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Résumé. Nous définissons un groupoı̈de de Fréchet-Lie Map(S1
, X) d’ana-

foncteurs du cercle vers un groupoı̈de de Lie X . Ceci fournit une présentation

du Hom-champ Hom(S1
,X), où X est le champ différentiable associé à X .

Nous appliquons cette construction au groupoı̈de de Lie sous-jacent au ‘fibré-

gerbe’ (= ”bundle gerbe”) d’une variété différentiable M ; le résultat est un

fibré-gerbe au-dessus de l’espace des lacets LM de M .

Abstract. We define a Fréchet–Lie groupoid Map(S1
, X) of anafunctors

from the circle into a Lie groupoid X . This provides a presentation of the

Hom-stack Hom(S1
,X), where X is the differentiable stack associated to X .

We apply this construction to the Lie groupoid underlying a bundle gerbe on

a manifold M ; the result is a bundle gerbe on the loop space LM of M .
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1. Introduction

The notion of smooth loop space of a manifold is useful in a variety of ar-
eas of geometry, while at the same time being just outside the usual sphere
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of study, namely finite-dimensional manifolds. While it is naturally a topo-

logical space, it carries a very well-behaved smooth structure as an infinite-

dimensional manifold. While recent progress on generalised smooth spaces

means that any mapping space, in particular a loop space, is easily a smooth

space, and the general study of smooth spaces is advancing in leaps and

bounds (see e.g. the lengthy book [IZ13] on diffeological spaces), the fact

that the loop space is a manifold with well-understood charts is extremely

useful.

The area of geometry has in recent years expanded to include what is be-

coming known as ‘higher geometry’, where, loosely speaking, the geometric

objects of study have a categorical or higher categorical aspect. One exam-

ple of such objects are differentiable, or Lie, groupoids, which are known

[Pro96] to be incarnations of differentiable stacks: stacks that look locally

like manifolds, but with internal symmetries captured by Lie groupoids. A

rather well-known simple case is that of orbifolds. Other examples that

are still stacks on manifolds but which are still akin to Lie groupoids, are

groupoids built from infinite-dimensional manifolds, or from smooth spaces.

Clearly these objects can become locally less well-behaved as one becomes

more general; an arbitrary diffeological space, for instance, may have rather

terrible topological and homotopical properties.

The construction that this short paper wishes to address is that of the loop

stack of a differentiable stack. This was introduced in the special case of

orbifolds in [LU02], and then considered in full generality for the purposes

of studying string topology in [BGNX12]. All of these are special cases

of the loop stack of the underlying topological stack, a special case of the

topological mapping stack studied in [Noo10].1 In other words, the end

result is only a topological stack, rather than a differentiable stack.

One (quite reasonable) approach is to consider if we can find a loop stack

on manifolds that arises from a diffeological groupoid (i.e. a diffeological

stack). This is not too difficult, and the parts of our construction that do not

require special handling due to the nature of manifolds are performed for

diffeological stacks. The novelty here is that this construction can be lifted

so that it becomes a stack arising from what we call a Fréchet–Lie groupoid:

1
The paper [Car12] considers the more general problem of a cartesian closed bicategory

of stacks, whereas [Noo10] considers the special case with compactness conditions on the
domain.
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a groupoid in the category of Fréchet manifolds. This is the optimal result,

since the construction applied to a manifold returns (a stack equivalent to) the

usual loop space of that manifold, which is an infinite-dimensional Fréchet

manifold in general. This is in contrast to the case of algebraic Hom-stacks,

for instance [Ols06], which are again algebraic stacks.

The benefits of having a smooth version of the loop stack is that one

can start to do actual geometry on it, rather than just topological construc-

tions (such as the string topology in [BGNX12]). Moreover, while one can

perform smooth geometric constructions on diffeological spaces, as spaces,

unlike manifolds there is little control over the local structures. So, for in-

stance, our construction provides a smoothly paracompact groupoid, admit-

ting partitions of unity on object and arrow manifolds.

Another example, which was the original impetus for this article, are the

loop stacks of bundle gerbes. Bundle gerbes over manifolds are higher geo-

metric objects analogous to line bundles, and as such can support structures

analogous to connections. One can form the construction given below to the

groupoid underlying a bundle gerbe and then the resulting groupoid is in fact

still a gerbe, now over a loop space, and this should again carry a connective

structure of the appropriate sort. Of particular interest is the bundle gerbe

underlying the String 2-group, which will be the subject of future work.

We consider in this paper various categories of smooth objects, groupoids

in those categories and corresponding smooth stacks. Figure 1 summarises

these, as well as the relations between them. The first row consists of cate-

gories, the remaining rows consist of 2-categories, and the inclusions denote

full subcategories and sub-2-categories. The vertical arrows of type !! !!

denote surjective-on-objects 2-functors. We use StackX to denote the 2-

category of stacks of groupoids on the site X .

The paper outline is as follows:

• Section 2—Gives background on sites, internal groupoids, anafunc-

tors (a type of generalised morphism between internal groupoids) and

stacks presented by groupoids internal to the base site.

• Section 3—We construct a diffeological groupoid Map(S1, X) of ana-

functors and transformations.

• Section 4—Proves that Map(S1, X) is indeed a presentation over the

site of diffeological spacs, making Hom(S1,X) a diffeological stack.
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• Section 5—We show that the construction of Map(S1, X) actually
lands in the sub-2-category of Fréchet–Lie groupoids, and that this
gives a (weak) presentation of Hom(S1,X). This is our first main
result.

• Section 6—Gives a treatment of the theory of gerbes on the site of
manifolds presented by (Fréchet–)Lie groupoids, including establish-
ing stability of various properties under forming the mapping groupoid.

• Section 7—We prove our second main result, namely that given a bun-
dle gerbe (a special sort of abelian gerbe), the mapping groupoid is
again a bundle gerbe.

Acknowledgements. This research was supported under the Australian
Research Council’s Discovery Projects funding scheme (projects numbered
DP120100106 & DP130102578). This project was born in ‘Coffee Spot’:
thanks to the staff for uninterrupted and secluded working time. A big thanks
to Andrew Stacey for writing the paper [Sta13], in order to prove theorem
5.1, after discussions with the first named author; this theorem was crucial
to the success of the current paper. Thanks also to Alexander Schmeding for
side discussions about possible extensions to the infinite-dimensional set-
ting. The authors thank the anonymous referee for their careful reading and
helpful suggestions, which helped us find a small error in the original version
of Lemma 6.5.

2. Background and preliminaries

2.1 Sites

We will be interested in stacks over sites where the Grothendieck topology,
arises from a coverage (see e.g. [Joh02, Section C.2.1]), rather than the more
familiar data of a pretopology. In this paper we will work only with a cover-
age and not the Grothendieck topology generated by it.

Definition 2.1. Let C be a category. A coverage J on C is a collection J(x),
for each object x, of families of arrows {ui → x | i ∈ I} (called covering
families) with the property that for each covering family {ui → x | i ∈ I} ∈
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J(x) and f : y → x there is a covering family {vk → y | k ∈ K} ∈ J(y)
such that for all k there is an i ∈ I and lift as shown

vk !!

""

ui

""

y
f

!! x

A site (C, J) is then a category C equipped with a coverage J , and sites with

the same underlying category are equivalent if their coverages generate the

same sieves.

It will be the case that the coverages we consider satisfy the saturation
condition that composites of coverages are again coverages, but not still not
necessarily that pullbacks of covering families are covering families.

If we have a pair of covering families U = {ui → x | i ∈ I} and
V = {vj → x | j ∈ J} then we say V refines U if for every j ∈ J there is an
i ∈ I and a lift of vj → x through ui. We can say that a coverage J1 refines
the coverage J2 if every covering family in J1 refines a covering family in
J2. If J1 refines J2 and J2 refines J1 then they give rise to equivalent sites.

A coverage is called a singleton coverage if all covering families consist
of single maps, in which case covering families will be referred to as cover-

ing maps. An example of a singleton coverage is a class of maps contain-
ing identity arrows, closed under composition and pullback along arbitrary
maps; such a class will be called a singleton pretopology

A superextensive coverage (on an extensive category, see [CLW93]) is
one that is generated by a singleton coverage and the coverage where cov-
ering families are inclusions of summands {ui →

∐
i∈I ui | i ∈ I}. For

all intents and purposes, a superextensive coverage J can be reduced to con-
sidering just the singleton coverage ⨿J it gives rise to: ⨿J-covering maps
are of the form

∐
i ui → x, for {ui → x | i ∈ I} a covering family in

the original superextensive coverage. We shall abuse terminology slightly
and say that a superextensive coverage J1 and another singleton coverage J2
give rise to equivalent sites when the singleton coverage associated to J1 is
equivalent to J2. We shall also abuse notation and refer to a covering map in
⨿J as being in J when no confusion shall arise.

A site is called subcanonical if all representable presheaves are in fact
sheaves. For a singleton coverage this is implied by all covering maps being
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regular epimorphisms, and for a subcanonical superextensive coverage J ,
the singleton coverage ⨿J is subcanonical. In fact all of the coverages we
consider in this paper will be subcanonical.

We will need the following examples over the course of the paper.

Example 2.2. Consider the category Cart with objects Rn for n = 0, 1, 2, . . .
and Cart(Rn,Rm) = C∞(Rn,Rm). This has a coverage where a covering
family {φi : R

n ↪→ R
n | i ∈ I} is an open cover in the usual sense.

For the purposes of the current paper, we consider manifolds to be finite
dimensional unless otherwise specified.

Example 2.3. The category M of smooth manifolds has the following cov-
erages:

• the coverage O of open covers in the usual sense;

• the coverage C, where covering families C(X) are covers of X by
regular closed compact neighbourhoods, such that the interiors also
cover;

• the singleton pretopology Subm where covering maps are surjective
submersions.

All these coverages give equivalent sites, the first two because manifolds
are locally compact and regular2 and the first and last because surjective
submersions have local sections. The first two coverages are superextensive,
and we will be considering their associated singleton coverages.

Recall that a (smooth) Fréchet manifold is a smooth manifold locally
modelled on Fréchet spaces (a good reference is [Ham82]). The definition
does not assume second-countability, so that the category of Fréchet man-
ifolds admits small coproducts. A submersion between Fréchet manifolds
is a map for which there are charts on which the map looks locally like a
projection out of a direct sum: V ⊕W → V (it is not enough to ask that this
is surjective, or even split surjective, on tangent spaces).

2
In fact there is a coverage on the category of locally compact spaces consisting of

compact neighbourhoods, and a coverage on the category of regular spaces consisting of
closed neighbourhoods.
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Example 2.4. The category F of Fréchet manifolds has a coverage given by
open covers, and also a singleton pretopology given by surjective submer-
sions. The first is superextensive, and these give rise to equivalent sites.

Our last example needs some preliminaries. The following definition is
quite different to that which appears in the original article [Sou80], but is in
fact equivalent by work of Baez–Hoffnung [BH11]. An extensive reference
is the book [IZ13].

Definition 2.5. A diffeological space is a sheaf X on Cart that is a subsheaf

of Rn %→ Set(Rn, X), where X = X(R0) is the set of points of X . A smooth

map of diffeological spaces is just a map between the underlying sheaves. We

denote the category of diffeological spaces by D.

We can think of cartesian spaces Rn as diffeological spaces via the Yoneda
embedding, and for X a diffeological space, the elements of X(Rn) as maps
R

n → X in D. The category of diffeological spaces is a Grothendieck quasi-
topos [BH11], in particular is complete, cocomplete, extensive and cartesian
closed.

A map X → Y of diffeological spaces is a subduction if for every
f : Rn → Y there is a covering family φi : R

n ↪→ R
n such that each map

f ◦ φi : R
n → Y lifts to X . Note that there are fully faithful inclusions

M ↪→ F ↪→ D. Surjective submersions of manifolds and also of Fréchet
manifolds are subductions.

Example 2.6. The category of diffeological spaces has a singleton pretopol-
ogy Subd given by subductions.

The following facts about subductions will be useful.

• Every subduction A → B is refined by a subduction with domain a
coproduct of Euclidean spaces;

• Every subduction A → M with M a manifold is refined by an open
cover of M .

The astute reader will have noticed that almost all of the examples are
in fact pretopologies or singleton pretopologies. The important fact is that
we need to use the singleton coverage ⨿C which is not a pretopology, but
refines a singleton pretopology.
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2.2 Internal groupoids

We will be dealing with internal groupoids that satisfy extra conditions, due
to the fact that the ambient categories of manifolds are not finitely complete.
To that end, Lie groupoids are groupoids internal to M where the source
and target maps are submersions, and Fréchet–Lie groupoids are groupoids
internal to F where again the source and target maps are submersions of
Fréchet manifolds. We will also consider diffeological groupoids, which are
just groupoids internal to D; their source and target maps are automatically
subductions.

Functors between internal groupoids, be they Lie, Fréchet–Lie or diffeo-
logical groupoids, will be assumed to be smooth. The same will be true for
natural transformations between such functors. We denote, for a category C,
the 2-category of groupoids internal to C by Gpd(C), with the above caveats
for C = M, F. Since the inclusions M ↪→ F ↪→ D are full, we have full
inclusions of 2-categories Gpd(M) ↪→ Gpd(F) ↪→ Gpd(D).

It is a well-known problem that there are just not enough morphisms be-
tween internal groupoids, in particular Lie groupoids and their cousins. One
approach to this problem is through the use of internal anafunctors. These
were introduced in Bartels’ thesis [Bar06], inspired by work of Makkai on
foundational issues surrounding the Axiom of Choice in category theory. We
do not need the full theory of internal anafunctors, the basic definitions are
enough for the present paper, for the special case where we only consider
internal groupoids. We have also generalised the notion ever so slightly, by
using singleton coverages; the fragment of the theory we need here does not
lose out by considering this more general setting.

Definition 2.7 ([Bar06]). Let J be a singleton coverage on C and let Y and

X be groupoids in C. An anafunctor Y−%→ X is a span of internal functors

Y
j
←− Y ′ f

−→ X

where the object component j0 : Y
′

0 → Y0 of j is a J-cover, and the following

square is a pullback

Y ′

1
j1 !!

""

Y1

""

Y ′

0 × Y ′

0 j0×j0

!! Y0 × Y0
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Of primary interest to us is the case when the groupoid Y has no nontriv-
ial arrows, that is, it is just an object of C, say M . In that case, any functor
j : Y ′ → M satisfying the conditions is determined by the map on objects
and the groupoid Y is what is known as a Čech groupoid of the covering
map j0 (or by abuse of notation, of its domain). If we let U = Y ′

0 , then
Y ′

1 = U ×M U , and we denote Y ′ by Č(U). Thus any anafunctor from M to

an internal groupoid X is of the form M
j
←− Č(U)

f
−→ X .

Assume for the moment that J is a singleton pretopology, so that we have

pullbacks of covering maps. Given a pair of anafunctors M ← Č(U1)
f
−→

X and M ← Č(U2)
g
−→ X , we want to define what it means to have a

transformation between them. Let U12 = U1 ×M U2. Then a transformation
is a diagram

Č(U1)

##

f

$$

M Č(U12)

%%

""

X ,

Č(U2)

&&

g

''
α
!!

where the two functors Č(U12) → Č(Ui) are induced by the projections
U12 → Ui. The picture one should keep in mind here is a coboundary be-
tween X-valued Čech cocycles that lives over a common refinement.

For a singleton coverage, such as the coverage ⨿C of compact neigh-
bourhoods on manifolds, we can define a transformation to be a diagram
as above, where instead of considering the pullback, which does not nec-
essarily exist (or if it does, may not be a covering map), one considers a
refinement U12, equipped with maps to U1 and U2. One of the lessons that
can be gleaned from [Rob16] is that when working with anafunctors nothing
is lost by considering a coverage that is cofinal in a pretopology, rather than
the pretopology itself (as in [Bar06]).

Using the notion of anafunctor with respect to a pretopology, internal
groupoids, anafunctors and transformations form a bicategory [Bar06]. We
will not use this bicategory structure directly, but it is relied on implicitly to
take advantage of Theorem 2.10 below.
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2.3 Stacks

We are considering stacks on the category M of manifolds using the cov-
erage O of open covers. A standard reference is [BX11], and we point the
reader to the detailed discussion of stacks in section 2.2 therein. We give the
definition we need and then mention without proof some standard facts.

Definition 2.8. Let X : Mop → Gpd be a weak 2-functor. We say X is

a stack if the following conditions are satisfied for every covering family

{φi : Ui →M | i ∈ I}:

1. For any pair of objects x, y of X(M) and any family of isomorphisms

σi : x|Ui
→ y|Ui

in X(Ui), i ∈ I , there is a unique isomorphism

σ : x→ y in X(M) such that σ|Ui
= σi.

2. For every family of objects xi ∈ X(Ui), i ∈ I , and collection of iso-

morphisms σij : xi|Uij
→ xj|Uij

in X(Uij), i, j ∈ I satisfying σjk ◦
σik = σik in X(Uijk) (leaving the restrictions implicit), then there is

an object x of X(M) and isomorphisms ρi : x|Ui
→ xi for all i ∈ I

such that σij ◦ ρi = ρj (in X(Uij)) for all i, j ∈ I (where as usual, we

write Uij = Ui ∩ Uj and Uijk = Ui ∩ Uj ∩ Uk).

If only the first point is satisfied, then we say X is a prestack.

A morphism of stacks is given by a transformation of weak 2-functors,
and there is a 2-category StackM of stacks on (M, O). The relevant points
we need are as follows:

• Any manifold M gives rise to a stack, also denoted by M (as O is sub-
canonical). Also, any diffeological space is a stack. The Yoneda em-
bedding ensures that any map of stacks between manifolds or diffeo-
logical spaces is just a smooth map in the usual sense. A stack equiv-
alent to a manifold is called representable.

• Any Lie groupoid gives rise to a prestack, by sending the groupoid
X to the presheaf of groupoids M(−, X) : Mop → Gpd, and this
prestack can be ‘stackified’. More generally, any Fréchet–Lie or diffeo-
logical groupoid gives rise to a prestack and hence a stack.
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• The 2-category of stacks StackD on (D, Subd) is equivalent to StackM.
This follows from a stack version of the “lemme de comparaison”
[SGA4.1, Esposé III, Théorème 4.1]; see discussion at [Car13].

The correct notion of ‘pullback’ for stacks is a comma object.3 For a

cospan G
f
−→ H

g
←− K of groupoids, the comma object G ↓H K (or some-

times f ↓ g) can be computed as the strict limit G ×H H ×H K where
H is the arrow groupoid of H . The comma object of a cospan of stacks
is calculated pointwise, that is, (X ↓Z Y) (M) = X(M) ↓Z(M) Y(M). The
comma object fits into a 2-commuting square called a comma square,

X ↓Z Y !!

""

Y

""

X !! Z
""

which is universal among such 2-commuting squares.
A stack is said to be presentable if it is the stackification of an internal

groupoid. In this case, there is extra structure that the stack admits, from
which we can recover the groupoid up to weak equivalence [Pro96, BX11].

First, we say a map of stacks Y→ X is representable (resp. representable
by diffeological spaces) if for every manifold M and map M → X, the
comma object M ↓X Y is representable by a manifold (resp. a diffeological
space). We can talk about properties of representable maps arising from
properties of maps in M or D; if P is a property of maps of manifolds (or
diffeological spaces) that is stable under pullback and local on the target in
a given coverage J , then we say a representable map of stacks Y → X has
property P if for every M → X the projection M ↓X Y → M has property
P .

Definition 2.9. A stack X on (M, O) is presentable (resp. presentable by

a diffeological groupoid) if there is a manifold (resp. diffeological space)

X0 and a representable epimorphism p : X0 → X that is a submersion

(resp. subduction).

3
This is sometimes called a weak pullback, or even just a pullback, in the stack literature.

However the definition usually given is clearly that of a comma object.
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It follows from the definition that the comma object X1 := X0 ↓X X0 is
representable (by a manifold or diffeological space), the two projection maps
X1 → X0 are submersions (or subductions) and X1 ⇒ X0 is an internal
groupoid. This internal groupoid is said to present the stack X. Then X is
the stackification of the prestack arising from this internal groupoid. Note
that this definition also works if we ask for presentability by a Fréchet–Lie
groupoid: one asks for a representable submersion from a Fréchet manifold.

The usual name for a stack presentable by a Lie groupoid is differentiable

stack, and we will call stacks presentable by diffeological groupoids, diffeo-

logical stacks. Stacks presented by a Fréchet–Lie groupoid shall be called
Fréchet differentiable stacks.

The main result we need here is the following, and follows from the
combination of the general theory of [Pro96] and [Rob12, Theorem 7.2] in
the case of Lie groupoids, and uses an adaptation of Pronk’s argument for
the case of diffeological groupoids.

Theorem 2.10. The 2-category of differentiable stacks (resp. diffeological

stacks) is equivalent to the bicategory of Lie groupoids (resp. diffeological

groupoids), anafunctors and transformations.

What this means in practice is that we can pass between maps between
presentable stacks and anafunctors between the presenting groupoids, and
we shall use this below.

If we have an epimorphism p : X0 → X from a representable stack X0

such that merely the comma object X0 ↓X X0 is representable and the pro-
jections are surjective submersions, then we call p a weak presentation. For
certain sites a weak presentation gives a strong presentation: this is true for
instance for presentations by diffeological spaces. This relies on the follow-
ing lemma adapted from [BX11, Lemma 2.2], which works in the framework
of stacks on the site of not-necessarily-Hausdorff (finite-dimensional) man-
ifolds.

Lemma 2.11. Let f : Y → X be a morphism in StackM. If M is a diffeo-

logical space, M → X an epimorphism of stacks, and the comma object

M ↓X Y is a diffeological space, then f is representable as a map of stacks

considered in the equivalent 2-category StackD.

The analogous result is not true for stacks on the category M, but it is

true (following [BX11]) if we allow ourselves to use possibly non-Hausdorff
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manifolds. In practice, one often finds that the stack is weakly presented by
a Lie groupoid, which is made up of (Hausdorff) manifolds, which then can
be used without reference to non-Hausdorff manifolds. The same can be said
for weak presentations by Fréchet–Lie groupoids, an example of which will
arise in our main construction.

While it is not always the case that the 2-category of internal groupoids
has internal homs, the 2-category of stacks does have internal homs, namely
for a pair of stacks X,Y, there is a stack Hom(Y,X) and an evaluation map
Y×Hom(Y,X)→ X with the necessary properties.

Definition 2.12. The Hom-stack Hom(Y,X) is defined by taking the value

on the object M to be the groupoid StackM(Y×M,X).

Thus we have a Hom-stack for any pair of stacks on M. The case we are
interested in is where we have a stack X associated to an internal groupoid
X in M or D, and the Hom-stack Hom(S1,X).

3. Construction of the diffeological loop groupoid

We will now describe the construction of the loop groupoid of a diffeo-
logical groupoid X . This will naturally be a groupoid also internal to D,
and we shall show in the next section that it in fact presents the Hom-stack
Hom(S1,X), for X the stack associated to X .

The objects of the diffeological mapping groupoid are anafunctors S1−%→
X , using the compact neighbourhood coverage C of Example 2.3.

As the category D of diffeological spaces is cartesian closed and finitely
complete, results of Bastiani–Ehresmann [BE72] imply that the category
Gpd(D) of diffeological groupoids is also cartesian closed and finitely com-
plete. Therefore the set Gpd(D)(Č(V ), X)0 of objects of the internal hom—
a groupoid—is in fact a diffeological space. We shall, for the sake of saving

space, write X Č(V ) := Gpd(D)(Č(V ), X)0. The category D is also co-
complete (in fact extensive) and so we define the object space Map(S1, X)0
to be the diffeological space

∐

V ∈C(S
1
)

X Č(V ).
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Remark 3.1. This mirrors the construction of the topological loop group-
oid as in [LU02, BGNX12], even though for the purposes of diffeological
groupoids it is not necessary to focus only on compact neighbourhoods; the
diffeological groupoid of functors would exist using ordinary open covers.
This would even give an equivalent mapping diffeological groupoid in the
end. However, for the Lie groupoids in section 5 we do need to use compact
covers to get the appropriate Fréchet topology on mapping spaces.

The picture we keep in mind for the elements of the object space is a
sequence like:

where the horizontal lines are paths in X0 and the vertical arrows, varying
smoothly, are given by a path in X1.

Next we move on to the arrow space of Map(S1, X). Recall that a trans-

formation t : f → g of anafunctors f, g : S1−%→ X is a diagram

Č(V12) !!

""

Č(V1)

f

""

Č(V2) g
!! X

##

where V12 is the chosen refinement of V1 ×S
1 V2 as discussed in section 2.2.

Note that t is necessarily a natural isomorphism as X is a groupoid.
For arbitrary f and g with domains Č(V1) and Č(V2), respectively, the

diffeological space of all transformations is

X Č(V1) ×
X

Č(V12)
(X )

Č(V12) ×
X

Č(V12)
X Č(V2)

where the two maps

X Č(Vi) → X Č(V12)
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are given by precomposition with the canonical functors Č(V12) → Č(Vi).
Here the groupoid X is the arrow groupoid of X and we are pulling back
along the maps

(X )
Č(V12) → X Č(V12)

which are given by postcomposition with the functors S, T : X → X (on
objects these are the usual source and target maps).

The space of arrows Map(S1, X)1 is then

∐

V1,V2∈C(S
1
)

X Č(V1) ×
X

Č(V12)
(X )

Č(V12) ×
X

Č(V12)
X Č(V2)

The source and target maps are projections on to the first and last factors.
These are automatically smooth maps, and are both split by the unit map and
hence are quotient maps; quotient maps in D are subductions and hence the
source and target maps are subductions.

Composition of transformations of anafunctors [Bar06, Proposition 12]
(or [Rob12, Section 5] for a description closer to what is given here) is a
little involved, but is essentially induced by the composition in X , which is
smooth. This implies that composition in Map(S1, X) is smooth, and hence
that Map(S1, X) is a diffeological groupoid.

4. Presentation by a diffeological groupoid

For X a diffeological groupoid, to give a presentation over D of the Hom-
stack Hom(S1, X) we will need to define a map from some diffeological
space A, considered as a stack, to Hom(S1, X). Such a map is determined
by a map of stacks A × S1 → X. Since these are all stacks arising from
diffeological groupoids, this a map can be specified by constructing an ana-
functor A × S1−%→ X in the category of diffeological spaces as per Theo-
rem 2.10.

Consider then the covers V → S1 used in the construction of the diffeo-
logical mapping groupoid, which are subductions since they admit local sec-
tions over open sets. The product of subductions is again a subduction, so
we can, for each V ∈ C(S1) define the anafunctor

S1 ×X Č(V ) ← Č(V )×X Č(V ) ev
−→ X
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where the right-pointing arrow is just the evaluation map for diffeological
groupoids. This gives us, via the preceeding argument, a map

X Č(V ) → Hom(S1,X)

of stacks, and hence a map q : Map(S1, X)0 → Hom(S1,X).

Proposition 4.1. For X a diffeological groupoid, the map q is an epimor-

phism of stacks.

Proof. It is enough to show that for any f : Rn → Hom(S1,X) there is an
open cover of Rn and local sections of q over it. The map f is determined by
a map R

n × S1 → X of stacks, and hence an anafunctor F : Rn × S1−%→X
of diffeological groupoids. Any subduction with codomain a manifold is
refined by an open cover of the manifold, so we can replace the anafunctor by
an isomorphic one of the form R

n×S1 ← Č(U)→ X , where U =
∐

i Ui →
R

n× S1 is an open cover. We can further repeat the argument from [Noo10,
Proof of Theorem 4.2] to construct an open cover

∐
j Wj → R

n and for each

j an open cover V o
j → S1 with closure Vj → S1 an element of C(S1). Then

the restrictions Wj × Č(Vj) → X of F give maps of diffeological spaces

Wj → X Č(Vj), i.e. local sections of q over the open cover {Wj}.

To show that the groupoid Map(S1, X) presents the Hom-stack, we need
to show that the comma object of the map q with itself is the arrow space
Map(S1, X)1 of our diffeological groupoid.

First, we do indeed have a 2-commuting square

Map(S1, X)1
s !!

t

""

Map(S1, X)0

q

""

Map(S1, X)0 q
!! Hom(S1,X)

$$

which we can see by considering a component of the top left corner labelled
by V1, V2 ∈ C(S1). The projection

X Č(V1) ×
X

Č(V12)
(X )Č(V12) ×

X
Č(V12)

X Č(V2) → (X )Č(V12)
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can be unwound to give a natural transformation between the maps q ◦ s and
q ◦ t.

To show the above diagram is indeed a comma square, we shall show
that for any Euclidean space R

n the diagram of groupoids

X Č(V1) ×
X

Č(V12)
(X )Č(V12) ×

X
Č(V12)

X Č(V2)(Rn) !!

""

X Č(V1)(Rn)

q

""

X Č(V2)(Rn) q
!! Hom(S1,X)(Rn)

%%

is a comma square. It is immediate that all but the bottom right corner are
sets, so we need to show the canonical map

c : X Č(V1) ×
X

Č(V12)
(X )Č(V12) ×

X
Č(V12)

X Č(V2)(Rn)

−→ X Č(V1) ↓
Hom(S

1
,X)(R

n
) X

Č(V2)(Rn)

is a bijection. These sets are as follows:

X Č(V1) ×
X

Č(V12)
(X )Č(V12) ×

X
Č(V12)

X Č(V2)(Rn)

≃

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
(f,α, g)

∣∣∣∣∣∣∣∣∣

R
n × Č(V12) !!

""

R
n × Č(V1)

f

""

R
n × Č(V2) g

!! X

α

&&

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

and

X Č(V1) ↓
Hom(S

1
,X)(R

n
) X

Č(V2)(Rn)

≃

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(f̃ , α̃, g̃)

∣∣∣∣∣∣∣∣∣∣

R
n f̃

!!

g̃
""

X Č(V1)

q

""

X Č(V2)
q

!! Hom(S1,X)

α̃

''

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.
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It is not difficult to see that c must be injective; in particular f and g corre-
spond to f̃ and g̃, respectively. Unravelling the description of α̃ we can see
it must arise from some α as in the first set, and so the map is bijective, and

hence X Č(V1) ↓
Hom(S

1
,X)(R

n
) X Č(V2) is representable, by the component of

Map(S1, X)1 labelled by V1, V2.
Since q is an epimorphism, we then see that q is representable (by Lemma 2.11)

and hence

Theorem 4.2. For X a diffeological groupoid, the Hom-stack Hom(S1, X)
is presented by the diffeological groupoid Map(S1, X).

Note that there was nothing special about S1 in this argument: we only
required S1 to be a manifold in order for the proof of Proposition 4.1 to
work. However for the next section the analysis is more delicate and so we
have only treated the case of S1.

5. Presentation by a Fréchet–Lie groupoid

The diffeological groupoid Map(S1, X) can also be considered in the case
that X is a Lie groupoid. In this section we will show that whenever X is
a Lie groupoid, the diffeological groupoid Map(S1, X) defined in section
3 is in fact a Fréchet–Lie groupoid (Theorem 5.9) and that it also weakly
presents the Hom-stack Hom(S1,X) over the site of manifolds (Theorem
5.12).

From now on we will work with the coverage C as in section 3 but we
will always use minimal covers of S1 (those such that triple intersections
are empty), which are cofinal in C(S1). We denote the set of these minimal
covers by C(S1)min The object space is then

∐

V ∈C(S
1
)min

X Č(V ),

where again each component X Č(V ) is the space of (smooth) functors Č(V )→
X . This is naturally described as the iterated pullback

XI1
0 ×X

J1
0

XJ1
1 ×X

J1
0

XI2
0 ×X

J2
0

XJ2
1 ×X

J2
0

. . .×
X

Jn−1
0

XIn
0
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where Ii are closed subintervals of S1, V =
∐n

i=1 Ii and Ji = Ii ∩ Ii+1, the
maps

XIi
0 → XJi

0 ← X
Ii+1
0

are given by restriction, and the maps XJi
1 → XJi

0 are induced by the source
and target maps alternately. Here the Ii and Ji are intervals so that a functor
Č(V ) → X consists of a series of paths Ii → X0 and a series of paths
Ji → X1 that “patch together using source and target”.

Recall that a pullback of a submersion in the category of Fréchet mani-
folds exists, and is again a submersion. Our strategy is to show that the maps
above are all submersions, which will imply that the object space is a Fréchet
manifold.

The following result of Stacey [Sta13] guarantees that the maps XJi
1 →

XJi
0 are submersions; see also [AS17, Lemma 2.4].

Theorem 5.1 (Stacey). Let M → N be a submersion of finite-dimensional

manifolds and K a compact manifold. Then the induced map of Fréchet

manifolds MK → NK is a submersion.

For the maps XIi
0 → XJi

0 ← X
Ii+1
0 we will need the following theorem,

which may be derived from the result in [See64] (see also [Mit61, §7], which
essentially proves Corollary 5.3 directly).

Theorem 5.2 (Seely). The Fréchet space (Rn)R+ is a direct summand of

(Rn)R, where we take the topology of uniform convergence of all derivatives

on compact subsets.

Corollary 5.3. The Fréchet space (Rn)[0,1] is a direct summand of (Rn)[−1,1],

hence the restriction map (Rn)[−1,1] → (Rn)[0,1] is a submersion of Fréchet

spaces. The same is true with [0, 1] ⊂ [−1, 1] replaced with any inclusion

J ⊂ I of compact intervals.

This allows us to prove

Proposition 5.4. Let M be an n-dimensional manifold and J ⊂ I two com-

pact intervals. Then the restriction map M I → MJ is a submersion of

Fréchet manifolds.
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Proof. Let f : I → M be a smooth function, and denote by fJ : J → M its
restriction along the inclusion. To show that M I → MJ is a submersion,
we need to find charts around f and fJ such that the map is a submersion of
Fréchet spaces on those charts. Recall [Ham82, §I.4.1] that a chart around
f is a neighbourhood of the zero section in Γ(I, I ×f,M TM), and similarly
for fJ . Clearly I ×f,M TM ≃ I × R

n, and given such an isomorphism we
get an induced isomorphism J ×fJ ,M

TM ≃ J ×R
n that is compatible with

the restriction map. The induced map on spaces of sections,

(Rn)I = Γ(I, I × R
n)→ Γ(J, J × R

n) = (Rn)J ,

is just the obvious restriction map, and this map is locally the same, after
unwinding the isomorphisms just given, to the restriction map. But Corollary
5.3 says that this map is a submersion, as we needed.

Proposition 5.4 implies that the maps XIi
0 → XJi

0 ← X
Ii+1
0 are submer-

sions and hence we have

Proposition 5.5. For X a Lie groupoid, the object space Map(S1, X)0 is a

Fréchet manifold.

To see that the set of arrows has a manifold structure as well, recall that
this set is given by

∐

V1,V2∈C(S
1
)min

X Č(V1) ×
X

Č(V12)
(X )

Č(V12) ×
X

Č(V12)
X Č(V2)

where the chosen refinement V12 is also a minimal cover of S1. To use the
same reasoning as above we need to know that the maps

(X )
Č(V12) → X Č(V12),

induced by S, T : X → X , and

X Č(Vi) → X Č(V12)

(i = 1, 2) are submersions.
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Now for M → N a map of finite-dimensional manifolds, and C → D a
map of compact manifolds with boundary, the two induced maps

MC → NC , and MD →MD

have a rather nice property in that on certain canonical charts they are actu-
ally linear maps (recall that these maps above look locally like maps between
spaces of sections induced by vector bundle maps). More generally one can
consider larger diagrams, all of whose maps have this local linearity, and fur-
ther the charts exhibiting this local behaviour can all be chosen compatibly.
Such a diagram will be called be called locally linear.

An example of such a diagram is one where all the objects are mapping
spaces as above, and all arrows are induced by pre- or post-composition
as above. A much simpler and familiar example would be in the finite-
dimensional setting, where the exponential map is a local diffeomorphism.
The induced diagram on tangent spaces, for any compatible system of base-
points, is then a diagram of vector spaces.

We have the following Lemma:

Lemma 5.6. Let

A1

""

!! A2

""

A3
(( !!

""

· · · An
((

""

B1
!! B2 B3

(( !! · · · Bn
((

be a diagram of submersions that is locally linear. Then the natural map

limAi → limBi,

where the limits are iterated fibre products, is also a submersion.

Proof. The local linearity of the diagram means that we can find a diagram
of the same shape in the category of Fréchet spaces and linear maps, and in
fact split linear maps, since all of the maps are submersions, hence locally
split. Then the proof that the induced map is a split submersion of Fréchet
spaces proceeds exactly as one would in the finite-dimensional case. One can
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induct on the length of the zig-zags and so reduce to the case of a diagram

A1

""

!! A2

""

A3
((

""

B1
!! B2 B3

((

in the category of Fréchet spaces and linear maps and then show that one can
find a section of the linear map A1 ×A2

A3 → B1 ×B2
B3.

Let X → Y be a functor between Lie groupoids such that the object and
arrow components are submersions. We call such a functor submersive. We
have the following result.

Lemma 5.7.

1. Let X → Y be a submersive functor between Lie groupoids. Then the

induced map

X Č(V ) → Y Č(V )

is a submersion.

2. Let X be a Lie groupoid and V1 → V2 be a refinement of minimal

covers. Then the induced map

X Č(V2) → X Č(V1)

is a submersion.

Proof. The first part follows from Theorem 5.1 and Lemma 5.6 and the sec-
ond follows from Proposition 5.4 and Lemma 5.6.

Lemma 5.7 implies that the maps above are submersions and so we have

Proposition 5.8. For X a Lie groupoid, the arrow space Map(S1, X)1 is a

Fréchet manifold.

Now happily, the source and target map for our Fréchet–Lie groupoid
are given, on each component of the arrow Fréchet manifold, by the two
projections

X Č(V1) ×
X

Č(V12)
(X )

Č(V12) ×
X

Č(V12)
X Č(V2) → X Č(Vi)

where i = 1, 2, which are submersions. Therefore
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Theorem 5.9. For X a Lie groupoid, Map(S1, X) is a Fréchet–Lie groupoid.

Observe that LX is built by taking disjoint unions of pullbacks of smooth
path spaces, and smooth path spaces are metrisable and smoothly paracom-
pact (as they are nuclear Fréchet spaces). By a combination of Lemma 27.9
and the comments in §27.11 of [KM97], the pullback M1 ×N M2, where
M1,M2 are metrisable smoothly paracompect and where at least one of
Mi → N is a submersion, is smoothly paracompact. Thus by induction the

iterated pullback that defines X Č(V ) is a smoothly paracompact manifold,
and so the object and arrow manifolds of LX are smoothly paracompact.
This means that every open cover admits subordinate smooth partitions of
unity, and so any geometric constructions with smooth objects (differential
forms and so on) can be built locally.

In fact the spaces LXn of sequences of n composable arrows are also
paracompact, so that LX is a paracompact groupoid in the terminology of
Gepner–Henriques. As a result we know that the fat geometric realisation
||LX|| of the nerve of LX is a paracompact space [GH07, Lemma 2.25].

The following Proposition means that the endo-2-functor on stacks on M

lifts to a 2-functor on presentations of stacks. It is thus a kind of rigidification
of the loop stack functor.

Proposition 5.10. The assignment X %→ LX extends to a 2-functor

L : Gpd(M)→ Gpd(F).

Proof. Given a functor f : X → Y between Lie groupoids, we clearly get
a functor Lf : LX → LY between Fréchet–Lie groupoids, by composing
everything in sight with f . Moreover, given a second functor k : Y → Z, we
clearly have L(kf) = Lk Lf .

Assume now that we have a natural transformation α : f ⇒ g : X → Y ,
or in other words a functor X → Y . We need to show that this induces
a natural transformation Lf ⇒ Lg, which is determined by the data of a
smooth map

Map(S1, X)0 → Map(S1, Y )1.

We first need to describe this map on the level of underlying sets. Let

S1 ← Č(V )
h
−→ X be an anafunctor. The value of the natural transformation
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Lα : Lf ⇒ Lg at h is a transformation of anafunctors

Lα(h) : (Č(V )
fh
−→ Y )⇒ (Č(V )

gh
−→ Y )

and so lives in the component

Y Č(V ) ×
Y

Č(V ) (Y )
Č(V )
×

Y
Č(V ) Y

Č(V ) ≃ (Y )
Č(V )

Moreover, the transformation Lα(h) is simply the left whiskering of α by
the functor h. Thus Lα is given (on one component) by the map

X Č(V ) → (Y )
Č(V )

,

induced by composition with the given X → Y , hence the component map
of the natural transformation Lf ⇒ Lg is smooth.

Now it remains to show firstly that Lα is natural, and secondly that this
is functorial for both compositions of 2-cells. Naturality follows from the
proof that anafunctors are 1-cells in a bicategory, and that functors are 1-
cells in the locally full sub-bicategory Gpd(M). Functoriality follows from
the fact whiskering is a functorial process.

Remark 5.11. The 2-functor L : Gpd(M)→ Gpd(F) preserves products
up to weak equivalence. This follows formally using the equivalence be-
tween differentiable stacks and Lie groupoids and anafunctors, and the fact
that the product of differentiable stacks is presented by the product of Lie
groupods. However we actually have a slightly more rigid result, with the
coherence functor (in one direction) being the canonical inclusion

L(X × Y ) ↪→ LX × LY,

rather than some comparison anafunctor. This has a quasi-inverse functor

that takes a pair of objects, in summands indexed by the covers V1 and V2 re-
spectively, to the isomorphic pair indexed by the same cover V12, the chosen
common refinement of V1 and V2.

Now the construction of the map q from section 4 is identical, we need
to additionally show that it is a submersion. There is a small subtlety here,
in that we haven’t been able to show directly that q is a representable map
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of stacks, rather we will rely on (a submersion variant of) the weaker notion
of presentation from [Pro96, §6.2.0.1], which only requires that the comma
object of q with itself gives a submersion between manifolds. Since we
know the comma object q ↓ q is already a manifold, namely the arrow space
Map(S1, X)1, and the projections are the source and target maps, which are
submersions, then we have our first main result.

Theorem 5.12. For X a Lie groupoid, the Hom-stack Hom(S1,X) is weakly

presented by the Fréchet–Lie groupoid Map(S1, X).

As the stack Hom(M,X) is presented by a paracompact groupoid it
is well-behaved homotopically. Proposition 8.5 in [Noo12] ensures that
since LX has object and arrow manifolds metrisable, Hom(M,X) has a
hoparacompact underlying topological stack. Then the classifying space of
Hom(M,X) (as defined in [Noo12]) is well-defined up to homotopy equiv-
alence, rather than weak homotopy equivalence.

We note that with minor modifications, one can repeat the above analysis
for the case of the mapping stack Hom([0, 1],X), but we leave that to the
interested reader.

6. Recap on differentiable gerbes

Definition 6.1. A (Fréchet-)Lie groupoid X →M is a gerbe if π : X0 →M
and (s, t) : X1 → X [2]

0 are surjective submersions. The stack on M that such

a groupoid (weakly) presents will be called a (Fréchet-)differentiable gerbe.

Equivalently, we can require that X →M and X → Č(X0) are submer-
sive functors that are surjective on objects and arrows. We rephrase these
properties in terms of functors rather than component maps because later we
wish to prove stability of these properties under forming mapping groupoids.

Remark 6.2. In this section the results also apply to general Fréchet–Lie
groupoids, even though we have only stated them for Lie groupoids for
brevity.

Because (s, t) is a submersion the pullback ΛX := ∆∗X1 → X0, for

∆ : X0 → X [2]
0 the diagonal, is a bundle of Lie groups. We shall call ΛX
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the inertia bundle. If the fibre ΛXx ≃ G for every x ∈ X0 then this gives a
G-gerbe in the sense of [LGSX09], that is, an extension of groupoids

ΛX → X → Č(X0).

However, we wish to use a mental picture as close to bundle gerbes [Mur96]
as possible, so offer the following diagram encoding a gerbe X →M :

X1

""

ΛX

""

X [2]
0

!!

!! X0

""

M

We have left and right actions of ΛX on X1, or rather a left action of ΛXL :=
pr∗1 ΛX and a right action of ΛXR := pr∗2 ΛX on X1, preserving the fibres of

(s, t), by composition in the groupoid X . This makes X1 → X [2]
0 a principal

ΛXL-ΛXR-bibundle. Notice that X1 is locally isomorphic to ΛXL and to

ΛXR (as spaces over X [2]
0 ) using local sections of (s, t).

There is also an action of X as a groupoid on the family ΛX → X0,
covering the action of X on X0. This is by conjugation in the groupoid: if
f : x→ y ∈ X1 and α ∈ ΛXx, then f−1αf ∈ ΛXy, where we are using the
diagrammatic (or algebraic) composition order. This defines a smooth map

ΛX ×X0,s
X1 → ΛX

over X0, using the target map composed with the second projection on the
domain. We also want to think of this in the equivalent form of

ΛXL ×X
[2]
0

X1 → ΛXR,

a map over X [2]
0 . This action defines an action groupoid ΛX//X with objects

ΛX and morphisms ΛXL ×X
[2]
0

X1. This groupoid will become important

for calculations in the next section. We will denote an object and an arrow
of ΛX//X by

xα
)) and xα

))

f
!! y ,
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respectively. The action of X on ΛX , that is, the target map of ΛX//X , is

xα
))

f
!! y %−→ yf

−1
αf )) (1)

For the purposes of being confident that various pullbacks exist in what
follows, we record some trivial consequences of the conditions on the defi-
nition of a gerbe. Note that the surjectivity requirements are superfluous at
this point, but will become important later.

Lemma 6.3. For a Lie groupoid X with submersive functors X → M and

X → Č(X0), the following functors are also submersive:

1. (S, T ) : X → X ×M X

2. pri : X ×M X → X for i = 1, 2

3. S, T : X → X

While there may be some utility in maintaining extra generality at this
point, our results will ultimately be applied in the case that ΛX is a bundle
of abelian Lie groups. Thus from now on we make this assumption. Note
however that an abelian gerbe in the sense of [Bre94, Definition 2.9] is more
restrictive than simply demanding ΛXx is abelian for every x ∈ X0. We will
get to this type of gerbe soon (see Definition 6.6 below)

We are also interested primarily in the case that ΛX → X0 descends to
M . This means that there is an isomorphism

φ : ΛXL
∼
−→ ΛXR

over X [2]
0 which satisfies the cocycle condition over X [3]

0 . We will refer to φ
as the descent isomorphism for ΛX . We can denote this isomorphism by

xα
))

y

≃
%−→

x

yφ(α) ))

where (x, y) ∈ X0 ×M X0. There is then a bundle of groups A → M
such that π∗

A ≃ ΛX . Another way to phrase this is that there is an action
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ΛX ×X0,pr1
X [2]

0 = ΛXL → ΛX of the groupoid Č(X0) on ΛX , and hence

we have an action groupoid ΛX//Č(X0) with arrows ΛXL. This has a pro-
jection map to Č(X0) making ΛX//Č(X0) → Č(X0) a bundle of groups
object in the category of Lie groupoids.

Lemma 6.4. If ΛX descends to A on M , the following square is a pullback

of Lie groupoids

ΛX//Č(X0) !!

""

A

""

Č(X0) !! M .

Proof. We can verify this by looking at the level of objects and arrows, in-
dividually. The object manifold of ΛX//Č(X0) is ΛX , and by assumption
this is isomorphic to X0 ×M A, as needed. The square at the level of arrow
manifolds is

ΛX ×X0,pr1
(X0 ×M X0) !!

""

A

""

X0 ×M X0
!! M

and so we need to show that the induced map

ΛX ×X0,pr1
(X0 ×M X0)→ (X0 ×M X0)×M A (2)

is an isomorphism. But ΛX ≃ X0 ×M A, so (2) is just the canonical iso-
morphism rearranging the factors of a iterated pullback.

We can hence talk about A-gerbes on M for a fixed bundle of abelian
groups A→M , and we will restrict attention to this case from now on. The
bundle A will be referred to as the structure group bundle.

To go further and talk about abelian A-gerbes we need to say what it
means for the left and right actions of ΛXL and ΛXR on X1 to agree. In the

special case that ΛX = X0 × A, then ΛXL = X [2]
0 × A = ΛXR, and we

could ask that the A-A-bibundle X1 is in fact just an A-bundle, with the right
action equal to the left action.

In the case that ΛX = π∗
A is non-trivial, the best we can do is identify

ΛXL with ΛXR via the given descent isomorphism, and ask that relative to
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this identification, the left and right actions agree. There are two ways to
look at this agreement, from the point of view of the actions of ΛXL, ΛXR

on X1, or the action of X on ΛX . However, we want to also introduce a
third way, that uses a more global, groupoid-based approach to be used in
the next section.

Recall that X is the arrows of a groupoid object in Lie groupoids—
that is, a double groupoid. There is a groupoid action in the category of Lie

groupoids

ΛX//X ×X,S X → ΛX//X

with the object component of this functor given by equation (1). The arrow
component is given by

⎛

⎜⎜⎝ xα
))

g
!! y ,

x
g

!!

f

""

y

""

z
h

!! w

⎞

⎟⎟⎠ %−→ zf
−1

αf ))

h !! w

We remind the reader that here notation for the conjugation action is using
the diagrammatic order for composition.

While this seems to iterate our data to another level of complexity, this
allows us to consider stability of structures under the functor

(−)Č(V ) : Gpd(M)→ F.

In particular, since (−)Č(V ) preserves products and even pullbacks of sub-
mersive functors, for a bundle of groups G→ X in Gpd(M) (considered as

a 1-category), GČ(V ) → X Č(V ) is a bundle of Fréchet–Lie groups. This will
allow a calculation of the structure group bundle of the (putative) gerbe LX ,
once we prove that it is in fact a gerbe.

Lemma 6.5. For X an A-gerbe, the following are equivalent:
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1. The diagram

ΛXL ×X
[2]
0

X1
≃ !!

φ×idX1

""

ΛX ×X0,s
X1

**

X1

ΛXR ×X
[2]
0

X1
≃ !! X1 ×t,X0

ΛX

))

sitting over X [2]
0 commutes (“the right and left actions of ΛX on X1

agree”);

2. The conjugation action of X on ΛX factors through the action of

Č(X0) on ΛX , via the projection X → Č(X0);

3. The action of X on ΛX//X factors through an action

ΛX//X ×X,pr1
(X ×M X)→ ΛX//X, (3)

of the double groupoid X ×M X ⇒ X on ΛX//X , in the category of

Lie groupoids, whose object component is the descent isomorphism φ
for ΛX , via the functor (S, T ) : X → X ×M X .

Proof. We will first prove that 1. and 2. are equivalent. The implication
3.⇒2. is immediate because 2. is merely the object component of 3. We will
then show how 3. follows from 2.

The diagram in 1. commuting means that for all (α, f) ∈ ΛXL×X
[2]
0
X1,

αf = fφ(α). In other words, that φ(α) = f−1αf , but this is precisely what
it means for the action of X on ΛX to factor through the action of Č(X0) on
ΛX , and so 1.⇔2.

To prove that 2. implies 3., we need first to describe an action as in (3)

with object component ΛXL = ΛX ×X0,pr2
X [2]

0
φ
−→ ΛXR

pr
−→ ΛX . If 2.

holds then

xα
))

y

≃
%−→

x

yφ(α) ))

=

x

yf
−1

αf ))

(4)
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for any f : x → y ∈ X1. Hence we can define the arrow component of (3)
by

⎛

⎜⎜⎝ xα
))

g
!! y ,

x
g

!! y

z
h

!! w

⎞

⎟⎟⎠ %−→ zφ(α) ))

h !! w

which is indeed a functor by virtue of (4), and the fact it is an action follows
from the cocycle identity for φ. The action of X on ΛX//X factors through
this action by construction.

The arrow component of the action in 3. is in fact determined uniquely,
rather than merely being ‘an’ action, since 3. implies 2. and then one can
construct the required arrow component of the action functor.

Note that in particular that if the conditions of the lemma are satsified
there is a functor ΛX//X → ΛX//Č(X0) sitting over X → Č(X0).

Definition 6.6. We call an A-gerbe X → M abelian if the equivalent con-

ditions of Lemma 6.5 hold.

Lemma 6.7. For an abelian A-gerbe X →M , the left and hence all squares

below are pullbacks of Lie groupoids

ΛX//X !!

""

ΛX//Č(X0) !!

""

A

""

X !! Č(X0) !! M .

In particular, ΛX//X → X is a bundle of groups object in the category of

Lie groupoids.

Proof. Since X is an abelian A-gerbe, and hence an A-gerbe, the right
square is a pullback by Lemma 6.4. By the pullback pasting lemma, the left
square is a pullback if and only if the outer rectangle is a pullback; we shall
prove the former. The object components of the top and bottom horizontal
functors in the left square are identity maps idΛX and idX0

respectively, and
the left and right vertical maps are both ΛX → X0, hence on objects the left
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square is a pullback. The morphism components of the left square give the
square

ΛXL ×X
[2]
0

X1
id×(s,t)

!!

pr2

""

ΛXL ×X
[2]
0

X [2]
0

pr2
""

X1 (s,t)
!! X [2]

0 ,

which is manifestly a pullback.

Example 6.8. Let A be an abelian Lie group. An A-bundle gerbe on M in
the sense of [Mur96] is an abelian M × A gerbe X → M . Most often one
just considers the case4 of A = U(1) or C×. Note that the local triviality of
the A-bundle X1 → X0 ×M X0 follows from the rest of the definition, as it
is a surjective submersion, hence has local sections, and has an action by A
that is free and transitive on fibres.

Example 6.9. In [HMSV13] the second-named author and collaborators
considered ‘bundle gerbes with non-constant structure group bundle’. This
is a case intermediate between gerbes as defined here and ordinary bundle
gerbes as in [Mur96], requiring that A is a locally trivial bundle of groups,

and X1 → X [2]
0 is locally trivial in a way compatible with the induced local

trivialisations of π∗
A. The main nontrivial example of [HMSV13] is how-

ever infinite-dimensional, meaning the results of the present paper can only
be applied if we consider it as a diffeological groupoid.

In fact, assuming A is a locally trivial bundle of groups has consequences
for the structure of abelian A-gerbes.

Lemma 6.10. Let A → M be a locally trivial bundle of abelian groups.

Then for any abelian A-gerbe X →M , the map (s, t) : X1 → X0×M X0 is

a locally trivial bundle.

4
There is also a version of bundle gerbes where X1 → X

[2]
0 is a line bundle, rather than

a principal bundle. This is captured in our framework if we allow for Lie groupoids that are
enriched over a monoidal category of smooth objects, in this case the category LinesC of
complex lines with the usual tensor product. Asking that X is enriched over LinesC in this
internal setting is nothing other than asking that X1 → X0 × X0 is a line bundle over its
image.
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Proof. The locally trivial bundles of groups ΛXL and ΛXR—pullbacks of
A—act principally on X1 (that is: freely, and transitively on the fibres of
(s, t)), and (s, t) admits local sections as it is a submersion. From these
local sections and local trivialisations of, say ΛXL, we can construct local
trivialisations of X1 → X0 ×M X0

We end with a final technical lemma used in the next section, but of
independent interest.

Lemma 6.11. The bundle of groups ΛX//X → X (internal to Lie groupoids)

is the pullback of (S, T ) : X → X×X along the diagonal ∆ : X → X×X .

Proof. On the level of objects this says that ΛX is the pullback of X1 along
X0 → X0 ×X0, which is true by definition. The arrow manifold of X can
be described as the pullback of (s, t) : X1 → X2

0 along (s, s) : X2
1 → X2

0 .
In this description, the (arrow component of the) source functor S projects
on the first factor of X2

1 , and the (arrow component of the) target functor
T projects on the other factor. Thus the pullback of X1 ×X

2
0
X2

1 along the
diagonal X1 → X1 × X1 forces the last two components to be equal, and
hence that the middle factor must be ΛX , and the pullback is X1 ×s,X0

ΛX
which is the arrow manifold of ΛX//X .

7. The loop stack of a gerbe

This section shows that given a differentiable gerbe X on a manifold M
presented by a Lie groupoid X satisfying (a) a connectedness property for
its automorphism groups X(x, x) and (b) a weak form of local triviality of
X1 → X0 ×M X0; then the loop stack is again a (Fréchet) differentiable
gerbe. An example of such a groupoid is a bundle gerbe (see below), in
which case (s, t) is the projection map for a principal bundle.

In the following, denote Map(S1, X) by LX . We will also denote (LX)i,
i.e. the object and arrow manifolds, simply by LXi.

Proposition 7.1. Let X be a Lie groupoid with a submersive functor X →
disc(M) such that the resulting map X1 → X0×MX0 is a submersion. Then

LX → disc(LM) is submersive and (s, t)LX : LX1 → LX0 ×LM LX0 is a

submersion.
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Note that we do not need to assume that X presents a gerbe on M , so
that the result will be applicable to more general bundles of groupoids, in
particular those whose fibres are not necessarily transitive.

Proof. Firstly, as X → disc(M) is submersive we have the composite map

X Č(V ) → disc(M)Č(V ) → LM a submersion (Lemma 5.7 parts 1 and 3),
and so applying Lemma 5.6 we get that LX0 → LM is a submersion. Thus
we know LX0 ×LM LX0 is a Fréchet manifold.

The crux of the proof to show (s, t)LX is a submersion is in finding an
isomorph5 of the map (s, t)LX in such a way that Lemmata 5.6 and 5.7 can
be applied.

Firstly notice that we can work with (s, t)LX over each component of
its domain and codomain, which are indexed by pairs V1, V2 of covers of
S1. This is because the disjoint union of submersions is again a submersion.
Hence we are only dealing with the map

X Č(V1) ×
X

Č(V12)
(X )

Č(V12) ×
X

Č(V12)
X Č(V2) −→ X Č(V1) ×LM X Č(V2) (5)

which is projection on the first and third factors of the domain. There are
isomorphisms

X Č(V1) ×LM X Č(V2) ≃ X Č(V1) ×
X

Č(V12)

(
X Č(V12) ×LM X Č(V12)

)
×

X
Č(V12)

X Č(V2)

≃ X Č(V1) ×
X

Č(V12)
(X ×M X)Č(V12) ×

X
Č(V12)

X Č(V2)

which arise from the isomorphisms

X Č(V12) ×LM X Č(V12) ≃ (X ×M X)Č(V12)

and disc(M)Č(V12) ≃ LM.
Now we have the following isomorph of (5):

X Č(V1) ×
X

Č(V12)
(X )

Č(V12) ×
X

Č(V12)
X Č(V2)

""

X Č(V1) ×
X

Č(V12)
(X ×M X)Č(V12) ×

X
Č(V12)

X Č(V2)

(6)

5
An isomorph of a map f : A → B is a map g : A′ → B′

such that there are isomor-
phisms A ≃ A′

and B ≃ B′
making the resulting square commute. It is obvious that the

isomorph of a submersion is a submersion.
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which is the map induced from the map

(X )
Č(V12) −→ (X ×M X)Č(V12) (7)

by interated pullback. This is, in turn, induced by applying the functor

(−)Č(V12) to the internal functor

(S, T ) : X → X ×M X,

which is submersive by Lemma 6.3. We can then apply Lemma 5.7.1 to see
that the map (7) is a submersion.

Now notice that we can apply Lemma 5.7.2 to the maps X Č(Vi) →

X Č(V12) (i = 1, 2) to see they are submersions. It also follows from Lemma 6.3

together with Lemma 5.7 that the two maps (X )
Č(V12) → X Č(V12) induced

by S, T : X → X , and the two maps (X ×M X)Č(V12) → X Č(V12) induced
by the two projections are submersions. Now we can apply Lemma 5.6,
as the diagram giving the iterated pullback defining the map (6) to get the
desired result, namely that (6) is a submersion.

Let us say a gerbe has connected stabilisers if ΛX → X0 is a bundle
of connected groups. It then follows that X1 → X0 ×M X0 has connected
fibres, and the group ΛXx acts simply transitively on all fibres (s, t)−1(x, y).

Call a submersion E → B curvewise trivial if for every map η : [a, b]→
B, the projection η∗E → [a, b] is isomorphic to a trivial bundle [a, b]×F →
[a, b]. For a gerbe X that has connected stabilisers, if (s, t) is curvewise
trivial then the manifold F is connected.

A gerbe X that has (s, t) curvewise trivial satisfies the property that a
lift, as shown in the diagram

[a, c] !!

""

X1

(s,t)

""

[a, b] !!

))

!! X0 ×M X0

always exists, for c ∈ [a, b). If the gerbe additionally has connected stabilis-
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ers, then there is always a lift as in this diagram:

[a, c]
∐
[d, b] !!

""

X1

(s,t)

""

[a, b] !!

++

!! X0 ×M X0

for a < c < d < b. Both of these follow from the ability to extend functions
[a, c] → F (respectively [a, c]

∐
[d, b] → F ) to [a, b], using Corollary 5.3

(and the fact F is connected in the latter case).

Lemma 7.2. Let M be a finite-dimensional manifold and X a Lie groupoid

that is a gerbe on M with (s, t) curvewise trivial, then LX0 → LM is

a surjective submersion. If additionally X has connected stabilisers then

(s, t)LX : LX1 → LX0 ×LM LX0 is a surjective submersion.

Proof. For the first statement, note that it is immediate that LČ(X0)→ LM
is surjective, because since X0 → M is a surjective submersion, it has local
sections which can be used to lift locally any loop γ : S1 → M . Then to
show that LX → LČ(X0) is surjective, we need to use the first assumption
on (s, t).

Note that we only need to show we can lift paths [a, b] → X0 ×M X0

through (s, t) : X1 → X0 ×m X0, where [a, b] ⊂ Č(V )1; there are no com-
patibility conditions. But note that since X1 trivialises after pulling back to
[a, b], one can just use a section to lift paths as needed. Thus LX → LČ(X0)
is surjective, and so the first claim follows.

For the second claim we only need to prove that (s, t)LX is surjective

(it is already a submersion), so consider a single component X Č(V1) ×LM

X Č(V2) ⊂ LX0×LMLX0. It suffices to prove that (X )
Č(V12) → X Č(V12)×LM

X Č(V12) ≃ (X ×M X)Č(V12) is surjective, since (s, t)LX is a disjoint union of
pullbacks of such maps. Write V = V12, and consider γ = (γ1, γ2) : Č(V )→
X ×M X . We need to find a lift γ̂ as in the diagram:

X

""

Č(V ) γ
!!

γ̂

))

X ×M X
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γ̂0(J0)

γ̂1(J
n
0 )

γ̂0(J
n
0 )

γ̂0(J
n−1
n )

γ̂1(J
n−1
n )

γ̂0(Jn−1)

Figure 2: Defining a lift to X

We will iterate through the connected components of V to define γ̂ on both
objects and arrows. The functor γ has an underlying object component a

map
∐n

i=0 Ji → X [2]
0 , and starting with J0 = [a0, b0] we can find an arrow

b : γ1(a0)→ γ2(a0) ∈ X1. This uses the fact X1 → X [2]
0 is surjective. Since

(s, t) is curvewise trivial, we can find a section over J0, and hence a map
J0 → X1 = (X )0.

If we denote Ji−1 ∩ Ji by J i−1
i (working mod n + 1), then by naturality

the object component γ̂0 of the lift γ on J i−1
i ⊂ Ji is determined by its value

on J i−1
i ⊂ Ji−1. By this we mean that for γ̂ to be a functor to X , or in

other words a natural transformation γ1 ⇒ γ2, it must for every point in
J i−1
i ⊂ Č(V )1 satistfy naturality. Thus from the lift on J0 we can define

the lift on J0
1 ⊂ J1, and then again use the fact (s, t) is curvewise trivial to

continue the lift on the rest of J1.
So starting from J0 we can work through the indexing set for the cover

until we have defined γ̂0 on Jn−1, and hence on Jn−1
n ⊂ Jn. The first lift,

on J0 defines γ̂0 on Jn
0 ⊂ Jn, and so we need to be able to define a map

Jn → X1 extending both of these partial maps. This is the situation as in
Figure 7, where we need to define the dotted portion of upper central arc.

It is here we use the hypothesis that X has connected stabilisers, since

if we pull back X1 → X [2]
0 along γ

∣∣
Jn

, we can trivialise to Jn × A. Then
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A is necessarily a connected Lie group, so we can extend the map Jn ⊃
Jn−1
n

∐
Jn
0 → A to all of Jn, completing the lift γ̂ : Č(V ) → X , and the

proof.

Thus we get the first main result of this section.

Theorem 7.3. For a differentiable gerbe X presented by a Lie groupoid X
with connected stabilisers such that (s, t) is curvewise trivial, then Hom(S1,X)
is a Fréchet differentiable gerbe.

We have the following additional result if we know some more about the
gerbe X .

Proposition 7.4. Let X → M be an abelian A-gerbe where A is a locally

trivial bundle of connected (abelian Lie) groups. Then ΛLX ≃ LX0 ×LM

LA.

Proof. The assumptions on X mean that LX is a gerbe. The definition of
ΛLX is that it is the pullback

ΛLX !!

""

LX1

(s,t)
LX

""

LX0 ∆
!! (LX0)

[2]

and on the component X Č(V ) ⊂ LX0 this is precisely the pullback

(ΛLX)V !!

""

(X )
Č(V )

""

X Č(V ) !! X Č(V ) ×LM X Č(V )
≃ (X ×M X)Č(V ) .

But since (−)Č(V )
preserves strict pullbacks of submersive functors, we have

(ΛLX)V ≃ (X ×X×MX X )
Č(V )

. By Lemma 6.11, X ×X×MX X ≃
ΛX//X , and since X presents an abelian A-gerbe, ΛX//X ≃ A ×M X ,

by Lemma 6.7. Thus the summand (ΛLX)V of ΛLX over X Č(V ) is iso-

morphic to (A×M X)Č(V ) ≃ LA ×LM X Č(V ) (where we have implicitly

identified M Č(V ) with LM and similarly for LA).
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This gives us the final main result, and in fact the original motivation for
this paper.

Theorem 7.5. Let M be a finite-dimensional smooth manifold, A be a lo-

cally trivial bundle of connected abelian Lie groups on M and X → M a

finite-dimensional abelian A-gerbe. Then LX is an abelian LA-gerbe on

LM .

Proof. Theorem 7.3 ensures that LX is again a gerbe, and from Proposi-
tion 7.4 we know that ΛLX descends to a bundle of groups LA → LM .
Hence we know LX is an LA-gerbe, and we thus need to show that LX is
an abelian gerbe. This will be done by showing condition 2 of Lemma 6.5
holds for LX , given that condition 3 of Lemma 6.5 holds for X . That is, we
need to show the diagram

ΛLX ×LX0
LX1

!!

idΛLX ×(s,t)
LX

""

ΛLX

ΛLX ×LX0
LX0 ×LM LX0

!! ΛLX

commutes. This reduces (using Lemma 6.11) to showing the following dia-
gram commutes, for all V1, V2:

(ΛX//X)Č(V1) ×
X

Č(V12)
(X )

Č(V12) ×
X

Č(V12)
X Č(V2) actL !!

pr124
""

?

(ΛX//X)Č(V2)

(ΛX//X)Č(V1) ×
X

Č(V1)

(
X Č(V1) ×LM X Č(V2)

)
!! (ΛX//X)Č(V2)

Using the isomorphism (ΛX//X)Č(V ) ≃ (A×M X)Č(V ) ≃ LA×LMX Č(V ),
we can rewrite the desired diagram as

LA×LM X Č(V1) ×
X

Č(V12)
(X )

Č(V12) ×
X

Č(V12)
X Č(V2)

pr14 !!

pr124
""

LA×LM X Č(V2)

LA×LM X Č(V1) ×LM X Č(V2)
pr13

!! LA×LM X Č(V2)

- 134 -



D.M. ROBERTS AND R.F. VOZZO SMOOTH LOOP STACKS

in other words, we need to prove that the action map actL above (defined
using conjugation of transformations of anafunctors) is, up to isomorphism,
the projection pr14 in the top row of the preceeding diagram.

Now note that condition 2 in Lemma 6.5 for X (which holds since we
are assuming X is an abelian A-gerbe) can be rewritten as

A×M X
id×T

!! A×M X

≃

""

ΛX//X ×X X act !!

id×(S,T )
""

≃

%%

ΛX//X

ΛX//X ×X (X ×M X) !!

≃

""

ΛX//X

A×M (X ×M X) pr13
!! A×M X

≃

%%

In other words, the action of X on ΛX//X is, up to isomorphism, essen-
tially given by the target functor T : X → X . We will in particular use the
top square of this diagram for the next step of the proof.

The map actL is defined (using the incorporated simplifications) to be
the composite of the left column of arrows in the diagram on the following
page.
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(Λ
X
//
X
)Č

(V
1
)
×

X
Č
(V

1
2
)
(X

)Č
(V

1
2
)
×

X
Č
(V

1
2
)
X

Č
(V

2
)

""

≃
!! L
A
×

L
M

X
Č
(V

1
)
×

X
Č
(V

1
2
)
(X

)Č
(V

1
2
)
×

X
Č
(V

1
2
)
X

Č
(V

2
)

""

(Λ
X
//
X
)Č

(V
1
2
)
×

X
Č
(V

1
2
)
(X

)Č
(V

1
2
)
×

X
Č
(V

1
2
)
X

Č
(V

2
)

≃

""

≃
!! L
A
×

L
M

(X
)Č

(V
1
2
)
×

X
Č
(V

1
2
)
X

Č
(V

2
)

≃ ""

( Λ
X
//
X
×

X
X

) Č
(V

1
2
)
×

X
Č
(V

1
2
)
X

Č
(V

2
)

≃
!!

a
ct

Č
(V

1
2
)
×
id

""

( A
×

M
X

) Č
(V

1
2
)
×

X
Č
(V

1
2
)
X

Č
(V

2
)

(i
d
×
T
)Č

(V
1
2
)
×
id

""

(Λ
X
//
X
)Č

(V
1
2
)
×

X
Č
(V

1
2
)
X

Č
(V

2
)

≃
!!

≃

""

(A
×

M
X
)Č

(V
1
2
)
×

X
Č
(V

1
2
)
X

Č
(V

2
)

≃ ""

(Λ
X
//
X
)Č

(V
2
)

≃
!! L
A
×

L
M

X
Č
(V

2
)
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Note that the square second from the bottom commutes because of the as-
sumption that X is an abelian A-gerbe. The composite of the right column
of arrows is just pr14, and hence condition 2 of Lemma 6.5 holds, and so LX
is an abelian LA-gerbe, as we needed to prove.

Corollary 7.6. If A is a connected abelian Lie group and X is an A-bundle

gerbe on M , then LX is an LA-bundle gerbe.

Proof. An A-bundle gerbe X →M is an abelian A×M -gerbe and (s, t) is
the projection for a locally trivial bundle, so LX is an abelian L(A×M) ≃
LA× LM gerbe. Thus LX is an LA-bundle gerbe.

Remark 7.7. We would like to apply this result to the basic gerbe on a
Lie group, since then we get a gerbe over the free loop group that is mul-

tiplicative. This is fine if we use one of the finite-dimensional models,
but it would be useful if we could also use the infinite-dimensional strict
model StringBCSS

G described in [BCSS07]. The results from Section 4 show
that L StringBCSS

G is at worst a diffeological groupoid. Since L preserves
products up to equivalence this in fact a coherent diffeological 2-group (see
eg [BL04]). We conjecture, based on private discussion with Alexander
Schmeding, that the results of this paper should apply to StringBCSS

G , and
in fact Fréchet–Lie groupoids with (adapted) local additions and possibly
also smoothly locally regular6 source and target more generally.
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