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Abstract

We give a classifying theory for LG-bundles, where LG is the loop group of a compact Lie group G,
and present a calculation for the string class of the universal LG-bundle. We show that this class is in
fact an equivariant cohomology class and give an equivariant differential form representing it. We then
use the caloron correspondence to define (higher) characteristic classes for LG-bundles and to prove a
result for characteristic classes for based loop groups for the free loop group. These classes have a natural
interpretation in equivariant cohomology and we give equivariant differential form representatives for the
universal case in all odd dimensions.
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1. Introduction

Let G be a compact, connected, simply connected Lie group with Lie algebra g and
LG be the space of smooth maps from the circle into G. Then LG is a Fréchet
Lie group. In this article we shall be considering characteristic classes of principal
bundles whose structure group is LG. Recall that in [13] we constructed characteristic
classes for bundles whose structure group is the based loop group, �G, using the
caloron correspondence—a correspondence between loop group bundles and certain
G-bundles. Part of what made that construction simple was the fact that there exists
a nice model for the universal bundle and hence a relatively easy classifying theory
(this is summarized in Theorem 2.5). Here we would like to extend these results to
the group of free loops, where the classifying theory is more complicated. Our main
result, Theorem 6.5, is the analogy of Theorem 2.5 for the free loop group. We state it
here for convenience.
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THEOREM. Let P→ M be an LG-bundle and P̃→ M × S1 be its caloron transform.
If

s(P) : I k(g)→ H2k−1(M)

is the map that gives for any p ∈ I k(g) its associated string class, then the following
diagram commutes.

I k(g)

s(P)

''PPPPPPPPPPPPPPPPPPPPP
cw(P̃) //

τG

��

H2k(M × S1)

∫
S1

��
H2k−1

G (G)
f ∗ // H2k−1(M)

Here f is the classifying map of P (Section 3.2).

This article is organized as follows. In Section 2, we review the formula for the
string class from [12] and the extension of this class to higher dimensions for the based
loop group [13]. In Section 3, we outline the construction of the universal LG-bundle
and give a classifying map for any LG-bundle. We show that characteristic classes
for LG-bundles are given by equivariant cohomology classes on G. Section 4 reviews
the necessary background on equivariant cohomology, in particular the Cartan model
of equivariant differential forms and the Mathai–Quillen isomorphism. Sections 5
and 6 contain our main results concerning string classes: in Section 5, we calculate the
universal degree-three string class, and in Section 6, we extend this to any odd degree,
proving a theorem analogous to the main result in [13] for �G (Theorem 6.5).

2. String classes for loop group bundles

2.1. The string class. String structures were introduced by Killingback as the string
theory analogue of spin structures [10]. Suppose that we have an LG-bundle P→ M .
Since LG has a central extension by the circle (see, for example, [17] for details), we
can consider the problem of lifting the structure group of P to the central extension L̂G
of LG. Physically, this is related to the problem of defining a Dirac–Ramond operator
in string theory. Mathematically, one has an obstruction to doing this—a certain
degree-three cohomology class on the base of the bundle. This class is called the
string class of the bundle and we write s(P) ∈ H3(M). In [12]Murray and Stevenson
give a formula for a de Rham representative of this class, as follows.

THEOREM 2.1 [12]. Let P→ M be a principal LG-bundle. Let A be a connection
on P with curvature F and let 8 be a Higgs field for P. Then the string class of P is
represented in de Rham cohomology by the form

−
1

4π2

∫
S1
〈∇8, F〉 dθ,
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where 〈 , 〉 is an invariant inner product on g normalized so the longest root has length
equal to

√
2 and

∇8= d8+ [A, 8] −
∂A

∂θ
.

By definition, the Higgs field for P in Theorem 2.1 is a map 8 : P→ Lg satisfying

8(pγ )= ad(γ−1)8(p)+ γ−1∂γ,

where ∂γ = ∂γ /∂θ is the derivative in the loop direction. Note that, like F , the
covariant derivative ∇8 is equivariant for the adjoint action of LG and hence the string
class descends to a form on M . A geometric interpretation of the Higgs field is given
by the caloron correspondence [12] (see also [13, 14]), which allows us to extend the
definition of the string class to higher degrees. We shall discuss this correspondence
in Section 2.3.

2.2. The universal string class for �G-bundles. Theorem 2.1 carries over word-
for-word for the based loop group �G. In this case there is a simple model for the
universal bundle that we shall now present, and which makes it possible to easily
calculate the universal string class.

Let PG be the space of paths in G, that is smooth maps p : R→ G such that
p(0)= 1, the identity in G and p−1∂p is 2π -periodic. This is acted on by �G and

�G // PG

π

��
G

is an �G-bundle called the path fibration, where the projection π = ev2π sends a path
p to its value at 2π . PG is contractible and so the path fibration is a model for the
universal �G-bundle and we have B�G = G. Given another �G-bundle P→ M we
can write down a classifying map as follows [13]. Choose a Higgs field8 for P . Then
for each p ∈ P we define hol8(p) to be the solution q to the equation 8(p)= q−1∂q
for all q ∈ PG. (Note that q ∈ PG implies that q(0)= 1 which ensures that the solution
is unique.) The map hol8 descends to a map, also called hol8, from M to G. We
call this map the Higgs field holonomy for P; it gives a classifying map for the
�G-bundle P .

A connection for the path fibration is given in [3]. Let α : R→ R be a smooth
function such that α(t)= 0 for all t ≤ 0 and α(t)= 1 for all t ≥ 2π . Then, at p ∈ PG,

A =2− α ad(p−1)π∗2̂

defines a connection, where 2 is the left invariant Maurer–Cartan form on G and 2̂ is
the right invariant Maurer–Cartan form. The curvature of this connection is

F = 1
2 (α

2
− α) ad(p−1)[π∗2̂, π∗2̂].
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A Higgs field for PG is given by

8(p)= p−1∂p.

Its covariant derivative is
∇8= ∂α ad(p−1)π∗2̂,

where ∂α = ∂α/∂t . We call these the standard connection and Higgs field for the path
fibration.

Using Theorem 2.1 and the standard connection and Higgs field for the path
fibration, we can calculate the universal string class for �G-bundles s(PG) ∈ H3(G):

s(PG) = −
1

4π2

∫
S1

〈
1
2
(α2
− α) ad(p−1)[π∗2̂, π∗2̂], ∂α ad(p−1)π∗2̂

〉
dθ

=
1

48π2 〈[2, 2], 2〉

which is the generator of the degree-three cohomology of G.

2.3. Higher string classes for �G-bundles. The material above is actually the
degree-three case of a more general construction presented in [13]. In that paper we
showed how to obtain higher-degree analogues of the string class for any �G-bundle
using the caloron correspondence, a correspondence between loop group bundles and
certain G-bundles. We shall outline these results here before extending them to LG-
bundles in Section 6. We begin with the caloron correspondence.

The caloron correspondence gives a bijection between isomorphism classes of LG-
bundles over a manifold M and isomorphism classes of G-bundles over M × S1. It
was first introduced in [6] as a bijection between isomorphism classes of G-instantons
on R3

× S1 and�G-monopoles on R3. The form we will use in this article, however, is
from [12], where it was used to relate the string class of an LG-bundle to the Pontrjagyn
class of a G-bundle.

Let P̃→ M × S1 be a G-bundle and consider the LG-bundle L P̃→ L(M × S1).
Pull this bundle back by the map η : M→ L(M × S1) given by η(m)= (θ 7→ (m, θ)).
This gives an LG-bundle P→ M . Furthermore, given a connection Ã on P̃ , we can
define a connection A on P by first defining a connection L Ã on L P̃ given by acting
pointwise, that is, L Ãγ (X)(θ)= Ãγ (θ)(X (θ)), for any tangent vector X to γ ∈ L P̃ ,

then pulling back by η, so A = η∗L Ã. Note that we can also define a Higgs field as
follows. Any p ∈ P is given by a map S1

→ P̃ . We define 8(p)= Ã(∂p). This gives
a Higgs field for P .

On the other hand, given an LG-bundle P→ M , we can define a G-bundle
P̃ by P̃ = (P × G × S1)/LG where the LG action is given by (p, g, θ)γ =
(pγ, γ (θ)−1g, θ) and the G action is multiplication in the second factor. In order
to define a connection Ã on P̃ from a connection A on P we also need to choose a
Higgs field 8 for P . Then, as a form on P × G × S1 which descends to the quotient,

Ã = ad(g−1)A(θ)+2+ ad(g−1)8 dθ.

Using these constructions we can obtain the result from [12].
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PROPOSITION 2.2 (Caloron correspondence [12]). The constructions above are
inverses of one another and give a bijection between isomorphism classes of G-
bundles with connection over M × S1 and isomorphism classes of LG-bundles with
connection and Higgs field over M.

Here we will need a slight modification of this result, given in [13]. Specifically, in
order to construct an �G-bundle P→ M given a G-bundle P̃→ M × S1 we need a
way of choosing a basepoint in each fibre of P . This is given by choosing a section
of P̃ over M × {0}. Such a section is called a framing and, if it exists, P̃ is called a
framed G-bundle. A connection A on P̃ is called framed if it is flat with respect to the
section defining the framing. We have the following proposition.

PROPOSITION 2.3 [13]. There is a bijection between isomorphism classes of framed
G-bundles with framed connection over M × S1 and isomorphism classes of �G-
bundles with connection and Higgs field over M.

In both the free loop and based loop cases we call the G-bundle P̃ the caloron
transform of P .

In [13] we used the caloron correspondence to define characteristic classes for
�G-bundles in all odd degrees by using the Chern–Weil map for the corresponding
G-bundle and integrating over the circle. Specifically, we have the following
definition.

DEFINITION 2.4 [13]. Suppose that P→ M is an�G-bundle with connection A and
Higgs field 8 and P̃→ M × S1 is the caloron transform of P with connection Ã. Let
I k(g) be the set of all multilinear, symmetric, ad-invariant maps g× · · · × g→ R
and cw : I k(g)→�2k(M × S1) be the Chern–Weil map for the G-bundle P̃ , that
is, cwp( Ã)= p(F̃, . . . , F̃) for the curvature F̃ of Ã. Then the string form of
p ∈ I k(g) is

sp(A, 8)=
∫

S1
cwp( Ã).

The string form in terms of data on the �G-bundle P is given by

sp(A, 8)= k
∫

S1
p(∇8, F, . . . , F) dθ,

where F is the curvature of A. This can be seen by calculating the curvature F̃ of the
connection Ã = ad(g−1)A(θ)+2+ ad(g−1)8 dθ in terms of F and 8,

F̃ = ad(g−1)(F +∇8 dθ),

and substituting this into the formula for the string class in Definition 2.4. From now
on we shall write p(∇8, Fk−1) for p(∇8, F, . . . , F) and so on.

In [13] it is shown that sp(A, 8) is closed and independent of the choice of
connection and Higgs field. We call the class of the form sp(A, 8) the string class
of P associated to p and write sp(P) ∈ H2k−1(M). The main result of [13] is then the
following theorem.



114 R. F. Vozzo [6]

THEOREM 2.5 [13]. If P→ M is an �G-bundle with caloron transform P̃→
M × S1 and

s(P) : I k(g)→ H2k−1(M)

is the map that associates to any invariant polynomial p the string class of P, then the
following diagram commutes.

I k(g)

s(P)

((PPPPPPPPPPPPPPPPPPPPP
cw(P̃) //

τ

��

H2k(M × S1)

∫
S1

��
H2k−1(G)

hol∗8 // H2k−1(M)

Here τ is the transgression map given by (see Section 6.1)

τ(p)=

(
−

1
2

)k−1 k!(k − 1)!
(2k − 1)!

p(2, [2, 2], . . . , [2, 2]),

cw(P̃) is the usual Chern–Weil homomorphism for the G-bundle P̃ and hol8 is the
classifying map of P.

Note also that for the universal bundle, the map s(P) is equal to the transgression
map τ .

3. Classifying theory of LG-bundles

3.1. The universal bundle. In order to extend the ideas from the previous section
we need a model for ELG. This will allow us to calculate the universal string
class. To construct this we view LG as the semi-direct product �G o G. The group
multiplication is given by

(γ1, g1)(γ2, g2)= (g
−1
2 γ1g2γ2, g1g2)

and the isomorphism between �G o G and LG is

�G o G
∼
−→ LG; (γ, g) 7→ gγ.

On the level of Lie algebras, the isomorphism is

�g o g
∼
−→ Lg; (ξ, X) 7→ X + ξ.

We therefore need a model for the universal �G o G-bundle. To find this, we shall
take the product of the universal �G-bundle and the universal G-bundle. Recall that a
model for the universal�G-bundle is given by the space of paths p : R→ G such that
p(0)= 1 and p−1∂p is periodic. So, for our model for ELG we shall take the space
PG× EG which is contractible since PG and EG are both contractible. This is acted
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on by �G o G:
(p, x)(γ, g)= (g−1 pgγ, xg)

where xg is the right action of G on EG. This action is free and so PG× EG is a
model for ELG and BLG is equal to (PG × EG)/(�G o G). In fact, if we consider
the map

(PG× EG)/(�G o G)→ (G × EG)/G; [p, x] 7→ [p(2π), x],

where [h, x] = [g−1hg, xg], we can see this is well-defined, since

[p, x] = [g−1 pgγ, xg] 7→ [g−1 p(2π)gγ (2π), xg] = [p(2π), x].

Furthermore, this is surjective, as the projection PG→ G is surjective, and injective,
for if we consider two elements [p, x], [q, y] ∈ (PG× EG)/(�G o G) such that
[p(2π), x] = [q(2π), y] we have y = xg and q(2π)= g−1 p(2π)g. That is, the paths
q and g−1 pg have the same endpoint. Therefore, the path g−1 p−1gq is actually a
based loop. And since q = g−1 pg(g−1 p−1gq), we have

[q, y] = [g−1 pgγ, xg] = [p, x],

where γ = g−1 p−1gq ∈�G. Thus we have a diffeomorphism between BLG and
(G × EG)/G, or simply G ×G EG. Importantly for our purposes this allows us to
identify the cohomology of BLG with the equivariant cohomology of G with its adjoint
action. That is,

H∗(BLG)= H∗G(G).

We will review equivariant cohomology in Section 4, as we will use it in the following
to calculate the string classes for an LG-bundle.

3.2. Classifying maps. Given an LG-bundle P→ M , we can write down the
classifying map of this bundle as follows. Choose a Higgs field 8 for P . Then define
the map f : P→ PG× EG by

f (q)= (hol8(q), fG(q)),

where hol8 is the Higgs field holonomy and fG is the classifying map for the G-
bundle P ×h G→ M , where h : LG→ G is the homomorphism h(γ )= γ (0). That is,
f (q)= (p, x) where p−1∂p =8(q) and x is fG applied to the image of q in
P ×LG G. It is easy to see that this is equivariant with respect to the LG action and
hence descends to a map M→ BLG. For if (γ, g) ∈�G o G then

f (q(gγ ))= (hol8(q(gγ )), fG(q)g)

and so f is equivariant in the EG slot, by virtue of the fact that fG is a classifying map,
and also in the PG slot since if hol8(q)= p then

8(q(gγ )) = ad((gγ )−1)8(q)+ (gγ )−1∂(gγ )

= ad((gγ )−1)8(q)+ γ−1∂γ
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and

(p(γ, g))−1∂(p(γ, g)) = (g−1 pgγ )−1∂(g−1 pgγ )

= γ−1g−1 p−1g(g−1∂pgγ + g−1 pg∂γ )

= ad((gγ )−1)p−1∂p + γ−1∂γ

and so hol8(q(gγ ))= p(γ, g)= hol8(q)(gγ ).

Note 6. Much of the construction above can be readily generalized to any group that
is a semi-direct product. This is detailed in [19, Appendix B].

4. Equivariant cohomology

The results from the previous section imply that any generalization of Theorem 2.5
to the free loop group will necessarily involve equivariant cohomology. In particular, in
the next section we shall calculate the universal string class for LG-bundles, in analogy
with the corresponding calculation for the universal �G-bundle in Section 2.2. This
will be most conveniently represented as an equivariant differential form—an element
of the so-called Cartan model of equivariant cohomology. In this section, therefore,
we wish to review this theory. We shall mainly follow [7] (see also [2]).

4.1. The Borel model and the Weil model. Let X be a manifold with an action
of the Lie group G. If this action is free, for example, if X is the total space of a
principal G-bundle, then X/G is a manifold and the equivariant cohomology of X is
given by the cohomology of the quotient: H∗G(X)= H∗(X/G). If the action is not
free however, then the quotient may not be a manifold and the cohomology of X/G
may not be the correct object to study. In general the equivariant cohomology of X is
defined by H∗G(X) := H∗(X ×G E), where E is some contractible space on which G
acts freely. This definition is independent of the choice of the space E . A convenient
example of such a space is of course the total space of the universal bundle, EG. So,

H∗G(X)= H∗(X ×G EG).

This is called the Borel model for equivariant cohomology. The difficulty here is that
in general it is not easy to study forms on X ×G EG. In order to circumvent this we
will introduce an algebraic version of the Borel model—the Weil model. Let us first
set some conventions for the action of the Lie algebra g on �(X).

Since G acts on X , it acts on �(X) too. By convention, if ψ : G→ Diff(X) is a
homomorphism, we define the action of G on �(X) to be pull-back by the inverse
of ψ . That is, g · ω = (ψ−1

g )∗ω. This is because ψ satisfies ψgh = ψgψh whereas we
would like to have a right action of G on X and �(X). Note that this means that the
fundamental vector field generated by the Lie algebra element χ is given by

χ̄x :=
d

dt

∣∣∣∣
0

exp(−tχ) · x,
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for all x ∈ X . We shall write Lχ and ιχ for the Lie derivative and contraction
with this vector field, respectively. Note that if G acts freely on X then a form
ω ∈�(X) descends to the quotient X/G precisely if it is invariant and horizontal
with respect to the G action. That is, if Lχω and ιχω both vanish for all χ ∈ g.
We call such a form basic. Alternatively, if {ξi } is a basis for g then ω descends if
Lξiω = ιξiω = 0, i = 1, . . . , n. From now on we shall write L i and ιi for Lξi and ιξi
respectively.

In order to rephrase the Borel model of equivariant cohomology in algebraic terms
we shall use Weil’s version of Chern–Weil theory, which first appeared in [4].

Define the Weil algebra to be the tensor product of the exterior algebra of g∗, the
dual of g, with the symmetric algebra of g∗, that is, the graded algebra

W := ∧(g∗)⊗ S(g∗).

Here the symmetric algebra is understood to be evenly graded, so every pure element is
assigned twice its usual degree. It will be convenient to write down generators for W .
Let {θ i

} be a basis for g∗. Then W is generated by the elements θ i of degree one in
the exterior algebra and the corresponding elements, which we shall call µi , of degree
two in the symmetric algebra. The Weil algebra is in fact a differential graded algebra
with the differential d given on generators by

dθ i
= µi

−
1
2 ci

jkθ
jθk,

dµi
= ci

jkµ
jθk,

where ci
jk are the structure constants of g. We consider the cohomology of W with

respect to this differential.
It is easy to see [7] that S(g∗) is the horizontal part of W and so the basic subalgebra

of W —the invariant part of this—is just the invariant, symmetric polynomials in g∗.
This gives rise to the Chern–Weil homomorphism (see, for example, [7] or [4] for the
original exposition).

Note that we can obtain the generators θ i and µi for W via a connection a on EG
and its curvature f . For connections on universal bundles, see for example [15, 16, 18]
or [5] for the simplicial point of view.

Recall that the de Rham complex �(X) forms a graded algebra itself. Here is the
standard result.

THEOREM 4.1 (Equivariant de Rham theorem). The equivariant cohomology of X is
given by the basic cohomology, that is, the cohomology of the basic subcomplex, of
W ⊗�(X):

H∗G(X)= H∗basic(W ⊗�(X)).

The basic cohomology of the differential graded algebra W ⊗�(X) is called the
Weil model of the equivariant cohomology of X .

The connection–curvature construction above helps translate between the Borel
model and the Weil model. However, it is still quite difficult to perform computations
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with the Weil model. Therefore, we shall present another model in the next section—
called the Cartan model—and describe the method for translating between this model
and the Weil model: the Mathai–Quillen isomorphism.

4.2. The Cartan model and the Mathai–Quillen isomorphism. In order to
perform calculations with equivariant cohomology it is useful to find an automorphism
of the Weil model, which simplifies things significantly. Define the degree-zero
endomorphism γ ∈ End(W ⊗�(X)) by

γ = θ i
⊗ ιi .

Clearly this is nilpotent and so the automorphism

φ := exp γ

is a finite sum. This automorphism is known as the Mathai–Quillen isomorphism. The
following fundamental observation, due to Mathai and Quillen [11] and Kalkman [9],
is proved (in the form below) in [7].

THEOREM 4.2. The Mathai–Quillen isomorphism φ carries the horizontal subspace
(W ⊗�(X))hor into Whor ⊗�(X)= S(g∗)⊗�(X) and hence the basic subcomplex
(W ⊗�(X))basic into the invariant elements of S(g∗)⊗�(X), denoted (S(g∗)⊗
�(X))G . On this basic subcomplex the differential is transformed into 1⊗ d−µi

⊗ ιi .

DEFINITION 4.3. The cohomology of the complex �G(X) := (S(g∗)⊗�(X))G

with the differential above, 1⊗ d − µi
⊗ ιi , is called the Cartan model for the

equivariant cohomology of X . The elements of the space�G(X) are called equivariant
differential forms.

Theorem 4.2 implies that the equivariant cohomology according to the Cartan
model agrees with that of the Weil model. The elements of �G(X) have a pleasant
interpretation as form-valued polynomials on g∗. The invariance condition translates
with this interpretation into equivariance of the polynomials. The differential on an
element ω is then given by

d(ω(χ))− ιχ (ω(χ)).

REMARK 4.4. Suppose that ω is a degree n basic element of the Weil algebra. Then
ω is a sum of terms, each lying in a different part of the graded algebra⊕

i+2 j+k=n

∧
i (g∗)⊗ S j (g∗)⊗�k(X).

Further,

γ : ∧i (g∗)⊗ S j (g∗)⊗�k(X)→ ∧i+1(g∗)⊗ S j (g∗)⊗�k−1(X),

γ 2
: ∧

i (g∗)⊗ S j (g∗)⊗�k(X)→ ∧i+2(g∗)⊗ S j (g∗)⊗�k−2(X)
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and so on. However, since ω is basic, we know that φ(ω) ∈ (S(g∗)⊗�(X))G , that is,
it has no components in ∧(g∗). Therefore, since φ = 1+ γ + 1

2γ
2
+ · · · and every

application of γ raises the degree of the exterior algebra by one, the effect of φ is
essentially to ‘pick out’ the components of ω which have no component in ∧(g∗). The
end result of φ acting on the rest of the terms is that they all must cancel.

5. The universal string class

Now that we have a model for the universal LG-bundle we would like to prove
the analogue of Theorem 2.5 for LG-bundles. Note that this will naturally involve
equivariant cohomology since rather than the universal string class being equal to the
transgression map, which takes values in H∗(G)= H∗(B�G), the universal string
class for LG-bundles will be in H∗(G ×G EG)= H∗G(G). Thus the first thing we need
to do is calculate this universal string class. To illustrate the idea we will do this in the
degree-three case first and extend the result to higher degrees in the next section.

5.1. The string class in the Borel model. Firstly we will use Theorem 2.1 to
calculate a differential form representing the string class of ELG= PG× EG. Note
that this will give us a class in H∗(G ×G EG), the Borel model for the equivariant
cohomology of G, where G acts on itself by conjugation. In order to use Theorem 2.1,
the first thing we need is a connection on PG× EG. Now PG is already a smooth
manifold. In order to define a smooth structure and find a connection on EG we use the
results in [15, 16, 18]. As long as the dimension of the base of the G-bundle P→ M is
less than or equal to n this gives a construction of a smooth bundle EGn→ BGn with
connection, which is a model for the universal G-bundle. From now on we assume
therefore that the dimension of the base of our LG-bundle is fixed, and less than or
equal to n for some n.

To define a connection we need to know what a vertical vector looks like. Consider
the vector in T(p,x)(PG× EGn)= TpPG× Tx EGn generated by the Lie algebra
element (ξ, X) ∈�g o g:

(ξ, X)(p,x) :=
d

dt

∣∣∣∣
0
((1− t X)p(1+ t X)(1+ tξ), xet X )

=
d

dt

∣∣∣∣
0
(t (−X p + pX + pξ), xet X )

= (p(X − ad(p−1)X + ξ), X x ).

(Here X x is the vertical vector generated by the Lie algebra element X at x .)
A connection is given [19] by

A =2− α ad(p−1){ev∗2π 2̂− ad(p(2π))a + a} + ad(p−1)a.

As before, 2 is the Maurer–Cartan form, 2̂ is the right Maurer–Cartan form, α
is a smooth function such that α(t)= 0 for all t ≤ 0 and α(t)= 1 for all t ≥ 2π
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and ev2π : PG→ G is the projection. The form a is a connection on EG, which we
shall assume that we have using the results cited earlier. It can be easily checked that
this form returns the Lie algebra element ξ + X ∈ Lg when evaluated on the vertical
vector above and also that it transforms in the adjoint representation. Thus it satisfies
the conditions for a connection.

To calculate the string class we will need the curvature of this connection and a
Higgs field. As usual, the curvature is given by the formula

F = D A

where D is the covariant exterior derivative. Hence we have

F((V, W ), (V ′, W ′))=− 1
2 A([h(V, W ), h(V ′, W ′)])

where h X is the projection onto the horizontal subspace of the vector X . This yields

F = (α2
− α) ad(p−1){ 12 [ev∗2π 2̂, ev∗2π 2̂] − [ev∗2π 2̂, ad(p(2π)−1)a]

+ [ev∗2π 2̂, a] + 1
2 ad(p(2π))[a, a] − [ad(p(2π))a, a] + 1

2 [a, a]}

+ α ad(p−1)(ad(p(2π)) f − f )+ ad(p−1) f

where f is the curvature of a.
The other piece of data we need to calculate the string class is a Higgs field for

ELG. Define the map
8 : PG× EGn→ Lg

by
8(p, x)= p−1∂p.

Then by the calculation at the end of Section 3.2 we see that 8 is a Higgs field for
PG× EGn . Next we need to calculate

∇8= d8+ [A, 8] − ∂A.

We can show
d8= [8, 2] + ∂2

and so

∇8 = [8, 2] + ∂2

+ [2− α ad(p−1){ev∗2π 2̂− ad(p(2π))a + a} + ad(p−1)a, 8]

− ∂(2− α ad(p−1){ev∗2π 2̂− ad(p(2π))a + a} + ad(p−1)a)

= ∂α ad(p−1){ev∗2π 2̂− ad(p(2π))a + a}.
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Therefore, using the formula from Theorem 2.1, the string class for PG× EGn as a
class in H∗(G ×G EG) is

−
1

4π2

∫
S1

〈
(α2
− α)

(
1
2
[ev∗2π 2̂, ev∗2π 2̂] − [ev∗2π 2̂, ad(p(2π)−1)a]

+ [ev∗2π 2̂, a] +
1
2

ad(p(2π))[a, a] − [ad(p(2π))a, a] +
1
2
[a, a]

)
+ α ad(p−1)(ad(p(2π)) f − f )+ ad(p−1) f, ∂α(ev∗2π 2̂− ad(p(2π))a + a)

〉
=−

1

8π2

〈
−

1
6
[2̂, 2̂] +

1
3
[2̂, ad(p(2π))a]

−
1
3
[2̂, a] +

1
6

ad(p(2π))[a, a] +
1
3
[ad(p(2π))a, a]

−
1
6
[a, a] + ad p(2π) f + f, 2̂− ad p(2π)a + a

〉
=

1

8π2

(
1
6
〈[2̂, 2̂], 2̂〉 −

1
2
〈[2̂, 2̂], ad(g)a〉 +

1
2
〈[2̂, 2̂], a〉

+
1
2
〈2̂, ad(g)[a, a]〉 − 〈2̂, [ad(g)a, a]〉 +

1
2
〈2̂, [a, a]〉

+
1
2
〈a, ad(g)[a, a]〉 −

1
2
〈ad(g)a, [a, a]〉 − 〈ad(g) f + f, 2̂〉

− 〈ad(g) f − ad(g−1) f, a〉

)

(5.1)

where g = p(2π). Note that although there is some freedom in the choice of α, we
have

∫
S1(α

2
− α)∂α =− 1

6 and the result is independent of α.

5.2. The string class in the Cartan model. The formula (5.1) above for the string
class is quite unwieldy. We have already seen that the most compact representation
for equivariant cohomology classes is via equivariant differential forms. We shall now
proceed to find an equivariant differential form representing the same class as above.
Firstly, let us write this form as an element of the Weil model. Recall that this will
be a sum of terms lying in different parts of the graded algebra W . The degree-three
component of the Weil model is given by

(W ⊗�(G))3 =
⊕

i+2 j+k=3

∧
i (g∗)⊗ S j (g∗)⊗�k(G)

= (∧0
⊗ S0

⊗�3)⊕ (∧1
⊗ S0

⊗�2)⊕ (∧2
⊗ S0

⊗�1)

⊕ (∧3
⊗ S0

⊗�0)⊕ (∧0
⊗ S1

⊗�1)⊕ (∧1
⊗ S1

⊗�0).

We can use the connection–curvature construction from Section 4.1 to rewrite the
string class as follows. Consider, for example, the terms − 1

2 〈[2̂, 2̂], ad(g)a〉
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and 1
2 〈[2̂, 2̂], a〉 above. In the Weil model, these terms should live in ∧1

⊗ S0
⊗�2.

If we expand the connection in terms of a basis {ξi } for g then we can write
1
2 〈[2̂, 2̂], a〉 − 1

2 〈[2̂, 2̂], ad(g)a〉 = 1
2 〈[2̂, 2̂], aiξi 〉 −

1
2 〈[2̂, 2̂], ad(g)aiξi 〉

=
1
2 ai
〈[2̂, 2̂], ξi − ad(g)ξi 〉.

Therefore the element in ∧1
⊗ S0

⊗�2 corresponding to these two terms is
1
2 ai
〈[2̂, 2̂], ξi − ad(g)ξi 〉.

Similarly, for the terms with the connection appearing twice (the middle three terms),
we have

1
2 ai
∧ a j
〈2̂, ck

i j (ξk + ad(g)ξk)〉 − ai
∧ a j
〈2̂, [ad(g)ξi , ξ j ]〉 ∈ ∧

2
⊗ S0

⊗�1.

The last two terms in (5.1) live in ∧0
⊗ S1

⊗�1 and ∧1
⊗ S1

⊗�0 respectively, and
we view them as the �1-valued (∧1-valued) polynomials on g

χ 7→ −〈ad(g)χ + χ, 2̂〉 and χ 7→ −ai
〈ad(g)χ − ad(g−1)χ, ξi 〉.

We can now apply the Mathai–Quillen isomorphism to the string class s, interpreted
as above. That is, we can calculate φ(s)= (exp γ )(s)= s + γ (s)+ · · · . Note that in
light of Remark 4.4 we can already identify the image of s under φ since we know that
it is a basic form. Indeed we are viewing it as a form on G × EG which descends to
G ×G EG. However, we shall present the calculation here as it illustrates the beauty
of Mathai and Quillen’s result and Cartan’s formalism. We will calculate a few terms
here and leave the rest as an exercise. We write ωi jk for the ∧i

⊗ S j
⊗�k part of the

element ω ∈W ⊗�(G). Let us begin with the term 1
6 〈[2̂, 2̂], 2̂〉 =: s003. Recalling

that the ai are the connection elements in W ,

γ (s003) =
1
6 (a

i
⊗ ιi )(〈[2̂, 2̂], 2̂〉)

=
1
2 ai
〈[ιi 2̂, 2̂], 2̂〉.

Now recall that here ιi means contraction with the vector field generating the action of
G on itself—in this case the adjoint action. So ιχ 2̂ is given by

2̂g

(
d

dt

∣∣∣∣
0

exp(−tχ)g exp(tχ)
)
= 2̂g(gχ − χg)= ad(g)χ − χ.

Therefore,
γ (s003)=

1
2 ai
〈[2̂, 2̂], ad(g)ξi − ξi 〉.

Notice that the term s102 := s|∧1⊗S0⊗�2 =
1
2 ai
〈[2̂, 2̂], ξi − ad(g)ξi 〉 cancels out . We

can calculate the ∧2
⊗ S0

⊗�1 part of φ(s) using

s201 =
1
2 ai
∧ a j
〈2̂, ck

i j (ξk + ad(g)ξk)〉 − ai
∧ a j
〈2̂, [ad(g)ξi , ξ j ]〉,

γ (s102)=−ai
∧ a j
〈2̂, ck

i j (ξk + ad(g)ξk)〉+2ai
∧ a j
〈2̂, [ad(g)ξi , ξ j ]〉=−2s201,

1
2γ

2(s003) =
1
2 ai
∧ a j
〈2̂, ck

i j (ξk + ad(g)ξk)〉 − ai
∧ a j
〈2̂, [ad(g)ξi , ξ j ]〉 = s201.
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We can calculate all the other terms similarly and we find that everything cancels,
as indeed it must, except for the terms in ∧0

⊗ S0
⊗�3 and ∧0

⊗ S1
⊗�1. These

are given by 1
6 〈[2̂, 2̂], 2̂〉 and χ 7→ −〈χ, 2+ 2̂〉. Therefore, we find the following

theorem holds.

THEOREM 5.1. The universal string class for LG-bundles is represented in H3
G(G)

by the class of the equivariant differential form

1

8π2

(
1
6
〈[2̂, 2̂], 2̂〉 − 〈χ, 2+ 2̂〉

)
.

REMARK 5.2. The equivariant form above coincides with the equivariant extension of
the transgression form (48π2)−1

〈2̂, [2̂, 2̂]〉 defined by Alekseev and Meinrenken [1].
There are also equivariant extensions of the higher analogues of these forms and in the
next section we shall show that these represent the universal string classes in all odd
dimensions.

6. Higher string classes for LG-bundles

We would now like to extend Theorem 5.1 to string classes in all odd degrees, in
analogy with the results for �G-bundles from [13]. As remarked at the end of the
last section we wish to show that these coincide with the classes of the equivariant
transgression forms as defined in [1, 8]. Therefore, we first review the construction of
these forms.

6.1. Equivariant transgression forms. Let p ∈ I k(g) and consider the 1-form t2
on G × [0, 1]. Define the ‘curvature’ Ft of this form by d(t2)+ 1

2 [t2, t2], and
consider the (2k − 1)-form on G given by

−

∫ 1

0
p(Fk

t ) = k
∫ 1

0
p

(
2,

(
1
2
(t2
− t)[2, 2]

)k−1)
dt

=

(
−

1
2

)k−1 k!(k − 1)!
(2k − 1)!

p(2, [2, 2]k−1).

It is easy to see that this form is closed: we call it the transgression of p. We write
τ(p) for both the (2k − 1)-form and its class in H2k−1(G).

To define the equivariant version of the form above, consider the ‘equivariant
curvature’ of the 1-form above, FG(t2)(χ), given by dG(t2)(χ)+ 1

2 [t2, t2] where
dG = d − ιχ is the equivariant differential from the Cartan model (Definition 4.3). The
equivariant transgression of p is given by [1, 8]

τG(p)=−
∫ 1

0
p((FG(t2)(χ)+ χ)

k).

We have
FG(t2)= dt ∧2+ 1

2 (t
2
− t)[2, 2] − t (χ − ad(g−1)χ)
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and so

τG(p) = −
∫ 1

0
p

((
dt ∧2+

1
2
(t2
− t)[2, 2] − t (χ − ad(g−1)χ)+ χ

)k)

= k
∫ 1

0
p

(
2,

(
1
2
(t2
− t)[2, 2] + (1− t)χ + t ad(g−1)χ

)k−1)
dt.

It is easy to see that τG(p) is equivariantly closed and so defines a class in H2k−1
G (G).

6.2. Higher string classes for LG-bundles. Let P→ M be an LG-bundle with
connection A and Higgs field 8 and denote by F the curvature of A and by ∇8=
d8+ [A, 8] − ∂A the covariant derivative of 8. Following [13] we define the string
form of the pair (A, 8) associated to p ∈ I k(g) by

sp(A, 8)=
∫

S1
cwp( Ã),

where Ã is the connection on the caloron transform of P . As in Section 2.3, we have
the following formula for the string form:

sp(A, 8)= k
∫

S1
p(∇8, Fk−1) dθ.

We also have the results analogous to [13].

PROPOSITION 6.1. The string form is closed and so defines a cohomology class in
H2k−1(M).

This class, which we denote by sp(P), is called the string class of P associated
to p.

PROPOSITION 6.2. The string class is independent of the choice of connection and
Higgs field.

PROPOSITION 6.3. The string class is natural, that is, sp( f ∗P)= f ∗sp(P) if f :
N → M. In particular, sp defines a characteristic class for LG-bundles.

The proofs of Propositions 6.1, 6.2 and 6.3 are all identical to the �G case.
As in Section 5, the string class associated to p ∈ I k(G) of the universal LG-

bundle is an equivariant cohomology class. We have the following result concerning
this class.

PROPOSITION 6.4. The string class associated to p ∈ I k(g) of the universal LG-
bundle is represented in H2k−1

G (G) by the equivariant transgression of p. That is,

sp(ELG)= τG(p).
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PROOF. Recall that a connection and Higgs field for the universal bundle were given
in Section 5.1. The curvature of this connection was

F = (α2
− α) ad(p−1)( 1

2 [ev∗2π 2̂, ev∗2π 2̂] − [ev∗2π 2̂, ad(p(2π)−1)a]

+ [ev∗2π 2̂, a] + 1
2 ad(p(2π))[a, a] − [ad(p(2π))a, a] + 1

2 [a, a])

+ α ad(p−1)(ad(p(2π)) f − f )+ ad(p−1) f,

where a is a connection on EG and f is its curvature. The covariant derivative of the
Higgs field was given by

∇8= ∂α ad(p−1)(ev∗2π 2̂− ad(p(2π))a + a).

We wish to calculate the equivariant differential form representing the string class

sp = k
∫

S1
p(∇8, Fk−1) dθ;

we omit the dependence on the LG-bundle since this is the universal class. Recall
that in order to do this we use the Mathai–Quillen isomorphism, which, according
to Remark 4.4, requires us to ignore any terms in sp which involve the connection a.
Therefore we see that the Mathai–Quillen isomorphism applied to the string class gives
the equivariant form

sp = k
∫

S1
p

(
2̂,

(
1
2
(α2
− α)[2̂, 2̂] + α(ad(g)χ − χ)+ χ

)k−1)
∂α dθ

= k
∫ 1

0
p

(
2,

(
1
2
(α2
− α)[2, 2] + α(χ − ad(g−1)χ)+ ad(g−1)χ

)k−1)
dα

= k
∫ 1

0
p

(
2,

(
1
2
(α2
− α)[2, 2] + αχ + (1− α) ad(g−1)χ

)k−1)
dα.

Now making the change of variables α 7→ 1− t gives the required result. 2

We now have the result we were looking for, in analogy with Theorem 2.5.

THEOREM 6.5. Let P→ M be an LG-bundle and P̃→ M × S1 its caloron
transform. If

s(P) : I k(g)→ H2k−1(M)

is the map that gives for any p ∈ I k(g) its associated string class, then the following
diagram commutes

I k(g)

s(P)

''PPPPPPPPPPPPPPPPPPPPP
cw(P̃) //

τG

��

H2k(M × S1)

∫
S1

��
H2k−1

G (G)
f ∗ // H2k−1(M)

Here f is the classifying map of P (Section 3.2).
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PROOF. The upper triangle in the diagram commutes by the definition of s(P).
Proposition 6.3 tells us that the string class is natural, so for the lower triangle it
is enough to calculate the universal string class and then sp(P)= f ∗sp(ELG). But
we know from Proposition 6.4 that sp(ELG) is equal to the equivariant transgression
τG(p). Therefore, the diagram commutes. 2

Acknowledgement

The author thanks Michael Murray and Mathai Varghese for useful discussions, and
the referees for many useful suggestions.

References

[1] A. Alekseev and E. Meinrenken, ‘The Atiyah algebroid of the path fibration over a Lie group’,
Lett. Math. Phys. 90 (2009), 23–58.

[2] M. F. Atiyah and R. Bott, ‘The moment map and equivariant cohomology’, Topology 23(1) (1984),
1–28.

[3] A. L. Carey and J. Mickelsson, ‘The universal gerbe, Dixmier–Douady class, and gauge theory’,
Lett. Math. Phys. 59(1) (2002), 47–60.

[4] H. Cartan, ‘Notions d’algèbre différentielle; application aux groupes de Lie et aux variétés où
opère un groupe de Lie’, in: Colloque de topologie (espaces fibrés), Bruxelles, 1950 (Georges
Thone, Liège, 1951), pp. 15–27.

[5] J. L. Dupont, Curvature and Characteristic Classes, Lecture Notes in Mathematics, 640 (Springer,
Berlin, 1978).

[6] H. Garland and M. K. Murray, ‘Kac–Moody monopoles and periodic instantons’, Comm. Math.
Phys. 120(2) (1988), 335–351.

[7] V. W. Guillemin and S. Sternberg, Supersymmetry and Equivariant de Rham Theory, Mathematics
Past and Present (Springer, Berlin, 1999), With an appendix containing two reprints by Henri
Cartan.

[8] L. C. Jeffrey, ‘Group cohomology construction of the cohomology of moduli spaces of flat
connections on 2-manifolds’, Duke Math. J. 77(2) (1995), 407–429.

[9] J. Kalkman, ‘A BRST model applied to symplectic geometry’, PhD Thesis, Universiteit Utrecht,
1993.

[10] T. P. Killingback, ‘World-sheet anomalies and loop geometry’, Nuclear Phys. B 288(3–4) (1987),
578–588.

[11] V. Mathai and D. Quillen, ‘Superconnections, Thom classes, and equivariant differential forms’,
Topology 25(1) (1986), 85–110.

[12] M. K. Murray and D. Stevenson, ‘Higgs fields, bundle gerbes and string structures’, Comm. Math.
Phys. 243(3) (2003), 541–555.

[13] M. K. Murray and R. F. Vozzo, ‘The caloron correspondence and higher string classes for loop
groups’, J. Geom. Phys. 60(9) (2010), 1235–1250.

[14] M. K. Murray and R. F. Vozzo, ‘Circle actions, central extensions and string structures’, Int. J.
Geom. Methods Mod. Phys. 7(6) (2010), 1065–1092.

[15] M. S. Narasimhan and S. Ramanan, ‘Existence of universal connections’, Amer. J. Math. 83 (1961),
563–572.

[16] M. S. Narasimhan and S. Ramanan, ‘Existence of universal connections. II’, Amer. J. Math. 85
(1963), 223–231.

[17] A. Pressley and G. Segal, Loop Groups, Oxford Mathematical Monographs (Oxford University
Press, New York, 1986).



[19] String classes and equivariant cohomology 127

[18] R. Schlafly, ‘Universal connections’, Invent. Math. 59(1) (1980), 59–65.
[19] R. F. Vozzo, ‘Loop groups, Higgs fields and generalised string classes’, PhD Thesis, School of

Mathematical Sciences, University of Adelaide, 2009.

RAYMOND F. VOZZO, School of Mathematical Sciences, University of Adelaide,
Adelaide SA 5005, Australia
e-mail: raymond.vozzo@adelaide.edu.au


