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Abstract

In this thesis we will consider a problem raised by a telecom company regarding the
implementation of the fiber glass network. We have considered the problem of connecting
cable dividers, also referred to as cabinets or active points, to the fiber glass network.
This problem was split in three separate problems and for each an algorithm has been
constructed. Instead of connecting directly to the fiber glass network, we use an extra
network to minimize the costs. First the shortest connection between a cabinet and a
network is determined. Now multiple networks can be used to route to the fiber glass
network. In order to use the multiple networks, we determine where the two networks
intersect, as only at those points a transition from one network to the other is possible.
The last algorithm determines the least cost-path between the cabinet and the fiber
glass network.

We expect the reader to be familiar with basic probability theory. Basic graph theory
and complexity theory will be treated briefly in the theoretical background of this thesis.
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Chapter 1

Introduction

As internet is taking a more prominent role in our lives, we want it to meet our ever
growing demands, including the desire for fast connections. In the past ADSL (Asym-
metric Digital Subscriber Line) had been used in most cases. Using ADSL data could
be send via copper cables to the end users. Starting from a central office thick copper
wire bundles started and kept branching until the end user was reached. In most cases
there was a cabinet located between the central office and the end user serving as a cable
divider. As of now, there are new types and generations of the ADSL technology, where
VDSL (Very-high-bit-rate Digital Subscriber Line) is the technique telecom providers
are most interested in. VDSL is an improved version of ADSL which is used for the
implementation from cabinets onwards. The efficiency of the technique used mainly
depends on the length of the copper cables between the cabinets and the end users. At
one kilometer of copper cable, the speed of ADSL2+ (an improved version of ADSL)
and VDSL will be equal [I]. For larger distances the speeds will be almost equal, see
also Figure [1.2

As most networks still consisted of copper cables, companies had to make a decision
on the next step. This step could either be a full transition to a fiber glass network
or an intermediate solution. Doing a full transition to fiber glass however, would be
too expensive, both in actual cost and in the man hours it would take to upgrade the
complete network. Therefore the choice for an intermediate solution was made. Instead
of upgrading the complete network all at once, the network is upgraded gradually from
a full copper network to (possibly) a full fiber glass network (also called Full Fibre to
the Home or Full FttH). This way the problems arising with the Full FttH are resolved.
The two intermediate steps most used are Fibre to the Cabinet (FttCab) and Hybrid
Fibre to the Home (Hybrid FttH). With FttCab, the connection from the central office
to the cabinets (cable dividers) is replaced by fiber, from where on the copper cables
are used. In Hybrid FttH the fiber glass network will be further extended 'to the curb’,
meaning that the network consists mainly of fiber glass cables, only the last part (from
the street on) will be copper. Therefore, Hybrid FttH is also referred to as Fibre to the
Curb. The four possible situations we have are shown in Figure (1.1

The use of FttCab and Hybrid FttH also gives rise to new techniques such as G.Fast
and VDSL2. These techniques are ways to send the data over the cables. G.Fast was
established in December 2014 and has the claimed potential to reach 1 Gb/s with a
copper distance of at most 200 meter [2]. VDSL2 on the other hand can have a larger

1



2 CHAPTER 1. INTRODUCTION

CENTRAL
OFFICE

= --llI--II--IlI"III'IIII'IIII'II&\; FULL COPPER

CABINET

e

n ml..--l.--.l.ll/. I |I; FttCAB
o CURB _&
& --:(" 1}y, HYBRID FitH

L y  FULLFttH

Figure 1.1: The four possible situations [IJ.

distance to the cabinets, while still giving acceptable results. However, at a distance
of 1500 meters, the speed drops significantly and at 2500 meters, the speed equals that
of ADSL2+ and VDSL. This is illustrated in Figure [I.2] Note that the distance is the
length of the copper cables used, which in general is larger than the distance between
the two points. As we see that larger distances result in slower connections, one should
try to keep the length of the copper cables as small as possible.
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Figure 1.2: Typical DSL speed [3].

As the distances may not be too large, multiple cabinets may be needed to cover a
given area. However, using multiple existing cabinets might not always be sufficient to
cover the area. In that case, new cabinets have to be built and placed in the network.
On the other hand, already existing cabinets might also turn out to be useless. In
that case one might choose to turn that particular cabinet off, note that this does not
imply that the cabinet cannot be turned back on again in the future. The location of
the cabinets which need to be built is already known. Also, for both the new and the
already existing cabinets it is known which are turned on and which are turned off. We
are only interested in the cabinets which are turned on. In the remainder of this thesis,



when we refer to the cabinets, we will mean the cabinets which are turned on and we
will not make a distinction between cabinets which need to be build and already existing
ones. These cabinets are also referred to as active points.

Note that it is not always necessary to make the transition to Full FttH, even though
this will give the best results. Suppose we have a situation for which Hybrid FttH, or
even FttCab, suffices, then there is no need in further upgrading the network. As the
maximal bandwidth is not reached in the situation of Hybrid FttH or FttCab, it will
certainly not be reached in the situation of Full FttH. Upgrading will cost money, while
not giving improved results. As mentioned before, using FttCab and Hybrid FttH, new
techniques will also lead to improved results.

The problem we will be considering is connecting the cabinets to the fiber glass
network. As direct connections to the fiber glass network might be too expensive,
other networks can be used. Using already existing networks such as the street and
cable patterns, connections to the fiber glass network can be established. This happens
by first connecting to the street or cable (trench) pattern and then use that (already
existing) network to connect with the fiber glass network. This way the problem splits
in three smaller problems. First the active points have to be connected with a street
or cable network. Of course this has to be done as efficient as possible. Note that the
most optimal solution is not always the most practical solution to be implemented. This
has to do with the other variables such as permits or the lack of possibilities to make
certain connections. Therefore we would like an algorithm which finds the solution for
multiple active points at once, but which also gives the results relatively quickly. For
larger data sets, typically in the order of large cities, the algorithm has to finish within
fifteen seconds, for smaller data sets we expect the algorithm to finish quicker. Once
the cabinets are connected with the street or cable network, we still need to make a
connection to the fiber glass network. For this we can use the already existing networks
which saves costs. It is even possible to use both the street and the cable network.
However, if both networks can be used, we should be able to make transitions from
one network to the other. Such a transition is the easiest when a street and a trench
cross each other. Graphically these intersection points are easily determined, however
constructing an algorithm which finds these points is not straight forward. This is our
second problem. Given two networks, find where they cross and create a single network
with no crossings from it. The last problem comes down to finding the best connection
between a cabinet and the fiber glass network. In practice this reduces to two points
which have to be connected. Note that this combines both the first and the second
problem. First we can connect with a network, after which we can route through the
network to connect the first point with the second point. Note that the network can
either be a single network, or a combination of two networks. In this last case, we first
have to create a single network of it, which was the second problem sketched. The
typical running time of the last algorithm should be in the order of seconds and for
larger data sets not longer than a minute.

These three problems we will be considering are part of a problem raised by the
Dutch telecom provider KPN. TNO has built a tool which helps solve the problem,
however some approximations were made to solve the different problems easier. We
will try to construct an algorithm which is exact, while also having a shorter running
time. For the first algorithm, we aim for the algorithm to finish within fifteen seconds
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for large data sets. For smaller data sets we expect the algorithm to finish quicker.
This short time is necessary as it might be necessary to run the algorithm multiple
times. Even more so if new active points are considered. The second algorithm does
not need to be run multiple times. Given two networks (or shapes) we can construct
the intersection points once, then create the resulting network and use this network for
further calculations. This algorithm is allowed to take longer as the networks will stay
the same over time. Only the active points might differ, but they do not influence the
network. The running time of the second algorithm should be in the order of minutes
at most. The last algorithm again needs to finish within a few seconds. As there are
multiple active points and every active point has to be connected with the fiber glass
network. Again, the optimal solution is not always the best solution to implement, hence
the algorithm needs to finish quickly.

In Chapter [I] we will give some background information and we will introduce the
problem. In Chapter [2] we will give some basic definitions on graph theory, while also
considering some results on random graph theory, we will take a brief look at some
complexity theory and data structures. Also some theorems will be proven which are
needed in the next chapter 3] In that chapter, we will consider the algorithms con-
structed. However, we will first take a brief look at the data we will be working with.
Apart from the algorithms constructed, we will also consider some heuristics of them
and we will discuss their complexities. In Chapter [4] we will take a look at the results
the algorithms give. For this we will look at the results for different data sets, compare
the result of the algorithm with that of the heuristics and draw conclusions from there
on. Also an advice will be given on whether to use the algorithm or an approximation
of it. In this chapter we will also consider the results of the algorithms when applied to
random graphs.

1.1 Results

We have constructed algorithms to solve the three problems. The first algorithm, which
finds the optimal connections points for cabinets with a network, has been tested using
different data sets. The largest data set with nearly 40.000 edges and 570 active points
gave a result within ten seconds. We have also considered some approximations of this
algorithm, however we found that in some cases the running time increased, while giving
less accurate results. Even if the running time did decrease, the decrease was small, while
the results were worse. For smaller data sets we found results within a second. Thus,
as desired, the algorithm finishes within fifteen seconds, even for large data sets.

For the second problem we have constructed two algorithms to determine the inter-
section points between two networks. both algorithms have a single network with no
self-intersections as output. The first algorithm is a smart version of the brute force-
approach, which comes down to checking every possibility. The second algorithm is a
modified version of the Bentley-Ottmann-algorithm (Section [3.3.2)). We have also con-
sidered two approximations of the smart brute force-algorithm. Even though the running
time did decrease in some cases, the results were less accurate. The decrease was only
by a small amount, hence we suggest to not use the approximations. The modified
Bentley-Ottmann-algorithm gave faster results than the smart brute force-algorithm,
while still giving all intersection points. Hence, we suggest to use the modified Bentley-
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Ottmann-algorithm. For small data sets the modified Bentley-Ottmann-algorithm finds
results within seconds, for larger data sets, it takes up to a few minutes, as desired. For
the largest practical data set (consisting of two cities) the modified Bentley-Ottmann-
algorithm took only three minutes, while the smart brute force-algorithm took more
than ten minutes. Hence, it meets our expectations.

The last algorithm constructed finds the least cost-path between two points. Typi-
cally, one of the points is a cabinet, while the other is a connection point to the fiber glass
network. The cost is divided in two parts, one part of the cost is for digging from the
points to the network, while the other cost comes from the routing through the network.
In order to find the least cost-path we use the first algorithm and an implementation
of Dijkstra’s algorithm (see Section . The algorithm makes use of the fact that
the least cost-path does not necessarily is the path which requires the least digging. No
heuristics have been constructed, but there were some configurations which had to be
set, this is done in Section The goal was to create an algorithm which would find
the least cost-path for two points within seconds, a minute at most. This goal was met.
For smaller data sets the algorithm finds results within a few seconds, while for larger
data sets the algorithm takes up to half a minute on average. For extremely large data
sets such as that of the southwest of the Netherlands, the median running time of the
algorithm still is only two minutes.



CHAPTER 1. INTRODUCTION



Chapter 2

Theoretical background

Before we start and explain the algorithms and the techniques used to solve the problems,
we first give some definitions which help to understand the problem.

2.1 Basic graph theory

We first start with some basic definitions of graphs and graph theory.

Definition 2.1. An undirected graph G is an ordered triple (V(G), E(G),%q), where
V(QG) is a nonempty set of vertices, E(G) is a set of edges, (E(G) NV (G) = 0), and ¢¢g
is an incidence function which maps each edge to an unordered pair of vertices.

Definition 2.2. A directed graph is an undirected graph with the incidence function
mapping each edge to an ordered pair of vertices.

Definition 2.3. A weighted graph G is an undirected graph together with a cost-
function w : F(G) — R assigning to each edge e a weight w(e).

In practice, the weight of an edge can for example represent the length of an edge.
Note that an unweighted graph can be thought of as a weighted graph with the cost-
function w mapping all edges to cost one (or another constant value). Unless stated
otherwise all following graphs will be undirected unweighted graphs. Note however that
all definitions can easily be extended to the definitions for directed or weighted graphs.
Let us now give an example to clarify the above definition.

Example 2.4. Let V(G) = {v1,v2,v3,v4,05}, E(G) = {ex,...,e10} and let g be given
by

Ye(er) = {v1,v2} Ya(es) = {v1,vs} va(ey) = {v2, vs}
Ye(e2) = {v2,vs} va(es) = {v1,vs} Ya(ewn) = {v1,v1}
Ya(es) = {vs,va} va(er) = {vs,vs}
Ye(es) = {vg, v1} va(es) = {vs, vs}

Instead of the above notation, we can also write Vg (e5) = v1vs.

7
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Graphs are called graphs, because they can be represented graphically. This graph-
ical representation gives more insight in the properties of the graph. In practice, a
graphical representation of a graph is used more than the abstract definition. Note that
the graphical representation of a graph is not unique. However, in the following we will
talk about the graphical representation, instead of a graphical representation.

Example 2.5. The graphical representation of the graph in FExample s given by
Figure[2.1]

Figure 2.1: The graph of Example

As the graphical representation of a graph is not unique, it can result in obscure
or nasty representations. Therefore, there are some rules regarding the graphical repre-
sentations of graphs. For instance, every edge is drawn such that it does not intersect
itself. Also every pair of edges intersect at most once. Apart from these rules, also the
notation can be a bit superfluous. Therefore, we will in general refer to an edge e; as
the connection of its endpoints. Thus in the above example we have e5 = v1v3. We will
also often write G = (V, E) instead of G = (V(G), E(G),¥¢).

Let us now introduce some more definitions before considering some results.

Definition 2.6. An edge is said to be incident with its endpoints. Two edges incident
with a common vertex are said to be adjacent. Two vertices are adjacent if they are
connected by an edge.

In Example both vertices v4 and vs and edges ey and eg are adjacent.

Definition 2.7. An edge ¢; is called a loop if it connects a vertex with itself. Two edges
e; and e; are said to be parallel if they are both incident to the same two vertices.

A graph is called simple if it has no loops and each pair of vertices is connected by
at most one edge.

In the following all graphs will be simple unless explicitly stated otherwise. Note
that in the above example edge e1g is a loop and edges e; and eg are parallel edges.
Each graph can be turned in a simple graph by deleting edges and/or vertices.

Definition 2.8. Given a graph G = (V,E), V' C V and E' C E. Then G — V' is
obtained from graph G by deleting the vertices in V’ and deleting their incident edges.
In a similar way G — E' is obtained from the graph G by deletion of the edges in E’.
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If V! = {v} we denote G — {v} by G — v. Similarly, if E' = {e}, then G — e means
G — {e}.

This extends naturally to the addition of vertices or edges.

Note that combinations of the above operations are also possible. One often would
like to say something about one graph being a subset of another graph. For instance,
when we delete an edge, we end up with a subgraph of the original one.

Definition 2.9. Let G = (V, E) be a graph. A graph H = (W, F') is said to be a super
graph (or supgraph) of G if V.C W and E C F. G is then said to be a subgraph of H.
For the incidence function this implicitly means ©¥g = sz‘ 5

Example 2.10. The graph in Example becomes a simple graph if we delete edges
e5 and eyg. Similarly we can delete vertex v to get a simple graph. These operations
result in the simple graphs depicted in Figure [2.1]

U1

€4

Figure 2.2: G — {es,e19} and G — vy.

In the above example we see that G — {e5,e10} is a subgraph of G and that G is a
super graph of G — vy.

A lot of the problems involving graphs focus on going from one point to another
point as quick or as cheap as possible with respect to a weight function. In terms of the
graphs this means going from one vertex to another vertex using the edges. If we can go
from one vertex to another vertex, there exists a list of edges, all in E, which together
connect the two vertices. Such a list is called a walk or a path.

Definition 2.11. Given a graph G = (V,E). A walk in G = (V,E) is a tuple
(v1,...,v) € V¥ such that v;v; 1 € Eforalli=1,...,k— 1.

A path in the graph is a walk such that v; = v; & i =j. A cycle (or closed path) is
a path such that v = vy.

With this definition we can define connectivity for graphs.

Definition 2.12. Given a graph G = (V, E). A subset V' C V is called a connected
component of G if for all v; and v} in V' there is a path between v] and v and for all
v; € V' and w; € V' there is no path between v; and w;.

A graph G = (V, E) is called connected if and only if there is only one connected
component. A graph is called disconnected if it is not connected.
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We see that this definition is equivalent to stating that G is connected if and only
if for every pair of vertices v; and v;, there exists a path between them. Note that the
trivial graph, i.e., the graph with only one node and no edges is also connected. From
this definition, we can also define trees.

Definition 2.13. A tree is a connected graph G = (V, E), such that |V| = |E|+1. Here
|V| and |E| stands for the number of elements in V' and E respectively.

A node is called a leaf if it is adjacent with only one other node.

Given a graph G = (V| E), then T is said to be a spanning tree of G if T' contains
all vertices of G and T is a tree.

A rooted tree is a tree in which one vertex is chosen as root.

One can think of the root of a rooted tree as the node from which the tree starts.
Note that deleting any edge in a tree results in a disconnected graph. Deleting a node will
also result in a disconnected graph unless the node is a leaf. Let us now say something
about the number of edges incident with each vertex.

Definition 2.14. Given the graph G = (V, E) and given a vertex v € V, then the
degree dg(v) of a vertex v denotes the number of edges incident with v. Note that a
loop counts as two edges incident with v.

The number of edges incident with both v and w is denoted by dg (v, w).

If possible we will omit the subscript G. This definition can be extended to directed
graphs, using indegree and outdegree. The indegree d~ (v) denotes the number of edges
ending at v, while d* (v) denotes the number of edges starting in v. Using the definition
of the degree of a node, we can construct the adjacency matrix of a graph. With this
matrix we have all the information we need to reconstruct the graph.

Definition 2.15. The adjacency matrix Ag of a graph G is defined by
Ac(i, j) = da(vi, vj).
If G is simple, this definition reduces to

o 1 if {v;,v;} €eF
AG(Zvj) = { ' ]}
0 else
Thus Ag(7,j) equals 1 if there is an edge between vertex v; and vertex v; and 0 if there
is no such edge.

Note that the sum of each column equals two as each edge has two endpoints. Also
note that this implies that the sum of the degrees equals two times the number of edges,
as each edge is counted twice. Similar to the adjacency matrix is the incidence matrix.

Definition 2.16. An incidence matrix B of a simple graph G = (V, E) is a n x m-matrix,
with n the number of vertices and m the number of edges, such that

1 if v; and e; incident
B(i,j):{ if v; and e; are inciden

0 otherwise



2.2. RANDOM GRAPHS 11

In general the adjacency matrix is preferred over the incidence matrix. Let us now
give an interesting proposition regarding the degrees in a graph.

Proposition 2.17. Every finite graph has an even number of vertices with odd degree.

Proof. Suppose not, then the sum of the degrees is odd which contradicts that the sum
of degrees equals twice the number of edges. O

Corollary 2.18. FEwvery finite tree has at least two leaves.

When we consider the graphical embedding of a graph, there are some interesting
properties which give some rather interesting results.

Definition 2.19. A planar graph is a graph which has a graphical representation in
the plane such that the edges only intersect at their endpoints.
In a planar graph the regions bounded by edges are called the faces of the graph.

Note that each planar graph has at least one face, being the exterior of the graph.
Convince yourself that the graphs in Example are planar graphs. Planar graphs
satisfy a relation which became known as Euler’s formula.

Theorem 2.20. Let G be a planar graph, let n denote the number of vertices, m the
number of edges, ¢ the number of connected components and f the number of faces.
Then

n+f=m+c+1 (2.1)

Proof. Let us first prove this for the case that G is connected, by induction to the
number of faces. If G has only one face and G is connected, we can have no cycles,
therefore we see that G is a tree. Thus n = m + 1 and hence

n+f=m+1l+l=m+c+1.

Now suppose it holds for f faces and suppose G has f + 1 faces. Let e be an edge
separating two different faces. Then G — e has one face less, but also one edge less. By
the induction hypothesis we know that for G — e Euler’s formula holds, therefore the
formula also holds for G.

Now suppose that G is disconnected. By adding precisely ¢ — 1 edges, we can turn
G in a connected graph. For this graph the formula holds. Therefore by removing the
c— 1 edges again, we get ¢ — 1 extra connected components. Therefore the formula also
holds for disconnected graphs. O

2.2 Random graphs

In general when we consider a graph everything about that graph is given. We know
which vertices we have and we know, deterministically, which vertices are connected.
However, in everyday life, it is not always known if there is a connection between two
vertices. Take for example as vertex set a group of people and let there be an edge
between two vertices if the two corresponding people are friends. Of course we can
construct the precise form of the graph by asking every person who their friends are,
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however this is a lengthy process. Apart from that one is in general more interested
in the general form of the graph than the precise form of the graph. A more efficient
approach to this problem would be to construct a random graph, where each edge can
be added with a certain probability. The two famous Hungarian mathematicians Paul
Erdés and Alfréd Rényi published an article in 1959 on random graphs [4]. In this
article they discussed the behaviour as the probability to add edges changed. Many
new models have been constructed, but the Erdés-Rényi model is still the most studied
model. Other examples of random graphs (not necessarily via the Erdés-Rényi model)
are the World Wide-Web [5], collaboration graphs [6],[7] and neural networks [§].

Erdés and Rényi considered the model G (n, M). In this model, with fixed n and M
in N, we choose with equal probability a simple graph with n nodes and M edges. Thus
in the G (3,2)-model we have a graph with three nodes and two edges. Each of the three
possibilities can be chosen with equal probability 1/3. We will consider a closely related
model G(n,p) in which edges are added with certain probability. This model was first
studied by Gilbert in [9]. We will then prove some theorems of the behaviour of this
model as the edge probability grows.

Definition 2.21. The graph G(n,p) is the simple graph with n (fixed) vertices and
where each possible edge is added with probability p. Every graph with n nodes and m
edges has equal probability

p(1—p) ),

Note that for G(n,0.5) every graph has equal probability. The model G(n,p) is in
general favored as each edge is selected independently, while for G (n, M) this approach
does not work. Let us first consider the expected number of edges of G(n,p) and then
say something about the way the two models are related. As each edge is chosen with
probability p, the expected number of edges is p(g) The law of large numbers tells
us that as n grows, G(n,p) will have p(;‘) edges with increasing probability. Thus as

n — 00, G(n,p) will tend to G(n, M) for M = p(3), that is to say we have

nlgngoP <# edges in G(n,p) = p(Z)) =1 (2.2)

Theorem 2.22. Let M = p(3), then

. ) n
nh_)IEOIP (# edges in G(n,p) :p<2>> =1,

in which case G(n,p) behaves similar as G(n, M).

Proof. Each edge is added with probability p, hence the expected number of edges will
be M = p(g) By the law of large numbers, the probability that the graph has this
number of edges goes to one (more on the law of large numbers can be found in [10],
chapter ten).

Note that every graph with M edges is equally likely, as for each graph the probability
of it emerging equals p™ (1 — p)(g)fM and we have a total of ((J\;;)) possible graphs.
Therefore, both models are similar. ]
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2.2.1 Behaviour as n — o

We will now prove some results on random graph theory and the behaviour of the
graphs as n — oo. For further reading on this topic we refer to [I1], [12] and [13], also
detailed proofs of the following theorems can be found there. In the following we will
only consider the model G(n,p). We will furthermore, for fixed n, consider the set of all
graphs with n vertices.

When we consider normal graphs we can give the degree of each vertex, say which
vertices are connected with each other, determine the number of cycles of a given length
and so on. We can, by looking at the graph, determine all properties of the graph. For
random graphs this is a bit harder. We cannot determine which vertices are connected
as edges are added with a certain probability. However as the number of vertices grows,
the graph will behave according to a pattern which is dependent on p. Let us, for
different p, take a closer look at the different properties of the graph as n grows.

Even though we are considering random graphs we can say something about their
behaviour as n tends to oo. Let us first consider the degree distribution for G(n,p).
Each vertex has expected degree E(d(i)) = p(n — 1) ~ pn, however the probability that
a vertex has degree k is given by

P(d(v) = k) = <n L 1);0’“(1 —p)" s (Z)p'“(l —p)" ", (2.3)

where the factor (Z) comes from the number of ways to pick k vertices from n. We
cannot deterministically say something about the number of times every degree will
appear. However, we can say something about the expected number of times every
degree will appear. As this is just the probability for that degree times the number of
vertices. For fixed n we see that as p grows, the expected degrees of vertices increase.
However, if we fix p and we let n grow, we also see changes happen. As it turns out p
and n are intertwined, meaning that the growth of one of these two results in structural
changes in the graph. As an example we can think of p =0 and p = 1, one will lead to
a completely isolated graph, while the other will result in a complete graph.

As it turns out, the degree of the points is not the only property for which the graph
undergoes structural changes as p grows. Most properties of random graphs undergo
changes as p (or n) grows. Most of these changes are abrupt, therefore probabilities
at which these abrupt changes happen are often referred to as threshold values. An
example is the threshold value p = an for which isolated vertices will vanish as we will
prove in Lemma [2.31] The graph properties can be anything from connectivity to the
existence of trees of a given length, the only restriction is that the property is monotone
increasing.

Definition 2.23. A property P is called monotone increasing, or monotone, if when a
graph G has the property P, then so does any super graph H of G.

A monotone increasing graph property is said to be non-trivial if not all graphs have
the property.

Similarly we can define monotone decreasing graph properties, but with H being
a subgraph of G. Note that the properties we want to say something about have to
be monotone increasing, otherwise the statement that all super graphs have the same



14 CHAPTER 2. THEORETICAL BACKGROUND

property does not have to hold. Consider for instance the property for the graph being
disconnected. We see that this graph property is certainly not monotone increasing (in
fact, its is monotone decreasing). An example of a trivial graph property is the property
of being a graph. All graphs have this property. In the following we will only consider
non-trivial monotone increasing graph properties.

Note that the graphs G and H in the above definition are deterministic graphs. For
random graphs this definition reduces to a statement about the probability that the
graph has the monotone increasing property.

Lemma 2.24. Let P be a monotone increasing property and let 0 < p < q < 1, then
the probability that G(n,p) has property P is at most the probability that G(n,q) has
property P.

Proof. First generate a graph on n vertices with edge probability p, so generate G(n, p).

Now generate G(n, %) independently of G(n,p) and take the union of both, H =

G(n,p) UG(n, {=£). Thus e is an edge of H if it is an edge of G(n,p) or G(n, {=£). We
now see that H has the same distribution as G(n, q), as the probability for an edge to
be in H is
q—p
1—p)—=q.
p+(1=p)y— Pl
As P is a monotone increasing property we see that if G(n,p) has property P, then so
does H. Hence, the probability that G(n,p) has property P is at most the probability
that H has property P. The lemma now follows from the fact that H and G(n,q) have

the same distribution. O

Note that these definitions require n to be fixed. Let us now define thresholds for
monotone increasing graph properties.

Definition 2.25. p: N — [0, 1] is called a threshold function for a monotone increasing
graph property P if

(i) For p; : N — [0,1] and pi(n) < p(n) the probability that the graph G(n,p;(n))
has property P goes to zero as n — o0;

(ii) For po : N — [0,1] and pa(n) > p(n) the probability that the graph G(n,pa(n))
has property P goes to one as n — oo.

Here p1(n) < p(n) means "p;(n) is much smaller than p(n)”. Similarly pa(n) > p(n)
means "pa(n) is much greater than p(n)”. Note that much smaller/greater means much
smaller/greater in the limit of n to infinity. In Section we will give formal definitions
of these notations. An example of two functions f(n),g(n) such that f(n) < g(n) is
f(n) =1/(nlnn) and g(n) = 1/n.

Notice that this definitions allows for multiple thresholds for the same property. A
function which only differs by a constant from the threshold p(n) is also a threshold.
Random graph theory focuses mainly on finding thresholds for various monotone in-
creasing properties, some of which we will consider. Therefore the result of Bollobas
and Thomason in [I4] is of great importance to the field of random graph theory.

Theorem 2.26. Every monotone increasing graph property has a threshold.
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For the proof of this theorem we refer to [14].

As we have seen above a constant times a threshold function is also threshold func-
tion. However, there are threshold functions which are more subtle than others. We call
them sharp thresholds, more precisely

Definition 2.27. Let p: N — [0, 1] be a function. We say that p is the sharp threshold
for the monotone increasing property P and a phase transition occurs at p(n) if there
is € > 0 such that

(i) If for all n € N : ep(n) < 1 —¢, ¢ < 1, then the probability that the graph
G(n,cp(n)) has property P goes to zero as n — oo;

(ii) If for all » € N : ¢p(n) > 14 ¢, ¢ > 1, then the probability that the graph
G(n,cp(n)) has property P goes to one as n — oo.

Before we consider some monotone increasing properties, we will give a few lemma’s
which will help proving further results.

Lemma 2.28. Let X be a non-negative integrable random variable, and a € R>°. Then

E(X)

P(X > a) < (2.4)

This inequality was stated by the Russian mathematician Andrey Markov. It can be
proven using the definition of E(X). Note that the this lemma implies the case where
X is discrete. A direct consequence of this lemma is the following.

Lemma 2.29. Let X be a non-negative integrable random variable, and a € R>°. Then

E((X —E(X))?) _ Var(X)

P(|X - E(X)‘ > a) < a2 a2 (25)
Proof. Apply Lemma with the substitution X — (X — E(X))? and a — a?. Then
use that (X —E(X))? > a? if and only if | X — E(X)| > a. O

Even though Lemma [2:29] follows directly from Lemma [2.28] it has become well
known due to its practical uses. One often refers to it as Chebyshev’s inequality. Using
these two lemma we can prove the next result.

Lemma 2.30. Let (X,,) be a sequence of stochastic variables. Then we have
a. IfE(X,) — 0 and Var(X,) — 0, then P(X,, > 0) — 0.
b. If E(X,) — oo and Var(X,) — 0, then P(X,, =0) — 0.

Proof. a. Let a > 0 and € > 0 be arbitrary. Choose N € N such that for all n > N:
2
E(X,) < § and Var(X,) < €-. Note that this is possible as both E(X,) — 0 and
Var(X,) — 0. Now apply Lemma which implies

4 Xa
P(X, > a) < B(1X, — E(X,)| > 5) < AVar(X,)
a

As this holds for all a > 0 and € > 0 we see that P(X,,) > 0) — 0.

<eE.
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b. Let € > 0 and a > 0 be arbitrary. Choose N € N such that for all n > N: Var(X,) <
ea? and E(X,) > a. Note that both is possible as in the limit the variance goes to
zero, while the expectation value goes to infinity. Also note that

P(|X, —E(X,)| <a)+P(|X, —E(X,)| >a) =1
By the first part of this lemma we have

< Var(Xy)

- 2

P([Xn — E(Xn)| > a) .

<e,

hence we have
P(X, —E(X,)| <a)=1-P(|X, —E(X,)|>a)>1—c¢.

As a and e were arbitrary we see that in the limit P(|X,, — E(X,)| < a) =1 for all
a > 0. Hence, in the limit P(X,, = E(X,,)) = 1. Therefore P(X,, — co) = 1, thus we
get P(X,, =0) — 0. O

Let us now prove some results on different monotone increasing graph properties.
First we will consider the property of the graph not having isolated vertices, note that
this is indeed a monotone increasing graph property for fixed n. A graph having isolated
vertices means that there is no vertex with degree zero. As it turns out, for probabilities
smaller than p(n) = IHT” the graph will have isolated vertices as n — oo, while for higher
probabilities the graph will not have isolated vertices with probability going to one.

__Inn

Hence p(n) = =% is the sharp threshold for the graph to have isolated vertices.

Lemma 2.31. The sharp threshold for a graph in G(n,p) having no isolated vertices is

— lnn

p(n) =7

Proof of Lemma[2.51. A vertex v is isolated if it has no connections with other vertices.
This happens with probability (1 — p(n))"~!. Let z be the number of isolated vertices
in the graph, then we can say x = Y ;' ; x;, where x; = 1 if node i is isolated. Then

i=1

= E(z)

i=1
= nE(z;)
=n(1—p(n)""

This follows from the fact that a node is isolated with probability (1 — p(n))"~1. We

claimed that the sharp threshold was p(n) = lnT”, thus let us consider p = ep(n) = Cl%
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Then we get

lim E(z) = nlgngon(l —-p

n—oo

If ¢ > 1 this limit goes to zero, while for ¢ < 1 this limit goes to infinity. If this limit
goes to zero, we see that the expected number of isolated vertices goes to zero. However,
for ¢ < 1, this limit tending to infinity does not imply the existence of isolated vertices
with probability going to one. Therefore, we are not yet finished.

First note that we have

E(2?) = E ((z1+ ... + 70)?)

=1 i#

K2

As z; € {0,1} we see z; = 2. We also see that the term E (z;z;) is independent of i
and 7, hence all these terms are equal. This then gives

E(xz) = Zn:IE (xf) + ZE (xz5)

i—1 itj
n

= ZE (z;) + ZE (z122)
= %

=E(z) + n(n — 1)E (z122)
E(x) +n(n —1)(1 —p)*" 7!

Note the extra —1 in the above expression which comes from the double counting of
edge 1 — 2. We will now use Lemma [2.30] We will take a = 1 and we will prove that
Var(x) — 0 as n — oo, the lemma then states that the probability that = equals zero
goes to zero, which implies that the probability that there are no isolated vertices goes
to zero. Hence, the result for ¢ < 1 will also be proven.

Note that proving that the right hand side equals zero is equal to proving that %;}
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tends to one in the limit.

E(@?) _ n(l=p)"" + n(n—1)(1 = p)*"!

E(z)2 n2(1 — p)2n—1)
1+ (n—1)(1 —p)n*2
~ n(l-pnt
B 1 (n—1)
n(l—p)"~'  n(l-p)
1 1 1
- n—1 + o
n(1—p) 1—-p n(l-p)
Now recall that p = cp(n) = Cl;‘", c < 1 and lim, 0 E(z) = lim, 400 n(1 — p)" ! = 00.

Taking the limit then yields

i B ( 1 L 1 >
1m —-— = 1l —
noooB2(z)  nsee\n(l—p)»t - 1—p  n(l-p)
1 n 1 1
n—o00 n(l— cl;ln)n_l 1f01% n(l— clnn)

Thus by the lemma we now see that P(|z — E(z)| > 1) — 0, hence P(X = 0) — 0. So

for ¢ < 1 the probability that the graph has no isolated vertices goes to zero.
Combining the above results we see that p(n) = Inn 5 a sharp threshold for graphs

in G(n,p) to have isolated vertices. O

Inn 1 owever this value of p is also

In the above lemma we had a threshold of p(n) = =~
the threshold at which the graph becomes connected with probability one as n — oo.

Note that for fixed n, being connected is a monotone increasing graph property.

Theorem 2.32. Let G(n,p) be a random graph, then p(n) = lnT" is the sharp threshold
for a graph in G(n,p) to be connected.

Proof. Claiming that a graph in G(n,p) is connected is the same as claiming that as
n — oo, there are no isolated components on k vertices for all k = 1,..., 5. We will
prove that this holds for p = p(n) = Cl% with ¢ > 1. For ¢ < 1 there are isolated
vertices with probability going to one, hence the graph is disconnected with probability
going to one.

Given a set of k vertices. The probability that these vertices form a connected
component of size k, equals the probability that the k vertices are connected times the
probability that the k vertices are not connected to other vertices. For this we will
consider the spanning tree of the connected components, as extra edges will not change
the situation. On k vertices there are at most k*~2 possible spanning trees. Therefore
the probability that these k vertices form a connected component of size k is at most

kkapkfl (1 - p)k(nfk) )
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Note that the at most follows as the probabilities for multiple spanning trees are not
necessarily independent. The factor (1 — p)¥(»=*) takes into account the fact that the k
vertices cannot be connected with vertices not in the connected component. Let x; be
the number of connected components of size exactly k. Then

n
E(l‘k) < <k> kk‘—ka—l(l B p)k(n—k).

The extra binomial factor takes into account the number of ways we can pick our k
vertices. We will now use that p = ¢p(n) = Cl;;”, () < (%)k,(l —p) < e P and
z = e™®. Then we get

n\. . o 1_ e
E(Cck) < <k> kk 2pk 1(1 _p)k( k)

< (en)k (Cln”>k_1 o= S (kn—k?) k=2
~\k n

= exp <ln <<T>k> +n <<012”>k_1) o (e 20k 4y (kk—z)>

1
< exp (k:—i—klnc—i—kln(lnn) —2Ink+Inn— cklnn—i—ckQM) (2.6)
n

Let us now consider
1
f(k)=k+klnc+kln(Inn) —2Ink+1Inn —cklnn + ckz%. (2.7)

As exp is an increasing function, we see that Equation (2.6 is minimal if and only if
Equation (2.7)) is minimal. We now see that

2 1
f'(k)=1+1Inc+In(lnn) — z” clnn+20k%

and
2 Inn

(k) = — + 2c—-.
7'(k) = = + 20—

As f"(k) > 0 for all k£ and exp is convex we see that the maximum of f(k) has to be
attained at either k = 2 or at k = &, as these are the endpoints of the interval we are
considering. For n large enough we have f(2) > f(5). If we now only consider the
dominant terms for the maximum we get

f(k) =(1—-2¢)lnn+ O(In(lnn)),

which is independent of k. The definition of "O(In(Inn))” will be given in Section
however, what matters is that this part is insignificant in the limit compared with the
other terms. Using this we get

E(l’k) < exp(lfQC) Inn _ nl—2c
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Now let us consider the expected number of cycles with length k = 2,..., 5, then we
get
n/2 n/2

E Z o | < Z nl=2 < zn: pl—2c — 22
k=2 k=2 k=1

Summarizing, for p(n) = Cl% we that for ¢ > 1 we see that the right hand side tends
to zero as n — oo. Hence, with probability going to one there will be no connected
components of size k = 2,..., %, hence graphs in G(n,p(n)) will be connected with
probability going to one as n — oo. In Lemma [2.31] we had proven that for ¢ < 1 there
will be isolated vertices with probability going to one, hence a graph in G(n,p(n)) will
be disconnected with probability going to one. Both combined gives that p(n) = IHT” as

a sharp threshold for graphs in G(n,p) being connected. O

Between the sharp threshold for graphs in G(n, p) being connected and the case where
graphs in G(n, p) are completely disconnected (p = 0), we have some intermediate stages.
As p(n) grows, connections will appear and we see that trees of arbitrary length begin
to form. If p(n) grows further, larger components begin to form. These components all
have a size of the same order. At p(n) = % we see that there will be one giant component,
with several smaller components and isolated vertices. As p(n) continues to grow, the
graph will be connected with probability going to one, as n — oo, at p(n) = an

We have already considered the case p(n) = IHT”, however, let us also consider p(n) =

%, the case of the giant component.

Definition 2.33. In random graph theory a giant component is a connected component
containing a constant fraction of the nodes, i.e., there is a constant p € [0, 1] such that
for all n € N the giant component contains more than pn vertices. The size of other
components is small, typically proportional to Inn at most.

Example 2.34. As an example of a giant component one can look at the social network
of the world, where every person is represented by a node and a link exists if two people
are friends. This network is presumably not connected, in fact, the behaviour of a single
node (or a small set of nodes) can make the network disconnected. For instance, a single
person with no living friends will result in a disconnected network. Another example can
be a remote island whose inhabitants have never had contact with the outside world.

FEven though this network is not connected,we can consider the component we are in.
All of our friends are in this component, all their friends are in this component and so
on. People you have never met and might even be on the other side of the world are
in this component. This component is likely to contain a large fraction of the world’s
population.

Even though a graph might not be connected, if there exists a giant component we
can think of G(n, p) as being almost connected. There is one component which contains
most vertices, while the vertices which are not in the giant component are in relatively
small connected components.

Theorem 2.35. The sharp threshold for a graph in G(n,p) to have a giant component
is p(n) = %
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The proof relies on branching processes and it requires a lot of definitions and prior
knowledge before we can give a clear proof. See Theorem 2 in [4] for a proof of this
theorem. More on the giant component can for instance be found in Chapter 6 of [I1].

As stated, p(n) = % is a sharp threshold for a random graph to have a giant com-

ponent. In fact, in the subcritical regime (p(n) = ©, ¢ < 1) there are multiple smaller
components whose size is relatively the same. In the supercritical regime (where ¢ > 1)
there is a giant component with a significant fraction of the nodes. At the sharp thresh-
old abrupt changes will happen. The abrupt changes can have great influence. This is
illustrated in the book Guns, Germs, and Steel: The Fates of Human Societies ([15]).
Around the year 1500 there were two components (that of America and that consisting
of Europa and Asia), due to colonization trips they merge into one giant component.
This book describes the impact this had.

Let us now prove a different result for the threshold p(n) = %

Theorem 2.36. The threshold for the existence of cycles in a graph in G(n,p) is p(n) =
1

n-

Proof. As there are no cycles of length 0, 1 or 2, let k > 3. Let z; be the number of
cycles in the graph of length k and let * = x3 + ... + z,. Consider a cycle of length k,
we can pick the k vertices in (}) ways and make the cycle in (k—1)-(k—2)-...-1 ways.
As we have counted each possible cycle twice, we have (k — 1)!/2 possible cycles given
a set of k vertices. The probability that all those edges are in the graph is given by p¥,
which gives

and

Note that it does not matter whether or not other edges are added. Now consider again
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p=cp(n) = £. For ¢ < 1 we now find

k=3
" 1nl(k—1)!
< Z pk
- | _ |
= El(n — k)
n nk
<> ?pk
k=3
n
<> (np)*
k=3
n
= ch
k=3
B 03 _ Cn—i—l
 1-c¢
1—¢c" 2
1—c¢
<
<1

Hence, for ¢ < 1 in the limit we expect there to be no cycles of any given length. Let us
now consider the case ¢ > 1. Then we have

" k—1)!
k=3
1 in(n—l)...(n—k—i—l)ck
=_ - il
2 P n k
n
> ;Zn(n 1)n]£n k+1)]1-
k=3
Let us now only consider the first logn terms of the sum. As we know that " =

1+ -1 <eni, we see that nn=b).-(n=k+l) 1, hence

n

) . 1 &nn—1)...(n—k+1)1
lim E(z) > lim — i
im E(z) > lim Z % k

n—oo n—o0

k=3
logn 1

1
> lim — Z —
n—oo 4 P k
> nh—>nolo log(logn)
=00
So for ¢ > 1 we see that E(z) — oco. Using Lemma one can prove that the
variance goes to zero which completes the proof, as in that case the probability that

there are no cycles goes to zero.

Summarizing we see that the sharp threshold for the existence of cycles is p = % O
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2.3 Complexity

When we are comparing two algorithms with each other, we often want to classify one
as more difficult or harder than the other. Doing this classification with respect to the
running times of the algorithms will in general not tell us which algorithm is harder.
Even if we would use the running time as a measure of complexity, we would get different
results every time. To run the algorithm, a number of steps have to be taken. However,
the time spent to do all steps might vary, depending on both the hardware you use as well
as the moment in time you do the calculations. Moreover, the number of steps might be
dependent on the input of the algorithms. Therefore, when comparing two algorithms,
we want to use something that is independent of the hardware or other processes which
might be running. Therefore we will consider the number of operations needed to run
the algorithm as a measure of its complexity. In general it is not necessary to know
the exact number of iterations necessary given an input. Instead one often looks at the
limiting behaviour of the algorithms in terms of the input size. Most common is the use
of the Big O-notation.

Definition 2.37. Given a function f, then f(z) € O(g(z)) as  — oo if there exist a
C' > 0 and xg such that
[f(@)] < Clg(x)] Vo =z

Then O(g) is the set of functions which in the limit of z — oo are bounded by ¢ and
we write

O(g) ={f | f(z) € O(y(x)) as x — oo} .

In practice we will often omit "as x — 0o”. We will also in general write f = O(g),
while technically we should write f(z) € O(g(z)). The notation f = O(g) means that
f(z) is bounded from above by a constant times g(z) for x large enough. In other words,
g is an asymptotic upper bound of f. This upper bound may be very weak as we can
see in the next example.

Example 2.38. Given f = x? +4, then we see that f = O(z?). However, we also have
f=0(=).

Related to the definition of O is that of the little o-notation.

Definition 2.39. Given a function f, then f(x) € o(g(x)) as * — oo if for every
constant C' > 0 there exists a constant xg such that

[f(@)| < Clg(z)] V& =z

Then o(g) is the set of function which in the limit of x — oo are bounded by g and

such that lim,_, % = 0. We write

o(g) ={f | f(x) € o(g(x)) as x — oo} .

Note that both the O-notation and the o-notation give an upper bound. However,
the o-notation gives a better upper bound.

Example 2.40. For the function f = x we have x € O(z), x € O(z?) and = € o(x?).
However, we also have x & o(x). In general we have f € O(f), but f & o(f).
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Where O(g) and o(g) give asymptotic upper bounds of f, we can also give asymptotic
lower bounds of f.

Definition 2.41. Given a function f, then f(x) € Q(g(z)) as * — oo if there exist a
C > 0 and a xg such that

[f(@)] = Clg(x)] Vo =0

Now €Q(g) is the set of functions which in the limit of x — oo have g as a lower
bound. We write

Qg) =A{r | f(2) € Ug(z)) as © — oo} .

Note that f having g as a lower bound in the limit implies that asymptotically
f grows at least as fast as g. Again, we will often write f = Q(g), when meaning
f(z) € Q(g(x)) as  — oo. As before we had the O-notation and the o-notation. The
counterpart of the 2-notation is the w-notation.

Definition 2.42. Given a function f, then f(z) € w(g(z)) as  — oo if for every
constant C' > 0 there exists a constant zg such that

[f(@)] > Clg(x)] Vo= w0

Now w(g) is the set of functions which in the limit of z — oo have g as a lower bound

and such that lim,_, % = oco. We write

w(g) = {f [ f(x) € w(g(x)) as & — oo} .

Again we see that the w-notation gives a stronger lower bound than 2. Let us now
define when a function is of higher or lower order than another function.

Definition 2.43. A function h is said to be of lower order than a function g if h = O(g).
The function h is of strictly lower order than a function g if h = o(g). A function h is
said to be of higher order than a function g if h = Q(g). Similarly, A is said to be of
strictly higher order than g if h = w(g).

Definition 2.44. A function h is said to be much smaller than f (h < f) if h € o(f).
Similarly, f is much greater than h (f > h) if f € w(g).

The - and O-notation tell us something about the behaviour of the function near
infinity, as we know that one function grows at least/at most as fast as another function.
This allows us to define bounds on functions.

Definition 2.45. We say that f = O(g) is a tight upper-bound if f ¢ O(h) for any h
of strictly lower order than g. In a similar way we have f = Q(g) is a tight lower-bound
if f & Q(h) for any h of strictly higher order than g.

In general, for a function f we want the bounds to be as tight as possible, as this
gives us the most information. Given a function f, then f(z) = O(z?) gives us more
information about f than, say, f = O(z"), while both statements may hold.

The definitions of O(g) and Q(g) are not mutually exclusive. Some functions lie in
both Q(g) and O(g).
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Definition 2.46. We say f = O(g) if ¢ is both a tight upper-bound and a tight lower-
bound of f.

We can reformulate this definition as

Lemma 2.47. We have:

f=0(g) = fe(g)nO(g).
Proof. = 1f f =0O(g), then f € O(g) and f € Q(g), hence f € Q(g) N O(g).

<: If f € Q(g)NO(g), then f € Q(g) and f € O(g). Therefore there exist ki, ko > 0
and x1 and x5 such that

()] < kilg(2)] Vo >z
()] = kolg(2)] Vo > 2o

Hence g is both an upper- and a lower-bound of f, hence the the bound must be
tight, hence f = ©(g). O

Contrary to ©2(g) and O(g), the sets o(g) and w(g) have an empty intersection, hence
they are mutually exclusive.

The above definitions all treat the case where f and g are one-dimensional functions.
However, these definitions extend naturally to those where f and g are multidimensional
functions. The same analysis as above can also be used to classify algorithms as complex
or not complex. This can be done by constructing a function which corresponds to the
number of iterations of the algorithm.

2.3.1 Complexity of algorithms

In the above we mainly talked about the complexity of functions. We can use this to
determine the complexity of algorithms as well. This time, we use the size of the input
of the algorithm to determine its complexity. From there the same analysis can be done
as above in order to determine if an algorithm is more complex than another. Note
that it is possible that this analysis leads to multidimensional functions, for example
functions depending on the sizes of the input and other factors. As already mentioned
however, the definitions for one-dimensional functions extends naturally to multidimen-
sional functions.

Example of multidimensional functions can be found in Sections [3.2.5] [3:3.§ and
where we determine the complexity of the algorithms constructed.

Notation 2.48. We will refer to the input of an algorithm as an instance I.

When we are considering the complexity of an algorithm, we are most often interested
in the complexity in the worst case scenario. That is, we are interested in the maximum
number of resources needed to run the algorithm. Most often the resource considered is
the running time of the algorithm. However, it may also be the memory space needed
to run the algorithm. Some algorithms might for instance be extremely fast, but require
too much space for practical purposes.
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Definition 2.49. An algorithm is said to have polynomial complexity if its running
time is bounded by a polynomial function of the input. An algorithm is said to have
exponential complexity if its running time is bounded by an exponential function of the
input.

An algorithm is said to scale polynomially with its input size (or just polynomial) if
it has polynomial complexity. Similarly, an algorithm is said to scale exponentially with
its input size (or just exponential) if it has exponential complexity.

The above definition extends naturally to other complexities such as but not limited
to logarithmic, linear, quadratic and factorial.

An algorithm having a worst case exponential complexity does not imply that the
algorithm is not suitable for practical purposes. It only means that there are instances
I for which the algorithm has exponential complexity. An example of such an algorithm
is the simplex method in Linear Programming created by George Dantzig ([16]). The
objective of the simplex method is to maximize a linear function given some constraints.
For most instances this method works efficiently and over the years the algorithm was
improved even further. However, in 1972 Minty and Klee ([I7]) showed that for every
version of the simplex method as constructed by Dantzig, there is a family of instances for
which we have an exponential complexity. Hence, the algorithm has exponential worst
case complexity, even though for most practical purposes the complexity is polynomial.
Note that exponential complexity is not the worst possible complexity we can get, a
factorial complexity, i.e., a complexity which scales with the factorial of the input size,
is worse.

2.3.2 Data structures

For the second algorithm we have used an algorithm which solves part of the problem.
Data structures are used to simplify calculations. The data structure used is a so called
Binary Search Tree, or BST for short.

Definition 2.50. Given a rooted tree. Given a node v, the children of v are all neigh-
bours v; of v such that v is not a child of v;. v is then said to be the parent.

Note that this definition implies that for every pair of connected nodes, one is the
parent and one is the child.

Definition 2.51. A Binary Search Tree is a rooted tree, such that each node has a
number (or key) associated to it, satisfying:

e Each node has a most two children, usually denoted by left and right;

e The key of each node is greater than all keys of its left sub-tree and smaller than
all keys of its right sub-tree.

The last property is commonly referred to as the Binary Search Tree Property.
Let us introduce the definition of the depth of a node and the height of a tree.

Definition 2.52. The depth of a node is the distance between the node and the root.
Formally, the depth of the root is zero and the depth of other nodes is 1 plus the depth
of its parents.

The height of a tree is given by 1 plus the maximum depth among the nodes.
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As we will see later on, the efficiency of Binary Search Trees and algorithms using
them, relies heavily on the form of the Binary Search Tree. Let us first define what
leaves are and then define some special Binary Search Trees.

Definition 2.53. A Binary search tree is said to be
e proper if every node has either zero or two children;

e perfect if every node has either zero or two children and all leaves are at the same
depth;

e balanced if it has the height equals [log, n], with n the number of nodes.

Note that it is not possible to create a binary search tree of height smaller than
[logy n| where n equals the number of nodes. This height is sometimes also referred to
as the minimum height of the binary search tree. Let us now explain the binary search
tree by explaining the possible actions. We can insert a new node in the tree, we can
delete a node from the tree and we can search for a specific node in the tree.

Remark 2.54. Note that the above definitions assume the all keys are different, how-
ever, the definitions extend naturally to the situation where keys may be equal. In that
case the key of each node is greater than all the keys of its left sub-tree and smaller than
or equal to all the keys of its right sub-tree.

Insert a node

If we start with an empty Binary Search Tree, inserting a node is trivial. If we have a
non-empty binary search tree, inserting a new node means we have to look at the key
of the node. We compare the key of the node we want to insert with the key of the root
node. If the first is greater than the second, we end up in the right sub-tree of the root,
otherwise we end up in the left sub-tree.

The sub-tree is then treated as being the new tree and we repeat the process. Note
that on average half of the nodes is in the left sub-tree and half is in the right sub-
tree. Therefore, in each iteration, the number of nodes in the (sub-)tree halves, hence
inserting a node takes on average O(logn) time, where n is the number of nodes in the
original Binary Search Tree. Let us illustrate the process of inserting a new node with
a small example.

Example 2.55. Suppose we have a binary search tree with value of the root node equal
to tree (the left binary search tree in Figure . Suppose now that we want to insert a
node with key-value 4. As 4 is greater than 3, we will consider the right sub-tree. The
‘new’ root node is the one with key-value 5. As 5 is greater than 4, we will consider the
left sub-tree. As this sub-tree is empty, we can insert the node with key-value 4 as the
left child of node 5.

Search for a node

Suppose we know that a certain node in the Binary Search Tree has a given key and
we want to locate that node. A first approach can be to compare the key of every node
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Figure 2.3: Insert a node with key-value 4 in the binary search tree

with the key we search for. However, this takes on average O(n) time. Instead we can
use the the Binary Search Tree Property. Starting from the root node, we compare its
key-value with the key we are looking for. If the two keys are equal, we have found the
node, otherwise if the key we are looking for is larger than the key of the root node, we
continue in the right sub-tree, else we continue in the left sub-tree.

This iteration either stops if a node is found with the corresponding key-value or
if the sub-tree considered is empty. In the last case, the key-value does not appear in
the Binary Search Tree. Again, the complexity of searching for a node is O(logn) on
average as in each iteration on average only half of the number of nodes remains to be
checked. Let us illustrate this process by a small example.

Example 2.56. Suppose we have the right binary search tree of Figure and we want
to know if there is a node with root value 4. Furthermore, if there is such a node we
want to know its location. As 4 is greater than 3, we need to consider the right sub-tree
rooted at the node with key-value 5. Now 4 is smaller than 5 hence we need to consider
the left sub-tree rooted at the node with key-value 4. The value of this mew’ root node
equals the value we are searching for. We now only need to determine if there are more
nodes with the same value. For this we again will consider the right sub-tree, however
this is empty, hence we are done.

Note that the location of the node we were searching for is given by the path we have
taken. This path was one step to the right and then one step to the left. Also note that
two different locations will give two different paths and vice versa.

Deleting a node

Given a key-value, deleting the node with that key-value is similar to searching for a
node. First we determine where the node is located and then we can delete it. However,
now there are two possibilities. The first possibility is that the node had no children,
in which case there is no problem and we can simply delete the node. If the node has
children however, we cannot simply delete the node as this would give a hole in the
BST. If the node has only one child, this can be taken care of by replacing the node by
its child and then delete it. If the node has two children, we cannot replace the node
by its child as it has two children. Instead, we will replace the node by the node whose
key-value is the next greatest value (note that this node does exist). To determine the
next greatest value, we take the right sub-tree and then go left until there is no left child
anymore. That node has the next greatest value after the node we wish to delete. Note
that this gives the next greatest value in the BST and that holes in the BST cannot
occur anymore.

Again in every iteration, the number of nodes that need to be considered halves,
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hence, we again have a time-complexity of O(logn). Let us illustrate how to delete a
node with a small example.

Example 2.57. Suppose we would like to delete the root node. Locating the root node
s easy. Afterwards we have to determine the node with the next greatest key-value. In
this case that is the node with key-value 4. We then copy this node and replace the root
node by this copy. The original root node is now deleted and we only have to remove
one of the nodes with key-value 4.

Figure 2.4: Delete a node with key-value 3 in the binary search tree

Drawbacks of Binary Search Trees

As we can see, on average the Binary Search Trees take O(logn) time to insert, delete
and search for a node. The complexity of many algorithms, including that constructed
in Section rely on the fact that on average these operations can be preformed fast.
Note that storing the data in an unsorted list instead of a BST takes on average O(n)
time to search for an entry. Hence, the Binary Search Tree is in general a better option.
Using a sorted list instead of an unsorted one is also not an option. This follows as
sorting the initial list already takes O(nlogn) time.

A major drawback of a Binary Search Tree is that the output, and hence the per-
formance, is dependent on the input. Consider for instance the next example.

Example 2.58. Suppose we want to construct a Binary Search Tree with six nodes,
where the key-values are the ordered array [1,2,3,4,5,6]. Inserting the nodes in this
order will result in a root-node with key-value 1, an empty right sub-tree and a left sub-
tree with key-value 2 and so on. In general, the Binary Search Tree would look like

Figure[2.5

Figure 2.5: An unbalanced Binary Search Tree with height 6 and root node 1.
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Such situations can happen with the ordinary Binary Search Trees. However, ad-
vanced structures, such as self-balancing Binary Search Trees, have been constructed
which take care of such situation. Operations exist to swap two nodes in the Binary
Search Tree in order to make it more balanced. These operations are similar to those
used to delete nodes. Two balanced Binary Search trees of [1,2,3,4,5,6] are given by

Figure [2.6]

Figure 2.6: Two balanced Binary Search Tree with height 3 and root node 3 and 4
respectively.

Note that this figure also shows that Binary Search Trees are not unique. Using
self-balancing Binary Search Trees, we can guarantee that inserting, deleting and search
for a node all can be done in O(logn) time, even in the worst case scenario.

More advanced data structures have been constructed starting from the binary search
tree. An example is of course the self-balancing binary search tree, but also the Kd-
tree (a multidimensional binary search tree) and the red-black tree (a binary search tree,
where every node has an extra colour and there are restrictions on the colours of parents
and children) find their origin in the binary search tree. Binary search trees can also
be generalized such that a node may have more than two children. Setting restrictions
on these generalizations will result in different data structures such as k-ary trees or
B-trees. More on binary search trees and other data structures can be found in [I8] and
[19].

2.4 Miscellaneous proofs

In this section we will prove some theorems which the algorithms will use. The theorems
apply to a wider range of line segment-problems.

In Section [3.2] we will compute the minimal distance between a line segment and
a point. Let us consider a different, but similar case where we want to compute the
distance between a line and a point. The line in our case will the line through two
distinct points x = (z1,22) and y = (y1,%2). The point has coordinates (z1, z2). See
also Figure for an illustration of the situation.

The distance between the point z and the line with the distinct points « and y is
given by
(1 — 1) (22 — 22) — (Y2 — 22) (21 — 21)|

V(e —y1)? + (22 — y2)?

Theorem 2.59. Equation (2.8)) gives the distance between the line and the point.

d(zy, z) = (2.8)
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Figure 2.7: The situation where we want to compute the distance between a line and a
point.

Proof. Given a line and two distinct points on the line x = (z1,22) and y = (y1, y2)-
Let z = (z1, 22) be the point for which we want to compute the distance to the line. We
now want to calculate d(zy, z).

Let us now calculate the area of the parallelogram spanned by the vectors z — x and
y — x. This is given by

A=|(z—-2)x(y -

= |(21 — 21)(y2 — 22) — (22 — 22)(y1 — 71

Note that this expression is the magnitude of the third component of the cross product,
when z,y and z are considered as three dimensional vectors. Also note that A equals
twice the area of the triangle given by the vectors z — x, y — x and z — y. Recall that
dividing the area of a triangle by its base, will give half its height. This then gives the
distance from z to the line segment, which leaves us with

d(zy, 2) = ’(2’1—1‘1)(:'42—%'2)—(ZQ_xQ)(yl_xl)" .

V(e —y1)? + (z2 — y2)?

In line of the above theorem, we can consider another problem. This time we want
to connect two points, one is on a line, while the other is not on the line. See also Figure
2.8} The connection between the two points must be a least cost-connection. The cost of
the connection can be determined by considering the cost per distance ¢, to traverse
the line xk and the cost per distance cg;, to connect z with the line xk. Note that the
problem is trivial if ¢4y < ¢jine, as the cheapest path is then also the shortest path.

There are many versions of this problem, for instance, given a river and two points
on opposite sides of the river. Find the path between the two points which takes the
least time. The two costs in this case typically are the time spend per distance walking
over land and the time spend per distance crossing the river. To the public this problem
became most known due to an article by T.J. Pennings ([20]) where he asks the question
Do dogs know calculus?. This problem and generalizations of it were studied more
thoroughly in [21] and [22].

Let us consider the situation as shown in Figure 2.8] The cost per distance ¢y, is
related to the distance traversed over segment xk, while ¢y, is related to the distance
traversed between z and the segment. Basic calculus then shows that the cost C related

to this situation is
C:Cline' (q_f)+cdig' \/f2+d2-
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q k

Figure 2.8: Find the least cost-path between z and =x.

Theorem 2.60. Given the above situation with costs cgig > Cline > 0 and with d > 0.
The minimal cost/least time path is obtained for f = \/CCQI#
dig

d
5 .
Cline

Note that C' = C(f), i.e., the cost is a function of f and the other variables are
kept constant. Also note that the situation where d = 0 is trivial and hence will not be
considered.

Proof. The minimal cost-/least time-path is obtained if C' is minimal and then we have

d
o,
df
Computing the derivative, we find
d ;
£ = —Cline + Cd gf

af VT ®

If we then solve this, we get

e 4 _Lhisf
line \/m -
Cgigf2 — 2
— “line
f2 _|_d2
2 2 2 2 2 2
Cdigf = clinef +clined
Cl; d
fmin -+ - ine -

Cdig ~ Cline

Note that this works as cg;g > cine > 0, hence cgig > Cl2ine > (0. Also note that the

Clined
2 _ 2
dig ~ Cline

negative solution is of no interest to us, hence finin = . We now only need to
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show that C”(fyn) > 0 as in that case we indeed have a minimum.

¢ d (o cagf
a2 —df\ "t P @
CdigV f2 + d? — Cdigfi/ﬁ
f2 _|_d2
~ caig(f* + d?) — caigf?
B (f2 +d2)3/2
d2

=0+

Now note that this last expression is always greater than zero as d > 0. Hence, the

function is convex and hence the minimum is attained at fy;, = g”"edg as desired.
dig~ Cline
]

Note that the result is independent of our choice of f over ¢ — f in the expression of
C'. Also note that the minimum only depends on the costs and the distance d between
the point and the line.

Corollary 2.61. If cjjne — 0, then f — 0 and C' — Clineq + caigd. This means, if
traversing over the line xk is cheap, use the line xk as much as possible.
If caig > Cline, | = % — 0 and C — qCline + dcgg.

If caig & Cline, [ becomes large and C =~ \/ci, q* + Cgigd2-

If caig < cline there is mo solution, which is reasonable as in those cases we do not
want to use the line xk, but we want to make a direct connection between the points z
and x.

Note that in the above we suggestively chose the name cg;,. However, this variable
can also represent the time per distance it costs to cross a river for instance. The
suggestive name follows in the third algorithm where we can apply the above theorem
and the corollary.

Let us now, instead of a line and a point, consider two line segments. In Section [3.3
we will use some properties of line segments which we will now formulate and prove. The
first theorem we will prove tells us if two line segments intersect. Given four points A, B,
C' and D in the plane, let us now consider the triples (A, B,C), (A, B, D), (C, D, A) and
(C,D, B). We will consider the line segments AB and C'D and we want to determine
if they intersect. We want this intersection to be proper, i.e., we want the segments to
intersect other than in their endpoints.

Definition 2.62. Given two intersecting line segments. The intersection is said to be
proper if the line segments share precisely one point and no three endpoints are collinear.
An intersection point which is not proper is said to be improper.

If the line segments properly intersect, we can divide the plane in two half-planes
using the line AB. Then C and D will be in different half-planes. As a result, the orien-
tation of the points (A4, B, C') will be clockwise (counterclockwise), while the orientation
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of (A, B, D) will be counterclockwise (clockwise). Note that a similar analysis holds for
the other two triples. The orientation can be determined by checking if the points are
traversed clockwise or counterclockwise in the plane.

Let us now think of the points as being three dimensional points with the third
component being zero. We now start with the triple (A, B,C) we can determine the
orientation of this triple using the sign of the cross product (A — B) x (B — C). Note
that the usage of the cross product requires us to think about the points as being points
in the three dimensional space. Also note that due to the fact that the third component
is zero, in the resulting vector, only the third component is non-zero. As we have seen
above, the orientation of (A4, B,C) and (A, B, D) must have a different sign. However,
the orientations of these two triples being different is not sufficient for the line segments
to intersect. See for example Figure In the left situation the orientation of (A, C, D)
and (B, C, D) is different, while the segments do not intersect. Therefore we also need
to have that the signs of the orientations corresponding to the other two triples are
different.

B B

Figure 2.9: On the left two non-intersecting line segments. On the right two intersecting
line segments.

Note that saying that the signs of the orientations corresponding to (A, B,C) and
(A, B, D) must be different, is equal to saying that (A — B) x (B —C))3 x ((A— B) x
(B—D))s < 0. Note that we have used that only the third component is non-zero. Let
us now give the theorem.

Theorem 2.63. Given two line segments with endpoints A, B and C,D. The line
segments intersect if and only if both

(A—=B)x(B—=C))s*((A—B)x(B—D))s<0

((C = D) x (D = A))s * ((C = D) x (D = B))3 < 0.

Here (A — B) x (B — C))3 is the third component of the cross product of the vectors
A—Band B—-C.

The proof of this theorem is a combination of the observations made above. The
orientation is then defined as the sign of the third component of the outer product.

Note that we have excluded the case where one of the two cross products is zero.
This happens if the three of the four points are collinear, hence if we have an improper
intersection.

We can now determine if two line segments intersect. However, if we know that they
intersect, we would like to determine their intersection point. In order to do this, we
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will consider two line segments, AB and CD, and we represent these line segments as
A+ XB—A) and C + u(D — C), where A, € [0,1]. Note that we still think of the
points as being in the three dimensional space with the third component being zero.
The intersection point between AB and CD is then found at A + A\(B — A) with

(€= A) x (D= C)]
(B—A)x (D-C)

A= (2.9)

where |a x b| is the magnitude of the cross product of vector a with vector b.

Theorem 2.64. The intersection point of A+A(B—A) and C+u(D—C) is A+N(B—A)
with X as in Equation (2.9).

Proof. If the two line segments intersect, we have A+ A(B — A) = C + u(D — C). Let
us now take the cross product with (D — C') on both sides, then we get

(A+XB—-A)x(D-C)=Cx(D-20C),
which we can rewrite as
AMB—A)x(D-C)=(C—-A)x(D-0C).

Note that we have used that (D — C) x (D — C) = 0. Then we also see that the length
on both sides is equal

IAN(B—A)x(D—-C)|=|(C—-A)x(D-0C)|.

If we now solve this for A\ we get

Hence, the intersection points is = + A\(y — x), with A as in Equation ({2.9)). O

Corollary 2.65. Taking a similar approach and solving for p we see that the segments
intersect at C + (D — C') with
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Chapter 3

The algorithms

The general problem of connecting active points to the glass fiber network, can be
subdivided in three smaller problems. The first is finding the shortest connection to a
network, the second is constructing a single network with no self-intersections from two
intersecting networks and the third problem is finding the least cost-connection between
the cabinets and the fiber glass network. The strategy for connecting the cabinets is to
first connect them with a network (e.g. a street or trench network), then route through
the network and finally connect to the fiber glass network. The idea behind this is that it
is in general cheaper to use already existing networks, such as street networks or trench
patterns, than it is to construct new paths/trenches. Hence, we use other networks two
connect the cabinets with the fiber glass network. Before we consider the algorithms
however, we will first consider the data sets.

3.1 The data

Recall that the algorithms revolve around the active points and the networks. The active
points are given by their coordinates. For the network, this is slightly more complicated,
as we have line segments instead of points. Therefore it is hard to give all coordinates
of a network. Instead we will think of the network as being a collection of connections
(streets in the case of a street pattern). Each connection in their turn is a connected
collection of line segments and these line segments will be denoted by their endpoints.
This is both easier to denote, but also easier to work with. Of course taking the union
of all connections will result in the network again. In most cases the network we will
consider is either a street pattern or a trench or duct pattern. The connections then are
either streets or trenches.

The coordinates of all connections and all active points are given in RD coordinates.
The RD coordinate system (standing for rijksdriehoekscoordinaten) is a system used in
the Netherlands. This system is a Cartesian system designed in such a way that the
x- and the y-coordinates always have a different value. The x-values range from 0 to
300,000 meters, while the y-values range from 300,000 meters to 620,000 meters. The
values are chosen in such a way that no confusion can arise whether the x- or the y-value
is meant. The usage of RD coordinates allows us to treat the system as being on the
2D-plane. If we were to use the longitude and latitude of each point, we need more

37
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complicated formulas to calculate distances between two such points. This will result in
vague and obscure algorithms.

We use a cell array to encode the different connections we have, see also Figure
A cell array is an array where every entry can be a data structure on its own. In
our case, every entry, hence every cell, contains a matrix and this matrix contains the
information about the actual connections. Note that most of the time connections are
not straight, but there is some curvature in it. We can fix this problem if we subdivide
each connection in multiple smaller, but piecewise linear line segments. An example of
this can be seen in Figure The swirling street on the left is subdivided in smaller
piecewise linear parts on the right, while still remaining its general form.

Figure 3.1: On the left the actual connection, on the right a linear line segment approx-
imation.

As already mentioned, each entry in the cell array denotes a connection. This is
done using a matrix which contains the information about the connection. Let us now
take a closer look at the matrices in the cell array. We will do this by looking at the
25-th entry in the array of a given data set. The matrix can be found in Figure [3.2
Note that the matrix consist of six rows. Each adjacent pair of rows denotes a piecewise
linear part, thus the first two rows denote the first line segment. Row two and three
denote the second line segment, and so forth. Note that this approach does work as
every line segment is determined if two points are given. The points are the rows of the
matrix and the line segments are then formed by combining two rows. Also note that
the endpoint of the first line segment is the starting point of the second line segment.
This follows as together they make up the actual connection.

Thus summarizing we have seen that the data of the network is encoded using a
cell array. Each entry of this array contains a matrix. The rows of this matrix denote
points and hence two rows together form a piecewise linear part of the total connection.
Thus when we talk about the connection we mean the collection of piecewise linear line
segments, denoted using the matrix.

Note that the active points are not listed in this array. However, they are given
by a matrix similar as those in Figure but then with each row representing the
coordinates of an active point.

Note that in the array shown the 2¢ — 1-th entry and the 2¢-th entry have the same
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21 |97 double
22 |92 double [ 6x2 double
23 [1.9344e+05... 1 2
24 [1.9345e+05... 1 1.934518860312130e+05 3.925909317299810e+05
25 |6 double 2 1.934733050509616e+05 3.925896092664546e+05
26 |6xZ double 3 1.934904411237013e+05 3.925884399589326e+05
27 [1.9360e+05... 4 1.935187705067981e+05 3.925841994247924e+05
28 [1.9345e+05... 5 1.935762094601049e+05 3.925710827518333e+05
29 |7 double 6 1.935055794808388e+05 3.925699308435546e+05

Figure 3.2: On the left: a part of a cell array containing connections. On the right: the
matrix corresponding to the 25-th entry of the array.

size. This follows from the way we set up our data. Namely, every connection is listed
twice in the array, once from point A to point B and once from point B to point A,
hence explaining this form. Also note that the cell array shown is a column-array. It
is also possible to have a row-array, however this is just the transposed version of a
column-array. Another possibility is for the cell array to have a square form. In this
case we see that position (i, j) denotes the connection between node 7 and node j, while
position (j,7) denotes the connections between node j and node 1.

If we have a column /row-array, it is sufficient to only check for the even or odd entries.
This follows as every connection appears twice. For the square-array this amounts to
only checking for the upper- or lower-triangular part of the matrix. We chose to only
consider the lower part in this case as MatLab is column-major order [23], meaning
that the data is stored column-wise. We believe that this might positively influence the
running time, however, the gains will most likely be insignificant.

For the algorithms we do not need an adjacency matrix, as we are only interested in
the connections between the points. Do note however that the square-array also serves
as an adjacency matrix. The empty entries serving as zeros, while the non-empty entries
serving as ones.

We favor the column-arrays as they need the least amount of storage space. Consider
the situation of n points and m entries in the array. The space needed to store the
square-array is O(n?), while the space needed for the column/row-array is O(m). This
last is favoured as m < n?. The gain in storage usage follows from the fact that for
the square-array space has to be allocated for all positions in the array, independent on
whether they are empty or not. In the case of the column/row-array, there are no empty
entries.

3.1.1 Flaws in the data

We have analyzed the data and found that there were some flaws which might slow down
the algorithm or give wrong answers. Therefore let us treat some of the flaws we have
encountered.

If we have a squared array of connections, there were some positions with a non-
empty (i,1)-position, meaning that we have a street going from one point to the exact
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same point. This is only possible if the street is a loop. There have been cases where
this was in fact a loop, however we have also found situations where this was not the
case. We will not neglect these entries as this would lead to many checks, with only
small benefits. Doing the calculations also for these points will most probably be more
efficient. These entries will not affect the results the algorithm gives as they do not
contribute to the algorithm.

Apart from the locations of the connections, also the locations of the active points
are given in the array. Suppose we have N active points. In the case of a square-array,
these active points are embedded in the last N rows and columns. However, they only
occupy 2N entries, while other entries of these rows and columns are empty. These
points appear in the array as a 2 x 2-matrix, where both rows are identical. Due to
tests in the algorithms, these points will not negatively influence the results. We can
neglect these points. If we do not have a square array, we might not know which entries
correspond to the last NV rows or columns. This is because they are not simply added
at the end of the array, but they appear between the other entries. However, as already
mentioned, these points do not negatively influence the algorithm. Meaning that we do
not need to remove these points from the array. Hence, even though these points do
increase the number of calculations we have to do, they do not negatively influence the
results. It is also more beneficial to just do the calculations for these points, than to
locate them and then skip these points.

We have also found some errors in the coordinates of the active points we wish to
connect. These coordinates come in two lists, one for the z- and one for the y-coordinate.
Let us consider these list for the situation we have the technique G.Fast for the Dutch
city Den Haag. The lists then consists of 2264 points, but a large part of the points is
equal to zero. These points can be neglected, which leaves us with only 1764 entries.
Considering the last ten entries of both lists gives

81386 454256
81386 454256
81388 454172
81393 455410
81393 455410
81393 455441
81393 455441
81416 455595
81416 455595
78262 455199

As it turns out of those ten entries, four appear twice. Neglecting the double appear-
ing entries, leaves us with six of the ten entries. Doing this for all the 1764 entries, will
lead to only 1462 active points to consider. Thus 1462 active points we wish to connect
with the network in that case. An attempt to fix this last flaw was made in [24]. An
explanation for this problem can be found in the way the data is obtained. As we are
considering G.Fast, we know that the active points can not be too far apart, as G.Fast
is only fast on small scales. The coordinates however are partially determined using zip
codes. The problem then arises if we have two active points with a house in between
them and the house is connected with both points. If the active points have the same
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zip code as the house, they will get the same coordinates. However, they will get the
coordinates of the house, instead of the coordinates of one of the points.

In the second algorithm we have also considered data sets drawn from trench pat-
terns. However, the coordinates corresponding to the connections of the trench pattern
were all integers (e.g. (193,201;393,732)). As a results it is more likely that multiple
line segments start in one point. Another thing we saw in the data set was (partially)
overlapping segments. We found the following three line segments, all appearing in
different connections:

(194853, 391729) to (194854, 391729)
(194852, 391729) to (194854, 391729)
(194852, 391730) to (194853,391730).

As we can see, the first two line segments overlap, while the third line segments lies one
meter higher than the first two. This last observation is possible in practice, however
the first observation is unwanted. A possible explanation for this situation can be that
multiple pipe lines lie on the same position, after which they branch towards the end
users.

3.1.2 The data sets considered

We have considered multiple different data sets in our analysis. Some were small, others
were rather large. The data sets either originate from a street pattern or from a trench
and duct pattern. The setup for both data sets is different. This is something we
have to take into account even though it does not affect the results of our algorithms.
The data sets generated from street patterns are set up such that two connections can
only intersect in their endpoints. As a result, more connections are needed, but these
connections are, in general, relatively short. The fact that this restriction does not need
to hold for the data sets generated from trench and duct patterns, is part of the second
algorithm we will consider later on.

Recall that the second problem revolved around finding where two networks intersect.
If a data set does not have the above restriction, it is possible for two connections from
the same data set to intersect. As a result we will also have to consider possible self-
intersections in the second algorithm.

We have considered multiple data sets. For the first algorithm the largest data set
considered was the street pattern of the Dutch city Den Haag. It has nearly 40,000
connections and 570 active points. The smallest data set considered for this algorithm
was that of the city Venray which had 3,365 connections and 55 active points. Apart
from that we also generated some large random data sets.

For the second algorithm we have used multiple data sets. The smallest considered
was again that of the city Venray. The corresponding street pattern had 2,212 connec-
tions and the trench pattern had 7,589 connections. Some larger data sets were also
considered, including that of Amsterdam and its surroundings villages with a total of
more than 250,000 connections in the street and trench pattern combined. Also the
southwestern part of the Netherlands was considered, this data set had 250,000 streets
and over 500,000 trenches.
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For the third algorithm we considered data sets generated by the second algorithm.
For instance, for Venray we have used a data set consisting of 23,682 connections, while
the data set for the city Tilburg consisted of 96,851 connections. Note that these data
sets contain far more connections than data sets considered in the second algorithm
combined. This is of course due to the fact that two intersecting connections result in
four non-intersecting connections. We will also consider some random graphs.

3.2 Algorithm 1

The first algorithm finds the shortest distances between a set of points and a graph.
Note that this graph is given by a set of fixed points with edges connecting them. We
have also considered some heuristics which speed up the process, at the expense of less
accurate results.

The algorithm will, after termination, give the shortest distances between a set of
points we wish to connect and the network. It will also tell us where these shortest
distances are attained. For the input, the algorithm needs an array of connections
between the nodes and the coordinates of the points we wish to connect. Recall that the
array contained the connections, as each entry was a matrix containing the endpoints
of the piecewise linear line segments, which together form the connection. In Algorithm
the pseudocode of the first algorithm is given.

Algorithm 3.3 Find the minimal distances between points and a network

Input: Array of connections, coordinates of points to connect
Output: For every point to connect, the coordinates of connection point with
minimal distance and the corresponding distance

for all non-empty entries in the array do
for all line segments of the connection do
Check case and compute distance
if an improvement has been found then
Update the optima
end
end
end

Let us explain the algorithm in more detail. Before we can do any calculation, we
need to check which entries in the array are of interest for us. Entries which are empty,
or which appear double in the array may be neglected. Note that every connection can
be found twice in the array. Once from point A to point B and once from point B to
point A. Thus we only need to check one of these entries, let us refer to these entries
as the entries of interest. If the array has a square form, the entries of interest are the
entries in the upper- or lower-triangle of the array, as the array is symmetric. If the
array has the form of a column or a row, taking the even (or the odd) entries takes care
of the double entries. Note that this all holds given our setup.

After this we will loop through the entries of interest and do the calculations for those.
As each entry is a matrix denoting the endpoints of the line segments, this amounts
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to checking for each line segment what the distance is to the active points. When
calculating these distances, we can distinguish three cases. Two of which are similar.
After a distance is found for an active point, we check if for this active point the distance
found is smaller than the distances found for other line segments considered before. If
so, we update a matrix with the optimal distances and the indices corresponding to the
line segment at which the shortest distance was attained. If the distance is larger, the
algorithm will continue. After all entries of interest are considered, we calculate the
exact positions where the minimum distances between the active points and the line
segments (and hence the network) are attained. These will then be given as output.

Note that the exactness of the algorithm is restricted to the exactness of the computer
used to run the algorithm. If the computer can only give results in three decimal places,
the algorithm cannot give results in four or five decimal places. Note however, that
most computers have a fairly high accuracy, therefore this will not be a problem in all
practical cases.

3.2.1 The three cases

The main part of the first algorithm is the distinction between three different cases.
These cases arise from the different possibilities of the position of the point relative to
the line segment. With the position we mean the position when the point is projected
on the extended line segment. We do not yet care for the distance between the line
segment and the point. In Figure [3.4] we see the three possible cases, z is the active
point to connect and x and y are the endpoints of the line segment we are considering.
In the first case the projection of the active point is to the left of the line segment, in
the second case to the right and in the third and last case the projection of the active
point is on the line segment. From left to right the cases in the figure are case one, case
two and case three.

z z z

@) ©) ©)
Oo——O Oo——O Oo——O
r Y €z ) €z )

Figure 3.4: The three possible cases.

We use an inner product to determine for every pair of a point and a line segment
in which case they belong. We are in Case 1 if (z —z) - (y — ) < 0, we are in Case 2 if
(z—y) - (x —y) <0 and we are in Case 3 if we are not in Case 1 or Case 2. Note that
we are in the third case if (z —z) - (y —z) > 0 and (2 — y) - (x — y) > 0. Also note that
(z—2) (y—2)<0=(z2—vy) (x—y)>0.

As there is no efficient way of checking whether a point is in case 1, 2 or 3, we will
check for all points if they are in Case 1. For those which are not, we will check if they
are in Case 2. The points which are also not in Case 2, must be in Case 3 as that is the
only possibility left. Let us now treat each case in more detail.
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Case 1

In Figure [3.5 we have the first case. Note that the projection of z is to the left of x if
and only if
(z—x2)-(y—2x) <0.

For each line segment we will calculate this inner product. If this inner product happens
to be larger than zero, the point is not in Case 1, hence no further calculations are done
at the moment. However, if this inner product happens to be smaller than zero, we are
in Case 1 and we can calculate the distance.

z2 0

Figure 3.5: Case 1.

If z is projected on the left side of x, we see that the shortest distance between z
and the line segment is equal to the distance between z and z. Hence, we can calculate
the Euclidean distance between z and x. After the distance is calculated, we check if
the distance found is smaller than the best distance up until then for that active point.
If that is true, we update this distance and we save the indices corresponding to the line
segment for further calculations.

Case 2

The second case is similar to the first case. However, this time we check if the projection
of the active point is on the other side of the line segment, i.e., we check if the projection
of the active point is to the right of y. In order to do this we check if

(z—y)-(x—y) <0

holds. If that is not the case, the active point has to be in Case 3. However, if the
inner product is smaller than zero, we will not necessarily continue our calculations as
there are multiple situations possible. Recall that each connection between two points
was made up of piecewise linear parts. This was to take care of the curvature that the
connection might have. We will only compute the distance if we are considering the
last piecewise linear part of the connection. The distance is then again calculated as
the Euclidean distance between z and y. If we are not in the last piecewise linear part
of the connection, there are multiple situations possible as shown in Figure 3.6} In all
those situations, we do not have to calculate the distance. Note that w is the endpoint
of the next piecewise linear part of the connection.

Let us explain why we do not have to calculate the distance if we are in one of the
above three scenarios. In the first scenario we see that the shortest distance is to the
right endpoint y, but when projected on the piecewise linear part yw it is to the left of
y. We see that in the next iteration of the loop, when the part yw is considered, the
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Figure 3.6: The three scenarios for case 2.

point z is in Case 1. In this case the distance is calculated. Thus we see that we do not
have to calculate it this time. In the second scenario, we see that the active point z is
to the right of y, but that it is also to the right of w with respect to the part yw. Hence,
in the next iteration of the loop the active point z will be in Case 2. Thus the distance
will be calculated if yw is the last piecewise linear part of the connection or we again
have three scenarios. Thus once again we do not have to calculate the distance. The
last scenario we can have is that z is to the right of ¢, but such that it is projected on
the line segment yw. This time the point z will be in the Case 3 in the next iteration of
the loop. Hence, the distance is then calculated.

Note that we cannot make this distinction in Case 1 as well, this is due to the first
scenario. The distance between the line segment and the point has to be calculated. The
three scenarios are only used to make sure that we do not calculate the same distance
multiple times.

So, we will only calculate the distance between the active point and the right endpoint
of the part, if it is the last piecewise linear part of the connection. Otherwise, the distance
is calculated in another iteration of the loop. Again we check if the distance found for
an active point is smaller than the distances found for the other line segments already
considered. If that is the case, we update the best distance for that active point and we
save the indices corresponding to the line segment. Otherwise we will continue with our
algorithm.

Case 3

The active points that are not in Case 1 or Case 2, must be in Case 3. In Figure [3.7]
we can see the third case. The active point z is projected onto the line segment zy. In
terms of the inner products this means that both (z — z) - (y — z) and (z — y) - (x — y)
are greater than or equal to zero.

o w

Figure 3.7: Case 3.
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For the points in Case 3, we see that the projection of the point is on the line segment.
We may then apply Theorem from Section [2.4] However, in this case we do not
have a line, but we have a line segment. The two points on the line, z and y, are now
the endpoints of the line segment. Note that due to the fact that the projection of z is
on the segment zy, we may extend the line segment xy to the line through the points =
and y. Hence, we may apply the theorem. Note that z and y are assumed to be distinct.
In the algorithm we will use an extra check to make sure this is the case. The distance
is then given by

[(y1 — 21) (22 — 22) — (Y2 — 22) (%1 — 21)|
Vi —y1)? + (22 — y2)?
Note that we can rewrite this equation as

d(xy, z) =

|(y — ) - g + 172 — Yoz
Vi@ —y1)? + (2 — y2)?
with ¢ = (—z2, 21). Again, for the indices which give an improved result, the distance
and the corresponding indices are stored for later use.

d(xy, z) = (3.1)

3.2.2 Generating results

After we have found the shortest distances with the coordinates of the corresponding line
segments, it is time to generate the results. For the points where the minimal distance
was obtained in Case 3, we will also give the exact coordinates of the points where the
minima was attained. For the other cases, the minima are attained at an endpoint,
hence their locations are already known. To calculate the coordinates where the minima
are attained in Case 3, we again think of the line segments as being spanned by their
endpoints. So if the endpoints are = and y, we consider the line segment = + A(y — x),
with A € [0,1]. The minimum is attained at

o))
AR YRSy

Theorem 3.1. The minimum distance from a point z to the line segment xy is attained
at ©+ My — x) with X as in Equation (3.2]).

Proof. Let the line segment be given by z + A(y — ), A € [0, 1], and let p be the point
where the minimum is attained. Then we want

(z=p)-(y—z)=0,

as the shortest distance is attained when the two lines are perpendicular. Thus we want

(z—z—-Ay—2)) - (y—=2)=0.

(3.2)

Solving this for A gives

5= B2y — @) + (22 — 22) (y2 — 22)
(y1 —21) + (y2 — 22)? ’
from which Equation (3.2]) can be derived. O
Note that we cannot say A = ;:ﬁ , as this implies a division of vectors, which is not

defined.
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3.2.3 Speeding up the algorithm

We have used a few tricks in order to improve the running time of the algorithm. The
first one is the distinction between the different cases as mentioned above. We have
also used a more optimal way of finding the indices of the non-empty entries in the
array. At first we checked for every entry if it was empty or not, while now we use a
function which gives the corresponding indices after which we will only use the indices
of interest. What has benefited the algorithm the most was the vectorization of some
for-loops. With vectorization we mean doing calculations using a vector instead of doing
the calculations for every entry separately. Let us illustrate this with a simple example.

Example 3.2. Consider the vector x = (1, 2, 3,..., 10,000,000) and suppose we want
to take the square of each entry. We can either do this one entry at a time using a
for-loop, or we can vectorize the calculation and multiply the vector element-wise with
itself.

The first takes roughly 1.6 seconds, while the vectorized version takes only 0.06 sec-
onds. This is a significant difference.

At first we calculated the inner products for each active point individually and then
check for the possible cases. Vectorizing this loop resulted in a significant decrease in
the running time. Now the inner products are calculated at once for all active points,
while also the cases are checked for all active points at the same time.

We have considered further vectorizing the algorithm, but this turned out to not
give an improvement. We tested the vectorization with an approximation algorithm, as
this was the easiest to vectorize. We vectorized the for-loop which checked each entry
of the list of the non-empty entries of the array. The distances for all these entries
are now calculated all at once. The results for this vectorization, however, turned out
to be worse than the non-vectorized algorithm. We will discuss this further in Section
The for-loop we vectorized was embedded in another for-loop. As it turned out
that the running times increased, we will not try to further vectorize the algorithm as
this will not yield better results. As the running times of this vectorized approximation
algorithm did not improve, the running times of the algorithm will also not improve.
This follows from the fact that this algorithm is more complex and therefore even harder
to vectorize.

In order for the vectorized approximation algorithm to work, we have used a sorting
function and a function which gave the unique values in a vector. These took relatively
long, which explains the difference with the original algorithm. We cannot construct
the vectorized version without these functions, as the algorithm uses multidimensional
matrices with results and only a few of the entries are of interest to us. The indices of
those few results, are found using these functions.

3.2.4 Heuristics

Apart from a better algorithm and better hardware, heuristics are also a way of improv-
ing the running time of the algorithm. This, however, comes at the cost of less accurate
results. We have considered two heuristic methods and we have introduced an accepta-
tion distance. The heuristics are a node-approzimation and a cut-approximation. Let us
discuss these heuristics in more detail. In Section [£.1.2] we will compare the results of
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the algorithm with those of the heuristic methods. Let us now explain which heuristics
we have and how they work.

Roughly speaking the node-approximation and the cut-approximation both check
for only a part of the data set, while the acceptation distance accepts distances below
a certain threshold. This will lead to (possibly) faster running times, but at the cost of
accuracy.

One of the main advantages of the node-approximation and the cut-approximation
is that we do not need any inner products anymore. Those took relatively long to
calculate. As already mentioned in Section there were some entries in the array
representing the active points. These were represented with two rows of its coordinates.
Those points will be neglected in the algorithm as the inner products are zero. This
does not mean that they are also neglected in the approximations, since those do not
use inner products. Therefore we need to do an extra check to make sure that these
points will not negatively influence our results.

Node-approximation

The first heuristic is a node-approximation. Recall that our data was stored using an
array of matrices. These matrices held the endpoints of line segments which took care
of the curvature of connections. This means that each connection was subdivided in
multiple smaller piecewise linear parts. With this heuristic, we will only check for the
distances between the active points and the endpoints of each linear part. This implies
that we do not have to check for the three different cases which were possible in the
algorithm. This does simplify the algorithm a lot. As the cases are no longer possible,
we also expect this heuristic to be quicker than the algorithm.

The results of the node-approximation will heavily depend on the type of network
that is considered. As the node-approximation will only check the distance to endpoints
of the piecewise linear parts of each connection, the results will depend on the number
of parts each connection is subdivided in. In the case of a grid-like pattern, there are
long straight connections, hence the results of the node-approximation will most likely
be far from optimal. It is also possible to have short winding roads. In that case, each
connection is subdivided in multiple smaller piecewise linear parts. Then the node-
approximation will most likely give rather accurate results. More on the different types
of patterns possible and properties of such patterns can for example be found in [25].

Cut-approximation

The second heuristic we have considered is a cut-approximation. Again, this heuristic
checks the endpoints of the parts, but for longer parts, the algorithm also checks some
extra intermediate points. Parts which are longer than a given threshold, which is
required as input, are cut into multiple smaller pieces. This is done in such a way that
the resulting extra pieces all have the same length. The approximation now also checks
for the endpoints of the new smaller pieces. Note that the length of the piecewise linear
parts is considered and not the length of the connection itself. We will refer to the
threshold variable as the cut-value.

Note that this cut-approximation gives results which are at least as good as the
node-approximation, as the same points, plus some more, are considered. We will
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later on discuss the results of this approximation in comparison with the algorithm
and the node-approximation. We will do this for different cut-values. We expect this
cut-approximation to run slower than the node-approximation, as we have to consider
more points. For high cut-values, so if we only cut very long edges, we expect the run-
ning time of the cut-approximation to tend to that of the node-approximation. However,
they will not be equal as in the cut-approximation we also have to calculate the length
of the parts of the line segments after which we have to compare those to the cut-value.
For high cut-values we also expect the cut-approximation to be quicker than the al-
gorithm. This is of course at the cost of accuracy. For smaller cut-values we expect
the cut-approximation to run slower than the algorithm as each part is subdivided in
multiple smaller pieces. Therefore multiple calculations have to be done.

Acceptation distance

Apart from the above two heuristics, we have also introduced an acceptation distance.
The idea is that the solutions need not to be optimal, as long as they are close to optimal.
The user can give an acceptation distance as input, the algorithm runs normally, but if
for an active point a distance is found which is below the acceptation distance, it will not
be considered in further calculations anymore. If the user does not give an acceptation
distance as input, it is set to zero. We can think of the acceptation distance as being the
threshold. If a distance is found which is below the threshold, we will not seek for better
distances for that active point. However, active points which do not have a distance
below the acceptation distance, will be checked until either the distance is below the
acceptation distance or until all connections have been checked. Note that this implies
that for acceptation distance of zero, all connections will be considered, but that this
will give exact results.

Using an acceptation distance does not slow the algorithm down significantly. In fact,
in most cases it will make the algorithm faster. This follows from the fact that after
some iterations, it is possible that some active points need not to be considered anymore.
We do a few extra computations, namely we check which points have a distance above
the acceptation distance. The complexity of these extra computations, however, is O(1).
Hence, the number of operations we can save using an acceptation distance outweigh
the number of extra computations.

Note that the acceptation distance is only an addition to both the algorithm and
the two approximations. The acceptation distance is not an algorithm on its own, but
merely an addition to the already existing algorithm and the approximations. Therefore
we will compare the algorithm and the two approximations for different acceptation
distances.

3.2.5 Complexity of algorithm 1

Let us now take a closer look at the complexity of the algorithm and the two approx-
imations. We will try to construct an upper bound for the running time, therefore we
will consider the worst case scenario. That is, in the algorithm, every point is in Case
3, the length of the lists in the array is constant, but relatively long, and as acceptation
distance we take zero. This last implies that for all active points, all line segments have
to be considered.
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Let n be the number of entries of interest in the array, i.e., in the case of a square-
array, the number of non-empty entries in the lower triangular part of the array. If we
have a column/row-array this means n equals half of the total number of entries in the
array. Let m be the length of the matrix in the array and let k be the number of active
points. We also define ¢ as the number of pieces each piecewise linear part is cut in.
Note that it is unlikely that every part is cut in ¢ pieces, but as we are considering
the worst case scenario this is allowed. Also note that ¢ and the cut-value are inversely
proportional.

The algorithm first searches for the non-empty entries in the array, after which
the indices of interest are stored. Afterwards both in the algorithm and in the two
approximations some space is allocated and some variables are set. Now the actual
calculations can begin. We do this using a for-loop with which we consider the different
entries in the array in which we are interested. We then check which active points still
need to be considered, using the acceptation distance. Again we have a for-loop, this
time over matrices in the non-empty entries of the array. These entries will be used to
do the calculations regarding the distances.

For the algorithm this amounts to checking the three cases as discussed before. An
inner product is used to determine for each active point in which case it is for the part
that is considered. If a distance is found which is smaller than the optimal distance for
that active point up until then, we save the distance as the new optimal distance. Also
the indices corresponding to the part which is considered are saved, this is for later use.

The node-approximation immediately starts calculating the distances between the
nodes and the points. This is possible as we do not have to check in which case we
are. After the distances are calculated, the distances found are compared with optimal
distances up until then after which we will update the matrix and the vector, with the
indices corresponding to the optimal distances and the best distances up until then, if
necessary.

The cut-approximation first calculates the length of the line segments and then
determines in how many smaller parts this line segment has to be cut. Then, using a for-
loop over the number of parts, we start doing the calculations regarding the distances.
We again compare the distances with the best distances up until then, and update if
necessary.

Now the exact coordinates of the points where the optimal distances were attained
must be calculated. This comes down to a simple calculation which we have to do for
every active point. It is also possible to print the results in a .txt-file, but this is in
general not necessary.

Finding the indices of the non-zero entries takes O(n) time. Allocating space for
matrices and vectors and setting variable takes O(1) time. We now have the first for-
loop which takes O(n) time. Inside this loop we have another loop with complexity
O(m). Inside this loop the calculations take place. Each calculation takes O(1) time,
but O(k) of these calculations must be made. Therefore, in total these calculations take
O(k) time. Finding the indices for which a calculation gave a result greater or smaller
than zero can be done in O(k) time, updating the matrix and the vector can also be
done in O(k) time. In the case of the cut-approximation we have to do some extra
calculations regarding the cut-value and the length of the connections taking O(1) time,
but we also have an extra loop regarding the number of parts each line segment is cut



3.3. ALGORITHM 2 o1

in. This extra loop has complexity O(c). Generating the results takes O(k) time.

When we combine all the above we see that the algorithm has complexity O(Anmk +
uk), where \, u € N are integers greater than zero. However, recalling our knowledge
about the O-notation, this is equivalent to saying that the algorithm has complexity
O(nmk). We see that the node-approximation has the same complexity. The cut-
approximation however, has complexity O(nmkc). This follows from the cut-value used.
Note that c is constant, hence technically we may neglect it in the expression. However,
we chose to leave it as this enables us to better compare the two expression. For small
¢ (hence for large cut-values) the complexity of the cut-approximation is the same as of
the node-approximation and the first algorithm. However, if ¢ increases , and hence if
the cut-value decreases, the ¢ plays a more prominent role in the complexity of the cut-
approximation and the running time of the cut-approximation will most likely increase
drastically.

Consider Table for the complexities we have found above. Note that being in the
same complexity class does not imply that the running times are equal. It only implies
that the behaviour of the running times is the same if the input grows in size. We know
that in the worst case scenario in the algorithm more calculations have to be made with
respect to the node-approximation. However, as all these calculations only take O(k),
we see that this does not change the complexity of the algorithm even though it does
affect the running time.

H Algorithm 1 ‘ Node-approximation ‘ Cut-approximation
Complexity || O(nmk) | O(nmk) | O(nmkc)

Table 3.8: Complexities of the algorithms and heuristics for the first problem.

3.3 Algorithm 2

The second algorithm can be used in order to find where two networks intersect. Exam-
ples of such networks are a street network or a trench pattern. We need to determine
the intersection points as we need to know where a transition from one network to the
other network is possible. This then can be used to route through the network, which
can help to establish least cost-connections between the active points and the fiber glass
network. Apart from the intersections of the two shapes with each other, we are also
interested in the intersections of a shape with itself. Consider the simple example of two
pipe lines which, when projected on the plane, intersect. However, it is possible that
the first pipe line lies higher than the second, hence, in the real situation they do not
intersect. As it might be beneficial to go from one pipe to the other, we also want to
report such intersections.

We will approach the problem in two different ways. The first being a smart brute
force-version, the second being a modified version of the Bentley-Ottmann-algorithm.

3.3.1 The smart brute force-algorithm

The first algorithm of the second problem is a smart version of the brute force-algorithm.
In a brute force-algorithm one would compare every possible pair of two line segments if
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they intersect. This will certainly find all intersection points, however, the running time
of this approach will also blow up as its complexity is O(m?), where m is the number
of line segments. Note that we consider the line segments and not the connections.
Algorithm shows the pseudo code of the smart brute force-algorithm.

Algorithm 3.9 Smart brute force-algorithm
Input: n connections, each consisting of multiple line segments, number of blocks ¢
Output: Array with non-intersecting connections

Initialization: Determine the minimum and maximum z- and y-value of every
connection

1: Divide the data set in ¢ blocks

2: for all blocks do

3: for every pair of connections in a block do
4: if bounding rectangles overlap then
5: for every pair of line segments do
6: if there is an intersection then
7 Report the intersection

8: end

9: end

10: end

11: end

12: end

13: Given the intersections found, create the array with no self-intersecting connections

One of the reasons we call it a smart brute force-algorithm is that we subdivide
the data set in multiple smaller blocks. Each block consists of a number of connections
which might intersect. However, if two connections do not appear in the same block,
they can certainly not intersect. Apart from the number of blocks the data set needs
to be subdivided in, the algorithm also needs the connections for which we want to
determine the intersections as input. Recall that each connection consists of one or
more line segments. The output produced by the algorithm is an array consisting of the
connections which were given as input, however, every intersection point is now treated
as an endpoint of a connection. Therefore, in the new array there will be no intersecting
connections.

Let us now explain how we determine the different blocks. Note that most segments
are not that long and therefore most pairs do not need to be considered. Therefore
we divide the data set in multiple smaller data sets or blocks. In order to do so, we
calculate the minimum and the maximum z-value among all connections. The difference
between these two values is the width of our data set. This value is then divided by
the number of blocks we want. This can either be given as input by the user, or a
default-value of fifty is used. The data set is then subdivided in the given number of
blocks such that the width of each block is equal (the width of a block is defined by the
difference between the minimum and the maximum z-value among all line segments in
that block). A connection belongs to a block if it has overlap with that block, meaning
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that the minimum xz-value of the connection must be smaller than the maximum z-
value of the block and the maximum z-value of the connection must be greater than the
minimum z-value of the block. Note that this allows for connections to be in multiple
blocks. It is not possible to subdivide the data set in disjoint blocks, as this would
imply that we known which line segments certainly do not intersect. However, for some
cases (near the edge of the blocks) this can only be determined by explicit calculations.
Hence, we should already know if segments intersect before we can subdivide them
in disjoint blocks. Therefore, we allow connections and hence line segments to be in
multiple blocks. Also note that the use of blocks still results in all intersection points.
This approach saves time as connections which do not appear in the same block will
certainly not intersect. Namely, as they do not appear in the same block, at least one
of the connections does not have overlap with the blocks. Therefore the connections do
not have overlapping xz-values and hence they can never intersect.

For each block we will also use some tricks due to which we do not have to check
all possible pairs of connections. Note that two line segments can only intersect if
they have overlapping z-values and also overlapping y-values. In Figure we see
two situations. On the left we see two line segments which have overlapping y-values,
but non-overlapping z-values, on the right we see two line segments which have both
overlapping x- and overlapping y-values. This last pair of line segments is said to have
overlapping bounding rectangles, meaning that the smallest bounding rectangles, each of
which contains one line segment, overlap. We chose the orientation of these rectangles
such that one side is parallel to the z-axis, while the other is parallel to the y-axis,
however other orientations will work similarly.

WS

Figure 3.10: On the left two line segments with non-overlapping z-values. On the right
two line segments with overlapping x- and y-values.

Note that the same figure also tells us that overlapping bounding rectangles does not
imply intersecting line segments. In the algorithm itself we will not compare the bound-
ing rectangles of individual line segments as this would lead to many extra calculations,
which most likely take longer than applying Theorem [2.63] immediately would. Instead
we will consider the bounding rectangles of the connections as a whole, see Figure [3.11
for a bounding rectangle of a connection. Note that this works as given two intersecting
line segments, then their bounding rectangles overlap. However, the bounding rectan-
gles of the line segments lie in the bounding rectangles of the connections as a whole.
Hence, the bounding rectangles of the connections also overlap.

Note that in most practical cases using bounding rectangles for the connections
will lead to faster algorithms than using bounding rectangles for every line segment
individually. This for instance follows from the fact that we need to determine the
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Figure 3.11: On the left a connection with the bounding rectangles for every line seg-
ment. On the right a connection with the bounding rectangle for the connection.

minima and maxima for all connections opposed to the minima and maxima for all
line segments of every connection. Another point due to which this approach is faster
is that most connections do not intersect with other intersections. Doing only one
comparison for the connections is then faster than doing it for every pair of line segments
of the connections. Note that this is given the fact that the bounding rectangles of the
connections do not intersect.

If the bounding rectangles of the connections overlap, we will determine for every
pair of line segments of the two connections if they intersect. Now Theorem [2.63]is used
to determine if two line segments do intersect. If two line segments do intersect, we
report the intersection together with the indices corresponding to the line segments.

After all line segments have been found, we will use the indices we saved to create
the output. So, every connection is subdivided in multiple smaller connections according
to the intersection points. Note that the smaller connections are still collections of line
segments. Also note that we have to take care of intersections which are found twice
due to the use of blocks. This can be taken care of by only considering one of the two
intersections found as they are equal.

Note that we do some extra calculations such as subdividing the data set in multiple
blocks and determining the bounding rectangles of connections. In cases where most of
the line segments pairwise intersect, this will lead to more computations and therefore
longer running times. However, in most cases we will be considering data sets where
most line segments do not pairwise intersect. Using such tricks as mentioned above, will
make sure that connections and line segments which certainly do not intersect, will not
be checked in further calculations. Connections and as a result line segments which can
intersect will be checked. Therefore, we conclude that all intersections are still found.

3.3.2 Bentley-Ottmann-algorithm

In 1976 Michael Ian Shamos and Dan Hoey published an article ([26]) in which they
present an algorithm which determines if given a set of n line segments, any two in-
tersect. They also applied their method to detect whether two simple polygons would
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intersect. This algorithm was extended by Jon Bentley and Thomas Ottmann in 1979
(27]) to an algorithm which could detect and give all the intersection points of a set
of n line segments. The complexity of this algorithm is O((n + k)log(n)), where k is
the number of intersections. Faster algorithms with complexity O(nlog(n) + k) have
been constructed ([28], [29]), the Bentley-Ottmann-algorithm however remains the most
popular choice. This is due to its simplicity and the low memory requirements. Other,
faster, algorithms either use more space, or use a randomized algorithm, making it more
difficult to understand and implement the algorithm. Note that the Bentley-Ottmann-
algorithm is output-sensitive, meaning that the complexity and therefore the running
times depend on the size of the output.

The Bentley-Ottmann-algorithm is a line sweep algorithm, meaning that a sweep
line is used which sweeps through the plane looking for intersections. The sweep line
detects events and an event is either a starting point or an endpoint of a line segment, or
two lines intersecting. Even though this algorithm gives exact results within reasonable
time, there are a few drawbacks. For instance, some special cases, such as two segments
starting in the same point, are excluded. Apart from that some dynamic structures such
as binary search trees are used which MatLab does not support. Let us first consider
the pseudo-code of the algorithm, then discuss the algorithm in detail and finally discuss
how the drawbacks are taken care of.

Algorithm 3.12 Bentley-Ottmann-algorithm
Input: n line segments, defined by their endpoints
Output: £ intersections of line segments

Initialization: Sort the 2n endpoints according to their z-values and store the
information in F, line L is empty

while F # () do
p=min F
if p = start(s) then
Insert s in L
Check if s intersects with its neighbours in L. If yes, insert the intersection
point in
else if p = end(s) then
7 Remove s from L
Check if the old neighbours of s intersect. If yes, insert the intersection point

@

in &

9: else if p intersection point then

10: Report the intersection point with corresponding line segments
11: Transpose the order of the line segments in L

12: end

13: Delete p from E

14: end

The algorithm starts by sorting the 2n endpoints of the n line segments. The sorting
happens according to the z-values of the endpoints. This data is then stored in a priority
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queue E, also referred to as event list E, used to keep track of the possible future events.
We now want to determine all intersecting pairs of line segments and the coordinates
of the intersection point. Once the priority queue is set up, we use the sweep line L
to determine all intersections. First we take the event with the minimum z-value in F
and we check what sort of event it is. As an event can be an intersection of two line
segments, or the beginning or ending of a line segment we have three possible types of
events which are all fundamentally different. See also Figure for the possible events
we have.

Figure 3.13: An example of the possible events: a, ¢ are starting points, b, d are endpoints
and e is an intersection point.

After the event is treated, it will be removed from the priority queue. We will then
find the next minimum x-value and the corresponding event. We will do this until the
priority queue is empty, at which point all intersections have been found. After that we
generate output such that every intersection point is a node in the new network. Let us
now take a closer look at the three types of events.

Event: startpoint

If the event happens to be the start of a line segment, we insert the line segment in the
sweep line L. The line segments in L will be stored according to the y-coordinates. In
Figure we see that the sweep line is at the starting point a. The segment ab will
then be added to L according to the y-value of a. We will then check for a possible
intersection of the newly added line segment with its direct neighbours in L. If an
intersection is found, it will be added to our event list £. Note that in the example
below, we will not have to check for intersections as a is the first point added to L. If ¢
is added to L we will check if ab and cd intersect.

L

Figure 3.14: The sweep line L starts at the first event a.

Line segments for which the left endpoint is in L are said to be active segments.
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Note that the order in which line segments are added to the sweep line depends on
their z-value. However, the place where the line segments are inserted in the sweep
line depends on the y-value of the line segments. As a consequence, when we insert
a new segment in the sweep line, we have to be careful with the y-values of the other
segments. The y-value a segment had when it was inserted, does not have to be equal
to the y-value of the segment at the current position of the sweep line. This is of course
due to the slope of the line segments. In order to take care of this, we do some extra
calculations to determine the y-value of some segments at the current position of the
sweep line. Note that we do not have to do this for every segment if we choose thee
segments in a smart way.

Event: intersection

If the event is an intersection, it will be reported and deleted from E. However, we also
need to flip the order of the corresponding lines in L, see also Figure [3.15] After we
have swapped the order of the line segments in L which intersected, ab and cd in the
example, we will check for new possible intersections with the new neighbours. That
is, if the order before an intersection is (..., v, v2,v3,v4,...) and (..., v1,v3,v2, Vg, .. .)
after the intersection, where every v; is a line segment, we will check for a possible
intersection between vy and vs and between vo and v4. Note that these segments are the
only segments which have to be checked. Possible intersections with other line segments
have already been found or will be found in future calculations.

= ;

L

a

Figure 3.15: The sweep line L arrives at an intersection. Before the intersection we have
L = (cd, ab) after the intersection we have L = (ab, cd).

Note that it is possible that we find an intersection from the past. In this case we do
not have to add it as an event to the event queue. Consider Figure for an example
where an intersection from the past is found. Here line segments ab and cd become
neighbours again in the sweep line after the intersection point between ef and ab is
reported. As we have mentioned above, if two lines become neighbours in the sweep
line, we have to check if they intersect. We know that ab and cd intersect as we have
already reported it. As the intersection point between the two segments is to the left of
the sweep line, we may neglect it.

Event: endpoint

The last type of event we have is an endpoint. This comes down to removing the
corresponding line segment from L. Line segments for which the right endpoint is to the
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Figure 3.16: After the intersection between ef and ab is reported, segments ab and cd
become neighbours in the sweep line again.

left of L are said to be dead line segments, see also Figure [3.17] Once a line segment is
removed from the sweep line it is of no interest to us anymore. After it has been removed
we have to check for possible new intersections between the two old direct neighbours of
the removed line segment. If these new neighbours intersect and the intersection point
is to the right of L, we will insert it in the event list E.

Figure 3.17: Line segment ab is removed from L.

3.3.3 Correctness of Bentley-Ottmann

Let us now prove that the Bentley-Ottmann-algorithm does in fact find all intersection
points. Recall that there were some assumptions made on the data set when using the
Bentley-Ottmann-algorithm. These are

1. No line is vertical;

2. No two line segments overlap;

3. An endpoint of a line segment does not lie on another line segment;
4. At most two line segments intersect in a point;

5. Every event has a different z-coordinate.
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These assumptions are made to make sure that every event has different coordinates
and that every intersection is a proper intersection. Note that the Bentley-Ottmann-
algorithm relies on the fact that two line segments can only intersect if they are adjacent
in the sweep line, i.e., two line segments can only intersect if they are direct neighbours.
If that is not the case, there must be an event prior to the event where they intersect
such that the two segments can become direct neighbours. Let us now prove that given
these assumptions, the Bentley-Ottmann-algorithm gives all results. First we prove the
following lemma.

Lemma 3.3. During the while-loop of the Bentley-Ottmann-algorithm at any position
of the sweep line all pairs of intersecting dead segments have been reported.

Recall that a segment was said to be dead if its rightmost endpoint was to the left
of the sweep line. In other words, the lemma states that at every position of the sweep
line, all intersections to its left have been found.

Proof. Consider any position of the sweep line. Proving that all pairs of intersecting
dead segments have been reported is the same as proving that each intersection between
dead segments has appeared as the minimum element in the event list E. If this is true,
then, in the third if-statement of the algorithm, the intersection is reported. Hence, all
pairs of intersecting dead segments have been reported.

We will prove this by contradiction. Assume there is an intersection between two
dead segments that did not appear as the minimum of the event list E. Let p be the
leftmost intersection point with this property and let S and S’ be the dead segments
that intersect in p. Now let g be the rightmost event to the left of p. Note that ¢ exists
as S and S’ are active after q. Also note that ¢ has appeared as the minimum of the
event list E. Let us now consider what happens after the event ¢ is treated. As S and S’
are both active after ¢, they are both stored in the sweep line L. There are two possible
cases.

Case 1: After ¢ the line segments S and S’ are neighbours in L. As they are
neighbours, their intersection point p is contained in E. Also, ¢ was chosen such that
p was the next event. Hence, immediately after ¢, the event p is the minimum in the
event list £. Which is a contradiction.

Case 2: After ¢ the line segments S and S’ are not neighbours in L. Then there
must be an event between ¢ and p in which a line segment deleted from L or in which
an intersection point is reported. This is a contradiction with our choice of q.

Hence p appeared as the minimum in the event list £ and therefore the intersection
was reported. So we see that all pairs of intersecting dead line segments have been
reported. O

Theorem 3.4. The Bentley-Ottmann-algorithm finds all intersection points.

Proof. At the end of the algorithm the event list is empty, implying that the sweep line is
to the right of all segments. Therefore, at the end of the algorithm all line segments are
dead. Using Lemma [3.3]it follows that all intersection points are reported correctly. [
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3.3.4 Applying Bentley-Ottmann to our situation using MatLab

As already mentioned there are a few assumptions made in order to be able to correctly
use the Bentley-Ottmann-algorithm. However, let us first discuss why we chose the
Bentley-Ottmann-algorithm over other algorithms which could also solve this problem.
Algorithms have been constructed which, given two sets of line segments, find all inter-
section points between these two sets of segments. Typically one thinks of the sets as
being a set with red line segments and a set with blue line segments. One is then inter-
ested in the intersections between red and blue line segments. Algorithms which solve
this so called Red-Blue Line Segment Intersection-problem can for instance be found in
[30] and [31]. However, using his approach will not give a complete answer. Namely,
we have to take into account that networks can self-intersect, meaning that two line
segments of the same network intersect other than in their endpoints. As already men-
tioned, these intersection points are also of interest as also at these points a transition
is possible. Therefore, treating the problem as a Red-Blue-problem will either not give
us complete answers, or forces us to do extra calculations to detect the self-intersections
afterwards. This last option is not viable, as this would lead to two extra algorithms
alike Bentley-Ottmann for both sets separately. Instead we could thinks of the two sets
as being a single bigger set and the use a modified version of the Bentley-Ottmann-
algorithm on this bigger set. The term modified refers to the fact that there are some
problems which have to be dealt with. Using this modified version will give both the
intersection between the segments from both sets and it will give the self-intersections.
We can encode the segments in such a way that we know to which set they belonged.
However, as we are only interested in the resulting network, it does not matter whether
an intersection was an intersection between line segments from different sets or from the
same set.

Let us now consider the assumptions on the data set that were made. Recall that
these assumptions were

1. No line is vertical;

2. No two line segments overlap;

3. An endpoint of a line segment does not lie on another line segment;
4. At most two line segments intersect in a point;

5. Every event has a different z-coordinate.

These assumptions are made to make sure that every intersection point is found. Even
though these assumptions simplify the algorithm, in most real world applications these
assumptions do not hold. Hence, we need to modify the algorithm such that these
assumptions are no longer necessary. There are multiple possibilities to solve these as-
sumptions. One is to extend every endpoint by a small e. That way every intersection
is still found, while no extra intersections are found given that ¢ is small enough. A
drawback of this method however is that in our situation extra intersections will be
found. As some connections, and therefore some line segments, intersect in their end-
points, extending them slightly will give an extra intersection point which we do not
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want. Therefore this approach will not be used. Note that as we are extending each line
segment by a small ¢ we will still find all the intersections.

Another possibility we have is to generalize our definitions used in the algorithm. If
we allow events to have the same z-coordinate, but we sort the events with the same
x-coordinate according to the y-coordinate, we have solved the assumption 1 and 5.
The approach for solving the second assumption is to consider lists of line segments
corresponding to a certain event instead of considering individual line segments. This
way, overlapping line segments are treated at the same time, which solves the problem.
Assumption 3 can be taken care of by generalizing the definition of an intersection.
Instead of considering only proper intersections, we will also allow intersections where
three of the endpoints are collinear. The fourth assumption can be solved by generalizing
the definition of an intersection point. Instead of two line segments which intersect,
more line segments may intersect in a single point. When treating the event, we must
be careful. Instead of swapping the position of two line segments, we must reverse the
order of the multiple line segments we are considering. Note that for two line segments
this is the same as swapping the position. So we have the following solutions for the
assumptions sketched above.

1. Define the endpoint with the higher y-coordinate to be the starting point and the
event with the lower y-coordinate to be the endpoint;

2. Consider overlapping line segments at the same time instead of one after the other;
3. The definition of an intersection is generalized;

4. Multiple line segments may intersect in a single point. At the intersection point,
we reverse the order of the corresponding segments in the sweep line;

5. Events with the same x-coordinate are sorted according to the y-coordinate.

Note that we talk about line segments intersecting instead of connections inter-
secting. This follows as the Bentley-Ottmann-algorithm works for line segments only.
Therefore we will treat each piecewise linear part of a connection as a separate line seg-
ment and then use a modified version of Bentley-Ottmann. We have excluded the case
that two line segments can intersect in their endpoints, as these are just the nodes of
the network. Note that excluding these points as being intersections prevents extreme
cases where almost every node is said to be an intersection. Also note that the case of
overlapping line segments is excluded by our assumptions on the data sets. Namely, the
data sets are constructed such that no line segments overlap, hence this assumption is
taken care of.

Note that due to the fact that we found solutions for the assumptions, we cannot
prove that this version works. This follows as multiple events can have the same z-
coordinate, in some cases events even overlap. The proof of Lemma [3.3] and hence
Theorem relied on the fact that this was not the case. However, in Section
where we compare the results, we will see that all intersections will be found.

The last thing we have to take care of is the data structures used in the Bentley-
Ottmann-algorithm. Binary search trees (Section are used for both the event list
FE and the sweep line L, however, binary search trees are not supported by MatLab.
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MatLab works extremely well when working with matrices. However, when we would
like to express data in a dynamic way, for instance using a binary search tree or a linked
list, things get a little more complicated. There are no built-in commands to take care
of this, however some packages have been created which recreate the structure of binary
search trees using other structures, for instance [32]. We have tried to implement this,
however, as it turned out, the running time of the algorithm would drastically increase
and the modified Bentley-Ottmann-algorithm would in this case take longer than the
smart brute force-algorithm we have discussed before. Therefore we will not use such
packages. Note that other programming languages such as C and C++ do support
these dynamic structures, however, the algorithm constructed will be used in an already
existing MatLab program. Therefore, we will program the algorithm using MatLab. In
order to deal with the data structures problem, we have recreated the structures using
arrays.

Note that we now have two algorithms. The Bentley-Ottmann-algorithm as con-
structed in 1979 and a modified version of it constructed by us. In the following when
we refer to our version, we will refer to the modified Bentley-Ottmann-algorithm. The
original algorithm will be addressed as the Bentley-Ottmann-algorithm, as one could
expect.

Event list

Recall that the event list contained all events which have not happened yet. This
includes both the starting points and endpoints of the line segments and the, at a
certain moment known, intersection points between line segments. As the intersection
points are not known beforehand, the event list must be a dynamic structure which can
add entries and dynamically sort them according to their xz-values.

Instead of implementing this list, we recreated it using an array. As input every entry
of the array contained the start- and endpoints of the line segments, an index saying if
it is an endpoint or a starting point, the slope of the line segment and an index to link
the line segments with its original position in the array. This last index is used to create
the output of the algorithm. This array is then sorted according to the z-coordinates of
the line segments. In the case that those were equal, we sort according to the y-values.

The intersections are listed in another array, as otherwise we have to insert the
intersection points in the array with intersections and this is very time-consuming. Once
an intersection has been found, both the intersection point and the coordinates of the
corresponding line segments are added to the array. The algorithm determines the next
event according to the x-values of the events. For the array containing the intersections
this means finding the minimum z-value among the intersection points. Note that we
can also sort this array every time a new intersection is added, however that would
take at least as long as taking the minimum xz-value over the arrays. For the array
containing the start- and endpoints this comes down to determine the x-coordinate of
the next entry. An index is used to determine which events have already been processed
and which events have not. Once an intersection is treated, it is deleted from the array.
Hence we can take the minimum over the entries in the array. We use an index for the
other array as this was most efficient time-wise. Due to the fact that the array was
sorted, we can process the events in order of appearance.
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Sweep line

The second data structure the algorithm uses is a sweep line, hence the name sweep line
algorithm. Theoretically a self balancing binary search tree would be the best to use for
the sweep line. However, it turned out implementing this structure resulted in running
times which were too large, most likely this was a result of the package used for the
implementation. Therefore, also for the sweep line we have used an array.

Again the start- and endpoints of the line segments are denoted in the array, together
with the corresponding indices. At an intersection, which implies swapping the positions,
we swap the rows of the array. We also like to add new line segments to the sweep line.
However, to be able to do that, we need to compare the y-value of the line segments. If
we would do this naively and calculate the y-value for every line segment, we would do
too many calculations. Therefore, we chose to construct a function which only checks
for the middle value of the sweep line and then, according to the result, continues the
calculation with half of the previous array. This way, in every iteration the size of the
sweep line halves, hence we do not have to do the calculations for every entry. Note
that this technique is also used in the Binary Search Trees resulting in their complexity
O(logn) to insert or delete an event or to locate it.

3.3.5 Generating results

Once the intersection points have been found, we still need to generate the output of the
algorithm. Recall that we applied the algorithm to determine the intersections between
two sets. In order to do that, we treated the data sets as being one large data set and we
computed the intersections accordingly. The output of the algorithm is then an array
consisting of the two original networks, however, such that there is no self-intersection.
Hence, every intersection point we have found using the algorithm, must be a node in
the new network.

If two connections intersect, we want to make four non-intersecting smaller connec-
tions of it, the intersection point being an endpoint of all four smaller connections, see
also Figure Note that on the left side e serves as an intersection point, while on
the right side e is an endpoint of the four line segments. Recall that intersections were
recorded using the intersection point, but also the coordinates of the corresponding line
segments and the indices of the line segments. Recall that we denoted the intersections
using an array. In this array, both the intersection point and the indices corresponding
to one of the connections was denoted. Hence, every intersection generates two entries
in the array with intersections, one for every connection.

We now first check if an intersection is reported multiple times. Double entries
are then neglected in further calculations. After that, we sort the array according to
the indices in the array. We then use the indices to determine if a connection has an
intersection point and if so, we split the list of line segments in two separate lists. One of
the lists is moved to another entry of the array as in the output we regard this as a new
connection. The last entry of one list and the first of the other list are the coordinates
of the intersection point. This is due to the fact that this will be regarded as a new
node in the network.
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Figure 3.18: On the left two intersecting line segments, on the right the resulting four
non-intersecting line segments.

3.3.6 Speeding up the algorithm

As already mentioned, we used some minor tricks to increase the speed of both the mod-
ified Bentley-Ottmann-algorithm and the smart brute force-algorithm. For the modified
Bentley-Ottmann-algorithm this was recording the indices and coordinates of the line
segments in the arrays as well. That way we did not have to use a find-function in
MatLab anymore to determine which entries had to be considered in certain calcula-
tion. Instead we could use the indices saved in the array. The find-functionality takes
relatively long, therefore, if we do not have to use it, we will save time.

For the smart brute force-algorithm we have used some tricks which increase the
speed of the algorithm. The first one was subdividing the data set in multiple smaller
data sets (or blocks). The second trick used is using an extra array which denotes the
minimum and maximum z- and y-values of each connection. Recall that we used the
bounding rectangles to determine if an intersection was possible. If in every iteration
we have to determine these minima and maxima of the two connections, we would do
extra, unnecessary work and the algorithm would slow down. Instead we calculate the
minimum and maximum z- and y-value once for every connection and save them in an
array. Determining if two rectangles overlap, then reduces to comparing predetermined
entries in the array.

As we sort the connections according to the z-values of their starting points, we
can use the minimum and maximum z-values of the connections to determine if some
part of the data set need not be be checked anymore. For this we define the width of
a connection to be the maximum z-value minus the minimum z-value. The maximum
width is then determined by taking the maximum over the widths. We now make use
of the fact that two line segments will never intersect if the z-values of their starting
points are more than the maximum width apart. Now suppose that the starting points
of connection ¢ and connection j are more than the maximum width apart, then in the
next iteration (for ¢ 4+ 1) we do not have to consider the connections 1 through j. This
follows as the array was sorted. Therefore, all connections 1,...,j will certainly not
intersect with line segment ¢ + 1. Apart from starting our search at a later point, we
can also prematurely stop the search. The idea is the same as above. Once the two
endpoints are too far apart, we will not have to check the points anymore.
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3.3.7 Heuristics

Just as we did for the first algorithm, we have also constructed some heuristics for
the second algorithm. As the modified Bentley-Ottmann-algorithm will most likely be
faster than the smart brute force-algorithm the heuristics will be applied to the smart
brute force-algorithm. Note that, due to the setup of the data in the modified Bentley-
Ottmann-algorithm, heuristics will also be harder to construct and implement in this
case.

Two heuristics have been constructed, the first is a connection-approximation and
the second is a slope-approximation. Both approximations do an extra check (besides
the overlapping rectangles) which have to hold before we will actually search for an
intersection.

Note that the heuristics will give (possibly) faster results, but this comes at the cost
of accuracy, meaning that not all intersections need to be found. Let us now treat the
heuristics in detail.

Connection-approximation

The connection-approximation (or con-approximation for short) only checks some con-
nections if there is an intersection. For this approximation we will think of each connec-
tion as being a single line segment between the two endpoints of the connection. This
line segment will be called the general line segment corresponding to the connection.
We will then only look for an intersection between two connections if the general line
segments intersect.

Note that using this approach does not give all intersections. An intersection between
the general line segments does not imply an intersection between the connections. Vice
versa, an intersection between two connections does not imply an intersection between
the general line segments. See also Figure for examples of such situations.

Figure 3.19: On the left two non-intersecting connections with intersecting general line
segments. On the right two intersecting connections with non-intersecting general line
segments.

Note that this approximation will most likely give results faster than the smart brute
force-algorithm. This is due to the fact that only for some pairs of connections we have
to check if there is an intersection.
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Slope-approximation

While in the previous approximation we checked if the two general line segments corre-
sponding to two connections intersect, we will now look at the slopes of the two general
line segments. Two line segments with a near equal slope, are very unlikely to intersect,
as in this case they are almost parallel. Two line segments with a very different slope,
however, are more likely to intersect. Note that we cannot take the absolute difference
between the two slopes as this might give wrong results. Consider for instance a vertical
line and a line with a slope of, say, 10,000, they differ by more than any constant, while
in practice they will most likely not intersect. Therefore, we will compute the angle the
two general line segments make and proceed if this angle is larger than a given constant.
We compute the angle using the slopes of the line segments, hence the name slope-
approximation. The angle will be computed using the arctangent. This gives values
in the interval (—m/2,7/2), hence we need to give the angle by which the general line
segments have to differ in radians.

Now, pairs of connections will only be checked for intersections if the angle between
the two general line segments differ by more than the given constant. This constant can
be given by the user or a default-value of 7/4 is used. Note that 7/4 corresponds to an
angle of 45° between the two line segments.

Note that this will most likely not give all the intersections, as not all intersecting
line segments have to intersect at an angle larger than that constant.

3.3.8 Complexity of algorithm 2

Let us now determine the complexity of the two algorithms and the heuristics. For sim-
plicity we will refer to the modified Bentley-Ottmann-algorithm as the mBO-algorithm,
the smart brute force-algorithm will be referred to as SBF-algorithm and we will re-
fer to the heuristics as the con-approximation and the slope-approximation. We may
also abbreviate or omit the suffixes -algorithm and -approximation, given that it will
not lead to confusion. Note that both heuristics are algorithms on their own, however,
to stress that they are approximations of the SBF-algorithm, we will refer to them as
approximations.

Again we let n be the number of entries in the two arrays together and m the length
of the lists in each entry of the array. Note that m —1 equals the number of line segments
per connections and that it can change per entry, however, as we are considering the
complexity we may fix m as the typical or average length of the entries of the array. The
number of intersections will be denoted by k. Also for the smart brute force-algorithm
and its heuristics let ¢ be the number of blocks we divide the data set in.

Let us first consider the SBF-algorithm. First the data set is divided in multiple
blocks and on each block a smart brute force-algorithm is used. As we know that two
connections can only intersect if they are in the same block, we do see that we find all
intersections. It is however possible that some intersections our found multiple times.
However, this does not negatively influence our results. On average each block will
contain 7 line segments. Note that in practice the first and last blocks will have less
connections, while the middle blocks have more. Also note that some connections might
appear in multiple blocks. For each block this then leads to %%(% — 1) possible pairs of
connections. For each block we then determine if the two connections have overlapping
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rectangles and if they do, we determine if their line segments intersect. This last results
in O(m?) pairs of line segments. For each pair we have to do calculations taking O(1)
time. After the intersection points have been found, we still need to generate the output.
This comes down to creating new connections such that the intersection points are noted
as endpoints. Creating the new connections takes O(1) time and we have to do this O(k)
times. This results in a complexity of O(2(% — 1)m? + k) on each block. As we have ¢
blocks we see that in total we get a complexity of

2
0] (”m2 +k:> .
C

Note that ¢ is constant, hence we may neglect it in the consideration. Similarly, k is
smaller than n?m?, hence this may also be neglected. For the sake of comparison we
leave both k and c¢ in the above expression.

Let us now take a look at the complexity of the heuristics of the SBF-algorithm.
Note that for both approximations we again subdivide the data set in ¢ blocks. This
leads to an extra factor C% with the n?, however, it also gives a factor ¢, as we consider ¢
blocks. Resulting in total in an extra factor % For every pair of connections, the slope-
approximation has to do calculations to determine if the connections can intersect, this
takes O(n?) time. For pairs which might intersect given the bounding rectangles, we need
to do extra calculations corresponding to the slopes, this takes O(1) time however. Given
an arbitrary connection, we expect only a fraction, say u € [0, 1], of the connections to
have a slope which differs by more than the constant the user set with that of the
arbitrary connection. For those pairs we need to do the extra calculations taking O(m?)
time. For the other pairs we do not need to do the calculations. Afterwards, after the
intersections have been found, we need to generate the output. Note that even though
not all intersections are found, a portion of them is, say a fraction of A\ € [0, 1] of the
intersections is found. This gives a complexity of O(u"—jm2+)\k) = O(”—zmQ—i—k). Again,
c and k can be left out of the expression, but for the sake of comparison we will leave it.

For the con-approximation we have a similar situation. This time we check if the
general line segments corresponding to two connections intersect. If these general line
segments intersect, we will check if the individual line segments will intersect. This
again leads to n(n — 1)/2 pairs of connections we have to the bounding rectangles for
and also if the general line segments intersect. Only for a part of them, say p € [0,1],
we have to check the individual line segments resulting in an extra O(m?) calculations.
Afterwards we again have to generate the output, again only a fraction A € [0, 1] of the
output is found. This leads to (’)(u”—;mQ + \k) = O(”—me + k). Note the extra factor
% resulting from the usage of blocks.

Hence, we see that the SBF-algorithm and the slope- and con-approximation have
the same complexity. Notice however, just as for the first algorithm, that this does not
imply that the running times are the same. It only means that under growing input,
the running time of the algorithm will scale similarly.

Let us now consider the modified Bentley-Ottmann-algorithm and its complexity.
The mBO-algorithm works on line segments and not on connections as a whole. There-
fore we have to modify the input in such a way that we are left with only the line
segments. Both can be done using a for-loop over each connection and the piecewise
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linear line segments of each connection. This results in a term O(nm) for the complex-
ity. After that, we have to order our data according to the z-coordinates. This can be
done in O(nmlog(nm)). Note that we use nm here opposed to just n as we have to
consider every line segment and not every connection. After that the while-loop of the
algorithm starts. This amounts to processing all events and do calculations according to
the type of event. The starting points of line segments need to be inserted in the sweep
line. The time this takes scales according to the logarithm of the number of events in
the sweep line, which is bounded by O(log(nm)). Also some calculations have to be
done to see if we have a new intersection, which takes O(1) time. If we have to delete
a line segment from the sweep line, we have to locate it in the sweep line, then delete it
and then check for possible new intersections. The time this takes is also bounded by
O(log(nm)). For intersection points, we have to swap the corresponding line segments
in the sweep line and we have to report the intersection. This complexity is bounded
by O(log(nm)). Given that we have k intersection points, this leads to O(klog(nm)).
After all events have been processed, we have to generate the output. The time this
takes scales according to k. This leads to a complexity of

O ((nm + k) log (nm))

for the modified Bentley-Ottmann-algorithm. Note that we used the fact that some
complexities are bounded by O(log(nm)). This is due to the fact that the complexity
scales according to the logarithm of the size of the sweep line. However, the size of the
sweep line changes with every event. Therefore we use nm as the size of the sweep line
is bounded by nm, hence the complexity for these parts is bounded by O(log(nm)).

So, to conclude, we find the complexities as shown in Table [3.:20] Note that the
mBO-algorithm is the best in terms of the complexity compared to the others. Also
note that taking ¢ > 1 will not be beneficial as in this case most connections will be
considered multiple times. Note that this does not necessarily follow directly from the
complexities, but imagine the situation where we divide the data set in n blocks. Then
almost all connections will appear in multiples blocks. As already mentioned, having
the same complexity does not imply that the running times are equal.

H mBO-alg ‘ SBF-alg ‘ Con-approx ‘Slope—approx
Complexity | O((nm + k) log(nm)) | O(Zm? + k) | O(Cm? + k) | O(%m? + k)

Table 3.20: Complexities of the algorithms and heuristics for the second problem.

Recall that the modified Bentley-Ottmann-algorithm was output-sensitive. This
implies that for large values of k the complexity of the modified Bentley-Ottmann-
algorithm might blow up. In fact, if ¥ = ©(n?m?) the complexity of the modified
Bentley-Ottmann-algorithm will be O(n?m?log(nm)), which is even worse than the
complexity of the smart brute force-algorithm. Hence, in those cases the smart brute
force-algorithm is preferred in terms of complexities. See Figure [3.21] for an example of
a configuration of line segments for which n = 6 line segments result in k = 15 = ©(n?)
intersections. Note that given our setup such situations are highly unlikely.



3.4. ALGORITHM 3 69

(6-1)

Figure 3.21: Six line segments with 15 = 6T intersections.

3.4 Algorithm 3

The third problem revolves around connecting the cabinets with the fiber glass network.
Mathematically this means that given a graph and two points, not necessarily on the
graph, the two points have to be connected in the cheapest way possible. The cost of
a path is defined by two cost parameters. The first is the cost per distance to route
through the network, i.e., the cost per distance to go from one point in the network
to another point in the network. The second cost per distance is the cost associated
to connecting the points with the network. Note that the two costs are typically not
equal. Routing through the network uses already existing networks, pipes and trenches,
while connecting the cabinet to the network requires us to dig and create new trenches.
Therefore, in practice the cost per distance to connect the points with the network will
be much larger than the cost per distance to route through the network.

Also note that due to the two costs, the shortest connection point is not necessarily
the cheapest connection. This is also shown in Section In general however, the cost
of digging will be much larger than the cost of routing through the network. Hence, we
may assume that shortest connection point is also the point for which the connection has
minimum cost. Moreover, the shortest connection to the network is in general favored
over the least cost-connection as this is the easiest to realize, even though the possibly
higher costs.

The third algorithm uses a modified version of the first algorithm to determine points
in the network close to the points to connect and then uses Dijkstra’s algorithm to find
the least cost-path between the two points. Let us first discuss Dijkstra’s algorithm and
then explain how the third algorithm works.

3.4.1 Dijkstra’s algorithm

In 1959 an article by Edsger Dijkstra was published ([33]) in which an algorithm is
explained to find the shortest path between vertices in a weighted graph. A restriction
on Dijkstra’s algorithm is that all edges must have non-negative weight. A relaxed
version of Dijkstra’s algorithm is the Bellman-Ford algorithm ([34],[35]) which allows for
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negative weights and only requires the non-existence of negative cycles, i.e., no cycles
exist for which the sum of the weights is negative. We chose to use the algorithm by
Dijkstra as there will be no negative costs involved in our problem, so there is no use in
allowing them to exist. This will only give more complicated algorithms

During the algorithm we will distinguish two sets, one set X consisting of a partial
spanning tree and one set Y with nodes not yet in the tree. The tree is said to be
minimum spanning as it has minimum weight. Note that the two sets are disjoint.
Given two vertices v, w the cost of edge v — w is given by ¢(v,w). Let us now give the
pseudo-code of Dijkstra’s algorithm. The algorithm will give two outputs with which a
minimum spanning tree can be constructed, i.e., with which we can construct a spanning
tree such that the sum of the weights is minimal.

Algorithm 3.22 Dijkstra’s algorithm
Input: Connected graph G = (V, E) with weights ¢ given as weight matrix, source
node s
Output: d a vector with distances from the nodes to s, p a vector with for every
node its predecessor

Initialization: Initialize the distance d(v) to every node v at infinity and the
distance to the source node d(s) at zero. Set X =0,V = V.

while Y # () do
Choose the vertex v € Y such that d(u) = min,ey d(w)
Y=Y —{u}, X =X+ {u}
for all neighbours v € Y of u do
d(v) = min(d(v), d(u) + c(v,u))
end
Update the predecessor of u in p
end

Note that a vector with predecessors is enough to construct a spanning tree, as we
have a root node s and for every node we have the predecessor. The vector d then gives
the weight between the root node and every other node. Also note that the algorithm
finishes as the input graph is connected. Therefore, there is a minimum cost path
between every pair of nodes. The weight matrix is a matrix with on position (i, ) the
weight of the connection between nodes ¢ and j and zero otherwise. Note that in the
above d(v) is a tentative distance and is the sum of the weights of the edges in the path
between v and w. Finally note that the algorithm finds a minimum spanning tree. We
can modify the algorithm by replacing Y # ()” by "t ¢ X” in the while-loop to only
find the least cost-path between s and ¢t. The algorithm can also be modified to work for
disconnected sets, the while-loop should then be replaced by while not all neighbours
of points in X are in X. So, while the points in X still have neighbours which have not
yet been visited, we continue our search. Note that in this case not all points can be
reached, hence, the distance to those points equals infinity.

Let us now prove that the algorithm indeed gives a minimum spanning tree. In order
to do this let d(v) be the distance found by the algorithm and let §(v) be the minimum
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path-distance between s and v. Also let X C V be as in the algorithm. We will now
prove that the algorithm works by induction to the size of X.

Lemma 3.5. For allv € X d(v) = (v).

Proof. During the algorithm the size of X only grows, hence, the only time when | X| =1
is when X = {s}. By construction d(s) = 0 = d(s). Hence, for | X| = 1 the lemma holds.

Now suppose it holds for | X| = n, we now want to prove that it holds for | X| = n+1.
Let u be the last vertex added to X and set X’ = X — {u}. Note that we only need to
prove that d(u) = §(u) as for the other vertices, the situation did not change. So for the
other vertices v we already have d(v) = §(v).

By definition we already have d(u) < d(u), so let us now prove d(u) < 6(u). Suppose
P is the shortest path between s and u with weight w(P) = §(u). The path first uses
some vertices in X’ and then leaves X' in order to get to u (as u € X'). Let xy be the
first edge in P that leaves X'. Let w(P,) be the weight of the partial path between s
and x. Then

w(Py) + c(z,y) < w(P).

By the induction hypothesis we know that d(x) is the minimum weight of a path between
s and x. Hence, d(z) < w(P,) and

d(z) + c(x,y) < w(P).

We know that the node y is chosen by the algorithm, hence, d(y) < d(z) + c(z,y).
However, the algorithm chose u instead of y, therefore we have d(u) < d(y). If we now
use the above inequalities we get

d(u) < d(y) < d(z) +c(z,y) < w(Pr) + c(z,y) < w(P) = 0(u),
which completes the proof. Hence, d(u) = d(u). O

Note that we could also have started with X being empty for which the statement
trivially holds and proceed from there.

Theorem 3.6. Dijkstra’s algorithm finds the minimum spanning tree.
Proof. Apply the above lemma with X = V. O

Corollary 3.7. If Dijkstra’s algorithm gives (v1,...,v;,...,vy) as shortest path between
v1 and vy, then (v1,...,v;) is a shortest path between vy and v;.

This follows directly from Dijkstra’s algorithm.

3.4.2 Using Dijkstra to solve our problem

Recall that the third problem focuses on connecting a cabinet with the fiber glass net-
work. This comes down to connecting two points with each other, using a network. The
first point is the cabinet while the second point is the connection point with the fiber
glass network. As there are costs associated to making the actual connection, the best
option mathematically is not always the best option financially, i.e., the shortest path
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is not always the least cost-path. Note that the network used to connect the two points
does not necessarily need to be the fiber glass network. It is also possible to use a trench
network or a street network for instance.

The location of the cabinets and the location of the connection points with the fiber
glass network are fixed. However, we are free to choose the connection point of the
cabinet with a network, which then will be used to route to the fiber glass network. We
will make use of this fact in order to determine the best connection point. In Figure|3.23
we see the cabinet (denoted by ’cab’), the connection point to the fiber glass network
(denoted by ’fib’) and a (part of a) network (denoted by the blue lines). The red lines
indicate possible connection points for the cabinet with the network. The solid red
line cab-a indicates the shortest connection between the cabinet and the network. The
dotted red lines indicate other possible connections starting from the cabinet.

Figure 3.23: A network (blue), with the shortest connection to the cabinet (solid red)
and two other possible connections (dotted red).

The distance between the cabinet and point a is 1.6070 units. However, the distance
from the cabinet to point b equals 1.6076 units, which is only slightly larger. As we can
see in the figure, it takes longer to route from point a to the fiber point, than it takes
when the routing starts in point b. Therefore, when considering the costs, it might be
more beneficial to connect to point b for the least total cost instead of point a. Note that
for both options, we still need to connect the last part with the fiber glass network. We
have also included a direct connection between the cabinet and the fiber glass network.
This might be beneficial for some costs, in particular, if the cost of digging is smaller
than the cost of routing through the network, the direct connection will always be the
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connection of lowest cost. Note that in the above we have neglected the case that the
cheapest connection between a point and a line segment is in general not the shortest,
as proven in Theorem In the following we neglect this and we will treat the case
as if the shortest connection is also the cheapest. In practice such cases will also be
neglected and a choice for the shortest connection will always be made.

The first problem we face is that Dijkstra’s algorithm assumes we have a weight
matrix. This matrix serves as both an adjacency matrix and as a matrix containing the
weights of the edges. Position (i, j) denotes the length of the connection between i and j.
Note that (4, 7) is zero if there is no connection between the two vertices. In the second
algorithm we created an array of the network, but we still not have a weight matrix.
Therefore we have written a script which can generate both an adjacency matrix and a
weight matrix. The running time of this script will not be included in the running time
of the third algorithm as this is a feature of the network itself and it can be computed
once outside of the algorithm and then used in further calculations. As between most
nodes there is no connection, most entries in the weight matrix are zero and hence only
a few entries are of interest to us. Therefore, we will save the matrix as a sparse matrix,
that is, the entries in the matrix are saved using the corresponding indices. The zero-
entries will not be saved. Note that this saves space if the number of non-zero entries is
much smaller than the total number of entries in the matrix.

Even though sparse matrices use less space to save the matrices, they are not the
most useful structures when running the algorithm. Therefore, we will modify a MatLab
function by David Gleich ([36]) and use it to construct three vectors which carry all the
information stored in the sparse weight matrix.

Another problem we face is that the data set need not to be connected in general.
This can be due to the fact that the data set was generated by giving bounding z- and
y-coordinates. However, in some cases the data set leads to disconnected connections.
This is a restriction we have to deal with. Note that in practice there will not be isolated
connections. In our case the data set does not give all connections due to which it seems
like the network is disconnected. Consider Figure [3.24] for an example of a disconnected
network.

Note that in some cases it is clear with which connections the isolated parts should
be connected. However, in some situations this is not so clear. Note that detecting
isolated connections requires the algorithm to run at least once. Apart from that, there
is only a small fraction of the total connections which is isolated. Therefore, we will
neglect such cases and run the algorithm. If the shortest connection is attained at an
isolated component, we can use that to further route to the network or we can find
another connection point which might give a smaller total cost. Note that using this
isolated connection might require extra digging. See Section [3.4.3] and for a more
thorough analysis of such situations.

Given the weight matrix corresponding to the network, we can now determine what
the best option to connect to the network is. We first apply a version of the first
algorithm to determine a number of shortest connection points for both the cabinet and
the connection point with the fiber glass network (this number can be given as input).
For these connection points we need to determine the endpoints of the connection they
lie on. The two points to connect are added to the weight matrix with appropriate
distances to other points, this is dependent on the endpoints of the connections the
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Figure 3.24: An example of a disconnected network. This part is from the data set of
Venray.

points lie on. Dijkstra is then applied and we will get a least cost-path. Note that this
least cost-path consists of three parts, two parts for the digging from the point to the
network and one part for routing through the network. Together they give the total
least cost.

Algorithm 3.25 Find the least-cost path between two points using a network

Input: A network, the points to connect and the costs of digging and routing, =
the number of best connection points we want.
Output: The least cost-path between the two points

1: Compute cost of direct digging between the two points
Apply the first algorithm to find the x best connection points for both points with
the network

»

Determine the endpoints of the corresponding connections
Determine the costs corresponding to the endpoints

Deal with possibly isolated connections

Apply Dijkstra’s algorithm

Compute the path with the least cost

In Algorithm we can find the pseudo-code of the third algorithm. Using the
first algorithm we can find the z shortest connection points to the network. In order
for these results to make sense, we demand that the connection points are attained on
different line segments (not connections). Hence, every line segment can only give one
"shortest connection point’. Otherwise we can pick x — 1 points on the line segment
arbitrary close to the shortest connection point and we will, in total, have x shortest
connection points all attained at a single line segment. Demanding that the z points
are all attained on different line segments takes care of this problem.

Note that Line [5] of the pseudo-code reads Deal with possibly isolated connections.
It is possible that a connection point is connected with an isolated segment. These
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situations have to be dealt with. In Section 3.4.3] we will talk about the restrictions of
the algorithm and about ways to solve such situations. Note that if both points do not
connect with isolated connections, this part will be skipped in the algorithm.

Note that it is possible to redefine the costs. At this moment the costs per meter is
fixed. However, it might be possible that routing through the network costs more if the
routing takes longer. This can rather easily be implemented at the end of the algorithm.

3.4.3 Restrictions of the algorithm

Initially the algorithm would find the least cost-path between the two points, however,
under the assumption that we dig only two times, namely, once from the cabinet to the
network and once from the connection point to the fiber glass network to the network.
There are situations possible for which this is not the case and for which we want to
create new paths, i.e., for which we want to dig more than two times.

Consider as an example Figure[3.26 drawn from the Dutch city Venray. For simplicity
we have only considered the situation where we want to connect the cabinet (cab in the
figure) with an intermediate point (point 6 in the figure). In the actual algorithm, the
complete route is taken into account. As costs we have taken 25 per unit to dig and
3 per unit to route, given by cgy and c¢poute respectively. Point 1 yields the shortest
connection point and point 3 gives the connection point which gives the least cost-path.
The total cost of connecting with point 3 and routing to point 6 is

11.76 - Caig + 20.33 - Croute-

Figure 3.26: In solid red the least cost-path found by the algorithm: cab — 3 — 6. The
dotted red line shows a path of lower cost: cab -2 —4 — 5 — 6.

However, this is not the least cost-path. Namely, a path which has a lower cost
consists of digging to point 2, routing to point 4, digging to point 5 and routing to point
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6. In total this will give a cost of
7.84 - caig +9.22 - croute + 3.87 - caig +10.24 - croute = 11.71 - cgig + 19.46 - Croute-

Note that this situation has a lower cost for all possible non-negative costs c¢youte and
cdig- Hence, instead of digging to point 3 and routing to the network, it is better to dig
to point 2, route to point 4 and then create a new trench between point 4 and point 5.
Note that this is not necessarily the least cost-path as this is dependent on the actual
costs (consider ¢ oute = 0, then point 1 gives the least cost-path).

Associated with this is the fact that the original algorithm could not handle dis-
connected networks very well as Dijkstra will give a distance of infinity between two
nodes in two different connected components. In practice disconnected networks will
not happen. The fact that the data says the network is disconnected is a drawback of
the data set. Either a connection is denoted which does not exist or not all connections
are denoted in the data set. Solving this problem, results extra digging. Instead of the
standard dig-route-dig-connection, we can also dig to the isolated part, route to another
point in that part and then dig to the network. This then results in a dig-route-dig-
route-dig-connection.

Summarizing, there are two problems which needs further consideration. The first
is that in some cases it is cheaper to create new connections between two points instead
of routing through the network. The second problem is that the cabinet or the connec-
tion point to the fiber glass network can be connected with an isolated segment of the
network.

Solving the first problem is very hard. However, if we want to determine if digging is
a better option than routing, we can determine for every connection its length and the
distance between the two endpoints. If the associated cost of digging is smaller than the
cost of routing, it is better to create a new connection between the endpoints instead
of routing. However, this analysis should also be extended to groups of two or more
connections and consider if digging in that case is better or not. This can then further
be extended to the endpoints of the piecewise linear parts instead of the endpoints of
the connection as a whole and finally we can even look at intermediate points on the
line segments and connections. As we can see this problem becomes extremely complex
extremely fast. Therefore we will not consider this problem. We will only consider paths
in which we dig only at the beginning and at the end of the path.

An example of this problem was given in Figure [3.26] We saw that the path cab
— 2 — 4 — 5 — 6 was favored for some costs. This path was found using the graphical
representation of the network. However, writing an algorithm which could solve it would
be hard and would lead to complex algorithms.

The second problem can be solved in a few ways, namely:

1. Demand a connected network;

2. Before the actual algorithm, check for connectivity. Possibly connect the isolated
parts to form a connected network;

3. Neglect isolated parts;

4. Connect isolated parts only if they might be needed in the least cost-path.
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Note that the first option would solve this problem immediately, but also that this option
is not practical. Data sets need not to be connected. Both as we generate the data set
using minimum and maximum - and y-values and because in some data sets isolated
segments exist. This last problem can only be solved by removing isolated segments. An
algorithm was constructed which does remove isolated segments. In Section the
results of this version are compared with those of the algorithm which do not remove
isolated connections.

The second option is not practical as time will be spend on connecting isolated
segments which might not even be needed for the least cost-path. Furthermore, for
some isolated connections it is fairly straightforward to which segment they have to be
connected, however, there are also isolated connections for which it is very hard to see
with which connections we have to connect it. Let alone, to let the algorithm determine
with which connection we have to connect it.

The third and the fourth option are rather similar. In both cases we allow isolated
connections to exist. However, for the third option, we will neglect them if they show up
as a shortest connection point. As we considered multiple 'shortest connection points’
this will still give a path between the two points. The fourth option allows for con-
nection with isolated connections, however, in these cases we will do extra digging to
connect the isolated parts with the network. Of course this results in extra costs. Note
however that in most cases this will be cheaper than it is to dig to the network at once
without considering the isolated connections. In the last case, the algorithm will give a
notification if extra digging is required for the least cost-path. In Section we will
compare the different possibilities we have.

3.4.4 Generating results

The locations of the shortest connection points are generated in a similar way as we did
in the first algorithm, see also Section and Theorem [3.1] The output of Dijkstra’s
algorithm consists of a vector with the costs from the starting point to every other node
in the network and it gives a vector with the predecessor of each node. That is, if we
have a rooted spanning tree, Dijkstra gives for every node to which it is connected the
cost of the path and for every node, it gives the predecessor in that path. Note that the
spanning tree is rooted at the starting point, hence the starting point has no predecessor.

Note that Dijkstra’s algorithm works on the endpoints of the connections. However,
most connections from the cabinet or fiber glass network to the actual network happen
in the interior of a connection. Therefore, when the connection point is found, we
have to route to one of the endpoints of the connection. Using these endpoints we can
apply Dijkstra’s algorithm. When we have found the least cost-path however, this is
a path between the endpoints of the connections, while we were looking for the least
cost-path between the two points. Cost-wise this can be taken care of by adding the
already computed costs to connect the point with the connection and then route to the
endpoint. In order to denote the connection point correctly, we have added an extra
vector which took care of that. In the end this will give a vector which denotes the first
point, the connection point, the least cost-path between the endpoints, the connection
point and the second point. Note that the first and second point are the points we wish
to connect with each other. In the case that we have to create a new connection, this
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will also be denoted and we will give a notification to the user.

The least cost-path will be given as output. Furthermore we will give the least total
cost and the coordinates of the endpoints of the connections we use together with the
connection points.

3.4.5 Speeding up the algorithm

Their are a few possibilities to speed up the algorithm. The first is of course the ap-
plication of the heuristics of the first algorithm. However, in Section it is shown
that there either is no significant decrease in the running time or the accuracy does drop
significantly.

Dijkstra’s algorithm itself cannot be improved significantly in terms of its running
time and complexity. The version of Dijkstra’s algorithm we use, uses heap data struc-
tures due to which it is faster than the algorithm as original constructed by Dijkstra.
We can modify the input of Dijkstra’s algorithm such that the running time decreases.
This follows as the complexity of Dijkstra’s algorithm is dependent on the number of
nodes given as input (see also Section . As Dijkstra’s algorithm finds the shortest
path in a network, it will not consider nodes of degree one, i.e., it will not consider leafs,
unless one of the points is connected with a leaf. Therefore we can prune the network
and neglect the nodes of degree one with which the two points we are considering do
not connect.

In the algorithm this comes down to determine which nodes have degree one, de-
termine where the shortest connection points are for the cabinet and the fiber glass
network, find the endpoints corresponding to the connection points, neglect them in our
list of nodes with degree one and remove the resulting nodes from the weight matrix.

We can furthermore reduce the number of times we have to run Dijkstra’s algo-
rithm. Note that for both points we will find at most 2z endpoints of line segments
of connections. Therefore, there are at most 4x possibilities. However, instead of run-
ning Dijkstra’s algorithm 4z times, it is sufficient to run it only once if we add the two
points to the network with some extra connections. Dijkstra’s algorithm finds the least
cost-path between two points. So if we are given two endpoints of two line segments,
determine the least cost-path between these points and then add the costs for digging
and routing to those endpoints, we get a total cost of that path. However, if we add
the two points we are considering to the network, we can run Dijkstra on one of those
points. For each point we add extra connections between that point and the at most 2z
endpoints. The costs we give to these extra connections are the costs it would take to
dig and route from the point to the endpoint. Note that this will indeed give the least
cost-path. Also note that in this case we only have to run Dijkstra’s algorithm once.

The number of ’shortest distance’ (x in the previous sections) can also be used to
speed up the algorithm. As the shortest connection does not necessarily lead to the least
cost-path (see Figure for instance), we may need to consider multiple connection
points. Taking x = 1, forces the algorithm to take the shortest distance between the
point and the line and continue from there. Using larger values of x will possibly lead
to path of lesser cost. If = is taken very large, the running time is increased drastically.
This follows as in this case, most connection points of z will not be of interest. In the
analysis of the algorithms, we will consider different possibilities for .
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Another possibility to reduce the running time is restricting the total network to
a network which is of interest to us. Similar as pruning the network and neglecting
leafs, we will only consider as smaller part of the network. This part is determined
by the two points we are considering and connections which lie close to those points.
This reduced network is then given as input to the first algorithm which determines the
points in the network closest to the points we want to connect. Note that this might be
an improvement as less connections have to be considered. Also note that this requires
extra computations. The restriction of the network to a smaller network relies on the
bounding rectangles. This will make sure that all connections within a certain distance
to the points considered, will be taken into account.

As sketched there are a number of possibilities to reduce the running time of the
algorithm. In Section [£.3.1] we will compare both the running times and the results of
the different possibilities and we will make a decision on which we will use.

3.4.6 Complexity of algorithm 3

For the complexity of the algorithm we can look at the complexity of the individual
parts. Let n be the number of connections, m the typical number of line segments per
connection and let x the number of shortest connection points we will consider. In terms
of the first algorithm, = behaves similar as the number of active points k in Section [3.2.5]
As complexity for this part we therefore find O(nma). The points found all need to be
processed and the corresponding connection endpoints have to be determined. For these
points the length of the connection between the connection point and its endpoints has
to be determined. This is done using the line segments which make up the connection.
As we have x connection points, hence at most 2x endpoints and a maximum of m
line segments, this gives a term O(mx) to the complexity. Note that in the worst case
scenario, all these line segments are isolated, hence we need to apply the first algorithm
again, as this only gives an extra term in the O-notation, we may neglect it. Afterwards
we have to apply Dijkstra’s algorithm. In the worst case secanario we have to do this
2z times, that is, every connection point lies on a connection which has two endpoints,
resulting in 2x possible endpoints in total. Note that in most cases not all 2z endpoints
will be different.

Dijkstra’s algorithm has to be run only once as already mentioned. The algorithm
as originally constructed has a complexity of O(n?). This followed as for every vertex
we considered every other vertex not yet in the set and computed the distance to those
points. In the case of a dense graph (a graph with almost all possible connections
appearing) the complexity of Dijkstra will in fact be O(n?). However if we use a so called
heap structure instead of an unordered list of vertices, we can decrease the complexity.
A heap is a data structure similar to a Binary Search Tree, however, this time the key
of a node is always smaller than or equal to the key of its parent. Again we have n
vertices, however, now the time it takes to consider all other vertices is O(logn) (due to
the usage of heaps). This gives a total time complexity of

O(nlogn).

Note that the implementation we have used, uses the version of the heap structure, due
to which this complexity applies to our case. Also note that in the case of a dense graph,
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the usage of heap structures will result in a higher complexity and therefore possibly
a higher running time. Finally notice that there is no m in this situation, as only the
length of the connection as a whole is of interest and not the length of the piecewise
linear parts.

Keeping track of the least total cost and finding the shortest path between the two
points can all be done in O(n) time. In total this gives a complexity of

O(nmx +nm + nlogn +n) = O(nmzx + nm + nlogn).

Note that in general m < n, however for smaller networks the two can be similar.



Chapter 4

Results

Now that we have the algorithms, it is time to compare their results both in terms of
the running time and in terms of the accuracy. One has to be careful when comparing
the running times of the algorithms, as this depends on more than the algorithm alone.
When we run the algorithm on two computers such that the first computer can do twice
as many computations per time unit as the second one, then it is highly likely that the
algorithm will finish sooner on the first computer. Apart from the computer itself, i.e.,
the hardware, also the processes that are running on the computer can influence the
running times. Consider a computer with no processes running on the background and
a computer on which we run multiple programs at the same time. Then the algorithm
will most likely finish earlier on the computer with no additional processes running.

Let us now compare the results for the different algorithms separately. We are given
a few data sets with which we can run and test the algorithms. Some of these data sets
will be used in order to get the results.

Note that in the following, the running times shown are median running times over
a number of runs. This follows as the running times of the algorithm depend on the
hardware you are working with and on other processes running on the computer. Even
if, on the same computer, an algorithm is run twice directly after each other the running
times do not need to be equal. Using the median will nullify the effects from bad runs of
the algorithm. The reason we take the median instead of the average can be illustrated
with an example. Suppose we have an algorithm and let it run ten times. Of those ten
times, nine times the running time is around one second. However, one of the runs gave
a running time of eleven seconds. When taking the average, we end up with a running
time of two seconds, while we saw that one second gives a more realistic image of the
running time of the algorithm. The running time of eleven seconds could be explained
by other processes also running at the same time.

4.1 Algorithm 1

Let us compare the results of the first algorithm, the node-approximation and the cut-
approximation. In the following when we write cut-100, we mean the cut-approximation
where all parts of a connection longer than 100 meters are cut in smaller pieces until
the longest part is smaller than 100 meter. In the comparison we will consider the

81
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cut-approximation for multiple cut-values. One of which is rather small, one of which
can be viewed as normal and one relatively large cut-value. This last one is to check
whether the running time of the algorithm will tend to that of the node-approximation
if the cut-value becomes very large. But first we will compare the results of the node-
approximation with its vectorized version.

In Section we will generate some random data sets and let the algorithm run.
We will consider the running times for random data sets. Afterwards we will compare
a randomly generated graph with an actual data set and discuss their results in terms
of both the distance and the running time.

4.1.1 Further vectorization or not?

In this section we compare the results of the node-approximation and a further vectorized
version of the node-approximation. We have chosen to consider the node-approximation
as this was an algorithm we actually use, but it had the least subtleties in the vector-
ization. Recall that vectorizing means replace a calculation done by a for-loop with
a calculation using a vector (or more generally a multi-dimensional array). Both the
algorithm and the cut-approximation had some technicalities due to which it was harder
to vectorize them further.

In the following we refer to the vectorized version as the node3D-approximation,
since this version uses three dimensional arrays. We have compared the results and
the running times of both algorithms for different data sets. As expected the results of
both algorithms were equal. Therefore, we will only consider the running times in the
following. We will consider a few data sets and draw conclusions from thereon. Note
that we will only consider the running times of the algorithm itself, that is, we do not
write data to a file.

In Table 4.1 we see the running times of the algorithm for the first data set. We have
considered the Dutch city Venray. With only 3,365 connections and 55 active points,
we can regard this as a rather small data set.

Acceptation Algorithm
distance Node | Node3D
0 0.2856 | 0.2951
5 0.2835 | 0.2948

Table 4.1: Venray: Median running times of a hundred runs in seconds.

The table shows the median running times of a hundred runs of the algorithm. As we
can see the results found with the node-approximation and with its vectorized version
are similar, though the node-approximation is slightly faster. We also see that the
difference between the running times for the different acceptation distances is negligible.
This might follow from the fact that only a few active point have a distance smaller
than five meters to the network.

The second data set we have considered is that of the city Zwolle. Zwolle has almost
fifteen thousand streets and 110 active points, hence we can think of this set as being of
normal size. In Table we again see the median running times of a hundred runs of the
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algorithm. Note that the node-approximation is significantly faster than its vectorized
version, this holds for both acceptation distances.

Acceptation Algorithm
distance Node | Node3D
0 1.8296 | 2.2016
5 1.8011 | 2.1853

Table 4.2: Zwolle: Median running times of a hundred runs in seconds.

The last, and also the largest, data set we will consider is that of the Dutch city
Den Haag (The Hague), with almost 39,000 streets and 570 active points. In Table
we again see the median running times of a hundred runs of the node- and node3D-
approximation. We see that the percentage wise difference is smaller in this case than
in the previous. However, the vectorized version is still slower than the non-vectorized
version. The difference of the running times for the different acceptation distances is
again rather small.

Acceptation Algorithm
distance Node | Node3D
0 5.8225 | 6.4787
5 5.7350 | 6.4787

Table 4.3: Den Haag: Median running times of a hundred runs in seconds.

As we can see, the node-approximation is either as good as its vectorized version
or it is faster. This can be explained by the way the node3D-approximation works.
As all endpoints of the parts of a connection are considered at the same time, also all
calculations are done at the same time and we end up with a three dimensional array
with distances. As for each active point we need to know which endpoint gave the
shortest distance, we sort the array according to the distances and take the smallest per
active point. These distances are than compared with the optimal distances up until
then. We also us a function which finds unique entries in a vector. Using this function we
know which distances belong to which active point and to which part of the connection.
Both functions are combined to find the corresponding indices. However, both functions
also take relatively long. The sorting for instance takes O(klog k), with & the number
of active points. Recalling that this functions replaced a for-loop with complexity O(k),
we see that the complexity of the vectorized version becomes O(nmklogk). For small
data sets with only a small number of active points, this will not lead to big differences.
However, if larger data sets are considered, the node3D-approximation will run slower
than the node-approximation.

As we already mentioned, the distances found using the node-approximation and the
vectorized version were equal. Therefore we can base the choice of the version of the
approximation completely on the running time. We have seen that for some data sets
(those with a small number of active points and a small number of streets) the results
are near equal. However, if the number of active points grows, so does the difference of
the running times of both versions. The same holds if more streets are considered as we
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need to sort more vectors which takes longer. Taking these two points into account, we
advise to use the node-approximation as this is faster than the node3D-approximation.

Note that as the node3D-approximation was slower than the node-approximation,
as a consequence both the algorithm and the cut-approximation will not have a faster
vectorized version. This follows as the complexity and the number of cases we should take
into account is the smallest for the node-approximation. If vectorization does not lead to
improved results for the node-approximation, it will also not lead to improvements in the
case of the algorithm and the cut-approximation. The multiple cases which are possible
make the algorithm harder to vectorize. The cut-approximation has an extra for-loop
due to which it is even harder to vectorize. Therefore, we advise to not further vectorize
the algorithm and its approximations as this will most likely not lead to improved results
in terms of the running time.

4.1.2 Algorithm versus heuristics

Let us now take a closer look at the differences between the algorithm and its approx-
imations. We will compare the algorithm with the node-approximation and with the
cut-approximation for three different cut-values. One rather small value, one normal
value and a relatively large value. The normal cut-value will be in the order of the
cut-value used in the already existing tool built by TNO. We expect the running time of
the cut-approximation for the large cut-value to tend to that of the node-approximation.
We will also have to compare the distances found by algorithm with those found by the
approximations as they need not to be the same. Again we let the algorithm and its
approximations run a hundred times, both for an acceptation distance of zero and an
acceptation distance of five, and take the median of the running times afterwards. Those
will then be compared to each other. As cut-values we take 5, 15 and 100 meters. The
output will be compared to those of the algorithm with acceptation distance zero as this
gives the optimal distances. The same data sets as in the previous comparison will be
used this time. Note that the algorithm and the node-approximation will only give the
same result for an active point if the shortest distance is attained at an endpoint of a
piecewise linear part. The cut-approximation will then give the same result as well.

Note that higher cut-values can give better distances than smaller cut-values. For
higher cut-values most line segments will be cut in fewer, but longer parts. However,
more parts does not imply better results. Suppose we have a line segment going from
(0,0) to (100,0) and the optimum is attained at (0,51). Then the cut-50 approximation
will lead to two line pieces and fairly accurate results. The cut-51 approximation however
will give us three line pieces and less accurate results. However, in general a smaller
cut-value will lead to more accurate results.

First we will consider the city Venray, which has 3,365 streets and 55 active points.
The results for both acceptation distances were the same, therefore we have shown the
all results in Table[4.4] It turned out that for two active points the results were equal for
the algorithm and all approximations. We see that the results of the cut-approximation
tend to that of the node-approximation as the cut-value increases. The maximal error of
35,200 % for the node-approximation comes from a corresponding distance of 0.03 meter
for the algorithm and 11.91 meter for the node-approximation, which explains the high
percentage wise error. As expected the error in terms of the distance is relatively small
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when considering small cut-values. Note that the errors shown below are the difference
in the distances found by the approximations compared to the distances found with the
algorithm for the active points.

| Node | Cut-100 | Cut-15 | Cut-5
Max. % error (x100%) || 352.46 | 352.46 | 14.70 | 68.52

Avg. % error (x100%) 10.51 9.92 1.04 1.44
Max. error (m) 72.43 27.94 571 | 231
Avg. error (m) 13.95 10.49 1.32 | 0.30

Table 4.4: Venray: Results for both acceptation distances.

Let us now compare the running times of the algorithms and its approximations. In
Table we see the results found. Even though the results of the cut-5-approximation
are acceptable, its running times is far greater than that of the algorithm itself. Therefore
there is no use in using the cut-5-approximation. We see that the difference in running
times for the two different acceptation distances is very small. That is expected as
the results were equal as seen above. Only the node-approximation and the cut-100-
approximation give quicker results than the algorithm, however they give less accurate
results. In this case we suggest to use the algorithm with acceptation distance zero.

Acceptation Algorithm
distance Algl | Node | Cut-100 | Cut-15 | Cut-5
0 0.5883 | 0.2856 | 0.4797 | 1.7540 | 4.7767
5 0.5737 | 0.2834 | 0.4788 | 1.7295 | 4.6947

Table 4.5: Venray: Median running times of a hundred runs in seconds.

Let us now consider the city Zwolle again for acceptation distances zero and five. In
Tables and the results are shown. For only nine active points the algorithm gave
different results for the two acceptation distances. For two points the approximations
gave the same results as the algorithm. We see that again the cut-5-approximation
gives accurate, close to optimal, results, while the node-approximation and the cut-
100-approximation give far from optimal results. An average error in the distance of
10 meters is found for the node-approximation, which is a lot compared to the cut-
approximations.

| Node | Cut-100 | Cut-15 | Cut-5
Max. % error (x100%) || 131.52 | 77.65 | 25.80 | 4.96

Avg. % error (x100%) 5.97 4.37 1.02 | 0.26
Max. error (m) 102.17 38.95 579 | 1.86
Avg. error (m) 10.03 7.29 1.50 | 0.29

Table 4.6: Zwolle: Results for acceptation distance zero.

When comparing the running times of the algorithm with those of the approxima-
tions, we get Table As expected the running times for acceptation distance five
are smaller than that for acceptation distance zero. This is what we expected as some
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| Node | Cut-100 | Cut-15 | Cut-5
Max. % error (x100%) || 131.52 |  77.65 | 25.89 | 4.96

Avg. % error (x100%) 5.97 4.37 1.03 | 0.30
Max. error (m) 102.17 38.95 5.79 | 2.60
Avg. error (m) 10.03 7.30 1.51 | 0.37

Table 4.7: Zwolle: Results for acceptation distance five.

points need not to be taken into account after some iterations. However, the difference
is small, especially for the node-approximation and the cut-100-approximation. For the
other cases the difference is larger, but not significant.

Acceptation Algorithm
distance Algl | Node | Cut-100 | Cut-15 | Cut-5
0 3.94 | 1.82 2.65 6.85 | 17.60
5 3.68 | 1.80 2.63 6.73 | 17.04

Table 4.8: Zwolle: Median running times of a hundred runs in seconds.

As we saw in the two previous cases the algorithm with acceptation distance zero is
most favored above the other option. Let us now conclude by considering Den Haag.
For only 22 out of 570 active points the algorithm gave different results for acceptation
distances zero and five. As we can see in Table [4.9 and the results for both accep-
tation distances are near equal again. We do see that there are some percentage wise
errors which are very large. This is possible if the algorithm gives a fairly small result,
but the node-approximation gives a result of a few meters. Percentage wise this leads
to large results. We see that the maximal error in meters for the cut-5-approximation
becomes larger for an acceptation distance of five, while the other errors roughly stay
the same. For the percentage wise errors, we see that acceptation distance five gave dif-
ferent results for the cut-5-approximation. This follows as the distances were accepted
sooner, while an improvement would have been found if the calculations for that point
continued. The average errors do differ a bit for both acceptation distances, the percent-
age wise average errors are smaller for acceptation distance zero, than for acceptation
distance five, as expected.

| Node | Cut-100 | Cut-15 | Cut-5
Max. % error (x100%) | 432.00 | 409.42 | 178.56 | 130.60

Avg. % error (x100%) 11.55 7.94 2.46 1.10
Max. error (m) 108.35 38.13 6.60 2.23
Avg. error (m) 15.57 9.63 1.47 0.36

Table 4.9: Den Haag: Results for acceptation distance zero.

Let us finalize the analysis with the comparison of the different running times of the
algorithm and the approximations for this data set. The results can be found in Table
Again the results shown are the median running times of a hundred runs.

As expected the running times are greater than those of the previous data sets
considered. This has to do with the fact that this data set was larger. We do see
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| Node | Cut-100 | Cut-15 | Cut-5
Max. % error (x100%) | 432.00 | 409.42 | 434.07 | 434.07

Avg. % error (x100%) 11.55 7.95 3.12 1.85
Max. error (m) 108.35 38.13 6.60 4.06
Avg. error (m) 15.57 9.64 1.51 0.45

Table 4.10: Den Haag: Results for acceptation distance five.

Acceptation Algorithm
distance Algl | Node | Cut-100 | Cut-15 | Cut-5
0 9.8327 | 5.8225 7.8027 | 25.4626 | 65.6841
5 8.7423 | 5.7350 | 7.5712 | 23.0907 | 59.7484

Table 4.11: Den Haag: Median running times of a hundred runs in seconds.

the same things happening as before though. The cut-5- and cut-15-approximation
give running times longer than that of the algorithm, while the running time of the
cut-100-approximation tend to that of the node-approximation. Both the cut-100- and
the node-approximation are faster than the algorithm, however, as seen above, they do
give results far from optimal. The difference between the two acceptation distances is
larger than before. Given the running times we would suggest to use the algorithm with
acceptation distance zero. It is also possible to use an acceptation distance of five as
this still gives pretty accurate results, while being faster. However, this mainly depends
on the demands set by the user.

As for all three data sets the algorithm with acceptation distance zero gave the most
accurate results in reasonable time, we suggest to use the algorithm with acceptation
distance zero in all cases. We must make a small remark however, whether the algo-
rithm or an approximation is used and which acceptation distance is chosen depends
on the user. If speed is the main issue, while accuracy matters less, we suggest the
node-approximation with a larger acceptation distance. However, if accuracy is most
important, which it will be in most cases, we suggest to use the algorithm with accep-
tation distance zero. Note that using the cut-approximation is not favored as either
the running time is longer than the algorithm, or it is faster than the algorithm, but
slower and as accurate as the node-approximation. Thus using the cut-approximation
will not yield better results than the algorithm (or the node-approximation), both in
terms of the running times and in terms of the actual distances found. This also has
to do with the complexity of the cut-approximation. In Section we already saw
that the number of parts each edge is cut in, is of influence on the complexity. As that
number is inversely proportional to the cut-value, we see that smaller cut-values lead to
more computations and hence lead to longer running times.

An explanation for the small differences between the different acceptation distances
in the results can be explained by the way the algorithm is set up. We have constructed
the algorithm, and consequently also the approximations, in such a way that only after
the calculations for a connection have finished, there will be checked if there are distances
below the acceptation distance. This means that if in the first part of the connection
a distance is found which is below the acceptation distance, then the other parts of
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the algorithm are still considered. We now see that this can only go wrong if there
are multiple connections which have a distance to the active point smaller than the
acceptation distance. This typically can happen at points where connections intersect.
The main difference however is that in further calculations the point is not further
considered. Hence, the running time decreases.

We have compared the algorithm with its approximations, let us now compare the
algorithm we have constructed with the already existing tool built by TNO. The program
uses a cut-10-approximation similar to our cut-approximation. As we have seen above
both the cut-5- and the cut-15-approximation took longer than the algorithm and gave
less accurate results, therefore we conclude that also the cut-10-approximation will take
longer than the algorithm and will give less accurate results. Therefore we suggest to
use the algorithm in the program instead of the currently used cut-10-approximation.

4.1.3 The results for random graphs

Instead of the result found for the Dutch cities shown in the previous section, we can
also construct random graphs and analyze the results for these data sets. Instead of
creating arbitrary random graphs, it is also possible to derive random graphs from real
data sets. Both will be done in the following.

First we will consider the behaviour of the algorithm as the size of the input grows.
We hope to be able to say something about the scaling of the running times of the
algorithm. We will do this using random graphs, i.e., we will randomly generate a data
set and use that as input for the algorithm. We use random data sets as this way it is
easier to let the size of the data set grow. After this, we will consider random data sets
derived from real ones. That is, we will use the endpoints of the real data set, but the
connections will be random.

As seen in Section the data sets derived from street patterns were setup in
a certain way. It was for instance not possible for two connections to intersect other
than in their endpoints as this would lead to an extra node in the network. If random
connections are considered there will most likely be intersecting connections. Another
difference is that for the real data sets each connections was subdivided in smaller
piecewise linear parts. For the random data sets there will be no such subdivision of
connections. Another difference is that for real data sets two points close to each other
are more likely to be connected than two points further apart, for random graphs this
does not need to hold.

As we set up the random data sets such that each connection is a straight line,
not subdivided in smaller parts, this will have some consequences for the behaviour of
the algorithm and the approximations. Checking the different parts each connection is
divided in reduces to checking only one part, namely the connection itself. Note however
that the node-approximation only checks for the endpoints of the line segments. This
implies that the results will most likely differ a lot from that of the algorithm. Another
thing to note is that the running time will be slightly lower compared to those of real
data sets of the same size as the connections are not subdivided in multiple smaller
parts.
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Behaviour of the algorithm given scaling input

We want to say something about the behaviour of the running times of the algorithm if
the input changes in size. As mentioned in Section the complexity of the algorithm
is O(nmk) with n, m and k defined as before. This implies that the running time of the
algorithm will increase with a factor if the input grows with a (possibly different) factor.
So considering more connections or more active points will result in longer running
times. In order to say something about the behaviour of the running times we will first
consider four random, but special cases. These data sets are generated using a random
generator in MatLab.

e 25,000 streets, 500 active points;

e 250,000 streets, 500 active points;
e 25,000 streets, 5,000 active points;
e 250,000 streets, 5,000 active points.

As we see that there is a scaling factor of ten in the above cases, we expect the running
time of the algorithm to also increase according to a factor. For the analysis we will
use the algorithm together with three different acceptation distances, namely 0, 5 and
10. Afterwards we will test the limits of our algorithm as we will increase the number
of streets and the number of active points even further.

The analysis will be done both for the algorithm and the node-approximation. Even
though both have the same complexity, they may scale differently. We will not consider
the cut-approximation in the following. For small cut-values the running times were
worse than that of the algorithm, while for large cut-values, they were larger than the
running times of the node-approximation. Apart from that, the length of the connections
can be higher for the random data sets than for the real data sets. Resulting in even
worse results for the cut-approximation.

For the four possible cases mentioned above we found running times as shown in Ta-
ble The first thing we notice is that the running times for the node-approximation
are near equal for all acceptation distances. This might seem strange at first, but recall
that the node-approximation only checks for the distance between the active point and
the endpoints of the line segments. As the line segments are not subdivided in smaller
parts, there are only two points for every line segment to check. The probability that
the distance is then smaller than five or ten meters is small. Therefore even for higher
acceptation distances, the node-approximation has to check every line segment for al-
most all active points. We do see that for acceptation distance zero the running time
for the algorithm is longer than for the node-approximation. This is as expected, as we
have seen this for real data sets as well.

We see that there is some scaling factor between the different data sets. For ac-
ceptation distance zero this is approximately five and ten for increasing the number of
active points and the number of streets by a factor ten, respectively. For the node-
approximation these scaling factors are approximately seven and eight. Note that there
are also some scaling factors for the other acceptation distances, but these are harder to
draw conclusions from as no line segment is subdivided in smaller piecewise linear parts,
which could heavily influence the results, particularly for the node-approximation.
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Data set Algl Node
# streets | # active Acceptation distance Acceptation distance
points 0 5 10 0 5 10
25,000 500 5.10 5.01 4.89 3.09 3.07 3.06
25,000 5,000 25.57 7.54 6.12 | 22.75 | 22.68 | 22.62
250,000 500 47.17 | 45.61 | 39.46 | 25.31 | 25.30 | 25.30
250,000 5,000 || 198.43 | 147.83 | 119.71 | 185.47 | 184.54 | 183.92

Table 4.12: Running times for random data sets in seconds.

Let us now increase the number of streets and the number of active points even
further and see what happens with the running times of the algorithm. Again we
will consider the algorithm and the node-approximation. We will consider acceptation
distances zero and five, as we had done for the real data sets.

In Table we find the results for the larger data sets. With Alg1-0 the running
times for the algorithm for acceptation distance zero are meant, the meaning of the
others follow accordingly.

# streets | # active points || Algl-0 | Algl-5 | Node-0 | Node-5
25,000 50,000 236 225 169 168
250,000 50,000 2,064 | 1,461 1,649 1,634
2,500,000 500 346 276 299 293
2,500,000 5,000 2,421 | 1,098 2,210 2,031
2,500,000 50,000 || 23,021 | 11,069 | 22,517 | 22,061

Table 4.13: Running times for large random data sets in seconds.

Again we see that the node-approximation has a shorter running time than the
algorithm for acceptation distance zero. However, as discussed before, in the current
setup the node-approximation gives a somewhat twisted result opposed to the real data
sets. This also explains the differences when acceptation distance five is used. For the
algorithm we see that this does lead to decreased running times. However, the node-
approximation gives roughly the same running times for both acceptation distances. For
some data sets this even leads to longer running times for the node-approximation than
for the algorithm if larger acceptation distances are used. Note that this is partially a
results of our setup. This time we find scaling factor around ten for the algorithm. Both
for an increase of the streets by a factor ten and for an increase of the active points by
the same factor. For the node-approximation we again find scaling factors around seven
and eight, respectively.

Note that the running times for the largest data set are extremely large. With a
running time of nearly six and a half hours this is not a calculation one would like to
do several times in a row. However, the scaling of the running times still shows a linear
scaling with respect to the number of streets and the number of active points. Thus,
if the input size would be increased even further, the running time would not blow up
quadratically or worse, but the running time would increase linearly instead.

One way to take care of the large running times for the largest data sets is to split the
very large set in multiple smaller data sets. Consider for instance a data set of 2,500,000
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streets and 5,000 active points. It will be more efficient to split the data set in ten smaller
sets of (approximately) 250,000 streets and 500 active points and do the calculations for
each set separately. This will lead to a total running time of approximately 500 seconds,
while doing the calculations for the complete set takes almost 2,500 seconds.

Following this we see that using such large data sets will not be of practical use. In
addition it is highly unlikely that we encounter such data sets. The largest data set we
have considered was that of Den Haag, which ’only’ had around 40,000 streets and 500
active points.

Semi random data sets compared to real data sets

To conclude the analysis of the first algorithm we will compare semi random data sets
with real data sets. In order for the comparison to make sense, we construct a random
data set based on a real one. Hence the name semi random data sets. We set up the
semi random data set using the endpoints of the connections of the real data sets. The
connections however will be made randomly. The number of connections will be the
same for the random data set and the real data set. Also the coordinates of the active
points will be the real coordinates. Those will not be randomly generated.

We will again consider acceptation distances zero and five and we will compare both
the running times and the distances found. Again only the algorithm and the node-
approximation will be considered as the running times of the cut-approximation are
longer than that of the algorithm and the node-approximation for the various cut-values.

We first considered the city Den Haag. Let us first compare the results in terms of
the distances. In Table [4.14] we have shown the distances found for the various active
points and compared those with the distances found by the algorithm for acceptation
distance zero. With DH-5 we mean the results for Den Haag with acceptation distance
five compared to those of acceptation distance zero and with Rand-0 and Rand-5 we
mean the results compared to those of the random data set for acceptation distance zero
and five respectively.

| DH-5 | Rand-0 | Rand-5

# smaller distances 0 557 402
# larger distances 45 13 167
# equal distances 525 0 1

Average distance 7.76 0.20 2.54

Table 4.14: Den Haag: Distances found for the different data sets compared to that
found by the algorithm for acceptation distance zero. The results are in meters.

Note that we have not compared the results for the node-approximation in the above.
We have skipped these results as the distances found this way are always longer than
those found with the algorithm. As we only check for the nodes, the results differ even
more due to our setup. We see that for DH-5 there is no active point which has a smaller
distance than found with the algorithm. This is of course as expected. For the random
graph this is different. Most of the active points have a smaller distance to the random
graph than they have to the real data set, which explains the difference. While for the
real data set the active points have an average distance of 7.63 meter to the network,
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for the random data set this is 0.20 meter. Note that for acceptation distance five there
is an active point with equal distance as for the algorithm. This distance was attained
at a node, thus not at the interior of the line segment.

The difference between the average distance between the active points and the net-
work for both data sets might be explained by the length of the connections. Note that
for the real data set, the shortest distance is probably attained at a line segment between
two nodes which are close to the active point. This has of course to do with our setup.
For the random data set, even if two points are far apart, their connecting line might be
close to an active point. Therefore, let us consider the typical length of the connections,
both for the real data set and for the semi random data set.

In Table we have shown the minimum, maximum and average difference of the
x- and y-coordinate of the two endpoints of the connections. This is also done for the
distance between the two endpoints. This is done for both the real data set and the
random data set.

Den Haag Random
Ax Ay Distance Ax Ay Distance
Maximum || 5,058.67 | 4,863.57 | 7,017.44 | 19,352.02 | 11,769.59 | 21,017.02
Minimum 0.14 0.09 6.80 0.05 0.06 13.11
Average 67.88 67.09 100.94 | 4,585.02 | 3,303.59 | 6,201.02

Table 4.15: Den Haag: Length of the connections and differences in z- and y-coordinates
in meters.

Note that the table does not say anything about individual connections, but it says
something about the average connections. We do see that for the real data set of Den
Haag the average street length is around a hundred meters. For the randomly generated
data set this is more than six kilometers. The same behaviour is observed for the minimal
distance and the maximal distance of the connections and the differences between the z-
and y-coordinates. Note that the fact that the minimum distance between two points for
the random data set is larger than the minimum distance for the real data set supports
our claim. This also explains why there are that many active points with a smaller
distance to the randomly generated data set than to the real data set. Let us finalize
this observation for Den Haag by considering the running times. In Table we can
see the running times for the different possibilities.

| Algl-0 | Algl-5 | Node-0 | Node-5
9.34 8.30 5.60 5.50

7.48 3.42 5.02 4.98

Den Haag
Random

Table 4.16: Den Haag: Median running times of a hundred runs in seconds.

The results we see are in accordance with those shown in the previous tables. As the
length of the streets is longer for the random data set, active points are likely to be closer
to the random network than to the real data set. Which explains the differences between
the two data sets for higher acceptation distances. The difference between the results
for acceptation distance zero can be explained by the fact that the random data set was
constructed in such a way that all connections were only straight lines. This opposed
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to the real data set where some connections were subdivided in smaller piecewise linear
parts. This also supports the fact that for the node-approximation, there is only a small
difference for both acceptation distances.

Let us finish with a similar observation, but this time for the data set of Venray
and a randomly generated data set on the endpoints of connections of Venray. In Table
417 we show the results of the comparison of the results found. We have compared the
distances found for the active points using the algorithm for both data sets. The results
are compared with those for acceptation distance zero for the real data set. Note that
the table shows a similar behaviour as for Den Haag.

H Venray-5 | Rand-0 | Rand-5

# smaller distances 0 50 42
# larger distances 1 5 13
# equal distances 54 0 0
Average distance 8.81 1.39 2.85

Table 4.17: Venray: Distances found for the different data sets compared to that found
by the algorithm for acceptation distance zero. The results are in meters.

Again we have not included the observation for the node-approximation as all dis-
tances found using the node-approximation will be larger than those found with the
algorithm. We see that of the 55 active points, 54 have equal distance to the network
for acceptation distance zero and five. Again we observe that for most active points the
distance to the random network is shorter than to the real network. Also the average
distance the active points have to the network is different for the real data set and for
the random data set. For acceptation distance zero we found an average distance of 8.79
meter for the real data set. For the random data set this is 1.39 meter. Again this will
most likely have to do with the length of the connections. However, let us first illustrate
the situation. In Figure and Figure 4.19| we see the networks we are considering.
In the first figure we clearly see a street pattern corresponding to Venray, while in the
second no such pattern can be observed. We do see that especially the middle of Figure
[4.19]is dense. Towards the edge of the data set we see that less connections appear com-
pared to the real data set. Note that both observations support the fact that shorter
distances are found for most active points, as most active points lie around the center
of the data set. For active points near the edges of the data set, it is more likely to
encounter larger distances in the semi random data set than in the real data set.

Let us now take a look at the typical length of the connections of the two networks.
We do this in the same way as above. We consider the difference in z- and y-coordinate
of the endpoints of each line segment, and we compute the distance between endpoints
of the connections. The results for Venray and its randomized data set can be found in
Table[1.20f We see that the typical distances for the real data set are smaller than those
of the random data set. This has of course to do with the fact that in the real data set
two points close to each other are more likely to be connected than two points further
apart. For the random data set this is of course not the case. Two points close to each
other are equally likely to be connected as two points further apart.

Let us finalize this section with a comparison of the running times for both data sets.
Again this will be done for both the algorithm and the node-approximation and for both
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Figure 4.18: Venray.

Figure 4.19: Venray, randomly generated.
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Venray Random
Ax Ay Distance Ax Ay Distance
Maximum || 4,070.23 | 2,135.71 | 4,401.99 | 10,103.61 | 6,428.11 | 10,635.94
Minimum 0.08 0.05 6.88 3.25 0.92 53,29
Average 92.88 86.17 141.86 | 2,056.39 | 1,328.08 | 2,656.90

Table 4.20: Venray: Length of the connections and differences in z- and y-coordinates
in meters.

an acceptation distance of zero and an acceptation distance of five. The running times
can be found in Table [£.21]

Data set H Algl- 0 Algl 5 ‘ Node-0 ‘ Node-5
Venray 0.59 0.58 0.29 0.29
Random 0.43 0.37 0.23 0.22

Table 4.21: Venray: Median running times of a hundred runs in seconds.

We see that the results are in accordance with the previous observations. The running
times for Venray are close to each other for all acceptation distances. This has to do
with the fact that only a few active points do not need to be considered after some
iterations due to the acceptation distance. However, this means that most points are
considered in every iteration, therefore only a small decrease in running time is observed.
As already mentioned, the semi random data set was constructed in such a way that
every connection is a straight line. This opposed to the real data set where a connection
can be subdivided in smaller piecewise linear parts. This explains the results and the
differences found between the running times. Also the fact that the average distance of
connections of the random data set is larger than that of the real data set lead to minor
differences in the running times.

To conclude, we see that randomly generated data sets give distances between the
network and the active points which are in general smaller than those of the real data
sets. For larger acceptation distance this results in a decrease in running time. We also
see that the fact that the connections which were made randomly resulted in longer
connection for the semi random data sets compared with the real data sets. We saw
this in Table [4.15 and [£:220] Figure [4.18] and [£.19] support this observation. Thus the
fact that the real data sets have in general shorter connections results in longer running
times than for random data sets.

To conclude, our algorithm does also work for random data sets as we expected.
However, the real data sets we have considered have some properties which random
data sets do not need to have. The main property being that no two edges can intersect
other than at their endpoints. This then results in shorter connections than for the
random case. For acceptation distance zero, the difference between the running times
of both data sets is small. The difference follows most likely from the fact that no
connection was subdivided in smaller linear parts for the random case. For higher
acceptation distances, the running times for the random data set decrease significantly,
while for the real data set a smaller decrease is observed. This has to do with the fact
that most active points have a smaller distance to the random network than to the real



96 CHAPTER 4. RESULTS

network. This again follows from the restrictions we have for the real network.

4.2 Algorithm 2

Let us now compare both algorithms and the heuristics with each other. This will be
done both in terms of the results found and in terms of the running times. We will only
denote the number of intersections found and the resulting number of streets. Recall
that two intersecting line segments result in four non-intersecting line segments. We
again have considered different data sets and we will draw conclusions from there on.
First we will consider if it is efficient to subdivide the data sets in multiple smaller data
sets (blocks) in the smart brute force-algorithm. After that we will compare the modified
Bentley-Ottmann-algorithm with the smart brute force-algorithm and its heuristics. We
will conclude this section with an analysis for random graphs.

4.2.1 Subdivide the data set in smaller blocks or not?

Let us first look if it is beneficial to subdivide the data set in smaller blocks. We have
done this in the smart brute force-algorithm, let us now determine if is is beneficial and
if so, what number of blocks is recommended. To do this we will subdivide the data set
in 5, 20, 100 and 500 blocks. Note that not subdividing the data set in multiple blocks,
leads to the usage of 1 block. For each number of blocks, we can do our analysis. In
all runs we saw that the results found were equal for the different number of blocks.
Therefore, we can draw a conclusion solely based on the running times. Note that in
the modified Bentley-Ottmann-algorithm, we did not subdivide the data set in smaller
blocks. We will also consider the running times for this algorithm in order to support
our claim of not subdivide the data sets in the modified Bentley-Ottmann-algorithm.

The first situation we will consider is that of the Dutch city Venray. We will consider
a data set derived from a street network with 2,212 connections and a data set derived
from a trench network with 7,589 connections. The running times for the smart brute
force-algorithm and the modified Bentley-Ottmann-algorithm are shown in Table
While for the first problem we took the median over a hundred runs, we now take the
median over twenty runs. This is due to the time the algorithms take.

| 1 block | 5 blocks | 20 blocks | 100 blocks | 500 blocks
63.37 | 3428 29.87 30.19 71.81
1239 | 14.32 17.13 31.97 67.97

Smart brute force
Mod. Bentley-Ottmann

Table 4.22: Venray: Median running times of twenty runs in seconds.

For the smart brute force-algorithm we see that the use of blocks does decrease the
running time if only a few blocks are used. However, if we subdivide the data set in
a large number of blocks (e.g. 500) we see that the running time starts increases. In
fact, the running time when using 500 blocks is longer than the running time when the
data set is not subdivided in smaller blocks. This is most likely due to the fact that
for this number of blocks, many connections appear in multiple blocks. Hence, they
have to be checked multiple times. Moreover, the extra calculations done in order to
construct the blocks take longer in this case. So we see that for this data set the usage
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of blocks is preferred if we subdivide the data set in 20 to 100 blocks. For the modified
Bentley-Ottmann-algorithm, we see that the running time is lowest when the data set is
not subdivided into multiple smaller blocks. A possible explanation can be the fact that
the modified Bentley-Ottmann-algorithm does not check every pair for an intersection,
but only the line segments which are neighbours in the sweep line. Hence, doing the
extra calculations to subdivide the data set in blocks will only increase the running time.

Let us now consider the next data set, namely that of the Dutch city Tilburg. The
street network consisted of 8,523 connections, while the trench network consisted of
39,594 connections. The results we found for this data set can be found in Table
We again used the same number of blocks and again we took the median running times
of twenty runs.

| 1 block | 5 blocks | 20 blocks | 100 blocks | 500 blocks
Smart brute force 1,232.26 303.32 248.46 157.27 242.43
Mod. Bentley-Ottmann || 46.21 |  58.80 88.44 158.27 292.98

Table 4.23: Tilburg: Median running times of twenty runs in seconds.

Again we see that the usage of blocks is preferred over using no additional blocks for
the smart brute force-algorithm. However, we do see that in this situation subdividing
the data set in a hundred blocks is more beneficial than subdividing it in twenty blocks.
This is different from what we found for Venray, however, the running times for twenty
blocks and hundred blocks were very similar for Venray. We again observe that the
running times for the modified Bentley-Ottmann-algorithm are the lowest when the
data set is not subdivided in smaller blocks. We also observe that, as was the case for
Venray, if the data set is subdivided in many blocks, the running time of the modified
Bentley-Ottmann-algorithm will surpass that of the smart brute force-algorithm.

Let us finalize this analysis by considering the Dutch city Almere and its surround-
ings. The area we are considering consists of 12,060 streets and 27,835 trenches. In
Table the results found are shown.

| 1 block | 5 blocks | 20 blocks | 100 blocks | 500 blocks
1,572.87 | 553.79 223.00 135.79 224.25

Smart brute force

Mod. Bentley-Ottmann 43.16 100.37 121.16 122.24 279.92

Table 4.24: Almere: Median running times of twenty runs in seconds.

Again we see that subdividing the data set in smaller blocks is beneficial for the
running time in the case of the smart brute force algorithm. We also see that in these
cases the best number of blocks to subdivide the data set in, lies around a hundred
blocks. In all cases considered, more blocks resulted in more connections appearing in
multiple blocks and extra calculations to subdivide the data set in these multiple blocks.
If an extra block leads to only a small decrease in the number of pairs we have to check,
it might be not beneficial with respect to the extra calculations we have to do.

Note that these cases do not prove that a hundred block is the optimum number of
blocks to subdivide the data set in. In fact, it will be very hard to determine the optimal
number of blocks to subdivide a given data set in. This number can differ from one data
set to the other. This again has to do with the gains of using more blocks compared to
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the extra calculations needed to divide the data set in these blocks. Moreover, even if two
data sets have the same number of connections, this does not imply that the optimum
number of blocks is equal for both. This has to do with the way the connections are
clustered within the data set. If all connections are spread uniformly over the interval,
subdividing the data set in blocks will be much more beneficial opposed to when almost
all connections are clustered in a small region.

To conclude, we see that for all three data sets, subdividing the data sets in multiple
blocks is beneficial to not subdividing the data set. Hence, supporting our claim of
doing so for the heuristics as well. The number of blocks to divide the data set in,
lies around a hundred. Therefore, in the following we will subdivide the data sets in
75 blocks and in 125 blocks and then do our analysis. Note that only for the smart
brute force-algorithm and its heuristics we will subdivide the data set in blocks. For
the modified Bentley-Ottmann-algorithm we saw that such subdivision had a negative
influence on the running time.

4.2.2 Modified Bentley-Ottmann versus smart brute force

We will compare the modified Bentley-Ottmann-algorithm with the smart brute force-
algorithm and its corresponding heuristics. For the heuristics we will also look at the
number of intersections found as they not necessarily find all intersections. Again we
have considered different data sets and for every region considered, we have taken both
the street pattern and the trench pattern. This is due to the fact that we need two
data sets as input. Also note that for the block-approximation we can subdivide the
data set in multiple smaller blocks, however this number is not fixed. Note that in the
previous section we found that subdivide in a hundred blocks was optimal for the data
sets considered. We will choose one value which is slightly smaller and one value slightly
larger than hundred. That way we can better observe the behaviour of the running
times around this value. Now let the block-number be the number of blocks the data
sets are subdivided in, as block-numbers, we will use 75 and 125.

In Section we introduced abbreviations for the algorithms and the heuristics.
As already mentioned, we use mBO-alg, SBF-alg, con-alg and slope-alg as abbreviations
for the different algorithm and approximations. Note that for the slope-approximation
we considered the slopes of the two general line segments. We would only check if
the corresponding two connections intersect if the corresponding slopes differ by more
than a constant. In the following we will consider two constants, namely /3 and 7/6,
corresponding to an angle of 60° and an angle of 30°. We will denote this as slope-60-alg
and slope-30-alg respectively.

Let us first consider the city Venray again. Again we have two data sets, a street
network with 2,212 connections and a trench network with 7,589 connections. Let us first
consider the number of intersections found by the modified Bentley-Ottmann-algorithm,
the smart brute force-algorithm and its approximations. Note that we will not consider
multiple block-numbers as the results for the different block-numbers are equal. In Table
we find the number of intersections found for Venray.

We see that the approximation-algorithms find around half of the intersections. We
do see that the slope-30-approximation finds more intersections than the slope-60 does.
However, only a few more intersections (ten percent of the total intersections) are found.
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7,849 7849 | 4,140 4,487 3,709
100% | 100% | 52.74% 57.17% 47.25%

# intersections found

H mBO-alg ‘ SBF-alg ‘ con-alg ‘ slope-30-alg ‘ slope-60-alg
Percentage of total

Table 4.25: Venray: Number of intersections found.

Let us now consider the running times. In Table we see the running times found.
For completeness we also gave the running times of the smart brute force-algorithm and
its approximations if only a single block is used and the running times of the modified
Bentley-Ottmann-algorithm when multiple blocks are used.

Block-number H mBO-alg ‘ SBF-alg ‘ con-alg | slope-30-alg | slope-60-alg

1 12.66 59.15 45.96 53.77 50.14
75 25.58 28.83 9.07 15.21 11.34
125 31.59 46.67 11.17 16.66 11.87

Table 4.26: Venray: Median running times of twenty runs in seconds.

We do see that the running time of the heuristics with block-number 75 or 125
is shorter than that of the modified Bentley-Ottmann-algorithm with block-number 1.
However, as we saw in Table [£.25] the results of the approximations are far from optimal.
With only a slightly longer running time, the modified Bentley-Ottmann-algorithm gives
far better results. We also see that the smart brute force-algorithms takes longer than
the modified Bentley-Ottmann-algorithm. This is of course as expected. For this data
set the modified Bentley-Ottmann-algorithm is preferred.

Let us now again consider the city Tilburg. Recall that we had 8,523 connections
in the street network and 39,594 connections in the trench network. The number of
connections found for this data set can be found in Table while the running times
can be found in Table [£.28]

H mBO-alg ‘ SBF-alg ‘ con-alg ‘ slope-30-alg ‘ slope-60-alg
# intersections found 28,086 | 28,086 | 17,425 19,149 16,735

Percentage of total 100% 100% | 62.04% 68.18% 59.58%

Table 4.27: Tilburg: Number of intersections found.

Block-number H mBO-alg ‘ SBF-alg ‘ con-alg | slope-30-alg | slope-60-alg

1 43.82 998.10 | 927.88 930.08 941.34
75 169.54 124.70 61.90 89.80 78.83
125 181.41 121.97 50.29 80.68 68.01

Table 4.28: Tilburg: Median running times of twenty runs in seconds.

Again we see that the modified Bentley-Ottmann-algorithm finds all intersections.
The approximations do find more intersections than they did for the previous data set,
however, still only sixty to seventy percent of the intersections are found. We also
see that the modified Bentley-Ottmann-algorithm is the fastest among the algorithms
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tested. While for the previous data set, the approximations of the smart brute force-
algorithm were faster than the modified Bentley-Ottmann-algorithm, for this data set
this is not the case. This also follows from the complexity as already discussed in
Section[3.3.8] Again we see that subdividing the data set in smaller blocks has a negative
influence on the running times of the modified Bentley-Ottmann-algorithm. The running
times of the smart brute force-algorithm and its approximations for only 1 block, are
longer than the other running times. This is of course as we expected. This data set
supports our observation made for the first data set, namely that the modified Bentley-
Ottmann-algorithm is preferred.

Let us finalize this analysis by considering the Dutch city Nijmegen. The area
we are considering consist of 15,058 connections in the street network, while it has
97,732 connections in the trench network. In Table we again find the number of
intersections found for the different algorithms and appr0x1mat1ons In Table 4.30| we
find the corresponding running times for different block-numbers.

H mBO- alg SBF—alg ‘ con-alg ‘ slope-30-alg ‘ slope-60-alg
# intersections found 69,814 69,814 | 36,723 42,795 35,414
Percentage of total 100% 100% | 52.60% 61.30% 50.73%

Table 4.29: Nijmegen: Number of intersections found.

Block-number H mBO-alg ‘ SBF-alg ‘ con-alg ‘ slope-30-alg ‘ slope-60-alg

1 167.02 | 3,902.45 | 3,651.77 3,712.74 3,681.67
6] 308.72 767.69 323.13 468.96 400.72
125 354.88 772.91 254.65 432.49 366.00

Table 4.30: Nijmegen: Median running times of twenty runs in seconds.

Again we observe that the modified Bentley-Ottmann-algorithm with block-number
1 has the shortest running time. We also see that the running times for the modified
Bentley-Ottmann-algorithm are larger than those found for the previous data sets, how-
ever, this follows from the fact that we are considering a larger data set than before.
Note however, that the scaling is differently for the modified Bentley-Ottmann-algorithm
and for the smart brute force-algorithm. For the first we find a scaling factor around
four, with respect to the data set of Tilburg, while for the smart brute force approach
we found a scaling factor of more than six. This scaling factor is obtained given the
fact that the data set is subdivided in multiple smaller blocks. Note that the running
times for the smart brute force-algorithm for block-number one once again prove that
subdividing the data set in smaller blocks is preferred in these cases. Note that the
running times are over an hour. Once again we see that the heuristics do have a shorter
running time, but they also find less intersection than the smart brute force-algorithm
and the modified Bentley-Ottmann-algorithm.

We saw for all three data sets that, among the exact algorithms, the modified
Bentley-Ottmann-algorithm was the best. It has the shortest running times while still
being exact. Not subdividing the data set in multiple blocks is the best for the modi-
fied Bentley-Ottmann-algorithm. However, even if the data set is subdivided in multi-
ple blocks, the modified Bentley-Ottmann-algorithm still has acceptable running times.
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Note that for some data sets the approximations have shorter running times than the
modified Bentley-Ottmann-algorithm, however, a significant number of the intersections
is not found. The smart brute force-algorithm finds all intersections, however, it does
take longer than its approximations. Note that the connection-approximation has a
shorter running time than the slope-approximation. This might have to do with the
way we calculate the angle between the general line segments. In order to do this, we
compute for both general line segments the arctangent of the slope and then we take
the difference between them. This gives the desired results. However, computing an
arctangent of a number takes in general relatively long.

We saw that subdividing the data set in multiple blocks was beneficial for the running
times of the smart brute force-algorithm and its heuristics. However, in most cases there
was only a small difference between the different block-numbers. Furthermore, in some
cases, using 125 blocks instead of 75 resulted in lower running times, while in others
in resulted in shorter running times. From this we can conclude that using the blocks
will indeed result in shorter running times. It is however hard to draw any conclusions
on the number of blocks we should subdivide each data set in. A possible explanation
might have to do with the number of connections. If the number of connections we have
is large, using an extra block will in general influence the running time a lot positively.
However, if every block has a relatively low number of connections, using an extra block
will in general not lead to a significant decrease of the running time, it might even lead
to an increase. Note that this heavily depends on the topology of the network. In the
case that most connections are clustered, subdividing the data set in blocks will most
likely result in a single (or a few) blocks with the clustered connections. In those cases,
using extra blocks will most likely not lead to significant decreases in the running time.

4.2.3 The results for increasingly large data sets

In this section we will further increase the number of connections we are considering and
we will look at the running times of the algorithms. Afterwards we will give an advice
on which algorithm to use. Note that the data sets we will consider are far greater than
those of any practical use. We use real data sets, however, we will take the street and
trench network of larger areas than we normally would. One could think of data sets
from multiple cities instead of one, or a data set of a larger city including smaller villages
in its surroundings.

In the following we will only consider the modified Bentley-Ottmann-algorithm and
the smart brute force-algorithm. The approximations of the smart brute force-algorithm
will not be considered as not all intersections are found, while the running times are
longer than those of the modified Bentley-Ottmann-algorithm. The smart brute force-
algorithm, despite the long running times, will be considered in order to make a com-
parison with the running times of the modified Bentley-Ottmann-algorithm. We will,
apart from the block-numbers 1, 75 and 125, also consider a larger block-number of 175.
This way we hope to see the effect of increasing the number of blocks on the running
time. In all data sets considered, the modified Bentley-Ottmann-algorithm found the
same intersections as the smart brute force-algorithm. Hence, in the following we will
only consider the running times.

First we will consider the two cities Tilburg and Breda and the villages in between
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them. The area we considered is thirty kilometers wide and nine kilometers long, giving
a total area of approximately 270 square kilometers. This results in 24,422 connections
in the data set from the street network and 129,012 connections in the trench data set.
The running times can be found in Table As we expect the running times to be
larger than for the previous data sets considered, we will take the median of only a few
runs (typically around five) and draw conclusions from there on. This is allowed as we
are less interested in the precise running times and more interested in the differences
between both algorithms.

Number of blocks H 1 ‘ 75 ‘ 125 ‘ 175
modified Bentley-Ottmann 183.36 | 373.85 | 452.05 | 520.80
Smart brute force 3,904.37 | 762.74 | 649.33 | 687.19

Table 4.31: Tilburg and Breda: Median running times of five runs in seconds.

We see that the running times for the modified Bentley-Ottmann-algorithm are
slightly larger than those found for the city Nijmegen. For the smart brute force-
algorithm the running times are slightly smaller than they were for Nijmegen. Note
that there still is a significant difference between the running times of the modified
Bentley-Ottmann-algorithm and the running times of the smart brute force-algorithm.
Even if multiple blocks are used. The results found are somewhat suprising as they are
similar to those of Nijmegen, while more connections are considered. This may have
to do with some clustering of connections. Using the blocks and the smart tricks as
mentioned before, the running times of the smart brute force-algorithm will not blow
up significantly.

Let us now consider the capital of the Netherlands, Amsterdam, and some smaller
villages surrounding it. In total this gives 215,769 connections in the trench network
and 50,703 connections in the street network. The running times can be found in Table

4.32

Number of blocks | 1 | 75 | 125 | 175
modified Bentley-Ottmann 720.80 902.35 | 1,080.55 | 1,108.88
Smart brute force 17,255.60 | 1,756.41 | 1,423.15 | 1,473.68

Table 4.32: Amsterdam and its surroundings: Median running times of five runs in
seconds.

Again we see that the running times for the modified Bentley-Ottmann-algorithm
are the shortest when the data set is not subdivided in smaller blocks. The running
times of the smart brute force-algorithm are longer when no blocks are used. Note that
the running times of the smart brute force-algorithm are still longer, even when multiple
blocks are used. When the data set is not subdivided in multiple smaller blocks, the
smart brute force-algorithm may take as long as four hours. Such running times are
not suitable for practical purposes. Even when the data set is subdivided in smaller
blocks, the algorithm takes more than twenty minutes. This too is to long for practical
purposes.

We will conclude this chapter with a data set derived from the southwest part of
the Netherlands, including the provinces Zeeland and Noord-Brabant. In total we will
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consider 253,113 streets and 524,588 trenches. In practice data sets of this portions will
not be considered as multiple cities are included in this set and this will take longer than
running the algorithm for the individual cities separately. The running times found are
shown in Table {33

Number of blocks | 1 | 7w | 125 | 175
modified Bentley-Ottmann 4,624.87 | 7,273.83 | 7,925.26 | 10,035.91
Smart brute force 36,682.43 | 9,124.52 | 6,464.52 | 6,181.74

Table 4.33: The southwest of the Netherlands: Median running times of three runs in
seconds.

Note that the running times of the modified Bentley-Ottmann-algorithm are once
again the shortest. Hence, giving more prove that the modified Bentley-Ottmann-
algorithm without subdividing the data set in smaller blocks, is the best choice to
determine the intersections of two networks. We also see more prove that subdividing
the data set in smaller blocks is beneficial for the running times of the smart brute
force-algorithm. Note that for this data set the running times of the smart brute
force-algorithm for 125 blocks are shorter than that of the modified Bentley-Ottmann-
algorithm when blocks are used. However, since the running time is still greater than
that of the modified Bentley-Ottmann-algorithm with no additional blocks, it is still
better to use the modified Bentley-Ottmann-Algorithm.

Summarizing, we saw for all data sets that the modified Bentley-Ottmann-algorithm
gave the best running times. These times were the smallest when the data set was not
subdivided in multiple smaller blocks. For the smart brute force-algorithm however we
found that the running times decreased when the data set was subdivided in multiple
smaller blocks. This follows as we have to pairwise check every pair of connections.
Subdividing the data set in blocks then results in less pairs which have to be considered.
Using too much blocks will result in an increased running time due to the extra compu-
tations that have to be done. As both algorithms find all intersections, we can conclude
that the modified Bentley-Ottmann-algorithm is the best algorithm to use. When the
data set is not subdivided in smaller blocks, this will give results the fastest.

Recall that our goal was to create an algorithm which would give results within
minutes at most. This goal was met. For every network, we only have to run the
algorithm once to obtain a general network where every intersection in the old network
becomes an endpoint in the new network. We found that both the smart brute force-
algorithm and the modified Bentley-Ottmann-algorithm found all intersections. The
latter however, doing so in less time. Therefore we suggest to use the modified Bentley-
Ottmann-algorithm. We strongly advice against the use of the heuristics constructed
as the running times are at best similar to those of the modified Bentley-Ottmann-
algorithm, while only a fraction of the intersection is found.

If the size of a data set increases, we expect the running time of the modified Bentley-
Ottmann-algorithm to increase less than the running time of the smart brute force-
algorithm. Note that the usage of blocks was beneficial for the running times of the
smart brute force-approach. Note that it is faster to run the algorithm multiple times
for a smaller algorithm than once for a larger algorithm. For instance, running the
algorithm for Venray (10,000 connections) 26 times is faster than running determining
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the intersections for the data set of Amsterdam (260,000 connections). This may seem
counterintuitive. However, the difference might be explained that in these cases no
connections are checked multiple times and no extra computations are needed.

As mentioned before, we cannot prove that the modified Bentley-Ottmann-algorithm
works. However, in the analysis above we saw that for all data sets considered the
modified Bentley-Ottmann-algorithm does find the same intersections as the smart brute
force-algorithm does. Hence, we can conclude that the modified Bentley-Ottmann-
algorithm as constructed by us does find all intersections.

4.3 Algorithm 3

Let us now consider the results for the third algorithm. First we will determine which
approach as sketched in Section[3.4.3]is the best. Afterwards we will consider the running
times of the algorithm and draw conclusions from there on. We will finalize the section
with some random graphs and the results found by the algorithm for them.

In the following = will denote the number of ’shortest distances’ we have to cal-
culate for both points. The costs will be denoted by cgiy and croute for digging and
routing respectively. Note that if x is taken too small, it is possible (due to the isolated
connections) that no solution is found.

The points we want to connect can be chosen at random within the boundaries of
the given data set. The costs are taken as 25 euro per meter for digging and 3 euro per
meter for routing through the network. These values are are similar to the actual costs
involved with such problems.

4.3.1 Configurations of the algorithm

As we have already mentioned, there are several configurations for the algorithms we
have to consider. The first configuration we will look at revolves around connecting
the points with the network. The second configuration revolves around restricting the
network to a smaller network. This smaller network can then be used to find connection
points and can be used as input for Dijkstra’s algorithm. Apart from restricting the
network, we can also chose to include leafs in the analysis or to remove them. This last
case can be preferable as Dijkstra’s algorithm depends on the number of nodes given as
input, which includes the leafs of the network. As input we can also give the number of
‘shortest points’ we have to look for for both the cabinet and the connection point to
the fiber glass network. In the previous section this number was referred to as . We
will first consider the first configuration and then the second one. Both will be done for
z-values 5, 10 and 15. The points we give as input to the algorithm will be randomly
generated. For the first option we will consider the following configurations:

e Deleting isolated connections from the network;
e Neglecting isolated connections from the network;
e Allow extra digging from isolated segments to the rest of the network.

For the second option, we will consider:
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Not restricting the network and considering all endpoints;

Not restricting the network and considering all endpoints but the leafs;

Restricting the network and considering all endpoints within the restriction;

Restricting the network and considering all endpoints but the leafs within the
restriction.

The restriction of the network in the last two cases, happens via bounding rectangles.
Connections will only be considered if they are within a certain distance of the points.
This distance is an input variable, hence we will consider multiple variables for that.

In the following, if we determine the best configuration for the first option, we will
fix the configuration for the second option. Similarly, if the second option is considered,
the first configuration will be fixed. Note that the two options and the configurations
associated to them are independent of each other. Therefore we are allowed to do this.
In all cases we will consider z-values of 5, 10 and 15.

The first configuration: Isolated connections

As already mentioned, demanding a connected network will most likely not be possible.
Therefore, we have three options for the isolated connections. We can neglect them and
only connect with connections of the connected network. Instead of neglecting them,
we can also delete the isolated connections. Finally we can also allow disconnected
connections to exist. We may even connect with isolated connections, if we then dig to
the connected network. This last approach might be preferable in terms of the cost.

Let us again first look at the city Venray. The general network of Venray has 23,628
connections. The running times can be found in Table [4.34]

|z=5]2=10|z=15

Delete isolated connections 6.84 6.94 6.95
Neglect isolated connections 3.36 3.38 3.40
Extra digging from isolated connections 3.42 3.47 3.57

Table 4.34: Venray: Median running times for fifty pairs in seconds.

Note that the running times for neglecting the isolated connections or using them
and create new connections are very similar. The running times for the version where
isolated connections are deleted is larger than the other two. Apart from the running
times we also have to consider the results the algorithms found. As we saw before,
heuristics which are very fast, but produce far from optimal results, are not favored.
This is a similar situation. If an algorithm finds a path fast, but the associated cost is
higher than for other algorithms, other algorithms might be preferred. In Table we
have shown the average costs for the pairs of points considered. Note that we take the
mean and not the median of the costs. This is because this time minor differences are
important. Taking the median of the results will give the same median cost for each
algorithm.

As we can see, the least average cost is obtained when we may connect with isolated
connections and allow extra digging. The least cost happens for z = 15. However, when
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| =5 | 2=10 | 2 =15

Delete isolated connections 6,811.89 | 6,208.23 | 6,208.10
Neglect isolated connections 6,811.89 | 6,208.23 | 6,208.10
Extra digging from isolated connections || 6,238.00 | 6,199.94 | 6,199.81

Table 4.35: Venray: Average costs for the fifty pairs of points considered in euros.

considering the individual line segments, we see that for only one pair of points, z = 15
gave a smaller cost than x = 10. When we allowed extra digging, we have found 5
cheaper paths for z = 10 compared to the paths found using z = 5. When we neglect or
delete isolated connections there are 6 respectively 4 paths of smaller cost. In the worst
case this led to a difference of 700 euros in the cost, however, in other cases the difference
was only a few euros. For this data set we advice against the use of the algorithms which
neglect or delete isolated connections. Neglecting isolated connections leads to similar
running times, but worse costs. Deleting the isolated connections will lead to similar
costs, but the running times are far greater than those of the other two algorithms.

Let us now consider the general data set for the Dutch city Tilburg. This network
has in total 96,851 connections. Again we considered the three possibilities for the
algorithm and we have used x-values 5, 10 and 15. The running times can be found in
Table and the average costs can be found in Table

|z=5|x=10|x=15

Delete isolated connections 22.46 | 22.30 | 22.40
Neglect isolated connections 6.93 6.95 7.23
Extra digging from isolated connections 6.90 6.93 6.93

Table 4.36: Tilburg: Median running times for fifty pairs in seconds.

H r =25 x=10 x=15
Delete isolated connections 14,997.71 | 14,988.93 | 14,983.76
Neglect isolated connections 14,997.71 | 14,988.93 | 14,983.76
Extra digging from isolated connections | 14,997.71 | 14,988.93 | 14,983.76

Table 4.37: Tilburg: Average costs for the fifty pairs of points considered in euros.

As we can see in the above tables, the average costs are equal for the different versions
of the algorithm. However, the running times do differ. When deleting the isolated
connections, we see that the running time is much larger. This was also observed in the
other algorithms. Note that the running times for neglecting isolated connections and
allowing extra digging are similar. This follows as there was no least cost-path which
required extra digging.

Summarizing, we advice against to not delete isolated connections. In this case,
the running time is too large to give a relevant algorithm. Furthermore, neglecting the
isolated connections will give the same results. We advice to use the version which
allows for extra digging. This is a more general algorithm and in practice this will be
more useful. This also has to do with the fact that the data set is incomplete, which
results in the isolated connections. When a choice has to be made for the z-value, we
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see that the results for x = 5 are similar to the results for x = 15. The running times for
x = 5 are smaller, as expected, while the costs found are in some cases slightly larger.
The requirements set by the user mainly determine which values will be used, but we
advice to use x = 10. This way we have the accuracy of larger x-values, while having
the shorter running times of the smaller x-values.

The second configuration: Restricting the network

In the previous part we discussed the options for the first configuration. We will now
determine what is the best configuration for the restriction of the network. The options
as sketched above will be considered. We expect the versions which restrict the network
to be faster than the other algorithms. This follows as less connections have to be
considered. Note that removing the leafs might lead to decreased running times as
less points has to be considered in Dijkstra’s algorithm. However, we have to do more
computations and therefore it might also lead to longer running times. In the following
we hope to determine what the best option is.

As mentioned, restricting the network happens via bounding rectangles. The bound-
ing rectangles we will consider are enlarged bounding rectangles of the two points we
want to connect. We already know what a bounding rectangle of a connection is. A
bounding rectangle of the two points is determined in a similar way. All endpoints within
this bounding rectangle will then be considered. Note that there are cases in which this
might not give the best result. Therefore we can enlarge this bounding rectangle by
a constant on each side which might be beneficial for the accuracy. In the following
analysis we will consider values of this input variable of 0, 500, 1500 and 5000. In the
following we will refer to this value as the restriction-value or r-value and we will say
an r-value of 500 or r = 500. Note that we added the value r = 0 so that we can see if
it is necessary at all to enlarge the bounding rectangle. We will refer to the complete
network with r = oo, note that this is in line with the meaning of the r-value. In
the following All endpoints will mean that all endpoints are considered within a certain
region. Similarly, No leafs will mean that all endpoints are considered within a region,
but the leafs are removed from this network. See Figure for an example where a
restriction of » = 0 would not give the least cost-path.

Figure 4.38: An example where r = 0 would fail.
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Again we will consider the data set for Venray first. Table we can find the
running times for the different versions of the algorithm.

| r=o00|r=5000 | r=1500 | r =500 | r=0
All endpoints || 3.47 4.03 3.47 2.04| 1.35
No leafs 3.34 3.74 3.14 2.06 | 1.40

Table 4.39: Venray: Median running times for fifty pairs in seconds.

The distance found using these algorithms can be found in Table below.

| r=o00 | r=5000|r=1500| r=500| r=0
6,199.94 | 6,199.94 | 6,199.94 | 6,199.94 | 11,276.56

All endpoints

No leafs 6,199.94 | 6,199.94 | 6,199.94 | 6,199.94 | 11,276.56

Table 4.40: Venray: Average costs for the fifty pairs of points considered in euros.

Note the large averages for r = 0. This follows as for nine of the fifty pairs of points
we have considered, Dijkstra’s algorithm could not find a least cost-path due to the
restriction on the endpoints. Therefore, the ’best’ option given by the algorithm would
be to directly dig between the two points. Note that the results shown are averages, in
some cases the difference is ’only’ 5,000 euros. In other cases however the difference is
more than sixty thousand euros.

Let us now consider the city Utrecht which has 243,282 connections in total. The
running times can be found in Table while the average distances can be found in
Table We see similar results as we saw for Venray, namely, the average costs are
equal when the leafs are pruned or when the leafs are also considered, hence supporting
our claim that we may neglect them. For the running times we see that the version
where the leafs are neglected, has a slightly shorter running time.

We also see that this time the running times for » = 5000 are in fact smaller than
those for » = oco. For Venray this was not the case. This probably has to do with
the fact that this data set was larger. Hence, using » = 5000 did in fact restrict the
network. As we only considered a small region for Venray, using » = 5000 resulted in
a situation where still all connections were considered. Hence, resulted in a situation
where all connections were considered, but where more computations where needed.

| r =00 | r=5000 | r=1500 | r=500|r=0
4177 39.62 21.79 | 14.78 | 12.54
36.18 20.95 | 14.69 | 11.86

All endpoints
No leafs

Table 4.41: Utrecht: Median running times for fifty pairs in seconds.

| r=o00 | r=5000]|r=1500 | r=500 | r=0
17,583.43 | 17,583.43 | 17,583.43 | 17,617.14 | 37,919.16

All endpoints

No leafs 17,583.43 | 17,583.43 | 17,5683.43 | 17,617.14 | 37,919.16

Table 4.42: Utrecht: Average costs for the fifty pairs of points considered in euros.
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We also see that for Utrecht, an r-value of 500 will not always give the correct results.
In fact, for three pairs of points, » = 500 did give a higher cost than r = oo did. The
average difference was 500 euros. For r = 0 we got for 29 pairs of points incorrect results.
On average this resulted in an extra cost of 35,000 euro. Note that this follows mainly
as in fourteen cases, using r = 0 resulted in direct digging as shortest connection.

To conclude, we saw that it is best to neglect the leafs in the algorithm as this had
no effect on the costs, while the running times did decrease. We advice to restrict the
network as we same that r = oo results in longer running times than smaller r-values.
Especially for larger data sets this was the case. However, we advice against using the
r-values 0 and 5000. Meaning that if we restrict the network too much or no enough,
either the results will be far from optimal, or the running times will be too long.

4.3.2 Running times of the algorithm

Now that we have determined the configurations for the algorithm, we can consider
the running times. In the following we will consider the version of the algorithm which
allows for extra digging if there are isolated components. The running times are not that
much larger compared to the situation where such connections were neglected, while the
results found are better. In the previous section we also saw that x-values of 10 are
preferred in most cases. They give rather acceptable results, while the running time
is not that large. In the following we will use this z-value for all data sets. For the
restriction of the network we will neglect the leafs. This follows as the running times
decreased, while the results stayed the same. For restriction of the network we saw that
the algorithm found the for » = 1500 the algorithm finds exact results, while for » = 500
this was not always the case. Therefore, Let us consider r-values of 500, 1000 and 1500.

Again we will randomly generate the points and we will then consider the running
times of the algorithm and compare them.

First we will consider the Dutch city Zwolle. The data set for Zwolle consists of
73,066 connections. The median running times can be found in Table [£.43] while the
average costs can be found in Table [£.44] Note that these are running times and costs
for fifty pairs of randomly generated points.

| 7 =500 | r=1000 | r = 1500
Running times || 3.92 | 3.96 | 4.12

Table 4.43: Zwolle: Median running times for fifty pairs in seconds.

| 7 =500 | r =1000 | r = 1500
Costs || 8,843.27 | 8,843.27 | 8,843.27

Table 4.44: Zwolle: Average costs for the fifty pairs of points considered in euros.

Note that the average costs in all three cases are equal. Hence, r = 500 suffices in
all three cases. Therefore, in this situation, we can choose the r-value for which the
running time was the shortest which was » = 500. Note however that the differences in
running times for the different values of r are small.
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Let us now consider a larger city, namely that of Breda. With 230,999 connections,
the region considered has more than three times as much connections as the region
considered for Zwolle. Again we randomly generated fifty pairs of points we need to
connect. This gave running times as shown in Table and costs as shown in Table
4.40

| 7 =500 | r =1000 | r = 1500
Running times || 11.07 [ 1144 |  11.93

Table 4.45: Breda: Median running times for fifty pairs in seconds.

| r=500 | r=1000 | r=1500
Costs || 13,215.19 | 13,211.27 | 13,211.27

Table 4.46: Breda: Average costs for the fifty pairs of points considered in euros.

Note that the costs for » = 500 is slightly higher than for the other two r-values.
This follows as for one pair of points, » = 500 found a larger cost than for » = 1000
and r = 1500. In this case we suggest to use » = 1000 as this gave the same results as
r = 1500 while being slightly faster.

As the last data set we will now consider the city Rotterdam, which has nearly
344,059 connections. The running times and the costs can be found in Table .47 and

Table respectively.

| 7 =500 | r=1000 | r = 1500
Running times || 14.27 [ 1448 |  15.21

Table 4.47: Rotterdam: Median running times for fifty pairs in seconds.

| »=500 | r=1000 | r=1500
Costs || 16,843.60 | 16,798.85 | 16,784.36

Table 4.48: Rotterdam: Average costs for the fifty pairs of points considered in euros.

We again observe that there is a difference in the costs for the different values of r,
hence we cannot draw a conclusion solely based on the running times. The difference
in running times for » = 500 and r = 1500 is less than a second, hence we can use
r = 1500 in all cases. The costs will be smaller on average, while the running times are
only a fraction larger. We saw that there were only three points for which r = 500 gave
different results than for r = 1500, one may therefore argue that in most cases r = 500
is sufficient. For » = 1000 there was only one point for which the costs were higher than
for » = 1500.

Surprising was that of the three pairs for which r = 500 gave different results than
r = 1500, for one pair the cost was lower for r = 500 than for » = 1500. This can happen
as we restrict the network using the r-values. For r = 500 the network was restricted in
such a way that some of the shortest connection points in the case of » = 1500 were not
found. The points found for » = 500 required at least as much digging as the points for



4.3. ALGORITHM 3 111

r = 1500 did, however, if the routing required is much less, this might be more optimal.
Note that in general restricting the network will lead to higher costs.

In the next section we will consider the running times for increasingly large data sets
and finally we will give an advice on which r-value one should use.

4.3.3 Running times for increasingly large data sets

In the previous section we considered running times for smaller data sets. The largest
being that of Rotterdam. In the following we will consider larger data sets. That is,
we will consider data sets of two cities, of a large city with smaller villages surrounding
it and we will consider a data set spanning multiple cities and even provinces of the
Netherlands.

First we will consider the running times for the case of Breda and Tilburg. The data
set containing these two cities has 486,097 connections in it. The running times can be
found in Table [£.49] and the costs can be found in Table [£.50l

| 7 =500 | r =1000 | r = 1500
Running times H 17.14 ‘ 17.37 ‘ 17.68

Table 4.49: Breda and Tilburg: Median running times for fifty pairs in seconds.

| =500 | r=1000 | r=1500
Costs || 61,659.15 | 39,146.98 | 39,100.36

Table 4.50: Breda and Tilburg: Average costs for the fifty pairs of points considered in
euros.

We see that the average costs for r = 1500 are the smallest. Given that the running
times for the three values of r are similar, we suggest to use r = 1500 for this data set.
However, there are some interesting things we should note. For r = 500 there are 14
pairs which gave a higher cost. Moreover, for three of those pairs, it was not possible
to find a path a the direct digging option was given by the algorithm. For r = 1000
the algorithm did find a path in all cases, however, for 4 pairs the costs differ from that
for r = 1500. There was one pair of points for which both » = 500 and r» = 1000 gave
smaller costs than r = 1500 did.

Let us continue and consider the capital of the Netherlands, Amsterdam, together
with some smaller villages surrounding it. This data set consists of 630,137 connections.
The running times for the fifty pairs can be found in Table while the average costs
can be found in Table [4.52]

| 7 =500 | r=1000 | r = 1500
Running times | 28.60 |  29.28 |  30.05

Table 4.51: Amsterdam: Median running times for fifty pairs in seconds.

We saw that the difference between the running times for different r-values is larger
than before. However, the running times are in general also longer than before. For six
pairs » = 500 did not give the same results as r = 1500 did. For both r = 500 and
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| »=500 | r=1000 | r=1500
Costs || 47,549.64 | 47,459.10 | 42,321.89

Table 4.52: Amsterdam: Average costs for the fifty pairs of points considered in euros.

r = 1000 there was one pair for which no path was found, hence a direct digging option
was given. For only two points did » = 1000 give higher costs than r = 1500.

Let us finalize our analysis by considering the southwestern part of the Netherlands.
This includes the provinces of Zeeland and Noord-Brabant. In total this data set has
2,776,827 connections. In Table and Table we find the running times and the
average costs of the algorithm for this data set.

| 7 =500 | r =1000 | r = 1500
Running times || 124.04 [ 12373 | 123.94

Table 4.53: The southwest of the Netherlands: Median running times for fifty pairs in
seconds.

| r=500 | r=1000 | r=1500
Costs || 614,935.38 | 381,448.91 | 277,362.69

Table 4.54: The southwest of the Netherlands: Average costs for the fifty pairs of points
considered in euros.

Again we observe that the running times are similar for the different r-values. We
do see that for » = 500 the running times are larger than for the other two r-values. As
the difference is relatively small, we may assume this difference is due to outliers in the
running times. We also see that the costs for » = 1500 are much smaller than for the
other two r-values. This again has to do with the fact that for some points the algorithm
does not find a path which requires routing through the network if r-values of 500 and
1000 are used. In fact, for 26 pairs, » = 500 gave higher costs than r = 1500. For
r = 1000 there were 18 pairs of points which gave a higher cost than r = 1500. In both
cases there were no pairs which gave a smaller cost than found for » = 1500. For r = 500
there were twelve pairs of points were the algorithm gave the option ’Direct digging’ as
the least cost-path. For r = 1000 there were three such pairs and for » = 1500 there was
no pair for which the least cost-path would be to directly dig between the two points.
For this data set we see that r = 1500 is the most useful r-value.

Summarizing, we saw that the running times are fairly similar for the different -
values. Of course, larger r-values imply larger running times, however the difference
are rather small. In fact, the difference becomes insignificant if larger data sets are
considered. Furthermore, it turned out that in some cases for smaller r-values (such as
r = 500) no path is found which includes routing through the network. Even in the case
of r = 1000 this sometimes was the case. The algorithm works even if larger networks
are used such as that of Amsterdam or even if the entire southwest of the Netherlands
is considered. For small data sets the algorithm finds results within a few seconds, for
larger data sets up to a minute. This is the case if multiple cities are considered, or
larger cities with smaller villages surrounding it. In the case of the southwest of the
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Netherlands, the running times found are around two minutes. Given the size of the
data set, this is acceptable.

One must note that the running times of the algorithm depend on the distance
between the points which are considered and on the rest of the network between the two
points. Due to the setup of the algorithm, the running times will be smaller if the points
are closer to each other. On the other hand, if the points are further apart, the running
times will increase. This is however as expected. However, even if two points are far
apart, this does not immediately imply longer running times. If the network only has
a few connections overlapping with the bounding rectangle spanned by the two points,
then the running times will be lower compared to a situation where there are many
connections in the bounding rectangle. In the case of the southwest of the Netherlands,
the median running time found for » = 1500 was 124 seconds. However, the largest
running time found was 462.13 seconds for two points which were only 45 kilometers
apart. The smallest running time for this data set was 84 seconds, which happened for
two points being only six kilometers apart.

We have seen that the goal set in the beginning was met, which was to construct
an algorithm which would give a least cost-path within a minute. For extremely large
networks this may take a little longer. We advice to use r = 1500. The running times
might be slightly larger than those for smaller r-values, however the algorithm will find
least cost-paths in practically all cases. Only in special cases the value r = 500 gives a
lower cost (see Rotterdam), however this outweigh the drawbacks of smaller r-values. To
save more time one may choose to use z-values smaller than ten, i.e., choose to connect
each point with less than ten values in the network. We advice against this however as
already seen in Section

The algorithm also works for isolated connections, however this is under the restric-
tion that once we dig to an isolated connection, in the next step we have to connect with
the network. That is, we may not again connect with an isolated connection. There are
special cases which the algorithm cannot yet solve. We have already discussed some of
those in previous sections. The main issue is that in some cases it is beneficial to dig
instead of route. However, in this setting the algorithm cannot coop with this fact well.
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