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A new analytical tool for determining the optimum frequency for a micromixing strategy to mix two

fluids across their interface is presented. The frequency dependence of the flux is characterized in terms of

a Fourier transform related to the apparatus geometry. Illustrative microfluidic mixing examples based on

electromagnetic forcing and fluid pumping strategies are presented.
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Introduction.—Many micro- and nanofluidic devices re-
quire rapid mixing of a sample and a reagent, to enhance
reaction rates in biochemical assays. Nevertheless, the
inevitable low Reynolds numbers associated with such
devices means that turbulent mixing is suppressed.
Diffusive time- and length scales for good mixing are
also usually impractical, leading to considerable interest
in devising strategies to optimize mixing. Active (energy-
supplying) techniques used range from mechanical pulsa-
tion of fluids or device [1–5], electroosmotic forces [6–11],
electrorheological control fluids [12], other electrokinetic
forces [13–16], magnetic forces or beads [17–20], and
acoustic vibration [21–23]. Many experimental [1,3–
5,7,10–15,18,20–23], numerical [2,4,5,8,10,11,13,15,18–
20,22], and theoretical [24–26] studies based on such
techniques have appeared recently. A collection of review
articles on microfluidic mixing devices appears in a dedi-
cated supplement Ref. [27].

A common theme in recent experimental and numerical
investigations is to time-periodically vary the force or
velocity in the active strategy used (i.e., electrokinetic
forcing, magnetic force field, pulsating fluid at inlet) [1–
5,7–15,17–23,26,28]. While ac currents are a practical
reason for this, a likely motivation is the concept of chaotic
mixing [29]. Such a time-periodic strategy typically causes
the fluid interface to split into stable and unstable mani-
folds, whose infinitely many intersections lead to compli-
cated lobe dynamics [30,31]. Rom-Kedar and Poje [32]
argue the presence of an optimum frequency at which
cross-interface flux is maximum. Increasing the frequency
leads to smaller lobe areas, but with quicker mixing be-
tween them, underlying the competition between the fluid
areas which participate in mixing, and the speed of such
mixing [32]. Under appropriate device geometries, the
cross-interface flux is the mechanism through which cha-
otic mixing between the reagent and sample may be
achieved [33].

For a particular flow geometry and mixing strategy,
the mixing achieved as a function of the frequency has
recently been an intensive area of study. There is strong
experimental [5,7,10,11,13,14,18,20,21] and numerical
[5,10,12,13,18] evidence for the presence of an optimum

frequency (or Strouhal number), usually obtained by labo-
riously testing many frequency values. In contrast, there
are a few studies which either indicate that the mixing
increases [3,4,9] or decreases [8,12] with frequency [35].
If an optimum frequency exists, there is no current insight
or theory on how to find it.
This study focuses on determining such an optimal

frequency, associated specifically with the cross-interface
mixing [25,32,36,37] as opposed to other mixing measures
[38]. It is the first theoretical tool available in optimum
frequency analysis, and is easily computable using Fourier
transforms. Two examples (loosely associated with an
electromagnetic switching, and a side channel pumping
situation) are presented. This new method could easily be
used for different geometries and mixing strategies, pro-
viding a significant tool in the currently ad hoc process of
designing micromixers.
Optimal frequency determination.—Consider a fluid in-

terface in the nonmixing flow

_x ¼ @H

@y
; _y ¼ � @H

@x
; (1)

in whichHðx; yÞ is the stream function (Hamiltonian). This
incompressible steady laminar flow is assumed to possess
fixed points a and b which are connected together by a
heteroclinic trajectory �, which is simultaneously a branch
of a’s unstable manifold and b’s stable manifold. The
interface � can be represented by a solution [ �xðtÞ, �yðtÞ] of
(1) which goes to a as t ! �1 and b as t ! 1. Mixing is
induced across � (and thus between the fluids lying on
either side of �) via a time-dependent velocity in the form

_x ¼ @H

@y
þ �hxðx; yÞ cos!t;

_y ¼ �@H

@x
þ �hyðx; yÞ cos!t;

(2)

in which !> 0 is the frequency of perturbation, � is a
small parameter, and h ¼ ðhx; hyÞ is the spatial part of the
perturbing velocity arising from whichever mixing strategy
is being used [39].
The area of fluid per unit time crossing � near a position

[ �xðpÞ, �yðpÞ] in the direction of rH at a time instance t can
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be defined as the instantaneous flux [40], whoseOð�Þ term
is given by the Melnikov function [42]

Mðp; tÞ ¼ j�ð!Þj cosf!ðt� pÞ � arg½�ð!Þ�g: (3)

Here, �ð!Þ :¼ F f�ðtÞg ¼ R1
�1 �ðtÞe�i!tdt is the Fourier

transform of

�ðtÞ :¼ rH½ �xðtÞ; �yðtÞ� � h½ �xðtÞ; �yðtÞ�: (4)

The Melnikov-flux expression (3) predicts fluid sloshing
back and forth across � for nonzero frequencies if �ð!Þ �
0 [44]. The average flux quantifies the area of lobes cross-
ing � per unit time [30], and is given by [45]

sð!Þ ¼ �
2

�
j�ð!Þj þOð�2Þ: (5)

The fact that the flux decays to zero as ! ! 1 is imme-
diately captured by (5) [46]. This provides a tool to find the
optimal frequency for a given flow geometry by numeri-
cally investigating the Fourier transform of �ðtÞ [48].
Frequencies which either maximize or minimize the flux
can also be shown to obey the fact that �ð!Þ and �ð!Þ ¼
F ft�ðtÞg lie on the same two-sided ray through the origin
in the complex plane [49], that is

arg½�ð!Þ� ¼ arg½�ð!Þ� þ n�; n an integer: (6)

An electromagnetic example.—To replicate the common
‘‘T-mixer’’ inlet geometry [1,7,10,11,15], and to provide
an easy illustrative situation, consider Hðx; yÞ ¼ axðL�
xÞy. The flow is

_x ¼ axðL� xÞ; _y ¼ �ayðL� 2xÞ
in the channel 0< x < L, with sides jyj<wL2=½8xðL�
xÞ�, as shown in Fig. 1. The two fluids coming from
opposite directions near the left inlet do not mix across
the dashed fluid interface [ �xðtÞ, �yðtÞ] which connects the
points (0,0) and (L, 0), and which is given by �xðtÞ ¼
L=ð1þ e�aLtÞ, �yðtÞ ¼ 0 [50]. Suppose three electromag-
netic plates are located outside the channel in the locations
L=5< x < 2L=5, 2L=5< x< 3L=5, and 3L=5< x <
4L=5 and switched out of phase with the adjacent plates,
in order to induce the (ac-modulated) transverse velocity
hyðx; 0Þ as given in Fig. 2 by the dashed curve [51].

Figure 3 shows (3) at three different frequencies, and
represents the topological intersection pattern between

perturbed stable and unstable manifolds. Figure 4 shows
the leading-order average flux of (5). Larger ! values (not
shown) have smaller and smaller humps similar to those
displayed [52]. The mixing optimizing frequency is, from
Fig. 4, approximately �! ¼ 4�, which corresponds to the
solid curve in Fig. 3. Since �ð!Þ is real and �ð!Þ is
imaginary in this situation, (6) is satisfied by �ð �!Þ ¼ 0
[53].
A fluid pumping example.—Retain the base (laminar)

T-mixer structure of the previous example, but adopt a
different mixing strategy. Suppose now that there are two
side channels in which fluid is sloshed into the main
channel. Mimicking the dimensions of the experimental
syringe-pump ultrashort micromixer of Bottausci et al. [4]
as closely as possible, this corresponds to choosing hyðx; yÞ
as in the solid curve in Fig. 2, once again independent of y.
A parabolic profile normalized with a maximum speed of
unity has been fitted to the two side channels centered at
x ¼ 21L=56 and 35L=56, each with width L=28 [54]. The
profile in the side channels is also motivated by the results
of Niu et al. [12], who used particle tracking in a
electrorheologically controlled microchip to experimen-
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FIG. 1. Mixer geometry before a mixing strategy is employed.
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FIG. 2 (color online). Transverse velocity hyðx; 0Þ for elec-
tromagnetic (dashed) and fluid pumping (solid) strategies with
L ¼ 1.
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FIG. 3 (color online). Melnikov function at t ¼ 0 using the
electromagnetic strategy, with a ¼ 4 and L ¼ 1: ! ¼ 2
(dashed), ! ¼ 4� (solid), and ! ¼ 31 (dotted).
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tally obtain a parabolic profile modulated by cos!t, ex-
actly as postulated here. Once again, the optimum fre-
quency is around �! ¼ 4�, as is clear from Fig. 5, and
(6) is satisfied in a degenerate sense with �ð �!Þ ¼ 0 [55].
Note the existence of much larger frequencies (e.g., ! ¼
38, 62) which also produce relatively high mixing.

Concluding remarks.—The theoretical tool presented
here is useful in determining best frequencies for a time-
periodic mixing strategy, in order to specifically increase
mixing across the fluid interface between the sample and
reagent. The limitations are that the theory cannot be
applied to maximize global mixing measures, or to situ-
ations in which the time-periodic flow is not secondary.
Nevertheless, it is a significant analytical tool in a research
area in which such tools are lacking, and may well provide
a good initial guess for the optimum frequency when these
conditions are not met. Given a particular dominant flow
geometry and knowing the cross-interface fluid velocity
resulting from a mixing strategy, the Fourier transform
expressions (5) and (6) provide easy tools for analysis of
the optimum frequency, using fast-Fourier-transform soft-
ware as needed. The formulation provides additional in-

sights: the eventual decay to zero of mixing as the
frequency gets larger, the potential for arbitrarily small
frequencies to be flux maximizing [56], and the prediction
of nonoptimum frequencies [Fig. 5, for example, shows
that using frequencies like ! � 24 or 48—also captured
by (6)—lead to diminished mixing]. The significant diffi-
culties in obtaining each data point in experimental design
of micromixers can be ameliorated by judicious use of this
tool.
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