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Abstract

This thesis presents a proof of the Atiyah–Singer index theorem for twisted Spinc-
Dirac operators using (geometric) K-homology. The case of twisted Spinc-Dirac
operators is the most important case to resolve, and will proceed as a corollary of
the computation that theK-homology of a point is Z. We introduce the topological
index of a pair (M,E), indt(M,E) = (ch(E)∪Td(M))[M ] and the analytic index
inda(M,E) = dim(kerDE)+ − dim(kerDE)− and show that they agree for a “test
computation” on a pair of index 1. The main result is that both inda and indt are
well-defined on classes [(M,E)] ∈ K0(·) and that there exists a representative on
each class for which the analytic and topological indices agree, proving the index
theorem for twisted Spinc-Dirac operators. We also present a description of an
analogue the Atiyah–Singer index theorem when a compact Lie group action is
introduced to (M,E) and an overview of the steps required prove this result.
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Introduction

It is a truth universally acknowledged that a complicated theorem is in want of a
simplified proof.

Famously, the “quadratic reciprocity” theorem of Legendre and Gauss has over
240. known proofs, with novel expositions being produced every few years since
1788 [Lem]. The quadratic reciprocity theorem is powerful because it is useful, but
the measure of a theorem may be found in the diversity of its proofs. The index
theorem of M.F. Atiyah and I.M. Singer was a landmark result in the nascent field
of index theory, spurring interest in K-theory and leading to a new collaboration
between physics and mathematics. The development of new proofs of the index
theorem often lead to surprising results in other areas, and give new insight into
the technicalities of the theorem.

What constitutes the components of an index theorem is often not entirely ob-
vious, but typically it is presented as an equality between two invariants, typically
an analytic invariant1 of an operator f on a topological space X and a topological
invariant2 of X. The Euler characteristic of a manifold M is the typical example
of a analytic invariant, and the total curvature is the typical example of a topo-
logical invariant. The classical example of an index theorem is the Gauss–Bonnet
theorem on curvature, which is typically regarded as a result purely in the realm
of differential geometry.

Theorem (Gauss–Bonnet index theorem). Suppose M is a compact Riemannian
manifold without boundary. Let K(x) = k1(x)k2(x) be the product of the principal
curvatures k1(x), k2(x), for each x ∈M . Then∫

M

KdA = 2πχ(M)

where χ(M) is the Euler characteristic of M .

Some explanation is required about this before we continue: the Euler char-
acteristic is usually regarded as a topological invariant for 2-surfaces, satisfying

1meaning: preserved under addition of a compact operator
2meaning: preserved under homeomorphism

xiii
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χ(M) = 2−2g, for g the genus of M , but we can restate this in terms of the analytic
index of d+d∗ : Ωeven(M)→ Ωodd(M), χ(M) = dim ker(d+d∗)−dim coker(d+d∗).

The first proof of this theorem was published by Pierre Bonnet in the mid-19th
century, although Carl Friedrich Gauss had produced unpublished proofs before
that. With the benefit of hindsight, we now know that this is one of the early
examples of an index theorem.

Motivating problems; differential operators

The principal objects of study in differential geometry are manifolds and vector
bundles over manifolds, and it is well known in physics that manifolds are of enor-
mous importance for describing physicals systems: the Minkowski metric on R4

describes space-time. An area of more immediate practical purpose in physics is
the theory of (and search for solutions to) differential equations. Many physi-
cal phenomena are described by a differential equation, perhaps most famous are
Newton’s second law of motion and the diffusion of heat through a physical sys-
tem. Finding solutions to differential equations is typically very difficult. We can
usually find a solution iteratively using a computational method, but this may be
computationally expensive and in any event, is much less preferable to an exact
solution. The theory of differential equations is more fruitfully presented as the
study of differential operators. The example of a differential operator that we
are all familiar with is the standard derivative, acting on smooth functions on R.
The link between differential equations and manifolds and vector bundles is in the
form of sections of vector bundles, and differential operators typically act on the
sections of a given vector bundle (the author highly recommends [Lee13] as an
introduction to the topic). Index theory is all about using this link to study the
relationship between differential operators and vector bundles. In particular, we
would like to study those differential operators that are so-called elliptic operators.
A little introduction to differential operators is required.

When we calculate the “principal symbol” of a differential operator (Defini-
tion 1.2.14) the operator is said to be elliptic if the principal symbol is invertible
whenever a (supplied) cotangent vector ξ is non-zero (Definition 1.2.19). The sym-
bol is important because for a given elliptic operator D, the invertibility of the
symbol is sufficient to conclude that D has a finite dimensional kernel and cok-
ernel. Indeed elliptic differential operators D,D′ with the same principal symbol
satisfy dim kerD − dim cokerD = dim kerD′ − dim cokerD′. The benefit of this
approach is the symbol is coarse enough to be used in a wide variety of situations,
but still captures the relevant index-theoretic information.
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The index theorem

The Atiyah–Singer index theorem and more modern results rely on the work of
Alexander Grothendieck, who introduced a novel cohomology theory, called K-
theory3. Grothendieck formulated his extension to Riemann–Roch in the language
of morphisms of varieties, which became famous as Grothendieck–Riemann–Roch.
Atiyah and Hirzebruch applied this construction to vector bundles (locally free
sheaves) over a compact manifold M , creating topological K-theory. Atiyah and
Singer then used it to great effect when they proved their theorem on the index of
elliptic operators.

Theorem (Atiyah–Singer, Theorem 2.12 of [AS68c]). Suppose M is a closed
smooth manifold with smooth complex vector bundles E,F → M . Suppose D
is an elliptic differential operator acting between smooth sections of E and F ,
D : Γ∞(E)→ Γ∞(F ). Then∫

M

ch(D) Td(M) = dim kerD − dim(Γ∞(F )/ imD).

Some explanation of this theorem: the quotient (Γ∞(F )/ imD) is the cokernel
of D, ch(D) is the Chern character4 of D and Td(M) is the Todd class of the com-
plexification of TM . The “Chern character of D” is used here purely to illustrate
that the topological index does indeed depend on D, which is not as clear in 2.12
of [AS68c].

Index theory encompasses an enormous body of work and it would be impossi-
ble to summarise the progress made since 1963 in an introduction with any degree
of completeness. The more prominent results are the work of Atiyah, Patodi and
Singer with their Atiyah–Patodi–Singer index theorem [APS75, Theorem 3.10],
which establishes the index theorem on manifold with boundary and linked the in-
dex with the spectral invariants of D. Another notable result is the establishment
of the index theorem in the case whenM is merely a topological manifold (Teleman,
[Tel84]). For us in particular, the introduction of a homology version of K-theory is
worth mentioning. There are two main flavours of this homology theory: geomet-
ric “Baum–Douglas” K-homology and analytic K-homology. These two homology
theories are non-trivially equivalent ([BHS07]) and indeed, the proof of the index
theorem via K-homology usually proceeds via this equivalence, for which the in-
terested reader may refer to [BD82b] and the related papers [BD82a, BD82c] (they
deal with extensions of independently interesting results from [BD82a]). We will
not be discussing analytic K-homology except in the context of this equivalence.
More recently, there has been work proving the index theorem using only geometric

3the K is from the German word Klasse - “class”
4a modified version of the classical Chern character
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K-homology, as in [BvE18]. We provide a short explanation of the differences be-
tween the two approaches. The work of Baum and Douglas in [BD82b] introduces
the general definition of geometric (they call it “topological” - the nomenclature
having not yet been completely settled) K-homology of a suitable space X in the
form of equivalence classes of triples (M,E, f), where f : M → X is a smooth
map. The main result is that there is a direct isomorphism between analytic and
geometric K-homology, and that the index theorem of Atiyah and Singer pro-
ceeds as a result of this computation. Indeed, “it seems increasingly evident that
index theory achieves both its greatest simplicity and maximum elegance in the
framework of K-homology” and that with some generalisation “all index theorems
known to us appear to fit into this framework” (both from [BD82a], in the intro-
duction). A proof of the index theorem using only geometric K-homology has long
been “generally accepted as valid” ([BvE18, “Introduction”]) but a proof did not
exist in the literature until as recently as 2016 ([BvE18, Bv16]5). The key remark
is that it is no longer necessary to consider even general geometric K-homology.
Indeed, the novelty (although the authors do not claim the result is novel) of this
approach is the use of the geometric K-homology of a point. In the case that X
is a point we can exclude the smooth map f from our triple (all functions with
codomain a point are equivalent) and we reduce to pairs (M,E). This simplifies
computations and produces a more elegant computation of the index theorem of
Atiyah and Singer.

Main result; an overview of the proof

The aim is to present a complete description of the work done in [BvE18], substitut-
ing some of the arguments for the bordism invariance of the index with [Hig91] and
using a partition of unity rather than Proposition 17 in [BvE18] for the proof that
the topological index is preserved by bundle modification. The main application is
the use of the K-homological techniques to prove new varieties of index theorems.
In particular, we can (with some small effort) introduce the action by a compact
Lie group G to Theorem 1.4.13 and formulate a new type of index theorem. A brief
outline of some of the technical details are as follows. The proof of Theorem 1.4.13
will proceed as a natural consequence of the computation K0({point}) ∼= Z. The
group K0(·) consists of equivalence6 classes with representatives (M,E), where M
is a compact, even dimensional smooth manifold and E → M a complex vector
bundle over M (among other things). The idea of the proof is that there are two
homomorphisms from K0(·), called the topological and analytic index

5the first (originally uploaded in to the arχiv in 2016) discusses the proof for a twisted Dirac
operator and the second extends to all elliptic operators by the commutativity of a particular
diagram

6the equivalence relation is defined in Definition 3.1.7
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• indt : K0(·)→ R, [(M,E)] 7→ ch(E) ∪ Td(M)[M ]

• inda : K0(·)→ Z, [(M,E)] 7→ dim(kerDE)+ − dim(kerDE)−

discussed in Definition 1.4.9 and below Definition 1.2.11, respectively. Here, D
is the Dirac operator of M (Definition 1.2.4) and DE is the operator twisted by
the bundle E (Definition 1.2.11). It turns out that the analytic index is actually
an isomorphism into Z and that on a generator of K0(·), indt = inda = 1. The
equivalence relation for K0(·) is constructed in such a way as to ensure that for a
given pair (M,E) there is always an equivalence [(M,E)] = [(Sn, qβ)], where β is
the so-called “Bott generator”7 vector bundle, for q ∈ Z relying on M,E. Both
the topological and analytic indices agree on (Sn, qβ) and have index q, providing
an exact correspondence. In Chapter 4 we also establish that the topological and
analytic indices are well-defined on K-homology classes, and most of the technical
details are present in this chapter.

When we introduce a compact Lie group G, we must reformulate the relations
of K-homology to accommodate for this G-action. The conclusion is largely the
same, but the analytic and topological indices require some modification. The
example pair is no longer (Sn, β) but now becomes (Sn, β ⊗ [V ]) for a particular
equivalence class [V ] of a finite-dimensional irreducible representation V . The G
action is trivial on β → Sn and, (for a fixed g ∈ G) the topological and analytic
indices involve [V ](g) i.e. the trace of the representation associated to V evaluated
at g. This is an outline of a proof using K-homology of Theorem 3.9 in [AS68c]
for twisted Spinc-Dirac operators.

7Definition 2.1.1
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Chapter 1

The Dirac operator and the index
theorem; ind(D) <∞

This chapter serves to introduce the necessary background information to define
the primary object of study: the Spinc-Dirac operator on a manifold M and the
related Atiyah–Singer index theorem for twisted Spinc-Dirac operators. We cover
the definition of the groups Spin(n), Spinc(n), the construction of a Spinc structure
for a manifold M , the related spinor bundles and twisted Spinc-Dirac operators.
For the sake of completeness we also include an abridged proof that the analytic
index is well-defined on elliptic operators of order 1, giving firm foundation for the
work done in the remaining chapters.

1.1 Clifford algebras and spinors

Let V be a vector space over a field K, which we will usually take to be R or C.
Let B be a non-degenerate symmetric bilinear form on V . Let Q(v) = B(v, v) and
define T (V ) = K⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · · as the tensor algebra of V
and I(Q) ⊂ T (V ) the two-sided ideal generated by

{v ⊗ v + ‖v‖2 : v ∈ V }.

Set C(Q) = T (V )/I(Q) and define j = π ◦ i, where i is the natural embedding
of the vector space V into T (V ) and π is the projection π : T (V ) → I(Q). Then
j(v)2 = −Q(v) · 1 for all v ∈ V .

Definition 1.1.1 (Clifford algebra). The pair (C(Q), j) is called the Clifford al-
gebra of V with respect to Q. Since j is canonical, we may write C(Q) unambigu-
ously.

1



2 Chapter 1. The Dirac operator and the index theorem; ind(D) <∞

By the equation B(v1, v2) = 1
2
Q(v1 +v2)−Q(v1)−Q(v2) we lose no information

about B by specifying only the quadratic form Q. If the basis {vi}ni=1 is orthogonal
with respect to the bilinear form B (B(vi, vj) = 0 if i 6= j) then the Clifford algebra
C(Q) is (linearly) generated by 1 ∈ K and anti-symmetric products of the form
vi1 · · · vis , where 1 < i1 < · · · < is ≤ l ≤ n and 1 ≤ l ≤ n.

Definition 1.1.2 (Cn, Ccn). Let Cn be the real Clifford algebra of the form
Q(x1, . . . , xn) = −x2

1 − · · · − x2
n on Rn and Ccn be the related complexified Clifford

algebra of the form Qc(z1, . . . , zn) = z2
1 + · · ·+ z2

n.

Remark. The term “complexified” is no coincidence: there is an isomorphism Ccn ∼=
Cn ⊗R C [Fri00, Corollary on page 11].

Definition 1.1.3 (Spin(n)). The spin group is Spin(n) = {ei · · · e2j | ei ∈ Rn, ‖ei‖ =
1, j ∈ Z≥0} ⊂ Cn, where we take j = 0 to correspond to the single element 1.

Remark. Spin(n) is the connected double cover for SO(n). For n ≥ 2 this coincides
with the universal cover of SO(n) and hence is unique.

Definition 1.1.4 (Spinc(n)). Spinc(n) = (Spin(n) × U(1))/Z2 where we imagine
Z2 = {(1, 1), (−1,−1)} as a multiplicative subgroup of Spin(n) × U(1) and have
the equivalence relation (g, z) ∼ (−g,−z), for g ∈ Spinc and z ∈ U(1).

Let ρ : Spin(n)→ SO(n) be a group representation given by

ρ(g)(v) = gvg−1 ∈ Rn ⊂ Cn, v ∈ Rn, (1.1)

where we identify ρ(g) with the linear map it induces in SO(n) and the multipli-
cation of g on v is the multiplication of the Clifford algebra. This is the projection
map that makes Spin(n) a double cover of SO(n) and we extend it to Spinc(n) by
ρ([g, z]) = ρ(g).

Definition 1.1.5 (Frame bundle). The frame bundle of a vector bundle F →M ,
denoted F(F ) is the principal GLn(R)-bundle with fibre at p ∈M that consists of
ordered bases (“frames”) of the fibre Fp.

Equivalently, one can define the frame bundle fibre at p as linear isomorphisms
f : Rn → Fp, because this is essentially just a choice of basis.

Definition 1.1.6 (Spinc datum). Given a smooth manifold M and a smooth real
vector bundle F →M a Spinc-datum of F is a pair (P, η) consisting of

• a smooth principal right Spinc bundle P →M
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• a smooth homomorphism η : P → F(F ) that is compatible with the rep-
resentation ρ : Spinc(n) → SO(n) in the sense that the following diagram
commutes

P × Spinc(n) P

F(F )×GLn(R) F(F ).

η×ρ η

Definition 1.1.7 (Isomorphism of data). Given a pair of Spinc data (P, η), (P ′, η′)
for a vector bundle π : F → M as in Definition 1.1.6 an isomorphism of Spinc

data is an isomorphism of the (associated) principal bundles P, P ′ that is compatible
(commutes with) the maps η, η′.

Definition 1.1.8 (Spinc structure). An isomorphism class of data for F as in
Definition 1.1.7 is a Spinc structure on F.

Remark. Spinc structures are not unique; there can exist more than one isomor-
phism class of data.

Definition 1.1.9 (Spinc(n) manifold). A Spinc(n) manifold is a smooth n-manifold
whose tangent bundle TM has a given Spinc structure.

If it is not necessary to specify the dimension n, we may instead write “Spinc

manifold”

Remark. A Spinc structure on a manifold determines an orientation and a Rie-
mannian metric via the orientation and Euclidean inner product on Rn. When M
is supplied with a Riemannian metric, we require that the Spinc-induced metric
agrees with the one provided.

It is also possible to reverse the Spinc structure on the manifold, and it will
become evident why this is important in Chapters 3 and 4.

Definition 1.1.10 (Quotient product). Given a pair of sets X, Y with a group
action G on X × Y , define X ×G Y to be the quotient

X ×G Y := (X × Y )/ ∼,

where for (x, y), (x′, y′) ∈ X × Y we say (x, y) ∼ (x′, y′) if (x, y) = g · (x′, y′).

Suppose that we have P, F as in Definition 1.1.6. We can act on P by an
element of Spinc(n) and likewise on Rn via the map defined in Eq. (1.1). We can
write a right-action on P × Rn as (p, v) · g = (pg, g−1v), for g ∈ Spinc(n), p ∈ P ,
v ∈ Rn and define the quotient P ×Spinc(n) Rn as the quotient of P × Rn by this
relation.
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Definition 1.1.11 (Reversed structure). Given a datum (P, η) for F as in Defini-
tion 1.1.6, let F−(F ) = F(F )×GL+

nR GL−nR, where we write GL−nR to mean those
matrices with negative determinant and GL+R, those with positive determinant.

Suppose that π : Õ
−

(n) → O−(n) is the connected double cover of O−(n), where
O−(n) is the collection of orthogonal matrices with determinant −1. The reversed

datum of (P, η) is then written (P−, η−), where P− = P ×Spinc(n) Õ
−

(n) and η− is
the map induced by taking η × π on pairs in F−(F ).

Some commentary before we continue regarding this choice of “reversed” da-
tum. In the original definition (that is, Lemma 3.1.5), we might have chosen to
use F+(F ) (those frames which were positively oriented), which would make the
obvious choice for the negative datum those frames which were negatively oriented
(i.e. F−(F )). Since we did not just use those frames which are positively oriented
in the datum, we need a bigger set for the negative datum, and the choice of F−(F )
is motivated primarily by the following fact. If we think of the frame bundle fibre
at p as linear isomorphisms from Rn into Fp then the natural map F−(F )→ F(F )
(which sends [f, g] ∈ F−(F ) to f ◦ g) interchanges F−(F ) and F+(F ).

Remark. The compatibility of η− with the representation ρ : Spinc(n) → SO(n)
comes from the compatibility of η, so it is easy to see that (P−, η−) is a valid
datum.

Proposition 1.1.12. Let F, P as in Definition 1.1.6. There is an isomorphism
P ×Spinc(n) Rn ∼= F .

Proof. The isomorphism is

ϕ : [(p, v)] 7→ [(η(p), v)] ∈ F(F )×GLn R Rn ∼= F,

for v ∈ Rn and p ∈ P .

Remark. For a given real vector bundle F we normally have the isomorphism
F = F(F )×GLn(R) ×Rn and the transition functions are invertible matrices. The
Spinc structure of F changes the transition functions from GLn(R) to Spinc(n) via
Proposition 1.1.12 and we may write F = P ×Spinc(n) Rn. In this sense, P may be
described as the “structure bundle” of F .

Definition 1.1.13 (κn). Suppose n = 2r is even and define κn : Ccn → End(C2r)
as the isomorphism Ccn ∼= End(C2r) found in [Fri00, Proposition on page 13.]. If
n = 2r+ 1 is odd, then κn consists of an isomorphism Ccn ∼= End(C2r)⊕End(C2r)
followed by projection onto the first factor.

There are many isomorphic descriptions of Spinc(n). The description used in
Definition 1.1.4 has the advantage of being simple to write down, but hides a key
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fact we would like to use. Indeed, Spinc(n) can be thought of as a subset of Ccn
([BvE18, 2.3]) and κn provides a group representation (we will abuse notation and
also call this κn) κn : Spinc(n)→ End(C2r) allowing us to define the spinor bundle.

Definition 1.1.14 (Spinor bundle). Suppose F →M is a real smooth Spinc vector
bundle over a smooth Riemannian manifold with structure bundle P as in Propo-
sition 1.1.12, so that F = P ×Spinc(n) Rn. Suppose n = 2r or n = 2r+ 1. Then the
spinor bundle of F is

SF = P ×Spinc(n) C2r .

Remark. Of particular note is the case when F = TM is the tangent bundle of M .
In this case, we do not write STM but instead SM and say that SM is the “spinor
bundle of M”.

Proposition 1.1.15. Suppose E1, E2 are Spinc vector bundles over a single smooth
manifold X, which are not both odd dimensional. Then the direct sum E1 ⊕ E2

has a Spinc structure with spinor bundle SE1⊕E2 = SE1 ⊗ SE2.

Proof. The statement is from [Hoc09, Lemma 13.6 on page 174].

We can define a Spinc structure on the pullback of a vector bundle, but this
requires the pullback of a principal bundle. A principal bundle is in particular a
fibre bundle, and the pullback of a fibre bundle with principal bundle structure is
simple: if πP : P → M is a principal G-bundle over a smooth manifold M and
f : X → M is a smooth map then f ∗P = {(x, p) | f(x) = πP (p)} is a principal
G-bundle with action (x, p) · g = (x, p · g), for x ∈ X, p ∈ Px, g ∈ G.

Proposition 1.1.16. Suppose E → X is a Spinc vector bundle over a manifold
X and suppose that f : Y → X is a smooth map. Then f ∗E has a Spinc structure
with spinor bundle Sf∗E = f ∗SE.

Proof. The Spinc structure of f ∗E is induced from the Spinc structure of E: if
E = P ×Spinc(n) Rn then f ∗E = f ∗P ×Spinc(n) Rn. Recall that pullbacks preserve
rank, so there is no ambiguity in writing the rank of both bundles as n = 2r, or
n = 2r + 1. With this in mind, it suffices to prove that Sf∗E = f ∗P ×Spinc(n) C2r

is the same as f ∗(P ×Spinc(n) C2r) = f ∗SE. The association is

f ∗P ×Spinc(n) C2r 3 [(y, p1), z)] 7→ (y, [p1, z]) ∈ f ∗(P ×Spinc(n) C2r)

for (y, p1) ∈ f ∗P, z ∈ C2r. This is well-defined because the Spinc(n) action on p1

in f ∗P ×Spinc(n) C2r is the same as in f ∗(P ×Spinc(n) C2r).
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Definition 1.1.17 (G-Spinc datum). Suppose F → M is a real smooth vector
bundle and there is a compact Lie group G acting on M and F is additionally
a G-equivariant vector bundle. Then a G-Spinc datum for F is a Spinc datum
(for F ) (P, η) for which P is also a G-Spinc principal bundle and the action by G
on F,M is compatible with ρ, η in the sense that the diagram in Definition 1.1.6
accommodates the action by G on P .

Proposition 1.1.18. Let M be as in Definition 1.1.9 and suppose P → M is
now a principal G-bundle for G a Lie group. Let Y be a manifold with a G-Spinc

structure. Let SM → M be the spinor bundle of M and suppose E → Y is a G-
equivariant Spinc vector bundle with spinor bundle SE. Then P ×G E → P ×G Y
has a Spinc structure with spinor bundle SP×GE = P ×G SE.

Proof. Let PE → Y be a principal G×Spinc(n) bundle such that E = PE×Spinc(n)

Rn i.e. PE is the Spinc-structure bundle for E. Then the Spinor bundle for E is
SE = PE ×Spinc(n) C2r by definition and P ×G E = P ×G (PE ×Spinc(n) Rn). This is
enough to completely determine the structure bundle for P ×G E, i.e.

P ×G SE = P ×G (PE ×Spinc(n) C2r) = (P ×G PE)×Spinc(n) C2r = SP×GE.

Remark. We will use this construction in Chapter 4 and Definition 1.1.17 will be
used again in Chapter 5.

Proposition 1.1.19. Given a manifold Ω with boundary and Spinc structure, we
can construct a Spinc structure on the boundary.

The proof of this proposition requires the so-called “2-out-of-3 lemma” [BvE18,
Lemma 5], which we will write below. First, suppose that we have two Spinc

bundles F1, F2 → M that have data (P1, η1), (P2, η2), ηj : Pj → F(F ). We can
easily form the Spinc structure of F = F1 ⊕ F2 via Proposition 1.1.15. The 2-
out-of-3 lemma is a stronger statement: given datum for any two of the triple
(F1, F2, F ) we can recover the datum for the third and moreover, this agrees with
(up to homotopy) the datum we began with.

Lemma 1.1.20 (2-out-of-3 lemma). Let F1, F2 be two smooth real vector bundles
over M and assume a Spinc datum exists for both F1 and F1 ⊕ F2. Then there
exists a unique Spinc structure for F2 such that F1 ⊕ F2 is the given one.

Proof of Proposition 1.1.19. We inject the frame bundle of TM into the frame
bundle of TΩ,

j : F(TM)→ F(TΩ
∣∣
M

) (v1, v2, . . . , vn) 7→ (n, v1, v2, . . . vn),
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where n is the outward facing unit normal vector. The principal Spinc(n) bun-
dle PM of M is the pre-image of PΩ under this map in the sense that PM =
η−1

Ω (j(F(TM))), where ηΩ is the smooth homomorphism ηΩ : PΩ → F(TΩ) as
in Definition 1.1.6. If NM is the normal bundle of M then we have the sum
TM ⊕ NM = TΩ

∣∣
M

, for which we have a structure for the normal bundle and
the tangent bundle of Ω restricted to M and hence by Lemma 1.1.20, there is a
structure for TM .

1.2 The Dirac operator

To seriously discuss the Dirac operator, we must spend time introducing Clifford
multiplication, which serves as essentially the distinguishing characteristic of the
Dirac operator when compared to other differential operators. In what follows, we
assume that M is a smooth Spinc manifold with Riemannian metric identifying
the tangent and cotangent bundles. Of course, the metric is the one that arises
naturally from the Spinc structure, but we would like to make explicit that the
tangent and cotangent bundles are not distinguished for the purposes of defining
the Dirac operator.

Definition 1.2.1 (Clifford multiplication). The spinor bundle SM = P×Spinc(n)C2r

is equipped with a map c : TM → End(SM) called the Clifford multiplication
defined by c([p, v])([p, y]) = [p, κn(v)y], for [p, v] ∈ P ×Spinc(n) Rn = TM, [p, y] ∈
P ×Spinc(n) C2r and κn as in Definition 1.1.13.

For a given fibre of TM , Clifford multiplication extends to products in C(TxM)
by acting on a product v · w ∈ C(TxM) as c(v) ◦ c(w).

Remark. It is not strictly necessary for Clifford multiplication to be defined on
only the spinor bundle of a manifold (the spinor bundle of the tangent bundle).
Indeed, we can write c : E → End(SE) for any bundle E, so long as it has a Spinc

structure.

Definition 1.2.2 (Clifford connection). Given a Spinc manifold M with spinor
bundle SM , let c(ω) ∈ End(SM) be the grading operator of SM , as in Lemma 1.2.8.
Then a Clifford connection for M is a connection ∇ : Γ∞(SM) → Γ∞(S ⊗ T ∗M)
satisfying the following equality. [∇, c(ω)] = c(∇LCω) : Γ∞(S) → Γ∞(S), where
∇LC is the Levi-Civita connection.

Lemma 1.2.3. Clifford connections exist.

Proof. This is a consequence of the proposition on page 59 of [Fri00]. The definition
is on page 57, and is written as “∇A”, although we will suppress the use of A, as
we do not discuss the related principal bundle connection from which this notation
originates.
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Definition 1.2.4 (Dirac operator). The Dirac operator of M as in Definition 1.1.9
is D = c ◦ ∇ : Γ∞(SM) → Γ∞(T ∗M ⊗ SM) = Γ∞(TM ⊗ SM) → Γ∞(SM) where
c is Clifford multiplication and ∇ is the connection on spinor bundle SM from
Definition 1.2.2

Formally we should say Spinc-Dirac operator, but we will often suppress the
mention of Spinc. It is enlightening to see what happens when M = Rn. The
Dirac operator on Rn is

D =
n∑
j=1

Aj
∂

∂xj
, (1.2)

where matrices {Aj}nj=1 are 2r × 2r complex matrices that are defined using an
inductive procedure. Write r to mean the greatest integer less than or equal to
n/2 i.e. n = 2r for n even or n = 2r + 1 for odd n. Suppose n is odd. If n = 1
then A1 = (−i). If n > 1 using matrices A1, . . . , An we can construct the matrices
Ã1, . . . , Ãn+1.

Remark. The tilde is used to distinguish between the jth matrix for n (which is
Aj) and the jth matrix for n+ 1 (which is Ãj).

The matrices {Ãj}n+1
j=1 are

Ãj =

(
0 Aj
Aj 0

)
and Ãn+1 =

(
0 −I
−I 0

)
.

When n is even the process is simpler. Ãj = Aj and An+1 =

(
−iI 0

0 iI

)
, where

I in the above matrices is the identity matrix of dimension 2r−1. In either either
case (bar n = j = 1) the trace is 0.

Lemma 1.2.5. When n = 2r + 1 is odd we have

(−1)jAj = ir+1A1 · · · Âj · · ·A2r+1.

We use the convention A1, . . . , Âj · · ·A2r+1 to mean the list A1, . . . , A2r+1 with
the jth entry removed.

Lemma 1.2.6. When n = 2r is even we have

irA1 · · ·An =

(
I 0
0 −I

)
and hence (irA1 · · ·An)2 = 1.

Lemma 1.2.7. A2
j = −I2r
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Proof of Lemmas 1.2.5 to 1.2.7. These are statements from [BvE18, 2. Dirac op-
erator of Rn].

Lemma 1.2.8 (Grading Lemma). Suppose M is an even dimensional Spinc man-
ifold with spinor bundle SM and e1, . . . , en is an oriented orthonormal basis for
TxM with n/2 = r and suppose ω = ire1e2 . . . en−1en ∈ C(TxM). Then there is a
grading on each fibre of SM given by the involution c(ω) : (SM)x → (SM)x.

Proof. Clifford multiplication acts on the Spinor bundle SM via κn. Because
the matrices {Aj}nj=1 are just {κn(ej)}nj=1, we have c(ω) = irA1 · · ·An. From
Lemma 1.2.6 we know this matrix product squares to 1 and hence has eigenvalues
±1, for each fibre of SM .

Definition 1.2.9 (Positive and negative spinor bundles). The positive (S+
M) and

negative (S−M) spinor bundles of M are the bundles obtained by taking fibrewise
the positive and negative eigenspaces of the involution c(ω) given in Lemma 1.2.8.

Lemma 1.2.10 (Clifford action decomposition). Suppose E1 and E2 are smooth
Spinc vector bundles over M of even rank with a fixed structure and suppose E ∼=
E1 ⊕ E2 with Spinc structure obtained from E1 and E1. Let ξ1 ∈ E1 and ξ2 ∈ E2.
Define ξ = fEξ1, ξ2) ∈ E1⊕E2, where fE : E1⊕E2 → E is the bundle isomorphism
and fS : SE → SE1⊗SE2 is the spinor isomorphism. If c1, c2 and c1+⊕2 are Clifford
multiplication on the respective spaces, E1, E2, E and γ is the grading operator on
S1 as in Lemma 1.2.8, we have

c1⊕2(ξ) ◦ fS = fS ◦ c1(ξ1)⊗ 1 + γ ⊗ c2(ξ2).

Proof. Let n,m be the rank of E1 and E2 and suppose they are even. Let F =
κn⊗ 1Ccm + γ ⊗ κm for κn, κm as in Definition 1.1.13. Let rn = n/2 and rm = m/2.
There is a decomposition

Ccn+m End(C2rn+rm
)

Ccn ⊗ Ccm End(C2rn )⊗ End(C2rm )

κn+m

== : == :

F

and since Clifford multiplication has active ingredient κ, this is enough to conclude
the result in the event that E = E1⊕E2 as sets (i.e. both fS and fE are the identity
map). This decomposition can be obtained from the definition of κ in [Fri00] on
page 14. We can write down a useful interpretation of fS is (non-explicitly) as
f−1
S ([p1, z1]⊗ [p2, z2]) = [p, z] for z ∈ C2rm+rn

satisfying z = z1 ⊗ z2 ∈ C2rn ⊗C2rm ,
p ∈ PE, p1 ∈ PE1 , p2 ∈ PE2 , where PE, PE1 and PE2 are the structure bundles
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for E,E1, E2 respectively. This decomposition is due to Proposition 1.1.15, and
extended linearly. We can then compute

fS ◦ c1⊕2(ξ)([p, z]) = fS([p, κm(ξ1)z1 ⊗ z2 + γ(z1)⊗ κm(ξ2)])

= [p1, κn(ξ1)z1]⊗ [p2, z2] + [p1, γ(z1)]⊗ [p2, κm(ξ2)z2]

which is exactly (c1(ξ1)⊗ 1 + γ ⊗ c2(ξ)) ◦ fS([p1, z1]⊗ [p2, z2]).

We can also formulate an extension of the general Dirac operator of a manifold,
which will be most useful when consider Theorem 1.4.13, later. Given a smooth
complex rank vector bundle E over M (for M as in Definition 1.1.9) we can
incorporate part of the information of E into the Dirac operator, so that we may
use it with the index theorem. We would like to construct a map

DE : Γ∞(SM ⊗ E)→ Γ∞(SM ⊗ E)

from D = c ◦ ∇ as in Definition 1.2.4. We need to extend both Clifford mul-
tiplication and the connection to E. This is quite easy for the Clifford part of
D, we can simply decree that the Clifford multiplication on the E part is trivial.
The connection is slightly more involved. Suppose now that the metric on M is
Hermitian and the connection on E is a Hermitian connection, denoted ∇E. The
new connection on SM ⊗ E is

∇SM⊗E = ∇⊗ 1E + 1SM ⊗∇E

and using this we can define the “twisted” Dirac operator.

Definition 1.2.11 (Twisted operator). Given a pair (M,E) consisting of a smooth
Spinc manifold M (with Hermitian metric) and a smooth complex vector bundle
E → M we can form the twisted Dirac operator DE from the Dirac operator D
of M . Suppose that ∇ is the connection on M that defines the Dirac operator
D = c ◦ ∇ and suppose that ∇E as above is the connection on E. We can then
construct DE : Γ∞(SM ⊗ E)→ Γ∞(SM ⊗ E) defined by DE = (c⊗ 1E) ◦ ∇SM⊗E.

Remark. The word “twist” is a reference to the tensor product. Given two abstract
bundles E,F , the bundle E ⊗ F is said to be the “twist” of E by F . Of course,
since there is no distinguishing E⊗F from F ⊗E, so we only ever be twisting SM
by another bundle, to remain unambiguous.

Definition 1.2.12 (Differential operator). Let M be an smooth n-manifold with
vector bundles E0 and E1 and consider a linear map D : Γ∞(M,E0)→ Γ∞(M,E1).
We say that D is a differential operator of order k if and only if the commutator
[D, f ] is an operator of order k − 1, for each function f ∈ C∞(M). An operator
is said to have order 0 if the commutator is 0, i.e. [D, f ] = 0. We write D ∈
Diffk(E0, E1) if D is a differential operator between E0 and E1 of order k.
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This is not the standard definition (see [Ebe, Section 2.2 “Differential operators
in general”]), but we prefer it because it is very easy to check if an operator is
order 1.

Example 1.2.13. The Dirac operator is an order 1 differential operator.

Proof. The Dirac operator is the composition of the Clifford action with a con-
nection. A connection is order 1 by the Leibniz rule, [c ◦∇, f ]s = c(df)s, which is
order 0, because the commutator [c(df), g]s is 0.

Definition 1.2.14 (Principal symbol of an operator). Let D be a differential
operator of order k on a manifold M with between sections of the vector bundles
E0, E1. Let π : T ∗M → M be the cotangent bundle projection and fix y ∈ M ,
ξ ∈ T ∗yM , e ∈ (E0)y. Pick f ∈ C∞(M) with f(y) = 0 and dfy = ξ. Choose a
section s ∈ Γ∞(M,E0) with s(y) = e0. The principal symbol of D is then the map

σD(y, ξ) : (E0)y → (E1)y

given by σD(y, ξ)(e0) = ik

k!
D(fks)(y) ∈ (E1)y.

Some commentary on the above definition: σD accepts as inputs a covector ξ
and a point y ∈ M , and with that data it becomes a mapping (E0)y → (E1)y.
We can also think of σD as a map σD : π∗E0 → π∗E1 by applying σD(y, ξ) to the
second factor: σD(ξ, e0) = (ξ, σD(y, ξ)e0). In this sense, σD is both a map between
the pullbacks and a vector space homomorphism.

Lemma 1.2.15 (Lemma 2.2.12, page 22 of [Ebe]). This definition does not depend
on f or s.

Lemma 1.2.16 (Lemma 2.2.20, page 24 of [Ebe]). If D is an operator of order
one, the symbol can be computed as the commutator i[D, f ]s.

Proposition 1.2.17. The Dirac operator has principal symbol ic(ξ).

Proof. This proof is quite straightforward: the only thing we need is that the in-
duced connection∇ is actually a connection. Let ξ, f, s, y be as in Definition 1.2.14
and let D be the Dirac operator. We have

iD(fs)(y) = ic(df ⊗ s+ f∇s)(y)

= ic(df ⊗ s)(y)

= ic(dfy ⊗ e)
= ic(dfy)(e) = ic(ξ)(e).
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Lemma 1.2.18. DE has principal symbol σD ⊗ 1.

Proof. Much of the work was already done in Proposition 1.2.17. We need only
isolate the symbol of the Dirac operator from the symbol of the twisted operator.
Suppose as in the setting of Definition 1.2.14 we have a point y ∈M and smooth
function f ∈ C∞(M) satisfying f(y) = 0, with df

∣∣
y

= ξ. The section s is now a

section of both SM and E, so we will write s = s1 ⊗ sE ∈ Γ∞(SM ⊗ E).

iDE(fs)(e) = i(c⊗ 1E) ◦ (∇SM⊗E)(fs)(y)

= i(c⊗ 1E) ◦ (df ⊗ s+ f∇SM⊗Es)(y)

= i(c⊗ 1E)(df ⊗ s)(y) (because f(y) = 0)

= i(c(df)s1 ⊗ sE)(y).

This is the principal symbol evaluated at (y, ξ), which gives a homomorphism
ic(ξ)⊗ 1E : (SM)y ⊗ Ey → (SM)y ⊗ Ey, which is exactly σD ⊗ 1E.

Definition 1.2.19 (Elliptic differential operator). A differential operator D be-
tween bundles E0, E1 → M is said to be elliptic if the principal symbol of the
operator is invertible (as a linear map σD(y, ξ) : (E0)y → (E1)y) whenever ξ 6= 0.

Before we can show the Dirac operator of a manifold M is an elliptic differential
operator, we need the following lemma:

Lemma 1.2.20. If M is a Spinc manifold with spinor bundle SM then c(v)2(e) =
−‖v‖2 (e) for all v ∈ TyM and any e ∈ (SM)y.

Proof. First, remember the identification of TM ∼= P ×Spinc Rn and note that if
[p, y] ∈ P ×Spinc(n) C2r = SM then

c(v)([p, y]) = [p, κn(v)(y)].

We can compute the square of c(v) as

c(v)2([p, v]) = c(v)(c(v)([p, v])

= c(v)([p, κn(v)(y)])

= [p, κn(v2)(y)]

= [p, κn(−
∥∥v2
∥∥)(y)]

= [p,−
∥∥v2
∥∥κn(1)(y)]

= [p,−‖v‖2 y]

= −‖v‖2 [p, y],

where ‖v‖2 = g([p, v], [p, v]) and g is the Riemannian metric on M induced by the
Spinc structure.
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Proposition 1.2.21. The Dirac operator is an elliptic differential operator.

Proof. We apply Lemma 1.2.20 to the composition ic(ξ)(ic(ξ))(e)and arrive at

ic(ξ)(ic(ξ))(e) = −ig(ξ, ξ)(e),

where g is the Riemannian metric associated to the manifold M . This allows us
to write down the inverse of the symbol very explicitly, as

σD(y, ξ)−1(e) =
1

ig(ξ, ξ)
ic(ξ)(e).

Remark. The twisted operator of D, DE is an elliptic differential operator for the
same reason D is.

1.3 An elliptic operator is Fredholm

Definition 1.3.1 (Fredholm operator). We say that a linear map (operator) F :
V → W between vector spaces V,W is a Fredholm operator if the kernel of F and
W/ imF = coker(F ) are finite dimensional. The (Fredholm) index of F is then
ind(F ) = dim kerF − dim cokerF .

Remark. The Fredholm index of F is essentially the analytic index inda discussed
in the introduction, although formally inda(M,E) is the Fredholm index of the
twisted operator in Definition 1.2.11.

Checking if an operator is Fredholm is often an onerous affair. To make this
easier, we present the following (powerful) lemma.

Lemma 1.3.2 (Atkinson’s lemma). A bounded linear operator F : V → W be-
tween separable Hilbert spaces V,W is Fredholm if and only if there exists a bounded
linear operator G : W → V such that FG− 1 and GF − 1 are compact operators.
G is called a parametrix for F .

A compact operator is one for which the closure of the image of the unit ball
is compact (there are many other equivalent definitions).

Proof of Lemma 1.3.2. The proof relies on a judicious choice of operators, see
[Ebe, page 11, Theorem 1.5.1] for more detail.

Fredholm operators are named after Erik Ivar Fredholm, a Swedish mathemati-
cian who is best known for his contributions to operator theory.
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Definition 1.3.3 (L2 inner product). Let E be a smooth vector bundle over a
compact Riemannian manifold M with metric g. Suppose that E has a fibrewise
Hermitian inner product and let s1, s2 ∈ Γ∞(E). We define

〈s1, s2〉L2(E) =

∫
M

〈s1(m), s2(m)〉(E)mdm

and L2(E) to be the completion of Γ∞(E) in this inner product. The metric g
induces the volume form dm, which is (explicitly, in a chart) integration with
respect to the Riemannian density

√
det(g) dx1 ∧ · · · ∧ dxn.

Definition 1.3.4 (Sobolev space of order 1). Let D be an elliptic differential op-
erator of order 1 between the smooth complex vector bundles E0, E1 over a compact
manifold M as in Definition 1.3.3, i.e. D ∈ Diff1(E0, E1). The order 1 Sobolev
space of sections of E0 (defined by D) is the completion of Γ∞(E0) with the inner
product

〈s1, s2〉W 1
D(E0) = 〈s1, s2〉L2(E0) + 〈Ds1, Ds2〉L2(E1)

for s1, s2 ∈ Γ∞(E0). We denote this space W 1
D(E0).

This is not the standard approach for defining Sobolev spaces, but we show
our Sobolev norm is equivalent to the typical Sobolev norm (and hence does not
depend on the choice of elliptic operator D) in Lemma 1.3.6, below.

Remark. When it is necessary to emphasise the different constructions, we may
write W 1(E0) to mean the Sobolev space in the standard sense, and add a subscript
D as in Definition 1.3.4 to denote our new characterisation.

Lemma 1.3.5 (G̊arding’s inequality, a slight reformulation of 10.4.4 in [HR00]).
Let M,E be as in Definition 1.3.3 and suppose that D ∈ Diff1(E,E) is a first order
elliptic differential operator (for E = E0 = E1) as in Definition 1.3.4. Then there
is a real positive constant c such that

‖u‖+ ‖Du‖ ≥ c ‖u‖1 ,

for all u ∈ W 1(E). The norm ‖·‖ is the ordinary L2-norm and ‖·‖1 is the standard
Sobolev norm.

If there is any capacity for confusion we will write the subscript when using
the L2-norm, but the vast majority of all our norms will be L2-norms.

Proof of Lemma 1.3.6. The reformulation is obtained from [HR00, 10.4.4] by tak-
ing M to be compact and K = M to be the whole manifold.

Lemma 1.3.6. The norm induced by the inner product 〈·, ·〉W 1
D(E0) in Defini-

tion 1.3.4 is equivalent to the standard Sobolev norm ‖·‖1.
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Proof. For any a, b ∈ R with a, b ≥ 0 we have

a2 + b2 ≤ (a+ b)2 ≤ 2(a+ b)2

when s ∈ Γ∞(E0), a = ‖s‖L2(E0) and b = ‖Ds‖L2(E1) we have

‖s‖W 1
D(E0) ≤ ‖s‖L2(E0) + ‖Ds‖L2(E1) ≤

√
2 ‖s‖W 1

D(E0) .

so the norm on W 1
D(E0) is equivalent to ‖s‖L2(E0) +‖Ds‖L2(E1). Since the operator

D is bounded as map D : W 1(E0) → L2(E) there is a c′ > 0 such that for all
s ∈ W 1(E0) we have the inequality ‖Ds‖L2(E1) ≤ c′ ‖s‖1. The standard Sobolev

norm of s is an upper bound for the L2 norm of s by definition, so we have the
inequality

‖s‖L2(E0) + ‖Ds‖L2(E1) ≤ (1 + c′) ‖s‖1 .

By an application of G̊arding’s inequality (Lemma 1.3.5) to ‖s‖L2(E0) +‖Ds‖L2(E1)

there is a c > 0 such that

c ‖s‖1 ≤ ‖s‖L2(E0) + ‖Ds‖L2(E1)

and hence
c ‖s‖1 ≤ ‖s‖L2(E0) + ‖Ds‖L2(E1) ≤ (1 + c′) ‖s‖1

which is exactly norm-equivalence of our Sobolev norm and the standard Sobolev
norm.

Remark. It is now possible to omit D from W 1
D(E0), although we may include it

to emphasise the characterisation of the Sobolev space used.

Fix an elliptic differential operator D : Γ∞(E0) → Γ∞(E1) of order 1 as in
Definition 1.3.4. By construction, this is bounded with respect to the Sobolev
norm and L2-norm, and Γ∞(E0) is dense in W 1(E0) and so it extends to

D̄ : W 1(E0)→ L2(E1),

which is also bounded. This will be the operator that is Fredholm and later it will
become apparent that ker D̄ = ker(D) and coker(D̄) = coker(D).

Definition 1.3.7 (Formal adjoint). A formal adjoint of a linear operator F :
V → W between inner product spaces is a map F ∗ : W → V satisfying 〈Fv, w〉 =
〈v, F ∗w〉, for all v ∈ V,w ∈ W .

Theorem 1.3.8. If D : Γ∞(E0) → Γ∞(E1) is an (arbitrary) elliptic differential
operator as in Definition 1.3.4, then kerD∗ ∼= cokerD.
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Proof. See [Ebe, Theorem 3.7.4].

To prove that an elliptic differential operator is a Fredholm operator, we need
to review some results from functional analysis.

Definition 1.3.9 (Smoothing operator). An operator Q : Γ∞(E1) → Γ∞(E0) is
said to be smoothing if it is of the form

s 7→
(
m 7→

∫
M

κ(m,m′)s(m′)dm′
)

where κ ∈ Γ∞(Hom(E0, E1)) is called the kernel of the operator and depends
smoothly on m′,m. dm is Riemannian volume form. Hom(E0, E1) is the ho-
momorphism bundle from E0 to E1.

There is a well-known identification between the sections of the homomorphism
bundle and the bundle homomorphisms:

Lemma 1.3.10. Let E,F be vector bundles over a manifold M . Then there is a
ring isomorphism Hom(E,F ) ∼= Γ∞(Hom(E,F )), where Hom(E,F ) is the space of
bundle homomorphisms from E to F and Γ∞(Hom(E,F )) is the space of sections
of the homomorphism bundle.

We don’t want to distinguish between sections of the homomorphism bundle
and homomorphisms. Indeed, we will swap between the characterisations as little
commentary as possible.

Proof of Lemma 1.3.10. The map is Γ∞(Hom(E,F )) 3 s 7→ A(s) ∈ Hom(E,F ),
where (A(s)(e))(x) = s(x)(e), for e ∈ E, x ∈M .

Theorem 1.3.11. Let D : Γ∞(E0)→ Γ∞(E1) be an elliptic differential operator.
Then there exists a bounded (with respect to L2 norms) linear map Q : Γ∞(E1)→
Γ∞(E0) such that

S = QD − 1

T = DQ− 1

are smoothing operators.

Proof. A statement and proof of the theorem (in more general terms) is in [Shu87,
Theorem 5.1].

The aim is to prove that the operators S and T extend to compact operators
S̄ and T̄ , so that we can apply Lemma 1.3.2 and prove that D̄ is Fredholm.
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Theorem 1.3.12 (Rellich’s lemma). The inclusion map W 1
D(E0) ↪→ L2(E0) is a

compact operator.

Proof. See [Ebe, Theorem 3.6.3 (3)]. The theorem in [Ebe] is actually the inclusion
mapping on the regular Sobolev space W 1(E0), rather than the one we have defined
in Definition 1.3.4, although this is not a major obstacle. Because of Lemma 1.3.5,
for any s ∈ Γ∞(E0) there exists constant C > 0 such that

‖s‖1 ≤ C(‖s‖+ ‖Ds‖) ≤
√

2C ‖s‖W 1
D(E0)

and hence the identity map on Γ∞(E0) extends to a map from our characterisation
W 1
D(E0) into the standard Sobolev space W 1(E0), W 1

D(E0) ↪→ W 1(E0). We can
without injury compose this additional bounded map to get a compact inclusion
W 1
D(E0) ↪→ L2(E0).

Lemma 1.3.13. If a linear operator A : Γ∞(E0) → Γ∞(E1) is smoothing then
D ◦ A is also smoothing, for any differential operator D.

Proof. Take the rank(E0) = k, rank(E1) = l and dim(M) = n. Suppose m ∈ U
and U is chart that trivialises E0 and E1. Then E1

∣∣
U
∼= U×Rl and E0

∣∣
U
∼= U×Rk.

We write,

D
∣∣
U

=
∑
|α|≤k

Bα
∂α

∂xα

for the operator D in its most general form, where (for α ∈ Zn≥0) Bα is a map
U →Ml×k(R).

Now, choose a finite open cover of charts {Uj}rj=1 for M (M is compact) and
require that each Uj is a trivialising neighbourhood for E0, E1. Take a smooth par-
tition of unity {ψj}rj=1 subordinate to this cover. We can write (As)(m) using this
partition of unity. A is smoothing, so it is of the form described in Definition 1.3.9.
We write

(As)(m) =
r∑
j=1

∫
M

κ(m,m′)ψj(m
′)s(m′)dm′

=
r∑
j=1

∫
Uj

κ(m,m′)ψj(m
′)s(m′)dm′.

Next, apply D:

(DAs)(m) =
r∑
j=1

∑
|α|≤a

Bj
α(m)

∂α

∂xα

(∫
Uj

κ(m,m′)ψj(m
′)s(m′)dm′

)
.
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This integral converges absolutely (supp(ψj) is compact and κ is smooth), so
the operator ∂α

∂xα
commutes with the integral sign. We can commute the sums,

because they are finite. Extend the integral over Uj to an integral over M by
declaring that the integrand is 0 outside of Uj (this is fine, because the support of
ψj is contained inside Uj). We arrive at the expression

∑
|α|≤a

r∑
j=1

∫
M

ψj(m
′)Bj

α(m)
∂α

∂xα
κ(m,m′)s(m′)dm′,

which at first doesn’t really seem to make sense because we cannot differentiate
sections using ∂α

∂xα
. However, because m ∈ Uj is in a local trivialisation of the

bundle E0 and {Uj}rj=1 are coordinate charts for the manifold we have a function
λj : Uj → Vj ⊂ Rn that associates to m ∈ Uj a point x = λ(m) ∈ Rn. We
differentiate with respect to the coordinates on Rn, so it makes good sense to write
∂α

∂xα
κ(m,m′). We hope that κD(m,m′) :=

∑
|α|≤a

∑r
j=1 ψj(m

′)Bα(m) ∂α

∂xα
κ(m,m′)

is the smooth kernel that we are looking for, because then we arrive at the form
required: ∫

M

κD(m,m′)s(m′)dm′

which would show that D ◦ A is smoothing. We have to check that κD(m,m′) is

• a smooth map in m,m′

• a homomorphism between (E0)m′ and (E1)m.

It is clear that κD(m,m′) depends smoothly on m,m′ because it is the sum of
products that depend smoothly on m,m′. What remains to be shown is that
κD(m,m′) really is a homomorphism from (E0)m′ to (E1)m. We can show this
using the local trivialisations mentioned at the beginning of the proof. For a fixed
x ∈ Rn there is a coordinate chart λj : Uj → Rn that associates x ∈ Rn to a point
m ∈ Uj. For this fixed x we can associate (local) bundle trivialisations τ0 for E0

and τ1 for E1. Consider the following diagram:

{x} × Rk {x} × Rl

(E0)λ−1
j (x) (E1)λ−1

j (x).

Bα

(τ0)−1
m (τ1)−1

m

Using τ0, τ1 we can think of Bα as a map from (E0)λ−1
j (x) = (E0)m to (E1)λ−1

j (x) =

(E1)m. In the same way, we can consider ∂α

∂xα
κ(m,m′) as a map from (E0)m′ to

(E0)m, and the composition of these two maps gives a homomorphism (E0)m′ →
(E1)m.



1.3. An elliptic operator is Fredholm 19

Lemma 1.3.14. A smoothing operator A : Γ∞(E0) → Γ∞(E1) extends to a
bounded operator Ā : L2(E0)→ L2(E1).

Proof. This is a relatively straightforward calculation that relies on Cauchy-Schwarz.
Let A : Γ∞(E0) → Γ∞(E1) be a smoothing operator with smooth kernel κ. For
m,m′ ∈ M define as ‖κ(m,m′)‖ the operator norm of κ : (E0)m′ → (E1)m with
respect to the metric inner product on the fibres. We compute, for s ∈ Γ∞(E0):

‖As‖2
L2 =

∫
M

∥∥∥∥∫
M

κ(m,m′)s(y)dm′
∥∥∥∥2

dm

=

∫
M

(∫
M

‖κ(m,m′)s(m′)‖(E1)m
dm′

)2

dm

≤
∫
M

(∫
m

‖κ(m,m′)‖ ‖s(m′)‖(E0)m′
dm′

)2

dm

≤
∫
M

((∫
M

‖κ(m,m′)‖2
dm′

)1/2(∫
M

‖s(m′)‖2
(E0)m′dm

′

)1/2
)2

dm

=

∫
M

∫
M

‖κ(m,m′)‖2
dmdm′ ‖s‖2

L2(E0) .

Lemma 1.3.15. A smoothing operator A on Γ∞(Ej) extends to a bounded operator
Ã : L2(Ej)→ W 1(Ej).

Proof. The proof is straightforward. Let s ∈ Γ∞(Ej). Then

‖As‖2
W 1(Ej)

= ‖As‖L2(Ej)
+ ‖DAs‖2

L2(Ej)

≤ ‖A‖2 · ‖s‖2
L2(Ej)︸ ︷︷ ︸

Lemma 1.3.14

+ ‖DA‖2 · ‖s‖2
L2(Ej)︸ ︷︷ ︸

Lemma 1.3.13

=
(
‖A‖2 + ‖DA‖2) ‖s‖2

L2(Ej)
.

Proposition 1.3.16. A smoothing operator A extends to compact operators

• Ā : L2(Ej)→ L2(Ej)

• Ã : W 1(Ej)→ W 1(Ej).
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Proof. By Lemma 1.3.15, A extends to a bounded operator Ā : L2(Ej)→ W 1(Ej).
Composing this with the inclusion map W 1(Ej) ↪→ L2(Ej) (which is compact by
Theorem 1.3.12) we see that Ā defines compact operator on L2(Ej). Similarly,

Ã = Ā
∣∣
W 1(Ej)

is the compact operator W 1(Ej) ↪→ L2(Ej)
Ā→ W 1(Ej).

Proposition 1.3.17. The operator D̄ : W 1(E0)→ L2(E1) is Fredholm.

Proof. By Atkinson’s lemma (Lemma 1.3.2), it suffices to show that there exists
an operator Q̄ for which the operators

T̄ = D̄Q̄− 1, S̄ = Q̄D̄ − 1

are compact. We first prove that Q : Γ∞(E1) → Γ∞(E0) extends to a bounded
operator Q̄ : L2(E1)→ W 1(E0). This is relatively straightforward, given the work
we’ve already done. Let Q be as in the conclusion of Theorem 1.3.11, then

‖Qs‖2
W 1(E0) = ‖Qs‖2

L2(E0) + ‖DQs‖L2(E1)

≤ ‖Q‖2 ‖s‖2
L2(E0)︸ ︷︷ ︸

Q is bounded

+ ‖(1 + S)s‖2
L2(E1) .︸ ︷︷ ︸

Theorem 1.3.11 and Lemma 1.3.14

(1.3)

Now, ‖(1 + S)(s)‖L2(E1) ≤ ‖s‖L2(E1) + ‖S‖ ‖s‖L2(E1) so (Eq. (1.3)) ≤ 2(‖Q‖2 + 1 +

‖S‖2) ‖s‖2
L2E1

and consequently Q extends to a bounded operator Q̄ : L2(E1) →
W 1(E0). By Proposition 1.3.16 the smoothing operators S, T extend to compact
operators S̄ and T̄ on L2(E1) and W 1(E0). We apply Atkinson’s Lemma, and so
D̄ is a Fredholm operator.

Theorem 1.3.18 (Elliptic regularity). Suppose that D : Γ∞(E0) → Γ∞(E1) is
an elliptic differential operator. Then if s ∈ W 1

D(E0) and Ds ∈ Γ∞(E1) then
s ∈ Γ∞(E0).

Proof. The details are in [Ebe, Section 3.5, Corollorary 3.5.2]. We have the same
problem as in the discussion in the proof of Theorem 1.3.12. The original theorem
in [Ebe] is only a statement about the ordinary Sobolev space, but it is again
possible to make good sense of this for our situation. Suppose instead that the
section s instead lies in the Sobolev space defined in Definition 1.3.4. Then by
Lemma 1.3.5 s is also in W 1(E0) (i.e. the standard characterisation) and hence if
Ds is smooth then s is also smooth, by the original application of elliptic regularity
in Corollary 3.5.2 of [Ebe].

A notable example of elliptic regularity is the operator ∂
∂z̄

. A continuously

differentiable function f : C→ C satisfying ∂f
∂z̄

= 0 is infinitely differentiable.
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Theorem 1.3.19. An elliptic differential operator D : Γ∞(E0) → Γ∞(E1) is
Fredholm.

Proof. We know from elliptic regularity (Theorem 1.3.18) that ker D̄ ⊂ kerD and
so kerD = ker D̄. By the same reasoning, the result holds for D∗. Theorem 1.3.8
gives the equality kerD∗ = cokerD and Proposition 1.3.17 tells us that D̄ has
finite dimensional kernel and cokernel.

We have done a lot of the heavy lifting in the unproven lemmas and theorems.
In particular, the elliptic regularity theorem and Rellich’s lemma were key.

1.4 Characteristic classes and the index theorem

Building up the index theorem, and its K-homological proof requires a fair amount
of work. The background information required to state the index theorem is some-
what laborious to perform, but we include it here for completeness.

1.4.1 Characteristic classes

Definition 1.4.1 (First Chern class). The first Chern class of a complex line
bundle L is c1(L) = i

2π
F∇, where F∇ is the curvature of a connection ∇ on L.

Remark. We could also define this class as the Euler class of the underlying real
vector bundle obtained by discarding the complex structure, and this is the ap-
proach taken in [BT82], which has more information about characteristic classes
generally.

Definition 1.4.2 (Chern character). Let E be a smooth complex rank n vector
bundle over a smooth manifold M with connection ∇. The Chern character of E
is

ch(E) =

[
tr(exp(

i

2π
F∇))

]
∈ H∗dR(M),

where F∇ := ∇2 ∈ Ω2(M,End(E)) is the curvature of the connection ∇ on E and
the exponential is a formal power series.

Remark. These definitions do not depend on the choice of connection.

To define the A-hat genus, we must perform some setup. For any conjugation-
invariant homogeneous polynomial f : Mn(R) → R of degree d, there is a sym-
metric and multilinear map fd : Mn(R) × · · · ×Mn(R) → R (d copies of Mn(R))
such that for all a ∈Mn(R) f(a) = fd(a, . . . , a). Extend fd to

f̃d : (Ω∗(M)⊗Mn(R))× · · · × (Ω∗(M)⊗Mn(R))→ Ω∗(M)
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by
f̃d(α1 ⊗ a1, . . . , αd ⊗ ad) = fd(a1, . . . ad)α1 ∧ · · · ∧ αd,

for αj ∈ Ω∗(M) and aj ∈Mn(R). We can extend f̃d multilinearly to all of Ω∗(M)⊗
Mn(R) by the multilinearity of fd. Then f̃ is the evaluation of f̃d at the diagonal,

f̃ : Ω∗(M)⊗Mn(R)→ Ω∗(M), f̃(x) = f̃d(x, . . . , x).

If the polynomial is not homogeneous we can apply it separately to each homoge-
neous term. Let p be the polynomial p : Mn(R)→ R given by

p(a) = det

(
a/2

sinh(a/2)

)1/2

. (1.4)

Definition 1.4.3 (A-hat genus). Given a real vector bundle E →M over a Spinc

manifold M , the A-hat genus of E, written Â(E) is

Â(E) = p̃(R)

where R is the curvature of a fixed connection on E, and p̃ is the map induced
from the polynomial p̃ in (1.4), described immediately above.

Remark. The A-hat genus of a manifold is by definition the A-hat genus of its
tangent bundle: Â(M) = Â(TM).

Lemma 1.4.4. The A-hat genus is multiplicative over direct sum, in the sense
that if E1 and E2 are Spinc vector bundles over a manifold M then Â(E1 ⊕E2) =
Â(E1)Â(E2).

Proof. This is due to a comment in [LM89] on page 138, for Spinc manifolds X, Y
of dimension divisible by 4, we have Â(X×Y ) = Â(X)×Â(Y ). The full discussion
may be found in Basic Construction 11.12 and Example 11.13 (pages 230 and 231)
of the same text, and they are general statements about vector bundles rather
than just the tangent bundles.

In the typical sense of the word, the Todd class is a characteristic class that
can be found for any complex vector bundle. We must instead now work with the
Spinc-Todd class, which we will call just the Todd class, but it is important to
note that this is a different characteristic class to the standard Todd class.

Definition 1.4.5 (Spinc determinant line bundle). Given a Spinc bundle E of
rank E over a smooth even dimensional manifold M , let det : Spinc → C be
given by Spinc(n) 3 [p, z] 7→ z2. Then define a relation on P × C by (p, w) ∼
(px−1, det(x)w) for all p ∈ PE, w ∈ C, x ∈ Spinc(n) . The Spinc determinant line
bundle, written LE (or just L when E is unambiguous) is the quotient of P × C
by this relation,

LE = (PE × C)/ ∼ .
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We will unambiguously omit the “Spinc” from this definition, because we do
not use the standard complex determinant line bundle.

Remark. Without squaring z in the above definition, the map det is not well-
defined

Definition 1.4.6 (Spinc-Todd class). Given E as in Definition 1.4.2 the Spinc

Todd class of E →M is

Td(E) = exp(c1(L)/2)Â(M)

where c1(L) is the first Chern class of the determinant line bundle of the structure
bundle P for E and Â(M) is the A-hat genus of M .

Proposition 1.4.7. The Todd class is multiplicative over direct sum; if E1 and
E2 are Spinc vector bundles, then the direct sum E1 ⊕ E2 has Todd class

Td(E1 ⊕ E2) ∼= Td(E1) Td(E2)

Proof. This is a consequence of Lemma 1.4.4. If LE is as in Definition 1.4.6 is
the determinant line bundle of E = E1 ⊕ E2 then LE = LE1 ⊗ LE2 and c1(LE) =
c1(LE1) + c1(LE2). The exponential turns the sum into a product, so

Td(E1 ⊕ E2) = ec1(LE1
)/2+c1(LE1

)/2Â(E1 ⊕ E2)

= ec1(LE1
)/2ec1(LE2

)/2Â(E1 ⊕ E2)

= ec1(LE1
)/2ec1(LE2

)/2Â(E1)Â(E2) (Lemma 1.4.4)

Definition 1.4.8 (Evaluation at the fundamental class). Let ω be a class in de
Rham cohomology and let [M ] be the fundamental class of a smooth manifold M ,
which is a homology class. We can pair ω with [M ] and the pairing is called the
evaluation of ω at M and is integration against ω over M ,

ω[M ] =

∫
M

ω.

Remark. In the event that ω is of mixed degrees (i.e not only top degree), the
integral is by definition integration of the top degree form(s).

Definition 1.4.9 (Topological index). Given a smooth vector bundle E as in Def-
inition 1.4.2 the topological index of E →M is the evaluation ch(E)∪Td(M)[M ].

Note that the product ∪ here is the cup product of cohomology classes. The
following gives some useful properties of the Chern character as it relates to the
projection above. With the possible exception of Chern Fact 3, they are standard
results.
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Proposition 1.4.10 (Fast Chern facts). Suppose E → M is a smooth complex
vector bundle of rank n with connection ∇ : Γ∞(E)→ Γ∞(E ⊗ T ∗M).

1. If E =
⊕α

j=1 Lj then ch(E) =
∑n

j=1 exp(c1(Lj)), for Lj the Chern roots of E.

2. The Chern character of the dual of E differs from the Chern character of E
in component 2r by a factor of (−1)r.

Proposition 1.4.11 (Chern Fact 3). Suppose E as in Proposition 1.4.10. If E
is the image of a projection p : M × Cα → E (α > n) then the Chern character
of E is represented by a differential form whose component in dimension 2r is
ir

r!(2π)r
tr(p(dp)2r).

Proof of Fact 1. Define as previously the curvature of the connection ∇ on E as
F∇. The definition of the Chern character is ch(E) = tr(exp( i

2π
F∇)), which we

expand as

tr(exp(
i

2π
F∇)) = tr

(
∞∑
j=0

(
i

2π

)j
(F∇)j

j!

)

=

(
∞∑
j=0

(
i

2π

)j
1

j!
tr(F j

∇)

)
.

It is clear we should investigate the (F∇)j further. We can assign to E a projection
mapping p : M ×Cα → E (it is always possible to do this) and write ps to mean a
section of E that we have obtained by applying the projection map to a section s of
M×Cα. The connection applied to ps is then ∇ps = (p(d(ps)) and its curvature is
F∇(ps) = p(d(p(d(ps)))). The placement of brackets here is key, and we would like
to instead write the curvature as p((dp)2(ps)) i.e. the application of the derivative
of p twice to ps followed by the projection. Decompose d(ps) into

d(ps) = ((dps)1, . . . , (dps)α)

where (dps)j is the jth component of dps. For each j ∈ {1, . . . , α} we have

(dps)j = d(ps)j

= d(
∑
k

pjksk)

=
∑
k

((dpjk))skpjkdsk

= ((dp)s)j + (pds)j.
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Thus, there is a Leibniz-like rule, d(ps) = (dp)s + p(ds). We can use this to
further investigate the curvature F∇ = ∇2

E. Take s ∈ Γ∞(M × Cα), i.e a smooth
function s : M → Cα. Then ps is a section of E by construction, so we may write

∇2
E(ps) = ∇E(pd(ps))

= pd(pd(ps))

= pd(p((pd)s+ pds))

= pd(p(dp)s+ pds)

= p((dp)(dp)s+ pd((dp)s) + (dp)(ds) + pd2s)

The de Rham operator d satisfies d2 = 0, p2 = p and d((dp)s) = −(dp)(ds) so

∇2
E(ps) = p((dp)(dp)s+ pd((dp)s) + (dp)(ds) + pd2s) = p(dp)2s.

This computation will be used in the proof of Proposition 1.4.11 but it is impor-
tant note now that if E = E1 ⊕ E2 is the direct sum of two line bundles, then
the projection p splits into p1 ⊕ p2 and there is a corresponding splitting of the
connection and hence curvature:

tr(p(dp)2j) = tr(p1(dp1)2j) + tr(p2(dp2)2j)

and we note that because of this the definition of the Chern character splits as a
sum

ch(E) =
∞∑
k=0

ir

k!2πr
((F∇1)k + (F∇2)k)

which is exactly the definition of ch(E1) + ch(E2). We have relied on the fact
that the Chern character does not depend on the choice of connection used, so
we may pick the connection on E that decomposes into a connection on E1 and
a connection on E2. The cohomology class of i

2
F∇ is by definition the first Chern

class of a line bundle, so if E =
⊕n

j=1 Lj then the Chern character splits over each
line bundle and we have the result

ch(E) =
n∑
j=0

exp(c1(Lj)).

Proof of Fact 2. The Chern class of the dual of a line bundle is the negative of
the Chern class of the line bundle, so if {Lj}nj=1 are the Chern roots of E as in
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Definition 1.4.2,

ch(E∗) =
n∑
j=1

exp(−c1(Lj))

=
n∑
j=1

∞∑
r=0

(−1)r

r!
c1(Lj)

r.

This differs from the Chern character of E in component 2r by a factor of (−1)r.

Proof of Fact 3. Continue where we left off in the proof of Fact 1. We have F∇ =
p(dp)2 and

ch(E) = tr exp(
i

2π
F∇) =

∞∑
k=1

(
i

k!2π

)k
tr(p(dp)2k)

which has component ir

r!(2π)r
tr(p(dp)2r) in dimension 2r. Note that this is the rth

term in the formal power series of the exponential, but the dimension doubles
because of the (dp)2 term.

Lemma 1.4.12. The bundle TS2r⊗C is stably trivial and in particular, Td(TS2r⊗
C) = 1.

Proof. The trivial outward facing unit normal bundle N of S2r provides the addi-
tional vector needed; TS2r ⊕ N = S2r × R2r+1. The Todd class is multiplicative
over direct sum so we have 1 = Td((TS2r ⊕ N ) ⊗ C) = Td(TS2r) · Td(N ) =
Td(TS2r).

We are now ready to present the index theorem of Atiyah and Singer. A note
before we begin. When discussing the index of DE, we must preface it with the
following comment. Formally, because twisted operator is self-adjoint, it has index
0. Fortunately, we can define an associated index that is more than sufficient for
our purposes.

The spinor bundle SM is graded via Lemma 1.2.8, and the operator DE swaps
the different gradings, so we can decompose the operator into the respective halves:(

0 DE

∣∣
Γ∞(S−M⊗E)

DE

∣∣
Γ∞(S+

M⊗E)
0

)
.

which we will denote by D+
E and D−E , respectively. The operator D−E is the formal

adjoint of D+
E (by construction), and ind(D+

E) = dim kerD+
E − dim ker(D+

E)∗.
We can abuse notation and write ind(DE) = dim kerD+

E−dim kerD−E . It is not
common to discuss the “proper” index of DE, which is always 0, and we certainly
do not do it here.
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Theorem 1.4.13 (Atiyah–Singer for twisted Spinc-Dirac operators). Suppose M
is an even dimensional compact Spinc manifold without boundary and E → M is
a smooth complex vector bundle over M . If DE : Γ∞(SM ⊗ E)→ Γ∞(SM ⊗ E) is
the Dirac operator on M twisted by E, then

ind(DE) = (ch(E) ∪ Td(TM)[M ].

It is possible to relax the conditions on DE. As we mentioned in the introduc-
tion (Atiyah–Singer, 1963), we can instead require it to be merely elliptic rather
than a twisted Spinc-Dirac operator. The results for Dirac operators are the most
important step, the problem for general elliptic differential operators can be re-
duced to the Dirac case using a commutative triangle, which the interested reader
can read more on in [Bv16], but this extension is beyond the scope of our discussion
here.
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Chapter 2

ch(β)[S2r] = ind(Dβ)

The main result in this chapter is that that 1 = ch(β)[S2r] = ind(Dβ), and this
computation will serve as a test case for the proof of Theorem 1.4.13 using Baum-
Douglas K-homology. The index theorem of Atiyah and Singer is classically (i.e.
in [AS68b]) presented as a statement about homomorphisms in K-theory. We take
the same approach (although we are working with the homology equivalent): the
analytic and topological indices are both group homomorphisms, and to show they
are equal everywhere, it suffices to show that they agree on the generators of the
group. This is discussed at length in Chapter 3 but the rough outline of this is
that the analytic index is an isomorphism K0(·) → Z and if it agrees with the
topological index on a generator, they agree everywhere. The pair (Sn, β) is an
example of a pair of index 1 and is also a generator of the group K0(·). In this
sense, Chapter 2 contains the most important computation we perform because
all other computations reduce to index of the pair (Sn, β).

2.1 ch(β)[S2r] = 1

Remark. From this point on we will be working almost exclusively with the spinor
bundle of Sn. With this in mind, we will introduce the convention of writing only
S to mean SSn . Whenever writing the spinor bundle of a different manifold, we
will be explicit.

Definition 2.1.1 (Bott generator vector bundle). The Bott generator vector bun-
dle β is the dual of the positive spinor bundle S+

Sn on S2r. The Spinc structure of
S2r is the one it receives as the boundary of the unit ball.

Recall that in Lemma 1.2.8 we could divide the spinor bundle SM via the
grading operator c(ω). This creates the so-called positive and negative spinor
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bundles, which we denote by S+
M and S−M , respectively. The positive spinor bundle

of Sn can be imagined as a sub-bundle of the trivial bundle by using the projection

e : S2r → End(C2r) e(t1, . . . t2r+1) =
1

2

(
1 + i

2r+1∑
j=1

tjAj

)

for tj ∈ R satisfying
∑2r+1

j t2j = 1 and Aj as in Eq. (1.2).

Theorem 2.1.2. If β is the Bott generator vector bundle on S2r then ch(β) ∪
Td(TS2r ⊗ C)[S2r] = 1.

This follows from the following lemma:

Lemma 2.1.3. ch(S+)[S2r] = (−1)r.

Proof of Theorem 2.1.2. Fast Chern Fact 2 (Proposition 1.4.10) provides the equal-
ity ch(β)[S2r] = (−1)r ch(S+)[S2r] and from Lemma 2.1.3 we conclude that ch(β)[S2r] =
(−1)r ch(S+)[S2r] = 1. The Todd class of S2r is 1, and so is not seen when evalu-
ating at the fundamental class.

The proof of Theorem 2.1.2 will follow the outline in [BvE18, Propositions 6,7],
with some of the missing gaps filled in.

Proof of Lemma 2.1.3. We know from Chern Fact 3 (Proposition 1.4.11) that the
Chern character is represented by a differential form with component in dimension
2r given by:

ir

r!(2π)r
tr(e(de)2r).

We can write

(de)2r =

(
i

2

)2r
(

2r+1∑
j1,...,j2r=1

dtj1 ∧ · · · ∧ dtj2rAj1 · · ·Aj2r

)

for Aj’s as in (1.2). Because both the Aj’s and the wedge product anti-commute
(see [BvE18, 2.1]) and are arranged in the same way, the whole product dtj1 ∧
· · · ∧ dtj2rAj1 · · ·Aj2r is invariant under swapping jk1 and jk2 . The product over 2r
distinct things out of 2r+ 1 things is the same as excluding one thing from 2r+ 1
things. We arrive at

(de)2r =
i2r(2r)!

22r

2r+1∑
j=1

dt1 ∧ dt2 ∧ · · · ∧ d̂tj ∧ · · · ∧ dt2r+1A1 · · · Âj · · ·A2r+1.
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Note the factor of (2r)! because of the rearrangement required to collect the indi-
vidual wedge products (that is to say, there are (2r)! distinct copies of the product
that excludes dt1, (2r)! that exclude dt2, etc.).

Next, apply e

e(de)2r =
1

2

(
1 + i

2r∑
j=1

tjAj

)
ir−1(2r)!

22r

2r+1∑
j=1

(−1)jAjdt1 ∧ dt2 ∧ · · · ∧ d̂tj ∧ · · · ∧ dt2r+1

=
1

2

ir−1(2r)!

22r

2r+1∑
j=1

(−1)jAjdt1 ∧ dt2 ∧ · · · ∧ d̂tj ∧ · · · ∧ dt2r+1

+

(
i

2r+1∑
j=1

tjAj

)(
ir−1(2r)!

22r+1

2r+1∑
j=1

(−1)jAjdt1 ∧ dt2 ∧ · · · ∧ d̂tj ∧ · · · ∧ dt2r+1

)
.

We have used Lemma 1.2.5 to turn A1 · · · Âj · · ·A2r+1 into (−1)jAj. Now, A2
j =

−I2r (Lemma 1.2.7) and becauseAj anti-commutes withAk when j 6= k, tr(AjAk) =
− tr(AkAj) = 0 so we have the result:

tr(e(de2r)) = tr

(
ir(2r)!

22r+1

2r+1∑
j=1

(−1)jtjA
2
jdt1 ∧ dt2 ∧ · · · ∧ d̂tj ∧ · · · ∧ dt2r+1

)

=
ir(2r)!

2r+1

2r+1∑
j=1

(−1)j−1tjdt1 ∧ · · · ∧ d̂tj ∧ · · · ∧ dt2r+1.

At this point we’re almost there,

ir

r!(2π)r
tr(e(de)2r) =

i2r(2r)!

r!(2π)r2r+1

2r+1∑
j=1

(−1)j−1tjdt1 ∧ · · · ∧ d̂tj ∧ · · · ∧ dt2r+1.

The Chern character evaluated at the fundamental class of S2r is the integral∫
S2r ch(S+

S2r),

i2r(2r)!

(2π)r2r+1r!

∫
S2r

2r+1∑
j=1

(−1)j−1tjdt1 . . . d̂tj . . . dt2r+1 =
i2r(2r)!

(2π)r2r+1r!

∫
B2r+1

(2r+1)dt1 . . . dt2r+1

by Stokes’ theorem. The volume of the (2r + 1)-ball of radius 1 is,

V2r+1 =
2r!22rπr

(2r + 1)!
,
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and using it we can calculate the integral as

i2r(2r)!

(2π)r2r+1r!

∫
B2r+1

(2r + 1)dt1 . . . dt2r+1 =
i2r(2r)!

(2π)r2r+1r!
(2r + 1)V2r+1

= i2r = (−1)r.

For derivation of the volume, see [Joh]. The result in our case can be obtained by
taking the formula in [Joh] and setting n = 2r+ 1 and the radius to 1 (it is called
“r” in the reference).

2.2 ind(Dβ) = 1

Theorem 2.2.1. If D is the Dirac operator of the even dimensional sphere Sn

with the Spinc datum it receives as the boundary of the unit ball in Rn then,

ind(Dβ) = 1.

There are some preliminary steps we must take before we can prove this the-
orem. Let V be a finite dimensional vector space with some quadratic form Q
defining a Clifford algebra C(V,Q) and let Sr be the permutation group on r
things. Define the isomorphism (see [LM89, page 11, equation 1.11] for more
details) f̃ :

∧∗ V → C(V,Q) by linearly extending the mapping

f̃(v1 ∧ · · · ∧ vr) =
1

r!

∑
σ∈Sr

sign(σ)vσ(1)vσ(2) · · · vσ(r). (2.1)

Remark. If V is the fibre of some bundle E over M , then we can abuse notation
and write

f̃ :
∧∗

E → C(E) (2.2)

if f̃ is defined for each x ∈M as a map f̃ :
∧∗Ex → C(Ex). We will be using this

essentially exclusively for E = TM .

Lemma 2.2.2 (Useful fact). If ei1 , . . . eik is an collection (with increasing index,
say) of some orthonormal basis vectors of V as above, then

f̃(ei1 ∧ · · · ∧ eik) = ei1 · · · eik .

Proof. We can use anti-commutativity of the basis vectors to change every per-
muted product eσ(i1) · · · eσ(ik) back to ei1 · · · eik , scaled by (−1)bσ , where bσ is the
number of pairwise swaps required to go from the permuted product back to the
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increasing one. The sign of the permutation is (−1) when b is odd and 1 when b
is even, and the order of Sr is r!, so

f̃(ei1 ∧ · · · ∧ eik) =
1

r!

∑
σ∈Sr

sign(σ)2ei1 · · · eik

= ei1 · · · eik .

Definition 2.2.3 (Contraction). Suppose X is a set and Xn is the set of ordered
n-tuples of elements of X. Let f : Xn → Y be a map from X into any set Y . The
contraction of f by a point x ∈ X is x ⌟ f : Xn−1 → Y defined by

(x ⌟ f)(x1, . . . xn−1) = f(x, x1, . . . , xn−1).

The most common application of the above definition is the contraction of a
differential n-form by a vector field, but we would like to use the notation more
generally.

Lemma 2.2.4. Choose f ∈ C∞(M), y ∈ M and s ∈ Γ∞(
∧∗ T ∗M) with f(y) = 0

and s(y) = e. Let ξ = df
∣∣
y
. If d is the de-Rham operator, then the principal symbol

of d is σd(ξ)(e) = iξ ∧ e and in particular, (σd(y, ξ) +σd∗(y, ξ))(e) = iξ ∧ e− iξ ⌟ e.

Proof. We first note that from Lemma 1.2.15 the choice of e and ξ does not depend
on f or s, and we include the mention of them in the statement of the lemma only
as a reminder of the context. Now, principal symbol of the sum is

σd+d∗(y, ξ)(e) = σd(y, ξ)(e) + σd∗(y, ξ)(e) = σd(y, ξ)(e) + σd(y, ξ)
∗(e)

and thus, we need only compute the principal symbol of d, which is a first order
operator.

σd(y, ξ)(e) = id(fs)(y)

= i(df ∧ s+ fds)(y)

= idf
∣∣
y
∧ e = iξ ∧ e.

As a map, the dual of ∧ is ⌟ i.e. (ξ∧ )∗(e) = ξ ⌟ (e) and the dual of i is −i, so

σd∗(y, ξ)(e) = −iξ ⌟ e.



34 Chapter 2. ch(β)[S2r] = ind(Dβ)

Lemma 2.2.5. Let V be a vector space with a positive definite inner product
identifying V and V ∗ and suppose v ∈ V is fixed. If c̃(v) is the map x 7→ (v ∧ x−
v ⌟ x) for x ∈

∧∗ V and f̃ is as in (2.1) then we have the following commutative
diagram. ∧∗ V C(V )

∧∗ V C(V )

f̃

c̃(v) v·

f̃

Some commentary before we begin the proof. When M is a Spinc manifold
there is a Riemannian metric on M giving the isomorphism T ∗M ∼= TM . We
would like to be able to identify co-vectors and vectors, so that if v is a co-vector
and x is a vector we can treat x as a co-co-vector and evaluate v at x.

Proof of Lemma 2.2.5. The equality is f̃ ◦ c̃(v) = v ·f̃(x). First, fix an orthonormal
(with respect to the inner product) basis {ei}dimV

i=1 for V and let {ei}dimV
i=1 be the

dual basis of V ∗. For a collection of k basis vectors ei1 , . . . eik and a covector ej,
we aim to show the following equality

ej f̃(ei1 ∧ · · · ∧ eik) = f̃(ej ∧ (ei1 ∧ · · · ∧ eik︸ ︷︷ ︸
α

)− ej ⌟ (ei1 ∧ · · · ∧ eik)︸ ︷︷ ︸
β

). (2.3)

This is at the level of basis vectors, but because f̃ is linear (it is not an algebra
homomorphism) the result holds for linear combinations. Now, we proceed in two
cases. Let us first consider the scenario in which ej = eil for some l ∈ {1, . . . , k}.

Evidently, α = 0 as eil occurs twice in α and for β we have β = ej⌟(ei1∧· · ·∧eir):

(ej ⌟ (ei1 ∧ · · · ∧ eik))(ej1 , . . . ejk−1) = (ei1 ∧ · · · ∧ eik)(ej, ej1 , . . . , ejk−1)

= (−1)l−1(ei1 ∧ · · · ∧ eik)(ej1 , . . . , ejl−1 , ej, ejl+1 , . . . ejk−1)

= (−1)l−1
∑
σ∈Sk

sign(σ)eσ(i1)(e
j1) · · · eσ(il−1)(e

jl−1)eσ(il)(e
j) · · ·

· · · eσ(il+1)(e
jl+1) · · · eσ(ik)(e

jk−1)

= (−1)l−1(δi1j1) · · · (δil−1jl−1
)(δilj)(δil+1jl)(δikjk−1

)

= (−1)l−1(ei1 ∧ · · · ∧ êil ∧ · · · ∧ eik)(ej1 , . . . ejk−1),

i.e ej ⌟ (ei1 ∧ · · · ∧ eik) is equal to (ei1 ∧ · · · ∧ êil ∧ · · · ∧ eik).
The second case occurs when j /∈ {i1, . . . ik}. In this case we do not have α = 0

but instead β = ej ⌟ (ei1 ∧ · · · ∧ eir) = 0 (a similar computation to above) and
α = (−1)lei1 ∧ · · · ∧ eil ∧ ej ∧ eil+1

). Thus, for either of the two cases the right hand
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side of (2.3) is ejei1 · · · eik . Now, by Lemma 2.2.2 for any collection of orthonormal
basis vectors we have f̃(ei1 ∧ · · · ∧ eik) = ei1 · · · eik and hence,

ej f̃(ei1 ∧ · · · ∧ eik) = (−1)lei1 · · · êil · · · eik

which is exactly the right side of (2.3) under f̃ .

Before we can prove Theorem 2.2.1 we need to define an auxiliary operator
D̃S∗ .

Definition 2.2.6 (D̃S∗). Define D̃S∗ by the commutativity of the following dia-
gram.

Γ∞(
∧∗(T ∗Sn)) Γ∞(S ⊗ S∗)

Γ∞(
∧∗(T ∗Sn)) Γ(S ⊗ S∗).

h

d+d∗ D̃S∗

h

where h = c ◦ f̃ .

Lemma 2.2.7. D̃S∗(Γ
∞(S+ ⊗ (S+)∗)) ⊂ Γ∞(S ⊗ (S+)∗)

Proof. This follows from the compatibility of h with the odd/even and posi-
tive/negative gradings on the wedge products, we have

h

(∧ even
odd

(T ∗Sn)

)
= End±(S)

and
h
(∧±

(T ∗Sn)
)

= Hom(S, S±).

Now, the proof of Theorem 2.2.1 will proceed from the following propositions.

Proposition 2.2.8. If d : Ω∗(Sn) → Ω∗(Sn) is the de Rham operator on forms
on Sn then the principal symbol of d + d∗ corresponds to the principal symbol of
DS∗, in the sense that for every covector ξ and image covector ξ′ = h(ξ) we have
h ◦ σd+d∗(ξ) = σDS∗ (ξ

′) ◦ h.

Proposition 2.2.9. D̃S∗ has kernel C · 1⊕ Cc(ω).

Remark. Proposition 2.2.8 implies that D̃S∗ the same index as DS∗ and, more im-

portantly, that D̃β := D̃S∗

∣∣∣
Γ∞(S+⊗(S+)∗)

has the same principal symbol as D+
(S+)∗ =

Dβ.
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Proof of Proposition 2.2.8. The principal symbol of DS∗ (i.e. the dual of the whole
spinor bundle) is σDS∗ (ξ) = ic(ξ) ⊗ 1S∗ . We know the principal symbol of d + d∗

from Lemma 2.2.4. We have the two principal symbols (evaluated at a generic e
in some fibre of TSn)

(ξ ∧ e− ξ ⌟ e), ic(ξ)(e). (2.4)

We aim to find an isomorphism h such that h ◦ (ξ ∧ − ξ⌟ ) = c(ξ) ◦ h. To reduce
complexity, we will consider this as a fibre-wise computation first and write V
to mean a finite dimensional vector space, with an association V = V ∗ similarly
to TM = T ∗M for a Riemannian manifold M . For brevity, denote by c̃(v) the
operator (v ∧+ v⌟ ). We aim write down an h satisfying the following diagram:∧

V End(C2r)

∧
V End(C2r).

h

c̃(v) c(v)◦

h

(2.5)

The candidate mapping for h is (of course) the one we already have,

∧
V C(V ) End(C2r)

∧
V C(V ) End(C2r)

f̃

c̃(v) v·

c

c(v)◦

f̃ c

(2.6)

where c is Clifford multiplication. The commutativity of this diagram is really what
is meant by (2.5) and indeed the equivalence of the symbols in (2.4). Proving that
the outer square of (2.6) commutes is the same as proving that each inner square
commutes. The right square commutes because c is an algebra homomorphism and
the left square commutes as a consequence of the computation in Lemma 2.2.5. To
modify this to the statement in the lemma, extend c̃(v) to a map c̃(v) :

∧∗ TM →
C(TM) by decreeing that c̃(v) :

∧∗ TM → C(TM) is the mapping induced by
taking c̃(v) :

∧∗ TmM →
∧∗ TmM on each fibre. This is the same process that

extended f̃ in (2.2).

Before the proof of Proposition 2.2.9, recall the Hodge theorem for differential
forms.

Theorem 2.2.10 (Hodge theorem). The dimension of the kernel of dd∗ + d∗d
acting on the k−forms of a compact oriented manifold is the same as the dimension
of kth de Rham cohomology group.
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Proof. The statement comes from Theorem 6.11 of [War83].

Proof of Proposition 2.2.9. By definition, D̃S∗ has the same index as (d+d∗). The
kernel of d+ d∗ is the same as the kernel of (d+ d∗)2 = dd∗+ d∗d (d and d∗ square
to 0), and by the Hodge theorem applied to Sn in degree k = n and degree k = 0
the de Rham cohomology of the n-sphere is R. In the case that k 6= 0, n the
cohomology group is trivial. Hence, the (complex) dimension ker(d+ d∗) is 1.

A local description of the top degree form on Sn is e1 ∧ · · · ∧ en for a local
orthonormal frame {ei}ni=1 of TM = T ∗M . Recall in Lemma 1.2.8 that if ω =
ire1e2 · en then c(ω) provided the grading operator for the spinor bundle. Using
Lemma 2.2.2 we can associate this to exactly ω in the Clifford algebra. Of course,
there is a scaling by the scaling factor of ir, but this is not seen when taking the
complex span. The smooth function (i.e. 0-form) part of the de Rham cohomology
remains unchanged. The conclusion of this is that the kernel of D̃S∗ is

h(C · 1⊕ Cω) = C · 1⊕ Cc(ω) = C⊕ Cc(ω).

Proof of Theorem 2.2.1. Define End(S+) = {a ∈ End(S) | a
∣∣
S−

= 0, im a ⊂ S+}
and likewise for End(S−). Then End(S) splits into four constituent parts,

End(S) = End(S+)⊕ End(S−)⊕ Hom(S+, S−)⊕ Hom(S−, S+). (2.7)

The kernel of D̃S∗ is C⊕Cc(ω) ⊂ End(S). We note that, ker(1± c(ω)) = S∓ and
Hom(S+, S−)∩C(1+c(ω)) = 0 = Hom(S−, S+)∩C(1+c(ω)). Splitting C⊕Cc(ω)
on End(S) via (2.7) we have a decomposition of C · 1⊕ C · c(ω) into

C · (1 + c(ω))︸ ︷︷ ︸
⊂ End(S+)

⊕C · (1− c(ω))︸ ︷︷ ︸
⊂ End(S−)

, (2.8)

and we note that ind(D̃β) = dim(ker D̃S∗∩End(S+))−dim(ker D̃S∗∩Hom(S+, S−)).
Now, (ker D̃S∗)

+ ∩ End(S+) = C(1 + c(ω)), which gives dim(ker D̃β)+ = 1. Note
that we do not see the homomorphism parts of (2.7) in (2.8) because there is
nothing in C · 1 ⊕ Cc(ω) that is a homomorphism from S+ to S− or vice versa
(except for 0). Because of this, the negative part of the kernel of D̃β is ker(D̃β)− =
ker(D̃S∗) ∩ Hom(S+, S−) = 0. Hence, the index of D̃β is 1, which is the same as
the index of Dβ.

Corollary 2.2.11 (The whole point of this chapter). When M = Sn and E = β,
Theorem 1.4.13 is true.

Proof. By Lemma 1.4.12, Td(S2r) = 1 and hence, (ch(β) ∪ Td(S2r))[S2r] = 1 =
ind(Dβ),
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Chapter 3

K-homology; (M,E) ∼ (Sn, qβ)

This chapter serves to compute the K-homology of a point, and to provide an
explicit series of steps to deduce the relation (M,E) ∼ (Sn, qβ), which will be
made more rigorous below. We show that the K-homology of a point is Z, and that
Theorem 1.4.13 is a consequence of this computation. The chapter concludes with
a proof of Theorem 1.4.13 under the assumption that the analytic and topological
indices are well-defined (Chapter 4 resolves this problem).

3.1 K-homology

Definition 3.1.1 (Pair isomorphism). Suppose (M,E) is a pair as in Defini-
tion 1.2.11: M is a smooth, compact, even dimensional Spinc manifold M , and
E →M is a smooth complex vector bundle. We say that (M,E) with datum (P, η)
is isomorphic to (M ′, E ′) with datum (P ′, η′) (and write (M,E) ∼= (M ′, E ′)) if
there is a diffeomorphism ϕ : M → M ′ that preserves the datum, in the sense
that the pullback (ϕ∗P ′, ϕ∗η′) is isomorphic to (P, η) (as Spinc data) and that the
pullback ϕ∗E ′ is isomorphic (as a complex vector bundle on M) to E.

This definition is only an intermediate step for the definition of K immediately
below, and also for the statement Definition 3.1.9, below.

Definition 3.1.2. K is the set of all pairs (M,E) in Definition 3.1.1 modulo
pair-isomorphism.

When we write (M,E) without particular reference, we mean (M,E) ∈ K, or
possibly (M,E) as a representative of a class in K, but this is not an important
distinction to make, as every statement is valid up to pair-isomorphism. It will be
made explicit when a pair is not an element of K.

39
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Definition 3.1.3 (Ball bundle, sphere bundle). If E →M is a vector bundle with
fibre-wise norm ‖·‖x then

• B(E)→M is the fibre bundle with fibre over x ∈M given by

B(E)x = {v ∈ Ex | ‖v‖x ≤ 1}.

• S(E)→M is the fibre bundle with fibre over x ∈M given by

S(E)x = {v ∈ Ex | ‖v‖x = 1}.

Write Rα → M to mean the trivial vector bundle of rank α on M , i.e. Rα =
M × Rα →M , and likewise for Cα.

Definition 3.1.4 (ΣF ). Let M be as in Definition 3.1.1 and suppose F is a
Spinc(n) vector bundle on M with structure bundle P as in Definition 1.1.6, with
F having even fibre dimension n = 2r. Define π : ΣF →M as the fibre bundle with
fibres oriented spheres of dimension n, ΣF = P ×Spinc(n) S

n. The Spinc structure
on ΣF is fixed as the one it receives as the boundary of the unit ball in (F ⊕R)x,
for each x ∈M .

Remark. The action of Spinc(n) on Sn is via the canonical covering map projection
πSpin(n) : Spin(n) → SO(n) sending [p, z] Spinc(n) to πSpin(n)(p). SO(n) acts on
Sn by considering Sn as a dense open subset of the one-point compactification
Rn ∪ {pt}. It would also be possible to consider Sn as the typical subset of Rn+1

and acting on it in the usual way, but stereographic projection provides an exact
correspondence between these actions, so the difference is largely academic.

The following lemma illustrates the local structure of ΣF , but it will not be
very useful until Chapter 4.

Lemma 3.1.5. Suppose that ΣF = P ×Spinc(n) S
n is as in Definition 3.1.4 and U

is a trivialising neighbourhood for P →M . Then

ΣF
∣∣
π−1(U)

∼= U × Sn.

Proof. Suppose (U, τ) is a trivialisation for P
∣∣
U

. The isomorphism is

ΣF
∣∣
π−1(U)

3 [p, x] 7→ (u, g · x) ∈ U × Sn (3.1)

for τ(p) = (u, g) ∈ U × Spinc(n).

Definition 3.1.6 (βF ). Suppose ΣF is as in Definition 3.1.4, and β is the Bott
generator vector bundle as in Definition 2.1.1. Then define by βF the vector bundle
βF = P ×Spinc(n) β → ΣF with projection βF 3 [p, b] 7→ [p, x] ∈ ΣF, p ∈ P, β ∈ βx.
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Definition 3.1.7 (K0(·)). Suppose K is as in Definition 3.1.2. Define K0(·) as
K/ ∼, where the equivalence relation ∼ is generated by

• Direct sum - disjoint union (Definition 3.1.8),

• Bordism (Definition 3.1.9),

• Vector bundle modification (Definition 3.1.11).

Addition of equivalence classes is disjoint union

(M,E) + (M ′, E ′) = (M tM ′, E t E ′).

The additive inverse is −[(M,E)] = [(−M,E)], where we use −M to denote M
with the reversed Spinc structure, from Definition 1.1.11.

Remark. By generated by, we mean that any finite sequence of the three actions
(not necessarily including all of them) is necessary and sufficient to establish equiv-
alence.

Definition 3.1.8 (Direct sum - disjoint union). We say that (M,E)t(M,E ′) ∈ K
is equivalent to (M,E ⊕ E ′) ∈ K via direct sum - disjoint union.

Definition 3.1.9 (Bordism). We say (M,E) ∈ K is bordant to (M ′, E ′) ∈ K if
there exists a pair (W,F ) consisting of a compact odd-dimensional Spinc manifold
with boundary ∂W and a smooth C vector bundle F over W such that (∂W,F

∣∣
∂W

)
is pair-isomorphic (in the sense of Definition 3.1.1) to (M,E) t (−M ′, E ′).

Remark. The pair (W,F ) is not in K because W is not even-dimensional.

Lemma 3.1.10. The [(−M,E)] in Definition 3.1.7 satisfies, [(Mt−M,EtE)] =
0 ∈ K0(·).

Proof. Including orientations, (Mt−M,EtE) is the boundary of (M× [0, 1], E×
[0, 1]), and so it bordant to the trivial element in K0(·).

Definition 3.1.11 (Bundle modification). Suppose that F , ΣF over M are as in
Definition 3.1.4 and βF as in Definition 3.1.6. Then we say (ΣF, βF ⊗ π∗E) ∈ K
is related to the pair (M,E) ∈ K by bundle modification.

Lemma 3.1.12. Given a pair (M,E) as in Definition 3.1.9 and another pair
(N,F ) ∈ K the pair (M,E) is bordant to (M,E) t (∂N, F

∣∣
∂N

).

Proof. The bordism is provided by (M × [0, 1] tN,E × [0, 1] t F ).

Remark. Because the index is preserved by bordism (proven in Chapter 4), this
implies that the topological index of the pair (∂N, F

∣∣
∂N

) is 0.
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3.2 (Sn, qβ)

We endeavour to show that for any pair (M,E) ∈ K we can write [(M,E)] =
[(Sn, qβ)] ∈ K0(·), for some q ∈ Z, n ∈ N depending on M and E.

Definition 3.2.1 (qβ). When q ≥ 0 we interpret qβ as the direct sum of q copies
of β and when q < 0, |q| copies of β∨ := (S−Sn)∗.

Lemma 3.2.2 (Weak sphere lemma). Given a pair (M,E) as above there exists
a vector bundle F → S2r such that (M,E) ∼ (S2r, F ).

This is called the weak sphere lemma because later we will see that we can
specify F more explicitly.

Proof of Lemma 3.2.2. We must dive into the relations of K-homology. By the
Whitney embedding theorem [Lee13, Theorem 6.15] we can embed M into R2r,
for some sufficiently large r ∈ N. First, consider the normal bundle ν := {(m, v) ∈
M ×R2r | v ⊥ TmM}. By the 2-out-of-3 principle of Lemma 1.1.20 applied to the
exact sequence

0→ TM →M × R2r → ν → 0

a Spinc orientation is determined for the normal bundle. A direct application of
bundle modification (ν = F ) yields

(M,E) ∼ (Σν, βν ⊗ π∗E). (Step 1)

Our first goal is to construct an explicit bordism between Σν and S2r. Because
M is compact, we can scale our embedding to be contained in the interior of the
unit ball. Let B′ = B(ν ⊕ R) → M and S ′ = S(ν ⊕ R) → M . The aim is to
show that the ball bundle B(ν ⊕ R) (which has boundary Σν) identifies with a
compact tubular neighbourhood of the embedding of M into R2r+1. Using the
local diffeomorphism (choose v to be very small) (m, v) 7→ m + v we can identify
ν with a compact tubular neighbourhood of (the embedding of) M in R2r. We
will be using this association without particular reference for the remained of the
proof, as it tends to obfuscate. The inclusion R2r ↪→ R2r+1 gives an identification
between the ball bundle B(ν ⊕R) and a compact tubular neighbourhood of M in
R2r+1.

Now, write

ν ⊕ R = P ×Spinc(2r) R2r+1, B(ν ⊕ R) = P ×Spinc(2r) B
2r+1.

The boundary of is ∂B(ν⊕R) = P×Spinc(2r)S
2r and the Spinc(2r) acts on by ∂B(ν⊕

R) in the same way it does on Σν, which is the same way as in Definition 3.1.4
and the remark below it.
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Denote by Ω the unit ball in R2r+1 with the interior of B′ removed. By con-
struction Ω has boundary that is the disjoint union of Σν and S2r. The union is
disjoint because of the scaling factor applied to M to ensure it is contained within
the interior of the unit ball, and Σν is then entirely disjoint from the boundary S2r.
By the bundle extension lemma (Lemma 3.2.3, below) applied to B′,Ω, S ′ = B′∩Ω
there is a vector bundle L over B′ such that βν ⊗ π∗E ⊕ L

∣∣
S′

(in the statement of
the lemma, the bundle βν ⊗ π∗E is “E”) extends to a vector bundle F over Ω. By
Lemma 3.1.12 we then have the equivalence in K-homology:

(Σν, βν ⊗ π∗E) ∼ (Σν, βν ⊗ π∗E) t (Σν, L
∣∣
S′

) (Step 2)

Step 3 is a straightforward application of direct sum-disjoint union

(Σν, βν ⊗ π∗E) t (Σν, L
∣∣
S′

) ∼ (Σν, (βν ⊗ π∗E)⊕ L
∣∣
S′

) (Step 3)

The final step will draw on the bordism Ω,

(Σν, (βν ⊗ π∗E)⊕ L
∣∣
S′

) ∼ (S2r, F
∣∣
S2r). (Step 4)

Lemma 3.2.3 (Bundle extension lemma). Let the unit ball in R2r be the union of
two compact sets B′,Ω and let S ′ = B′∩Ω be their intersection. If E is a complex
vector bundle on S ′ then there exists a complex vector bundle L on B′ such that
E ⊕ L

∣∣
S′

extends to Ω, in the sense that there exists another vector bundle R on

Ω for which the restriction of R to S ′ is E ⊕ L
∣∣
S′

.

Before we begin the proof of Lemma 3.2.3 we must make a short detour into the
cohomological realm and in particular, K-theory. K-theory plays an outsized role
in the proof of Lemma 3.2.5, but it is largely hidden behind the heavy machinery
of cohomology. They key step is in Lemma 3.2.4 which allows us to jump from the
F we found in Lemma 3.2.2 to the Bott bundle β and indeed, provides us with a
fairly explicit way of proving the index theorem of Atiyah and Singer. We would
not like to spend too much time on the details (the reader is directed to [Hatb]
for a far better treatise on introductory cohomology and [Hata] for some of the
K-theoretic details) but the summary is as follows.

Given X,A,B with X being the union of the interiors of A and B, there is
[Hatb, page 203 for the cohomology version, 149 for the homology version] a long
exact sequence in cohomology (with coefficients in a group G)

· · · → Hn(X;G)→ Hn(A;G)⊕Hn(B;G)→ Hn(A∩B;G)→ Hn+1(X;G)→ · · ·
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which is called the Mayer-Vietoris sequence. There is [GBVF01, exercise on
page 127] an analogue of this sequence for K-theory, which is only six terms
(because of the famous Bott periodicity) and we must make use of this in the proof
of Lemma 3.2.3.

Proof of Lemma 3.2.3. We have the Mayer-Vietoris sequence when n = 0:

· · · → K0(Ω)⊕K0(B′)→ K0(S ′)→ K1(B′ ∪ Ω) = 0→ · · · .

Exactness of this sequence implies that the map α : K0(Ω)⊕K0(B′)→ K0(S ′)
is surjective. Thus, for a vector bundle [E] ∈ K0(S ′) there exists a pair (l,m) ∈
Z× Z such that

[F ]− [Cm] ∈ K0(Ω), [L̃]− [Cl] ∈ K0(B′),

such that α(([F ]− [Cm]), ([L̃]− [Cl])) = ([F
∣∣
S′

]− [Cm])− ([L̃
∣∣∣
S′

]− [Cl]) = [E]. This

gives the equality in K-theory

[E] + [L̃
∣∣∣
S′

]− [Ck] = [F
∣∣
S′

]− [Cm],

which implies that there exists an isomorphism E ⊕ L̃
∣∣∣
S′
⊕ Ck+l ∼= F

∣∣
S′
⊕ Cm+l

for some k. Now, L = L̃ ⊕ Ck+l → B′ is a bundle over B′ and
(
F ⊕ Cm+l

) ∣∣
S′
∼=

E ⊕ L
∣∣
S′

. Finally,
(
F ⊕ Cm+l

)
is a bundle over Ω and so we have the required

extension.

Lemma 3.2.4 (Bott equivalence lemma). If E be a complex vector bundle on S2r,
then there exists a non-negative integers l,m and an integer q such that

E ⊕ Cl ∼= qβ ⊕ Cm.

Proof. Recall from Definition 3.2.1 at the beginning of the section that when q < 0
we define qβ = |q|β∨. We know that K0(S2r) = Z[C]⊕Z[β] and so if E is a smooth
complex vector bundle over S2r it defines a K-theory class [E] ∈ K0(S2r) and hence
there are k, q ∈ Z such that [E] = k[C] + q[β]. There are four cases we have to
consider.

1. q, k ≥ 0

2. q ≥ 0,−k > 0

3. −q > 0, k ≥ 0

4. −q,−k > 0
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If k, q ≥ 0 then since equality in K-theory is given by stable equivalence of vector
bundles, we know that there exists m ∈ Z≥0 such that

E ⊕ Cm ∼= Ck ⊕ qβ ⊕ Cm.

If −k > 0, q ≥ 0 we have [E] + k[q] = q[β] and there exists an m ∈ Z≥0 such that

E ⊕ Cm+|k| = qβ ⊕ Cm.

If −q > 0, k ≥ 0, we have the initial K-theoretic expression [E] = k[C] + q[β],
which gives [E] − q[β] = k[C]. We conclude that there exists an m ∈ Z≥0 such
that

E ⊕ |q|β ⊕ Cm ∼= C|k| ⊕ Cm.

By adding β∨ to both sides and noting that (β ⊕ β∨)∗ = (S+ ⊕ S−)∗ = C2r ,
because it is the restriction of a trivial bundle on R2r+1 to the sphere (this is due
to a comment on page 106 of [BvE18]) we get

E ⊕ C2r ⊕ Cm ∼= E ⊕ |q|(β ⊕ β∨)⊕ Cm

∼= C|k| ⊕ Cm ⊕ |q|β∨. (3.2)

If −k,−q > 0 then we must combine the cases when −k > 0 and −q > 0. We have
the initial K-theoretic equation [E] = k[C]+q[β], which gives [E]−q[β]−k[C] = 0.
We conclude that there exists an m ∈ Z≥0 such that

E ⊕ |q|β ⊕ C|k| ⊕ Cm ∼= Cm

so finally we have

E ⊕ |q|C2r ⊕ Cm ∼= C|k| ⊕ Cm ⊕ |q|(S−)∗.

Lemma 3.2.5 (Strong sphere lemma). Given a pair (M,E) there exists an r ∈ N
and q ∈ Z such that (M,E) ∼ (S2r, qβ).

Proof. We continue where we left off in the weak sphere lemma (Lemma 3.2.2) with
the relation (M,E) ∼ (S2r, F ). Choose q, l,m as in Lemma 3.2.4 and consider the
following chain of K-equivalences

(M,E) ∼ (S2r, F ) t (S2r,Cl) (Lemma 3.1.12)

∼ (S2r, F ⊕ Cl) (direct sum-disjoint union)

∼ (S2r, qβ ⊕ Cm) (Lemma 3.2.4)

∼ (S2r, qβ) t (S2r,Cm) (direct sum-disjoint union)

∼ (S2r, qβ) ((S2r,Cl) ∼ (∅, ∅), via bordism)
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Remark. This is one of the great triumphs of K-homology. The theory allows us
to reduce computations on a large class (compact, even dimension, Spinc, without
boundary) of manifolds with (smooth, complex) vector bundles to computations
on a sphere with a particular bundle.

A little bit of housekeeping before we get to the main result. Recall in Chapter 2
(specifically, in the proof of Theorem 2.2.1) we constructed D̃S∗ that had the same
principal symbol as d + d∗ and hence the same index. The proof that indDβ = 1
did not entirely reveal the role of S+ (versus say, S−), in β = (S+)∗. The following
lemma will illustrate how this grading-reversal affect the index.

Lemma 3.2.6. The index of Dβ∨ is −1.

Proof. The positive part of the kernel is 0 because ker(D̃S∗) ∩ Hom(S−, S+) = 0
and the negative part is ker(D̃S∗)

− ∩ End(S−) = C(1− c(ω)), so the index is −1.
This is analogous to what we saw in the proof of Theorem 2.2.1 except with S+

replaced with S− in the appropriate (i.e. where S+ does not change to S− when
swapping gradings) locations.

Remark. We do not yet know if the analytic index of a pair (M,E) is well-defined
on K-homology classes. This will be resolved in Chapter 4.

Theorem 3.2.7 (The analytic index is an isomorphism). The map

inda : K0(·)→ Z, [(M,E)] 7→ ind(DE)

is an isomorphism of abelian groups.

Proof. Assume that inda(M,E) = ind(DE) = 0 for a pair (M,E). Suppose that
q ≥ 0. We have the relation

(M,E) ∼ (S2r, qβ)

and so indDqβ = 0 (assuming the analytic index is well-defined on K-homology
classes). Direct sum - disjoint union allows us to decompose (S2r, qβ) into

⊔q
j=1(S2r, β)

and

0 = ind(Dqβ) = inda(

q⊔
j=1

(S2r, β)) = q ind(Dβ) = q.

This proves injectivity in the non-negative case. Suppose that instead q is neg-
ative. By Lemma 3.2.6 above the index of the pair (S2r, β∨) is −1 and we have
inda(S

2r, qβ) =
⊔q
j=1 inda(S

2r, β∨) = |q|(−1) = q. Note that we have actually

constructed a surjection - given q ∈ Z, (S2r, qβ) has index q.

We are now ready to prove Theorem 1.4.13:
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Proof of Theorem 1.4.13. We have the two homomorphisms of abelian groups,

inda : K0(·)→ Z, (M,E) 7→ dim(kerDE)+ − dim(kerDE)−

indt : K0(·)→ R, (M,E) 7→ (ch(E) ∪ Td(M))[M ]

and it suffices to show that they agree for one example of index 1 (as then they
agree on 2 = 1 + 1 and so on). By Lemma 1.4.12 Td(TS2r ⊗ C) = 1 and by
Theorem 2.1.2 ch(β)[S2r] is 1, while the analytic index of (S2r, β) is also 1.

Remark. It is an immediate consequence of the theorem that that topological index
is integral. Of course, because we have seen only one calculation of the topological
index (and that index was integral) we do not have any reason to believe the
topological index isn’t integral, but it is not too hard to believe ch(E)∪Td(M)[M ]
is not prima facie forced to be an integer.
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Chapter 4

Invariance of the index

This chapter serves to verify that the homomorphisms inda and indt in the proof of
Theorem 1.4.13 are well-defined i.e. that that analytic and topological indices do
not depend on the choice of representative of the class [(M,E)] ∈ K0(·). The broad
strokes of this outline are taken from [BvE18], although for specific computations
in the the case of bordism invariance of the analytic index we will refer to some
computations given in the enlightening paper [Hig91] by Nigel Higson.

4.1 Analytic index

A comment on notation before we begin. The analytic index on a K-homological
pair (M,E) is by definition the Fredholm index of the Dirac operator of M twisted
by E, inda(M,E) = indDE. We will alternate between indDE and inda(M,E)
where it is appropriate to do so, without comment.

4.1.1 Under direct sum - disjoint union and bordism

Theorem 4.1.1 (Invariance under direct sum - disjoint union). The analytic in-
dex is invariant under direct sum - disjoint union. If (M,E), (M,E ′) are as in
Definition 3.1.8 then

inda((M,E) t (M,E ′)) = ind(DE⊕E′).

Proof. We commit a mild sin with the notation (M,E)t (M,E ′) because it is not
of the form (A,B) ∈ K, leading us to ask: how does one evaluate inda : K → Z
at (M,E) t (M,E ′)? What we really mean when writing (M,E) t (M,E ′) is
(M tM,E t E), where E t E ′ has the bundle structure of the disjoint union of
each bundle. The sections of E t E ′ are Γ∞(E) ⊕ Γ∞(E ′) and the spinor bundle

49
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of M tM is the direct sum SM ⊕ SM . Thus, we have

Γ∞(SMtM ⊗ (E ⊕ E ′)) = Γ∞(SM ⊗ E)⊕ Γ∞(SM ⊗ E ′).

The kernel of DEtE′ splits in the same way and ind(DEtE′) = ind(DE)+ind(DE′),
which is exactly the index of DE⊕E′ .

Theorem 4.1.2 (Invariance under bordism). Let (M1, F1), (M2, F2) be as in Def-
inition 3.1.7 and related by a single bordism. Then the index the Dirac operator
on M1 twisted by F1 is the same as the index of the operator of M2 twisted by F2.

The theorem will exist as a corollary of the following result:

Proposition 4.1.3 (Boundary index). Assume that M = ∂W is a smooth compact
even dimensional Spinc manifold that is the boundary of a compact Spinc manifold
W and F → M is a smooth complex vector bundle with F = E

∣∣
∂W

for E →
W another smooth complex vector bundle. Furthermore, suppose that the Spinc

structure that M receives is the one inherited as the boundary of W (see discussion
after Definition 2.1.1). Then the index of the Dirac operator of M twisted by F is
0.

To see why this would be useful, remember that the index is a additive over
disjoint union. Assume that ∂W is a disjoint union M1t(−M2) as in the definition
of bordism. Denote by F1 the restriction of F to M1 and F2 the restriction of F
to −M2. The additivity of the index gives ind(DF ) = ind(DF1) + ind(DF2) = 0.
The reversal of the orientation of the second of manifold has the practical effect of
multiplying ind(DF2) by −1. We arrive at

ind(F ) = 0 = ind(DF1)− ind(DF2)

which is bordism invariance of the analytic index. The proof of Proposition 4.1.3
requires some intermediary steps. Assume that we can form a collar of M near
W , so that locally the boundary is diffeomorphic to (−1, 0] ×M . Define W+ =
W ∪M × (0,∞) and by D the Dirac operator on W+ and DF the Dirac operator
D twisted by F (see Definition 1.2.11). The following lemma will be useful in
determining which operators are compact.

Lemma 4.1.4. Let ψ be a compactly supported endomorphism on S+
W ⊗ F with

supp(ψ) ⊂ U , for U ⊂ W a relatively compact open set. Then if DF is the
Spinc-Dirac operator for W twisted by F , the operator ψ ◦ (DF ± i)−1 is a compact
operator.

Proof. This follows from a small extension of Theorem 1.3.12. For E0 →M as in
the setting of Theorem 1.3.12 and an open subset U of M , define W 1

D(E0

∣∣
U

) to be
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the completion of Γ∞c (E0

∣∣
U

) (compactly supported sections) in the Sobolev norm.
This sits naturally inside Γ∞c (E0) by extending as 0 outside U . The extension of
the lemma is then that if U is additionally relatively compact then the inclusion
map W 1

D(E0

∣∣
U

) ↪→ L2(E0) is compact. We will need to use this inclusion to get a
compact operator, but it is not worth emphasising too much beyond the comment
in the proof.

The composition then becomes

L2(SW+ ⊗ F ) W 1
DF

(SW+ ⊗ F ) W 1
DF

((SW+ ⊗ F )
∣∣
U

) L2(SW+ ⊗ F )
(DF+i)−1

(bounded)

ψ

(bounded) (compact)

and the composition of a bounded operator with a compact operator is compact,
so ψ ◦ (DF + i)−1 is compact.

Now, choose a φ ∈ C∞(W ) such that φ = 0 on W and φ = 1 on M × [1,∞)
(φ is a bump function of some sort, although it is not compactly supported). The
important (bounded) operator is

FW = 1− 2iφ(DF + i)−1φ : L2
(
SW+ ⊗ F

∣∣
M×[0,∞)

)
→ L2

(
SW+ ⊗ F

∣∣
M×[0,∞)

)
.

(4.1)

Lemma 4.1.5. FW is a Fredholm operator, having parametrix G = 1 + 2iφ(DF −
i)−1φ.

Proof. The aim is to first show that FWG − 1 is a compact operator. This will
naturally extend to the statement that GFW − 1 is compact and hence FW is
Fredholm by Atkinson’s lemma.

FWG− 1 = 2iφ(DF − i)−1φ− 2iφ(DF + i)−1φ+ 4φ(DF + i)−1φ2(DF − i)−1φ

= 2φ(i(DF − i)−1 − i(DF + i)−1︸ ︷︷ ︸
α

+2(DF + i)−1φ2(DF − i)−1)φ (4.2)

Now, the commutator [a−1, b] (for purely symbolic a, b) satisfies

a−1b = ba−1 + [a−1, b] = ba−1 + a−1[b, a]a−1

and notice that [DF−i, φ] = c(dφ). By Lemma 4.1.4 the composition of c(dφ) with
(DF ± i)−1 is compact, so K = a−1[b, a]a−1 is compact. Thus, we can commute
a−1 = (DF ± i)−1 and b = φ2 so long as we add K. We can combine the difference
α = i(DF − i)−1 − i(DF + i)−1 into a single expression using the identity

(a− b)−1 − (a+ b)−1 = (−2b)(a2 − b2)−1
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which follows from the fact that when a, b commute we have ((a+ b)(a− b))−1 =
(a2 − b2)−1. Thus,

FWG− 1 = 2φ(−2(D2
F + 1)−1 + 2φ2(DF + i)−1(DF − i)−1)φ+K

= 2φ(−2(D2
F + 1)−1 + 2φ2(D2

F + 1)−1)φ+K. (4.3)

At this point we should note that because 1 − φ is compactly supported 1 − φ2

is also, which means that (4.3) is sum of K and the composition of a bounded
operator and a compact operator and hence is compact. The other composition
is GFW − 1, but computation is completely analogous: the only difference is the
ordering of the composition and we know that this unchanged up to addition of a
compact operator.

The proof of Proposition 4.1.3 will follow from the following three lemmas.

Lemma 4.1.6. Let V be another manifold that satisfies the same conditions as
W in Proposition 4.1.3. If FV is the map,

FV = 1− 2iφ(DF + i)−1φ : L2
(
SV + ⊗ F

∣∣
M×[0,∞)

)
→ L2

(
SV + ⊗ F

∣∣
M×[0,∞)

)
which is exactly the map FW , except we replace W by V , then the analytic index
of FV is the same as the index of FW .

This will allow us to make the choice of a specific manifold which has M as
boundary. Indeed, we make this choice in Lemma 4.1.8.

Lemma 4.1.7. When W is as in Proposition 4.1.3 is compact, ind(FW ) = 0.

Lemma 4.1.8. When W as above is replaced by V = M × (−∞, 0] (the same
replacement as in Lemma 4.1.6) so that V+ = M × R, the index of FV equals
the index of the twisted Dirac operator DE

M , the Dirac operator of M twisted by
E = F

∣∣
M

.

Proof of Theorem 4.1.2. By Lemma 4.1.6, we can consider any manifold that has
M as its boundary and the index will remain the same. Choose V as in Lemma 4.1.8
and by Lemma 4.1.7, indFV = 0. Finally, Lemma 4.1.8 gives ind(DM

E ) = indFV =
0, completing the proof of Theorem 4.1.2.

Remark. We are emphasising the “M” part of DM
E because M is only the boundary

of W , whereas usually DE is the Dirac operator of the whole space (i.e. W ) twisted
by E. Of course, D twisted by E does not make sense (E is not a bundle over W )
but the emphasis will prevent confusion.
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Proof of Lemma 4.1.6. Let D1 and D2 be the twisted (by F ) Dirac operators for
V + and W+.

1

2i
(FV − FW ) = φ(D1 + i)−1φ− φ(D2 + i)−1φ

= φ(D2 + i)−1((D2 + i)φ− φ(D1 + i))(D1 + i)−1φ

= φ(D2 + i)−1(D2φ− φD1)(D1 + i)−1φ

Now, on M × [0,∞) D1 and D2 are the same operator - W+ and V + are indistin-
guishable on M × [0,∞), so the expression D2φ−φD1 is actually the commutator
[D1, φ]. Recall that the Dirac operator is a first order operator (Example 1.2.13)
and it has principal symbol ic(dφ). Conveniently, this is [D1, φ] and dφ is a com-
pactly supported, so by Lemma 4.1.4, 1

2i
(FV − FW ) is compact.

Proof of Lemma 4.1.7. Our aim is to prove that FW is a compact perturbation of
the operator 1−2i(DF+i)−1 = (DF−i)(DF+i)−1, which is a unitary automorphism
and hence has index 0. For brevity, define A = 2i(DF + i)−1. We have

FW − (1− 2i(DF + i)−1) = φAφ− A
= φAφ+ (φ− (1− φ)A(φ+ (1− φ))

= −((1− φ)A(1− φ) + φA(1− φ) + (1− φ)Aφ).

Note that (1− φ) is compactly supported and so (1− φ)A,A(1− φ) are compact
operators by Lemma 4.1.4.

Before we begin the proof of Lemma 4.1.8 there is setup to be done. The
operator DE

M is a map Γ∞(SM ⊗E)→ Γ∞(SM ⊗E), but we would like to compare
DE
M with FV . We can write L2(R) ⊗ L2(SM ⊗ E) ∼= L2(SV+ ⊗ F ) using the

isomorphism

L2(R)⊗ L2(SM ⊗ E) 3 ϕ⊗ sE 7→ sF ∈ L2(SV+ ⊗ F )

where sF (t,m) = ϕ(t)sE(m). This isomorphism is really just a statement about
the spinor bundles: the twisting is extraneous. We want to extend our previous
definition of the grading operator from M to M × R. The idea is to define a new
Clifford multiplication that takes into account this extra dimension. Define in the
same way as previously a local oriented orthonormal frame {ej}nj=1 of TM and
write ωM = ike1 · · · en to mean their product in the Clifford algebra. Define the
extension of Clifford multiplication as

c(ej) =

{
cM(ej) j ∈ {1, . . . , n}
cM(ωM) j = 0
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where cM : TM → End(SM) is our already supplied Clifford multiplication on
TM . We can now write down an expression for the operator DF , namely

DF =
n∑
j=0

c(ej)∇
SV+
⊗F

ej = c(e0)
d

dt
+

n∑
j=1

c(ej)∇
SV+
⊗F

ej .

This can be rendered more usefully as

DF =
d

dt
⊗ (−ic(ωM)) + 1⊗DM

E .

We can now compare DM
E with FV , by computing their indices.

Proof of Lemma 4.1.8. Write FV = 1− 2iφ(DF + i)−1φ as before, and notice that
FV is a compact perturbation of the operator U = 1− 2iφ(DF + i)−1:

U − FV = φ(DF + i)−1(1− φ)

= φ(1− φ)(DF + i)−1 − (DF + i)−1(−c(dφ))(DF + i)−1

which is compact because φ(1 − φ) and c(dφ) have compact support, so we can
apply Lemma 4.1.4. Define ψ = 2φ− 1 and write

U = (DF + i)(DF + i)−1 − 2iφ(DF + i)−1

= (DF − iψ)(DF + i)−1.

Because (DF + i) : W 1
D(SV ⊗ F ) → L2(SV ⊗ F ) is a bijection, the kernel of

U corresponds to the kernel of the operator DF − iψ and the cokernel is the
kernel of (DF − iψ)∗ = (DF + iψ). As earlier, obtain the splitting of the space of
square-integrable sections, L2(SV+ ⊗E) = L2(R)⊗L2(SM ⊗E). Let K = kerDM

E

and define by P the projection P : L2(R) ⊗ L2(SM ⊗ E) → L2(R) ⊗ K. Given
ζ ∈ W 1

D(SV ⊗ F ), if δ2 is the smallest non-zero eigenvalue of D2
F , then we have the

following key estimate from Lemma 4.1.9 below:

‖(DF ± iψ)ζ‖2 ≥ δ2 ‖(1− P )ζ‖2 .

This is useful because it restricts the kernel of DF ± iψ to L2(R) ⊗ K i.e. the
kernel is a subset of L2(R)⊗K.

Now, when we restrict to L2(R)⊗K the operator DF±iψ is d
dt
⊗(−ic(ωM))±iψ.

If K+ is the positive part of the kernel of DM
E and K− the negative part, then

( d
dt
⊗ (−ic(ωM))± iψ)f = 0 is solved by the functions

f(t) =

exp
(
±
∫ t

0
ψ(s)ds

)
v, v ∈ K+

exp
(
∓
∫ t

0
ψ(s)ds

)
v, v ∈ K−.
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Finally, ψ ≥ 0 so of these only the negative exponentials are square-integrable.
Thus, we have dim(K−) = dim ker(DF + iψ) and dim(K+) = dim ker(DF − iψ).
Hence, indDM

E = ind(DF − iψ). The operator DF − iψ has the same index as U ,
which is a compact perturbation of FV , so indFV = indDM

E .

Lemma 4.1.9. Let δ be the smallest positive eigenvalue of DF . Then for all
ζ ∈ W 1

DF
(SV+ ⊗ F ) the following estimate holds

‖(DF ± iψ)ζ‖2
L2 ≥ δ2 ‖(1− P )ζ‖2

L2 .

Proof. Let ζ be a smooth compactly supported section of SV+⊗F . We will extend
the result to ζ ∈ W 1

DF
(SV+ ⊗ F ) after verifying that it is true in the smooth case.

In the following, all norms are L2-norms and the inner product is the L2 inner
product. Then ‖(DF ± iψ)ζ‖2 satisfies

‖(DF ± iψ)ζ‖2 = 〈(DF ∓ iψ)(DF ± iψ)ζ, ζ〉
= 〈(DM

E )2ζ, ζ〉+ 〈(ic(ω)d/dt± iψ)∗(−ic(ω)d/dt± iψ)ζ, ζ〉

≥
∥∥DM

E ζ
∥∥2
.

The operator DM
E does not initially make sense as something we can apply to

ζ, (because ζ is a section of larger bundle than SM ⊗ E) but there is a way to
make sense of DM

E ζ. The bundle SV+ is essentially R×SM and the sections of SV+

correspond to time-dependent sections of SM , ζ(t,m) = (t, ζ̃(t, n)), say. In this
way, DM

E can act on these sections (for each t ∈ R separately) and so it makes
good sense to write down DM

E ζ.
To complete the proof, we can write

∥∥DM
E ζ
∥∥ =

∥∥DM
E (Pζ + (1− P )ζ)

∥∥ and note

thatDM
E Pζ = 0, so we have

∥∥DM
E ζ
∥∥2

=
∥∥DM

E (1− P )ζ
∥∥2

. We can decompose ζ into
constituent vectors in each eigenspace and write DM

E (1−P )ζ = DM
E

∑
j(1−P )ζj,

with ζj being the component of ζ in the eigenspace corresponding to eigenvalue
δj. Remember that because eigenvectors across eigenspaces are orthogonal we can

write
∥∥∥∑j ζj

∥∥∥2

=
∑

j ‖ζj‖
2. Finally, we notice that

∥∥∥∥∥DM
E

∑
j

(1− P )ζj

∥∥∥∥∥
2

=
∑
j=1

δ2
j ‖(1− P )ζj‖2

≥
∑
j=1

δ2 ‖(1− P )ζj‖2 = δ2 ‖(1− P )ζ‖2

for δj = δ, the smallest positive eigenvalue. We can extend this to ζ in the Sobolev
space W 1

DF
(SV+ ⊗ F ) using [Hig91, Theorem 1.1]. The theorem says is that if
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we have a pair (ζ, ξ) ∈ W 1
D(SV ⊗ F ) × L2(SV ⊗ F ) with DF ζ = ξ then there is a

sequence of smooth compactly supported sections ζn such that ‖ζ − ζn‖2
L2 → 0 and

also that ‖DF ζn − ξ‖2
L2 → 0. Suppose we approximate ζ by a sequence (ζn)n∈N of

smooth compactly supported sections of the bundle SV+⊗F . Write ζ = ζ−ζn+ζn,
we have the inequality

‖(ζ − ζn) + ζn‖2 ≤ ‖ζ − ζn‖2 + ‖ζn‖2 + 2 ‖ζ − ζn‖ ‖ζn‖

which is the triangle inequality applied to ‖(ζ − ζn) + ζn‖2. Apply this estimate
to δ2 ‖(1− P )(ζ − ζn + ζn)‖2 to get

δ2 ‖(1− P )(ζ − ζn + ζn)‖2 ≤ δ2 ‖(1− P )(ζ − ζn)‖2 + δ2 ‖(1− P )ζn‖2 + 2 ‖ζ − ζn‖ ‖ζn‖
≤ δ2 ‖(1− P )(ζ − ζn)‖2 + δ2 ‖(DF ± iψ)ζn‖2︸ ︷︷ ︸

α

+2 ‖ζ − ζn‖ ‖ζn‖ .

Now, limn→∞ ζn = ζ so both ‖(1− P )(ζ − ζn)‖2 and ‖ζ − ζn‖ ‖ζn‖ disappear in
the limit. For the remaining term, because DF ζn approximates ξ, the limit as n
goes to infinity of α is just ‖(DF ± iψ)ζ‖2 i.e. as n goes to infinity we get

δ2 ‖(1− P )(ζ)‖2 ≤ ‖(DF ± iψ)ζ‖2

for any ζ ∈ W 1
D(SV ⊗ F ).

4.1.2 Under bundle modification

Theorem 4.1.10 (Invariance under bundle modification). Suppose (M,E) is mod-
ified to yield (ΣF, βF ⊗ π∗E) as in Definition 3.1.11. If DE is the Dirac operator
of M twisted by the vector bundle E and DβF⊗π∗E is the Dirac operator of ΣF
twisted by βF ⊗ π∗E. Then

ind(DE) = ind(DβF⊗π∗E).

The proof of Theorem 4.1.10 requires a fair amount of setup.

Definition 4.1.11 (Product operator). Let D1 and D2 be Dirac operators on even-
dimensional Spinc manifolds M1,M2 with spinor bundles S1 and S2 respectively,
with γ being the grading operator on S1. We define an operator on the product
manifold:

D1#D2 = D1 ⊗ 1 + γ ⊗D2 : Γ∞(S1 ⊗ S2)→ Γ∞(S1 ⊗ S2).

We would like this to be the Dirac operator on the product manifold, i.e. the
one we receive when consideringM = M1×M2 independently of the decomposition.
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Proposition 4.1.12. Suppose we fix M = M1 ×M2, and write DM to mean the
untwisted Dirac operator of M . Then DM = D1#D2 and in particular, indDM =
ind(D1#D2).

Proof. This follows from Lemma 1.2.10. Indeed, the definition of the Dirac opera-
tor of a manifold M is c◦∇, where c is Clifford multiplication and ∇ is the Clifford
connection on a SM as described in Definitions 1.2.2 and 1.2.4. The Clifford mul-
tiplication distributes as in Lemma 1.2.10 and the Clifford connection ∇M for SM
satisfies ∇M = ∇M1 ⊗ 1 + 1 ⊗∇M2 where ∇M1 is the connection for S1 and ∇M2

for S2.

We could also appeal to their principal symbols being indistinguishable, but
we also need to use the fact the D1#D2 really is a Dirac operator (and hence is
self-adjoint) rather than just a statement about indices.

Lemma 4.1.13. For D1, D2 as in Definition 4.1.11, ker(D1#D2) = kerD1 ⊗
kerD2.

Proof. It is clear that if s = s1 ⊗ s2 ∈ kerD1 ⊗ kerD2 then s ∈ ker(D1#D2) so it
remains only to show the opposite. Suppose that s = s1 ⊗ s2 ∈ ker(D1#D2). The
key fact about D := (D1#D2) is that D2 = D2

1 ⊗ 1 + 1 ⊗D2
2. To see why this is

the case, consider (D1#D2)2,

(D1#D2)2s1 ⊗ s2 = D2
1s1 ⊗ s2 +D1γs1 ⊗D2s2

+ γD1s1 ⊗D2s2 + γ2s2 ⊗D2
2s2.

Now, the Dirac operator swaps the grading of S1, so D1γs1 = −γD1s1. Because
γ2 = 1 by definition (the grading is the decomposition of S1 into +1 and −1
eigenspaces we get from γ2 = 1), we get to

D2
1s1 ⊗ s2 +D1γs1 ⊗D2s2 + γD1s1 ⊗D2s2 + γ2s2 ⊗D2

2s2 = D2
1s1 ⊗ s1 + s1 ⊗D2

2s2.

Now, if Ds = 0 then (using L2 norm), ‖D(s1 ⊗ ss)‖2 = 0 and

‖D(s1 ⊗ ss)‖2 = 〈(D1#D2)(s1 ⊗ s2), D1#D2(s1 ⊗ s2)〉
= 〈s1 ⊗ s2, (D1#D2)2(s1 ⊗ s2)〉,

which is due to Dirac operators being formally self-adjoint. We have

〈s1 ⊗ s2, (D1#D2)2s1 ⊗ s2〉 = 〈s1 ⊗ s2, D
2
1s1 ⊗ s2 + s1 ⊗D2

2s2〉
= 〈s1 ⊗ s2, D

2
1s1 ⊗ s2〉+ 〈s1 ⊗ s2, D

2
2s2〉

= 〈D1s1, D1s1〉 · 〈s2, s2〉+ 〈D2s2, D2s2〉 · 〈s1, s1〉
= ‖D1s1‖2 ‖s2‖2 + ‖D2s2‖2 ‖s1‖2 .

The above is 0 only when s1 s2 are in the kernel of D1 and D2 respectively.
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Proposition 4.1.14. Suppose that we have D1 and D2 as in Definition 4.1.11.,
except now twisted by a vector bundle E →M = M1×M2 that restricts to bundles
E1 and E2 over M1 and M2. Suppose also that the index of D2 is 1. Then
indDM1×M2 = indD1.

Proof. From Lemma 4.1.13 we know that the kernel decomposes the kernel of D1

and the kernel of D2. The grading on the product S1 ⊗ S2 is from the grading on
the constituent spinor bundles S1 and S2:

(S1 ⊗ S2)+ = (S+
1 ⊗ S+

2 )⊕ (S−1 ⊗ S−2 )

(S1 ⊗ S2)+ = (S+
1 ⊗ S−2 )⊕ (S−1 ⊗ S+

2 ).

This is due to the induced tensor grading: even parts correspond to tensors which
have the same grading, odd to those which have opposite. If we intersect these
positive and negative parts with the kernel of D, we get the decomposition of the
kernel:

(kerD)+ = ((kerD1)+ ⊗ (kerD1)+)⊕ ((kerD1)− ⊗ (kerD2)−)

(kerD)− = ((kerD1)+ ⊗ (kerD2)−)⊕ ((kerD1)− ⊗ (kerD2)+).

Here we have used the notation + and − to denote the restriction to sections that
are in the positive and negative parts of the spinor bundle. The index of D is by
definition the index of the positive part, indD := (dim kerD)+− (dim kerD)−, so

dim(kerD)+ − dim(kerD)− = dim(kerD1)+ · (dim(kerD2)+ − dim(kerD2)−)

− dim(kerD1)− · (dim(kerD2)+ − dim(kerD2)−)

= dim(kerD1)+ − dim(kerD2)−.

This construction helps to motivate the construction of the # product, but
it is still not yet clear how this will help us prove that the index is independent
of bundle modification. Before we begin, there is some notational conventions
that need to be discussed. In what follows, we will write PM : M × Sn → M
for projection to M and likewise PSn : M × Sn → Sn for projection to Sn. The
restriction of PM to a subset U of M will be denoted PU .

Remark. The bundle P ∗Snβ formally consists of triples (u, x, b) ∈ U × Sn × β such
that x = πβ(b) (πβ is the bundle projection for β), but because b is in the fibre of
β at x, if we supply b ∈ βx then we are also giving complete information about x.
In light of this, we can write U × β = P ∗Snβ, and likewise for P ∗UE

∣∣
U

= E
∣∣
U
× Sn.

We will alternate between these descriptions where appropriate, and only in the
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proof of Lemma 4.1.31 does it become more enlightening to use the triple to denote
an element of P ∗Snβ and P ∗UE

∣∣
U

, because keeping track of the basepoints becomes
important.

Recall that from Definition 3.1.4 we can construct a sphere-bundle ΣF from
the bundle F over M . Then the modification (Definition 3.1.11) of (M,E) is
(ΣF, π∗E ⊗ βF ).

Example 4.1.15 (Motivating example). When F as immediately above is F =
M × Rn (i.e. trivial), then (ΣF, π∗E ⊗ βF ) = (M × Sn, E � β) and in particular,
Dπ∗E⊗βF = DE#Dβ. Hence, by Proposition 4.1.14 we have indDE = indDπ∗E⊗βF .

Proof. Recall that we can write F = P ×Spinc(n) Rn. When F is trivial, P is also
and, ΣF = M × Sn and the projection π : M × Sn →M is projection to the first
factor, giving π∗E = P ∗ME. For βF we have βF = P ×Spinc(n) β = M × β, which is
P ∗Snβ. Since we have (ΣF, π∗E ⊗ βF ) = (M × Sn, E � β), the operator Dπ∗E⊗βF
has the same symbol as DE#Dβ by Lemma 1.2.10. The index of Dβ is 1, so in
the case when F is trivial, the (analytic) index of (M,E) is invariant under vector
bundle modification.

We aim to show that the index is invariant under bundle modification even
when F is not a trivial bundle.

Definition 4.1.16 (τ). Let M,F be as in Definition 3.1.4, let P satisfy F =
P ×Spinc(n) Rn. Given an open subset U trivialising P , denote the trivialisation of
P by the map τ : P

∣∣
U
→ U × Spinc(n).

Our first use of τ is for the following local identifications.

U × Spinc(n)×Spinc(n) S
n → U × Sn, (4.4)

U × Spinc(n)×Spinc(n) β → U × β, (4.5)

which are given by (respectively) (u, [g, x]) 7→ (u, g · x) and (u, [g, b]) 7→ (u, g · b)
for u ∈ U, x ∈ Sn, g ∈ Spinc(n), b ∈ βx.

Definition 4.1.17 (ψτ and ϕτ ). Let τ be as in Definition 4.1.16. Define ψτ and
ϕτ by the commutativity of the following diagrams:

βF
∣∣
π−1(U)

P ∗Sn(β)

P
∣∣
U
×Spinc(n) β U × Spinc(n)×Spinc(n) ×β,

ϕτ

== : == :

τ×1β
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π−1(U) U × Sn

P
∣∣
U
×Spinc(n) S

n U × Spinc(n)×Spinc(n) ×Sn.

ψτ

== : == :

τ×1Sn

Remark. Both ψτ and ϕτ are well-defined because τ is Spinc(n)-equivariant. The
map ϕτ is an isomorphism of vector bundles by construction.

Recall the setting of vector bundle modification: we have a pair (M,E) consist-
ing a smooth compact even dimensional Spinc(n) manifold with smooth complex
vector bundle E → M as in Definition 3.1.7. The bundle modification (Defi-
nition 3.1.11) of the pair (M,E) given smooth real vector bundle F → M is
the pair (ΣF, π∗E ⊗ βF ), where π : ΣF → M is the projection for ΣF and
βF := P ×Spinc(n) β → ΣF .

Definition 4.1.18 (ϕE). Let τ be as in Definition 4.1.16. Define ϕE as the map

ϕE : π∗E
∣∣
π−1(U)

→ P ∗U(E
∣∣
U

)

given by
π∗E

∣∣
π−1(U)

3 ([p, x], e) 7→ (u, g · x, e) ∈ P ∗U(E
∣∣
U

)

for u ∈ U, p ∈ Pu, x ∈ Sn, e ∈ Eu, [p, x] ∈ (ΣF )u, if τ(p) = (u, g) for g ∈ Spinc(n).

Lemma 4.1.19. If ϕE is as in Definition 4.1.18 then ϕE is an isomorphism of
vector bundles.

Proof. The inverse is (u, x, e) 7→ ([p, x], e) such that τ(p) = (u, 1Spinc(n)). By
construction, p ∈ Pu and e ∈ Eu. The compatibility between the bases π−1(U)
and U × Sn is given by ψ in Definition 4.1.17.

Lemma 4.1.20. Let ΣF be in the Definition 3.1.11. Then

TΣF ∼= π∗TM ⊕ (P ×Spinc(n) TS
n).

Proof. A analogous version of this is in [Hoc09, Corollary 12.3 on page 158].

Lemma 4.1.21. The isomorphism in Lemma 4.1.20 induces an isomorphism at
the level of spinor bundles,

G : SΣF → π∗SM ⊗ (P ×Spinc(n) SSn).

In particular this restricts to the local map

G
∣∣
π−1(U)

: SΣF

∣∣
π−1(U)

→ (π
∣∣
U

∗
SM
∣∣
U

)⊗ (P
∣∣
U
×Spinc(n) SSn).
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Proof. The statement that G restricts to G
∣∣
π−1(U)

is immediate if G exists. We

can use our previous results about the spinor bundle in Propositions 1.1.15, 1.1.16
and 1.1.18 to see why these bundles are isomorphic. From Proposition 1.1.15 we
know that

Sπ∗TM⊕P×Spinc(n)TS
n = Sπ∗TM ⊗ SP×Spinc(n)TS

n ,

and from Proposition 1.1.16 with f = π : ΣF →M we know

Sπ∗TM = π∗SM .

Finally Proposition 1.1.18 with Y = Sn, E = TSn, and the Lie group being
Spinc(n) (acting on Sn via its canonical projection to SO(n)) says that

SP×Spinc(n)TS
n = P ×Spinc(n) SSn .

Ordinarily, to show that a map between bundles is a bundle isomorphism, one
must show the compatibility of the base manifolds. For a bundle πE : E → M to
be isomorphic to πF : F → N , we must have both a map f : E → F and a map
g : M → N satisfying g ◦ πE = πF ◦ f . It is not necessary to show that the map
between the base manifolds exists here, because this follows from the existence
of such a compatible map for the isomorphism in Lemma 4.1.20, although this is
hidden in the reference provided.

Definition 4.1.22 (Cτ ). Let τ be as in Definition 4.1.16. Define

Cτ :
(
π
∣∣
U

∗
SM
∣∣
U

)
⊗
(
P
∣∣
U
×Spinc(n) SSn

)
→ SM

∣∣
U
� SSn

by
([p, x], s1)⊗ [p, s2] 7→ (u, g · x, s1 ⊗ g · s2),

where u ∈ U, s1 ∈ (SM)u, x ∈ Sn, p ∈ Pu, s2 ∈ (SSn)x , τ(p) = g.

We can choose the same p in each part of the product ([p, x], s1)⊗[p, s2] because
the tensor product requires representatives to be in the same fibre - which are
related by a group element by the definition of a principal bundle.

Definition 4.1.23 (ϕS). Let G : SΣF

∣∣
π−1(U)

→ π
∣∣
U

∗
SM
∣∣
U
⊗ P

∣∣
U
×Spinc(n) SSn be

as in Lemma 4.1.21, then the commutativity of the following diagram defines ϕS

SΣF

∣∣
π−1(U)

SM
∣∣
U
� SSn

π
∣∣
U

∗
SM
∣∣
U
⊗ (P

∣∣
U
×Spinc(n) SSn).

ϕS

G Cτ
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Definition 4.1.24 (Ψτ ).

Ψτ : (SΣF ⊗ π∗E ⊗ βF )
∣∣
π−1(U)

→ (SM
∣∣
U
� SSn)⊗ P ∗U(E

∣∣
U

)⊗ P ∗Sn(β)

is given by the product ϕS ⊗ ϕE ⊗ ϕτ of the three maps

ϕS : SΣF

∣∣
π−1(U)

→ SM
∣∣
U
� SSn

ϕE : π∗E
∣∣
π−1(U)

→ P ∗U(E
∣∣
U

)

ϕτ : βF
∣∣
π−1(U)

→ P ∗Sn(β).

For brevity, write SE
∣∣
U

= SM
∣∣
U
⊗ E

∣∣
U

and Sβ = SSn ⊗ β.

Lemma 4.1.25. In Definition 4.1.24, (SM
∣∣
U
� SSn)⊗ P ∗U(E

∣∣
U

)⊗ P ∗Sn(β) is

(SM ⊗ E)
∣∣
U
� (SSn ⊗ β) = SE

∣∣
U
� Sβ.

Proof. The rearrangement is

E : (SM
∣∣
U
� SSn)⊗ P ∗U(E

∣∣
U

)⊗ P ∗Sn(β)→
(
(SM ⊗ E)

∣∣
U
� (SSn ⊗ β)

)
,

given by

((u, x, s1 ⊗ s2))⊗ (u, x, e)⊗ (u, x, b) 7→ (u, x, (s1 ⊗ e)⊗ (s2 ⊗ b))

for u ∈ U, x ∈ Sn, s1 ∈ (SM)u, s2 ∈ (SSn)x, e ∈ (E)u, b ∈ (β)x.

Lemma 4.1.26. Suppose that J : (SΣF ⊗ π∗E ⊗ βF )
∣∣
π−1(U)

→ π−1(U) is the bun-

dle projection of (SΣF ⊗ π∗E ⊗ βF )
∣∣
π−1(U)

over π−1(U) and likewise suppose that

K : SE
∣∣
U
� Sβ → U × Sn is the bundle projection for SE

∣∣
U
� Sβ over U × Sn.

Then Ψτ is compatible with ψτ , in the sense that the following diagram commutes:

(SΣF ⊗ π∗E ⊗ βF )
∣∣
π−1(U)

SE
∣∣
U
� Sβ

π−1(U) U × Sn.

J

Ψτ

K

ψτ
(4.6)

Proof. We have already determined all of the necessary components of Ψτ and
ψτ to complete this proof. Suppose that p ∈ Pu, x ∈ Sn, [p, x] ∈ (ΣF )u , e ∈
Eu, s1 ∈ (SM)u, s2 ∈ (SSn)x, b ∈ βx. Suppose additionally in the following that
for G as in Lemma 4.1.21 and s ∈ (SΣF )[p,x] we have G(s) = ([p, x], s1)⊗ [p, s2] ∈
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π
∣∣
U

∗
SM
∣∣
U
⊗ (P

∣∣
U
×Spinc(n) SSn) and recall that the if we have a fixed τ as in the

definition of ψτ we can define τ(p) = (u, g), for g ∈ Spinc(n). Then,

ψτ ◦ J(s⊗ ([p, x], e)⊗ [p, b]) = ψτ ([p, x])

= (u, g · x).

If we compare the other composition:

K ◦Ψτ (s⊗ ([p, x], e)⊗ [p, b]) = K ◦ Cτ (([p, x], s1)⊗ [p, s2])⊗ ϕE([p, x], e)⊗ ϕτ ([p, b])
= K((u, g · x, s1 ⊗ g · s2)⊗ (u, g · x, e⊗ g · b))
= (u, g · x).

Remark. The above proof also demonstrates that Cτ is a vector bundle isomor-
phism.

Corollary 4.1.27. Ψτ : (SΣF ⊗ π∗E ⊗ βF )
∣∣
π−1(U)

→ SM
∣∣
U
� SSn ⊗ P ∗U(E

∣∣
U

) ⊗
P ∗Sn(β) is an isomorphism.

Proof. Because each tensor factor of Ψτ is an isomorphism, and the diagram (4.6)
commutes, Ψτ is an isomorphism.

Definition 4.1.28 (Φτ ). Define

Φτ : Γ∞
(

(SΣF ⊗ π∗E ⊗ βF )
∣∣
π−1(U)

)
→ Γ∞

(
(SM ⊗ E)

∣∣
U
� (SSn ⊗ β)

)
is given by (Φτs)(u, x) = Ψτ (s(ψ

−1
τ (u, x))), for s ∈ Γ∞

(
(SΣF ⊗ π∗E ⊗ βF )

∣∣
π−1(U)

)
,

u ∈ U, x ∈ Sn.

Lemma 4.1.29. The map

Φτ : Γ∞
(

(SΣF ⊗ π∗E ⊗ βF )
∣∣
π−1(U)

)
→ Γ∞

(
(SM ⊗ E)

∣∣
U
� (SSn ⊗ β)

)
in Definition 4.1.28 is an isomorphism.

Proof. It suffices to show that Φτ is a bijection, because Ψτ is a vector bundle
isomorphism and ψτ provides the basepoint compatibility. We should remark at
this point that there isn’t very much to be done here: everything proceeds from

Corollary 4.1.27 and the definition of ψτ . If s1, s2 ∈
(

(SΣF ⊗ π∗E ⊗ βF )
∣∣
π−1(U)

)
satisfy (Φτs1)(u, x) = (Φτs2)(u, x) then because both Ψτ and ψτ are isomor-
phisms, s1 = s2. Surjectivity follows from the existence of a right-inverse: if s3 ∈
Γ∞
(
(SM ⊗ E)

∣∣
U
� (SSn ⊗ β)

)
then s4 := Ψ−1

τ s3ψτ ∈ Γ∞
(

(SΣF ⊗ π∗E ⊗ βF )
∣∣
π−1(U)

)
is a section for which Φτ (s4) = s3.
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We should note that Φτ respects the grading on the sections of the spinor bundle
because the map G in Lemma 4.1.21 does so, although this is not immediately
obvious.

Definition 4.1.30. Define

D̃π∗E⊗βF

∣∣∣
π−1(U)

: Γ∞
(

(SΣF ⊗ π∗E ⊗ βF )
∣∣
π−1(U)

)
→ Γ∞

(
(SΣF ⊗ π∗E ⊗ βF )

∣∣
π−1(U)

)
by

D̃π∗E⊗βF

∣∣∣
π−1(U)

= Φ−1
τ ◦ (DE

∣∣
U

#Dβ) ◦ Φτ .

We aim to prove that this does not depend on the choice of trivialisation (U, τ)
of P

∣∣
U

. Denote by adding a ′ to the subscript the maps that correspond to ϕE,
ϕτ , ϕS except containing a different trivialisation τ ′. Before we state precisely
the next lemma, it is worth referring back to Lemma 4.1.25. Formally, we will
need to conjugate the Ψ-part by E to make sense of the compositions in the proof
of Lemma 4.1.31 although because this is only a re-arrangement we tend not to
emphasise it.

Lemma 4.1.31. Suppose s = sE ⊗ sβ ∈ Γ∞(SE
∣∣
U
⊗ Sβ), u ∈ U and x ∈ Sn. Sup-

pose that we define p = τ−1(u, 1Spinc(n)) and define g ∈ Spinc by τ ′(p) = (u, g−1),
i.e. τ ′ ◦ τ−1(u, 1Spinc(n)) = (u, g−1). Then

Ψτ ◦Ψ−1
τ ′ s(ψ

′
τ ◦ ψ−1

τ (u, x)) = sE ⊗ gsβ((u, g−1 · x)),

which is by definition the group action by g ∈ Spinc(n) on a section s ∈ Γ∞(SE
∣∣
U
�

Sβ).

Proof. Common to all three components is the basepoint-changing isomorphism
ψτ ′ ◦ ψ−1

τ ,

ψτ ′ ◦ ψτ−1(u, x) = ((τ ′ ◦ τ−1)(u, 1Spinc(n)), x)

= (u, [g−1, x])

= (u, g−1 · x). (4.7)

The final step is due to (4.4) and in what follows we will use (4.4),(4.5) without
particular reference. For readability, we will compute Ψτ ◦ Ψ−1

τ ′ component-wise.
First, note that the restriction to π−1(U) of the global isomorphism G : SΣF →
π∗SM ⊗ P ×Spinc(n) SSn does not depend on τ and so does not appear in ϕS ◦ ϕ−1

S′ .
We can compute the inverse of Cτ ′ as

C−1
τ ′ : (u, x, s1 ⊗ s2) 7→ ([p, x], s1)⊗ [p, s2],
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for generic s1 ∈ (SM)u, s2 ∈ (SSn)x and p ∈ Pu, τ(p) = (u, 1Spinc(n)).
The trivialisations τ, τ ′ are Spinc(n)-equivariant so if we fix a g as in Lemma 4.1.31

we get

(u, 1Spinc(n)) = gτ ′ ◦ τ−1(u, 1Spinc(n)) = τ ′ ◦ τ−1(u, g),

which is exactly equivalent to τ◦(τ ′)−1(u, 1Spinc(n)) = (u, g). Define p1 = (τ ′)−1(u, 1Spinc(n))
and define the now fixed vectors s1 ∈ (SM)u and s2 ∈ (SSn)g−1·x by

s(u, g−1 · x) = (u, g−1 · x, s1 ⊗ s2)

where s is a section of SM
∣∣
U
�SSn . The basepoints are included to aid in compre-

hension. We compute explicitly ϕS ◦ ϕ−1
S′ (s(u, g

−1 · x)),(
ϕS ◦ ϕ−1

S′ ((u, g
−1 · x, s1 ⊗ s2)

)
= Cτ (([p1, g

−1 · x], s1 ⊗ s2))

= (u, gg−1 · x, s1 ⊗ g · s2)

= (u, x, s1 ⊗ g · s2). (4.8)

Remember that s2 is in the fibre at g−1 · x, so g · s2 is in the fibre at x. Next,
consider ϕE ◦ ϕ−1

E′ : P ∗U(E
∣∣
U

) → P ∗U(E
∣∣
U

) acting on (u, g−1 · x, e) ∈ P ∗U(E
∣∣
U

) for a
fixed e ∈ Eu,

ϕE ◦ ϕ−1
E′ (u, g

−1 · x, e) = ([τ(p), g−1 · x], e)

= (u, [g, g−1 · x], e) = (u, x, e). (4.9)

Finally, consider ϕτ ◦ ϕ−1
τ ′ : P ∗Sn(β)→ P ∗Sn(β) acting on (u, g−1 · x, b) ∈ P ∗Sn(β) for

a fixed b ∈ βg−1·x,

ϕτ ◦ ϕ−1
τ ′ (u, g−1 · x, b) = (u, [g, g−1 · x], b)

= (u, x, b). (4.10)

If we combine Eqs. (4.7) to (4.10):

(ϕS ◦ ϕ−1
S′ ⊗ ϕE ◦ ϕE′ ⊗ ϕτ ◦ ϕ

−1
τ ′ )s(ψ′τ ◦ ψ−1

τ (u, x)) = sE ⊗ g · sβ(g−1(u, x))).

Lemma 4.1.32. If (U, τ ′) is another trivialisation of P
∣∣
U

, then the operator

DE

∣∣
U

#Dβ commutes with Φτ ◦ Φ−1
τ ′ .
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Proof. By Lemma 4.1.31, we have

DE#Dβ

(
Φτ ◦ Φ−1

τ ′ sE ⊗ sβ
)

= DE#Dβ(sE ⊗ g · sβ)

= (DE#g ◦Dβ)(sE ⊗ sβ)

which is exactly Φτ ◦ Φ−1
τ ′ (DE#Dβ)sE ⊗ sβ. The final line is because Dβ is Spinc-

equivariant.

Proposition 4.1.33. The differential operator D̃π∗E⊗βF

∣∣∣
π−1(U)

= Φ−1
τ ◦
(
DE

∣∣
U

#Dβ

)
◦

Φτ does not depend on the choice of trivialisation (U, τ), in the sense that if (U, τ ′)
is another choice of trivialisation of P

∣∣
U

, then

Φ−1
τ ◦

(
DE

∣∣
U

#Dβ

)
◦ Φτ = Φ−1

τ ′ ◦
(
DE

∣∣
U

#Dβ

)
◦ Φτ ′ .

Proof. This follows from Lemma 4.1.32. Write

Φ−1
τ ′ ◦

(
DE

∣∣
U

#Dβ

)
◦ Φτ ′ = (Φ−1

τ ◦ Φτ ) ◦ Φ−1
τ ′

(
DE

∣∣
U

#Dβ

)
Φτ ′ ◦ (Φ−1

τ ◦ Φτ )

= Φ−1
τ ◦ (Φτ ◦ Φ−1

τ ′ ) ◦
(
DE

∣∣
U

#Dβ

)
◦ (Φτ ′ ◦ Φ−1

τ ) ◦ Φτ .

Now, because of Lemma 4.1.32 we can swap
(
DE

∣∣
U

#Dβ

)
and (Φτ ′ ◦ Φ−1

τ ) to get

Φ−1
τ ◦ (Φτ ◦ Φ−1

τ ′ ) ◦ (Φτ ′ ◦ Φ−1
τ ) ◦

(
DE

∣∣
U

#Dβ

)
◦ Φτ = Φ−1

τ ◦
(
DE

∣∣
U

#Dβ

)
◦ Φτ .

Proposition 4.1.34. ker D̃π∗E⊗βF
∼= kerDE⊗kerDβ and the isomorphism respects

the grading.

Proof. We will show this is true locally and then rely on a lemma proven below
to extend the result to a global statement. Because Φτ is an isomorphism and
respects the grading, it suffices to check that the following relations hold

1. kerDE

∣∣
U
⊗ kerDβ ⊂ Φτ

(
D̃π∗E⊗βF

∣∣∣
π−1(U)

)

2. Φτ

(
ker D̃π∗E⊗βF

∣∣∣
π−1(U)

)
⊂ kerDE

∣∣
U
⊗ kerDβ.



4.1. Analytic index 67

To show the first inclusion we need to check that an element sE ⊗ sβ ∈
kerDE

∣∣
U
⊗ kerDβ satisfies Φ−1

τ (sE ⊗ sβ) ∈ ker D̃βF⊗π∗E

∣∣∣
π−1(U)

. We have

D̃βF⊗π∗E

∣∣∣
π−1(U)

Φ−1
τ (sE ⊗ sβ) = Φ−1

τ DE

∣∣
U

#Dβ(sE ⊗ sβ)

= Φ−1
τ (s0)

where s0 is the zero section, and so hence Φ−1
τ s0 is also.

We now consider the second point. Let 0 6= s ∈ Γ∞
(

(SΣF ⊗ π∗(E)⊗ βF )
∣∣
π−1(U)

)
and suppose further that s ∈ ker D̃βF⊗π∗E. Write Φτ (s) = sE ⊗ sβ and consider(

DE

∣∣
U

#Dβ

)
Φτ (s) = D̃π∗E⊗βF

∣∣∣
π−1(U)

s = 0.

By Lemma 4.1.36 below, Φτ does not depend on the choice of τ and so defines an
isomorphism

Φ : ker D̃π∗E⊗βF
∼= kerDE ⊗ kerDβ.

Remark. Because the index of a twisted operator is a difference of the graded
parts of its kernel (Definition 1.2.11 and below it for details) Proposition 4.1.34
combined with the result of Proposition 4.1.14 implies that ind D̃π∗E⊗βF = indDE.

Lemma 4.1.35. Let E → M be a vector bundle. Then the identity section 1E ∈
Γ∞(End(E)) defined by M 3 m 7→ 1Em ∈ End(Em) corresponds to the identity
endomorphism 1E ∈ End(E) given by 1E(e) = e, for e ∈ E.

Proof. Denote by ζ the isomorphism given in Lemma 1.3.10. Then

ζ(1S+)(s) = (1S+(x))(s) = s,

for s ∈ (S+)x.

Lemma 4.1.36. The local isomorphism

Φτ : ker D̃π∗E⊗βF

∣∣∣
π−1(U)

→ kerDE

∣∣
U
⊗ kerDβ

does not depend on the choice of τ when restricted to sections in the kernel of
D̃π∗E⊗βF and hence extends to an isomorphism

Φ : ker D̃π∗E⊗βF
∼= kerDE ⊗ kerDβ.
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Proof. Recall that from Lemma 4.1.31 that Φτ ◦ (Φτ ′)
−1 acts as multiplication by

an element of Spinc(n) on sE ⊗ sβ and in particular this is an action only on the
sβ part. Now, the key fact about this is that the action of Φτ ◦ Φ−1

τ ′ on the kernel
of DE#Dβ is trivial, i.e. when sE ⊗ sβ ∈ Γ∞(SE)⊗ kerDβ,

Φτ ◦ Φ−1
τ ′ (sE ⊗ sβ) = sE ⊗ sβ.

The positive part of the kernel of Dβ is C · (1+c(ω)). This is an endomorphism
on S+, and C(1 + c(ω))

∣∣
S+ = C(2 · 1S+) = C · 1S+ . Note that formally 1S+ is not

actually the identity map on S+, it is the identity section i.e. it is the section that
takes x ∈ Sn and sends it to 1S+

x
∈ End(S+) ∼= S+⊗ (S+)∗. We have not taken any

effort to distinguish between these because as Lemma 1.3.10 makes clear, they are
the same space. By Lemma 4.1.35 the identity section of the endomorphism bundle
corresponds to the identity endomorphism in the endomorphism ring. Recall that
when T ∈ End(S+) and g ∈ Spinc(n) the action by g on T is

g · T = g ◦ T ◦ g−1.

Notably, if T = 1S+ ∈ End(S+) then g does nothing at all. With this in mind,

Φτ ◦ (Φτ ′)
−1(sE ⊗ sβ) = sE ⊗ g · sβ

= sE ⊗ z · g · 1SS+

= sE ⊗ z · 1SS+ .

Where z ∈ C corresponds to our generic sβ ∈ kerDβ via (kerDβ)+ ∼= C · 1S+ .

Lemma 4.1.37. Suppose that f = (f1 ⊗ f2) ∈ C∞(U) ⊗ C∞(Sn) and that y =
(y1, y2) ∈ U×Sn with f(y) = 0. Write sE⊗sβ = s ∈ Γ∞(SE�Sβ) and suppose that
s(y) = (e1, e2) ∈ (SE)y1 ⊗ (Sβ)y2. Then the principal symbol of Υ := DE

∣∣
U

#Dβ is

σΥ(df
∣∣
y
)(e) = σDE

∣∣
U

(df1

∣∣
y1

)(e1)⊗ sβ(y2) + (c(ω)s)(y)⊗ σDβ(df2

∣∣
y2

)(e2).

Proof. This relies on the fact that a simple tensor sE⊗sβ ∈ Γ∞(SM⊗E)⊗Γ∞(S⊗β)
is linear over both entries.(
iDE

∣∣
U

#Dβ

)
(fsE ⊗ sβ) = i(DE

∣∣
U
⊗ 1 + c(ω)⊗Dβ)(fsE ⊗ sβ)(y)

= iDE

∣∣
U

(f1sE)(y1)⊗ sβ(y2) + (c(ω)sE)(y1)⊗ i(Dβf2sβ)(y2).

Now, because iDE

∣∣
U

(f1sE)(y1) = σDE
∣∣
U

(df1

∣∣
y1

)(sE(y1)) and

i(Dβf2sβ)(y2) = σDβ(df2

∣∣
y2

)(sβ(y2)) the end result can be rendered in a more

palatable shorthand (omitting the cotangent vector),

σΥ = σDE
∣∣
U
⊗ 1 + c(ω)⊗ σDβ .
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Lemma 4.1.38. Let Y = (βF ⊗ π∗E)
∣∣
π−1(U)

and Υ = DE

∣∣
U

#Dβ, i.e. suppose

D̃Y = D̃(βF⊗π∗E)

∣∣∣
π−1(U)

as in Definition 4.1.30. Then the principal symbol of D̃Y

is
σD̃Y (ξ) = Ψ−1

τ σΥ(ξ ◦ Tψτ (m)ψ
−1
τ )Ψτ ,

for all m ∈M, ξ ∈ T ∗mM, and for ψτ ,Ψτ as in Definition 4.1.28.

Proof. Recall from Lemma 1.2.16 that the we can compute the principal symbol of
an operator of order 1 using a commutator. Now, fix an s ∈ Γ∞((S ⊗ βF ⊗ π∗E)

∣∣
π−1(u)

)

and a smooth function f ∈ C∞(π−1(U)), with f(m) = 0 i.e. as in Definition 1.2.14.
Then we can compute the principal symbol of D̃Y ,

Φ−1
τ (ΥΦτ (f · s)(m)− fΥΦτ (s))(m) = Φ−1

τ

( (
ψ−1
τ

)∗
fΥΦτ (s) + σΥ(d(ψ−1

τ )∗f)Φτ (s)

− (ψ−1
τ )∗f ·ΥΨτ (s)

)
(m)

=
(
Φ−1
τ σΥ(d(ψ−1

τ )∗f)Φτ (s)
)

(m).

Conjugation by Φτ corresponds to conjugating by Ψτ ,(
Φ−1
τ σΥ(d(ψ−1

τ )∗f)Φτ (s)
)

(m) = Ψ−1σΥ(d(ψ−1
τ )∗f)Ψτ (s(ψ

−1
τ ◦ ψτ (m)))

= Ψ−1
τ σΥ(d(ψ−1

τ )∗f)Ψτ (s(m))

for a particular point m ∈ π−1(U). The de-Rham operator d satisfies (for a generic
smooth function f on π−1(U)),

dψτ (m)((ψ
−1
τ )∗f) = df

∣∣
m
◦ Tψτ (m)ψ

−1
τ .

If ξ ∈ T ∗m(π−1(U)) we conclude that

σΦ−1
τ ΥΦτ

(ξ) = Ψ−1
τ σΥ(ξ ◦ Tψτ (m)ψ

−1
τ )Ψτ .

Proposition 4.1.39. The principal symbol of D̃π∗E⊗βF is the principal symbol of
Dπ∗E⊗βF .

Proof. Recall from Proposition 1.2.17 that σDπ∗E⊗βF = σDY = icΣF (ξ)⊗1π∗E⊗1βF .

From Lemmas 4.1.37 and 4.1.38 and we know that the symbol of D̃Y is Ψ−1
τ ◦σΥ◦Ψτ .

Define ξ = (ξM , ξSn) ◦ Tψτ as above. Then,

Ψτ (icΣF (ξ)⊗ 1π∗(E) ⊗ 1βF ) = ϕS(icΣF (ξ))⊗ ϕE ⊗ ϕτ
= (icM(ξM)⊗ 1S + c(ω)⊗ cSn(ξSn))ϕS ⊗ ϕE ⊗ ϕτ
= σΥ(ξ)Ψτ ,
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which is exactly equivalent to Ψ−1
τ ◦σDΥ

◦Ψτ = σD̃Y . Note that the compatibility of
ϕS with the Clifford multiplication is due to Lemma 1.2.10, where we remark that
the Cτ part of ϕS commutes with Clifford multiplication because the multiplication
by an element of Spinc(n) on s2 ∈ SSn = PSn ×Spinc(n) C2n/2 acts only on the
structure bundle (i.e. PSn) part of SSn and does not act on the complex part.

Proof of Theorem 4.1.10. Proposition 4.1.34 implies that indDE = ind D̃π∗E⊗βF
and Proposition 4.1.39 implies that ind D̃π∗E⊗βF = indDπ∗E⊗βF , giving

indDπ∗E⊗βF = indDE.

4.2 Topological index

Recall that the Todd class of a manifold M is by definition the Todd class of the
tangent bundle TM . The topological index of a pair (M,E) as in Definition 3.1.7
is (ch(E) ∪ Td(M))[M ] and by Definition 1.4.8 this is exactly the integral∫

M

ch(E) ∪ Td(M).

Theorem 4.2.1 (Invariance under direct sum - disjoint union). The topological in-
dex is preserved under direct sum - disjoint union. Suppose that (M,E)t(M,E ′) ∼
(M,E ⊕ E ′). Then∫

M

ch(E) ∪ Td(M) +

∫
M

ch(E ′) ∪ Td(M) =

∫
M

ch(E ⊕ E ′) ∪ Td(M).

Proof. The Chern character is additive across direct sum; ch(E ⊕ E ′) = ch(E) +
ch(E ′).

Theorem 4.2.2 (Invariance under bordism). The topological index is preserved
by bordism. If (M1, F1) is bordant to (M2, F2) then

(ch(F1) ∪ Td(M1))[M1] = (ch(F2) ∪ Td(M2))[M2].

Proof. Recall previously in the proof of Theorem 4.1.2 that the index of a boundary
was 0 was equivalent to the index was invariant under bordism. The same principle
holds for the topological index. Suppose that F → X is a vector bundle on a
manifold X that restricts to E on ∂X = M . The Chern character and Todd class
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commute with pullback, and ch
(
E
∣∣
∂X

)
∪Td(∂X) is the restriction to the boundary

of ch (E) ∪ Td(X). Define by ι the inclusion mapping of M = ∂X ↪→ X. Then,∫
M

ch(E) ∪ Td(M) =

∫
∂X

ch(ι∗F ) ∪ Td(ι∗(TX)).

The normal bundle N is trivial and TX
∣∣
M

= TM ⊕N , so∫
∂X

ch(ι∗F ) ∪ Td(ι∗TX) =

∫
∂X

ι∗(ch(F ) ∪ Td(TM))

=

∫
X

d(ch (F ) ∪ Td(X))

= 0.

The second to last line is due to Stokes’ theorem, and the final line is because
ch(F ),Td(X) are closed forms.

Theorem 4.2.3 (Invariance under bundle modification). Let E,M, βF and π :
ΣF →M be as in Definition 3.1.11. Then

(ch(E) ∪ Td(M))[M ] = (ch(βF ⊗ π∗E) ∪ (Td(ΣF ))[ΣF ].

Proof. We first note that the following proof is another example of remarkable
efficacy of our computation in Chapter 2.

We can use a partition of unity to decompose this integral. Suppose that
{Uj}lj=1 is a cover of M and {χj}lj=1 is a partition of unity subordinate to this
cover. Suppose also that these Uj are trivialising neighbourhoods for the sphere
bundle π : ΣF → M . Recall that in Definition 4.1.17 we had a trivialisation
ψ : π−1(U) → U × Sn. For each Uj in the cover, there is a corresponding ψj :
π−1(Uj)→ Uj×Sn. Let PUj : Uj×Sn → Uj, PSn : Uj×Sn → Sn be the projections
to each factor. The decomposition due to the partition of unity is:

∫
ΣF

ch(π∗E ⊗ βF ) Td(ΣF ) =
l∑

j=1

∫
π−1(Uj)

π∗χj ch(π∗E ⊗ βF ) Td(ΣF ).

For a particular j we have∫
π−1(Uj)

π∗χj ch(π∗E ⊗ βF ) Td(ΣF ) =∫
Uj×Sn

(ψ−1
j )∗π∗χj(ψ

−1
j )∗ ch(π∗E ⊗ βF

∣∣
π−1(U)

)(ψ−1
j )∗Td(π−1(U)),
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which is due to the invariance of integrals under pullbacks of diffeomorphisms.
Because ψj is a trivialisation of the bundle ΣF there is a commuting diagram,
π ◦ ψ−1

j = PUj . We may write the integral above as∫
Uj×Sn

P ∗Ujχj(ψ
−1
j )∗ ch(π∗E ⊗ βF

∣∣
π−1(U)

)(ψ−1
j )∗Td(π−1(U)).

The aim is to pull back every part of the above integrand by either PUj or
P n
S , so that we can split it into integrals over Uj and Sn separately. We have the

isomorphism P ∗Snβ = (ψ−1
j )∗βF

∣∣
π−1(U)

for each j, which is via the map

P ∗Snβ → (ψ−1
j )∗βF

∣∣
π−1(Uj)

, (u, x, b) 7→ (u, x, [p, b])

where πβ(b) = x, τ(p) = (u, 1Spinc(n)), for u ∈ Uj, x ∈ Sn, b ∈ β. Because τ(p) =
(u, 1Spinc(n)), ψ

−1
j (u, x) = [p, x]. Using this we can further modify the integral

above: ∫
Uj×Sn

P ∗UjχjP
∗
Uj

ch(E)P ∗Sn ch(β)(ψ−1
j )∗Td(π−1(U)).

The only remaining term is the Todd class of π−1(U). The key fact to overcoming
this is the tangent map for the trivialisation (ψ−1

j ). T (ψ−1
j ) provides a trivialisation

of Tπ−1(Uj), which is TΣF
∣∣
π−1(Uj)

. This splits Tπ−1(Uj) into the direct sum,

Tπ−1(Uj) = P ∗UjTUj ⊕ P
∗
SnTS

n, which is a local statement of Lemma 4.1.20.∫
Uj×Sn

P ∗UjχjPUj ch(E
∣∣
Uj

)P ∗Uj(Td(Uj))P
∗
Sn ch(β)P ∗Sn(Td(Sn))

=

∫
Uj

χj ch(E
∣∣
Uj

) Td(Uj)

∫
Sn

ch(β) Td(Sn).

Now, from Lemma 1.4.12 we know that the Todd class of Sn is 1 (n is even) and
from Theorem 2.1.2 the Chern character of β evaluated at the fundamental class
of Sn is 1. We conclude that∫

Uj

χj ch(E
∣∣
Uj

) Td(Uj)

∫
Sn

ch(β) Td(Sn) =

∫
Uj

χj ch(E
∣∣
Uj

) Td(Uj).

Finally, the whole integral may be written as a sum:

ch(π∗E ⊗ βF ) ∪ Td(ΣF ))[ΣF ] =
l∑

j=1

∫
Uj

χj ch(E
∣∣
Uj

) Td(Uj)

=
l∑

j=1

∫
M

χj ch(E) Td(M)

= (ch(E) ∪ Td(M))[M ],
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which is invariance of the topological index under vector bundle modification.
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Chapter 5

A group-equivariant index
theorem

We formulate a suitable notion of group-equivariant K-homology of a point and
see how the introduction of a group action by a compact Lie group G changes
the topological and analytic index. The aim is to present an outline of how a
suitable analogue of Theorem 1.4.13 holds when we consider M as a G-manifold
and E →M a G-equivariant vector bundle.

5.1 Group-equivariant K-homology

The structures of Spinc manifolds adapt well to the introduction of a Lie group, and
much of the introduction is merely in writing down where one must incorporate
the action by G.

Definition 5.1.1 (G-Spinc datum). Let M be as in Definition 1.1.17. If (P, η) is
a G-Spinc datum for TM then an isomorphism of G-Spinc data is an isomorphism
of the relevant Spinc data except where the isomorphism respects the group action.
A G-isomorphism class is then a G-Spinc structure for TM , which is by definition
a G-Spinc structure for M .

Remark. Specifying the decomposition TM ∼= P ×Spinc(n) Rn is equivalent to spec-
ifying a Spinc structure, and this is also true in the case of the G-Spinc structure.
The action by G on TM or SM = P ×Spinc(n) C2r is an action on the P -part.

The K-homology of a point extends to the case when we introduce a group,
because we can decree that the action of G on M lifts to an equivariant action
on a smooth complex vector bundle E → M . If it is important to emphasise the
existence of the G-Spinc-structure on (M,E) we may write (M,E)G.

75
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Definition 5.1.2 (PairG-isomorphism). Suppose we have an isomorphism of pairs
(M,E), (M ′, E ′) as in Definition 3.1.1 and both M , M ′ have G-Spinc structures
as in Definition 1.1.17, with E, E ′ being G-vector bundles. Suppose additionally
that the isomorphism of those pairs satisfies the following conditions. The diffeo-
morphism ϕ : M →M ′ and bundle isomorphism E → E ′ respects the group action
and preserves the G-Spinc datum, in the sense that (ϕ∗P ′, ϕ∗η′) is G-isomorphic
to (P, η) (as G-Spinc data as in Definition 5.1.1) and that the pullback ϕ∗E ′ is iso-
morphic (as a complex vector bundle on M) to E and the isomorphism respects the
group action. Then we say that (M,E)G is now pair G-isomorphic to (M ′, E ′)G

Definition 5.1.3 (KG). Define analogously to Definition 3.1.2 the set KG which
consists of pairs all pairs (M,E)G modulo the G-respecting isomorphism described
in Definition 5.1.2.

Remark. Essentially, a pair (M,E) ∈ KG is a pair in K that incorporates a G-Spinc

structure on M and the G-action is compatible with E →M .

We can proceed with the incorporation of the G-action into the relations de-
scribed in Definitions 3.1.8, 3.1.9 and 3.1.11.

Definition 5.1.4 (Direct sum - disjoint union). Suppose two pairs (M,E ′)G and
(M,E)G are in KG. Then (M,E)G t (M,E ′)G is related to (M,E ⊕E ′)G and the
action by G on the direct sum E ⊕ E ′ is g(e + e′) = ge + ge′, for g ∈ G, e ∈ Em,
e′ ∈ (E ′)m.

Suppose that as in the setting of Definition 3.1.9 we have a pair (W,F ) that
satisfies (∂W,F

∣∣
∂W

) ∼= (M,E)t(−M ′, E ′). We must first say what it means to get
a G-Spinc structure on the boundary of W . At each stage in the construction of the
Spinc structure on the boundary in Proposition 1.1.19, insert a group action and
ensure that it respects the structure provided. The important fact is that we must
require that the orbit of each connected component of the boundary is entirely
contained within that connected component. In the case of W with boundary
(M,E) t (−M ′, E ′) we require that G(M) ⊂M and G(M ′) ⊂M ′.

Definition 5.1.5 (G-bordism). Let (W,F ) be as in Definition 3.1.9 providing
(without considering the G action) a bordism between (M,E) and (M ′, E ′). Sup-
pose additionally that W is a G-Spinc manifold and that the two connected com-
ponents of ∂W are preserved by the G action as above. Then if (∂W,F

∣∣
∂W

)G is
pair G-isomorphic (in the sense of Definition 5.1.2) to (M,E)Gt (−M ′, E ′)G then
(W,F )G is said to provide a G-bordism from (M,E)G to (M ′, E ′)G.

We remark that once again that the pair (W,F )G is not in KG.
Vector bundle modification incorporates a G-action in a similar way. Fix a G-

Spinc structure for a given vector bundle F →M as in Definition 3.1.11. This has
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as datum a principal Spinc bundle P that also has a G-action and a G-respecting
homomorphism η as in Definition 1.1.17. The datum defines a G-Spinc structure
for F . The associated bundle is ΣF = PF ×Spinc(n) S

n which inherits the action by
G on the PF -part and is a G-Spinc manifold because of it. The vector bundle βF
becomes G-Spinc by the action on the PF part.

Definition 5.1.6 (Vector bundle G-modification). The bundle G-modification of
a pair (M,E)G ∈ KG is the pair (ΣF, π∗E ⊗ βF ), where G acts on π∗E ⊗ βF as
described immediately above.

The G-equivariant K-homology of a point defined similarly to the normal K-
homology of a point.

Definition 5.1.7 (G-Equivariant K-homology of a point). Define KG
0 (·) to be

equivalences classes of pairs (M,E)G ∈ KG where the equivalence relation is the
one generated by Definitions 5.1.4 to 5.1.6.

In the same way that Theorem 1.4.13 was a consequence of the computation
of the K-homology of a point, there is a notion of a G-index and a related G-index
theorem.

5.1.1 Equivariant indices

Recall that given a group G there is the representation ring of G.

Definition 5.1.8 (Representation ring). The representation ring of a compact
group G is the Grothendieck group of formal differences of isomorphism classes of
finite dimensional representations ρ : G→ GL(V ) of G.

Remark. It is an unfortunate consequence of inertia that it is standard to omit
the representation ρV : G → GL(V ) and instead write or [V ] − [W ] (or just [V ]
when appropriate) to mean a class in R(G). When it is necessary to speak of the
representation specifically, it will not be omitted.

Definition 5.1.9 (Analytic G-index). Suppose F is a G-equivariant Fredholm
operator F : H1 → H2 between representation spaces H1 and H2 of G. Then the
analytic G-index of F is the element indG(F ) = [kerF ]− [cokerF ] ∈ R(G).

Here we note that the representation for each part in the formal difference
[kerF ]− [cokerF ] arises as map that sends g ∈ G to A ∈ GL(V ) (V is either kerF
or cokerF ) given by (for h1 ∈ H1) As = g · h, and the action by g on classes in
cokerF is g · (h2 + imF ) = g · h2 + imF . This action is well-defined, because if
h ∈ imF , then because F is equivariant (by definition) g · h ∈ imF .
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Remark. Similarly to the non-equivariant case, we will define the analytic G-
index on KG

0 -homology classes as the analytic G-index of the associated operator,
indaG((M,E)G) := indG(DE).

In the event that we have a twisted operator DE then the G-index becomes a
formal difference of the graded parts as in Definition 1.2.11.

This new definition of an index corresponds with the old in the following sense:
given a fixed g ∈ G, we can obtain a complex number from a formal difference by
first evaluating at a group element g ∈ G and taking the trace of the resultant
linear map. Denote this composition indG(F )(g) i.e. ind(F )(g) = [kerF ](g) −
[cokerF ](g).

Lemma 5.1.10. indG(DE)(g) does not depend on the choice of group G which
contains g. In particular, we may assume that G is the topological closure of the
subgroup generated by g ∈ G.

It is important to note that we may still evaluate the G-index at any group
element before we made this assumption (i.e. at ĝ /∈ 〈g〉) but it allows us to write
ind〈ĝ〉(DE)(ĝ) rather than ind〈g〉(DE)(ĝ), which will be useful later. From now on
we will abuse notation and write G to mean the topological closure of the group
generated by g.

Proof of Lemma 5.1.10. If G is a subgroup of some larger group G′ then given a
representation ρ : G′ → GL(V ), we have ρ

∣∣
G

: G → GL(V ) so ρ
∣∣
G

(g) = ρ(g) and
hence they have identical trace.

Remark. The topological closure is for technical purposes. It is of course possible
to not include closure in the definition, but there are some issues that arise when
considering particular pathological examples. The main problem we would like
to avoid is the one that arises from irrational rotations: given a single irrational
rotation generates a (nasty) subgroup of U(1), but the topological closure of said
group is U(1), which is comparatively benign.

Lemma 5.1.11. For any trivial G-space M there is an isomorphism

K0
G(M) ∼= K0(M)⊗R(G).

Proof. The isomorphism is easy to write down but the details lie in establishing
the ancillary details. It is K0(M)⊗R(G) 3 [E]⊗ [V ] 7→ [E ⊗ V ] ∈ K0

G(M).

Remark. If g ∈ G does not act trivially on M , then the fixed point set M g =
{x ∈ M | g · x = x} is a trivial G-space and hence we can write K0

G(M g) ∼=
K0(M g)⊗R(G).Note that this is only true because of the assumption thatG = 〈g〉.
Without it, we can only conclude that M g is 〈g〉 invariant, which is (at worst)
merely a subgroup of the original group in which g resides.
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We can therefore evaluate the class [E
∣∣
Mg ] ∈ K0

G(M g) at a point g ∈ G and

take the trace of resulting GL(V )-part to get a complex number, [E
∣∣
Mg ](g) ∈

K(M g)⊗ C. We can evaluate K-theory classes using the Chern character
ch : K0(M g)→ H∗(M g) and hence it makes good sense to consider ch([E

∣∣
Mg ](g)).

Definition 5.1.12 (
∧
NC). Let N be the union of normal bundles on each of the

connected components of M g. Define by [
∧
NC] the class

[
∧

NC] =

[⊕
j

2j∧
N ⊗ C

]
−

[⊕
j

2j+1∧
N ⊗ C

]
∈ K0

G(M g).

Similarly to the Chern character, we can evaluate this KG-theory class at an
element g ∈ G and obtain an element of K0(M g) ⊗ C. The final step is to note
that because the Chern character is a homomorphism and the class [

∧
NC](g) is an

invertible element of the ring ([AS68a, Lemma 2.7]) it makes good sense to write
down (non-explicitly) the (multiplicative) inverse

1

ch([
∧
NC] (g))

∈ H∗(M g)⊗ C.

Definition 5.1.13 (Topological G-index). Given a fixed group element g ∈ G, the
topological G-index of a pair (M,E) ∈ KG evaluated at g is

indtG(M,E)(g) =

∫
Mg

ch([E
∣∣
Mg ](g)) Td(TM g)

ch([
∧
NC](g))

.

Remark. It does not make sense to consider indtG(M,E) independently of a choice
of group element g.

With this in mind we can formulate an appropriate analogue of Theorem 1.4.13
when introducing a group action.

Theorem 5.1.14 (Atiyah–Segal–Singer, Theorem 3.9 in [AS68c]/Theorem 2.12
in [AS68a]). Suppose that (M,E) is a pair in KG. Then

indaG(M,E)(g) =

∫
Mg

ch([E
∣∣
Mg ](g)) Td(TM g)

ch([
∧
NC](g))

.

In the case that G = {e} is trivial Theorem 5.1.14 reduces to Theorem 1.4.13.
Indeed, when G is trivial, all representations are identical and the trace gives
exactly the dimension of (kerDE)±, so

indG(DE)(e) = ([(kerDE)+]− [(kerDE)−])(e) = dim(kerDE)+ − dim(kerDE)−.
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For the topological index, let us first consider the numerator,

ch([E
∣∣
Mg ](g)) Td(TM g).

The class [E
∣∣
Me ] = [E⊗C] ∈ K0

G(M) decomposes into [E]⊗ [C] ∈ K0(M)⊗R(G)
via the isomorphism in Lemma 5.1.11, because G is trivial. The Chern character
of this class evaluated at e is then ch([E

∣∣
Me ](e)) = ch([E

∣∣
Me ])⊗ [C](e) = ch(E)⊗

dimC C = ch(E)⊗ 1. The Todd class of TM e is then Td(TM e) = Td(TM), so the
numerator is just ch(E) Td(TM).

The denominator is

ch([
∧

NC](g)),

and the normal bundle N is 0 because TM e = TM . Hence, the the denominator
is ch([

∧
NC](e)) = ch(C)⊗ dimC = 1 (under the isomorphism of Lemma 5.1.11).

In summary, when G is trivial we have:∫
Mg

ch([E
∣∣
Mg ](g)) Td(TM g)

ch([
∧
NC](g))

=

∫
M

ch(E) Td(TM).

The idea of the proof

In the proof of Theorem 1.4.13 we saw that the result followed from the compu-
tation K0(·) = Z. We will present an outline of a similar proof here for Theo-
rem 5.1.14, although naturally there will be some modification. The K-homology
is no longer Z, but instead is R(G) and the representation ring is isomorphic to
KG

0 (·) via the analytic G-index.
Let Ĝ be the set of equivalence classes of irreducible representations of G.

Two representations ρ1 : G → GL(V ) and ρ2 : G → GL(W ) of G are said to be
equivalent if there is a linear isomorphism ϕ : V → W such that ϕ◦ρ1(g) = ρ2(g)◦ϕ
for all g ∈ G. We can write the representation ring of G as

R(G) = {
⊕
V ∈Ĝ

nV [V ] | nV ∈ Z, only finitely many nV non-zero},

which is the free abelian group generated by the (equivalence classes of) irreducible
representations.

Theorem 5.1.15 (A special case of Theorem 3.11 in [BOOSW10]).

indaG : KG
0 (·)→ R(G)

is an isomorphism of groups.
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Proof. Some clarifying comments for how this particular case is obtained: when
X = Y is a point the “natural isomorphism” α in [BOOSW10, Theorem 3.11] is
the analytic G-index.

Remark. We can offer some justification for surjectivity: Given [V ] ∈ R(G) the
candidate pair is (MV , EV ) = (S2r, β ⊗ V ), where the integer r is the same one
obtained in Lemma 3.2.5 and the action by G on S2r, β ⊗ V → S2r is only on
the V -part. Because of the computation in Theorem 2.2.1 the positive part of the
kernel of Dβ⊗V is kerDβ ⊗ V = C⊗ V = V and the negative part of the kernel is
0. Hence, the G-index of such a pair is indaG(S2r, β ⊗ V )(g) = [V ](g) = tr(ρV (g)).

We hypothesise the following conjecture, which the author thinks is probably
true, but unfortunately did not have enough time to properly investigate.

Hypothesis 5.1.16. The topological G-index is a well-defined group homomor-
phism on KG-homology classes.

Remark. This is clearly true for direct sum disjoint union, because the Chern
character splits and the denominator is common to both integrals in indtG((M,E)t
(M,E ′)).

The two analytic and topological G-indices must now agree on a generator that
can be found for each (M,E) ∈ KG. This is a similar to the proof of Lemma 3.2.5.

Proposition 5.1.17. Suppose G is a compact Lie group acting on a KG-homological
pair (M,E) ∈ KG. Then for each V ∈ Ĝ there exists a pair (MV , EV ) defining a
class [(MV , EV )] ∈ KG

0 (·) that satisfies

indaG([(MV , EV )]) = [V ] = indtG([(MV , EV )]),

in the sense that indaG(MV , EV )(g) = indtG(MV , EV )(g).

Proof. We have already seen in Theorem 5.1.15 that the analytic G-index is a well-
defined isomorphism, and in the remark below saw that we can find a candidate
pair for surjectivity without much difficulty. We now only need to verify that the
topological G-index of (Sn, β ⊗ V ) is [V ](g).

Our first aim is to show ch([β⊗V ](g)) = ch(β)⊗[V ](g). We rely on Lemma 5.1.11
to decompose [β⊗V ] into β⊗[V ]. The evaluation at G of the product is evaluation
of the representation part, and the Chern character only sees the (non-equivariant)
K-theory part.

The end result is a tensor product (interpreted as an actual product), ch(β) ·
tr(ρV (g)). This completely extracts the representation from the pair (S2r, β ⊗ V ),



82 Chapter 5. A group-equivariant index theorem

so we can rely on the computation from Chapter 2 to compute the topological
G-index,

indtG(Sn, β ⊗ V )(g) =

∫
(S2r)g

ch([β ⊗ V ](g)) Td(T (S2r)g)

ch((
∧
NC)[g])

=

∫
(S2r)g

tr(ρV (g))
ch(β) Td(T (S2r)g)

ch([
∧
NC])(g))

.

Because G acts trivially on S2r the denominator is 1 (the normal bundle to
T (Sn)g = TSn is 0) and (S2r)g = S2r. Thus the integral reduces to

tr(ρV (g))

∫
S2r

ch(β) Td(TS2r) = tr(ρV (g)).

= indaG(Sn, β ⊗ V )(g),

where
∫
S2r ch(β) Td(TS2r) = indt(S

n, β) = 1, from the computation in the proof
of Theorem 2.1.2.

Proof of Theorem 5.1.14. By Theorem 5.1.15, if (MV , EV ) as in Proposition 5.1.17,
the classes {[(MV , EV )]}V ∈Ĝ generate KG

0 (·). Assuming Hypothesis 5.1.16 it makes
good sense to consider the topological index on (MV , EV ) and by Proposition 5.1.17
the G-indices agree on generators.
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