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Abstract We present a method based on the Melnikov function used in dynamical
systems theory to determine the wavespeed of travelling waves in perturbed reaction–
diffusion systems. We study reaction–diffusion systems which are subject to weak
nontrivial perturbations in the reaction kinetics, in the diffusion coefficient, or with
weak active advection. We find explicit formulæ for the wavespeed and illustrate our
theory with two examples; one in which chemotaxis gives rise to nonlinear advection
and a second example in which a positive population pressure results in both a density-
dependent diffusion coefficient and a nonlinear advection. Based on our theoretical
results we suggest an experiment to distinguish between chemotactic and population
pressure in bacterial colonies.
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378 S. Balasuriya, G. A. Gottwald

1 Introduction

When a species acts collectively, its spatial distribution changes with time. Examples
range from bacteria (Adler 1966; Budrene and Berg 1991; Berg and Turner 1990), to
slime molds (Bonner 1967; Odell and Bonner 1986), to animal herds (Gueron et al.
1996). The causes for the distribution to change with time depend on the species and
environment. One commonly studied situation is chemotaxis, in which cells or bac-
teria move in the direction of the highest chemical gradient of an attractant (Stock
and Surette 1996). Organisms which use chemotaxis to locate food sources include
amoebae of the cellular slime mold Dictyostelium discoideum (Bonner 1967), and the
motile bacterium Escherichia coli (Adler 1966; Budrene and Berg 1991; Berg and
Turner 1990). Another cause for the distribution to change is population pressure, in
which organisms move to regions of low density which have larger amounts of uncon-
sumed food (Shiguesada et al. 1979; Gurney and Nisbet 1975). This effect leads to
population regulation of ant-lions (Morisita 1971), and the swarming of locusts (Buhl
et al. 2006; Bazazi et al. 2008). Note that the positive population pressure may under
certain circumstances exhibit the same overall-effect as chemotaxis (Lega and Passot
2007). For example, in a bacterial colony on an agar plate with an initially homoge-
neous food distribution, bacteria are more likely to be found where food has already
been consumed. The positive population pressure would therefore lead to bacteria
moving towards areas where there is still unconsumed food. Similarly, if the bacte-
ria react chemotactically to the food source, the same behaviour would be observed.
However the biological mechanism is entirely different. In our analysis will show that
the two cases can in principle be distinguished by measuring how a population reacts
to different food resource gradients.

A fundamental technique for modelling the evolution of population density is via
reaction–diffusion–advection equations. Well-studied examples include the classical
Fisher-KPP equation (Fisher 1937; Kolmogorov et al. 1937), and the Nagumo equa-
tion (Murray 1993; Gilding and Kersner 2004; Malaguti et al. 2002, 2004). Both these
equations support “travelling wave” solutions in which a sigmoidal population density
profile simply shifts with time. Depending on the direction of motion, this signifies
either an expanding population or a retreating one. The speed at which the profile
moves is of fundamental biological importance, and will be a focus of the current
study. Generically, the speed is nonzero (for interesting examples where almost sta-
tionary fronts can be observed for a range of parameters see Kramer et al. 2000). For
general reaction–diffusion–advection equations, it is difficult, if not impossible, to
analytically determine the speeds of travelling waves that can be supported.

The aim of our paper is twofold. First, we will present a general theory to cal-
culate the speed of travelling waves for a large class of weakly but (possibly) non-
linearly perturbed reaction–diffusion equations which are relevant for biological
applications. The theory utilises the Melnikov function from dynamical systems
(Guckenheimer and Holmes 1983), and builds on ideas used for combustion problems
(Balasuriya et al. 2007; Balasuriya and Volpert 2008), to obtain a powerful method
to study travelling waves and which has the potential to be applied to many areas of
mathematical biology. Secondly, we will exploit this theory to consider two examples,
one model including chemotaxis and one population pressure. The remarkably simple
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Wavespeed in reaction–diffusion systems 379

analytic expressions we obtain for the wavespeed modification due to these effects is
verified through numerical simulation of the governing partial differential equations.
Our theory reveals that the two mechanisms exhibit different dynamical behaviour
which is reflected in the analytically determined wave speed corrections and in the
induced shift of the Maxwell-point. This may help experimentalists to decide whether
the underlying mechanism for bacteria to move is caused by chemotaxis or population
pressure.

In Sect. 2, we introduce the general class of equations for which we then develop a
perturbation theory in Sect. 3. We apply the theory to a system involving chemotaxis
in Sect. 4, and to a system involving population pressure in Sect. 5. We discuss the
biological implications and conclude with a discussion in Sect. 6.

2 Mathematical model

Let u(x, t) be the population density (or chemical concentration, depending on the
model) of the quantity of interest. We restrict our analysis to one-dimensional models
which, for example, may be justified for cylindrical geometries, where u(x, t) would
then be a cross-sectional average. Its evolution in time and space will be modelled by
the non-dimensional reaction–diffusion equation

ut = D uxx + G(u) + ε h(u, ux , uxx ). (1)

in which ε is a small positive quantity. For simplicity of exposition, we assume in this
section a constant diffusion coefficient D. The general case of a non-constant diffusion
coefficient which is also of biological relevance (Sanchez-Garduño and Maini 1994;
Montroll and West 1979; Shiguesada et al. 1979; Gurney and Nisbet 1975; King and
McCabe 2003) is treated separately in Appendix B.

We require the ε = 0 version of Eq. 1,

ut = D uxx + G(u), (2)

to support travelling waves with a well-defined wavespeed c0. This excludes the case of
a logistic (Fisher-KPP) function with G(u) = u (1 − u), since then (1) with ε = 0 can
support travelling waves with a continuous range of wavespeeds (Murray 1993). In this
case, it makes no sense to attempt to determine the wavespeed modification induced
by the perturbation, which is our aim here. The nonlinearity G : [0, 1] → R satisfies
the bistability conditions G(0) = G(1) = 0 and G(u) (u − α) > 0 for u ∈ (0, 1)\{α}
for some α ∈ (0, 1). This form is chosen to include Allee effects (Allee 1938; Stephens
et al. 1999), with α representing the Allee threshold as a fraction of the carrying capac-
ity. The per capita growth rate of the organism is negative for densities less than α.
The classic example of this is the function G(u) = −u(u − 1)(u − α) for which
(1) with ε = 0 is sometimes referred to as the Nagumo equation (see for example,
Murray 1993; Gilding and Kersner 2004; Taylor et al. 2004; Lewis and Kareiva 1993).
In general, these bistable functions G(u) enable the u = 0 and u = 1 states to be
stable equilibria for (1) in the absence of diffusion and advection. Such Gs ensure
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380 S. Balasuriya, G. A. Gottwald

that (1) possesses a travelling wave solution for ε = 0 with a well-defined wavespeed
(Malaguti et al. 2004, 2002). For the reaction term of the Nagumo equation an explicit
formula for the unique wavespeed is available (Murray 1993). It is in fact sufficient
for G to be any function, not only a bistable function, such that the ε = 0 version of
(1) possesses a travelling wave (front or pulse) which has a unique wavespeed (for
conditions on G which may ensure this, see Sanchez-Garduño and Maini 1994).

The term ε h(u, ux , uxx ) represents a general small perturbation to the system. We
impose the conditions h(0, 0, 0) = 0 and h(1, 0, 0) = 0 on the function h, to ensure
that u = 0 and u = 1 continue to be stable equilibria of the system. By permitting
h to depend on three arguments, we allow for perturbations in the reaction kinetics
(since h can depend on u), on the diffusion coefficient (since h may depend on uxx

and ux ), and also on active advection. In the latter case, h = −p(u)ux where p(u)

is the flow rate, for which standard models include the classical Keller–Segel model
(Keller and Segel 1970) in which p = u, or the receptor-law model (Murray 1993)
in which p = (1 + u)2. This extends the commonly considered forms of Eq. (1) in
Keller and Segel (1970); Murray (1993); Gilding and Kersner (2004); Malaguti et al.
(2004, 2002). Under the assumption that an O(ε)-close travelling wavefront continues
to exist for the system (1) for small |ε|, we will formulate a theory to determine the
modification to the wavespeed. To rigorously prove the existence of such a continuing
heteroclinic connection and its closeness to the unperturbed one is a nontrivial matter
which we do not attempt here.

We attempt a travelling wave solution u(x, t) = u(η) to (1), where η = x − c t in
which c is the wavespeed. (We are confident that a well-defined wavespeed exists in
the bistable situation due to the results of Malaguti et al. (2004, 2002); however, our
theory will hold in other situations provided the wavespeed is unique.) Upon defining
w(η) := u′(η), we rewrite Eq. (1) as

− c w = D w′ + G(u) + ε h(u, w,w′). (3)

Note that here c is the wave speed of the full perturbed problem.
The travelling wave solution of the system (2) is associated with a heteroclinic con-

nection between (u, w) = (0, 0) and (1, 0) in (3). If a nearby heteroclinic connection
persists for small |ε|, the perturbed stable and unstable manifolds must continue to
coincide. This observation enables us to apply the Melnikov technique from dynam-
ical systems theory in a novel way to obtain a condition on the wavespeed of (3). The
Melnikov function is associated with a distance between the perturbed stable and
unstable manifolds, which must continue to be zero if a heteroclinic connection per-
sists. In order to apply the theory (described in detail in the next section), it is necessary
to write (3) as a perturbed dynamical system. We note that we only need to expand
the corresponding vector field in ε, rather than the travelling wave solution, in order
to apply the method (Guckenheimer and Holmes 1983; Arrowsmith and Place 1990;
Wiggins 1990).

We begin by expanding the wavespeed as c = c0 + ε c1 + O(ε2), in which c0 is
the wavespeed of the travelling wave solution of (2). Therefore, the perturbed system
takes the form

−c0 w − ε c1w = D w′ + G(u) + ε h
(
u, w,w′) + O(ε2) ,

123



Wavespeed in reaction–diffusion systems 381

which can be written as an implicit first-order system as

u′ = w

w′ = 1

D
[−c0 w − G(u)] − ε

1

D

[
c1 w + h

(
u, w,w′)] + O(ε2).

⎫
⎬

⎭
(4)

However, so far h is the fully non-truncated perturbation and contains terms of any
order in ε. By examining the w′ equation in (4), we see that

w′ = −c0 w − G(u)

D
+ O(ε). (5)

Hence, by Taylor expanding h with respect to its last argument, we obtain

h
(
u, w,w′) = h

(
u, w,

−c0 w − G(u)

D
+ O(ε)

)

= h

(
u, w,

−c0 w − G(u)

D

)
+ O(ε). (6)

Note that the validity of the ε-expansions (5) and (6) relies on our assumption of
a persistent O(ε)-close heteroclinic connection implying that the perturbed solution
remains close to the unperturbed solution for all times. Thus, (4) becomes a system
which to first-order in ε is given by

u′ = w

w′ = 1

D
[−c0 w − G(u)] − ε

1

D

[
c1 w + h

(
u, w,

−c0 w − G(u)

D

)]

⎫
⎪⎬

⎪⎭
(7)

We note that since (7) agrees with (3) to O(ε), the wavespeed of the two systems must
agree to this level of approximation. Hence, c1 as computed from (7) represents the
O(ε)-order term in the wavespeed associated with the original system (1).

The sigmoidal density distribution in the ε = 0 system corresponds to a hetero-
clinic connection between the fixed points (u, w) = (0, 0) and (1, 0). In particular,
the travelling wavefront approaches u = 0 in the limit η → −∞, and u = 1 in the
other limit η → ∞, or vice versa. We will assume that we have full information about
this unperturbed wavefront, in that the wavefront (ū(η), w̄(η)) is known, as is the
wavespeed c0. This is certainly so if we use the Nagumo function for G(u), as will be
illustrated subsequently. Additionally, the conditions h(0, 0, 0) = h(1, 0, 0) = 0 that
we impose on h ensure that the fixed points (u, w) = (0, 0) and (1, 0) persist when
ε �= 0. We note however that if these conditions are not imposed, there are nearby
fixed points (u, w) = (O(ε),O(ε)) and (u, w) = (1 + O(ε),O(ε)) for sufficiently
smooth perturbations h. The theory we describe in Sect. 3 for finding the perturbation
to the wavespeed would work in this situation as well, albeit for a wavefront which
now does not go from u = 0 to 1.
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3 Wavespeed correction

A modified Melnikov approach, described in detail in Appendix A, is necessary to
proceed. Basically, the system (7) is in the general form of

x′ = f(x) + ε g(x) , (8)

where the solution x = (u, w) and the vector fields f and g are two-dimensional.
Moreover, at ε = 0, the system possesses a heteroclinic connection between two
hyperbolic fixed points, in which (a branch of) the stable manifold emanating from
one point coincides with (a branch of) the unstable manifold emanating from the other.
This one-dimensional heteroclinic manifold can be parametrised by the independent
variable η in terms of a solution x̄(η) to (8) at ε = 0. Now, after perturbing with ε, these
unstable and stable manifolds persist (Fenichel 1971), and an (effective) leading-order
distance between them at x̄(η) is measured by the Melnikov function

M (η) =
∞∫

−∞
exp

⎡

⎣
η∫

r

(∇ · f) (x̄(s)) ds

⎤

⎦ (f ∧ g) (x̄(r)) dr , (9)

given as (29) in Appendix A, where the wedge product is defined by
f ∧ g := f1g2 − f2g1 in terms of the components of f and g. This is a slight variation
on the standard Melnikov function (Guckenheimer and Holmes 1983; Arrowsmith
and Place 1990; Wiggins 1990) where we allow for divergent vector fields f and g.
For details of this result, please see Appendix A, which itself extends the results of
Appendix A in Balasuriya et al. (2007). Thus, for (7),

f =
⎛

⎝
w

1

D
[−c0 w − G(u)]

⎞

⎠

and

g =
⎛

⎜
⎝

0

− 1

D

[
c1 w + h

(
u, w,

−c0 w − G(u)

D

)]

⎞

⎟
⎠

and hence

∇ · f = −c0

D
and f ∧ g = −w

D

[
c1 w + h

(
u, w,

−c0 w − G(u)

D

)]
.

Therefore, the Melnikov function in this case is

M(η) =−
∞∫

−∞
exp

⎡

⎣−
η∫

τ

c0

D
ds

⎤

⎦ w̄(τ )

D

{
c1w̄(τ ) + h

(
ū(τ ), w̄(τ ), w̄′(τ )

)}
dτ (10)
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in which x̄(τ ) ≡ (ū(τ ), w̄(τ )) is the heteroclinic trajectory in (7) when ε = 0, going
from (u, w) = (0, 0) to (1, 0), and where we use the abbreviation

w̄′(τ ) := −c0w̄(τ ) − G (ū(τ ))

D

for the derivative of the unperturbed wave’s w-component.
Now, for a persistent heteroclinic trajectory, M(η) ≡ 0 for all η. This is since if a

trajectory continues to exist between the fixed points (0, 0) and (1, 0), then the distance
between the perturbed stable and unstable manifolds must continue to remain zero.
Setting (10) to zero, splitting into two integrals based on the sum in the integrand, and
solving for the constant c1, gives

c1 = − ∫ ∞
−∞ eτc0/D w̄(τ ) h

(
ū(τ ), w̄(τ ), w̄′(τ )

)
dτ

∫ ∞
−∞ eτc0/D [w̄(τ )]2 dτ

. (11)

A similar expression for the perturbation of the wavespeed c1 can be obtained for
the case when the diffusivity is not constant, but depends on u (see equation (34) in
Appendix B). For a passive advective perturbation (that is, if h = −p ux for constant
p), it is immediate that c1 = p, as expected. In the following, we will apply our
general formalism to calculate the wavespeed correction c1 for two examples related
to chemotaxis and population-pressure induced diffusion.

4 Example 1: chemotaxis (h = −unux)

As the first example to illustrate our theory, we consider the system

ut + ε un ux = D uxx − u (u − 1) (u − α) , (12)

in which u models the population density of a bacterium, normalised such that u = 1
is the maximum sustainable population. Here D is a positive diffusion constant, n is
a positive integer, and α ∈ (0, 1). The parameter α determines the minimal required
density for a population to be able to survive. In the homogeneous case when we
ignore the spatial derivatives, α separates initial conditions which may grow to u = 1
or decay to u = 0. To determine the critical initial condition which can develop
into a travelling wave see Cox and Gottwald (2006). For this special case of (1),
h(u, ux , uxx ) = −unux and G(u) = −u(u − 1)(u − α) is the Nagumo function.

The un form for the advective velocity in (12) is relevant to chemotaxis; in Brenner
et al. (1998); Keller and Segel (1970); Benguria et al. (2004); Lika and Hallam (1999)
the flow rate is proportional to u. In our analysis, we are able to extend the situation
to more general un , and obtain explicit expressions for the leading-order perturbation
to the wavespeed.

We briefly recall examples from the literature in which the Burgers-type convec-
tive term uux is linked to chemotactic systems. In Benguria et al. (2004) a Keller–
Segel-type model (Keller and Segel 1970) for a bacteria density ρ is studied involving
diffusion, growth and chemotaxis with a chemoattractant s(x, t)
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ρt = [
Dρρx − ρχsx

]
x + G(ρ)

(13)
st = −kρ.

Here χ is the chemotactic coefficient. The non-diffusive chemoattractant depletes
solely through consumption by the bacteria (Segel 1972). Travelling wave solutions
with η = x − ct allow us to write sx = kρ/c leading to a single equation for the
bacteria density

ρt = [
Dρρx

]
x − 2χk

c
ρρx + G(ρ),

which involves the simple nonlinear Burgers-type convective term we consider here.
In Brenner et al. (1998) the relationship between chemotaxis and the Burgers-equation
advective term has been extended to the case where the chemoattractant is diffusive
as well. The model (13) is augmented as

ρt = [
Dρρx − χρsx

]
x + G(ρ)

(14)
st = Dssxx − kρ.

For simplicity we assume again the diffusion coefficients Dρ,s to be constants. If the
time-scale of the chemoattractant is much faster than the time-scale of the bacteria,
we may set st = 0. Introducing ν = sx we obtain

ρ = Ds

k
νx ,

which leads to the single equation for ν

νt = Dρνxx − χννx + k

Ds

x∫
G(ν) dx,

which again shows the Burgers-type advective term.
The ε = 0 form of (12) is the well-known bistable (Nagumo) reaction–diffusion

equation

ut = D uxx − u (u − 1) (u − α),

for which a travelling sigmoidal wavefront solution u(x, t) = ū(η) with η = x − c0t
is given by Murray (1993)

ū(η) =
exp

(
η√
2D

)

1 + exp
(

η√
2D

)
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with corresponding wavespeed

c0 = √
2 D

(
α − 1

2

)
. (15)

This wavefront proceeds from u = 0 at η → −∞ to u = 1 at η → ∞, and therefore
represents a heteroclinic trajectory from (u, w) = (0, 0) to (1, 0) in (7) with ε = 0.
If α > 1/2, the wavefront propagates to the right (and the bacteria eventually die
out), whereas for α < 1/2, it moves to the left resulting in the bacteria spreading. At
α = 1/2, the so called Maxwell point, the front is stationary. To utilise (11), we also
need the spatial derivative of the wavefront which we evaluate as

w̄(η) = ū′(η) = 1√
2D

(
2 + 2 cosh

(
η√
2D

)) .

The wavespeed correction in this case becomes, from (11),

c1 =
∫ ∞
−∞ ec0τ/D [w̄(τ )]2 [ū(τ )]n dτ

∫ ∞
−∞ ec0τ/D [w̄(τ )]2 dτ

. (16)

We first focus on the case n = 1, in which the advective velocity is proportional to
the density u. As seen above, this is most relevant to the chemotaxis models in Brenner
et al. (1998); Keller and Segel (1970); Benguria et al. (2004); Lika and Hallam (1999),
in which case we have the system

ut + ε u ux = D uxx − u (u − 1) (u − α) .

For this situation, the wavespeed c1 in (16) is explicitly calculable with the help of
Mathematica (Wolfram Research Inc. 2005), and takes the extraordinarily simple form

c1 = 1 + 2α

4
. (17)

Somewhat surprising is the fact that this O(ε) perturbation to the wavespeed is inde-
pendent of the diffusivity D. The wavespeed for n = 1 is thus

c = √
2 D

(
α − 1

2

)
+ ε

(
1 + 2α

4

)
+ O(ε2). (18)

The addition of chemotaxis to the Nagumo equation, as modelled by the weak advec-
tion in (12), therefore induces a rightwards-moving contribution to the wavefront
(which may however be leftwards moving since its O(1) term is negative if α < 1/2).
Hence we find that chemotaxis inhibits propagation of the bacteria when compared to
the purely diffusive case. Let us now consider the Maxwell point at which the front
is stationary by setting c = 0. The Maxwell point separates the parameter space into
regions for which the bacteria can spread (c < 0) from those where the bacteria will
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ultimately die out (c > 0). For the purely diffusive case with ε = 0, we see from (15)
that αMax = 0.5. For ε �= 0 we readily find that the Maxwell point is given by

αMax = 1

2

√
2D − 1

2ε√
2D + 1

2ε
+ O(ε2) = 1

2

(
1 − ε√

2 D

)
+ O(ε2).

For given chemotaxis strength ε, αMax is a monotonically increasing function of the
diffusion coefficient D with αMax < 0.5 for all D, and limiting value αMax → 0.5 for
D → ∞. Hence a population of bacteria requires a larger initial population when com-
pared to the purely diffusive case to allow for sustained propagation. For fixed diffusion
coefficient D, αMax is a linearly decreasing function of the chemotaxis parameter ε

with αMax < 0.5 for small values of ε, again confirming that chemotaxis requires a
larger initial density for survival. This effect may be interpreted by considering that the
bacteria produce the chemoattractant themselves. Therefore an initial localized pop-
ulation will compress and move towards its centre rather than spread outwards. Note
that more complicated behaviour occurs in chemotactic systems when the interaction
of several localized populations mediated via chemoattractants is considered (Bonner
1967; Odell and Bonner 1986).

In Fig. 1, we present a comparison between the analytical result (18) (solid curve)
and the wavespeed obtained by numerically solving the partial differential equation
(12) (circles). The dashed curve is the wavespeed c0 of the unperturbed equation (15),
and the parameter values used are α = 0.3, n = 1 and ε = 0.1. Our analytical values
for the wavespeed are accurate to within 0.1% across all values of D, and differences
with the results from a numerical simulation of the full partial differential equation
(12) are not visible at the resolution of the figure.

The numerical solution in Fig. 1 was obtained using a pseudo-spectral scheme
in which the linear terms are solved using a semi-implicit Crank–Nicolson scheme
and the nonlinear terms with a second-order Adams–Bashforth scheme (Press et al.
1992). To double-check our results for the estimated velocity we have also performed
a shooting method for the ordinary differential equations for the travelling waves using
a fourth-order Runge–Kutta integrator.

For general positive integers n, an analytical expression for c1 can be obtained using
Mathematica (Wolfram Research Inc. 2005), yielding

c1 = 3 sin (2πα)

2π

[

− 4 � (−2α) F2
1 (3 − 2α, 4 + n, 4 − 2α,−1)

+� (1 + n + 2α) F2
1 (1 + n + 2α, 4 + n, 2 + n + 2α,−1)

α (α − 1) (2α − 1)

]

(19)

in which � is the Gamma function and F2
1 is a regularised hypergeometric function

defined by

F2
1 (a, b, c, z) := 1

�(b) �(c − b)

1∫

0

tb−1 (1 − t)c−b−1 (1 − t z)−a dt.
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1 2 3 4 5
D

-0.6

-0.5

-0.4

-0.3

-0.2

c

Fig. 1 Wavespeed variation with D, with n = 1, α = 0.3 and ε = 0.1. The dashed curve is the wavespeed
c0 of the unperturbed Eq. (15), the solid curve the analytical wavespeed as in (18), and the circles denote
numerically computed wavespeeds calculated from a simulation of the full partial differential equation (12)

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c1

n 1

n 2 n 5

n 10

α

Fig. 2 Leading-order wavespeed correction c1 (solid curves) versus α at different values of n for (12); the
circles are numerically computed values of (c − c0) /ε with ε = 0.1 calculated from a simulation of the
full partial differential equation (12)

We note that the D-independence of c1 is preserved for general n. The dotted curves
in Fig. 2 show the variation of c1 with α for different values of n. Larger n causes c1
to decrease (i.e., the effect of the chemotaxis-induced perturbation on the wavespeed
is less, which is reasonable since the perturbative term un is smaller). Nevertheless,
c1 is a monotonically increasing function of α for any n. The circles in Fig. 2 are
numerically computed values of the quantity (c − c0) /ε, with ε = 0.1, in which c
was obtained by numerically solving the full partial differential equation (12) directly.
As can be seen, the analytical formula (19) for c1 forms an excellent approximation
for (c − c0) /ε.

In the limit α → 1/2 which corresponds to the (stationary) Maxwell-point of the
unperturbed system, both the denominator and the nominator of the wavespeed cor-
rection c1 in Eq. (19) approach zero. This indeterminacy however is removable, and
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Mathematica (Wolfram Research Inc. 2005) can be employed on (19) to compute that

c1

∣∣∣
α=1/2

= 6

(2 + n) (3 + n)
. (20)

That is, the unperturbed stationary front when α = 1/2 will move rightwards at
the speed whose O(ε) coefficient is given in (20). Thus, a bacterial colony which is
stationary in the purely diffusive case dies if chemotaxis is switched on.

5 Example 2: population pressure (h = ∂x(uux))

As our second example, we consider h(u, ux , uxx ) = (uux )x and study

ut = D uxx + ε (ux )
2 + ε uuxx − u (u − 1) (u − α) . (21)

Note that the perturbation can be written in flux-form as

h = −∂x J with J = −∂x

[
u2

]
.

In Shiguesada et al. (1979) and Gurney and Nisbet (1975) this form of the population
flux has been suggested to model population pressure. The specific form of a term qua-
dratic in the density u has been derived in Gurney and Nisbet (1975) as the continuum
model from a “microscopic” model of random walkers whose jumping probability is
biased by the averaged macroscopic density gradient.

As in Example 1, we are using the Nagumo bistable function as the reaction kinetics,
and assuming a constant diffusive coefficient. We can use again the analytical expres-
sions for c0, ū and w̄ computed in Sect. 4 for the unperturbed travelling wavefront at
ε = 0.

We will use our analysis to quantify the role of population pressure on the leading-
order wavespeed correction c1. The initial analysis of Example 1 holds for this case,
and the equation for the wavespeed perturbation is

c1 = −
∫ ∞
−∞ ec0τ/D w̄(τ )

{
[w̄(τ )]2 + ū(τ ) w̄′(τ )

}
dτ

∫ ∞
−∞ ec0τ/D [w̄(τ )]2 dτ

,

by applying (11). Mathematica Wolfram Research Inc. (2005) can once again be
invoked to obtain the explicit result

c1 = (3α − 2) (1 + 2 α)

10
√

2 D
. (22)

The speed of wavefronts supported by (21) is therefore

c = √
2 D

[(
α − 1

2

)
+ ε

D

(3α − 2)(1 + 2α)

20
+ O(ε2)

]
. (23)
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Fig. 3 Leading-order wavespeed correction c1 (solid curve) versus α for (21); the circles are numerically
computed values of (c − c0) /ε with ε = 0.1 and D = 1 from simulating the full partial differential equation
(21)

The wavespeed correction is nonlinear in α, and, unlike in the previous example,
is dependent on the diffusion coefficient D. The correction is moreover O(ε2) if
α = 2/3, and has a maximum leftwards contribution when α = 1/12. To check the
validity of the analytical expression (22), we performed direct numerical simulations
on the full partial differential equation (21) in order to compute the wavespeed c, and
compared the quantity (c − c0) /ε with the analytical result for the wavespeed correc-
tion c1 as given in (22). The results of this process for ε = 0.1 and D = 1 are shown
in Fig. 3. We once again find excellent agreement with the theory, and differences
between our theory and the numerical results are not visible at the resolution of the
figure.

Our results reveal an interesting effect of population pressure on the propagation
speed. Depending on α, which we recall measures the minimally required density
assuring a sustained population, the population pressure may have either a decreasing
or increasing effect on the propagation speed. For α > 2/3 the population pressure
inhibits the propagation of a population reflected in c1 > 0, whereas for α < 2/3
it supports the bacteria to propagate with c1 < 0. Unlike chemotaxis, population
pressure induces expansion of a population at α = 1/2, which would be stationary in
the purely diffusive case. Contrary to the chemotaxis model studied in the previous
Section, the Maxwell point αMax is a monotonically decreasing function of the diffu-
sion coefficient D for fixed population pressure ε with limiting case αMax → 0.5 for
D → ∞. We find

αMax = − 1

12

(
20

D

ε
− 1

)
+ 5

6

√(
2

D

ε
+ 1

)2

− 51

100
+ O(ε2)

= 1

2
+ 1

20

ε

D
+ O(ε2).

The Maxwell point is larger than the value 0.5 of the purely diffusive case for all
values of the diffusion coefficient D, allowing populations of smaller initial sizes
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to propagate compared to the purely diffusive situation with ε = 0. This result can
be interpreted again by considering an initial localized population. The population
pressure is directed outwards towards regions of lower density, thereby leading to
spreading of the population. The effect that population pressure inhibits spreading for
α > 2/3 seems to be a nontrivial effect. The tendency of bacteria to migrate away
from the bulk will cause the density to drop at the edges below the critical density α.
For large α this has a stronger effect, and will lead to an inhibiting effect, reducing the
overall propagation speed. However, note that for α > 2/3 the overall wave speed is
already positive in the purely diffusive case.

6 Discussion and conclusions

In this article, we have outlined an approach for obtaining the analytical wavespeed
correction for a class of reaction–diffusion equations in which a large class of per-
turbations is considered. This includes for example perturbations corresponding to
weak advection, density-dependent diffusion, or a perturbed reaction term. In order
for the technique to work, it is necessary that the unperturbed reaction–diffusion equa-
tion possess a wavefront or wavepulse at a unique wavespeed. A standard situation
in which this occurs is when a bistable reaction term is used, for which the Nagumo
function is the classical example. Another example is Arrhenius-type reaction terms
(Balasuriya et al. 2007). However, it is pertinent to mention that it is not necessary to
have an analytical expression for the unperturbed travelling wave and its velocity. One
may use the formalism as well with numerically obtained solutions. The technique is
based on the application of the Melnikov function, which usually is used in dynamical
systems to measure the difference between perturbed stable and unstable manifolds
under time-dependent perturbations, in which the unperturbed system is volume-pre-
serving. In the case of dissipative reaction diffusion systems, the Melnikov function
needs to be formulated for non-volume-preserving vector fields and time-independent
perturbations. We present the theory in detail in Appendix A, since the non-volume-
preserving situation is not readily available in the literature, and to our knowledge has
not been applied in the context of mathematical biology. By setting the Melnikov func-
tion to zero, a condition for the persistence of a heteroclinic connection is obtained,
which leads to an expression for the perturbation on the wavespeed.

The applicability of our approach was illustrated with two examples: one was moti-
vated by chemotaxis, while the other by dispersive population pressure. In the two cases
we studied we were able to write down explicit formulae for the wavespeed correction
c1, namely (17) for the chemotaxis model and (22) for the population pressure model.
We have verified the theoretical approach by numerically simulating the partial dif-
ferential equations in the examples we considered, and obtained excellent agreement.
(In more complicated situations the main formula for the wavespeed, (11) or (34),
can be evaluated numerically.) The wave speed corrections for chemotaxis (17) and
for population pressure (22) reveal an important difference between the two mecha-
nisms. Whereas the inclusion of chemotaxis leads to contraction of an initial localized
population (i.e. c1 > 0), population pressure has the opposite effect and leads to an
increased spreading (i.e. c1 < 0). This may be used in an experiment to test whether
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certain bacteria interact via chemotaxis or population pressure. One may prepare sev-
eral petri dishes with different initial food distributions, varying in the initial gradient
of the distribution with the maximum located at the center of the petri dish. One may
then place an initial population of the bacteria of interest over the food source. The
gradient of the food source determines the strength of the chemotaxis and is measured
by ε in our theory. If the average response of the bacteria to stronger gradients of the
food source distribution is to contract towards the center in proportion to the gradient,
then according to our result this indicates that the bacteria are moving according to
chemotaxis.

We would like to conclude with an outlook of biologically relevant systems which
may be treated with our method. Another example in which advection occurs, is the
amoeboid plasmodium of the true slime mold Physarum polycephalum (Nakagaki
et al. 2000). The ectoplasm of this slime mold exhibits rhythmic contractions and
relaxations causing hydrodynamic streaming of its endoplasm. The endoplasmic flow
has been suggested to enhance the coupling of the chemical oscillators located in the
ectoplasm. The effect of the streaming has been modelled using an advection of the
form p = ux (Nakagaki et al. 1999; Yamada et al. 1999, 2007; Kobayashi et al. 2006).
Further study will allow us to investigate the effect of the active advection in this case
where the bistable Nagumo reaction term has to be replaced by an oscillatory system.
Other “hydrodynamic” effects which involve active advection of the form we have
studied here have been considered in Lega and Passot (2007) for bacterial pattern for-
mation. We expect that our method will be useful in many such applications involving
active advection. The example on the positive population pressure also involved a term
of the form uuxx . Realizing that such a term would also appear as the first-order term
of a Taylor expansion for a perturbation of a diffusion coefficient D(u), we may apply
our theory also for systems in which density dependent perturbations of the (density
dependent) diffusion coefficient are important.
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pretation of our results, and James Sneyd for his encouragement and his critical reading of the manuscript.
GAG gratefully acknowledges support by the Australian Research Council.

Appendix A: Melnikov approach

In this appendix, an appropriately modified Melnikov approach for determining
wavespeeds in perturbed wavefront and wavepulse solutions is outlined. The original
Melnikov work usually relates to time-periodic perturbations of area-preserving sys-
tems (Melnikov 1963; Guckenheimer and Holmes 1983; Arrowsmith and Place 1990),
but time-independent perturbations of a non-area-preserving situation is needed here.
Such is available in Holmes (1980) and in Appendix A of Balasuriya et al. (2007),
which is the first instance in which Melnikov methods were used for determination
of speeds of travelling waves. Here, we present a full derivation (which is not present
in Balasuriya et al. 2007), with additional changes which emphasise the geometric
meaning of the Melnikov method. The approach works for the perturbed system

x′ = f(x) + ε g(x)
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also given as (8) in the main text. In the above, x(t) is a two-dimensional vector, and f
and g are functions taking values in R

2. Suppose  is a one-dimensional heteroclinic
manifold to this system when ε = 0. This represents the instance in which a one-
dimensional (branch of a) unstable manifold of a hyperbolic fixed point (a) coincides
with a (branch of a) stable manifold of another hyperbolic fixed point, (b). If a and
b are the same point, this is a homoclinic manifold (corresponding to a wavepulse as
opposed to a wavefront), which is included in the theory. The manifold  consists of
a solution x̄(η) to (8) when ε = 0, such that

lim
η→−∞ x̄(η) = a and lim

η→∞ x̄(η) = b,

and this solution is the unperturbed wavefront/pulse profile. Please see Fig. 4, in which
the dashed curve is the heteroclinic manifold . Note that f is tangential to  at all
points, since the dynamics is given by x′ = f(x), and the manifold  is a trajectory
of this equation.

Now, when ε is turned on, Fenichel’s results show that the hyperbolic fixed points
persist, as do their stable and unstable manifolds (Fenichel 1971). However, the mani-
folds need no longer coincide. This situation is shown in Fig. 4 in which the perturbed
version of the fixed point a is aε, and its unstable manifold is u

ε (where the “u” super-
script stands for “unstable”) is shown. A similar situation occurs for the fixed point
bε and its stable manifold s

ε, (wherein “s” stands for “stable”), as is also pictured.
Let xu

ε (η, τ ), in which τ is the time-variable, be a trajectory lying on the perturbed
unstable manifold, with time-parametrisation chosen so that

xu
ε (η, τ ) = x̄(η + τ) + ε xu

1(τ ) + O(ε2).

Thus, xu
ε (η, 0) is O(ε)-close to x̄(η). (A technical point is that the O(ε)-closeness

represented in the above expansion cannot be expected for all τ ∈ R, but only for
τ ∈ (−∞, T ] for any T , since there is no guarantee that the perturbed manifold
remains close to the unperturbed one when it gets “beyond” bε. However, this does
not become an issue in the present theory, since the focus is on a persistent heteroclinic
manifold.) Similarly, let xs

ε(η, τ ) be a trajectory lying in the stable manifold of bε such
that

xs
ε(η, τ ) = x̄(η + τ) + ε xs

1(τ ) + O(ε2) ,

which is defined for τ ∈ [T,∞) for some T . We are interested in the displacement
between xu

ε (η, 0) and xs
ε(η, 0), which is shown vectorially in Fig. 4 as the heavy arrow.

However, we measure this along a one-dimensional normal f̂⊥ to  at a location
x̄(η), with the normal direction chosen by rotating f (x̄(η)) by π/2 in the anti-clock-
wise direction. Both these vectors are also shown in Fig. 4. Rather than obtaining an
expression for the vector directly, we will investigate

d(η, ε) := f̂⊥ (x̄(η)) · [
xu
ε (η, 0) − xs

ε(η, 0)
]
, (24)
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Fig. 4 Figure for Melnikov approach

that is, the projection of the relevant vector in the direction of f̂⊥. For example, d(η, ε)

in Fig. 4 would be a negative quantity, and in particular, if the perturbed manifolds
intersect at this η value, then d(η, ε) = 0. We note that our choice of η is negative
the “homoclinic coordinate” used by Wiggins (1990), in order to relate the point x̄(η)

more directly to d(η, ε).
We next define the wedge product between two-dimensional vectors F and G is

defined by F ∧ G := F1G2 − F2G1 in terms of the components of F and G. Define

M(η, τ ) := f (x̄(η + τ)) ∧ [
xu

1(τ ) − xs
1(τ )

]
. (25)

With an abuse of notation, we will refer to the function M(η) := M(η, 0) as the
Melnikov function. Note that

d(η, ε) = ε f̂⊥ (x̄(η)) · [
xu

1(0) − xs
1(0)

] + O(ε2)

= ε
f (x̄(η))

|f (x̄(η))| ∧ [
xu

1(0) − xs
1(0)

] + O(ε2)

= ε
M(η)

|f (x̄(η))| + O(ε2) , (26)

and hence M(η) carries the leading-order information on the manifold intersection.
Write (25) as

M(η, τ ) = f (x̄(η + τ)) ∧ xu
1(τ ) − f (x̄(η + τ)) ∧ xs

1(τ ) =: Mu(η, τ ) − Ms(η, τ ),

in which the above serves to define Mu and Ms . Here, Mu is defined for τ ∈ (−∞, T ]
whereas Ms is defined for τ ∈ [T,∞) for any finite T . Now, taking the derivative of
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Mu(η, τ ) with respect to τ ,

∂ Mu

∂τ
=

[
Df (x̄(τ + η))

∂ x̄(τ + η)

∂τ

]
∧ xu

1(τ ) + f (x̄(τ + η)) ∧ ∂xu
1(τ )

∂τ

= [Df (x̄(τ + η)) f (x̄(τ + η))] ∧ xu
1(τ )

+ f (x̄(τ + η)) ∧
[
f
(
xu
ε (η, τ )

) + εg
(
xu
ε (η, τ )

) − f (x̄(τ + η))
]

ε

= [Df (x̄(τ + η)) f (x̄(τ + η))] ∧ xu
1(τ )

+ f (x̄(τ + η)) ∧ [
Df (x̄(τ + η)) xu

1(τ )
]

+ f (x̄(τ + η)) ∧ g (x̄(τ + η)) + O(ε). (27)

The above calculations have utilised the facts that x̄(τ + η) is a solution to (8) when
ε = 0, and xu

ε (η, τ ) is similarly a solution when ε �= 0. We now use the easily verifiable
fact that for 2 × 2 matrices A, and 2 × 1 vectors b and c, we get

(A b) ∧ c + b ∧ (A c) = (Tr A) (b ∧ c) ,

where Tr A denotes the trace of A. Choosing A = Df (x̄(τ + η)), b = f (x̄(τ + η))

and c = xu
1(τ ),

∂ Mu

∂τ
= ∇ · f (x̄(τ + η)) Mu + f (x̄(τ + η)) ∧ g (x̄(τ + η)) + O(ε).

Ignoring higher-order terms, the solution of this linear differential equation for
Mu(·, τ ) involves using the integrating factor

μ(η, τ) := exp

⎡

⎣−
τ∫

0

∇ · f (x̄(s + η)) ds

⎤

⎦ ,

after which one obtains

∂

∂τ

[
μ(η, τ)Mu(η, τ )

] = μ(η, τ) f (x̄(τ + η)) ∧ g (x̄(τ + η)) . (28)

Integrating (28) from τ = −∞ to 0 yields

Mu(η, 0) =
0∫

−∞
exp

⎡

⎣
0∫

τ

∇ · f (x̄(s + η)) ds

⎤

⎦ f (x̄(τ + η)) ∧ g (x̄(τ + η)) dτ ,

since Mu(η,−∞) = f (x̄(−∞)) ∧ xu
1(−∞) = f (a) ∧ xu

1(−∞) = 0.
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We next perform the analogous calculation for Ms(η, τ ), but at the final step inte-
grate from τ = 0 to τ = ∞. This yields

Ms(η, 0) = −
∞∫

0

exp

⎡

⎣
0∫

τ

∇ · f (x̄(s + η)) ds

⎤

⎦ f (x̄(τ + η)) ∧ g (x̄(τ + η)) dτ ,

Since M(η) := M(η, 0) = Mu(η, 0) − Ms(η, 0), we obtain the Melnikov function

M(η) =
∞∫

−∞
exp

⎡

⎣
0∫

τ

∇ · f (x̄(s + η)) ds

⎤

⎦ f (x̄(τ + η)) ∧ g (x̄(τ + η)) dτ

=
∞∫

−∞
exp

⎡

⎣
η∫

r

∇ · f (x̄(s)) ds

⎤

⎦ f (x̄(r)) ∧ g (x̄(r)) dr (29)

where the second step is through using the change of integration variable r = τ + η.
The formula (29), along with (26), gives us an expression for the distance between
the perturbed manifolds, measured along the perpendicular to the original manifold
, as an expansion in ε. Note that the Melnikov function given in (29) is, modulo
a non-zero normalising factor, the leading-order distance between the manifolds. If
the manifolds intersect at every point, this would mean that d(η, ε) = 0 for all η at
small ε. For this to happen, it is necessary that M(η) = 0 for all values of η, since
the manifolds need to coincide at every point. Thus, a condition for persistence of a
heteroclinic connection between aε and bε is that M(η) ≡ 0.

Appendix B: Non-constant diffusivity

The diffusive coefficient in (1) was assumed constant. However, there are many
biological observations which indicate its dependence on the population density
including arctic squirrels (Carl 1971), rodents (Myers and Krebs 1974), ant-lions
(Shiguesada et al. 1979), and population spread in the early Americas (King and
McCabe 2003). Such density-dependent diffusivity is also a feature of numerous
models (Sanchez-Garduño and Maini 1994; Montroll and West 1979; Shiguesada
et al. 1979; Gurney and Nisbet 1975; King and McCabe 2003). To account for this,
(1) would need to be replaced by

ut = (D(u) ux )x + G(u) + ε h(u, ux , uxx ). (30)

Fortunately, theoretical existence and uniqueness results when ε = 0 extend to this
situation of non-constant D (Malaguti et al. 2004, 2002; Sanchez-Garduño and Maini
1994; Gilding and Kersner 2004), and moreover, the uniqueness of the wavespeed has
also been established for general bistable G (Malaguti et al. 2004, 2002).
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We now follow the development in Sects. 2 and 3, taking into account the new form
of the governing equation. The equation in the travelling wave coordinate ξ = x − ct
is now

−c w = D′(u)w2 + D(u) w′ + G(u) + ε h(u, w,w′).

Expanding the wavespeed as c = c0 + ε c1 + O(ε2) as before leads to

− c0 w − ε c1w = D′(u)w2 + D(u) w′ + G(u) + ε h
(
u, w,w′) + O(ε2). (31)

By examining the leading-order terms in (31), we see that

w′ = −c0 w − G(u) − D′(u) w2

D(u)
+ O(ε).

Hence, by Taylor expanding h with respect to its last argument, we obtain

h
(
u, w,w′) = h

(
u, w,

−c0 w − G(u) − D′(u) w2

D(u)

)
+ O(ε) ,

enabling (31) to be written as

u′ = w

w′ = 1

D(u)

[
−c0 w − D′(u) w2 − G(u)

]

−ε
1

D(u)

[
c1 w + h

(
u, w,

−c0 w − G(u) − D′(u) w2

D(u)

)]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(32)

We recall the equation for the Melnikov function (9)

M (η) =
∞∫

−∞
exp

⎡

⎣
η∫

r

(∇ · f) (x̄(s)) ds

⎤

⎦ (f ∧ g) (x̄(r)) dr ,

and note that for (32),

f =
⎛

⎝
w

1

D(u)

[
−c0 w − D′(u) w2 − G(u)

]

⎞

⎠

and

g =
⎛

⎜
⎝

0

− 1

D(u)

[
c1 w + h

(
u, w,

−c0 w − G(u) − D′(u) w2

D(u)

)]

⎞

⎟
⎠
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and hence

∇ · f = 1

D(u)

[−c0 − 2 w D′(u)
]

and

f ∧ g = − w

D(u)

[
c1 w + h

(
u, w,

−c0 w − G(u) − D′(u) w2

D(u)

)]
.

Therefore, the Melnikov function in this case is

M(η) = −
∞∫

−∞
exp

⎡

⎣−
η∫

τ

c0 + 2 w̄(s) D′ (ū(s))

D (ū(s))
ds

⎤

⎦

× w̄(τ )

D (ū(τ ))

{
c1w̄(τ ) + h

(
ū(τ ), w̄(τ ), w̄′(τ )

)}
dτ. (33)

Setting (33) to zero, splitting into two integrals based on the sum in the integrand, and
solving for the constant c1, gives

c1 =
− ∫ ∞

−∞ exp
[
− ∫ η

τ
c0+2w̄(s)D′(ū(s))

D(ū(s)) ds
]

w̄(τ ) h(ū(τ ),w̄(τ ),w̄′(τ ))
D(ū(τ ))

dτ

∫ ∞
−∞ exp

[
− ∫ η

τ
c0+2w̄(s)D′(ū(s))

D(ū(s)) ds
]

[w̄(τ )]2

D(ū(τ ))
dτ

. (34)

Equation (11) emerges as a special case of (34), when D is set equal to a constant.
This formula enables the calculation of the modification in population spreading speed
in the presence of any biologically relevant phenomenon (described through h), even
when the diffusion coefficient depends on the density. An interesting point is that the
apparent dependence of c1 on η in this situation is spurious, as it must be. A multipli-
cative term exp[−I (η)], where I is the antiderivative of the inner integrand in (34),
emerges in both the numerator and denominator, and therefore cancels. Therefore, any
convenient value of η can be chosen when evaluating (34).
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