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a b s t r a c t

The speed and the minimum carrying capacity needed for a successful population expansion into new

territory are addressed using a reaction-diffusion model. The model is able to encapsulate a rich

collection of ecological behaviours, including the Allee effect, resource depletion due to consumption,

dispersal adaptation due to population pressure, biological control agents, and a range of breeding

suppression mechanisms such as embryonic diapause, delayed development and sperm storage. It is

shown how many of these phenomena can be characterised as density-dependence in a few funda-

mental ecological parameters. With the help of a powerful mathematical technique recently developed

by Balasuriya and Gottwald (J. Math. Biol. 61, pp. 377–399, 2010), explicit formulae for the effect on the

speed and minimum carrying capacity are obtained.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The speed and the structure of population dispersal is an
important area of study, in particular in the protection of native
fauna and flora from invasive species. Factors influencing this
include the species’ range, density-dependence in its growth,
dispersal rate, dependence of the dispersal rate on environmental
conditions and density, habitat variation, and collective
behaviour. Many types of mathematical models have been used
to understand the ecology of spatial spreading, including partial
differential (Fisher, 1937; Kolmogorov et al., 1937; Skellam, 1951;
Gurney and Nisbet, 1998; Murray, 1993; Lewis and Kareiva, 1993;
Petrovskii and Li, 2003; Almeida et al., 2006; Lubina and Levin,
1988), discrete models (Murray, 1993; Morris and Dwyer, 1997;
Kot et al., 1996; Leung et al., 2004; Keitt et al., 2001), integro-
differential (Kot et al., 1996; Dwyer and Morris, 2006; Fagan et al.,
2005), and neural nets (Taylor et al., 2004). Different models offer
successes in different situations. Including a large variety of
biological phenomena within one model, and determining explicit
characterisations of how an ecological phenomenon affects the
invasion speed, remain significant challenges.

Two main aspects influence the modelling of population
spread. The first is the growth rate of the population in the local
environment. The most common density-dependence expresses
the per capita growth rate (pgr) as a linear decreasing function of
ll rights reserved.

ical Sciences, University of
the density, which leads to logistic growth: a sigmoidal curve
which has the population approaching the carrying capacity as
time progresses (Fisher, 1937; Kolmogorov et al., 1937; Skellam,
1951). As a next correction, the Allee (1938) effect incorporates an
increase in the pgr curve at small densities (Stephens et al., 1999;
Stephens and Sutherland, 1999; Courchamp et al., 1999; Amar-
asekare, 1998). A common explanation for this is that when the
density is too small, individuals are spread too thinly to be able
to find mates successfully. Stephens and Sutherland (1999) and
Keitt et al. (2001) summarise other reasons which can lead to the
Allee effect, such as diminished anti-predator vigilance and
reduced genetic diversity. The Allee effect has been demonstrated
in gypsy moths (Johnson et al., 2006), bighorn sheep (Berger,
1990), African wild dogs (Courchamp and MacDonald, 2001),
annual plants (Groom, 1998; Lamont et al., 1993), flour beetles
(Allee, 1938), zebra mussels (Leung et al., 2004), the California
channel island fox (Angulo et al., 2007) and smooth cordgrass
(Davis et al., 2004).

The second aspect which influences how population spread is
modelled is how dispersal is included. Dispersal relates to how
individuals or propagules move around: their typical range, the
shape of the probability distribution of the range, the speed at
which they move, etc. The density profile of the population as a
whole moves according to how all the individuals move. For
plants, the spatial probability distribution of the progeny of a
plant and the frequency of seeds (and seasonality) contribute
to the dispersal rate. Commonly used models for dispersal are
neural-net simulations which populate a spatial grid based
on a probabilistic dispersal (Taylor et al., 2004; Davis et al.,
2004; Leung et al., 2004), continuous-time branching processes
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(Schreiber and Lloyd-Smith, 2009), diffusion equations which
incorporate the randomised individual motions into a determi-
nistic model for the collective density (Fisher, 1937; Kolmogorov
et al., 1937; Skellam, 1951; Gurney and Nisbet, 1998; Lewis and
Kareiva, 1993; Petrovskii and Li, 2003; Lubina and Levin, 1988;
Balasuriya and Gottwald, 2010), or integro-differential models
with non-uniform dispersal (Kot et al., 1996; Dwyer and Morris,
2006).

An important aspect of biological invasions is the interaction
between the invading species and the already existing species
in the environment. This article, however, focusses on the more
limited situation of a single species populating new territories,
ignoring such interactions. The term ‘‘invasion’’ when used in this
context represents a population successfully expanding its range.
There is a well-established partial differential equation model
(Gurney and Nisbet, 1998; Murray, 1993) which builds on
classical models of diffusive spread (Fisher, 1937; Kolmogorov
et al., 1937; Skellam, 1951) to include Allee dynamics. By suitably
dimensionalising this model, it is possible to quantify the roles of
important ecological parameters such as the carrying capacity,
Allee threshold, maximum fertility and dispersal rate on speed
of expansion of the population. (This shall be presented in
Section 2.1.) However, there is strong evidence that each of these
ecological parameters is not constant, implying that the above
model is too simplistic. Firstly, the carrying capacity of an
environment does not remain static; the presence of a large
number of individuals reduces the local carrying capacity through
resource depletion. Methods of incorporating this into models
include discrete resource-dependent dispersal models (Morris
and Dwyer, 1997; Fagan et al., 2005), and a host of habitat
selection models (see the introduction of Morris and Diffendorfer,
2004 for a review).

Secondly, some species suppress their fertility rate
in situations in which a large number of individuals is present
in comparison to the resource availability. Embryonic diapause
(delayed implantation of the embryo until favourable environ-
mental conditions are available) is one such strategy, regularly
used across seven orders of animals, including over 100 mammals
(Renfree and Shaw, 2000). Delayed fertilisation (sperm storage)
(Birkhead and Møller, 1993; Neubaum and Wolfner, 1999) is
another, and is widespread in insects, reptiles and birds, and
unusual in mammals except for bats (Wang et al., 2008). A dimin-
ished proportion of females coming into œstrus (Williams and
Newsome, 1991) is another tactic. Permitting a large proportion of
eggs to remain ephippial (dormant) in limited food situations is
yet another approach (Slusarczyk, 2001). The concept of delayed
development (MacArthur and Wilson, 1967; Szewczyk et al.,
2006), in which a species forgoes short-time population growth in
favour of a longer reproductive cycle in order to best utilise
available resources, is yet another form of breeding suppression,
which in fact encapsulates some of the strategies described above.
While the methods described above has very different biological
characteristics, they all have a common mathematical response:
the difference between the birth and death rates diminishes at
higher densities. This density-dependent fertility rate shall be
called ‘‘breeding suppression’’, a scenario which can also be
argued to occur in the presence of biological control agents (Louda
et al., 1997; Fagan et al., 2002). Hence, rationalising the fertility
rate as density-dependent is one method of conceptualising both
breeding suppression and biological control.

Thirdly, a species is also likely to adapt its dispersal rate
depending on environmental conditions. A natural method of
utilising available resources best would be for there to be
increased dispersal away from highly dense regions of population
(a notable exception to this being humans). This implies that the
dispersal (diffusion) rate changes with local population density,
examined in various ways in Gurney and Nisbet (1975), Shigesada
et al. (1979), Petrovskii and Li (2003), Almeida et al. (2006),
Balasuriya and Gottwald (2010), Dwyer and Morris (2006),
and Amarasekare (2004). Given the mathematical difficulty of
this situation, investigators are usually confined to using
numerical methods to calculate the resulting speed of population
expansion.

The above examples show that the principal ecological
parameters (carrying capacity, maximum fertility, dispersal rate)
must in reality be treated as density-dependent. If so, there are no

currently existing methods of incorporating their effects on
invasion speeds. This study remedies this situation, by determin-
ing such explicit formulae under the understanding that the
density-independent effects are small in comparison to the main
effects. The perturbative method used in based on a recent
mathematical development by Balasuriya and Gottwald (2010).
Surprisingly straightforward expressions for the role of density-
dependence is obtained in each of the situations corresponding to
resource depletion, breeding suppression and population
pressure, in spite of the fact that the governing equations are
formidably nonlinear. Therefore, this article is probably the first to
explicitly enable incorporation of effects such as embryonic
diapause, delayed development, resource depletion and popula-
tion pressure into the invasion speed. The derived formulae are
expected to form a new benchmark for quantifying invasion
speeds in population spreading models, and suggest new avenues
for experimentalists to investigate the role of biological phenom-
ena on species spreading.

For a given species to successfully invade new territory,
a minimum carrying capacity would seem to be necessary.
The expressions obtained in this article also enable a determina-
tion of this minimum carrying capacity for species which
have adaptive strategies such as breeding suppression and
density-driven dispersal. As such, this study provides a compre-
hensive analysis of population spreading based on continuous
(partial differential equation) models, with a detailed investiga-
tion of the relevant ecological parameters. A rich range of
different behaviours is captured, thereby allowing the model to
be used across fauna, flora, and many genera with judiciously
chosen parameter values. The mathematical methods introduced
in this article have enabled this detailed investigation, and
provide a new technique potentially adaptable to diverse
ecological models.
2. Model and methods

2.1. Base model

Let u be the population density (population per unit habitat
length) of a species, modelled by Courchamp et al. (1999), Murray
(1993), and Lewis and Kareiva (1993)

pgr¼ L 1�
u

K

� � u

a
�1

� �
ð1Þ

in which L is a positive normalising constant and K is the carrying
capacity. The situation aZK is prohibited, since then K becomes
unstable and loses its ecological meaning. The Allee (1938) effect,
in which the pgr has a positive relationship to the density at small
densities, is exhibited when �KoaoK . If 0oaoK , the species
exhibits the strong Allee effect, with a representing the Allee
threshold below which pgr is negative. Such has been observed in
animals (Johnson et al., 2006; Berger, 1990; Courchamp and
MacDonald, 2001) and in plants (Groom, 1998; Lamont et al.,
1993). Choosing a in the range �Koar0 leads to a model of the
weak Allee effect, in which pgr increases with u at small densities
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but is not negative. Both fauna (Allee, 1938; Angulo et al., 2007)
and flora (Davis et al., 2004; Taylor et al., 2004) examples of this
effect have been observed. If ar�K , pgr is a strictly decreasing
function of density for all (positive) densities: this models the
classical ‘‘non-Allee’’ situation. The normalising factor L in (1)
can be chosen in many ways; see Lewis and Kareiva (1993) for a
discussion. Here, it shall be chosen to relate to a parameter of
potential ecological significance: the species’ maximum attain-
able per capita growth rate r, henceforth called the ‘‘maximum
fertility’’. This choice for L was also made by Lewis and Kareiva
(1993). Differentiating (1) with respect to u and setting to zero
indicates that the maximum pgr occurs at u¼ ðKþaÞ=2, and
setting pgr at this value equal to r gives the condition
L¼ 4Kar=ðK�aÞ2. Hence

pgr¼
4Ka
ðK�aÞ2

r 1�
u

K

� � u

a�1
� �

¼
4r

ðK�aÞ2
ðK�uÞðu�aÞ: ð2Þ

Define h as

h¼
a
K
: ð3Þ

For a particular species, the carrying capacity K is highly
susceptible to the environment, for example through habitat
destruction or resource depletion. The Allee threshold a is less
influenced by environmental conditions. Thus, if a given species is
considered in different environments, those which are most
conducive to the species’ survival have a higher K value, and
therefore an h closer to zero. In contrast, in harsh environments
with limited resources, K will be small, and in the worst case will
approach a, meaning that h will be close to one. Then, growth can
occur only in a tiny density range aouoK , and thus the environ-
ment is not very suitable for the species. Observe that 0oho1
represents the strong Allee effect, �1ohr0 the weak Allee
effect, and if hr�1, the Allee effect is absent for that environ-
ment. Thus, h represents the lack of suitability, or hostility, of the
environment to that particular species.

Next, spatial dispersal is included. Let F be the natural
dispersal rate constant; species which have greater speeds of
motion, or which typically move over longer distances, have a
larger value of F. For animal species, F can be thought of as the
typical speed of an individual, multiplied by the typical distance
the individual travels during a typical excursion. For plant species,
F can be the typical inter-generational time multiplied by
the square of the distance away from a plant that its seedling
hatches. A statistical averaging of the motions of all individuals
leads to a standard diffusive term in the dynamics (Fisher, 1937;
Kolmogorov et al., 1937; Skellam, 1951; Gurney and Nisbet, 1998,
1975; Murray, 1993; Lubina and Levin, 1988), and hence the
density obeys

@u

@t
¼F

@2u

@x2
þ

4r

ðK�aÞ2
uðK�uÞðu�aÞ: ð4Þ

Incorporating diffusion in this way along with a growth rate is
also a standard approach in cell proliferation in growing tissues
(e.g. Binder and Landman, 2009; Trewenack and Landman, 2009),
to which the current analysis is also potentially applicable. Eq. (4)
is a dimensional equation for the population density uðx,tÞ, in
which all ecological parameters are maintained. Utilising a well-
known solution (Murray, 1993) to a standard non-dimensional
version of this equation, the Fisher-KPP equation with Nagumo’s
bistable reaction term, an exact solution can be found. The
population density evolves according to

u0ðx,tÞ ¼
K

1þexp
K

K�a

ffiffiffiffiffi
2r

F

r
ðx�c0tÞ

" # ð5Þ
in which the new parameter c0 is given by

c0 ¼
K�2a
K�a

ffiffiffiffiffiffiffiffiffi
2Fr
p

: ð6Þ

The spatial variable x and the time t appear together in (5) in the
combination x¼ x�c0t, enabling u0ðx,tÞ to be written as a function
of one variable u0ðxÞ. This special feature represents a density
profile which remains fixed (with x being the variable along the
profile), but which moves to the right at speed c0. Thus, c0 is
the migration speed of the population as a whole, due to the
averaged motions of individuals coupled with population growth.
The structure of this solution, together with its limitations, will be
presented in more detail under the results section (Section 3).
At this point, all the ecological parameters (K, a, r and F) are
constants in this base model—they are density-independent.
2.2. Density-dependent parameters

This section will argue why conceptualising the fundamental
parameters as density-dependent is an interesting method of
extending the model to include the variety of effects such as
resource depletion, embryonic diapause, delayed development
and population pressure that have been discussed in Section 1.

First, resource depletion due to consumption will be
addressed. The available resources at a given location will
depreciate with more individuals present. Therefore, the carrying
capacity needs to be a decreasing function of the population
density. In other words, the value of pgr which is calculated for a
larger value of u needs to be sampled from a pgr curve in Eq. (2),
in which K is smaller than what would be used for a smaller u

value. Therefore, a family of values of K need to be used in (2).
To a first approximation, the carrying capacity will be modelled
by a linearly decreasing function of the density, leading to the pgr

pgr¼
4r

ð½K�eku��aÞ2
ð½K�eku��uÞðu�aÞ ð7Þ

in which the replacement

K-K 1�ek
u

K

h i
¼ K�eku

has been made to (2). The new carrying capacity, K�eku, possesses
a small positive parameter ek which incorporates the effect of the
density on the carrying capacity. Therefore, �ek represents the
rate of change (elasticity) of the carrying capacity with respect to
the density. Species which strip their habitat bare will have a
larger value of ek, while those with more circumspect consump-
tion patterns will have an ek near 0. The constant K retains its
previous constant role, and is the carrying capacity in the absence
of a density-dependent effect.

Note that K�eku has been replaced for K in two places in (2),
one of which is part of the ‘‘normalising factor’’ which ensures
that r is the highest pgr attainable by the species. If only the
second K were replaced (as would occur if care is not taken to
elucidate the role of the multiplicative normalising factor in the
pgr), r would no longer be the maximum fertility for the species.
In order to isolate the roles of the fundamental parameters r, F
and h, it is thus important to preserve the ecological meanings of
the unaltered parameters. The new pgr in (7) is no longer quad-
ratic, and loses ecological meaning at high densities; however,
within and near the range 0ouoK , the pgr has the appropriate
profile, and hence the approximation is valid near the wavefront
solution. A comparison of the pgr in this situation (dashed curve)
with the standard form (solid curve) is given in Fig. 1, with the
choice ek ¼ 0:2. For small values of ek (that is, when considering
consumption-driven resource depletion as a smaller effect in



u

pgr

K

r

α

Fig. 1. The per capita growth rate (pgr) as a function of density: the standard

situation ((2), solid), density-dependent carrying capacity ((7), dashed), and

density-dependent maximum fertility ((8), dotted). The dot-dashed curve

indicates an incorrect formulation, as described in the text. (Produced using

K¼1, a¼ 0:3, r¼1 and all e values equalling 0.2.)
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comparison to the effects in the base model), the pgr curve retains
the qualitative form for the pgr in (7) to be ecologically sensible.

Note that the other ecological parameters r (maximum
fertility) and a (Allee threshold) retain their original values
correct to order ek by replacing K in both places in (2), as is also
clear from Fig. 1. If the replacement was not done in the
normalising factor, the maximum fertility would lose its lead-
ing-order meaning; this is illustrated with the dot-dashed curve
in Fig. 1. This curve has a considerably smaller maximum fertility
than r, which has therefore lost its original meaning, while the
(correct) dashed curve has a maximum fertility which is still near
r. Retaining the meanings is an essential part of this model, since
examining the effects of density-dependence on each of the
parameters in isolation is important in determining the role of
each on the invasion speed.

Next, consider mechanisms such as embryonic diapause
(Renfree and Shaw, 2000), delayed fertilisation (Neubaum and
Wolfner, 1999) and delayed development (MacArthur and Wilson,
1967), all of which lead to the breeding rate being suppressed.
Such suppression occurs in situations in which the available
resources are deemed insufficient for the current population; in
effect, a greater suppression occurs when u/K is large. Notice that
this approach is equally applicable to modelling the presence of a
biological control agent (Louda et al., 1997; Fagan et al., 2002),
whose diminishing effect might be considered to be proportional
to the density. This diminished fertility can be modelled though
the replacement

r-r 1�er
u

K

� �
in (4), for a small non-dimensional positive parameter er . Here,
�er now represents the (scaled) elasticity of the maximum
fertility with respect to density. Depending on the species and
the specific biological phenomenon being examined, er will take
on different values; species which exhibit a large rate of emb-
ryonic diapause, for example, will have a relatively larger value of
er , while those with no embryonic diapause will have er ¼ 0. The
resulting pgr function is now

pgr¼
4r

KðK�aÞ2
ðK�uÞðu�aÞðK�eruÞ: ð8Þ

The change in the pgr curve is indicated in Fig. 1, by the dotted
curve, which again possesses the correct qualitative structure for
small er . Note that the maximum fertility, occurring near the
density value ðaþKÞ=2, has now been diminished by an order-er .
The ecological meanings of K and a remain valid, even to order er ,
as can be seen from where the pgr curve intersects the u-axis.

Population pressure, in which individuals tend to be driven
away from regions of large population densities, is the next effect
that will be considered. This can be thought of as modelling a
resource-dependent dispersal rate (Dwyer and Morris, 2006; Kot
et al., 1996), since it is the lower resources in the highly populated
regions which causes this exodus. This behaviour implies that the
dispersal rate is an increasing function of the density. In
implementing this density-dependence, care needs to be taken
to consider instead of (4) the model

@u

@t
¼

@

@x
F
@u

@x

� �
þ

4r

ðK�aÞ2
uðK�uÞðu�aÞ ð9Þ

in which F is u-dependent (Murray, 1993; Gurney and Nisbet,
1998; Gilding and Kersner, 2004; Malaguti et al., 2004). To model
population pressure, the replacement

F-F 1þef
u

K

h i
, ð10Þ

needs to be made in (9). Having the dispersal rate as a linearly
increasing function of u is a first-approximation which is common
to many models (Gurney and Nisbet, 1975; Shigesada et al., 1979;
Petrovskii and Li, 2003; Almeida et al., 2006; Balasuriya and
Gottwald, 2010), but is nevertheless mathematically difficult.
(This corresponds to the s¼0 scenario of Amarasekare (2004),
who describes more general dependence in an ordinary differ-
ential equations setting with competition.) The small positive
parameter ef represents the sensitivity of the given species to
population pressure, and the scaling by u/K has been chosen to
ensure that ef, in keeping with the other e�values, is non-
dimensional. Thus, F retains its meaning as the ‘‘natural’’
dispersal rate (which is constant), and the other ecological
parameters are not affected by this replacement.

The final ecological parameter whose density-dependence has
not been conceptualised above is a. There is little ecological
motivation for doing this. As will be argued later, it is also
mathematically irrelevant, since the resulting effects can be
imputed from the density-dependent K situation.

The above density-dependent ecological parameters result in
(4) becoming highly nonlinear, and mathematically difficult.
Therefore, it is not possible to determine explicit solutions, and
thereby the invasion speed, as a result of including these effects.
Nevertheless, the above effects are to be thought of as small in
comparison to the base model; that is, all the e s are small positive
parameters—the modifications to (4) are perturbative in nature.
Hence, a perturbative method for determining the invasion speed
is in order. The theory associated with such a technique is
outlined in Appendix A, and is based on the theoretical develop-
ment in Balasuriya and Gottwald (2010). Remarkably simple and
informative results emerge from this complicated process, and are
described in Section 3.
3. Results

3.1. Density-independent parameters

The behaviour of the base model described in Section 2.1 is
first established. This model represents a single established
propagule, invading from left to right; for pre-established multi-
propagule studies, see the numerical work of Schreiber and Lloyd-
Smith (2009). The explicit solution appears in (5) and (6). Fig. 2
shows the density profile at four different values of h. The profiles
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are sharper at larger hostilities; species boundaries are more
pronounced in environments less conducive to the species in the
presence of the Allee effect. Since c0 is the speed that this profile
moves to the right, (6) indicates that only those situations in
which aoK=2 (that is, ho1=2) correspond to an invading species.
If a¼ K=2, the profile is stationary (the so-called Maxwell point),
whereas for aoK=2, the species retreats (the invasion fails, or the
range contracts). Hence, the invasive (successfully colonising)
situation is aoK=2, or ho1=2.

The solution can be rewritten in terms of the hostility as

u0ðx,tÞ

K
¼

1

1þexp
1

1�h

ffiffiffiffiffi
2r

F

r
ðx�c0tÞ

" # , ð11Þ

with the speed

c0 ¼
1�2h

1�h

ffiffiffiffiffiffiffiffiffi
2Fr
p

: ð12Þ

Both u/K and c0 can be written in terms of only three fundamental
parameters r, F and h. The carrying capacity K only plays the role
of stretching the density profile vertically. In essence, there are
only three fundamental ecological parameters in the problem:
a=K , r and F. This is the mathematical reason why it is
unnecessary to separately examine the effect of density-depen-
dence in a once that of K has been studied.

A technical point regarding the weak Allee ð�Koar0Þ and
the absence of Allee effect ðar�KÞ situations are in order. While
the solution in (5) and (6) does work in this situation, there also
exist other solutions with slightly distorted density profiles, each
moving at different speeds (Murray, 1993). Different initial condi-
tions will evolve into each of the different solutions. As in the
standard Fisher-KPP equation (Fisher, 1937; Kolmogorov et al.,
1937; Skellam, 1951) with the last term in (4) being proportional
to the logistic term u(K�u), such a system possesses an unstable

equilibrium at u¼0. Having both the ‘‘front’’ and ‘‘back’’ of the
travelling wave (the right and left, respectively, of Fig. 2) be
associated with stable equilibria would seem to be necessary for
profile-preserving invasion. A similar point in favour of the
Beverton–Holt model for discrete systems, rather than Ricker or
logistic, has been made by Dwyer and Morris (2006). Stability of
both u¼0 and K only occurs if a40, that is, in the strong Allee
situation. Thus, it is unreasonable to use (6) as an expression for
2 1 1 2

x

0.2

0.4

0.6

0.8

1.0

u0 K

Fig. 2. Density profile u0/K at time zero with r¼1 and F¼ 1, at four different

hostilities: h¼0.01 (dashed), h¼0.2 (solid), h¼0.49 (dot-dash), and h¼0.8

(dotted).
the spreading speed if ar0. The remainder of the analysis will
therefore be confined to strong Allee effects in which 0oaoK

ð0oho1Þ.

3.2. Consumption-driven resource depletion

Under resource depletion due to consumption by the species,
the pgr is given by (7). The corresponding dynamics are given by

@u

@t
¼F

@2u

@x2
þ

4r

ð½K�eku��aÞ2
uð½K�eku��uÞðu�aÞ: ð13Þ

When ek ¼ 0, (13) collapses to (4), but for non-zero ek (13) cannot
be solved. Since ek is small, a perturbative expansion of the
invasion speed, which shall be called ck in this density-dependent
carrying capacity situation, is in order. The speed can be written
as

ck ¼ c0þekc1k: ð14Þ

Since c1k ¼ ðck�c0Þ=ðek�0Þ from (14), cik is the rate of change of
the speed in relation to the consumption parameter ek. (More
precisely, the reader familiar with Taylor series will notice that
c1k ¼ @ck=@ekjek ¼ 0.) Since ek is positive, (14) indicates that another
way of thinking of c1k is as the addition (multiplied by the
consumption parameter) to the speed due to the influence of
consumption-driven resource depletion. Now, after considerable
mathematical work as described in Appendix B, it is possible to
obtain the fact that c1k has the astonishingly simple form

c1k ¼�

ffiffiffiffiffiffiffiffiffi
2rF
p

10

ðKþaÞðKþ2aÞ
ðK�aÞ2

¼�

ffiffiffiffiffiffiffiffiffi
2rF
p

10

ð1þhÞð1þ2hÞ

ð1�hÞ2
: ð15Þ

It is noted that c1k can be expressed entirely in terms of the
fundamental parameters r, F and h¼ a=K , highlighting that K and
a affect invasions not independently, but based on their ratio.
Since c1k is negative for all relevant parameters, the spreading
acquires a leftwards component. Thus, invasions ðho1=2Þ slow
down due to the influence of consumption. If the species was
retreating (if h41=2), the implication is that the retreating speed
increases. In either case, the species suffers as a result of
consumption-drive resource depletion diminishing the growth
rate. Note from (15) that in highly hostile environments (h near to
1), a large leftwards speed results from this effect. Hence resource
depletion has a much larger effect when the available resources
are small anyway—a not surprising result.

Utilising (14), the full invasion speed ck associated with (13) is
given by

ck ¼
ffiffiffiffiffiffiffiffiffi
2rF
p K�2a

K�a
�ek

ffiffiffiffiffiffiffiffiffi
2rF
p

10

ðKþaÞðKþ2aÞ
ðK�aÞ2

¼

ffiffiffiffiffiffiffiffiffi
2rF
p

1�h
1�2h�

er

10

ð1þhÞð1þ2hÞ

1�h

� �
: ð16Þ

A graph of ck as a function of h is presented in Fig. 3, in which r

and F are set equal to 1, and several different ek values are used.
Species which have a larger consumption parameter ek retreat
faster than species whose influence on their environmental
resources are less. Since the variation of ck with respect to the
maximum fertility and dispersal rate only occur in the straight-
forward combination

ffiffiffiffiffiffiffiffiffi
2rF
p

, exactly as in the base model, an
additional graph on their influence is unnecessary.

Eq. (16) also enables the determination of the Maxwell point
corresponding to the species being stationary. In the base model
(6), this occurs when h¼ 1

2; the species’ growth and dispersal
rates conspire to ensure that the species collectively neither
invades nor retreats. When including the effect of resource deple-
tion due to consumption, this stationary situation now occurs at a
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Fig. 3. Invasion speed under resource depletion, as given by (16), as a function of
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hostility slightly smaller than 1
2. By setting (16) to zero, it can be

shown that this corresponds to

h ¼ 1
2 �

3
10ek:

The overbar is used to indicate the specialised value of h corre-
sponding to the transition between a successfully invading and a
retreating situation. This implies that the minimum carrying
capacity, K , needed for a successful invasion has now risen to

K ¼ 2aþ6
5aek, ð17Þ

and both these results are derived in Appendix E. This represents
an additional carrying capacity of 1:2aek needed for a species to be
able to invade new territory, which increases with both ek and a.
Therefore, the inclusion of consumption-driven resource deple-
tion represents an increase in this ‘‘minimal’’ carrying capacity,
which is also influenced more for ‘‘delicate’’ species which have
larger Allee thresholds.

3.3. Breeding suppression

Next, consider the wide variety of behaviours which have been
given the term ‘‘breeding suppression’’ in this article. The pgr is
therefore given by (8), and such a suppression of the maximum
fertility can also be thought of as a method of incorporating the
affect of certain types of biological control agents. The dynamics
can be written in the form

@u

@t
¼F

@2u

@x2
þ

4r 1�er
u

K

� �
ðK�aÞ2

uðK�uÞðu�aÞ: ð18Þ

As before, think of expanding the corresponding invasion speed cr

in terms of the small parameter er , which in this case would take
the form

cr ¼ c0þerc1r ð19Þ

in which c1r represents the rate of change of the speed with
respect to the breeding suppression parameter er . It is shown in
Appendix D that

c1r ¼

ffiffiffiffiffiffiffiffiffi
2rF
p

10

ðKþ2aÞð3a�2KÞ

KðK�aÞ
¼

ffiffiffiffiffiffiffiffiffi
2rF
p

10

ð1þ2hÞð3h�2Þ

ð1�hÞ
: ð20Þ

In the invading situation aoK=2, c1r is negative, meaning that the
inclusion of this effect slows down the invasion speed. The
suppression of breeding in the higher-density regions decreases
the numbers available to venture into new regions. If K=2oao
2K=3, c1r contributes to the negativity of c0, and the populations
retreats even faster. The interesting phenomenon is in the
situation a42K=3, in which c1r is positive. Breeding suppression
slows down the retreat of the species in highly hostile environ-
ments. By producing fewer offspring the species reduces the
probability of increasing the population beyond the carrying
capacity, which would result in a rapid diminishing of the
population. Effectively, it is possible to increase the collective
lifespan of a species in a hostile environment by suppressing
breeding. This implication from the model is in conformity with
experiments on the nematode Cænorhabditis elegans, whose life
history ‘‘maximises the efficiency of exploitation of the carrying
capacity of the environment’’ (Szewczyk et al., 2006).

The full invasion speed is given by

cr ¼
ffiffiffiffiffiffiffiffiffi
2rF
p K�2a

K�a
þer

ffiffiffiffiffiffiffiffiffi
2rF
p

10

ðKþaÞð3a�2KÞ

KðK�aÞ

¼

ffiffiffiffiffiffiffiffiffi
2rF
p

1�h
1�2hþ

er

10
ð1þ2hÞð3h�2Þ

h i
: ð21Þ

A graph of this speed is given in Fig. 4, and illustrates the
described features.

It must be emphasised that breeding suppression in the wild is
strongly linked to seasonality, which is not per se included in the
current model. If, however, the diffusive time-scale is large in
comparison to a year, then the seasonality can be thought of as
being present in the model, but ‘‘smeared out’’ at the time-scale of
investigation. Hence the above results remain valid, though not
for species with very long breeding suppression regimes, such as
some reptiles who store sperm for years (Neubaum and Wolfner,
1999). The observation that domesticated animals, in contrast
to wild animals of the same species, lose seasonally varying
reproductive behaviour (Santiago-Moreno et al., 2006) is further
evidence that understanding breeding suppression purely as a
function of diminished resources is important. To truly incorpo-
rate seasonal effects in the present model, it would be necessary
as a first step to have a time-dependent carrying capacity.
Inclusion of such time-dependence destroys the possibility of a
constant invasion speed; the front then invades in a pulsating
fashion, with the pulsating time-scale being governed by the
seasonality. This situation is mathematically difficult, and is a
future area of investigation (in which the appropriate theoretical
methods need to be developed).
3.4. Population pressure

Finally, the modification in the invasion speed due to the
presence of population pressure is investigated. Suppose the
replacement (10) quantifying a dispersal rate which increases
linearly with density is applied to (9). This leads to the
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dynamics

@u

@t
¼

@

@x
FþFef

u

K

� � @u

@x

� �
þ

4r

ðK�aÞ2
uðK�uÞðu�aÞ, ð22Þ

which is significantly a more difficult partial differential equation
than the previous situations. Nevertheless, it is perturbative in
nature, and the expansion

cf ¼ c0þefc1f, ð23Þ

for the speed cf is possible. Here, c1f is the rate of change
(elasticity) of the speed with respect to the dispersal sensitivity
parameter ef. It is shown in Appendix F that

c1f ¼

ffiffiffiffiffiffiffiffiffi
2rF
p

10

ðKþ2aÞð2K�3aÞ
KðK�aÞ ¼

ffiffiffiffiffiffiffiffiffi
2rF
p

10

ð1þ2hÞð2�3hÞ

ð1�hÞ
: ð24Þ

While coming from a quite different calculation, c1f above is
exactly the negative of c1r calculated for breeding suppression
as given in (20). Thus, in the invading ð0oho1=2Þ situation,
population pressure increases the speed of invasion. This makes
ecological sense, since the population in the higher density areas
at the back end of the invasion will disperse more, leading to an
increased population in previously lower density areas. This
prediction from (24) agrees with results from a different mathe-
matical models; the resource-dependent discrete dispersal model
of Dwyer and Morris (2006) possesses exactly this behaviour as
shown in their Fig. 2A, and the spatially heterogeneous probabil-
istic model of Schreiber and Lloyd-Smith (2009) numerically
shows that less hostile environments have improved invasion
success when the natural dispersal rate is increased. Eq. (24) also
shows that in retreating populations with intermediate hostilities
ðK=2oao3K=2), population pressure reduces the speed of
retreat, whereas in retreating situations at high hostility
ð3K=2oaoKÞ, the retreat hastens. This last fact is particularly
interesting, since population pressure might be expected to
always cause motion from higher to lower densities (from left
to right) on average. An explanation for this is that the large
numbers of individuals who progress towards the right because of
population pressure succumb quickly since the pgr is highly
negative, whereas the smaller number of individuals who went to
the left fared better since the pgr is positive within the range
aouoK . Therefore, population pressure actually quickens the
retreat of a prospective invasion if the hostility is sufficiently
large.

The full invasion speed is given from (23) as

cf ¼
ffiffiffiffiffiffiffiffiffi
2rF
p K�2a

K�a þef

ffiffiffiffiffiffiffiffiffi
2rF
p

10

ðKþaÞð2K�3aÞ
KðK�aÞ

¼

ffiffiffiffiffiffiffiffiffi
2rF
p

1�h
1�2hþ

ef
10
ð1þ2hÞð2�3hÞ

� �
: ð25Þ

In this case, it can be shown that the hostility at which the species
is stationary is now slightly larger that 1

2, and is

h ¼ 1
2 þ

1
20ef:

This implies that the minimum natural carrying capacity needed
from an environment to sustain an invasion is

K ¼ 2a�1
5aef: ð26Þ

The calculations leading to these results are given in Appendix G.
Thus, the minimum carrying capacity for an invasion to be
successful has diminished from 2a by an amount 0:2aef due
to the population pressure effect. The species’ adaptation to
population pressure, as measured by ef, has enabled it to survive
in a less resource-rich environment than before.
4. Concluding remarks

The role played by the density-dependence in ecological
parameters (carrying capacity, maximum fertility and dispersal
rate) in population spreading was investigated in this study. These
correspond, respectively, to including resource/habitat depletion,
breeding suppression and dispersal adaptability, as perturbations
to a base situation which also includes the Allee effect. Remark-
ably, explicit (and simple) analytical expressions for the invasion
speed in these highly non-linear situations were obtained. These
results enabled a discussion on the parameter regimes which
enable a species to successfully invade a region. Qualitatively, the
results agreed well with ecological intuition, and in some cases
provided additional insight into less obvious characteristics. For
example, a species may using breeding suppression prolong its
collective lifespan in a highly hostile environment.

An interesting connection of the current study is to ‘‘r and K

selection’’ questions in evolution (MacArthur and Wilson, 1967).
These models do not account for the motion of the species, but
rather the evolution of genes in a spatially stationary population.
The original model (MacArthur, 1962) concludes that density-
independent evolution maximises the carrying capacity in a
constant environment (MacArthur, 1962). In a recent article,
Lande et al. (2009) extend these ideas to include the role of
environmental stochastically in density-dependent evolution, and
conclude that low stochasticity favours an increase in K, while
high stochasticity an increase in r, as the species evolves (Lande
et al., 2009). Within the context of a species that is additionally
dispersing, the results of the current study may be connected to
these ideas. Under low environmental stochasticity, since K

increases, the appropriate variation would be given by replacing
K with Kþeku, with ek40. This means that the new ek is negative
the ek in this study, and by (14), the speed modification would be
negative that predicted in Section 3.2. Thus, the spreading speed
increases, leading to an expansion in the species’ range. Under
high stochasticity, the increase in r can once again be thought of
as replacing er in (8) with �er , and thus from Section 3.3, the
speed increases in this situation as well. Thus, environmental
stochasticity relates to an increase in spreading speeds in either
case, although different mechanisms contribute to this increase in
the two limits of small and large randomness.

This study has the potential for incorporating a wide variety of
ecological behaviours within one framework. Different phenom-
ena can be captured by suitably tuning the parameter values K, a,
r, F, ek, er and ef, with each parameter having a well-defined
ecological meaning. For example, ek would represent the effect
consumption has on the carrying capacity, and with knowledge of
this parameter, the effect on population expansion can be
quantified. Similarly, a quantification of how embryonic diapause
effects the per capita growth rate (through the parameter er) will
lead to a computation of how embryonic diapause affects species
colonisation speeds. The power of this model arises from the
usage of a technique new to mathematical ecology (Balasuriya
and Gottwald, 2010), in conjunction with a unified approach
which is encapsulated through the density-dependence of three
fundamental ecological parameters. Additionally, the final for-
mulae arising from the model are refreshingly simple, provid-
ing benchmarks for determining invasion speeds, and initial
guesses for numerical solutions to more refined models which
include effects such as competition, predation and environmental
heterogeneity.
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Appendix A. Invasion speed change due to a perturbation

A newly developed analytical technique will be used to
quantify the change in the invasion speed due to including
density-dependence in each of the parameters. The results below
were derived by Balasuriya and Gottwald (2010) using specialised
mathematical techniques from dynamical systems theory, which
are well beyond the scope of the present article. The main result
will be explained in this section, and the interested reader is
referred to Appendix A in Balasuriya and Gottwald (2010) for
a mathematical development. Suppose a partial differential
equation

@u

@t
¼F

@2u

@x2
þ f ðuÞ ðA:1Þ

has a known solution uðx,tÞ ¼ u0ðx�c0tÞ, in which x and t appear
together in the combination x¼ x�c0t. It is assumed that the
constant c0 is well-defined (unique), which occurs for example
when f is bistable (Malaguti et al., 2004; Gilding and Kersner,
2004), but not in the KPP-situation where f is a logistic quadratic
(Murray, 1993). (While this latter situation possesses a maximum
attainable speed (Kolmogorov et al., 1937; Skellam, 1951), a range
of speeds is possible.) The profile u0ðxÞ is assumed to possess
well-defined limits as x-71Fthat is, at the ‘‘front’’ and ‘‘back’’
of the profile. For example, u0 approaching 1 as x-�1, and
approaching 0 as x-þ1, as happens in fact in the base model (5).
This profile simply moves to the right at speed c0 while retaining
its shape, and is therefore called a travelling wave. Now, suppose
the perturbed dynamics

@u

@t
¼F

@2u

@x2
þ f ðuÞþeg u,

@u

@x
,
@2u

@x2

� �
, ðA:2Þ

in which jej is small, and g is an arbitrary function potentially
depending on u and its first two spatial derivatives, is considered.
If this system continues to support a travelling wave which is
‘‘close’’ to that of (A.1), then its wavespeed c can be expanded in e
as

c¼ c0þec1þOðe2Þ ðA:3Þ

in which Oðe2Þ means terms of order e2 or higher (such as e3, etc).
This means that if e is small, say 10�2, then the higher-order terms
are of size 10�4, which can therefore be neglected in comparison
to the first-order term c1. The reader familiar with Taylor series
would recognise c1 as representing the rate of change of c with
respect to e; alternatively, it is the leading-order modification to
the speed. Balasuriya and Gottwald (2010) show that

c1 ¼

�
R1
�1

exp
c0x
F

� �
u0uðxÞg u0ðxÞ,u0uðxÞ,u0uuðxÞð Þdx

R1
�1

exp
c0x
F

� �
½u0uðxÞ�2 dx

: ðA:4Þ

The primes appearing above are the derivatives with respect to the
argument. Eq. (A.4) enables the quantification of the leading-order
effect on the speed purely in terms of information from the
unperturbed system (A.1). Comparison of c0þec1 with numerical
solutions by Balasuriya and Gottwald (2010) indicate that the
method is remarkably accurate in quantifying the speed, even
when e is fairly large (say, e¼ 0:3). Many sorts of perturbations can
be considered in (A.2) by choosing g appropriately. Formula (A.4)
can therefore be used in instances when the inclusion of density-
dependence can be expressed as a perturbation on (4), in fact, for
all instances outlined in Section 2.2.
Appendix B. Derivation of speed for density-dependent
carrying capacity

The first step in the analysis is to write (13) in the perturbed
form of (A.2). This is accomplished using binomial expansions, as
described in Appendix C, leading to

@u

@t
¼F

@2u

@x2
þ

4r

ðK�aÞ2
uðK�uÞðu�aÞþek

4ru2ðu�aÞðKþa�2uÞ

ðK�aÞ3
:

ðB:1Þ

By comparison with (A.2) and (A.3), it is possible to take e¼ ek,
c1 ¼ c1k and

gðuÞ ¼
4ru2ðu�aÞðKþa�2uÞ

ðK�aÞ3
:

Now, formulae for the unperturbed profile u0 and wavespeed c0

are available in (5) and (6) for this system. Reiterating these in the
current notation,

u0ðxÞ ¼
K

1þexp
K

K�a

ffiffiffiffiffi
2r

F

r
x

" # , c0 ¼
K�2a
K�a

ffiffiffiffiffiffiffiffiffi
2Fr
p

: ðB:2Þ

Substituting these into (A.4) to compute c1k leads to many
com-
plicated integrals. Now, employ the change of variable

t¼ K

K�a

ffiffiffiffiffi
2r

F

r
x, ðB:3Þ

and define the new parameter

p :¼
3K�2a

K
¼ 3�2h: ðB:4Þ

Upon additionally defining the family of integrals

Im
n :¼

Z 1
�1

emt

ð1þetÞn
dt,

it is possible to write c1k as

c1k ¼�
2
ffiffiffiffiffiffiffiffiffi
2rF
p

ðK�aÞ2
ðK�aÞ2Ip�1

6 �ðK�aÞðKþ2aÞIp
6þaðKþaÞI

pþ1
6

Ip
4

ðB:5Þ

after some algebra. Now, with the help of the computational
algebra package Mathematica (Wolfram Research Inc., 2005), it
can be shown that

Im
n ¼

Z 1
�1

emt

ð1þetÞn
dt¼ ð�1Þn�1pcosecðmpÞ

ðn�1Þ!

Yn�1

j ¼ 1

ðm�jÞ, ðB:6Þ

for integer n satisfying n4m40, in which
Q

is the product.
The validity of formula (B.6) was further verified by numerically
investigating its left and right hand sides. Since 0oaoK ,
p satisfies 1opo3, and hence (B.6) is relevant for all the four
occurrences of In

m in (B.5). Noting also that cosec½ðp71Þp� ¼
�cosec½pp�, significant cancellations in (B.5) occur, enabling it to
be written as

c1k ¼
2
ffiffiffiffiffiffiffiffiffi
2rF
p

ðK�aÞ2
p�4

20ðp�1Þ

½ðK�aÞ2ðp�5Þðp�6ÞþðK�aÞðKþ2aÞðp�1Þðp�5ÞþaðKþaÞpðp�1Þ�:

The remainder of the calculation simply amounts to replacing p

with (B.4) and simplifying, which leads to (15).
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Appendix C. Binomial expansion leading from (13) to (B.1)

The binomial expansion is a standard technique which works
in the situation when jxj is small, and states that

ð1þxÞn ¼ 1þnxþ
nðn�1Þ

2
x2þ

nðn�1Þðn�2Þ

6
x3þ � � � , ðC:1Þ

where n is any real number. For small jxj, the ‘‘higher-order’’
terms can be neglected, resulting in the approximation
(1+x)n

¼1+nx. Applying (C.1) to the pgr term in (13) with the
understanding that ek is small:

pgr¼
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4ru2ðu�aÞðKþa�2uÞ
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þOðe2

k Þ:

Neglecting the higher-order term gives (B.1).
Appendix D. Derivation of speed for density-dependent
maximum fertility

The procedure followed here is similar to that in Appendix B,
and hence the descriptions will be brief. By comparing (18) with
(A.2), and using the identification with e¼ er and c1¼c1r, the
function g is seen to take the form

gðuÞ ¼�
4ru2ðu�aÞðK�uÞ

KðK�aÞ2
:

An expression for c1r involving integrals can be written by
substituting into (A.4). Using the definitions for t, p and In

m given,
respectively, by (B.3), (B.4) and (B.6) in Appendix B, the value of c1r is

c1r ¼
2
ffiffiffiffiffiffiffiffiffi
2rF
p

K�a
aIp

5�KIp
6

Ip
4

:

Once again, using the formula (B.6) for each of the In
ms, this can be

simplified to the expression (20).
Appendix E. Derivation of minimum carrying capacity (17) for
resource depletion

Setting c¼0 in (16) leads to the quadratic equation

2 1�
ek

10
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h2�3 1þ

ek
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hþ 1�

ek

10

� �
¼ 0:

Using the standard quadratic formula, this has the solution
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Now, the negative sign corresponds to the solution near 1/2.
Choosing this sign, and bearing in mind that ek is a perturbative
parameter and hence small, binomial expansions (C.1) can be
done for all the terms above. Keeping only terms up to first order
in ek, this leads to

h ¼ 1
2 �

3
10ek:
An alternative method for obtaining this is to follow the
procedure outlined in Appendix G. Now, since h¼ a=K ,

K ¼
a
h
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a
1

2
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3

5
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� � ¼ 2a 1�
3

5
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¼ 2a 1þ
3
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� �

by using binomial expansions (C.1) for small ek, as desired.
Appendix F. Derivation of speed for density-dependent
dispersal rate

Examining (22) in comparison to (A.2), one can take e¼ ef and

g u,
@u

@x
,
@2u

@x2

� �
¼

F
K

u
@2u

@x2
þ

@u

@x

� �2
 !

: ðF:1Þ

While this is fundamentally different from the previous cases in
that g depends on higher derivatives of u, the calculations turn out
to be similar. Substituting (F.1) into (A.4) and simplifying using
exactly the change of variables (B.3) and the definitions (B.4) and
(B.6), the expression

c1f ¼
ffiffiffiffiffiffiffiffiffi
2rF
p K

K�a
2Ipþ1

6 �Ip
6

Ip
4

is obtained. Proceeding as in Appendix B leads to (24) after some
algebra.
Appendix G. Derivation of minimum carrying capacity (26)
under population pressure

Setting cf in (25) to zero leads to the expression

1�2hþ
ef
10
ð2þh�6h2Þ ¼ 0:

This quadratic equation for h is ‘‘singular’’; a small parameter ef
multiplies the highest-order term. Thus, rather than employing
the quadratic formula to determine values of h satisfying the
above, a simpler method is to set

h¼
1

2
þa

ef
10

,

substitute into the quadratic equation above, and retain only
terms of Oðe2

fÞ. Here, a is a as-yet unknown quantity. This leads to

ef
10
�2aþ

5

2
�

3

2

� �
¼ 0 ,

and hence a must equal 1
2. Thus, the h value at which the species is

stationary is

h ¼
1

2
þ

1

2

ef
10
¼

1

2
1þ

ef
10

� �
,

which equals a=K. Hence the carrying capacity value, K ,
corresponding to this is given by

K

a
¼ 2 1þ

ef
10

� ��1

¼ 2 1�
ef
10

� �

by using the binomial expansion (C.1) and neglecting higher-
order terms in ef. When rearranged, (26) results.
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