lightlike vector field such that all leaves of the foliations are compact. Then we study which holonomy representations can be realized in this way. Finally, we consider the structure of arbitrary Lorentzian manifolds for which the leaves of the foliations are compact.


Operator algebra quantum groups 13:10 Fri 1 Apr, 2011 :: Mawson 208 :: Dr Snigdhayan Mahanta :: University of Adelaide
Woronowicz initiated the study of quantum groups using C*algebras. His framework enabled him to deal with compact (linear) quantum groups. In this talk we shall introduce a notion of quantum groups that can handle infinite dimensional examples like SU(\infty). We shall also study some quantum homogeneous spaces associated to this group and compute their Ktheory groups. This is joint work with V. Mathai. 

Classification for highdimensional data 15:10 Fri 1 Apr, 2011 :: Conference Room Level 7 Ingkarni Wardli :: Associate Prof Inge Koch :: The University of Adelaide
For twoclass classification problems Fisher's discriminant rule performs
well in many scenarios provided the dimension, d, is much smaller than the sample
size n. As the dimension increases, Fisher's rule may no longer be
adequate, and can perform as poorly as random guessing.
In this talk we look at new ways of overcoming this poor performance for
highdimensional data by suitably modifying Fisher's rule, and in particular
we describe the 'Features Annealed Independence Rule (FAIR)? of Fan and Fan
(2008) and a rule based on canonical correlation analysis. I describe some
theoretical developments, and also show analysis of data which illustrate the
performance of these modified rule. 

Spherical tube hypersurfaces 13:10 Fri 8 Apr, 2011 :: Mawson 208 :: Prof Alexander Isaev :: Australian National University
We consider smooth real hypersurfaces in a complex vector space. Specifically, we are interested in tube hypersurfaces, i.e., hypersurfaces represented as the direct product of the imaginary part of the space and hypersurfaces lying in its real part. Tube hypersurfaces arise, for instance, as the boundaries of tube domains. The study of tube domains is a classical subject in several complex variables and complex geometry, which goes back to the beginning of the 20th century. Indeed, already Siegel found it convenient to realise certain symmetric domains as tubes.
One can endow a tube hypersurface with a socalled CRstructure, which is the remnant of the complex structure on the ambient vector space. We impose on the CRstructure the condition of sphericity. One way to state this condition is to require a certain curvature (called the CRcurvature of the hypersurface) to vanish identically. Spherical tube hypersurfaces possess remarkable properties and are of interest from both the complexgeometric and affinegeometric points of view. I my talk I will give an overview of the theory of such hypersurfaces. In particular, I will mention an algebraic construction arising from this theory that has applications in abstract commutative algebra and singularity theory. I will speak about these applications in detail in my colloquium talk later today. 

Algebraic hypersurfaces arising from Gorenstein algebras 15:10 Fri 8 Apr, 2011 :: 7.15 Ingkarni Wardli :: Associate Prof Alexander Isaev :: Australian National University
Media...To every Gorenstein algebra of finite dimension greater than 1 over a field of characteristic zero, and a projection on its maximal ideal with range equal to the annihilator of the ideal, one can associate a certain algebraic hypersurface lying in the ideal. Such hypersurfaces possess remarkable properties. They can be used, for instance, to help decide whether two given Gorenstein algebras are isomorphic, which for the case of complex numbers leads to interesting consequences in singularity theory. Also, for the case of real numbers such hypersurfaces naturally arise in CRgeometry. In my talk I will discuss these hypersurfaces and some of their applications. 

Centres of cyclotomic Hecke algebras 13:10 Fri 15 Apr, 2011 :: Mawson 208 :: A/Prof Andrew Francis :: University of Western Sydney
The cyclotomic Hecke algebras, or ArikiKoike algebras $H(R,q)$, are
deformations of the group algebras of certain complex reflection groups
$G(r,1,n)$, and also are quotients of the ubiquitous affine Hecke algebra.
The centre of the affine Hecke algebra has been understood since
Bernstein in terms of the symmetric group action on the weight lattice.
In this talk I will discuss the proof that over an arbitrary unital
commutative ring $R$, the centre of the affine Hecke algebra maps
\emph{onto} the centre of the cyclotomic Hecke algebra when $q1$ is
invertible in $R$. This is the analogue of the fact that the centre of
the Hecke algebra of type $A$ is the set of symmetric polynomials in
JucysMurphy elements (formerly known as he DipperJames conjecture). Key
components of the proof include the relationship between the trace
functions on the affine Hecke algebra and on the cyclotomic Hecke algebra,
and the link to the affine braid group. This is joint work with John
Graham and Lenny Jones. 

A strong Oka principle for embeddings of some planar domains into CxC*, I 13:10 Fri 6 May, 2011 :: Mawson 208 :: Mr Tyson Ritter :: University of Adelaide
The Oka principle refers to a collection of results in
complex analysis which state that there are only topological
obstructions to solving certain holomorphically defined problems
involving Stein manifolds. For example, a basic version of Gromov's
Oka principle states that every continuous map from a Stein manifold
into an elliptic complex manifold is homotopic to a holomorphic map.
In these two talks I will discuss a new result showing that
if we restrict the class of source manifolds to circular domains and
fix the target as CxC* we can obtain a much stronger Oka principle:
every continuous map from a circular domain S into CxC* is homotopic
to a proper holomorphic embedding. This result has close links with
the longstanding and difficult problem of finding proper holomorphic
embeddings of Riemann surfaces into C^2, with additional motivation
from other sources.


A strong Oka principle for embeddings of some planar domains into CxC*, II 13:10 Fri 13 May, 2011 :: Mawson 208 :: Mr Tyson Ritter :: University of Adelaide
The Oka principle refers to a collection of results in
complex analysis which state that there are only topological
obstructions to solving certain holomorphically defined problems
involving Stein manifolds. For example, a basic version of Gromov's
Oka principle states that every continuous map from a Stein manifold
into an elliptic complex manifold is homotopic to a holomorphic map.
In these two talks I will discuss a new result showing that
if we restrict the class of source manifolds to circular domains and
fix the target as CxC* we can obtain a much stronger Oka principle:
every continuous map from a circular domain S into CxC* is homotopic
to a proper holomorphic embedding. This result has close links with
the longstanding and difficult problem of finding proper holomorphic
embeddings of Riemann surfaces into C^2, with additional motivation
from other sources.


Optimal experimental design for stochastic population models 15:00 Wed 1 Jun, 2011 :: 7.15 Ingkarni Wardli :: Dr Dan Pagendam :: CSIRO, Brisbane
Markov population processes are popular models for studying a wide range of
phenomena including the spread of disease, the evolution of chemical reactions
and the movements of organisms in population networks (metapopulations). Our
ability to use these models effectively can be limited by our knowledge about
parameters, such as disease transmission and recovery rates in an epidemic.
Recently, there has been interest in devising optimal experimental designs for
stochastic models, so that practitioners can collect data in a manner that
maximises the precision of maximum likelihood estimates of the parameters for
these models. I will discuss some recent work on optimal design for a variety
of population models, beginning with some simple oneparameter models where the
optimal design can be obtained analytically and moving on to more complicated
multiparameter models in epidemiology that involve latent states and
nonexponentially distributed infectious periods. For these more complex
models, the optimal design must be arrived at using computational methods and we
rely on a Gaussian diffusion approximation to obtain analytical expressions for
Fisher's information matrix, which is at the heart of most optimality criteria
in experimental design. I will outline a simple crossentropy algorithm that
can be used for obtaining optimal designs for these models. We will also
explore the improvements in experimental efficiency when using the optimal
design over some simpler designs, such as the design where observations are
spaced equidistantly in time. 

Natural operations on the Hochschild cochain complex 13:10 Fri 3 Jun, 2011 :: Mawson 208 :: Dr Michael Batanin :: Macquarie University
The Hochschild cochain complex of an associative algebra provides an important bridge between algebra and geometry.
Algebraically, this is the derived center of the algebra. Geometrically, the Hochschild cohomology of the algebra of smooth functions on a manifold is isomorphic to the graduate space of polyvector fields on this manifold.
There are many important operations acting on the Hochschild complex. It is, however, a tricky question to ask which operations are natural because the Hochschild complex is not a functor. In my talk I will explain how we can overcome this obstacle and compute all possible natural operations on the Hochschild complex. The result leads immediately to a proof of the Deligne conjecture on Hochschild cochains. 

Object oriented data analysis 14:10 Thu 30 Jun, 2011 :: 7.15 Ingkarni Wardli :: Prof Steve Marron :: The University of North Carolina at Chapel Hill
Object Oriented Data Analysis is the statistical analysis of populations of complex objects. In the special case of Functional Data Analysis, these data objects are curves, where standard Euclidean approaches, such as principal components analysis, have been very successful. Recent developments in medical image analysis motivate the statistical analysis of populations of more complex data objects which are elements of mildly nonEuclidean spaces, such as Lie Groups and Symmetric Spaces, or of strongly nonEuclidean spaces, such as spaces of treestructured data objects. These new contexts for Object Oriented Data Analysis create several potentially large new interfaces between mathematics and statistics. Even in situations where Euclidean analysis makes sense, there are statistical challenges because of the High Dimension Low Sample Size problem, which motivates a new type of asymptotics leading to nonstandard mathematical statistics. 

Object oriented data analysis of treestructured data objects 15:10 Fri 1 Jul, 2011 :: 7.15 Ingkarni Wardli :: Prof Steve Marron :: The University of North Carolina at Chapel Hill
The field of Object Oriented Data Analysis has made a lot of
progress on the statistical analysis of the variation in populations
of complex objects. A particularly challenging example of this type
is populations of treestructured objects. Deep challenges arise,
which involve a marriage of ideas from statistics, geometry, and
numerical analysis, because the space of trees is strongly
nonEuclidean in nature. These challenges, together with three
completely different approaches to addressing them, are illustrated
using a real data example, where each data point is the tree of blood
arteries in one person's brain. 

The (dual) local cyclic homology valued ChernConnes character for some infinite dimensional spaces 13:10 Fri 29 Jul, 2011 :: B.19 Ingkarni Wardli :: Dr Snigdhayan Mahanta :: School of Mathematical Sciences
I will explain how to construct a bivariant ChernConnes character on the category of sigmaC*algebras taking values in Puschnigg's local cyclic homology. Roughly, setting the first (resp. the second) variable to complex numbers one obtains the Ktheoretic (resp. dual Khomological) ChernConnes character in one variable. We shall focus on the dual Khomological ChernConnes character and investigate it in the example of SU(infty). 

Spectra alignment/matching for the classification of cancer and control patients 12:10 Mon 8 Aug, 2011 :: 5.57 Ingkarni Wardli :: Mr Tyman Stanford :: University of Adelaide
Proteomic timeofflight mass spectrometry produces a spectrum based on the peptides (chains of amino acids) in each patientâs serum sample. The spectra contain data points for an xaxis (peptide weight) and a yaxis (peptide frequency/count/intensity). It is our end goal to differentiate cancer (and subtypes) and control patients using these spectra. Before we can do this, peaks in these data must be found and common peptides to different spectra must be found. The data are noisy because of biotechnological variation and calibration error; data points for different peptide weights may in fact be same peptide. An algorithm needs to be employed to find common peptides between spectra, as performing alignment âby handâ is almost infeasible. We borrow methods suggested in the literature by metabolomic gas chromatographymass spectrometry and extend the methods for our purposes. In this talk I will go over the basic tenets of what we hope to achieve and the process towards this.


Boundaries of unsteady Lagrangian Coherent Structures 15:10 Wed 10 Aug, 2011 :: 5.57 Ingkarni Wardli :: Dr Sanjeeva Balasuriya :: Connecticut College, USA and the University of Adelaide
For steady flows, the boundaries of Lagrangian Coherent Structures
are segments of manifolds connected to fixed points. In the general
unsteady situation, these boundaries are timevarying manifolds of
hyperbolic trajectories. Locating these boundaries, and attempting
to meaningfully quantify fluid flux across them, is difficult since they
are moving with time. This talk uses a newly developed tangential movement
theory to locate these boundaries in nearlysteady compressible flows.


Comparing Einstein to Newton via the postNewtonian expansions 15:10 Fri 19 Aug, 2011 :: 7.15 Ingkarni Wardli :: Dr Todd Oliynyk :: Monash University
Media...Einstein's general relativity is presently the most accurate theory of gravity. To completely determine the gravitational field, the Einstein field equations must be solved. These equations are extremely complex and outside of a small set of idealized situations, they are impossible to solve directly. However, to make physical predictions or understand physical phenomena, it is often enough to find approximate solutions that are governed by a simpler set of equations. For example, Newtonian gravity approximates general relativity very well in regimes where the typical velocity of the gravitating matter is small compared to the speed of light. Indeed, Newtonian gravity successfully explains much of the behaviour of our solar system and is a simpler theory of gravity. However, for many situations of interest ranging from binary star systems to GPS satellites, the Newtonian approximation is not accurate enough; general relativistic effects must be included. This desire to include relativistic corrections to Newtonian gravity lead to the development of the postNewtonian expansions. 

Deformations of Oka manifolds 13:10 Fri 26 Aug, 2011 :: B.19 Ingkarni Wardli :: A/Prof Finnur Larusson :: University of Adelaide
We discuss the behaviour of the Oka property with respect to deformations of compact complex manifolds. We have recently proved that in a family of compact complex manifolds, the set of Oka fibres corresponds to a G_delta subset of the base. We have also found a necessary and sufficient condition for the limit fibre of a sequence of Oka fibres to be Oka in terms of a new uniform Oka property. The special case when the fibres are tori will be considered, as well as the general case of holomorphic submersions with noncompact fibres. 

Laplace's equation on multiplyconnected domains 12:10 Mon 29 Aug, 2011 :: 5.57 Ingkarni Wardli :: Mr Hayden Tronnolone :: University of Adelaide
Various physical processes take place on multiplyconnected domains
(domains with some number of 'holes'), such as the stirring of a fluid
with paddles or the extrusion of material from a die. These systems may
be described by partial differential equations (PDEs). However, standard
numerical methods for solving PDEs are not wellsuited to such examples:
finite difference methods are difficult to implement on
multiplyconnected domains, especially when the boundaries are irregular
or moving, while finite element methods are computationally expensive.
In this talk I will describe a fast and accurate numerical method for
solving certain PDEs on twodimensional multiplyconnected domains,
considering Laplace's equation as an example. This method takes
advantage of complex variable techniques which allow the solution to be
found with spectral accuracy provided the boundary data is smooth. Other
advantages over traditional numerical methods will also be discussed. 

Oka properties of some hypersurface complements 13:10 Fri 2 Sep, 2011 :: B.19 Ingkarni Wardli :: Mr Alexander Hanysz :: University of Adelaide
Oka manifolds can be viewed as the "opposite" of Kobayashi hyperbolic manifolds. Kobayashi conjectured that the complement of a generic algebraic hypersurface of sufficiently high degree is hyperbolic. Therefore it is natural to ask whether the complement is Oka for the case of low degree or nonalgebraic hypersurfaces. We provide a complete answer to this question for complements of hyperplane arrangements, and some results for graphs of meromorphic functions. 

Understanding the dynamics of event networks 15:00 Wed 28 Sep, 2011 :: B.18 Ingkarni Wardli :: Dr Amber Tomas :: The University of Oxford
Within many populations there are frequent communications between
pairs of individuals. Such communications might be emails sent within a
company, radio communications in a disaster zone or diplomatic
communications
between states. Often it is of interest to understand the factors that
drive the observed patterns of such communications, or to study how these
factors are changing over over time. Communications can be thought of as
events
occuring on the edges of a network which connects individuals in the
population.
In this talk I'll present a model for such communications which uses ideas
from
social network theory to account for the complex correlation structure
between
events. Applications to the Enron email corpus and the dynamics of hospital
ward transfer patterns will be discussed. 

On the role of mixture distributions in the modelling of heterogeneous data 15:10 Fri 14 Oct, 2011 :: 7.15 Ingkarni Wardli :: Prof Geoff McLachlan :: University of Queensland
Media...We consider the role that finite mixture distributions have played in the modelling of heterogeneous data, in particular for clustering continuous data via mixtures of normal distributions. A very brief history is given starting with the seminal papers by Day and Wolfe in the sixties before the appearance of the EM algorithm. It was the publication in 1977 of the latter algorithm by Dempster, Laird, and Rubin that greatly stimulated interest in the use of finite mixture distributions to model heterogeneous data. This is because the fitting of mixture models by maximum likelihood is a classic example of a problem that is simplified considerably by the EM's conceptual unification of maximum likelihood estimation from data that can be viewed as being incomplete. In recent times there has been a proliferation of applications in which the number of experimental units n is comparatively small but the underlying dimension p is extremely large as, for example, in microarraybased genomics and other highthroughput experimental approaches. Hence there has been increasing attention given not only in bioinformatics and machine learning, but also in mainstream statistics, to the analysis of complex data in this situation where n is small relative to p. The latter part of the talk shall focus on the modelling of such highdimensional data using mixture distributions. 

Dirac operators on classifying spaces 13:10 Fri 28 Oct, 2011 :: B.19 Ingkarni Wardli :: Dr Pedram Hekmati :: University of Adelaide
The Dirac operator was introduced by Paul Dirac in 1928 as the formal square
root of the D'Alembert operator. Thirty years later it was rediscovered in
Euclidean signature by Atiyah and Singer in their seminal work on index theory.
In this talk I will describe efforts to construct a Dirac type operator on the
classifying space for odd complex Ktheory. Ultimately the aim is to produce a
projective family of Fredholm operators realising elements in twisted Ktheory
of a certain moduli stack. 

Applications of tropical geometry to groups and manifolds 13:10 Mon 21 Nov, 2011 :: B.19 Ingkarni Wardli :: Dr Stephan Tillmann :: University of Queensland
Tropical geometry is a young field with multiple origins. These include the work of Bergman on logarithmic limit sets of algebraic varieties; the work of the Brazilian computer scientist Simon on discrete mathematics; the work of Bieri, Neumann and Strebel on geometric invariants of groups; and, of course, the work of Newton on polynomials. Even though there is still need for a unified foundation of the field, there is an abundance of applications of tropical geometry in group theory, combinatorics, computational algebra and algebraic geometry. In this talk I will give an overview of (what I understand to be) tropical geometry with a bias towards applications to group theory and lowdimensional topology. 

Fluid flows in microstructured optical fibre fabrication 15:10 Fri 25 Nov, 2011 :: B.17 Ingkarni Wardli :: Mr Hayden Tronnolone :: University of Adelaide
Optical fibres are used extensively in modern telecommunications as they allow the transmission of information at high speeds. Microstructured optical fibres are a relatively new fibre design in which a waveguide for light is created by a series of air channels running along the length of the material. The flexibility of this design allows optical fibres to be created with adaptable (and previously unrealised) optical properties. However, the fluid flows that arise during fabrication can greatly distort the geometry, which can reduce the effectiveness of a fibre or render it useless. I will present an overview of the manufacturing process and highlight the difficulties. I will then focus on surfacetension driven deformation of the macroscopic version of the fibre extruded from a reservoir of molten glass, occurring during fabrication, which will be treated as a twodimensional Stokes flow problem. I will outline two different complexvariable numerical techniques for solving this problem along with comparisons of the results, both to other models and to experimental data.


Collision and instability in a rotating fluidfilled torus 15:10 Mon 12 Dec, 2011 :: Benham Lecture Theatre :: Dr Richard Clarke :: The University of Auckland
The simple experiment discussed in this talk, first conceived by Madden and
Mullin (JFM, 1994) as part of their investigations into the nonuniqueness
of decaying turbulent flow, consists of a fluidfilled torus which is
rotated in an horizontal plane. Turbulence within the contained flow is
triggered through a rapid change in its rotation rate. The flow
instabilities which transition the flow to this turbulent state, however,
are truly fascinating in their own right, and form the subject of this
presentation. Flow features observed in both UK and Aucklandbased
experiments will be highlighted, and explained through both boundarylayer
analysis and full DNS. In concluding we argue that this flow regime, with
its compact geometry and lack of cumbersome flow entry effects, presents an
ideal regime in which to study many prototype flow behaviours, very much in
the same spirit as TaylorCouette flow. 

Noncritical holomorphic functions of finite growth on algebraic Riemann surfaces 13:10 Fri 3 Feb, 2012 :: B.20 Ingkarni Wardli :: Prof Franc Forstneric :: University of Ljubljana
Given a compact Riemann surface X and a point p in X,
we construct a holomorphic function without critical points
on the punctured (algebraic) Riemann surface R=Xp
which is of finite order at the point p.
In the case at hand this improves the 1967 theorem of
Gunning and Rossi to the effect that every open
Riemann surface admits a noncritical holomorphic function,
but without any particular growth condition. (Joint work with Takeo Ohsawa.) 

Plurisubharmonic subextensions as envelopes of disc functionals 13:10 Fri 2 Mar, 2012 :: B.20 Ingkarni Wardli :: A/Prof Finnur Larusson :: University of Adelaide
I will describe new joint work with Evgeny Poletsky. We prove a disc formula for the largest plurisubharmonic subextension of an upper semicontinuous function on a domain $W$ in a Stein manifold to a larger domain $X$ under suitable conditions on $W$ and $X$. We introduce a related equivalence relation on the space of analytic discs in $X$ with boundary in $W$. The quotient is a complex manifold with a local biholomorphism to $X$, except it need not be Hausdorff. We use our disc formula to generalise Kiselman's minimum principle. We show that his infimum function is an example of a plurisubharmonic subextension. 

The Lorentzian conformal analogue of CalabiYau manifolds 13:10 Fri 16 Mar, 2012 :: B.20 Ingkarni Wardli :: Prof Helga Baum :: Humboldt University
CalabiYau manifolds are Riemannian manifolds with holonomy group SU(m). They are Ricciflat and Kahler and admit a 2parameter family of parallel spinors. In the talk we will discuss the Lorentzian conformal analogue of this situation. If on a manifold a class of conformally equivalent metrics [g] is given, then one can consider the holonomy group
of the conformal manifold (M,[g]), which is a subgroup of
O(p+1,q+1) if the metric g has signature (p,q). There is a close relation between algebraic properties of the conformal holonomy group and the existence of Einstein metrics in the conformal class as well as to the existence of conformal Killing spinors. In the talk I will explain classification results for conformal holonomy groups of Lorentzian manifolds. In particular, I will describe Lorentzian manifolds (M,g) with conformal holonomy group SU(1,m), which can be viewed as the conformal analogue of CalabiYau manifolds. Such Lorentzian
metrics g, known as Fefferman metrics, appear on S^1bundles over strictly pseudoconvex CR spin manifolds and admit a 2parameter family of conformal Killing spinors.


The de Rham Complex 12:10 Mon 19 Mar, 2012 :: 5.57 Ingkarni Wardli :: Mr Michael Albanese :: University of Adelaide
Media...The de Rham complex is of fundamental importance in differential geometry. After first introducing differential forms (in the familiar setting of Euclidean space), I will demonstrate how the de Rham complex elegantly encodes one half (in a sense which will become apparent) of the results from vector calculus. If there is time, I will indicate how results from the remaining half of the theory can be concisely expressed by a single, far more general theorem. 

New examples of totally disconnected, locally compact groups 13:10 Fri 20 Apr, 2012 :: B.20 Ingkarni Wardli :: Dr Murray Elder :: University of Newcastle
I will attempt to explain what a totally disconnected,
locally compact group is, and then describe some new work with George
Willis on an attempt to create new examples based on BaumslagSolitar
groups, which are well known, tried and tested
examples/counterexamples in geometric/combinatorial group theory. I
will describe how to compute invariants of scale and flat rank for
these groups. 

A Problem of Siegel 13:10 Fri 27 Apr, 2012 :: B.20 Ingkarni Wardli :: Dr Brent Everitt :: University of York
The first explicit examples of orientable hyperbolic 3manifolds were constructed by Weber,
Siefert, and Lobell in the early 1930's. In the subsequent decades the world
of hyperbolic nmanifolds has grown into an extraordinarily rich one. Its sociology is
best understood through the eyes of invariants, and for hyperbolic manifolds the most
important invariant is volume. Viewed this way the ndimensional hyperbolic manifolds,
for fixed n, look like a wellordered subset of the reals (a discrete set even, when n is not 3).
So we are naturally led to the (manifold) Siegel problem: for a given n, determine the minimum
possible volume obtained by an orientable hyperbolic nmanifold. It is a problem with a long
and venerable history. In this talk I will describe a unified solution to the problem in low even
dimensions, one of which at least is new. Joint work with John Ratcliffe and Steve Tschantz (Vanderbilt). 

Acyclic embeddings of open Riemann surfaces into new examples of elliptic manifolds 13:10 Fri 4 May, 2012 :: Napier LG28 :: Dr Tyson Ritter :: University of Adelaide
In complex geometry a manifold is Stein if there are, in a certain
sense, "many" holomorphic maps from the manifold into C^n. While this
has long been well understood, a fruitful definition of the dual
notion has until recently been elusive. In Oka theory, a manifold is
Oka if it satisfies several equivalent definitions, each stating that
the manifold has "many" holomorphic maps into it from C^n. Related to
this is the geometric condition of ellipticity due to Gromov, who
showed that it implies a complex manifold is Oka.
We present recent contributions to three open questions involving
elliptic and Oka manifolds. We show that affine quotients of C^n are
elliptic, and combine this with an example of Margulis to construct
new elliptic manifolds of interesting homotopy types. It follows that
every open Riemann surface properly acyclically embeds into an
elliptic manifold, extending an existing result for open Riemann
surfaces with abelian fundamental group.


Index type invariants for twisted signature complexes 13:10 Fri 11 May, 2012 :: Napier LG28 :: Prof Mathai Varghese :: University of Adelaide
AtiyahPatodiSinger proved an index theorem for nonlocal boundary conditions
in the 1970's that has been widely used in mathematics and mathematical physics.
A key application of their theory gives the index theorem for signature operators on
oriented manifolds with boundary. As a consequence, they defined certain secondary
invariants that were metric independent. I will discuss some recent work with Benameur
where we extend the APS theory to signature operators twisted by an odd degree closed
differential form, and study the corresponding secondary invariants. 

The classification of Dynkin diagrams 12:10 Mon 21 May, 2012 :: 5.57 Ingkarni Wardli :: Mr Alexander Hanysz :: University of Adelaide
Media...The idea of continuous symmetry is often described in mathematics via Lie groups. These groups can be classified by their root systems: collections of vectors satisfying certain symmetry properties. The root systems are described in a concise way by Dynkin diagrams, and it turns out, roughly speaking, that there are only seven possible shapes for a Dynkin diagram.
In this talk I'll describe some simple examples of Lie groups, explain what a root system is, and show how a Dynkin diagram encodes this information. Then I'll give a very brief sketch of the methods used to classify Dynkin diagrams. 

On the full holonomy group of special Lorentzian manifolds 13:10 Fri 25 May, 2012 :: Napier LG28 :: Dr Thomas Leistner :: University of Adelaide
The holonomy group of a semiRiemannian manifold is defined as the group of parallel transports along loops based at a point. Its connected component, the `restricted holonomy group', is given by restricting in this definition to contractible loops. The restricted holonomy can essentially be described by its Lie algebra and many classification results are obtained in this way. In contrast, the `full' holonomy group is a more global object and classification results are out of reach.
In the talk I will describe recent results with H. Baum and K. Laerz (both HU Berlin) about the full holonomy group of socalled `indecomposable' Lorentzian manifolds.
I will explain a construction method that arises from analysing the effects on holonomy when dividing the manifold by the action of a properly discontinuous group of isometries and present several examples of Lorentzian manifolds with disconnected holonomy groups.


Geometric modular representation theory 13:10 Fri 1 Jun, 2012 :: Napier LG28 :: Dr Anthony Henderson :: University of Sydney
Representation theory is one of the oldest areas of algebra, but many basic questions in it are still unanswered. This is especially true in the modular case, where one considers vector spaces over a field F of positive characteristic; typically, complications arise for particular small values of the characteristic. For example, from a vector space V one can construct the symmetric square S^2(V), which is one easy example of a representation of the group GL(V). One would like to say that this representation is irreducible, but that statement is not always true: if F has characteristic 2, there is a nontrivial invariant subspace. Even for GL(V), we do not know the dimensions of all irreducible representations in all characteristics.
In this talk, I will introduce some of the main ideas of geometric modular representation theory, a more recent approach which is making progress on some of these old problems. Essentially, the strategy is to reformulate everything in terms of homology of various topological spaces, where F appears only as the field of coefficients and the spaces themselves are independent of F; thus, the modular anomalies in representation theory arise because homology with modular coefficients is detecting something about the topology that rational coefficients do not. In practice, the spaces are usually varieties over the complex numbers, and homology is replaced by intersection cohomology to take into account the singularities of these varieties. 

Enhancing the Jordan canonical form 15:10 Fri 1 Jun, 2012 :: B.21 Ingkarni Wardli :: A/Prof Anthony Henderson :: The University of Sydney
Media...In undergraduate linear algebra, we teach the Jordan canonical form theorem:
that every similarity class of n x n complex matrices contains a special
matrix which is blockdiagonal with each block having a very simple form (a single eigenvalue repeated down the diagonal,
ones on the superdiagonal, and zeroes elsewhere). This is of course very
useful for matrix calculations.
After explaining some of the general context of this result,
I will focus on a case which, despite its close proximity to the Jordan
canonical form theorem, has only recently been worked out: the classification
of pairs of a vector and a matrix.


Model turbulent floods based upon the Smagorinski large eddy closure 12:10 Mon 4 Jun, 2012 :: 5.57 Ingkarni Wardli :: Mr Meng Cao :: University of Adelaide
Media...Rivers, floods and tsunamis are often very turbulent. Conventional models of such environmental fluids are typically based on depthaveraged inviscid irrotational flow equations. We explore changing such a base to the turbulent Smagorinski large eddy closure. The aim is to more appropriately model the fluid dynamics of such complex environmental fluids by using such a turbulent closure. Large changes in fluid depth are allowed. Computer algebra constructs the slow manifold of the flow in terms of the fluid depth h and the mean turbulent lateral velocities u and v. The major challenge is to deal with the nonlinear stress tensor in the Smagorinski closure. The model integrates the effects of inertia, selfadvection, bed drag, gravitational forcing and turbulent dissipation with minimal assumptions. Although the resultant model is close to established models, the real outcome is creating a sound basis for the modelling so others, in their modelling of more complex situations, can systematically include more complex physical processes. 

A brief introduction to Support Vector Machines 12:30 Mon 4 Jun, 2012 :: 5.57 Ingkarni Wardli :: Mr Tyman Stanford :: University of Adelaide
Media...Support Vector Machines (SVMs) are used in a variety of contexts for a range of purposes including regression, feature selection and classification. To convey the basic principles of SVMs, this presentation will focus on the application of SVMs to classification. Classification (or discrimination), in a statistical sense, is supervised model creation for the purpose of assigning future observations to a group or class. An example might be determining healthy or diseased labels to patients from p characteristics obtained from a blood sample.
While SVMs are widely used, they are most successful when the data have one or more of the following properties:
The data are not consistent with a standard probability distribution.
The number of observations, n, used to create the model is less than the number of predictive features, p. (The socalled smalln, bigp problem.)
The decision boundary between the classes is likely to be nonlinear in the feature space.
I will present a short overview of how SVMs are constructed, keeping in mind their purpose. As this presentation is part of a double postgrad seminar, I will keep it to a maximum of 15 minutes.


Ktheory and unbounded Fredholm operators 13:10 Mon 9 Jul, 2012 :: Ingkarni Wardli B19 :: Dr Jerry Kaminker :: University of California, Davis
There are several ways of viewing elements of K^1(X). One
of these is via families of unbounded selfadjoint Fredholm operators on X. Each operator will have discrete spectrum, with infinitely many positive and negative eigenvalues of finite multiplicity. One can associate to such a family a geometric object, its graph, and the Chern character and other invariants of the family can be studied from this perspective. By restricting the dimension of the eigenspaces one may sometimes use algebraic topology to completely determine the family up to equivalence. This talk will describe the general framework and some applications to families on lowdimensional manifolds
where the methods work well. Various notions related to spectral flow, the index gerbe and Berry phase play roles which will be discussed. This is joint work with Ron Douglas.


Complex geometry and operator theory 14:10 Mon 9 Jul, 2012 :: Ingkarni Wardli B19 :: Prof Ron Douglas :: Texas A&M University
In the study of bounded operators on Hilbert spaces of holomorphic functions, concepts and techniques from complex geometry are important. An antiholomorphic bundle exists on which one can define the Chern connection. Its curvature turns out to be a complete invariant and various operator notions can't be reframed in terms of geometrical ones which leads to the solution of some problems. We will discuss this approach with an emphasis on natural examples in the one and multivariable case.


The motivic logarithm and its realisations 13:10 Fri 3 Aug, 2012 :: Engineering North 218 :: Dr James Borger :: Australian National University
When a complex manifold is defined by polynomial equations, its cohomology groups inherit extra structure. This was discovered by Hodge in the 1920s and 30s. When the defining polynomials have rational coefficients, there is some additional, arithmetic structure on the cohomology. This was discovered by Grothendieck and others in the 1960s. But here the situation is still quite mysterious because each cohomology group has infinitely many different arithmetic structures and while they are not directly comparable, they share many propertieswith each other and with the Hodge structure.
All written accounts of this that I'm aware of treat arbitrary varieties. They are beautifully abstract and nonexplicit. In this talk, I'll take the opposite approach and try to give a flavour of the subject by working out a perhaps the simplest nontrivial example, the cohomology of C* relative to a subset of two points, in beautifully concrete and explicit detail. Here the common motif is the logarithm. In Hodge theory, it is realised as the complex logarithm; in the crystalline theory, it's as the padic logarithm; and in the etale theory, it's as Kummer theory.
I'll assume you have some familiarity with usual, singular cohomology of topological spaces, but I won't assume that you know anything about these nontopological cohomology theories. 

Geometry  algebraic to arithmetic to absolute 15:10 Fri 3 Aug, 2012 :: B.21 Ingkarni Wardli :: Dr James Borger :: Australian National University
Media...Classical algebraic geometry is about studying solutions to systems of polynomial equations with complex coefficients. In arithmetic algebraic geometry, one digs deeper and studies the arithmetic properties of the solutions when the coefficients are rational, or even integral. From the usual point of view, it's impossible to go deeper than this for the simple reason that no smaller rings are available  the integers have no proper subrings. In this talk, I will explain how an emerging subject, lambdaalgebraic geometry, allows one to do just this and why one might care. 

Hodge numbers and cohomology of complex algebraic varieties 13:10 Fri 10 Aug, 2012 :: Engineering North 218 :: Prof Gus Lehrer :: University of Sydney
Let $X$ be a complex algebraic variety defined over the ring $\mathfrak{O}$ of integers in a number field $K$ and let $\Gamma$ be a group of $\mathfrak{O}$automorphisms of $X$. I shall discuss how the counting of rational points over reductions mod $p$ of $X$, and an analysis of the Hodge structure of the cohomology of $X$, may be used to determine the cohomology as a $\Gamma$module. This will include some joint work with Alex Dimca and with Mark Kisin, and some classical unsolved problems.


Differential topology 101 13:10 Fri 17 Aug, 2012 :: Engineering North 218 :: Dr Nicholas Buchdahl :: University of Adelaide
Much of my recent research been directed at a problem in the
theory of compact complex surfacestrying to fill in a gap
in the EnriquesKodaira classification.
Attempting to classify some collection of mathematical
objects is a very common activity for pure mathematicians,
and there are many wellknown examples of successful
classification schemes; for example, the classification of
finite simple groups, and the classification of simply
connected topological 4manifolds.
The aim of this talk will be to illustrate how techniques
from differential geometry can be used to classify compact
surfaces. The level of the talk will be very elementary, and
the material is all very well known, but it is sometimes
instructive to look back over simple cases of a general
problem with the benefit of experience to gain greater
insight into the more general and difficult cases. 

Holomorphic flexibility properties of compact complex surfaces 13:10 Fri 31 Aug, 2012 :: Engineering North 218 :: A/Prof Finnur Larusson :: University of Adelaide
I will describe recent joint work with Franc Forstneric (arXiv, July 2012). We introduce a new property, called the stratified Oka property, which fits into a hierarchy of antihyperbolicity properties that includes the Oka property. We show that stratified Oka manifolds are strongly dominable by affine spaces. It follows that Kummer surfaces are strongly dominable. We determine which minimal surfaces of class VII are Oka (assuming the global spherical shell conjecture). We deduce that the Oka property and several other antihyperbolicity properties are in general not closed in families of compact complex manifolds. I will summarise what is known about how the Oka property fits into the EnriquesKodaira classification of surfaces. 

Classification of a family of symmetric graphs with complete quotients 13:10 Fri 7 Sep, 2012 :: Engineering North 218 :: A/Prof Sanming Zhou :: University of Melbourne
A finite graph is called symmetric if its automorphism group is
transitive on the set of arcs (ordered pairs of adjacent vertices) of the
graph. This is to say that all arcs have the same status in the graph. I
will talk about recent results on the classification of a family of
symmetric graphs with complete quotients. The most interesting graphs
arising from this classification are defined in terms of Hermitian unitals
(which are specific block designs), and they admit unitary groups as
groups of automorphisms. I will also talk about applications of our
results in constructing large symmetric graphs of given degree and
diameter.
This talk contains joint work with M. Giulietti, S. Marcugini and F.
Pambianco.


Knot Theory 12:10 Mon 10 Sep, 2012 :: B.21 Ingkarni Wardli :: Mr Konrad Pilch :: University of Adelaide
Media...The ancient Chinese used it, the Celts had this skill in spades, it was a big skill of seafarers and pirates, and even now we need it if only to be able to wear shoes! This talk will be about Knot Theory. Knot theory has a colourful and interesting past and I will touch on the why, the what and the when of knots in mathematics. I shall also discuss the major problems concerning knots including the different methods of classification of knots, the unresolved questions about knots, and why have they even been studied. It will be a thorough immersion that will leave you knotted! 

Geometric quantisation in the noncompact setting 13:10 Fri 14 Sep, 2012 :: Engineering North 218 :: Dr Peter Hochs :: Leibniz University, Hannover
Traditionally, the geometric quantisation of an action by a compact Lie group on a compact symplectic manifold is defined as the equivariant index of a certain Dirac operator. This index is a welldefined formal difference of finitedimensional representations, since the Dirac operator is elliptic and the manifold and the group in question are compact. From a mathematical and physical point of view however, it is very desirable to extend geometric quantisation to noncompact groups and manifolds. Defining a suitable index is much harder in the noncompact setting, but several interesting results in this direction have been obtained. I will review the difficulties connected to noncompact geometric quantisation, and some of the solutions that have been proposed so far, mainly in connection to the "quantisation commutes with reduction" principle. (An introduction to this principle will be given in my talk at the Colloquium on the same day.)


Quantisation commutes with reduction 15:10 Fri 14 Sep, 2012 :: B.20 Ingkarni Wardli :: Dr Peter Hochs :: Leibniz University Hannover
Media...The "Quantisation commutes with reduction" principle is an idea from physics, which has powerful applications in mathematics. It basically states that the ways in which symmetry can be used to simplify a physical system in classical and quantum mechanics, are compatible. This provides a strong link between the areas in mathematics used to describe symmetry in classical and quantum mechanics: symplectic geometry and representation theory, respectively. It has been proved in the 1990s that quantisation indeed commutes with reduction, under the important assumption that all spaces and symmetry groups involved are compact. This talk is an introduction to this principle and, if time permits, its mathematical relevance. 

Turbulent flows, semtex, and rainbows 12:10 Mon 8 Oct, 2012 :: B.21 Ingkarni Wardli :: Ms Sophie Calabretto :: University of Adelaide
Media...The analysis of turbulence in transient flows has applications across a broad range of fields. We use the flow of fluid in a toroidal container as a paradigm for studying the complex dynamics due to this turbulence. To explore the dynamics of our system, we exploit the numerical capabilities of semtex; a quadrilateral spectral element DNS code. Rainbows result. 

Complex analysis in low Reynolds number hydrodynamics 15:10 Fri 12 Oct, 2012 :: B.20 Ingkarni Wardli :: Prof Darren Crowdy :: Imperial College London
Media...It is a wellknown fact that the methods of complex analysis provide great advantage
in studying physical problems involving a harmonic field satisfying Laplace's equation.
One example is in ideal fluid mechanics (infinite Reynolds number)
where the absence of viscosity, and the
assumption of zero vorticity, mean that it is possible to introduce a socalled
complex potential  an analytic function from which all physical quantities of
interest can be inferred.
In the opposite limit of zero Reynolds number flows which are slow and viscous
and the governing fields are not harmonic
it is much less common to employ the methods of complex analysis
even though they continue to be relevant in certain circumstances.
This talk will give an overview of a variety of problems involving slow viscous Stokes
flows where complex analysis can be usefully employed to gain theoretical
insights. A number of example problems will be considered including
the locomotion of lowReynoldsnumber microorganisms and microrobots,
the friction properties of superhydrophobic surfaces in microfluidics and
problems of viscous sintering and the manufacture of microstructured optic fibres (MOFs). 

AD Model Builder and the estimation of lobster abundance 12:10 Mon 22 Oct, 2012 :: B.21 Ingkarni Wardli :: Mr John Feenstra :: University of Adelaide
Media...Determining how many millions of lobsters reside in our waters and how it changes over time is a central aim of lobster stock assessment. ADMB is powerful optimisation software to model and solve complex nonlinear problems using automatic differentiation and plays a major role in SA and worldwide in fisheries stock assessment analyses. In this talk I will provide a brief description of an example modelling problem, key features and use of ADMB. 

The space of cubic rational maps 13:10 Fri 26 Oct, 2012 :: Engineering North 218 :: Mr Alexander Hanysz :: University of Adelaide
For each natural number d, the space of rational maps of degree d on the Riemann sphere has the structure of a complex manifold. The topology of these manifolds has been extensively studied. The recent development of Oka theory raises some new and interesting questions about their complex structure. We apply geometric invariant theory to the degree 3 case, studying a double action of the Mobius group on the space of cubic rational maps. We show that the categorical quotient is C, and that the space of cubic rational maps enjoys the holomorphic flexibility properties of strong dominability and Cconnectedness. 

Numerical Free Probability: Computing Eigenvalue Distributions of Algebraic Manipulations of Random Matrices 15:10 Fri 2 Nov, 2012 :: B.20 Ingkarni Wardli :: Dr Sheehan Olver :: The University of Sydney
Media...Suppose that the global eigenvalue distributions
of two large random matrices A and B are known. It is a
remarkable fact that, generically, the eigenvalue distribution
of A + B and (if A and B are positive definite) A*B are
uniquely determined from only the eigenvalue distributions
of A and B; i.e., no information about eigenvectors are
required. These operations on eigenvalue distributions
are described by free probability theory. We construct a
numerical toolbox that can efficiently and reliably
calculate these operations with spectral accuracy, by
exploiting the complex analytical framework that underlies
free probability theory.


Variation of Hodge structure for generalized complex manifolds 13:10 Fri 7 Dec, 2012 :: Ingkarni Wardli B20 :: Dr David Baraglia :: University of Adelaide
Generalized complex geometry combines complex and symplectic geometry into a single framework, incorporating also holomorphic Poisson and biHermitian structures. The Dolbeault complex naturally extends to the generalized complex setting giving rise to Hodge structures in twisted cohomology. We consider the variations of Hodge structure and period mappings that arise from families of generalized complex manifolds. As an application we prove a local Torelli theorem for generalized CalabiYau manifolds. 

Recent results on holomorphic extension of functions on unbounded domains in C^n 11:10 Fri 21 Dec, 2012 :: Ingkarni Wardli B19 :: Prof Roman Dwilewicz :: Missouri University of Science and Technology
In the talk there will be given a short review of holomorphic
extension problems starting with the famous Hartogs theorem (1906) up to recent results on global holomorphic extensions for unbounded domains, obtained together with Al Boggess (Arizona State Univ.) and Zbigniew Slodkowski (Univ. Illinois at Chicago). There is an interesting geometry behind the extension problem for unbounded domains, namely (in some cases) it depends on the position of a complex variety in the closure of the domain. The extension problem appeared nontrivial and the work is in progress. However the talk will be illustrated by many figures and pictures and should be accessible also to graduate students.


Conformally Fedosov manifolds 12:10 Fri 8 Mar, 2013 :: Ingkarni Wardli B19 :: Prof Michael Eastwood :: Australian National University
Symplectic and projective structures may be compatibly combined. The
resulting structure closely resembles conformal geometry and a manifold endowed
with such a structure is called conformally Fedosov. This talk will present the
basic theory of conformally Fedosov geometry and, in particular, construct a
Cartan connection for them. This is joint work with Jan Slovak. 

Twistor theory and the harmonic hull 15:10 Fri 8 Mar, 2013 :: B.18 Ingkarni Wardli :: Prof Michael Eastwood :: Australian National University
Media...Harmonic functions are realanalytic and so automatically extend as functions of complex variables. But how far do they extend? This question may be answered by twistor theory, the Penrose transform, and associated conformal geometry. Nothing will be supposed about such matters: I shall base the constructions on an elementary yet mysterious formula of Bateman from 1904. This is joint work with Feng Xu. 

A stability theorem for elliptic Harnack inequalities 15:10 Fri 5 Apr, 2013 :: B.18 Ingkarni Wardli :: Prof Richard Bass :: University of Connecticut
Media...Harnack inequalities are an important tool in probability theory,
analysis, and partial differential equations. The classical Harnack
inequality is just the one you learned in your graduate complex analysis
class, but there have been many extensions, to different spaces, such as
manifolds, fractals, infinite graphs, and to various sorts of elliptic operators.
A landmark result was that of Moser in 1961, where he proved the Harnack
inequality for solutions to a class of partial differential equations.
I will talk about the stability of Harnack inequalities. The main result
says that if the Harnack inequality holds for an operator on a space,
then the Harnack inequality will also hold for a large class of other operators
on that same space. This provides a generalization of the result of Moser. 

Conformal Killing spinors in Riemannian and Lorentzian geometry 12:10 Fri 19 Apr, 2013 :: Ingkarni Wardli B19 :: Prof Helga Baum :: Humboldt University
Conformal Killing spinors are the solutions of the conformally covariant twistor equation on spinors. Special cases are parallel and Killing spinors, the latter appear as eigenspinors of the Dirac operator on compact Riemannian manifolds of positive scalar curvature for the smallest possible positive eigenvalue. In the talk I will discuss geometric properties of manifolds admitting (conformal) Killing spinors. In particular, I will explain a local classification of the special geometric structures admitting conformal Killing spinors without zeros in the Riemannian as well as in the Lorentzian setting. 

An Oka principle for equivariant isomorphisms 12:10 Fri 3 May, 2013 :: Ingkarni Wardli B19 :: A/Prof Finnur Larusson :: University of Adelaide
I will discuss new joint work with Frank Kutzschebauch (Bern) and Gerald Schwarz (Brandeis). Let $G$ be a reductive complex Lie group acting holomorphically on Stein manifolds $X$ and $Y$, which are locally $G$biholomorphic over a common categorical quotient $Q$. When is there a global $G$biholomorphism $X\to Y$?
In a situation that we describe, with some justification, as generic, we prove that the obstruction to solving this localtoglobal problem is topological and provide sufficient conditions for it to vanish. Our main tool is the equivariant version of Grauert's Oka principle due to Heinzner and Kutzschebauch.
We prove that $X$ and $Y$ are $G$biholomorphic if $X$ is $K$contractible, where $K$ is a maximal compact subgroup of $G$, or if there is a $G$diffeomorphism $X\to Y$ over $Q$, which is holomorphic when restricted to each fibre of the quotient map $X\to Q$. When $G$ is abelian, we obtain stronger theorems. Our results can be interpreted as instances of the Oka principle for sections of the sheaf of $G$biholomorphisms from $X$ to $Y$ over $Q$. This sheaf can be badly singular, even in simply defined examples.
Our work is in part motivated by the linearisation problem for actions on $\C^n$. It follows from one of our main results that a holomorphic $G$action on $\C^n$, which is locally $G$biholomorphic over a common quotient to a generic linear action, is linearisable. 

Models of cellextracellular matrix interactions in tissue engineering 15:10 Fri 3 May, 2013 :: B.18 Ingkarni Wardli :: Dr Ed Green :: University of Adelaide
Media...Tissue engineers hope in future to be able to grow functional tissues in vitro to replace those that are damaged by injury, disease, or simple wear and tear. They use cell culture methods, such as seeding cells within collagen gels, that are designed to mimic the cells' environment in vivo. Amongst other factors, it is clear that mechanical interactions between cells and the extracellular matrix (ECM) in which they reside play an important role in tissue development. However, the mechanics of the ECM is complex, and at present, its role is only partly understood. In this talk, I will present mathematical models of some simple cellECM interaction problems, and show how they can be used to gain more insight into the processes that regulate tissue development. 

Diffeological spaces and differentiable stacks 12:10 Fri 10 May, 2013 :: Ingkarni Wardli B19 :: Dr David Roberts :: University of Adelaide
The category of finitedimensional smooth manifolds gives rise to interesting structures outside of itself, two examples being mapping spaces and classifying spaces. Diffeological spaces are a notion of generalised smooth space which form a cartesian closed category, so all fibre products and all mapping spaces of smooth manifolds exist as diffeological spaces. Differentiable stacks are a further generalisation that can also deal with moduli spaces (including classifying spaces) for objects with automorphisms. This talk will give an introduction to this circle of ideas. 

Crystallographic groups I: the classical theory 12:10 Fri 17 May, 2013 :: Ingkarni Wardli B19 :: Dr Wolfgang Globke :: University of Adelaide
A discrete isometry group acting properly discontinuously on the ndimensional
Euclidean space with compact quotient is called a crystallographic group.
This name reflects the fact that in dimension n=3 their compact fundamental
domains resemble a spacefilling crystal pattern.
For higher dimensions, Hilbert posed his famous 18th problem:
"Is there in ndimensional Euclidean space only a finite number of essentially
different kinds of groups of motions with a [compact] fundamental region?"
This problem was solved by Bieberbach when he proved that in every
dimension n there exists only a finite number of isomorphic crystallographic groups
and also gave a description of these groups.
From the perspective of differential geometry these results are of major importance,
as crystallographic groups are precisely the fundamental groups of
compact flat Riemannian orbifolds.
The quotient is even a manifold if the fundamental group is required to be torsionfree,
in which case it is called a Bieberbach group.
Moreover, for a flat manifold the fundamental group completely determines the
holonomy group.
In this talk I will discuss the properties of crystallographic groups, study examples in
dimension n=2 and n=3, and present the three Bieberbach theorems on the
structure of crystallographic groups.


Crystallographic groups II: generalisations 12:10 Fri 24 May, 2013 :: Ingkarni Wardli B19 :: Dr Wolfgang Globke :: University of Adelaide
The theory of crystallographic groups acting cocompactly on Euclidean space
can be extended and generalised in many different ways.
For example, instead of studying discrete groups of Euclidean isometries, one
can consider groups of isometries for indefinite inner products.
These are the fundamental groups of compact flat pseudoRiemannian manifolds.
Still more generally, one might study group of affine transformation on nspace
that are not required to preserve any bilinear form.
Also, the condition of cocompactness can be dropped.
In this talk, I will present some of the results obtained for these generalisations,
and also discuss some of my own work on flat homogeneous pseudoRiemannian
spaces. 

Heat kernel estimates on noncompact Riemannian manifolds: why and how? 15:10 Fri 7 Jun, 2013 :: B.18 Ingkarni Wardli :: Prof Thierry Coulhon :: Australian National University
Media...We will describe what is known and remains to be known about the connection between the large scale geometry of noncompact Riemannian manifolds
(and more general metric measure spaces) and large time estimates of their heat kernel. We will show how some of these estimates can be characterised in terms of Sobolev inequalities and give applications to the boundedness of Riesz transforms. 

Khomology and the quantization commutes with reduction problem 12:10 Fri 5 Jul, 2013 :: 7.15 Ingkarni Wardli :: Prof Nigel Higson :: Pennsylvania State University
The quantization commutes with reduction problem for Hamiltonian actions of compact Lie groups was solved by Meinrenken in the mid1990s using geometric techniques, and solved again shortly afterwards by Tian and Zhang using analytic methods. In this talk I shall outline some of the close links that exist between the problem, the two solutions, and the geometric and analytic versions of Khomology theory that are studied in noncommutative geometry. I shall try to make the case for Khomology as a useful conceptual framework for the solutions and (at least some of) their various generalizations. 

FireAtmosphere Models 12:10 Mon 29 Jul, 2013 :: B.19 Ingkarni Wardli :: Mika Peace :: University of Adelaide
Media...Fire behaviour models are increasingly being used to assist in planning and operational decisions for bush fires and fuel reduction burns. Rate of spread (ROS) of the fire front is a key output of such models. The ROS value is typically calculated from a formula which has been derived from empirical data, using very simple meteorological inputs. We have used a coupled fireatmosphere model to simulate real bushfire events. The results show that complex interactions between a fire and the atmosphere can have a significant influence on fire spread, thus highlighting the limitations of a model that uses simple meteorological inputs. 

Symplectic Lie groups 12:10 Fri 9 Aug, 2013 :: Ingkarni Wardli B19 :: Dr Wolfgang Globke :: University of Adelaide
A "symplectic Lie group" is a Lie group G with a symplectic form such that G acts by symplectic transformations on itself. Such a G cannot be semisimple, so the research focuses on solvable symplectic Lie groups. In the compact case, a classification of these groups is known. In many cases, a solvable symplectic Lie group G is a cotangent bundle of a flat Lie group H. Then H is a Lagrange subgroup of G, meaning its Lie algebra h is isotropic in the Lie algebra g of G. The existence of Lagrange subalgebras or ideals in g is an important question which relates to many problems in the general structure theory of symplectic Lie groups.
In my talk, I will give a brief overview of the known results in this field, ranging from the 1970s to a very recent structure theory. 

Geometry of moduli spaces 12:10 Fri 30 Aug, 2013 :: Ingkarni Wardli B19 :: Prof Georg Schumacher :: University of Marburg
We discuss the concept of moduli spaces in complex geometry. The main examples are moduli of compact Riemann surfaces, moduli of compact projective varieties and moduli of holomorphic vector bundles, whose points correspond to isomorphism classes of the given objects. Moduli spaces carry a natural topology, whereas a complex structure that reflects the variation of the structure in a family exists in general only under extra conditions. In a similar way, a natural hermitian metric (WeilPetersson metric) on moduli spaces that induces a symplectic structure can be constructed from the variation of distinguished metrics on the fibers. In this way, various questions concerning the underlying symplectic structure, the curvature of the WeilPetersson metric, hyperbolicity of moduli spaces, and construction of positive/ample line bundles on compactified moduli spaces can be answered. 

Ktheory and solid state physics 12:10 Fri 13 Sep, 2013 :: Ingkarni Wardli B19 :: Dr Keith Hannabuss :: Balliol College, Oxford
More than 50 years ago Dyson showed that there is a ninefold classification of random matrix models, the classes of which are each associated with Riemannian symmetric spaces. More recently it was realised that a related argument enables one to classify the insulating properties of fermionic systems (with the addition of an extra class to give 10 in all), and can be described using Ktheory. In this talk I shall give a survey of the ideas, and a brief outline of work with Guo Chuan Thiang. 

Group meeting 15:10 Fri 13 Sep, 2013 :: 5.58 (Ingkarni Wardli) :: Dr Sanjeeva Balasuriya and Dr Michael Chen :: University of Adelaide
Talks:
Nonautonomous control of invariant manifolds  Dr Sanjeeva Balasuriya ::
Interface problems in viscous flow  Dr Michael Chen 

Symmetry gaps for geometric structures 15:10 Fri 20 Sep, 2013 :: B.18 Ingkarni Wardli :: Dr Dennis The :: Australian National University
Media...Klein's Erlangen program classified geometries based on their (transitive) groups of symmetries, e.g. Euclidean geometry is the quotient of the rigid motion group by the subgroup of rotations. While this perspective is homogeneous, Riemann's generalization of Euclidean geometry is in general very "lumpy"  i.e. there exist Riemannian manifolds that have no symmetries at all. A common generalization where a group still plays a dominant role is Cartan geometry, which first arose in Cartan's solution to the equivalence problem for geometric structures, and which articulates what a "curved version" of a flat (homogeneous) model means. Parabolic geometries are Cartan geometries modelled on (generalized) flag varieties (e.g. projective space, isotropic Grassmannians) which are wellknown objects from the representation theory of semisimple Lie groups. These curved versions encompass a zoo of interesting geometries, including conformal, projective, CR, systems of 2nd order ODE, etc. This interaction between differential geometry and representation theory has proved extremely fruitful in recent years. My talk will be an examplebased tour of various types of parabolic geometries, which I'll use to outline some of the main aspects of the theory (suppressing technical details). The main thread throughout the talk will be the symmetry gap problem: For a given type of Cartan geometry, the maximal symmetry dimension is realized by the flat model, but what is the next possible ("submaximal") symmetry dimension? I'll sketch a recent solution (in joint work with Boris Kruglikov) for a wide class of parabolic geometries which gives a combinatorial recipe for reading the submaximal symmetry dimension from a Dynkin diagram. 

Geodesic completeness of compact ppwaves 12:10 Fri 18 Oct, 2013 :: Ingkarni Wardli B19 :: Dr Thomas Leistner :: University of Adelaide
A semiRiemannian manifold is geodesically complete (or for short, complete) if all its maximal geodesics are defined on the real line. Whereas for Riemannian metrics the compactness of the manifold implies completeness, there are compact Lorentzian manifolds that are not complete (e.g. the CliftonPohl torus). Several rather strong conditions have been found in the literature under which a compact Lorentzian manifold is complete, including being homogeneous (Marsden) or of constant curvature (Carriere, Klingler), or admitting a timelike Killing vector field (Romero, Sanchez). We will consider ppwaves, which are Lorentzian manifold with a parallel null vector field and a highly degenerate curvature tensor, but which do not satisfy any of the above conditions. We will show that a compact ppwave is universally covered by a vector space, determine the metric on the universal cover and consequently show that they are geodesically complete. 

Classification Using Censored Functional Data 15:10 Fri 18 Oct, 2013 :: B.18 Ingkarni Wardli :: A/Prof Aurore Delaigle :: University of Melbourne
Media...We consider classification of functional data. This problem has received a lot of attention in the literature in the case where the curves are all observed on the same interval. A difficulty in applications is that the functional curves can be supported on quite different intervals, in which case standard methods of analysis cannot be used. We are interested in constructing classifiers for curves of this type. More precisely, we consider classification of functions supported on a compact interval, in cases where the training sample consists of functions observed on other intervals, which may differ among the training curves.
We propose several methods, depending on whether or not the observable intervals
overlap by a significant amount. In the case where these intervals differ a lot, our procedure involves extending the curves outside the interval where they were observed. We suggest a new nonparametric approach for doing this.
We also introduce flexible ways of combining potential differences in shapes of the curves from different populations, and potential differences between the endpoints of
the intervals where the curves from each population are observed. 

IGA Lectures on Finsler geometry 13:30 Thu 31 Oct, 2013 :: Ingkarni Wardli 7.15 :: Prof Robert Bryant :: Duke University
Media...13:30 Refreshments.
14:00 Lecture 1: The origins of Finsler geometry in the calculus of variations.
15:00 Lecture 2: Finsler manifolds of constant flag curvature. 

Recent developments in special holonomy manifolds 12:10 Fri 1 Nov, 2013 :: Ingkarni Wardli 7.15 :: Prof Robert Bryant :: Duke University
One of the big classification results in differential geometry from the past century has been the classification of the possible holonomies of affine manifolds, with the major first step having been taken by Marcel Berger in his 1954 thesis. However, Berger's classification was only partial, and, in the past 20 years, an extensive research effort has been expended to complete this classification and extend it in a number of ways. In this talk, after recounting the major parts of the history of the subject, I will discuss some of the recent results and surprising new examples discovered as a byproduct of research into Finsler geometry. If time permits, I will also discuss some of the open problems in the subject. 

Reductive group actions and some problems concerning their quotients 12:10 Fri 17 Jan, 2014 :: Ingkarni Wardli B20 :: Prof Gerald Schwarz :: Brandeis University
Media...We will gently introduce the concept of a complex reductive group and the notion of the quotient Z of a complex vector space V on which our complex reductive group G acts linearly. There is the quotient mapping p from V to Z. The quotient is an affine variety with a stratification coming from the group action. Let f be an automorphism of Z. We consider the following questions (and give some answers).
1) Does f preserve the stratification of Z, i.e., does it permute the strata?
2) Is there a lift F of f? This means that F maps V to V and p(F(v))=f(p(v)) for all v in V.
3) Can we arrange that F is equivariant?
We show that 1) is almost always true, that 2) is true in a lot of cases and that a twisted version of 3) then holds. 

The density property for complex manifolds: a strong form of holomorphic flexibility 12:10 Fri 24 Jan, 2014 :: Ingkarni Wardli B20 :: Prof Frank Kutzschebauch :: University of Bern
Compared with the real differentiable case, complex manifolds in general are more rigid, their groups of holomorphic diffeomorphisms are rather small (in general trivial). A long known exception to this behavior is affine nspace C^n for n at least 2. Its group of holomorphic diffeomorphisms is infinite dimensional. In the late 1980s Andersen and Lempert proved a remarkable
theorem which stated in its generalized version due to Forstneric and Rosay that any local holomorphic phase flow given on a Runge subset of C^n can be locally uniformly approximated by a global holomorphic diffeomorphism. The main ingredient in the proof was formalized by Varolin and called the density property: The Lie algebra generated by complete holomorphic vector fields is dense in the Lie algebra of all holomorphic vector fields. In these manifolds a similar local to global approximation of AndersenLempert type holds. It is a precise way of saying that the group of holomorphic diffeomorphisms is large.
In the talk we will explain how this notion is related to other more recent flexibility notions in complex geometry, in particular to the notion of a OkaForstneric manifold. We will give examples of manifolds with the density property and sketch applications of the density property. If time permits we will explain criteria for the density property developed by Kaliman and the speaker.


Holomorphic null curves and the conformal CalabiYau problem 12:10 Tue 28 Jan, 2014 :: Ingkarni Wardli B20 :: Prof Franc Forstneric :: University of Ljubljana
Media...I shall describe how methods of complex analysis can be used to give new results on the conformal CalabiYau problem concerning the existence of bounded metrically complete minimal surfaces in real Euclidean 3space R^3. We shall see in particular that every bordered Riemann surface admits a proper complete holomorphic immersion into the ball of C^2, and a proper complete embedding as a
holomorphic null curve into the ball of C^3. Since the real and the imaginary parts of a holomorphic null curve in C^3 are conformally immersed minimal surfaces in R^3, we obtain a bounded complete conformal minimal immersion of any bordered Riemann surface into R^3. The main advantage of our methods, when compared to the existing ones in the literature, is that we do not need to change the conformal type of the Riemann surface. (Joint work with A. Alarcon, University of Granada.)


Hormander's estimate, some generalizations and new applications 12:10 Mon 17 Feb, 2014 :: Ingkarni Wardli B20 :: Prof Zbigniew Blocki :: Jagiellonian University
Lars Hormander proved his estimate for the dbar equation in 1965. It is one the most important results in several complex variables (SCV). New applications have
emerged recently, outside of SCV. We will present three of them: the OhsawaTakegoshi extension theorem with optimal constant, the onedimensional Suita Conjecture, and Nazarov's approach to the BourgainMilman inequality from convex analysis. 

The structuring role of chaotic stirring on pelagic ecosystems 11:10 Fri 28 Feb, 2014 :: B19 Ingkarni Wardli :: Dr Francesco d'Ovidio :: Universite Pierre et Marie Curie (Paris VI)
The open ocean upper layer is characterized by a complex transport dynamics occuring over different spatiotemporal scales. At the scale of 10100 km  which covers the so called mesoscale and part of the submesoscale  in situ and remote sensing observations detect strong variability in physical and biogeochemical fields like sea surface temperature, salinity, and chlorophyll concentration. The calculation of Lyapunov exponent and other nonlinear diagnostics applied to the surface currents have allowed to show that an important part of this tracer variability is due to chaotic stirring. Here I will extend this analysis to marine ecosystems. For primary producers, I will show that stable and unstable manifolds of hyperbolic points embedded in the surface velocity field are able to structure the phytoplanktonic community in fluid dynamical niches of dominant types, where competition can locally occur during bloom events. By using data from tagged whales, frigatebirds, and elephant seals, I will also show that chaotic stirring affects the behaviour of higher trophic levels. In perspective, these relations between transport structures and marine ecosystems can be the base for a biodiversity index constructued from satellite information, and therefore able to monitor key aspects of the marine biodiversity and its temporal variability at the global scale. 

Geometric quantisation in the noncompact setting 12:10 Fri 7 Mar, 2014 :: Ingkarni Wardli B20 :: Peter Hochs :: University of Adelaide
Geometric quantisation is a way to construct quantum mechanical phase spaces (Hilbert spaces) from classical mechanical phase spaces (symplectic manifolds). In the presence of a group action, the quantisation commutes with reduction principle states that geometric quantisation should be compatible with the ways the group action can be used to simplify (reduce) the classical and quantum phase spaces. This has deep consequences for the link between symplectic geometry and representation theory.
The quantisation commutes with reduction principle has been given explicit meaning, and been proved, in cases where the symplectic manifold and the group acting on it are compact. There have also been results where just the group, or the orbit space of the action, is assumed to be compact. These are important and difficult, but it is somewhat frustrating that they do not even apply to the simplest example from the physics point of view: a free particle in Rn. This talk is about a joint result with Mathai Varghese where the group, manifold and orbit space may all be noncompact. 

Dynamical systems approach to fluidplasma turbulence 15:10 Fri 14 Mar, 2014 :: 5.58 Ingkarni Wardli :: Professor Abraham Chian
SunEarth system is a complex, electrodynamically coupled system dominated by multiscale interactions. The complex behavior of the space environment is indicative of a state driven far from equilibrium whereby instabilities, nonlinear waves, and turbulence play key roles in the system dynamics. First, we review the fundamental concepts of nonlinear dynamics in fluids and plasmas and discuss their relevance to the study of the SunEarth relation. Next, we show how Lagrangian coherent structures identify the transport barriers of plasma turbulence modeled by 3D solar convective dynamo. Finally, we show how Lagrangian coherent structures can be detected in the solar photospheric turbulence using satellite observations. 

Embed to homogenise heterogeneous wave equation. 12:35 Mon 17 Mar, 2014 :: B.19 Ingkarni Wardli :: Chen Chen :: University of Adelaide
Media...Consider materials with complicated microstructure: we want to model their large scale dynamics by equations with effective, `average' coefficients. I will show an example of heterogeneous wave equation in 1D. If Centre manifold theory is applied to model the original heterogeneous wave equation directly, we will get a trivial model. I embed the wave equation into a family of more complex wave problems and I show the equivalence of the two sets of solutions. 

Moduli spaces of contact instantons 12:10 Fri 28 Mar, 2014 :: Ingkarni Wardli B20 :: David Baraglia :: University of Adelaide
In dimensions greater than four there are several notions of higher YangMills instantons. This talk concerns one such case, contact instantons, defined for 5dimensional contact manifolds. The geometry transverse to the Reeb foliation turns out to be important in understanding the moduli space. For example, we show the dimension of the moduli space is the index of a transverse elliptic complex. This is joint work with Pedram Hekmati. 

Flow barriers and flux in unsteady flows 15:10 Fri 4 Apr, 2014 :: B.21 Ingkarni Wardli :: Dr Sanjeeva Balasuriya :: The University of Adelaide
Media...How does one define the boundary of the ozone hole, an oceanic eddy, or Jupiter's Great Red Spot? These occur in flows which are unsteady (nonautonomous), that is, which change with time, and therefore any boundary must as well. In steady (autonomous) flows, defining flow boundaries is straightforward: one first finds fixed points of the flow, and then determines entities in space which are attracted to or repelled from these points as time progresses. These are respectively the stable and unstable manifolds of the fixed points, and can be shown to partition space into regions of different types of flow. This talk will focus on the required modifications to this idea for determining flow barriers in the more realistic unsteady context. An application to maximising mixing in microfluidic devices will also be presented. 

TDuality and its Generalizations 12:10 Fri 11 Apr, 2014 :: Ingkarni Wardli B20 :: Jarah Evslin :: Theoretical Physics Center for Science Facilities, CAS
Given a manifold M with a torus action and a choice of integral 3cocycle H, Tduality yields another manifold with a torus action and integral 3cocyle. It induces a number of surprising automorphisms between structures on these manifolds. In this talk I will review Tduality and describe some work on two generalizations which are realized in string theory: NS5branes and heterotic strings. These respectively correspond to nonclosed 3classes H and to principal bundles fibered over M. 

Lefschetz fixed point theorem and beyond 12:10 Fri 2 May, 2014 :: Ingkarni Wardli B20 :: Hang Wang :: University of Adelaide
A Lefschetz number associated to a continuous map on a closed manifold is a topological invariant determined by the geometric information near the neighbourhood of fixed point set of the map. After an introduction of the Lefschetz fixed point theorem, we shall use the Diracdual Dirac method to derive the Lefschetz number on Ktheory level. The method concerns the comparison of the Dirac operator on the manifold and the Dirac operator on some submanifold. This method can be generalised to several interesting situations when the manifold is not necessarily compact. 

Networkbased approaches to classification and biomarker identification in metastatic melanoma 15:10 Fri 2 May, 2014 :: B.21 Ingkarni Wardli :: Associate Professor Jean Yee Hwa Yang :: The University of Sydney
Media...Finding prognostic markers has been a central question in much of current research in medicine and biology. In the last decade, approaches to prognostic prediction within a genomics setting are primarily based on changes in individual genes / protein. Very recently, however, network based approaches to prognostic prediction have begun to emerge which utilize interaction information between genes. This is based on the believe that largescale molecular interaction networks are dynamic in nature and changes in these networks, rather than changes in individual genes/proteins, are often drivers of complex diseases such as cancer.
In this talk, I use data from stage III melanoma patients provided by Prof. Mann from Melanoma Institute of Australia to discuss how network information can be utilize in the analysis of gene expression analysis to aid in biological interpretation. Here, we explore a number of novel and previously published networkbased prediction methods, which we will then compare to the common singlegene and geneset methods with the aim of identifying more biologically interpretable biomarkers in the form of networks. 

The Mandelbrot Set 12:10 Mon 5 May, 2014 :: B.19 Ingkarni Wardli :: David Bowman :: University of Adelaide
Media...The Mandelbrot set is an icon of modern mathematics, an image which fires the popular imagination when accompanied by the words 'chaos' and 'fractal'. However, few could give even a vague definition of this mysterious set and fewer still know the mathematical meaning behind it. In this talk we will be looking at the role that the Mandelbrot set plays in complex dynamics, the study of iterated complex valued functions. We shall discuss attracting and repelling cycles and how they are related to the different components of the Mandelbrot set. 

Oka properties of groups of holomorphic and algebraic automorphisms of complex affine space 12:10 Fri 6 Jun, 2014 :: Ingkarni Wardli B20 :: Finnur Larusson :: University of Adelaide
I will discuss new joint work with Franc Forstneric. The group of holomorphic automorphisms of complex affine space C^n, n>1, is huge. It is not an infinitedimensional manifold in any recognised sense. Still, our work shows that in some ways it behaves like a finitedimensional Oka manifold. 

Not nots, knots. 12:10 Mon 16 Jun, 2014 :: B.19 Ingkarni Wardli :: Luke KeatingHughes :: University of Adelaide
Media...Although knot theory does not ordinarily arise in classical mathematics, the study of knots themselves proves to be very intricate and is certainly an area with promise for new developments. Ultimately, the study of knots boils down to problems of classification and when two knots are seen to be 'equivalent'. In this seminar we will first talk about some basic definitions and properties of knots, then move on to calculating the knot polynomial  a powerful invariant on knots. 

Complexifications, Realifications, Real forms and Complex Structures 12:10 Mon 23 Jun, 2014 :: B.19 Ingkarni Wardli :: Kelli FrancisStaite :: University of Adelaide
Media...Italian mathematicians NiccolÃ² Fontana Tartaglia and Gerolamo Cardano introduced complex numbers to solve polynomial equations such as x^2+1=0. Solving a standard real differential equation often uses complex eigenvalues and eigenfunctions. In both cases, the solution space is expanded to include the complex numbers, solved, and then translated back to the real case.
My talk aims to explain the process of complexification and related concepts. It will give vocabulary and some basic results about this important process. And it will contain cute cat pictures.


Estimates for eigenfunctions of the Laplacian on compact Riemannian manifolds 12:10 Fri 1 Aug, 2014 :: Ingkarni Wardli B20 :: Andrew Hassell :: Australian National University
I am interested in estimates on eigenfunctions, accurate in the higheigenvalue limit. I will discuss estimates on the size (as measured by L^p norms) of eigenfunctions, on the whole Riemannian manifold, at the boundary, or at an interior hypersurface. The link between higheigenvalue estimates, geometry, and the dynamics of geodesic flow will be emphasized. 

Hydrodynamics and rheology of selfpropelled colloids 15:10 Fri 8 Aug, 2014 :: B17 Ingkarni Wardli :: Dr Sarthok Sircar :: University of Adelaide
The subcellular world has many components in common with soft condensed matter systems (polymers, colloids and liquid crystals). But it has novel properties, not present in traditional complex fluids, arising from a rich spectrum of nonequilibrium behavior: flocking, chemotaxis and bioconvection.
The talk is divided into two parts. In the first half, we will (get an idea on how to) derive a hydrodynamic model for selfpropelled particles of an arbitrary shape from first principles, in a sufficiently dilute suspension limit, moving in a 3dimensional space inside a viscous solvent. The model is then restricted to particles with ellipsoidal geometry to quantify the interplay of the longrange excluded volume and the shortrange selfpropulsion effects. The expression for the constitutive stresses, relating the kinetic theory with the momentum transport equations, are derived using a combination of the virtual work principle (for extra elastic stresses) and symmetry arguments (for active stresses).
The second half of the talk will highlight on my current numerical expertise. In particular we will exploit a specific class of spectral basis functions together with RK4 timestepping to determine the dynamical phases/structures as well as phasetransitions of these ellipsoidal clusters. We will also discuss on how to define the order (or orientation) of these clusters and understand the other rheological quantities.


Boundaryvalue problems for the Ricci flow 15:10 Fri 15 Aug, 2014 :: B.18 Ingkarni Wardli :: Dr Artem Pulemotov :: The University of Queensland
Media...The Ricci flow is a differential equation describing the evolution of a Riemannian manifold (i.e., a "curved" geometric object) into an Einstein manifold (i.e., an object with a "constant" curvature). This equation is particularly famous for its key role in the proof of the Poincare Conjecture. Understanding the Ricci flow on manifolds with boundary is a difficult problem with applications to a variety of fields, such as topology and mathematical physics. The talk will survey the current progress towards the resolution of this problem. In particular, we will discuss new results concerning spaces with symmetries. 

Quasimodes that do not Equidistribute 13:10 Tue 19 Aug, 2014 :: Ingkarni Wardli B17 :: Shimon Brooks :: BarIlan University
The QUE Conjecture of RudnickSarnak asserts that eigenfunctions of the Laplacian on Riemannian manifolds of negative curvature should equidistribute in the large eigenvalue limit. For a number of reasons, it is expected that this property may be related to the (conjectured) small multiplicities in the spectrum. One way to study this relationship is to ask about equidistribution for "quasimodes"or approximate eigenfunctions in place of highlydegenerate eigenspaces. We will discuss the case of surfaces of constant negative curvature; in particular, we will explain how to construct some examples of sufficiently weak quasimodes that do not satisfy QUE, and show how they fit into the larger theory. 

Tduality and the chiral de Rham complex 12:10 Fri 22 Aug, 2014 :: Ingkarni Wardli B20 :: Andrew Linshaw :: University of Denver
The chiral de Rham complex of Malikov, Schechtman, and Vaintrob is a sheaf of vertex algebras that exists on any smooth manifold M. It has a squarezero differential D, and contains the algebra of differential forms on M as a subcomplex. In this talk, I'll give an introduction to vertex algebras and sketch this construction. Finally, I'll discuss a notion of Tduality in this setting. This is based on joint work in progress with V. Mathai. 

Spherical Tduality 01:10 Mon 25 Aug, 2014 :: Ingkarni Wardli B18 :: Mathai Varghese :: University of Adelaide
I will talk on a new variant of Tduality, called spherical Tduality, which relates pairs of the form (P,H) consisting of a principal SU(2)bundle P > M and a 7cocycle H on P. Intuitively spherical Tduality exchanges H with the second Chern class c_2(P). This is precisely true when M is compact oriented and dim(M) is at most 4. When M is higher dimensional, not all pairs (P,H) admit spherical Tduals and even when they exist, the spherical Tduals are not always unique. We will try and explain this phenomenon. Nonetheless, we prove that all spherical Tdualities induce a degreeshifting isomorphism on the 7twisted cohomologies of the bundles and, when dim(M) is at most 7, also their integral twisted cohomologies and, when dim(M) is at most 4, even their 7twisted Ktheories. While the complete physical relevance of spherical Tduality is still being explored, it does provide an identification between conserved charges in certain distinct IIB supergravity and string compactifications.
This is joint work with Peter Bouwknegt and Jarah Evslin. 

Ideal membership on singular varieties by means of residue currents 12:10 Fri 29 Aug, 2014 :: Ingkarni Wardli B20 :: Richard Larkang :: University of Adelaide
On a complex manifold X, one can consider the following ideal membership problem: Does a holomorphic function on X belong to a given ideal of holomorphic functions on X? Residue currents give a way of expressing analytically this essentially algebraic problem. I will discuss some basic cases of this, why such an analytic description might be useful, and finish by discussing a generalization of this to singular varieties. 

Modelling biological gel mechanics 12:10 Mon 8 Sep, 2014 :: B.19 Ingkarni Wardli :: James Reoch :: University of Adelaide
Media...The behaviour of gels such as collagen is the result of complex interactions between mechanical and chemical forces. In this talk, I will outline the modelling approaches we are looking at in order to incorporate the influence of cell behaviour alongside chemical potentials, and the various circumstances which lead to gel swelling and contraction. 

Inferring absolute population and recruitment of southern rock lobster using only catch and effort data 12:35 Mon 22 Sep, 2014 :: B.19 Ingkarni Wardli :: John Feenstra :: University of Adelaide
Media...Abundance estimates from a datalimited version of catch survey analysis are compared to those from a novel oneparameter deterministic method. Bias of both methods is explored using simulation testing based on a more complex datarich stock assessment population dynamics fishery operating model, exploring the impact of both varying levels of observation error in data as well as model process error. Recruitment was consistently better estimated than legal size population, the latter most sensitive to increasing observation errors. A hybrid of the datalimited methods is proposed as the most robust approach. A more statistically conventional errorinvariables approach may also be touched upon if enough time. 

To Complex Analysis... and beyond! 12:10 Mon 29 Sep, 2014 :: B.19 Ingkarni Wardli :: Brett Chenoweth :: University of Adelaide
Media...In the undergraduate complex analysis course students learn about complex valued functions on domains in C (the complex plane). Several interesting and surprising results come about from this study. In my talk I will introduce a more general setting where complex analysis can be done, namely Riemann surfaces (complex manifolds of dimension 1). I will then prove that all noncompact Riemann surfaces are Stein; which loosely speaking means that their function theory is similar to that of C. 

Compact pseudoRiemannian solvmanifolds 12:10 Fri 17 Oct, 2014 :: Ingkarni Wardli B20 :: Wolfgang Globke :: University of Adelaide
A compact solvmanifold M is a quotient of a solvable Lie group G by a cocompact closed subgroup H. A pseudoRiemannian metric on M is induced by an Hinvariant symmetric 2tensor on G. In this talk I will describe some foundations and results of my ongoing work with Oliver Baues on the nature of this 2tensor and what it can imply for the subgroup H. 

The SerreGrothendieck theorem by geometric means 12:10 Fri 24 Oct, 2014 :: Ingkarni Wardli B20 :: David Roberts :: University of Adelaide
The SerreGrothendieck theorem implies that every torsion
integral 3rd cohomology class on a finite CWcomplex is the invariant
of some projective bundle. It was originally proved in a letter by
Serre, used homotopical methods, most notably a Postnikov
decomposition of a certain classifying space with divisible homotopy
groups. In this talk I will outline, using work of the algebraic
geometer Offer Gabber, a proof for compact smooth manifolds using
geometric means and a little Ktheory. 

Extending holomorphic maps from Stein manifolds into affine toric varieties 12:10 Fri 14 Nov, 2014 :: Ingkarni Wardli B20 :: Richard Larkang :: University of Adelaide
One way of defining socalled Oka manifolds is by saying that they satisfy the following interpolation property (IP): Y satisfies the IP if any holomorphic map from a closed submanifold S of a Stein manifold X into Y which has a continuous extension to X also has a holomorphic extension. An ostensibly weaker property is the convex interpolation property (CIP), where S is assumed to be a contractible submanifold of X = C^n. By a deep theorem of Forstneric, these (and several other) properties are in fact equivalent.
I will discuss a joint work with Finnur Larusson, where we consider the interpolation property when the target Y is a singular affine toric variety. We show that all affine toric varieties satisfy an interpolation property stronger than CIP, but that only in very special situations do they satisfy the full IP. 

Modelling segregation distortion in multiparent crosses 15:00 Mon 17 Nov, 2014 :: 5.57 Ingkarni Wardli :: Rohan Shah (joint work with B. Emma Huang and Colin R. Cavanagh) :: The University of Queensland
Construction of highdensity genetic maps has been made feasible by lowcost highthroughput genotyping technology; however, the process is still complicated by biological, statistical and computational issues. A major challenge is the presence of segregation distortion, which can be caused by selection, difference in fitness, or suppression of recombination due to introgressed segments from other species. Alien introgressions are common in major crop species, where they have often been used to introduce beneficial genes from wild relatives.
Segregation distortion causes problems at many stages of the map construction process, including assignment to linkage groups and estimation of recombination fractions. This can result in incorrect ordering and estimation of map distances. While discarding markers will improve the resulting map, it may result in the loss of genomic regions under selection or containing beneficial genes (in the case of introgression).
To correct for segregation distortion we model it explicitly in the estimation of recombination fractions. Previously proposed methods introduce additional parameters to model the distortion, with a corresponding increase in computing requirements. This poses difficulties for large, densely genotyped experimental populations. We propose a method imposing minimal additional computational burden which is suitable for highdensity map construction in large multiparent crosses. We demonstrate its use modelling the known Sr36 introgression in wheat for an eightparent complex cross.


Nonlinear analysis over infinite dimensional spaces and its applications 12:10 Fri 6 Feb, 2015 :: Ingkarni Wardli B20 :: Tsuyoshi Kato :: Kyoto University
In this talk we develop moduli theory of holomorphic curves over
infinite dimensional manifolds consisted by sequences of almost Kaehler manifolds.
Under the assumption of high symmetry, we verify that many mechanisms of
the standard moduli theory over closed symplectic manifolds also work over these
infinite dimensional spaces.
As an application, we study deformation theory of discrete groups acting
on trees. There is a canonical way, up to conjugacy to embed such groups
into the automorphism group over the infinite projective space.
We verify that for some class of Hamiltonian functions,
the deformed groups must be always asymptotically infinite. 

Boundary behaviour of Hitchin and hypo flows with leftinvariant initial data 12:10 Fri 27 Feb, 2015 :: Ingkarni Wardli B20 :: Vicente Cortes :: University of Hamburg
Hitchin and hypo flows constitute a system of first order pdes for the construction of
Ricciflat Riemannian mertrics of special holonomy in dimensions 6, 7 and 8.
Assuming that the initial geometric structure is leftinvariant, we study whether the resulting Ricciflat manifolds can be extended in a natural way to complete Ricciflat manifolds. This talk is based on joint work with Florin Belgun, Marco Freibert and Oliver Goertsches, see arXiv:1405.1866 (math.DG). 

On the analyticity of CRdiffeomorphisms 12:10 Fri 13 Mar, 2015 :: Engineering North N132 :: Ilya Kossivskiy :: University of Vienna
One of the fundamental objects in several complex variables is CRmappings. CRmappings naturally occur in complex analysis as boundary values of mappings between domains, and as restrictions of holomorphic mappings onto real submanifolds. It was already observed by Cartan that smooth CRdiffeomorphisms between CRsubmanifolds in C^N tend to be very regular, i.e., they are restrictions of holomorphic maps. However, in general smooth CRmappings form a more restrictive class of mappings. Thus, since the inception of CRgeometry, the following general question has been of fundamental importance for the field: Are CRequivalent realanalytic CRstructures also equivalent holomorphically? In joint work with Lamel, we answer this question in the negative, in any positive CRdimension and CRcodimension. Our construction is based on a recent dynamical technique in CRgeometry, developed in my earlier work with Shafikov. 

A Collision Algorithm for Sea Ice 12:10 Mon 4 May, 2015 :: Napier LG29 :: Lucas Yiew :: University of Adelaide
Media...The waveinduced collisions between sea ice are highly complex and nonlinear, and involves a multitude of subprocesses. Several collision models do exist, however, to date, none of these models have been successfully integrated into seaice forecasting models.
A key component of a collision model is the development of an appropriate collision algorithm. In this seminar I will present a timestepping, eventdriven algorithm to detect, analyse and implement the pre and postcollision processes. 

Indefinite spectral triples and foliations of spacetime 12:10 Fri 8 May, 2015 :: Napier 144 :: Koen van den Dungen :: Australian National University
Motivated by Dirac operators on Lorentzian manifolds, we propose a new framework to deal with nonsymmetric and nonelliptic operators in noncommutative geometry. We provide a definition for indefinite spectral triples, which correspond bijectively with certain pairs of spectral triples.
Next, we will show how a special case of indefinite spectral triples can be constructed from a family of spectral triples. In particular, this construction provides a convenient setting to study the Dirac operator on a spacetime with a foliation by spacelike hypersurfaces.
This talk is based on joint work with Adam Rennie (arXiv:1503.06916). 

The twistor equation on Lorentzian Spin^c manifolds 12:10 Fri 15 May, 2015 :: Napier 144 :: Andree Lischewski :: University of Adelaide
In this talk I consider a conformally covariant spinor field equation, called the twistor equation, which can be formulated on any Lorentzian Spin^c manifold. Its solutions have become of importance in the study of supersymmetric field theories in recent years and were named "charged conformal Killing spinors". After a short review of conformal Spin^c geometry in Lorentzian signature, I will briefly discuss the emergence of charged conformal Killing spinors in supergravity. I will then focus on special geometric structures related to the twistor equation and use charged conformal Killing spinors in order to establish a link between conformal and CR geometry. 

Monodromy of the Hitchin system and components of representation varieties 12:10 Fri 29 May, 2015 :: Napier 144 :: David Baraglia :: University of Adelaide
Representations of the fundamental group of a compact Riemann surface into a reductive Lie group form a moduli space, called a representation variety. An outstanding problem in topology is to determine the number of components of these varieties. Through a deep result known as nonabelian Hodge theory, representation varieties are homeomorphic to moduli spaces of certain holomorphic objects called Higgs bundles. In this talk I will describe recent joint work with L. Schaposnik computing the monodromy of the Hitchin fibration for Higgs bundle moduli spaces. Our results give a new unified proof of the number of components of several representation varieties. 

Some approaches toward a stronger Jacobian conjecture 12:10 Fri 5 Jun, 2015 :: Napier 144 :: Tuyen Truong :: University of Adelaide
The Jacobian conjecture states that if a polynomial selfmap of C^n has invertible Jacobian, then the map has a polynomial inverse. Is it true, false or simply undecidable? In this talk I will propose a conjecture concerning general square matrices with complex coefficients, whose validity implies the Jacobian conjecture. The conjecture is checked in various cases, in particular it is true for generic matrices. Also, a heuristic argument is provided explaining why the conjecture (and thus, also the Jacobian conjecture) should be true. 

Complex Systems, Chaotic Dynamics and Infectious Diseases 15:10 Fri 5 Jun, 2015 :: Engineering North N132 :: Prof Michael Small :: UWA
Media...In complex systems, the interconnection between the components of the system determine the dynamics. The system is described by a very large and random mathematical graph and it is the topological structure of that graph which is important for understanding of the dynamical behaviour of the system. I will talk about two specific examples  (1) spread of infectious disease (where the connection between the agents in a population, rather than epidemic parameters, determine the endemic state); and, (2) a transformation to represent a dynamical system as a graph (such that the "statistical mechanics" of the graph characterise the dynamics). 

Dirac operators and Hamiltonian loop group action 12:10 Fri 24 Jul, 2015 :: Engineering and Maths EM212 :: Yanli Song :: University of Toronto
A definition to the geometric quantization for compact Hamiltonian Gspaces is given by Bott, defined as the index of the SpincDirac operator on the manifold. In this talk, I will explain how to generalize this idea to the Hamiltonian LGspaces. Instead of quantizing infinitedimensional manifolds directly, we use its equivalent finitedimensional model, the quasiHamiltonian Gspaces. By constructing twisted spinor bundle and twisted prequantum bundle on the quasiHamiltonian Gspace, we define a Dirac operator whose index are given by positive energy representation of loop groups. A key role in the construction will be played by the algebraic cubic Dirac operator for loop algebra. If time permitted, I will also explain how to prove the quantization commutes with reduction theorem for Hamiltonian LGspaces under this framework. 

Quantising proper actions on Spinc manifolds 11:00 Fri 31 Jul, 2015 :: Ingkarni Wardli Level 7 Room 7.15 :: Peter Hochs :: The University of Adelaide
Media...For a proper action by a Lie group on a Spinc manifold (both of which may be noncompact), we study an index of deformations of the Spinc Dirac operator, acting on the space of spinors invariant under the group action. When applied to spinors that are square integrable transversally to orbits in a suitable sense, the kernel of this operator turns out to be finitedimensional, under certain hypotheses of the deformation. This also allows one to show that the index has the quantisation commutes with reduction property (as proved by Meinrenken in the compact symplectic case, and by ParadanVergne in the compact Spinc case), for sufficiently large powers of the determinant line bundle. Furthermore, this result extends to Spinc Dirac operators twisted by vector bundles. A key ingredient of the arguments is the use of a family of inner products on the Lie algebra, depending on a point in the manifold. This is joint work with Mathai Varghese. 

Dynamics on Networks: The role of local dynamics and global networks on hypersynchronous neural activity 15:10 Fri 31 Jul, 2015 :: Ingkarni Wardli B21 :: Prof John Terry :: University of Exeter, UK
Media...Graph theory has evolved into a useful tool for studying complex brain networks inferred from a variety of measures of neural activity, including fMRI, DTI, MEG and EEG. In the study of neurological disorders, recent work has discovered differences in the structure of graphs inferred from patient and control cohorts. However, most of these studies pursue a purely observational approach; identifying correlations between properties of graphs and the cohort which they describe, without consideration of the underlying mechanisms. To move beyond this necessitates the development of mathematical modelling approaches to appropriately interpret network interactions and the alterations in brain dynamics they permit.
In the talk we introduce some of these concepts with application to epilepsy, introducing a dynamic network approach to study resting state EEG recordings from a cohort of 35 people with epilepsy and 40 adult controls. Using this framework we demonstrate a strongly significant difference between networks inferred from the background activity of people with epilepsy in comparison to normal controls. Our findings demonstrate that a mathematical model based analysis of routine clinical EEG provides significant additional information beyond standard clinical interpretation, which may ultimately enable a more appropriate mechanistic stratification of people with epilepsy leading to improved diagnostics and therapeutics. 

Mathematical Modeling and Analysis of Active Suspensions 14:10 Mon 3 Aug, 2015 :: Napier 209 :: Professor Michael Shelley :: Courant Institute of Mathematical Sciences, New York University
Complex fluids that have a 'bioactive' microstructure, like
suspensions of swimming bacteria or assemblies of immersed biopolymers
and motorproteins, are important examples of socalled active matter.
These internally driven fluids can have strange mechanical properties,
and show persistent activitydriven flows and selforganization. I will
show how firstprinciples PDE models are derived through reciprocal
coupling of the 'active stresses' generated by collective microscopic
activity to the fluid's macroscopic flows. These PDEs have an
interesting analytic structures and dynamics that agree qualitatively
with experimental observations: they predict the transitions to flow
instability and persistent mixing observed in bacterial suspensions, and
for microtubule assemblies show the generation, propagation, and
annihilation of disclination defects. I'll discuss how these models
might be used to study yet more complex biophysical systems.


In vitro models of colorectal cancer: why and how? 15:10 Fri 7 Aug, 2015 :: B19 Ingkarni Wardli :: Dr Tamsin Lannagan :: Gastrointestinal Cancer Biology Group, University of Adelaide / SAHMRI
1 in 20 Australians will develop colorectal cancer (CRC) and it is the second most common cause of cancer death. Similar to many other cancer types, it is the metastases rather than the primary tumour that are lethal, and prognosis is defined by Ã¢ÂÂhow farÃ¢ÂÂ the tumour has spread at time of diagnosis. Modelling in vivo behavior through rapid and relatively inexpensive in vitro assays would help better target therapies as well as help develop new treatments. One such new in vitro tool is the culture of 3D organoids. Organoids are a biologically stable means of growing, storing and testing treatments against bowel cancer. To this end, we have just set up a human colorectal organoid bank across Australia. This consortium will help us to relate in vitro growth patterns to in vivo behaviour and ultimately in the selection of patients for personalized therapies. Organoid growth, however, is complex. There appears to be variable growth rates and growth patterns. Together with members of the ECMS we recently gained funding to better quantify and model spatial structures in these colorectal organoids. This partnership will aim to directly apply the expertise within the ECMS to patient care. 

Deformation retractions from the space of continuous maps between domains in C onto the space of holomorphic maps 12:10 Mon 17 Aug, 2015 :: Benham Labs G10 :: Brett Chenoweth :: University of Adelaide
Media...Mikhail Gromov proved in 1989 that every continuous map from a Stein manifold S to an elliptic manifold X could be deformed to a holomorphic map. More generally, it is true that if X is an Oka manifold then a continuous map from a Stein source into X can always be deformed to a holomorphic map. The question is whether we can do this for all continuous maps at once, in a `nice' way that does not change a map f if f is already holomorphic. In a recent paper by Larusson, we see that ANRs play an important in producing a partial answer to this question. In this talk we will explore the question in the relatively simple situation where the source and target are domains in the complex plane. 

Vanishing lattices and moduli spaces 12:10 Fri 28 Aug, 2015 :: Ingkarni Wardli B17 :: David Baraglia :: The University of Adelaide
Media...Vanishing lattices are symplectic analogues of root systems. As with roots systems, they admit a classification in terms of certain Dynkin diagrams (not the usual ones from Lie theory). In this talk I will discuss this classification and if there is time I will outline my work (in progress) showing that the monodromy of the SL(n,C) Hitchin fibration is essentially a vanishing lattice. 

Tduality and bulkboundary correspondence 12:10 Fri 11 Sep, 2015 :: Ingkarni Wardli B17 :: Guo Chuan Thiang :: The University of Adelaide
Media...Bulkboundary correspondences in physics can be modelled as topological boundary homomorphisms in Ktheory, associated to an extension of a "bulk algebra" by a "boundary algebra". In joint work with V. Mathai, such bulkboundary maps are shown to Tdualize into simple restriction maps in a large number of cases, generalizing what the Fourier transform does for ordinary functions. I will give examples, involving both complex and real Ktheory, and explain how these results may be used to study topological phases of matter and Dbrane charges in string theory. 

Base change and Ktheory 12:10 Fri 18 Sep, 2015 :: Ingkarni Wardli B17 :: Hang Wang :: The University of Adelaide
Media...Tempered representations of an algebraic group can be classified by Ktheory of the corresponding group C^*algebra. We use Archimedean base change between Langlands parameters of real and complex algebraic groups to compare Ktheory of the corresponding C^*algebras of groups over different number fields. This is work in progress with K.F. Chao.


Predicting the Winning Time of a Stage of the Tour de France 12:10 Mon 21 Sep, 2015 :: Benham Labs G10 :: Nic Rebuli :: University of Adelaide
Media...Sports can be lucrative, especially popular ones. But for all of us mere mortals, the only money we will ever glean from sporting events is through gambling (responsibly). When it comes to cycling, people generally choose their favourites based on individual and team performance, throughout the world cycling calendar. But what can be said for the duration of a given stage or the winning time of the highly sort after General Classification? In this talk I discuss a basic model for predicting the winning time of the Tour de France. I then apply this model to predicting the outcome of the 2012 and 2013 Tour de France and discuss the results in context. 

Real Lie Groups and Complex Flag Manifolds 12:10 Fri 9 Oct, 2015 :: Ingkarni Wardli B17 :: Joseph A. Wolf :: University of California, Berkeley
Media...Let G be a complex simple direct limit group. Let G_R be a real form of G that corresponds to an hermitian symmetric space. I'll describe the corresponding bounded symmetric domain in the context of the Borel embedding, Cayley transforms, and the BergmanShilov boundary. Let Q be a parabolic subgroup of G. In finite dimensions this means that G/Q is a complex projective variety, or equivalently has a Kaehler metric invariant under a maximal compact subgroup of G. Then I'll show just how the bounded symmetric domains describe cycle spaces for open G_R orbits on G/Q. These cycle spaces include the complex bounded symmetric domains. In finite dimensions they are tightly related to moduli spaces for compact Kaehler manifolds and to representations of semisimple Lie groups; in infinite dimensions there are more problems than answers. Finally, time permitting, I'll indicate how some of this goes over to real and to quaternionic bounded symmetric domains.


ChernSimons classes on loop spaces and diffeomorphism groups 12:10 Fri 16 Oct, 2015 :: Ingkarni Wardli B17 :: Steve Rosenberg :: Boston University
Media...Not much is known about the topology of the diffeomorphism group Diff(M) of manifolds M of dimension four and higher. We'll show that for a class of manifolds of dimension 4k+1, Diff(M) has infinite fundamental group. This is proved by translating the problem into a question about ChernSimons classes on the tangent bundle to the loop space LM. To build the CS classes, we use a family of metrics on LM associated to a Riemannian metric on M. The curvature of these metrics takes values in an algebra of pseudodifferential operators. The main technical step in the CS construction is to replace the ordinary matrix trace in finite dimensions with the Wodzicki residue, the unique trace on this algebra. The moral is that some techniques in finite dimensional Riemannian geometry can be extended to some examples in infinite dimensional geometry.


Quasiisometry classification of certain hyperbolic Coxeter groups 11:00 Fri 23 Oct, 2015 :: Ingkarni Wardli Conference Room 7.15 (Level 7) :: Anne Thomas :: University of Sydney
Media...Let Gamma be a finite simple graph with vertex set S. The associated rightangled Coxeter group W is the group with generating set S, so that s^2 = 1 for all s in S and st = ts if and only if s and t are adjacent vertices in Gamma. Moussong proved that the group W is hyperbolic in the sense of Gromov if and only if Gamma has no "empty squares". We consider the quasiisometry classification of such Coxeter groups using the local cut point structure of their visual boundaries. In particular, we find an algorithm for computing Bowditch's JSJ tree for a class of these groups, and prove that two such groups are quasiisometric if and only if their JSJ trees are the same. This is joint work with Pallavi Dani (Louisiana State University). 

Locally homogeneous ppwaves 12:10 Fri 6 Nov, 2015 :: Ingkarni Wardli B17 :: Thomas Leistner :: The University of Adelaide
Media...For a certain type of Lorentzian manifolds, the socalled ppwaves, we study the conditions implied on the curvature by local homogeneity of the metric. We show that under some mild genericity assumptions, these conditions are quite strong, forcing the ppwave to be a plane wave, and yielding a classification of homogeneous ppwaves. This also leads to a generalisation of a classical
result by Jordan, Ehlers and Kundt about vacuum ppwaves in dimension 4 to arbitrary dimensions. Several examples show that our genericity assumptions are essential.
This is joint work with W. Globke.


Oka principles and the linearization problem 12:10 Fri 8 Jan, 2016 :: Engineering North N132 :: Gerald Schwarz :: Brandeis University
Media...Let G be a reductive complex Lie group (e.g., SL(n,C)) and let X and Y be Stein manifolds (closed complex submanifolds of some C^n). Suppose that G acts freely on X and Y. Then there are quotient Stein manifolds X/G and Y/G and quotient mappings p_X:X> X/G and p_Y: Y> Y/G such that X and Y are principal Gbundles over X/G and Y/G. Let us suppose that Q=X/G ~= Y/G so that X and Y have the same quotient Q. A map Phi: X\to Y of principal bundles (over Q) is simply an equivariant continuous map commuting with the projections. That is, Phi(gx)=g Phi(x) for all g in G and x in X, and p_X=p_Y o Phi. The famous Oka Principle of Grauert says that any Phi as above embeds in a continuous family Phi_t: X > Y, t in [0,1], where Phi_0=Phi, all the Phi_t satisfy the same conditions as Phi does and Phi_1 is holomorphic.
This is rather amazing.
We consider the case where G does not necessarily act freely on X and Y. There is still a notion of quotient and quotient mappings p_X: X> X//G and p_Y: Y> Y//G where X//G and Y//G are now Stein spaces and parameterize the closed Gorbits in X and Y. We assume that Q~= X//G~= Y//G and that we have a continuous equivariant Phi such that p_X=p_Y o Phi. We find conditions under which Phi embeds into a continuous family Phi_t such that Phi_1 is holomorphic.
We give an application to the Linearization Problem. Let G act holomorphically on C^n. When is there a biholomorphic map Phi:C^n > C^n such that Phi^{1} o g o Phi in GL(n,C) for all g in G? We find a condition which is necessary and sufficient for "most" Gactions.
This is joint work with F. Kutzschebauch and F. Larusson.


A fibered density property and the automorphism group of the spectral ball 12:10 Fri 15 Jan, 2016 :: Engineering North N132 :: Frank Kutzschebauch :: University of Bern
Media...The spectral ball is defined as the set of complex n by n matrices whose eigenvalues are all less than 1 in absolute value. Its group of holomorphic automorphisms has been studied over many decades in several papers and a precise conjecture about its structure has been formulated. In dimension 2 this conjecture was recently disproved by Kosinski. We not only disprove the conjecture in all dimensions but also give the best possible description of the automorphism group.
Namely we explain how the invariant theoretic quotient map divides the automorphism group of the spectral ball into a finite dimensional part of symmetries which lift from the quotient and an infinite dimensional part which leaves the fibration invariant. We prove a precise statement as to how hopelessly huge this latter part is. This is joint work with R. Andrist. 

A long C^2 without holomorphic functions 12:10 Fri 29 Jan, 2016 :: Engineering North N132 :: Franc Forstneric :: University of Ljubljana
Media...For every integer n>1 we construct a complex manifold of dimension n which is exhausted by an increasing sequence of biholomorphic images of C^n (i.e., a long C^n), but it does not admit any nonconstant holomorphic functions. We also introduce new biholomorphic invariants of a complex manifold, the stable core and the strongly stable core, and we prove that every compact strongly pseudoconvex and polynomially convex domain B in C^n is the strongly stable core of a long C^n; in particular, nonequivalent domains give rise to nonequivalent long C^n's. Thus, for any n>1 there exist uncountably many pairwise nonequivalent long C^n's. These results answer several long standing open questions. (Joint work with Luka Boc Thaler.) 

A fixed point theorem on noncompact manifolds 12:10 Fri 12 Feb, 2016 :: Ingkarni Wardli B21 :: Peter Hochs :: University of Adelaide / Radboud University
Media...For an elliptic operator on a compact manifold acted on by a compact Lie group, the AtiyahSegalSinger fixed point formula expresses its equivariant index in terms of data on fixed point sets of group elements. This can for example be used to prove Weylâs character formula. We extend the definition of the equivariant index to noncompact manifolds, and prove a generalisation of the AtiyahSegalSinger formula, for group elements with compact fixed point sets. In one example, this leads to a relation with characters of discrete series representations of semisimple Lie groups. (This is joint work with Hang Wang.) 

Tduality for elliptic curve orientifolds 12:10 Fri 4 Mar, 2016 :: Ingkarni Wardli B17 :: Jonathan Rosenberg :: University of Maryland
Media...Orientifold string theories are quantum field theories based on the
geometry of a space with an involution. Tdualities are certain
relationships between such theories that look different
on the surface but give rise to the same observable physics.
In this talk I will not assume
any knowledge of physics but will concentrate on the associated
geometry, in the case where the underlying space is a (complex)
elliptic curve and the involution is either holomorphic or
antiholomorphic. The results blend algebraic topology
and algebraic geometry. This is mostly joint work with
Chuck Doran and Stefan MendezDiez. 

Expanding maps 12:10 Fri 18 Mar, 2016 :: Eng & Maths EM205 :: Andy Hammerlindl :: Monash University
Media...Consider a function from the circle to itself such that the derivative is
greater than one at every point. Examples are maps of the form f(x) = mx for
integers m > 1. In some sense, these are the only possible examples. This
fact and the corresponding question for maps on higher dimensional manifolds
was a major motivation for Gromov to develop pioneering results in the field
of geometric group theory.
In this talk, I'll give an overview of this and other results relating
dynamical systems to the geometry of the manifolds on which they act and
(time permitting) talk about my own work in the area.


Counting periodic points of plane Cremona maps 12:10 Fri 1 Apr, 2016 :: Eng & Maths EM205 :: Tuyen Truong :: University of Adelaide
Media...In this talk, I will present recent results, join with TienCuong Dinh and VietAnh Nguyen, on counting periodic points of plane Cremona maps (i.e. birational maps of P^2). The tools used include a Lefschetz fixed point formula of Saito, Iwasaki and Uehara for birational maps of surface whose fixed point set may contain curves; a bound on the arithmetic genus of curves of periodic points by Diller, Jackson and Sommerse; a result by Diller, Dujardin and Guedj on invariant (1,1) currents of meromorphic maps of compact Kahler surfaces; and a theory developed recently by Dinh and Sibony for non proper intersections of varieties. Among new results in the paper, we give a complete characterisation of when two positive closed (1,1) currents on a compact Kahler surface behave nicely in the view of Dinh and SibonyÃÂ¢ÃÂÃÂs theory, even if their wedge intersection may not be welldefined with respect to the classical pluripotential theory. Time allows, I will present some generalisations to meromorphic maps (including an upper bound for the number of isolated periodic points which is sometimes overlooked in the literature) and open questions. 

Sard Theorem for the endpoint map in subRiemannian manifolds 12:10 Fri 29 Apr, 2016 :: Eng & Maths EM205 :: Alessandro Ottazzi :: University of New South Wales
Media...SubRiemannian geometries occur in several areas of pure and applied mathematics, including harmonic analysis, PDEs, control theory, metric geometry, geometric group theory, and neurobiology. We introduce subRiemannian manifolds and give some examples. Therefore we discuss some of the open problems, and in particular we focus on the Sard Theorem for the endpoint map, which is related to the study of length minimizers. Finally, we consider some recent results obtained in collaboration with E. Le Donne, R. Montgomery, P. Pansu and D. Vittone. 

How to count Betti numbers 12:10 Fri 6 May, 2016 :: Eng & Maths EM205 :: David Baraglia :: University of Adelaide
Media...I will begin this talk by showing how to obtain the Betti numbers of certain smooth complex projective varieties by counting points over a finite field. For singular or noncompact varieties this motivates us to consider the "virtual Hodge numbers" encoded by the "HodgeDeligne polynomial", a refinement of the topological Euler characteristic. I will then discuss the computation of HodgeDeligne polynomials for certain singular character varieties (i.e. moduli spaces of flat connections). 

Smooth mapping orbifolds 12:10 Fri 20 May, 2016 :: Eng & Maths EM205 :: David Roberts :: University of Adelaide
It is wellknown that orbifolds can be represented by a special kind of Lie groupoid, namely those that are Ã©tale and proper. Lie groupoids themselves are one way of presenting certain nice differentiable stacks.
In joint work with Ray Vozzo we have constructed a presentation of the mapping stack Hom(disc(M),X), for M a compact manifold and X a differentiable stack, by a FrÃ©chetLie groupoid. This uses an apparently new result in global analysis about the map C^\infty(K_1,Y) \to C^\infty(K_2,Y) induced by restriction along the inclusion K_2 \to K_1, for certain compact K_1,K_2. We apply this to the case of X being an orbifold to show that the mapping stack is an infinitedimensional orbifold groupoid. We also present results about mapping groupoids for bundle gerbes. 

Time series analysis of paleoclimate proxies (a mathematical perspective) 15:10 Fri 27 May, 2016 :: Engineering South S112 :: Dr Thomas Stemler :: University of Western Australia
Media...In this talk I will present the work my colleagues from the School of
Earth and Environment (UWA), the "trans disciplinary methods" group of
the Potsdam Institute for Climate Impact Research, Germany, and I did to
explain the dynamics of the AustralianSouth East Asian monsoon system
during the last couple of thousand years.
From a time series perspective paleoclimate proxy series are more or
less the monsters moving under your bed that wake you up in the middle
of the night. The data is clearly nonstationary, nonuniform sampled in
time and the influence of stochastic forcing or the level of measurement
noise are more or less unknown. Given these undesirable properties
almost all traditional time series analysis methods fail.
I will highlight two methods that allow us to draw useful conclusions
from the data sets. The first one uses Gaussian kernel methods to
reconstruct climate networks from multiple proxies. The coupling
relationships in these networks change over time and therefore can be
used to infer which areas of the monsoon system dominate the complex
dynamics of the whole system. Secondly I will introduce the
transformation cost time series method, which allows us to detect
changes in the dynamics of a nonuniform sampled time series. Unlike the
frequently used interpolation approach, our new method does not corrupt
the data and therefore avoids biases in any subsequence analysis. While
I will again focus on paleoclimate proxies, the method can be used in
other applied areas, where regular sampling is not possible.


On the Strong Novikov Conjecture for Locally Compact Groups in Low Degree Cohomology Classes 12:10 Fri 3 Jun, 2016 :: Eng & Maths EM205 :: Yoshiyasu Fukumoto :: Kyoto University
Media...The main result I will discuss is nonvanishing of the image of the index map from the Gequivariant Khomology of a Gmanifold X to the Ktheory of the C*algebra of the group G. The action of G on X is assumed to be proper and cocompact. Under the assumption that the Kronecker pairing of a Khomology class with a lowdimensional cohomology class is nonzero, we prove that the image of this class under the index map is nonzero. Neither discreteness of the locally compact group G nor freeness of the action of G on X are required. The case of free actions of discrete groups was considered earlier by B. Hanke and T. Schick.


ChernSimons invariants of Seifert manifolds via Loop spaces 14:10 Tue 28 Jun, 2016 :: Ingkarni Wardli B17 :: Ryan Mickler :: Northeastern University
Over the past 30 years the ChernSimons functional for connections on Gbundles over threemanfolds has lead to a deep understanding of the geometry of threemanfiolds, as well as knot invariants such as the Jones polynomial. Here we study this functional for threemanfolds that are topologically given as the total space of a principal circle bundle over a compact Riemann surface base, which are known as Seifert manifolds. We show that on such manifolds the ChernSimons functional reduces to a particular gaugetheoretic functional on the 2d base, that describes a gauge theory of connections on an infinite dimensional bundle over this base with structure group given by the levelk affine central extension of the loop group LG. We show that this formulation gives a new understanding of results of BeasleyWitten on the computability of quantum ChernSimons invariants of these manifolds as well as knot invariants for knots that wrap a single fiber of the circle bundle. A central tool in our analysis is the Caloron correspondence of MurrayStevensonVozzo.


Holomorphic Flexibility Properties of Spaces of Elliptic Functions 12:10 Fri 29 Jul, 2016 :: Ingkarni Wardli B18 :: David Bowman :: University of Adelaide
The set of meromorphic functions on an elliptic curve naturally possesses the structure of a complex manifold. The component of degree 3 functions is 6dimensional and enjoys several interesting complexanalytic properties that make it, loosely speaking, the opposite of a hyperbolic manifold. Our main result is that this component has a 54sheeted branched covering space that is an Oka manifold. 

Etale ideas in topological and algebraic dynamical systems 12:10 Fri 5 Aug, 2016 :: Ingkarni Wardli B18 :: Tuyen Truong :: University of Adelaide
Media...In etale topology, instead of considering open subsets of a space, we consider etale neighbourhoods lying over these open subsets. In this talk, I define an etale analog of dynamical systems: to understand a dynamical system f:(X,\Omega )>(X,\Omega ), we consider other dynamical systems lying over it. I then propose to use this to resolve the following two questions:
Question 1: What should be the topological entropy of a dynamical system (f,X,\Omega ) when (X,\Omega ) is not a compact space?
Question 2: What is the relation between topological entropy of a rational map or correspondence (over a field of arbitrary characteristic) to the pullback on cohomology groups and algebraic cycles?


Approaches to modelling cells and remodelling biological tissues 14:10 Wed 10 Aug, 2016 :: Ingkarni Wardli 5.57 :: Professor Helen Byrne :: University of Oxford
Biological tissues are complex structures, whose evolution is characterised by multiple biophysical processes that act across diverse space and time scales. For example, during normal wound healing, fibroblast cells located around the wound margin exert contractile forces to close the wound while those located in the surrounding tissue synthesise new tissue in response to local growth factors and mechanical stress created by wound contraction. In this talk I will illustrate how mathematical modelling can provide insight into such complex processes, taking my inspiration from recent studies of cell migration, vasculogenesis and wound healing. 

Calculus on symplectic manifolds 12:10 Fri 12 Aug, 2016 :: Ingkarni Wardli B18 :: Mike Eastwood :: University of Adelaide
Media...One can use the symplectic form to construct an elliptic complex replacing the de Rham complex. Then, under suitable curvature conditions, one can form coupled versions of this complex. Finally, on complex projective space, these constructions give rise to a series of elliptic complexes with geometric consequences for the FubiniStudy metric and its Xray transform. This talk, which will start from scratch, is based on the work of many authors but, especially, current joint work with Jan Slovak. 

Character Formula for Discrete Series 12:10 Fri 14 Oct, 2016 :: Ingkarni Wardli B18 :: Hang Wang :: University of Adelaide
Media...Weyl character formula describes characters of irreducible representations of compact Lie groups. This formula can be obtained using geometric method, for example, from the AtiyahBott fixed point theorem or the AtiyahSegalSinger index theorem. HarishChandra character formula, the noncompact analogue of the Weyl character formula, can also be studied from the point of view of index theory. We apply orbital integrals on Ktheory of HarishChandra Schwartz algebra of a semisimple Lie group G, and then use geometric method to deduce HarishChandra character formulas for discrete series representations of G. This is work in progress with Peter Hochs.


Parahoric bundles, invariant theory and the KazhdanLusztig map 12:10 Fri 21 Oct, 2016 :: Ingkarni Wardli B18 :: David Baraglia :: University of Adelaide
Media...In this talk I will introduce the notion of parahoric groups, a loop group analogue of parabolic subgroups. I will also discuss a global version of this, namely parahoric bundles on a complex curve. This leads us to a problem concerning the behaviour of invariant polynomials on the dual of the Lie algebra, a kind of "parahoric invariant theory". The key to solving this problem turns out to be the KazhdanLusztig map, which assigns to each nilpotent orbit in a semisimple Lie algebra a conjugacy class in the Weyl group. Based on joint work with Masoud Kamgarpour and Rohith Varma. 

An equivariant parametric Oka principle for bundles of homogeneous spaces 12:10 Fri 3 Mar, 2017 :: Napier 209 :: Finnur Larusson :: University of Adelaide
I will report on new joint work with Frank Kutzschebauch and Gerald Schwarz (arXiv:1612.07372). Under certain conditions, every continuous section of a holomorphic fibre bundle can be deformed to a holomorphic section. In fact, the inclusion of the space of holomorphic sections into the space of continuous sections is a weak homotopy equivalence. What if a complex Lie group acts on the bundle and its sections? We have proved an analogous result for equivariant sections. The result has a wide scope. If time permits, I will describe some interesting special cases and mention two applications. 

Collective and aneural foraging in biological systems 15:10 Fri 3 Mar, 2017 :: Lower Napier LG14 :: Dr Jerome Buhl and Dr David Vogel :: The University of Adelaide
The field of collective behaviour uses concepts originally adapted from statistical physics to study how complex collective phenomena such as mass movement or swarm intelligence emerge from relatively simple interactions between individuals. Here we will focus on two applications of this framework. First we will have look at new insights into the evolution of sociality brought by combining models of nutrition and social interactions to explore phenomena such as collective foraging decisions, emergence of social organisation and social immunity. Second, we will look at the networks built by slime molds under exploration and foraging context. 

Diffeomorphisms of discs, harmonic spinors and positive scalar curvature 11:10 Fri 17 Mar, 2017 :: Engineering Nth N218 :: Diarmuid Crowley :: University of Melbourne
Media...Let Diff(D^k) be the space of diffeomorphisms of the kdisc fixing the boundary point wise. In this talk I will show for k > 5, that the homotopy groups \pi_*Diff(D^k) have nonzero 8periodic 2torsion detected in real Ktheory. I will then discuss applications for spin manifolds M of dimension 6 or greater: 1) Our results input to arguments of Hitchin which now show that M admits a metric with a harmonic spinor. 2) If nonempty, space of positive scalar curvature metrics on M has nonzero 8periodic 2torsion in its homotopy groups which is detected in real Ktheory. This is part of joint work with Thomas Schick and Wolfgang Steimle. 

Minimal surfaces and complex analysis 12:10 Fri 24 Mar, 2017 :: Napier 209 :: Antonio Alarcon :: University of Granada
Media...A surface in the Euclidean space R^3 is said to be minimal if it is locally areaminimizing, meaning that every point in the surface admits a compact neighborhood with the least area among all the surfaces with the same boundary. Although the origin of minimal surfaces is in physics, since they can be realized locally as soap films, this family of surfaces lies in the intersection of many fields of mathematics. In particular, complex analysis in one and several variables plays a fundamental role in the theory. In this lecture we will discuss the influence of complex analysis in the study of minimal surfaces. 

Geometric structures on moduli spaces 12:10 Fri 31 Mar, 2017 :: Napier 209 :: Nicholas Buchdahl :: University of Adelaide
Media...Moduli spaces are used to classify various kinds of objects,
often arising from solutions of certain differential equations on
manifolds; for example, the complex structures on a compact
surface or the antiselfdual YangMills equations on an oriented
smooth 4manifold. Sometimes these moduli spaces carry important
information about the underlying manifold, manifested most
clearly in the results of Donaldson and others on the topology of
smooth 4manifolds. It is also the case that these moduli spaces
themselves carry interesting geometric structures; for example,
the WeilPetersson metric on moduli spaces of compact Riemann
surfaces, exploited to great effect by Maryam Mirzakhani. In this
talk, I shall elaborate on the theme of geometric structures on
moduli spaces, with particular focus on some recentish work done
in conjunction with Georg Schumacher. 

Ktypes of tempered representations 12:10 Fri 7 Apr, 2017 :: Napier 209 :: Peter Hochs :: University of Adelaide
Media...Tempered representations of a reductive Lie group G are the irreducible unitary representations one needs in the Plancherel decomposition of L^2(G). They are relevant to harmonic analysis because of this, and also occur in the Langlands classification of the larger class of admissible representations. If K in G is a maximal compact subgroup, then there is a considerable amount of information in the restriction of a tempered representation to K. In joint work with Yanli Song and Shilin Yu, we give a geometric expression for the decomposition of such a restriction into irreducibles. The multiplicities of these irreducibles are expressed as indices of Dirac operators on reduced spaces of a coadjoint orbit of G corresponding to the representation. These reduced spaces are Spinc analogues of reduced spaces in symplectic geometry, defined in terms of moment maps that represent conserved quantities. This result involves a Spinc version of the quantisation commutes with reduction principle for noncompact manifolds. For discrete series representations, this was done by Paradan in 2003. 

Hodge theory on the moduli space of Riemann surfaces 12:10 Fri 5 May, 2017 :: Napier 209 :: Jesse GellRedman :: University of Melbourne
Media...The Hodge theorem on a closed Riemannian manifold identifies the deRham cohomology with the space of harmonic differential forms. Although there are various extensions of the Hodge theorem to singular or complete but noncompact spaces, when there is an identification of L^2 Harmonic forms with a topological feature of the underlying space, it is highly dependent on the nature of infinity (in the noncompact case) or the locus of incompleteness; no unifying theorem treats all cases. We will discuss work toward extending the Hodge theorem to singular Riemannian manifolds where the singular locus is an incomplete cusp edge. These can be pictured locally as a bundle of horns, and they provide a model for the behavior of the WeilPetersson metric on the compactified Riemann moduli space near the interior of a divisor. Joint with J. Swoboda and R. Melrose. 

Schubert Calculus on Lagrangian Grassmannians 12:10 Tue 23 May, 2017 :: EM 213 :: Hiep Tuan Dang :: National centre for theoretical sciences, Taiwan
Media...The Lagrangian Grassmannian $LG = LG(n,2n)$ is the projective complex manifold which parametrizes Lagrangian (i.e. maximal isotropic) subspaces in a symplective vector space of dimension $2n$. This talk is mainly devoted to Schubert calculus on $LG$. We first recall the definition of Schubert classes in this context. Then we present basic results which are similar to the classical formulas due to Pieri and Giambelli. These lead to a presentation of the cohomology ring of $LG$. Finally, we will discuss recent results related to the Schubert structure constants and GromovWitten invariants of $LG$. 

Holomorphic Legendrian curves 12:10 Fri 26 May, 2017 :: Napier 209 :: Franc Forstneric :: University of Ljubljana, Slovenia
Media...I will present recent results on the existence and behaviour of noncompact holomorphic
Legendrian curves in complex contact manifolds.
We show that these curves are ubiquitous in \C^{2n+1} with the
standard holomorphic contact form \alpha=dz+\sum_{j=1}^n x_jdy_j;
in particular, every open Riemann surface embeds into \C^3 as a proper
holomorphic Legendrian curves. On the other hand, for any integer n>= 1 there
exist Kobayashi hyperbolic complex contact structures on \C^{2n+1}
which do not admit any nonconstant Legendrian complex lines. Furthermore,
we construct a holomorphic Darboux chart around any noncompact holomorphic
Legendrian curve in an arbitrary complex contact manifold.
As an application, we show that every bordered holomorphic Legendrian curve
can be uniformly approximated by complete bounded Legendrian curves. 

Quaternionic Kaehler manifolds of cohomogeneity one 12:10 Fri 16 Jun, 2017 :: Ligertwood 231 :: Vicente Cortes :: Universitat Hamburg
Media...Quaternionic Kaehler manifolds form an important class of Riemannian manifolds of special holonomy. They provide examples of Einstein manifolds of nonzero scalar curvature. I will show how to construct explicit examples of complete quaternionic Kaehler manifolds of negative scalar curvature beyond homogeneous spaces. In particular, I will present a series of examples of cohomogeneity one, based on arXiv:1701.07882. 

Complex methods in real integral geometry 12:10 Fri 28 Jul, 2017 :: Engineering Sth S111 :: Mike Eastwood :: University of Adelaide
There are wellknown analogies between holomorphic integral transforms such as the Penrose transform and real integral transforms such as the Radon, Funk, and John transforms. In fact, one can make a precise connection between them and hence use complex methods to establish results in the real setting. This talk will introduce some simple integral transforms and indicate how complex analysis may be applied. 

Weil's Riemann hypothesis (RH) and dynamical systems 12:10 Fri 11 Aug, 2017 :: Engineering Sth S111 :: Tuyen Truong :: University of Adelaide
Media...Weil proposed an analogue of the RH in finite fields, aiming at counting asymptotically the number of solutions to a given system of polynomial equations (with coefficients in a finite field) in finite field extensions of the base field. This conjecture influenced the development of Algebraic Geometry since the 1950Ã¢ÂÂs, most important achievements include: Grothendieck et al.Ã¢ÂÂs etale cohomology, and Bombieri and GrothendieckÃ¢ÂÂs standard conjectures on algebraic cycles (inspired by a Kahlerian analogue of a generalisation of WeilÃ¢ÂÂs RH by Serre). WeilÃ¢ÂÂs RH was solved by Deligne in the 70Ã¢ÂÂs, but the finite field analogue of SerreÃ¢ÂÂs result is still open (even in dimension 2). This talk presents my recent work proposing a generalisation of WeilÃ¢ÂÂs RH by relating it to standard conjectures and a relatively new notion in complex dynamical systems called dynamical degrees. In the course of the talk, I will present the proof of a question proposed by Esnault and Srinivas (which is related to a result by Gromov and Yomdin on entropy of complex dynamical systems), which gives support to the finite field analogue of SerreÃ¢ÂÂs result. 

Mathematics is Biology's Next Microscope (Only Better!) 15:10 Fri 11 Aug, 2017 :: Ingkarni Wardli B17 :: Dr Robyn Araujo :: Queensland University of Technology
While mathematics has long been considered "an essential tool for physics", the foundations of biology and the life sciences have received significantly less influence from mathematical ideas and theory. In this talk, I will give a brief discussion of my recent research on robustness in molecular signalling networks, as an example of a complex biological question that calls for a mathematical answer. In particular, it has been a longstanding mystery how the extraordinarily complex communication networks inside living cells, comprising thousands of different interacting molecules, are able to function robustly since complexity is generally associated with fragility. Mathematics has now suggested a resolution to this paradox through the discovery that robust adaptive signalling networks must be constructed from a just small number of welldefined universal modules (or "motifs"), connected together. The existence of these newlydiscovered modules has important implications for evolutionary biology, embryology and development, cancer research, and drug development. 

Mathematics is Biology'ÂÂs Next Microscope (Only Better!) 15:10 Fri 11 Aug, 2017 :: Ingkarni Wardli B17 :: Dr Robyn Araujo :: Queensland University of Technology
While mathematics has long been considered Ã¢ÂÂan essential tool for physics", the foundations of biology and the life sciences have received significantly less influence from mathematical ideas and theory. In this talk, I will give a brief discussion of my recent research on robustness in molecular signalling networks, as an example of a complex biological question that calls for a mathematical answer. In particular, it has been a longstanding mystery how the extraordinarily complex communication networks inside living cells, comprising thousands of different interacting molecules, are able to function robustly since complexity is generally associated with fragility. Mathematics has now suggested a resolution to this paradox through the discovery that robust adaptive signalling networks must be constructed from a just small number of welldefined universal modules (or Ã¢ÂÂmotifsÃ¢ÂÂ), connected together. The existence of these newlydiscovered modules has important implications for evolutionary biology, embryology and development, cancer research, and drug development. 

Conway's Rational Tangle 12:10 Tue 15 Aug, 2017 :: Inkgarni Wardli 5.57 :: Dr Hang Wang :: School of Mathematical Sciences
Media...Many researches in mathematics essentially feature some classification problems. In this context, invariants are created in order to associate algebraic quantities, such as numbers and groups, to elements of interested classes of geometric objects, such as surfaces. A key property of an invariant is that it does not change under ``allowable moves'' which can be specified in various geometric contexts. We demonstrate these lines of ideas by rational tangles, a notion in knot theory.
A tangle is analogous to a link except that it has free ends. Conway's rational tangles are the simplest tangles that can be ``unwound'' under a finite sequence of two simple moves, and they arise as building blocks for knots. A numerical invariant will be introduced for Conway's rational tangles and it provides the only known example of a complete invariant in knot theory.


Compact pseudoRiemannian homogeneous spaces 12:10 Fri 18 Aug, 2017 :: Engineering Sth S111 :: Wolfgang Globke :: University of Adelaide
Media...A pseudoRiemannian homogeneous space $M$ of finite volume can be presented as $M=G/H$, where $G$ is a Lie group acting transitively and isometrically on $M$, and $H$ is a closed subgroup of $G$.
The condition that $G$ acts isometrically and thus preserves a finite measure on $M$ leads to strong algebraic restrictions on $G$. In the special case where $G$ has no compact semisimple normal subgroups, it turns out that the isotropy subgroup $H$ is a lattice, and that the metric on $M$ comes from a biinvariant metric on $G$.
This result allows us to recover Zeghibâs classification of Lorentzian compact homogeneous spaces, and to move towards a classification for metric index 2.
As an application we can investigate which pseudoRiemannian homogeneous spaces of finite volume are Einstein spaces. Through the existence questions for lattice subgroups, this leads to an interesting connection with the theory of transcendental numbers, which allows us to characterize the Einstein cases in low dimensions.
This talk is based on joint works with Oliver Baues, Yuri Nikolayevsky and Abdelghani Zeghib. 

Dynamics of transcendental Hanon maps 11:10 Wed 20 Sep, 2017 :: Engineering & Math EM212 :: Leandro Arosio :: University of Rome
The dynamics of a polynomial in the complex plane is a classical topic studied already at the beginning of the 20th century by Fatou and Julia. The complex plane is partitioned in two natural invariant sets: a compact set called the Julia set, with (usually) fractal structure and chaotic behaviour, and the Fatou set, where dynamics has no sensitive dependence on initial conditions. The dynamics of a transcendental map was first studied by Baker fifty years ago, and shows striking differences with the polynomial case: for example, there are wandering Fatou components. Moving to C^2, an analogue of polynomial dynamics is given by Hanon maps, polynomial automorphisms with interesting dynamics. In this talk I will introduce a natural generalisation of transcendental dynamics to C^2, and show how to construct wandering domains for such maps. 

Equivariant formality of homogeneous spaces 12:10 Fri 29 Sep, 2017 :: Engineering Sth S111 :: Alex ChiKwong Fok :: University of Adelaide
Equivariant formality, a notion in equivariant topology introduced by GoreskyKottwitzMacpherson, is a desirable property of spaces with group actions, which allows the application of localisation formula to evaluate integrals of any top closed forms and enables one to compute easily the equivariant cohomology. Broad classes of spaces of especial interest are wellknown to be equivariantly formal, e.g., compact symplectic manifolds equipped with Hamiltonian compact Lie group actions and projective varieties equipped with linear algebraic torus actions, of which flag varieties are examples. Less is known about compact homogeneous spaces G/K equipped with the isotropy action of K, which is not necessarily of maximal rank. In this talk we will review previous attempts of characterizing equivariant formality of G/K, and present our recent results on this problem using an analogue of equivariant formality in Ktheory. Part of the work presented in this talk is joint with Jeffrey Carlson. 

Operator algebras in rigid C*tensor categories 12:10 Fri 6 Oct, 2017 :: Engineering Sth S111 :: Corey Jones :: Australian National University
Media...In noncommutative geometry, operator algebras are often regarded as the algebras of functions on noncommutative spaces. Rigid C*tensor categories are algebraic structures that appear in the study of quantum field theories, subfactors, and compact quantum groups. We will explain how they can be thought of as ``noncommutative'' versions of the tensor category of Hilbert spaces. Combining these two viewpoints, we describe a notion of operator algebras internal to a rigid C*tensor category, and discuss applications to the theory of subfactors. 

Endperiodic Khomology and spin bordism 12:10 Fri 20 Oct, 2017 :: Engineering Sth S111 :: Michael Hallam :: University of Adelaide
This talk introduces new "endperiodic" variants of geometric Khomology and spin bordism theories that are tailored to a recent index theorem for evendimensional manifolds with periodic ends. This index theorem, due to Mrowka, Ruberman and Saveliev, is a generalisation of the AtiyahPatodiSinger index theorem for manifolds with odddimensional boundary. As in the APS index theorem, there is an (endperiodic) eta invariant that appears as a correction term for the periodic end. Invariance properties of the standard relative eta invariants are elegantly expressed using Khomology and spin bordism, and this continues to hold in the endperiodic case. In fact, there are natural isomorphisms between the standard Khomology/bordism theories and their endperiodic versions, and moreover these isomorphisms preserve relative eta invariants. The study is motivated by results on positive scalar curvature, namely obstructions and distinct path components of the moduli space of PSC metrics. Our isomorphisms provide a systematic method for transferring certain results on PSC from the odddimensional case to the evendimensional case. This work is joint with Mathai Varghese. 

Stochastic Modelling of Urban Structure 11:10 Mon 20 Nov, 2017 :: Engineering Nth N132 :: Mark Girolami :: Imperial College London, and The Alan Turing Institute
Media...Urban systems are complex in nature and comprise of a large number of individuals that act according to utility, a measure of net benefit pertaining to preferences. The actions of individuals give rise to an emergent behaviour, creating the socalled urban structure that we observe. In this talk, I develop a stochastic model of urban structure to formally account for uncertainty arising from the complex behaviour. We further use this stochastic model to infer the components of a utility function from observed urban structure. This is a more powerful modelling framework in comparison to the ubiquitous discrete choice models that are of limited use for complex systems, in which the overall preferences of individuals are difficult to ascertain. We model urban structure as a realization of a Boltzmann distribution that is the invariant distribution of a related stochastic differential equation (SDE) that describes the dynamics of the urban system. Our specification of Boltzmann distribution assigns higher probability to stable configurations, in the sense that consumer surplus (demand) is balanced with running costs (supply), as characterized by a potential function. We specify a Bayesian hierarchical model to infer the components of a utility function from observed structure. Our model is doublyintractable and poses significant computational challenges that we overcome using recent advances in Markov chain Monte Carlo (MCMC) methods. We demonstrate our methodology with case studies on the London retail system and airports in England. 

A Hecke module structure on the KKtheory of arithmetic groups 13:10 Fri 2 Mar, 2018 :: Barr Smith South Polygon Lecture theatre :: Bram Mesland :: University of Bonn
Media...Let $G$ be a locally compact group, $\Gamma$ a discrete subgroup and $C_{G}(\Gamma)$ the commensurator of $\Gamma$ in $G$. The cohomology of $\Gamma$ is a module over the Shimura Hecke ring of the pair $(\Gamma,C_G(\Gamma))$. This construction recovers the action of the Hecke operators on modular forms for $SL(2,\mathbb{Z})$ as a particular case. In this talk I will discuss how the Shimura Hecke ring of a pair $(\Gamma, C_{G}(\Gamma))$ maps into the $KK$ring associated to an arbitrary $\Gamma$C*algebra. From this we obtain a variety of $K$theoretic Hecke modules. In the case of manifolds the Chern character provides a Hecke equivariant transformation into cohomology, which is an isomorphism in low dimensions. We discuss Hecke equivariant exact sequences arising from possibly noncommutative compactifications of $\Gamma$spaces. Examples include the BorelSerre and geodesic compactifications of the universal cover of an arithmetic manifold, and the totally disconnected boundary of the BruhatTits tree of $SL(2,\mathbb{Z})$. This is joint work with M.H. Sengun (Sheffield). 

Radial Toeplitz operators on bounded symmetric domains 11:10 Fri 9 Mar, 2018 :: Lower Napier LG11 :: Raul QuirogaBarranco :: CIMAT, Guanajuato, Mexico
Media...The Bergman spaces on a complex domain are defined as the space of holomorphic squareintegrable functions on the domain. These carry interesting structures both for analysis and representation theory in the case of bounded symmetric domains. On the other hand, these spaces have some bounded operators obtained as the composition of a multiplier operator and a projection. These operators are highly noncommuting between each other. However, there exist large commutative C*algebras generated by some of these Toeplitz operators very much related to Lie groups. I will construct an example of such C*algebras and provide a fairly explicit simultaneous diagonalization of the generating Toeplitz operators. 

Family gauge theory and characteristic classes of bundles of 4manifolds 13:10 Fri 16 Mar, 2018 :: Barr Smith South Polygon Lecture theatre :: Hokuto Konno :: University of Tokyo
Media...I will define a nontrivial characteristic class of bundles of
4manifolds using families of SeibergWitten equations. The basic idea
of the construction is to consider an infinite dimensional
analogue of the Euler class used in the usual theory of characteristic
classes. I will also explain how to prove the nontriviality of this
characteristic class. If time permits, I will mention a relation between
our characteristic class and positive scalar curvature metrics. 

Computing trisections of 4manifolds 13:10 Fri 23 Mar, 2018 :: Barr Smith South Polygon Lecture theatre :: Stephen Tillmann :: University of Sydney
Media...Gay and Kirby recently generalised Heegaard splittings of 3manifolds to
trisections of 4manifolds. A trisection describes a 4Ã¢ÂÂdimensional manifold
as a union of three 4Ã¢ÂÂdimensional handlebodies. The complexity of the
4Ã¢ÂÂmanifold is captured in a collection of curves on a surface, which guide
the gluing of the handelbodies. The minimal genus of such a surface is the
trisection genus of the 4manifold.
After defining trisections and giving key examples and applications, I will
describe an algorithm to compute trisections of 4Ã¢ÂÂmanifolds using arbitrary
triangulations as input. This results in the first explicit complexity
bounds for the trisection genus of a 4Ã¢ÂÂmanifold in terms of the number of
pentachora (4Ã¢ÂÂsimplices) in a triangulation. This is joint work with Mark
Bell, Joel Hass and Hyam Rubinstein. I will also describe joint work with
Jonathan Spreer that determines the trisection genus for each of the
standard simply connected PL 4manifolds. 

Complexity of 3Manifolds 15:10 Fri 23 Mar, 2018 :: Horace Lamb 1022 :: A/Prof Stephan Tillmann :: University of Sydney
In this talk, I will give a general introduction to complexity of
3manifolds and explain the connections between combinatorics, algebra,
geometry, and topology that arise in its study.
The complexity of a 3manifold is the minimum number of tetrahedra in a
triangulation of the manifold. It was defined and first studied by Matveev
in 1990. The complexity is generally difficult to compute, and various
upper and lower bounds have been derived during the last decades using
fundamental group, homology or hyperbolic volume.
Effective bounds have only been found in joint work with Jaco, Rubinstein
and, more recently, Spreer. Our bounds not only allowed us to determine the
first infinite classes of minimal triangulations of closed 3manifolds, but
they also lead to a structure theory of minimal triangulations of
3manifolds. 

Chaos in higherdimensional complex dynamics 13:10 Fri 20 Apr, 2018 :: Barr Smith South Polygon Lecture theatre :: Finnur Larusson :: University of Adelaide
Media... I will report on new joint work with Leandro Arosio (University of Rome, Tor Vergata). Complex manifolds can be thought of as laid out across a spectrum characterised by rigidity at one end and flexibility at the other. On the rigid side, Kobayashihyperbolic manifolds have at most a finitedimensional group of symmetries. On the flexible side, there are manifolds with an extremely large group of holomorphic automorphisms, the prototypes being the affine spaces $\mathbb C^n$ for $n \geq 2$. From a dynamical point of view, hyperbolicity does not permit chaos. An endomorphism of a Kobayashihyperbolic manifold is nonexpansive with respect to the Kobayashi distance, so every family of endomorphisms is equicontinuous. We show that not only does flexibility allow chaos: under a strong antihyperbolicity assumption, chaotic automorphisms are generic. A special case of our main result is that if $G$ is a connected complex linear algebraic group of dimension at least 2, not semisimple, then chaotic automorphisms are generic among all holomorphic automorphisms of $G$ that preserve a left or rightinvariant Haar form. For $G=\mathbb C^n$, this result was proved (although not explicitly stated) some 20 years ago by Fornaess and Sibony. Our generalisation follows their approach. I will give plenty of context and background, as well as some details of the proof of the main result. 

Obstructions to smooth group actions on 4manifolds from families SeibergWitten theory 13:10 Fri 25 May, 2018 :: Barr Smith South Polygon Lecture theatre :: David Baraglia :: University of Adelaide
Media...Let X be a smooth, compact, oriented 4manifold and consider the following problem. Let G be a group which acts on the second cohomology of X preserving the intersection form. Can this action of G on H^2(X) be lifted to an action of G on X by diffeomorphisms? We study a parametrised version of SeibergWitten theory for smooth families of 4manifolds and obtain obstructions to the existence of such lifts. For example, we construct compact simplyconnected 4manifolds X and involutions on H^2(X) that can be realised by a continuous involution on X, or by a diffeomorphism, but not by an involutive diffeomorphism for any smooth structure on X. 

The mass of Riemannian manifolds 13:10 Fri 1 Jun, 2018 :: Barr Smith South Polygon Lecture theatre :: Matthias Ludewig :: MPIM Bonn
We will define the mass of differential operators L on compact Riemannian manifolds. In odd dimensions, if L is a conformally covariant differential operator, then its mass is also conformally covariant, while in even dimensions, one has a more complicated transformation rule. In the special case that L is the Yamabe operator, its mass is related to the ADM mass of an associated asymptotically flat spacetime. In particular, one expects positive mass theorems in various settings. Here we highlight some recent results. 

Hitchin's Projectively Flat Connection for the Moduli Space of Higgs Bundles 13:10 Fri 15 Jun, 2018 :: Barr Smith South Polygon Lecture theatre :: John McCarthy :: University of Adelaide
In this talk I will discuss the problem of geometrically quantizing the moduli space of Higgs bundles on a compact Riemann surface using Kahler polarisations. I will begin by introducing geometric quantization via Kahler polarisations for compact manifolds, leading up to the definition of a Hitchin connection as stated by Andersen. I will then describe the moduli spaces of stable bundles and Higgs bundles over a compact Riemann surface, and discuss their properties. The problem of geometrically quantizing the moduli space of stables bundles, a compact space, was solved independently by Hitchin and Axelrod, Del PIetra, and Witten. The Higgs moduli space is noncompact and therefore the techniques used do not apply, but carries an action of C*. I will finish the talk by discussing the problem of finding a Hitchin connection that preserves this C* action. Such a connection exists in the case of Higgs line bundles, and I will comment on the difficulties in higher rank. 

The topology and geometry of spaces of YangMillsHiggs flow lines 11:10 Fri 27 Jul, 2018 :: Barr Smith South Polygon Lecture theatre :: Graeme Wilkin :: National University of Singapore
Given a smooth complex vector bundle over a compact Riemann surface, one can define the space of Higgs bundles and an energy functional on this space: the YangMillsHiggs functional. The gradient flow of this functional resembles a nonlinear heat equation, and the limit of the flow detects information about the algebraic structure of the initial Higgs bundle (e.g. whether or not it is semistable). In this talk I will explain my work to classify ancient solutions of the YangMillsHiggs flow in terms of their algebraic structure, which leads to an algebrogeometric classification of YangMillsHiggs flow lines. Critical points connected by flow lines can then be interpreted in terms of the Hecke correspondence, which appears in Wittenâs recent work on Geometric Langlands. This classification also gives a geometric description of spaces of unbroken flow lines in terms of secant varieties of the underlying Riemann surface, and in the remaining time I will describe work in progress to relate the (analytic) Morse compactification of these spaces by broken flow lines to an algebrogeometric compactification by iterated blowups of secant varieties. 

Carleman approximation of maps into Oka manifolds. 11:10 Fri 3 Aug, 2018 :: Barr Smith South Polygon Lecture theatre :: Brett Chenoweth :: University of Ljubljana
In 1927 Torsten Carleman proved a remarkable extension of the StoneWeierstrass theorem. Carlemanâs theorem is ostensibly the first result concerning the approximation of functions on unbounded closed subsets of C by entire functions. In this talk we introduce Carlemanâs theorem and several of its recent generalisations including the titled generalisation which was proved by the speaker in arXiv:1804.10680. 

Geometry and Topology of Crystals 11:10 Fri 31 Aug, 2018 :: Barr Smith South Polygon Lecture theatre :: Vanessa Robins :: Australian National University
This talk will cover some highlights of the mathematical description of crystal structure from the platonic polyhedra of ancient Greece to the current picture of crystallographic groups as orbifolds. Modern materials synthesis raises fascinating questions about the enumeration and classification of periodic interwoven or entangled frameworks, that might be addressed by techniques from 3manifold topology and knot theory. 

Exceptional quantum symmetries 11:10 Fri 5 Oct, 2018 :: Barr Smith South Polygon Lecture theatre :: Scott Morrison :: Australian National University
I will survey our current understanding of "quantum symmetries", the mathematical models of topological order, in particular through the formalism of fusion categories. Our very limited classification results to date point to nearly all examples being built out of data coming from finite groups, quantum groups at roots of unity, and cohomological data. However, there are a small number of "exceptional" quantum symmetries that so far appear to be disconnected from the world of classical symmetries as studied in representation theory and group theory. I'll give an update on recent progress understanding these examples. 

Twisted Ktheory of compact Lie groups and extended Verlinde algebras 11:10 Fri 12 Oct, 2018 :: Barr Smith South Polygon Lecture theatre :: ChiKwong Fok :: University of Adelaide
In a series of recent papers, Freed, Hopkins and Teleman put forth a deep result which identifies the twisted K theory of a compact Lie group G with the representation theory of its loop group LG. Under suitable conditions, both objects can be enhanced to the Verlinde algebra, which appears in mathematical physics as the Frobenius algebra of a certain topological quantum field theory, and in algebraic geometry as the algebra encoding information of moduli spaces of Gbundles over Riemann surfaces. The Verlinde algebra for G with nice connectedness properties have been wellknown. However, explicit descriptions of such for disconnected G are lacking. In this talk, I will discuss the various aspects of the FreedHopkinsTeleman Theorem and partial results on an extension of the Verlinde algebra arising from a disconnected G. The talk is based on work in progress joint with David Baraglia and Varghese Mathai. 

An Introduction to Ricci Flow 11:10 Fri 19 Oct, 2018 :: Barr Smith South Polygon Lecture theatre :: Miles Simon :: University of Magdeburg
In these three talks we give an introduction to Ricci flow and present some applications thereof.
After introducing the Ricci flow we present some theorems and arguments from the theory of linear and nonlinear parabolic equations. We explain why this theory guarantees that there is always a solution to the Ricci flow for a short time for any given smooth initial metric on a compact manifold without boundary.
We calculate evolution equations for certain geometric quantities, and present some examples of maximum principle type arguments. In the last lecture we present some geometric results which are derived with the help of the Ricci flow. 

Local Ricci flow and limits of noncollapsed regions whose Ricci curvature is bounded from below 11:10 Fri 26 Oct, 2018 :: Barr Smith South Polygon Lecture theatre :: Miles Simon :: University of Magdeburg
We use a local Ricci flow to obtain a biHolder correspondence between noncollapsed (possibly noncomplete) 3manifolds with Ricci curvature bounded from below and GromovHausdorff limits of sequences thereof.
This is joint work with Peter Topping and the proofs build on results and ideas from recent papers of Hochard and Topping+Simon. 

Bayesian Synthetic Likelihood 15:10 Fri 26 Oct, 2018 :: Napier 208 :: A/Prof Chris Drovandi :: Queensland University of Technology
Complex stochastic processes are of interest in many applied disciplines. However, the likelihood function associated with such models is often computationally intractable, prohibiting standard statistical inference frameworks for estimating model parameters based on data. Currently, the most popular simulationbased parameter estimation method is approximate Bayesian computation (ABC). Despite the widespread applicability and success of ABC, it has some limitations. This talk will describe an alternative approach, called Bayesian synthetic likelihood (BSL), which overcomes some limitations of ABC and can be much more effective in certain classes of applications. The talk will also describe various extensions to the standard BSL approach. This project has been a joint effort with several academic collaborators, postdocs and PhD students. 
News matching "Classification and compact complex manifolds I" 
Workshop on Complex Geometry The Institute for Geometry and its Applications will host a Workshop on Complex Geometry at the University of Adelaide from Monday 16 February to Friday 20 February 2009. Click here for full details. Posted Wed 17 Sep 08. 

New Fellow of the Australian Academy of Science Professor Mathai Varghese, Professor of Pure Mathematics and ARC Professorial Fellow within the School of Mathematical Sciences, was elected to the Australian Academy of Science. Professor Varghese's citation read "for his distinguished for his work in geometric analysis involving the topology of manifolds, including the MathaiQuillen formalism in topological field theory.". Posted Tue 30 Nov 10. 

ARC Grant Success Congratulations to the following staff who were successful in securing funding from the Australian Research Council Discovery Projects Scheme. Associate Professor Finnur Larusson awarded $270,000 for his project Flexibility and symmetry in complex geometry; Dr Thomas Leistner, awarded $303,464 for his project Holonomy groups in Lorentzian geometry, Professor Michael Murray Murray and Dr Daniel Stevenson (Glasgow), awarded $270,000 for their project Bundle gerbes: generalisations and applications; Professor Mathai Varghese, awarded $105,000 for his project Advances in index theory and Prof Anthony Roberts and Professor Ioannis Kevrekidis (Princeton) awarded $330,000 for their project Accurate modelling of large multiscale dynamical systems for engineering and scientific
simulation and analysis Posted Tue 8 Nov 11. 
Publications matching "Classification and compact complex manifolds I"Publications 

Algebraic deformations of compact kahler surfaces II Buchdahl, Nicholas, Mathematische Zeitschrift 258 (493–498) 2008  Dbranes, RRfields and duality on noncommutative manifolds Brodzki, J; Varghese, Mathai; Rosenberg, J; Szabo, R, Communications in Mathematical Physics 277 (643–706) 2008  Holomorphic classification of fourdimensional surfaces in C3 Beloshapka, V; Ezhov, Vladimir; Schmalz, G, Izvestiya Mathematics 72 (413–427) 2008  On spatiotemporal drought classification in New South Wales: Development and evaluation of alternative techniques Osti, Alexander; Lambert, Martin; Metcalfe, Andrew, Australian Journal of Water Resources 12 (21–35) 2008  Finding keywords amongst noise: Automatic text classification without parsing Allison, Andrew; Pearce, Charles; Abbott, Derek, Noise and Stochastics in Complex Systems and Finance, Florence 21/05/07  Nonlinear dynamics on centre manifolds describing turbulent floods: komega model Georgiev, D; Roberts, Anthony John; Strunin, D, Discrete and Continuous Dynamical Systems Supplement (419–428) 2007  Algebraic deformations of compact Khler surfaces Buchdahl, Nicholas, Mathematische Zeitschrift 253 (453–459) 2006  Conformal holonomy of Cspaces, Ricciflat, and Lorentzian manifolds Leistner, Thomas, Differential Geometry and its Applications 24 (458–478) 2006  Screen bundles of Lorentzian manifolds and some generalisations of ppwaves Leistner, Thomas, Journal of Geometry and Physics 56 (2117–2134) 2006  Some Penrose transforms in complex differential geometry Anco, S; Bland, J; Eastwood, Michael, Science in China Series AMathematics Physics Astronomy 49 (1599–1610) 2006  Examples of unbounded homogeneous domains in complex space Eastwood, Michael; Isaev, A, Science in China Series AMathematics Physics Astronomy 48 (248–261) 2005  Prolongations of linear overdetermined systems on affine and riemannian manifolds Eastwood, Michael, Circolo Matmeatico di Palermo. Rendiconti 75 (89–108) 2005  Smoothly parameterized ech cohomology of complex manifolds Bailey, T; Eastwood, Michael; Gindikin, S, Journal of Geometric Analysis 15 (9–23) 2005  Smoothly parameterized Cech cohomology of complex manifolds Bailey, T; Eastwood, Michael; Gindikin, S, Journal of Geometric Analysis 15 (9–23) 2005  Classofservice mapping for QoS: A statistical signaturebased approach to IP traffic classification Roughan, Matthew; Sen, S; Spatscheck, O; Duffield, N, ACM SIG COMM 2004, Taormina, Sicily, Italy 25/10/04  Topology and Hflux of Tdual manifolds Bouwknegt, Pier; Evslin, J; Varghese, Mathai, Physical Review Letters 92 (1816011–1816013) 2004  Towards a Classification of Homogeneous Tube Domains in C(4) Eastwood, Michael; Ezhov, Vladimir; Isaev, A, Journal of Differential Geometry 68 (553–569) 2004  Twozone model of shear dispersion in a channel using centre manifolds Roberts, Anthony John; Strunin, D, Quarterly Journal of Mechanics and Applied Mathematics 57 (363–378) 2004  A genetic algorithm based on nearest neighbour classification to breast cancer diagnosis Jain, R; Mazumdar, Jagan, Australasian Physical and Engineering Sciences in Medicine 26 (6–11) 2003  Compact Khler surfaces with trivial canonical bundle Buchdahl, Nicholas, Annals of Global Analysis and Geometry 23 (189–204) 2003  Complex analysis and the Funk transform Bailey, T; Eastwood, Michael; Gover, A; Mason, L, Journal of the Korean Mathematical Society 40 (577–593) 2003  Edge of the wedge theory in hypoanalytic manifolds Eastwood, Michael; Graham, C, Communications in Partial Differential Equations 28 (2003–2028) 2003  The BorelWeil theorem for complex projective space Eastwood, Michael; Sawon, J, chapter in Invitations to geometry and topology (Oxford University Press) 126–145, 2002  Lorentzian manifolds with special holonomy and parallel spinors Leistner, Thomas, Supplemento ai Rendiconti del Circolo Matematico di Palermo II 69 (131–159) 2002  A classification of nondegenerate homogeneous equiaffine hypersurfaces in four complex dimensions Eastwood, Michael; Ezhov, Vladimir, The Asian Journal of Mathematics 5 (721–740) 2001  Commutative geometries are spin manifolds Rennie, Adam, Reviews in Mathematical Physics 13 (409–464) 2001  Poisson manifolds in generalised Hamiltonian biomechanics Ivancevic, V; Pearce, Charles, Bulletin of the Australian Mathematical Society 64 (515–526) 2001  Complex Quaternionic Kahler Manifolds Eastwood, Michael, chapter in Further advances in twistor theory. Vol. III, Curved twistor spaces (Chapman & Hall/CRC) 31–34, 2001  Introduction to ChernSimons gauge theory on general 3manifolds Adams, David, chapter in Mathematical methods in physics (World Scientific Publishing) 1–43, 2000  A complex from linear elasticity Eastwood, Michael, 19th Winter School Geometry and Physics, Srni, Czech Republic 09/01/99  A gerbe obstruction to quantization of fermions on odddimensional manifolds with boundary Carey, Alan; Mickelsson, J, Letters in Mathematical Physics 51 (145–160) 2000  Drawing with complex numbers Eastwood, Michael; Penrose, R, Mathematical Intelligencer 22 (8–13) 2000 
Advanced search options
You may be able to improve your search results by using the following syntax:
Query  Matches the following 

Asymptotic Equation  Anything with "Asymptotic" or "Equation". 
+Asymptotic +Equation  Anything with "Asymptotic" and "Equation". 
+Stokes "NavierStokes"  Anything containing "Stokes" but not "NavierStokes". 
Dynam*  Anything containing "Dynamic", "Dynamical", "Dynamicist" etc. 
