
Quantisation commutes with reduction
for cocompact Hamiltonian group actions

Een wetenschappelijke proeve op het gebied van de
Natuurwetenschappen, Wiskunde en Informatica

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. mr. S.C.J.J. Kortmann,
volgens besluit van het College van Decanen

in het openbaar te verdedigen op vrijdag 8 februari 2008
om 13:30 uur precies

door

PETER HOCHS

geboren op 1 november 1977
te ’s-Hertogenbosch



Promotores:
Prof. dr. Klaas Landsman
Prof. dr. Gert Heckman

Manuscriptcommissie:
Prof. dr. Joseph Steenbrink
Prof. dr. Erik van den Ban (Universiteit Utrecht)
Prof. dr. Paul-́Emile Paradan (Université Montpellier 2)
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Introduction

Historical background

In their 1982 paper [28], Guillemin and Sternberg proved a theorem that became known as
‘quantisation commutes with reduction’, or symbolically,‘ [Q,R] = 0’. For a Hamiltonian ac-
tion by a compact Lie groupK on a compact Kähler manifold(M,ω), their result asserts that
the space ofK-invariant vectors in the geometric quantisation space of(M,ω) equals the geo-
metric quantisation of the symplectic reduction of(M,ω) by the action ofK. Here geometric
quantisation was defined as the (finite-dimensional) space of holomorphic sections of a certain
holomorphic line bundle overM.

A more general definition of geometric quantisation, attributed to Bott, is formulated in
terms of Dirac operators. A compact symplecticK-manifold(M,ω) always admits aK-equivariant
almost complex structure that is compatible withω, even if the manifold is not Kähler. Via this
almost complex structure, one can define a Dolbeault–Dirac operator or a Spinc-Dirac operator,
coupled to a certain line bundle, whose index is interpretedas the geometric quantisation of
(M,ω). Alternatively, one can associate a Spinc-structure to the symplectic formω, and define
the quantisation of(M,ω) as the index of a Spinc-Dirac operator on the associated spinor bun-
dle. Since Dirac operators are elliptic, and sinceM is compact, these indices are well-defined
formal differences of finite-dimensional representationsof K, that is to say, elements of the
representation ring ofK.

In this more general setting, the fact that quantisation commutes with reduction, or ‘Guillemin–
Sternberg conjecture’, was proved in many different ways, and in various degrees of generality,
by several authors [38, 59, 60, 63, 79, 84]. The requirement that M andK are compact re-
mained present, however. An exception is the paper [64], in which Paradan proves a version of
the Guillemin–Sternberg conjecture whereM is allowed to be noncompact in certain circum-
stances. An approach to quantising actions by noncompact groups on noncompact manifolds
was also given by Vergne, in [83].

These compactness assumptions are undesirable from a physical point of view, since most
classical phase spaces (such as cotangent bundles) are not compact. Furthermore, one would
also like to admit noncompact symmetry groups. However, dropping the compactness assump-
tions poses severe mathematical difficulties, since the index of a Dirac operator on a noncom-
pact manifold is no longer well-defined, and neither is the representation ring of a noncompact
group.

In [50], Landsman proposes a solution to these problems, at least in cases where the quotient
of the group action is compact. (The action is then said to becocompact.) He replaces the
representation ring of a group by theK-theory of itsC∗-algebra, and the equivariant index by the
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INTRODUCTION 7

analytic assembly map that is used in the Baum–Connes conjecture. Landsman’s formulation
of the Guillemin–Sternberg conjecture reduces to the case proved in [38, 59, 60, 63, 79, 84] if
the manifold and the group in question are compact. The advantage of this formulation is that
it still makes sense if one only assumes compactness of the orbit space of the action.

The first main result in this thesis is a proof of Landsman’s generalisation of the Guillemin–
Sternberg conjecture for Hamiltonian actions by groupsG with a normal, discrete subgroupΓ,
such thatG/Γ is compact.

In the compact case, the Guillemin–Sternberg conjecture implies a more general multiplicity
formula for the decomposition of the geometric quantisation of (M,ω) into irreducible repre-
sentations ofK. This implication is based on the Borel–Weil theorem, whichis itself a special
case of the multiplicity formula that follows from the Guillemin–Sternberg conjecture. In the
noncompact case, it is harder to state and prove such a multiplicity formula. This is caused
by the fact that the Borel–Weil theorem is a statement aboutcompactgroups, and by the fact
that the geometric quantisation of a symplectic manifold isnow aK-theory class instead of a
(virtual) representation.

For semisimple groupsG, we tackle these difficulties using V. Lafforgue’s work in [48] on
discrete series representations andK-theory. We then obtain our second main result, which is a
formula for the multiplicity of theK-theory class associated to a discrete series representation,
in the geometric quantisation of a cocompact HamiltonianG-manifold. For this result, we
assume that the image of the momentum map lies in thestrongly elliptic set. This is the set of
elements of the dual of the Lie algebra ofG that have compact stabilisers with respect to the
coadjoint action. The coadjoint orbits in this set correspond to discrete series representations in
the orbit philosophy.

Outline of this thesis

In this thesis, we combine two branches of mathematics: symplectic geometry and noncommu-
tative geometry. To help readers who are specialised in one of these branches understand the
other one, we give a rather detailed theoretical backgroundin Part I. In Chapter 1, which is in-
tended for a general mathematical audience, we explain the physical motivation of the research
in this thesis. Chapters 2–5 are introductions to symplectic geometry, geometric quantisation
and noncommutative geometry. We conclude Part I with Chapter 6, in which we state our two
main results, Theorems 6.5 and 6.13.

The proofs of these results follow the same strategy: we deduce them from the compact case
of the Guillemin–Sternberg conjecture, using naturality of the assembly map. This naturality
of the assembly map is the core of the noncommutative geometric part of this thesis, and is
described in Part II. It contains two cases: naturality for quotient maps, and (a very special case
of) naturality for inclusion maps. Besides these two cases of naturality of the assembly map, the
third main result in Part II is Corollary 8.11, about the image ofK-homology classes associated
to elliptic differential operators under the Valette homomorphism. This homomorphism is the
crucial ingredient of naturality of the assembly map for quotient maps.

In Part III, we show that the ‘Guillemin–Sternberg–Landsman’ conjecture for groups with
a cocompact, normal, discrete subgroup is a consequence of Corollary 8.11. We give an alter-
native proof in the special case where the group is abelian and discrete, and conclude with the
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example of the action ofZ2 onR2 by addition.
To prove the multiplicity formula for discrete series representations in the case of actions

by semisimple groups, we prove an intermediate result that we call ‘quantisation commutes
with induction’. This is the central result of Part IV, and its proof is basedon our version of
naturality of the assembly map for inclusion maps. In this part, we define ‘Hamiltonian induc-
tion’ and ‘Hamiltonian cross-sections’, to construct new Hamiltonian actions from given ones.
These constructions are each other’s inverses, and the ‘quantisation commutes with induction’-
theorem provides a link between these constructions and theDirac induction map used in the
Connes–Kasparov conjecture, and (more importantly to us) in Lafforgue’s work on discrete
series representations inK-theory. This will allow us to deduce the multiplicity formula for
discrete series representations from the Guillemin–Sternberg conjecture in the compact case.

Credits

Chapters 1 – 5 only contain standard material, except perhaps the alternative proof of Proposi-
tion 5.17. Section 6.1 is based on Landsman’s paper [50], andSection 6.2 is an explanation of
the facts in [48] that we use. Gert Heckman proved Lemma 6.9 for us.

Chapter 7 is a reasonably straightforward generalisation of the epimorphism case of Valette’s
‘naturality of the assembly map’-result in [61] to possiblynondiscrete groups.

The idea of our proof of Theorem 6.5, as described in Section 10.1, is due to Klaas Lands-
man. Sections 11.1–11.3 are based on Example 3.11 from [8], and on Lusztig’s paper [55]. The
proof of Lemma 11.2 was suggested to us by Elmar Schrohe.

Section 12.3 is based on the proof of the symplectic cross-section theorem in [54]. Some of
the remaining facts in Chapter 12 and in Chapter 13 may be known in the case where the pair
(G,K) is replaced by the pair(K,T), although the author has not found them in the literature.
The induction procedure for Spinc-structures described in Section 13.2, was explained to us by
Paul-́Emile Paradan.

Our proof of Theorem 6.13 was inspired by Paradan’s article [63], and Paradan’s personal
explanation of the ideas behind this paper.

Prerequisites

This thesis is aimed at readers who are familiar with

• basic topology;

• basic Riemannian and almost complex geometry;

• basic Banach and Hilbert space theory;

• basic Lie theory, and representation theory of compact Lie groups;

• the theory of (pseudo-)differential operators on vector bundles and their principal sym-
bols, in particular elliptic differential operators and their indices.
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Assumptions

In the topological context, all vector bundles and group actions are tacitly supposed to be con-
tinuous. In the smooth context they are supposed to be smooth.

Unless stated otherwise, all functions are complex-valued, and all Hilbert spaces and vector
bundles are supposed to be complex, apart from vector bundles constructed from tangent bun-
dles. Inner products on complex vector spaces are supposed to be linear in the first entry, and
antilinear in the second one.

Publications

Chapters 7, 8, 10 and 11 were taken from the paper [37], written jointly with Klaas Landsman,
which has been accepted for publication inK-theory.

The end of Section 5.3, Sections 6.2 and 6.3, Chapter 9 and Chapters 12 – 15 were taken
from the paper [36], which has been submitted for publication.
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Preliminaries and statement of the results
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The bulk of this first part, Chapters 2–5, consists of introductions to the two branches of
mathematics that we use: symplectic geometry and noncommutative geometry. These intro-
ductions start at a basic level, so that the reader does not have to be a specialist in both of
these areas to be able to read this thesis. Readers who are familiar with symplectic geometry
and/or noncommutative geometry can skip the relevant chapters, or just quickly take a look at
the notation and the results we will use.

In Chapter 1 we give some physical background, and in Chapter6 we state our two main
results: Theorems 6.5 and 6.13. All material in Part I is standard, except Chapter 6, and possibly
the alternative proof of Proposition 5.17.



Chapter 1

Classical and quantum mechanics

We begin by briefly reviewing classical and quantum mechanics. This provides the physical
motivation of the research in this thesis. The physical notion of quantisation will be explained,
to motivate the abstract mathematical Definitions 3.15, 3.17, 3.20, 3.30 and 6.1. Chapter 1 is
only meant to provide this motivation, and the rest of this thesis does not logically depend on it.

The mathematics behind classical mechanics with symmetry is treated in Chapter 2. The
mathematics behind quantum mechanics with symmetry is the theory of equivariant operators
on Hilbert spaces carrying unitary representations of a Liegroup. Chapters 4 and 5 on noncom-
mutative geometry deal with a way of looking at this theory.

1.1 Classical mechanics

Let us look at an example. Consider a point particle of massm moving in 3-dimensional Eu-
clidean spaceR3. Let q = (q1,q2,q3) be the position coordinates of the particle. Suppose the
particle is acted upon by an external force fieldF : R3→ R3 that is determined by a potential
functionV ∈C∞(R3), by

F =−gradV =−
( ∂V

∂q1 ,
∂V
∂q2 ,

∂V
∂q3

)
. (1.1)

Then the motion of the particle, as a function of timet, is given by a curveγ in R3, determined
by the differential equation

F(γ(t)) = mγ ′′(t), (1.2)

which is Newton’s second lawF = ma.
Let δ (t) := mγ ′(t) be the momentum of the particle at timet as it moves along the curveγ.

Then (1.1) and (1.2) may be rewritten as

γ ′(t) =
1
m

δ (t);

δ ′(t) =−gradV(γ(t)).
(1.3)

Given this system of equations, the particle’s trajectory is determined uniquely if both its po-
sition q := γ(t0) and momentump := δ (t0) at a timet0 are given. This motivates the defini-
tion of thephase spaceof the particle asR6 = R3×R3, consisting of all possible positions

12



1.1 CLASSICAL MECHANICS 13

q = (q1,q2,q3) and momentap = (p1, p2, p3) the particle can have. A point in phase space,
called astate, determines the motion of the particle, through Newton’s law (1.3).

To rewrite (1.3) in a way that will clarify the link between classical and quantum mechanics,
consider theHamiltonian function H∈C∞(R6), given by the total energy of the particle:

H(q, p) :=
1

2m

3

∑
j=1

(
p j)2

+V(q). (1.4)

Furthermore, for two functionsf ,g∈C∞(R6), we define the Poisson bracket

{ f ,g} :=
3

∑
j=1

∂ f
∂ p j

∂g
∂q j −

∂ f
∂q j

∂g
∂ p j ∈C∞(R6). (1.5)

One can check that the Poisson bracket is a Lie bracket onC∞(R6), and that it has thederivation
propertythat for all f ,g,h∈C∞(R6),

{ f ,gh}= g{ f ,h}+{ f ,g}h. (1.6)

The reason why we consider this bracket is that it allows us torestate (1.3) as follows. Write

γ(t) =
(
γ1(t),γ2(t),γ3(t)

)
;

δ (t) =
(
δ 1(t),δ 2(t),δ 3(t)

)
.

Then (1.3) is equivalent to the system of equations

(
γ j)′(t) = {H,q j}(γ(t),δ (t));

(
δ j)′(t) = {H, p j}(γ(t),δ (t)),

(1.7)

for j = 1,2,3, whereq j , p j ∈C∞(R6) denote the coordinate functions. Renaming the curves
q(t) := γ(t) andp(t) := δ (t), we obtain the more familiar form

(
q j)′ = {H,q j};

(
p j)′ = {H, p j}.

(1.8)

Hereq j andp j denote both the components of the curvesq andp and the coordinate functions
onR6, making (1.8) shorter and more suggestive, but mathematically less clear than (1.7).

To describe the curvesγ andδ in a different way, we note that the linear mapf 7→ {H, f},
from C∞(R6) to itself, is a derivation by (1.6). Hence it defines a vector field ξH on R6, called
theHamiltonian vector fieldof H. Let etξH : R6→ R6 be the flow of this vector field over time
t. That is,

d
dt

∣∣∣∣
t=0

f
(
etξH (q, p)

)
= ξH( f )(q, p) = {H, f}(q, p)

for all f ∈C∞(R6) and(q, p) ∈ R6. Then, if γ(0) = q andδ (0) = p, conditions (1.7) simply
mean that

(γ(t),δ (t)) = etξH (q, p). (1.9)
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An observablein this setting is by definition a smooth function of the position and the
momentum of the particle, i.e. a functionf ∈C∞(R6). The Hamiltonian function and the Pois-
son bracket allow us to write the time evolution equation of any observablef as the following
generalisation of (1.7):

d
dt

(
f (γ(t),δ (t))

)
= {H, f}(γ(t),δ (t)). (1.10)

Here γ and δ are curves inR3 satisfying (1.7). This time evolution equation forf can be
deduced from the special case (1.7) using the chain rule. We will see that (1.10) is similar to
the time evolution equation (1.16) in quantum mechanics.

In (1.10), the state(γ,δ ) of the system changes in time, whereas the observablef is con-
stant. To obtain a time evolution equation that resembles the quantum mechanical version more
closely, we define the time-dependent versionf̃ ∈C∞(R×R6) of f , by

f̃ (t,q, p) := f (etξH (q, p)) =: ft(q, p).

Then by (1.9), equation (1.10) becomes

∂ f̃
∂ t

∣∣∣∣
t
= {H, ft}. (1.11)

Motivated by this example of one particle inR3 moving in a conservative force field, we
define aclassical mechanical systemto be a triple(M,{−,−},H), whereM is a smooth man-
ifold called thephase space(replacingR6 in the preceding example),{−,−} is a Lie bracket
onC∞(M) satisfying (1.6) for allf ,g,h∈C∞(M), andH is a smooth function onM, called the
Hamiltonianfunction. The bracket{−,−} is called a Poisson bracket, and the pair(M,{−,−})
is aPoisson manifold. In this thesis, we will considersymplectic manifolds(Definition 2.1), a
special kind of Poisson manifolds. Given a classical mechanical system, the dynamics of any
observablef ∈C∞(M) is determined by the classical time evolution equation (1.11).

For more extensive treatments of the Hamiltonian formulation of classical mechanics, see
[1, 2].

1.2 Quantum mechanics

The quantum mechanical description of a particle is quite different from the classical one. The
position of a particle is no longer uniquely determined in quantum mechanics, but one can only
compute the probability of finding the particle in a certain region. The same goes for any other
observable.

Consider once more a particle moving inR3. The probability of finding the particle in a
(measurable) regionA⊂ R3 is then given by

∫

A
|ψ(q)|2dq, (1.12)

whereψ is the(position) wave functionof the particle. For the integral (1.12) to be well-defined
for all measurableA, it is necessary thatψ is anL2-function. Furthermore, the probability that
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the particle exists anywhere at all (which we assume. . . ) is both equal to 1 and to
∫

R3
|ψ(q)|2dq.

Therefore theL2-norm of ψ equals 1. Finally, since for any real numberα the functionsψ
andeiαψ determine the same probability density|ψ|2, the relevant phase space in quantum
mechanics is

{ψ ∈ L2(R3);‖ψ‖L2 = 1}/U(1), (1.13)

where U(1) acts onL2(R3) by scalar multiplication. The quotient (1.13) is the projective space
P(L2(R3)).

We will always work with the Hilbert spaceL2(R3) rather than its projective space, since
it is easier to work with in several respects, and sinceP(L2(R3)) can obviously be recovered
from it. The operators onP(L2(R3)) that are relevant for quantum mechanics are induced by
the unitary and anti-unitary operators onL2(R3). This is Wigner’s theorem, see [76], Appendix
D or [91], pp. 233-236.

We have so far considered a quantum mechanical system at a fixed point in time. In the
Schr̈odinger pictureof quantum dynamics, one considers time dependent wave functionsψ on
R×R3, where the first factorR represents time, denoted byt. As before, letmbe the mass of the
particle, and letV be the potential function that determines the force acting on it. The quantum
mechanical time evolution of the stateψ is then determined by theSchr̈odinger equation1

ih̄
∂ψ
∂ t

=− h̄2

2m

3

∑
j=1

∂ 2ψ
(∂qi)2 +Vψ, (1.14)

whereh̄ is Planck’s constant divided by 2π .
The differential operator2

H :=− h̄2

2m

3

∑
j=1

∂ 2

(∂qi)2 +V

is called theHamiltonianof this system. We see that the quantum mechanical Hamiltonian
arises from the classical one (1.4) if we replacep j by ih̄ ∂

∂q j . Historically, this was the very
first step towards quantisation. By Stone’s theorem (see [66], Theorem 7.17 or [68], Theorem
VIII.7), equation (1.14) is equivalent to

ψt = e−
it
h̄ Hψ0, (1.15)

whereψt(q) := ψ(t,q) for all q∈R3.
In this quantum mechanical setting, an observable is a self-adjoint operator3 a on L2(R3).

The spectrum of such an operator is the set of possible valuesof the observable that can be

1If the functionψ is not sufficiently differentiable, then its derivatives should be interpreted in the distribution
sense. On the domain on which the differential operator on the right hand side of (1.14) is self-adjoint, the time

derivative ofψ is defined as the limit∂ψ
∂ t

∣∣∣
t
:= limh→0

ψ(t+h,−)−ψ(t,−)
h , with respect to theL2-norm.

2This is operator is not defined on all ofL2(R3), but only on a dense subspace. It is anunboundedoperator (see
Section 4.3).

3Again, this operator may be unbounded, and need only be densely defined.
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obtained in a measurement. The expectation value of a measurement of the observablea when
the system in in the stateψ is given by

(ψ,aψ)L2 =
∫

R3
ψ(q)(aψ)(q)dq.

Up to now, we have used the Schrödinger picture of quantum dynamics, where states evolve
in time, and observables remain fixed. In the Heisenberg picture, states are time independent,
whereas observables vary in time. Thus, in our situation, anobservable is a curvet 7→ at of
self-adjoint operators onL2(R3), such that for all statesψ,

(ψ0,atψ0)L2 = (ψt ,a0ψt)L2.

By (1.15), this implies that

at = e
it
h̄ Ha0e

−it
h̄ H .

This, in turn, is equivalent to
dat

dt

∣∣∣∣
t
=

i
h̄
[H,at], (1.16)

the commutator4 Hat−atH of the operatorsH andat . This time evolution equation in quantum
mechanics is very similar to the classical time evolution equation (1.11). This is the basis of
any theory about quantising observables.

In general, aquantum mechanical system(in the Heisenberg picture) consists of a Hilbert
spaceH (replacingL2(R3)) called thephase space, and a self-adjoint operator5 H, called the
Hamiltonian. Observables are curvest 7→ at of self-adjoint operators onH , whose dependence
on t is determined by (1.16).

1.3 Quantisation

The term ‘quantisation’ refers to any way of constructing the quantum mechanical description of
a physical system from the classical mechanical description. To a classical mechanical system
(M,{−,−},H), a quantisation procedure should associate a quantum mechanical system

Q(M,{−,−},H) = (H , Ĥ) (1.17)

(where the hat onH is used to distinguish the quantum Hamiltonian from the classical one).
Such constructions go back to the pioneers of quantum mechanics (Bohr, Heisenberg, Schrödinger,
Dirac). Overviews are given in [49, 51].

In addition, one would like to be able to quantise observables. Quantisation of observables
is often required to be a Lie algebra homomorphism

(
C∞(M),{−,−}

) Q−→
(
{self-adjoint operators onH }, i

h̄
[−,−]

)
(1.18)

4The definition of the commutator of two unbounded operators is actually a more delicate matter than we
suggest here, but we will not go into this point.

5possibly unbounded
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such thatQ(H) = Ĥ. If this quantisation map is a Lie algebra homomorphism, then by time
evolution equations (1.11) and (1.16), we have

dQ( f )t

dt

∣∣∣∣
t=0

= Q

(
d ft
dt

∣∣∣∣
t=0

)
,

for all f ∈ C∞(M). However, we will see that quantisation of observables cannot be a Lie
algebra homomorphism, if it is also required to have some additional desirable properties.

From a physical point of view, it is only required that the classical and quantum mechanical
time evolution equations are related by quantisation ‘in the limit h̄→ 0’. That is, quantisation
of observables should only be a Lie algebra homomorphism in this limit. If it is an actual Lie
algebra homomorphism, this implies that the laws of quantumdynamics are the same as the
laws of classical dynamics, which is obviously not the case.Nevertheless, the requirement
that quantisation of observables is a Lie algebra homomorphism is often imposed in geometric
quantisation, possibly because it is mathematically natural, and because it at least gives some
relation between classical and quantum dynamics.

Other properties one might like to see in a quantisation procedure are the following (cf. [27],
page 89).

• Let 1M be the constant function 1 onM, and letIH be the identity operator onH . Then
Q(1M) = ih̄IH .

• If a set of functions{ f j} j∈J separates points almost everywhere onM, then the set of
operators{Q( f j)} j∈J acts irreducibly, i.e. no nonzero proper subspace ofH is invariant
under allQ( f j).

But Groenewold & van Hove’s ‘no go theorems’ [26, 82, 81] state that such a quantisation
procedure does not exist. This may not be too surprising, given the highly restrictive assumption
that quantisation of observables is a Lie algebra homomorphism.

There are various ways to define quantisation in such a way that as many as possible of
the above requirements are satisfied, or that they are satisfied asymptotically ‘as̄h tends to
zero’. In this thesis however, we hardly pay any attention tothe observable side (1.18) of
geometric quantisation. Instead, we consider a mathematically rigorous approach to (1.17),
based ongeometric quantisatioǹa la Bott. This procedure gives a way to construct the quantum
mechanical phase spaceH from the classical one(M,{−,−}). The prequantisation formula
(see Definition 3.6) then gives a quantisation map for (some)observables, that is actually a Lie
algebra homomorphism. But as we said, this will only be a sideremark.

Quantising phase spaces may not seem like the most interesting part of quantisation, but
it turns out that this has interesting features (especiallymathematical ones), particularly in the
presence ofsymmetry.

1.4 Symmetry and ‘quantisation commutes with reduction’

If a physical system possesses a symmetry, it can often be described in terms of a ‘smaller’
system. Replacing a system by this smaller system is calledreduction. It is defined in a precise
way for classical mechanics in Definitions 2.17 and 2.21 below. For quantum mechanics, this
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notion of reduction is harder to define rigorously. The quantum reduction procedure we will
work with is given by (6.3) and (6.12).

In classical mechanics, a symmetry of a system(M,{−,−},H) is an action of a groupG on
M that leaves the bracket{−,−} and the functionH invariant. Under certain circumstances (if
the action isHamiltonian, see Definition 2.6) such a symmetry allows us to define the reduced
system

(MG,{−,−}G,HG) = R(M,{−,−},H).

In quantum mechanics, a symmetry of a system(H ,H) is a unitary representation of a
groupG on H , such thatH is aG-equivariant operator. We can then, again under favourable
circumstances, define the reduced system

(HG,HG) = R(H ,H).

The central motto in this thesis (and indeed, in its title) is‘quantisation commutes with reduc-
tion’, or symbolically, ‘[Q,R] = 0’. This is the equality

R
(
Q(M,{−,−},H)

)∼= Q
(
R(M,{−,−},H)

)
.

This equality is often expressed by commutativity (up to a suitable notion of isomorphism) of
the following diagram:

(M,{−,−},H)
_

R
��

� Q // Q(M,{−,−},H) =: (H , Ĥ)
_

R
��

(MG,{−,−}G,HG) � Q // Q(MG,{−,−}G,HG)∼= (HG, ĤG).

If one only considers the phase space part of quantisation and reduction, then[Q,R] = 0 has
been proved for compactM andG. This is known as theGuillemin–Sternberg conjecture(see
[28, 38, 59, 60, 63, 79, 84]). The goal of this thesis is to generalise the Guillemin–Sternberg
conjecture to noncompactM and G, under the assumption that the orbit spaceM/G is still
compact. To state and prove this generalisation, we use techniques from noncommutative ge-
ometry. We have found proofs in the case whereG has a cocompact, discrete, normal subgroup
(Theorem 6.5) and in the case whereG is semisimple (Theorem 6.13).

The mathematics underlying classical mechanics is symplectic geometry, to which we now
turn.



Chapter 2

Symplectic geometry

As we saw in Chapter 1, the mathematical structure of a classical phase space is that of a
Poisson manifold. We will only consider particularly nice kinds of Poisson manifolds, namely
symplectic manifolds(Definition 2.1). The ideal form of symmetry in the symplectic setting is
a Hamiltonian group action(Definition 2.6). This involves an action of a Lie group that has
an associated conserved quantity called amomentum map. For Hamiltonian actions, we can
make the classical reduction process mentioned in Section 1.4 more precise (Definitions 2.17
and 2.21). We give many examples of Hamiltonian group actions, to give the reader a feeling
for what is going on.

The proofs of most facts in this chapter and the next have beenomitted, but they are usually
straightforward. More information about the role of symplectic geometry in classical mechanics
can be found for example in [29, 57, 75].

2.1 Symplectic manifolds

Let us define the special kind of Poisson manifold called symplectic manifold. A Poisson man-
ifold is symplectic if the Poisson structure is nondegenerate in some sense (compare Theorems
2.4 and 2.5), which makes symplectic manifolds easier to work with than general Poisson man-
ifolds.

Definition 2.1. A symplectic manifoldis a pair(M,ω), whereM is a smooth manifold andω
is a differential form onM of degree 2, such that

1. ω is closed, in the sense thatdω = 0;

2. ω is nondegenerate, in the sense that for allm∈ M, the mapTmM → T∗mM, given by
v 7→ ω(v,−), is a linear isomorphism.

Such a formω is called asymplectic form.

When explicitly verifying that a given two-form is nondegenerate, we will often use the
fact that nondegeneracy ofω is equivalent to the property that for allm∈ M and all nonzero
v∈ TmM, there is aw∈ TmM such thatωm(v,w) 6= 0.

19
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Example 2.2. A symplectic vector spaceis a vector space equipped with a nondegenerate,
antisymmetric bilinear form. When viewed as a differentialform of degree 2, this bilinear form
is a symplectic form on the given vector space.

The natural notion of isomorphism of symplectic manifolds is calledsymplectomorphism:

Definition 2.3. Let (M,ω) and(N,ν) be symplectic manifolds. A diffeomorphismϕ : M→ N
is called asymplectomorphismif ϕ∗ν = ω.

Let (M,ω) be a symplectic manifold. The canonical Poisson bracket{−,−} on C∞(M)
is defined as follows. Forf ∈C∞(M), theHamiltonian vector fieldξ f of f is defined by the
equality

d f = ω(ξ f ,−) ∈Ω1(M). (2.1)

Becauseω is nondegenerate, this determinesξ f uniquely. We then set

{ f ,g} := ξ f (g) = ω(ξg,ξ f ) =−ξg( f ) ∈C∞(M),

for f ,g∈C∞(M). This can be shown to be a Poisson bracket, as defined at the endof Section
1.1. In particular, the Jacobi identity for{−,−} follows from the fact thatω is closed.

It follows from the nondegeneracy ofω thatM is even-dimensional. From a physical point
of view, this corresponds to the fact that to each ‘position dimension’ in a classical phase space,
there is an associated ‘momentum dimension’. The simplest example is the manifoldM := R2n,
for ann∈N, with coordinates

(q, p) = (q1, p1, . . . ,qn, pn),

and the symplectic form

ω :=
n

∑
j=1

dpj ∧dqj . (2.2)

In fact, all symplectic manifolds are locally of this form:

Theorem 2.4(Darboux). Let (M,ω) be a symplectic manifold, and let m∈M be given. Then
there exists an open neighbourhood U∋m and local coordinates(q, p) on U, such that

ω|U =
n

∑
j=1

dpj ∧dqj .

The coordinates(q, p) are calledDarboux coordinates. For a proof of this theorem, see
[29], Theorem 22.1.

In Darboux coordinates, the Poisson bracket associated to the symplectic form is given
by the standard expression (1.5), with 3 replaced byn := dimM/2, and f ,g ∈ C∞(M). The
difference between symplectic manifolds and general Poisson manifolds is illustrated nicely by
Weinstein’s following result (see [88], Corollary 2.3).

Theorem 2.5. Let (M,{−,−}) be a Poisson manifold, and let m∈ M be given. Then there
exists an open neighbourhood U of m and local coordinates(q, p,c) on U, such that in these
coordinates, the Poisson bracket has the standard form(1.5).

The coordinates(q, p,c) are calledDarboux–Weinstein coordinates. Hereq andp are maps
U → Rn, for the samen∈ N, andc is a map fromU to RdimM−2n.

In the Section 2.3, we will give some more examples of symplectic manifolds. We will then
also see that the natural group actions defined on these examples are in factHamiltonian.
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2.2 Hamiltonian group actions

The relevant actions of a groupG on a symplectic manifold(M,ω) are those that leave the
symplectic formω invariant:g∗ω = ω for all g∈G. Such actions are calledsymplecticactions.
Suppose thatG is a Lie group, and that(M,ω) is a symplectic manifold equipped with a sym-
plecticG-action. For everyX ∈ g (the Lie algebra ofG), we have the induced vector fieldXM

onM, given by
(
XM

)
m := Xm :=

d
dt

∣∣∣∣
t=0

exp(tX)m, (2.3)

for all m∈M. Because the action is symplectic, the Lie derivativeLXω equals zero for each
X ∈ g. Using Cartan’s formulaLX = diXM + iXMd (whereiXM denotes contraction withXM), we
get

0 = LXω = d
(
iXM ω

)
, (2.4)

sincedω = 0. In other words, the one-formiXMω is closed. The action is calledHamiltonianif
this form isexact, in the following special way:

Definition 2.6. In the above situation, the action ofG on (M,ω) is calledHamiltonianif there
exists a smooth map

Φ : M→ g∗

with the following two properties.

1. For allX ∈ g, let ΦX ∈C∞(M) be the function defined by pairingΦ with X. Its derivative
is given by

dΦX =−iXM ω. (2.5)

2. The mapΦ is equivariant1 with respect to the coadjoint action ofG ong∗.

Such a mapΦ is called amomentum map2 of the action.

Note that ifG is connected, equation (2.4) implies that every Hamiltonian G-action is sym-
plectic. Because we will also consider non-connected groups, we reserve the term Hamiltonian
for symplectic actions.

Property (2.5) can be rephrased in terms of Hamiltonian vector fields, by saying that for
all X ∈ g, one hasξΦX = −XM. If G is connected, thenΦ is equivariant if and only if for all
X,Y ∈ g, we have{ΦX,ΦY}= Φ[X,Y]. That is, if and only ifΦ is a Poisson map with respect to
the standard Poisson structure ong∗.

The presence or absence of minus signs in these formulas depends on the sign conventions
used in the definitions of momentum maps, Hamiltonian vectorfields and vector fields induced
by Lie algebra elements.

1Sometimes a momentum map is not required to be equivariant, and the action is calledstrongly Hamiltonian
if it is.

2or ‘moment map’, as people on the east coast of the United States like to say
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Remark 2.7 (Uniqueness of momentum maps). If Φ andΦ′ are two momentum maps for the
same action, then for allX ∈ g,

d(ΦX−Φ′X) = 0.

If M is connected, this implies that the differenceΦX−Φ′X is a constant function, saycX, on
M. By definition of momentum maps, the constantcX depends linearly onX. So there is a an
elementξ ∈ g∗ such that

Φ−Φ′ = ξ .

By equivariance of momentum maps, the elementξ is fixed by the coadjoint action ofG on
g∗. In fact, given a momentum map, the space of elements ofg∗ that are fixed by the coadjoint
action parametrises the set of all momentum maps for the given action.

In the next section we give some examples of Hamiltonian group actions. We end this
section by giving some techniques to construct new examplesfrom given ones.

Lemma 2.8(Restriction to subgroups). Let H < G be a closed subgroup, with Lie algebrah.
Let

p : g∗→ h∗

be the restriction map fromg to h.
Suppose that G acts on a symplectic manifold(M,ω) in a Hamiltonian way, with momentum

mapΦ : M→ g∗. Then the restricted action of H on M is also Hamiltonian. Thecomposition

M
Φ−→ g∗

p−→ h∗

is a momentum map.

Remark 2.9. An interpretation of Lemma 2.8 is that the momentum map is functorial with
respect to symmetry breaking. For example, consider a physical system ofN particles inR3

(Example 2.16). If we add a function to the Hamiltonian that is invariant under orthogonal
transformations, but not under translations, then the Hamiltonian is no longer invariant under
the action of the Euclidean motion groupG. However, it is still preserved by the subgroup O(3)
of G. In other words, theG-symmetry of the system is broken into an O(3)-symmetry. By
Lemma 2.8, angular momentum still defines a momentum map, so that it is still a conserved
quantity (see Remark 2.15).

Lemma 2.10(Invariant submanifolds). Let (M,ω) be a symplectic manifold, equipped with
a Hamiltonian action of G, with momentum mapΦ : M → g∗. Let N⊂ M be a G-invariant
submanifold, with inclusion map j: N →֒M. Assume that the restricted form j∗ω is a symplectic
form on N (i.e. that it is nondegenerate). Then the action of Gon N is Hamiltonian. The
composition

N
j→֒M

Φ−→ g∗

is a momentum map.

The next lemma will play a role in Example 2.16, and in theshifting trick (Remark 2.22).
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Let (M1,ω1) and(M2,ω2) be symplectic manifolds. Suppose that there is a Hamiltonian
action of a groupG on both symplectic manifolds, with momentum mapsΦ1 andΦ2, respec-
tively. The Cartesian product manifoldM1×M2 carries the symplectic formω1×ω2, which is
defined as

ω1×ω2 := p∗1ω1 + p∗2ω2,

wherepi : M1×M2→Mi denotes the canonical projection map.
Consider the diagonal action ofG on M1×M2,

g · (m1,m2) = (g ·m1,g ·m2),

for g∈G andmi ∈Mi .

Lemma 2.11(Cartesian products). This action is Hamiltonian, with momentum map

Φ1×Φ2 : M1×M2→ g∗,

(Φ1×Φ2)(m1,m2) = Φ1(m1)+Φ2(m2),

for mi ∈Mi .

2.3 Examples of Hamiltonian actions

The most common classical phase spaces are cotangent bundles.

Example 2.12(Cotangent bundles). Let N be a smooth manifold, and letM := T∗N be its
cotangent bundle, with projection mapπN : T∗N → N. The tautological 1-formτ on M is
defined by

〈τη ,v〉= 〈η,TηπN(v)〉,
for η ∈ T∗N andv∈ TηM. The one-formτ is called ‘tautological’ because for all 1-formsα on
N, we have

α∗τ = α.

Here on the left hand side,α is regarded as a map fromN to M, along which the formτ is
pulled back.

Let q = (q1, . . . ,qd) be local coordinates on an open neighbourhood of an elementn of N.
Consider the corresponding coordinatesp on T∗N in the fibre direction, defined bypk = ∂

∂qk .
Then locally, one has

τ = ∑
k

pk dqk.

The 2-form
σ := dτ = ∑

k

dpk∧dqk (2.6)

is a symplectic form onM, called thecanonical symplectic form.
Let G be a Lie group acting onN. The induced action ofG onM,

g ·η := (Tgng
−1)∗η ∈ T∗gnN,
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for g∈G, n∈N andη ∈ T∗n N, is Hamiltonian, with momentum map

ΦX = iXMτ,

for all X ∈ g. Explicitly:
ΦX(η) := 〈η,XπN(η)〉,

for X ∈ g andη ∈ T∗N.

The following example forms the basis of Kirillov’s ‘orbit method’ [42, 43, 44]. The idea
behind this method is that unitary irreducible representations can sometimes be obtained as ge-
ometric quantisations of coadjoint orbits. An example of this idea is the Borel–Weil theorem
(Example 3.36), which can be used to generalise the ‘quantisation commutes with reduction’
theorem in the compact setting (Theorem 3.34) to a statementabout reduction at arbitrary irre-
ducible representations (Theorem 3.35), as shown in Lemma 3.37.

Example 2.13(Coadjoint orbits). Let G be a connected Lie group. Fix an elementξ ∈ g∗. We
define the bilinear formωξ ong by

ωξ (X,Y) :=−〈ξ , [X,Y]〉,

for all X,Y ∈ g. This form is obviously antisymmetric.
Thecoadjoint actionAd∗ of G ong∗ is given by

〈Ad∗(g)η,X〉= 〈η,Ad(g−1)X〉

for all g∈G, η ∈ g∗ andX ∈ g. The infinitesimal version of this action is denoted by ad∗, and
defined by

〈ad∗(X)η,Y〉 :=−〈η, [X,Y]〉,

for all X,Y ∈ g andη ∈ g∗.
Let Gξ be the stabiliser group ofξ with respect to the coadjoint action:

Gξ := {g∈G;Ad∗(g)ξ = ξ}.

The Lie algebragξ of Gξ equals

gξ = {X ∈ g;ad∗(X)ξ = 0}
= {X ∈ g;ωξ (X,Y) = 0 for allY ∈ g}, (2.7)

by definition ofωξ . By (2.7), the formωξ defines a symplectic form on the quotientg/gξ .
Let

O
ξ := G ·ξ ∼= G/Gξ

be the coadjoint orbit throughξ . The tangent space

Tξ O
ξ ∼= g/gξ
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carries the symplectic formωξ . This form can be extendedG-invariantly to a symplectic form
ω on the whole manifoldOξ . It is shown in [44], Theorem 1, that it is closed. This symplectic
form is called thecanonical symplectic formon the coadjoint orbit3 Oξ .

The coadjoint action ofG onOξ is Hamiltonian. The inclusion

Φ : O
ξ →֒ g∗

is a momentum map.

The following example can be used to show that a momentum map defines a conserved
quantity of a physical system.

Example 2.14(Time evolution). Let (M,ω) be a symplectic manifold, and letH be a smooth
function onM. If we interpretH as the Hamiltonian of some physical system onM, then we saw
in (1.9) that the time evolution of the system is given by the flow t 7→ etξH of the Hamiltonian
vector fieldξH of H. If this flow is defined for allt ∈R, then it defines an action of the Lie group
R onM. This action is Hamiltonian, with momentum map−H : M→ R∼= R∗. In physics, it is
well known that energy, given by the Hamiltonian function, is the conserved quantity associated
to invariance under time evolution. The minus sign in front of H is a consequence of our sign
conventions.

Remark 2.15. The interpretation of a momentum map as a conserved quantityarises when a
Hamiltonian action of a Lie groupG on a symplectic manifold(M,ω) is given (with momentum
mapΦ), along with aG-invariant (Hamiltonian) functionH onM. Then for allX ∈G, the time
dependence ofΦX is given by

d
dt

∣∣∣∣
t=0

(
etξH

)∗ΦX = ξH
(
ΦX

)

= ω(ξΦX ,ξH)

=−ξΦX(H)

= XM(H)

= 0,

sinceH is G-invariant.
In terms of the Poisson bracket, the above computation showsthat both time invariance of

ΦX (for all X ∈ g) andG-invariance ofH (for connectedG) are equivalent to the requirement
that{H,ΦX}= 0 for all X ∈ g.

This can be seen as a form of Noether’s theorem, which relatessymmetries of a physical
system to conserved quantities (see [27], page 16).

Example 2.16(N particles inR3). To motivate the term ‘momentum map’, we give an example
from classical mechanics. It is based on Example 2.12 about cotangent bundles, and Lemma
2.11 about Cartesian products.

Consider a physical system ofN particles moving inR3. The corresponding phase space is
the manifold

M :=
(
T∗R3)N ∼= R6N.

3In terms of Poisson geometry, coadjoint orbits are the symplectic leaves of the Poisson manifoldg∗.
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Let (qi , pi) be the coordinates on theith copy ofT∗R3∼= R6 in M. We write

qi = (q1
i ,q

2
i ,q

3
i ),

pi = (p1
i , p2

i , p3
i ),

and
(q, p) =

(
(q1, p1), . . . ,(qN, pN)

)
∈M.

Using Example 2.12 and Lemma 2.11, we equip the manifoldM with the symplectic form

ω :=
N

∑
i=1

dp1
i ∧dq1

i +dp2
i ∧dq2

i +dp3
i ∧dq3

i .

Let G be the Euclidean motion group ofR3:

G := R3 ⋊O(3),

whose elements are pairs(v,A), with v∈ R3 andA∈O(3), with multiplication defined by

(v,A)(w,B) = (v+Aw,AB),

for all elements(v,A) and(w,B) of G. Its natural action onR3 is given by

(v,A) ·x= Ax+v,

for (v,A) ∈G, x∈ R3.
Consider the induced action ofG onM. As remarked before, the physically relevant actions

are those that preserve the Hamiltonian. In this example, ifthe Hamiltonian is preserved byG
then the dynamics does not depend on the position or the orientation of theN particle system as
a whole. In other words, no external forces act on the system.

By Example 2.12 and Lemma 2.11, the action ofG on M is Hamiltonian. The momentum
map can be written in the form

Φ(q, p) =
N

∑
i=1

(pi,qi× pi) ∈
(
R3)∗×o(3)∗ = g∗.

Note that the Lie algebrao(3) is isomorphic toR3, equipped with the exterior product×. We
identify R3 with its dual (and hence witho(3)∗) via the standard inner product.

The quantity∑N
i=1 pi is the total linear momentum of the system, and∑N

i=1qi× pi is the total
angular momentum. As we saw in Remark 2.15, the momentum map is time-independent if
the group action preserves the Hamiltonian. In this example, this implies that the total linear
momentum and the total angular momentum of the system are conserved quantities.

2.4 Symplectic reduction

Half of the ‘quantisation commutes with reduction’ principle that is the subject of this thesis is
the term ‘reduction’. Half again of this term is reduction onthe classical side, which we explain
in this section.
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The definition

For cotangent bundles (see Example 2.12) the appropriate notion of reduction is

R : T∗N 7→ T∗(N/G), (2.8)

which is well-defined ifN/G is again a smooth manifold. Indeed,T∗N is the phase space of a
system withconfiguration space(i.e. space of all possible positions)N, and it seems thatN/G
is a natural choice for the reduced configuration space.

More generally, we would like to associate to a HamiltonianG-manifold (M,ω) a sym-
plectic manifoldR(M,ω), in such a way that (2.8) is a special case. We immediately seethat
R(M) = M/G is not a good choice, since it does not generalise (2.8) unless G is discrete. Fur-
thermore, there is no way to define a canonical symplectic form onM/G (althoughM/G does
inherit a canonical Poisson structure from(M,ω)). A better definition of reduction is the fol-
lowing one.

Definition 2.17. Let (M,ω) be a symplectic manifold, and letG be a Lie group. Suppose a
Hamiltonian action ofG on (M,ω) is given, with momentum mapΦ. Suppose that 0∈ g∗ is
a regular value4 of Φ. ThenΦ−1(0) is a smooth submanifold ofM, which isG-invariant by
equivariance ofΦ. Suppose that the restricted action ofG on Φ−1(0) is proper and free. Then
thesymplectic reduction (at zero)of the Hamiltonian action ofG on (M,ω) is the symplectic
manifold(M0,ω0), where

M0 := Φ−1(0)/G,

andω0 is the unique symplectic form onM0 such that

p∗ω0 = j∗ω, (2.9)

with p and j the quotient and inclusion maps in

Φ−1(0)
�

� j //

p
����

M

M0.

Theorem 2.18(Marsden–Weinstein). Such a symplectic formω0 exists, and is uniquely deter-
mined by the property(2.9).

For a proof, see [58]. Another common notation for(M0,ω0) is (M�G,ωM�G). Another
term for symplectic reduction isMarsden–Weinstein reduction.

It turns out to be useful to also consider symplectic reduction at other values than 0∈ g∗.
Before explaining this, we look at some examples of symplectic reduction at zero.

Proposition 2.19.Consider Example 2.12 about cotangent bundles. Suppose that the action of
G on N is proper and free. Let T∗(N/G) be the cotangent bundle of the (smooth) quotient N/G,
equipped with the canonical symplectic formσG = dτG. The symplectic reduction of(T∗N,σ)
by the action of G is symplectomorphic to(T∗(N/G),σG):

(
(T∗N)0,σ0

)∼=
(
T∗(N/G),σG

)
.

4That is, for allm∈Φ−1(0), the tangent mapTmΦ is surjective.
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A special case of reduction of cotangent bundles is the following.

Example 2.20(N particles inR3 revisited). In Example 2.16, we considered a classical me-
chanical system ofN particles moving inR3. We will now describe the symplectic reduction of
the phase spaceM =

(
T∗R3

)N
of this system by the action of the subgroupR3 of the Euclidean

motion groupG = R3 ⋊O(3).
Consider the action onM of the translation subgroupR3 of G. By Lemma 2.8, the total

linear momentum of the system defines a momentum map for this action. By Theorem 2.19,
the reduced phase space for this restricted action is

M0 =
(
T∗R3N)

0 = T∗(R3N/R3).

LetV be the(3N−3)-dimensional vector spaceR3N/R3. As coordinates onV, one can take

q̄i := qi−
N

∑
j=1

c jq j : V→ R3, i = 1, . . .N,

for any set of coefficients{c j} with sum 1. The coordinates then satisfy the single relation

N

∑
i=1

ci q̄i = 0.

A physically natural choice for thec j is

c j :=
mj

∑N
k=1mk

,

wheremj is the mass of particlej. The coordinates ¯qi are then related by

N

∑
i=1

miq̄i = 0.

Thus, the reduced phase space may be interpreted as the spaceof states of theN particle system
in which the centre of mass is at rest in the origin.

Reduction at other values of the momentum map

In the definition of symplectic reduction, we used the level set of the momentum map at the
value 0. Reductions at other values also turn out to be interesting.

Definition 2.21. Let (M,ω) be a symplectic manifold equipped with a HamiltonianG-action,
with momentum mapΦ. Let ξ ∈ g∗ be given, and letGξ be its stabiliser with respect to the
coadjoint action. Suppose thatξ is a regular value ofΦ, and thatGξ acts properly and freely
on Φ−1(ξ ). Thesymplectic reduction atξ of the Hamiltonian action ofG on (M,ω) is then
defined as the symplectic manifold(Mξ ,ωξ ), where

Mξ := Φ−1(ξ )/Gξ ,

and the symplectic formωξ is defined by the condition analogous to (2.9).
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The inclusion mapΦ−1(ξ ) →֒ Φ−1(G · ξ ) induces a diffeomorphismMξ
∼= Φ−1(G · ξ )/G.

When we do not specify the value at which we take a symplectic reduction, this value is always
zero.

When considering questions about symplectic reductions, one can often use theshifting trick
to generalise results about reduction at zero to results about reduction at arbitrary momentum
map values.

Remark 2.22(The shifting trick). The symplectic reduction of a Hamiltonian group action ofG
on (M,ω) at any regular valueξ ∈ g∗ of the momentum map can be obtained as the symplectic
reduction at 0 of a certain symplectic manifold containingM, by an action ofG.

Indeed, letOξ := G · ξ ∼= G/Gξ be the coadjoint orbit ofG through ξ (see Example

2.13). We noted thatMξ
∼= Φ−1(G · ξ )/G. Consider the two symplectic manifolds(O−ξ =

G · (−ξ ),ω−ξ ) and(M,ω). On these symplectic manifolds, we have HamiltonianG-actions,
with momentum maps

j−ξ : O
−ξ →֒ g∗

Φ : M→ g∗.

Consider the Hamiltonian action ofG on the Cartesian product(O−ξ ×M,ω−ξ ×ω) (see
Lemma 2.11). As we saw, a momentum map for this action is

j−ξ ×Φ : O
−ξ ×M→ g∗,

( j−ξ ×Φ)(η,m) := η +Φ(m),

for η ∈O−ξ andm∈M. The symplectic reduction of the action ofG onO−ξ ×M at the value
0 is equal to the symplectic reduction ofM at ξ :

(
j−ξ ×Φ

)−1
(0)/G = {(g · (−ξ ),m) ∈O

−ξ ×M;g · (−ξ )+Φ(m) = 0}/G

= Φ−1(G ·ξ )/G
∼= Mξ .

This exhibitsMξ as the symplectic reduction at zero of a Hamiltonian action.

The Guillemin–Sternberg conjecture, which we attempt to generalise to noncompact groups
and manifolds, is usually proved for symplectic reduction at zero, and then generalised to re-
duction at arbitrary momentum map values via the shifting trick (see Lemma 3.37).

Final remarks

Remark 2.23(Regularity assumptions). In the definition of symplectic reduction at an element
ξ ∈ g∗, we assumed thatξ was a regular value of the momentum mapΦ, and that the stabiliser
Gξ acted properly and freely onΦ−1(ξ ). The freeness assumption may be dropped if one is
willing to work with orbifoldsinstead of smooth manifolds.

Indeed, ifξ is a regular value ofΦ, then the action ofGξ on Φ−1(ξ ) is alwayslocally free,
i.e. has discrete stabilisers. This result is known as Smale’s lemma, see Lemma 2.24 below.
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We always suppose that a given action is proper. Then all stabilisers of the action ofGξ on
Φ−1(ξ ) are compact and discrete, and hence finite. This implies thatfor any regular valueξ
of Φ, the symplectic reductionMξ is an orbifold, andωξ is a symplectic form in the orbifold
sense. Although we will not work with orbifolds in this thesis, we do prove our two main results
in cases where the symplectic reduction is an orbifold. Thisis possible because the compact
versions (Theorems 3.34 and 3.38) of our main results hold inthe orbifold case, and because
generalising these results to our noncompact settings doesnot require the use of orbifolds.

Worse singularities arise whenξ is not a regular value ofΦ. However, Meinrenken and
Sjamaar [60] have found a way to state and prove a ‘quantisation commutes with reduction’
result in this generality, by using Kirwan’s desingularisation process [45]. Since it is not clear
a priori if their approach also works for noncompact groups and manifolds, we will restrict
ourselves to the orbifold case.

Lemma 2.24(Smale). In the setting of Definition 2.21, the elementξ is a regular value ofΦ if
and only if for all points m∈Φ−1(ξ ), the infinitesimal stabilisergm is trivial.

This fact follows from the defining relation (2.5) of the momentum map. It was originally
formulated in [74], Proposition 6.2.

In Part III, we will use the following ‘reduction in stages’-theorem. LetG be a Lie group,
acting in Hamiltonian fashion on a symplectic manifold(M,ω), with momentum mapΦ. Let
N⊳G be a closed, normal subgroup. By Lemma 2.8, the action ofN on M is Hamiltonian.
Suppose that 0∈ n∗ is a regular value of the momentum map induced byΦ, and let(M�
N,ωM�N) be the symplectic reduction at zero of this action.

Theorem 2.25(Reduction in stages). The action of the quotient group G/N on(M�N,ωM�N)
is Hamiltonian, with momentum mapΦN : M�N→ (g/n)∗ given by

〈ΦN(Nm),X +n〉 := 〈Φ(m),X〉

for all m∈M and X∈ g. Suppose that0∈ g∗ and0∈ (g/n)∗ are regular values ofΦ andΦN,
respectively. Then the symplectic reduction (at zero) of this action is symplectomorphic to the
symplectic reduction(M�G,ωM�G) of (M,ω) by G.

For a proof, see [56], or [49], Theorem IV.1.8.2.



Chapter 3

Geometric quantisation

This chapter is about geometric quantisation in the compactcase. Some parts of it are necessary
to understand Definitions 6.1 and 6.2 in the noncompact case,while other parts only serve as
motivation for these definitions.

The quantisation of a symplectic manifold(M,ω) should be a Hilbert spaceH . The easiest
way to construct such a Hilbert space would be setting

H := L2(M),

with respect to theLiouville measuregiven by the volume formωn

n! , with dimM = 2n. This first
guess can be improved in two ways.

First of all, instead of functions onM, we will look at sections of a line bundleLω → M.
Given a suitable Hermitian metric and a connection onLω , we then have a way to ‘quantise
observables’ (see Definition 3.6). Such a line bundle with a metric and a connection is called a
prequantisationof (M,ω). This is explained in Section 3.1.

More importantly, as we saw in Section 1.2, the quantisationof R6 should beL2(R3), not
L2(R6). The problem how to ‘shrink’L2(M,Lω) to a more appropriate quantisation space can
be solved using eitherpolarisations(Section 3.2) orDirac operators(Sections 3.3 and 3.4).

Another indication thatL2(M,Lω) is ‘too big’ is that quantisation only commutes with re-
duction if it is defined as the smaller space mentioned in the previous paragraph. The author
views the ‘quantisation commutes with reduction’ principle as anaxiomof quantisation and re-
duction; if this principle is violated, then something mustbe wrong with the quantisation and/or
reduction procedures one is using. The ‘quantisation commutes with reduction’ principle is ex-
plained in Section 3.7 for actions of compact groups on compact manifolds, and for cocompact
actions it is explained in Chapter 6.

3.1 Prequantisation

The first step towards geometric quantisation isprequantisation. A prequantisation of a sym-
plectic manifold(M,ω) is a Hermitian line bundleLω overM, equipped with a Hermitian con-
nection whose curvature form is 2π i ω. The geometric quantisation of(M,ω) will (initially) be
defined as a subspace of the space of sections of this line bundle. The Hermitian structure onLω

turns this space into a Hilbert space, and the connection onLω allows us to quantise observables
to a certain extent.

31
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Line bundles

We begin with some background information about line bundles. LetM be a smooth manifold,
and letL→M be a smooth complex line bundle overM. The space of smooth sections ofL is
denoted byΓ∞(M,L), or by Γ∞(L). The space of smooth differential forms onM of degreek,
with coefficients inL, is the space

Ωk(M;L) := Γ∞(M,
∧kT∗M⊗L).

Definition 3.1. If (−,−)L is a Hermitian metric onL, then a connection∇ on L is calledHer-
mitian if for all s, t ∈ Γ∞(M,L),

d(s, t)L = (∇s, t)L +(s,∇t)L ∈Ω1(M).

A connection∇ onL can be uniquely extended to a linear map

∇ : Ωk(M;L)→Ωk+1(M;L),

such that for allα ∈Ωk(M) andβ ∈Ω(M;L), the following generalised Leibniz rule holds:

∇(α ∧β ) = α ∧∇β +(−1)kdα ∧β .

A consequence of this Leibniz rule is that the square of∇,

∇2 : Ωk(M;L)→Ωk+2(M;L),

is aC∞(M)-linear mapping. Hence it is given by multiplication by a certain two-form.

Definition 3.2. Thecurvature (form)of a connection∇ on L is the two-form

2π i ω ∈Ω2
C(M) := Γ∞(M,

∧2T∗M⊗C)

such that for alls∈ Γ∞(M,L),
∇2s= 2π i ω⊗s. (3.1)

An equivalent formulation of (3.1) is that for all vector fields v andw on M, theC∞(M)-
linear map

[∇v,∇w]−∇[v,w] : Γ∞(M,L)→ Γ∞(M,L) (3.2)

is given by multiplication by the function 2π i ω(v,w).
It turns out thatω is real, closed (theBianchi identity), and that the cohomology class

[ω] ∈ H2
dR(M) is integral. That is, it lies in the image of the mapH2(M;Z)→ H2

dR(M). Or,
equivalently, for all compact, two-dimensional submanifolds S⊂ M, the number

∫
Sω is an

integer.
Conversely, we have the following theorem. For a proof, see [93].

Theorem 3.3(Weil). Let M be a smooth manifold,ω a real, closed two-form on M, with integral
cohomology class[ω] ∈H2

dR(M).
Then there is a line bundle Lω → M, with a Hermitian metric(−,−)Lω , and a Hermitian

connection∇ whose curvature form is2π i ω.

Definition 3.4. A triple (Lω , (−,−)Lω , ∇) as in Theorem 3.3 is aprequantisationfor (M,ω).
The line bundleLω is called aprequantum line bundle.
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Observables

In this thesis, we are not concerned with quantising observables. However, to motivate the
definition of prequantisation, let us explain a possible approach to quantising observables using
a prequantisation. First, recall the definition (2.1) of Hamiltonian vector fields. The mapf 7→ ξ f

is a Lie algebra homomorphism from the Poisson algebra
(
C∞(M),{−,−}

)
of (M,ω) to the Lie

algebraX(M) of vector fields onM:

Lemma 3.5. For all f ,g∈C∞(M),

[ξ f ,ξg] = ξ{ f ,g}.

This lemma can be proved via a straightforward local verification in Darboux coordinates.
We mentioned in Section 1.3 that it is a common assumption that quantisation of observables

is a Lie algebra homomorphism from the Poisson algebra
(
C∞(M),{−,−}

)
to the algebra of

operators on the quantum phase space, with the Lie bracket defined as the commutator. Here
we omit the constantih̄ in (1.18). The quantum phase space obtained via geometric quantisation
will be a subspace of the space of smooth sections of a prequantum line bundleLω → M.
If the prequantisation operator (defined below) associatedto a classical observable preserves
this subspace, then the induced operator on the quantum phase space can be interpreted as the
quantisation of the classical observable.

Definition 3.6. Let (Lω ,(−,−)Lω ,∇) be a prequantisation for(M,ω). Let f ∈ C∞(M), and
consider the linear operatorP( f ) onΓ∞(M,Lω), defined by

P( f ) := ∇ξ f
−2π i f . (3.3)

It is called theprequantisation operatorof the functionf .
The linear map

P : C∞(M)→ End(Γ∞(M,Lω))

defined by (3.3), is calledprequantisation.

Prequantisation is indeed a Lie algebra homomorphism:

Theorem 3.7(Kostant – Souriau). Prequantisation is a Lie algebra homomorphism with respect
to the Poisson bracket on C∞(M) and the commutator bracket of operators onΓ∞(M,Lω).

A proof of this theorem can be given by using Lemma 3.5 and the fact that∇2 = 2π i ω. This
is a reason for looking at sections of a prequantum bundle instead of at functions.

Equivariant prequantisations

Since we are interested in Hamiltonian group actions on symplectic manifolds, and not just in
the symplectic manifolds themselves, we now take a look at prequantisations of such group
actions. Let(M,ω) be a symplectic manifold, and letG be a Lie group acting symplectically
on (M,ω).

Definition 3.8. An equivariant prequantisationof the action ofG on M is a prequantisation
(LΓ∞(M,Lω),(−,−)Lω ,∇) of (M,ω) with the following additional properties.



34 CHAPTER 3. GEOMETRIC QUANTISATION

• Lω is aG-equivariant line bundle;

• the metric(−,−)Lω is G-invariant;

• the connection∇ is G-equivariant as an operator onΩ∗(M;Lω).

Equivariance of∇ is equivalent to the requirement that for all sectionss∈ Γ∞(Lω), all vector
fieldsv∈ X(M) and allg∈G, we have

g ·
(
∇vs

)
= ∇g·vg ·s.

Here the sectiong ·sand the vector fieldg ·v are defined by

(g ·s)(m) = g ·s(g−1m); (3.4)

(g ·v)m = Tg−1mg(vg−1m).

for all m∈M.

Remark 3.9 (Existence of equivariant prequantisations). As can be seen in the example in
Section 11.5, it is not always clear if an equivariant prequantisation exists.

If G is compact, then existence of an equivariant prequantisation is equivalent to integrality
of the equivariant cohomology class[ω−Φ] (see [27], Theorem 6.7). If the manifoldM is sim-
ply connected and the groupG is discrete, then Hawkins [32] gives a procedure to lift the action
of G on M to a projective action on the trivial line bundle overM, such that a given connection
is equivariant. Under a certain condition (integrality of agroup cocycle), this projective action
is an actual action.

In general however, existence of an equivariant prequantisation of a given Hamiltonian ac-
tion does not follow from a result like Theorem 3.3, and has tobe assumed. In Section 13.1, we
show how in some cases, an equivariant prequantisation can be constructed from a prequantisa-
tion of an action by a compact group on a compact submanifold.

In the literature on the Guillemin–Sternberg conjecture, usually a more specific kind of
equivariant prequantisation is considered. To define this prequantisation, suppose that(M,ω) is
a HamiltonianG-manifold, with momentum mapΦ. Let (Lω ,(−,−)Lω ,∇) be a prequantisation
of (M,ω), which is not yet assumed to be equivariant. SupposeLω is a G-line bundle. The
induced action of the Lie algebrag onΓ∞(Lω) is defined by

X(s)(m) =
d
dt

∣∣∣∣
t=0

exp(tX)s(exp(−tX)m),

for X ∈ g, s∈ Γ∞(Lω) andm∈M.

Proposition 3.10.Suppose that G is connected, and that the action ofg on Γ∞(Lω) is given by
theKostant formula

X(s) =−P(ΦX) =−∇ξXM
s+2π i ΦXs.

Then(Lω ,(−,−)Lω ,∇) is an equivariant prequantisation of the action of G on(M,ω). That is,
the metric(−,−)Lω is G-invariant, and the connection∇ is G-equivariant.

The author is not aware of a proof of this fact in the literature, but such a proof is a straight-
forward matter of verifying the desired properties, using the fact that(Lω ,(−,−)Lω ,∇) is a
prequantisation.

A reason why we consider the more general equivariant prequantisations, as in Definition
3.8, is that we will also consider non-connected groups in Part III.
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3.2 Quantisation via polarisations

The first way to quantise a prequantised symplectic manifold(M,ω) is by using apolarisation
of the complex tangent spaceTMC := TM⊗R C.

Definition 3.11. Let (V,ω) be a symplectic vector space of dimension 2n. The symplectic
form ω extends complex-linearly to the complexificationV⊗C. A polarisationof V⊗C is a
complex Lagrangian subspaceP of V⊗C. That is,P⊥ = P, whereP⊥ is the subspace ofV⊗C

orthogonal toP with respect toω.

Definition 3.12. Let (M,ω) be a symplectic manifold, and letP be a smooth subbundle of the
complexified tangent bundleTM⊗C. ThenP is called apolarisationof (M,ω) if it has the
following properties.

1. The subspacePm⊂ TmM⊗C is a polarisation of(TmM⊗C,ωm) for all m∈M.

2. The signatures(rm,sm) of the forms(−,−)Pm onPm/(Pm∩ P̄m) are locally constant onM.

3. The subbundleP of TM⊗C is integrable. That is, the space of sections ofP is closed
under the Lie bracket of vector fields.

Example 3.13(Vertical polarisation). Let N be a manifold, and letM be the cotangent bundle
T∗N, equipped with the standard symplectic formσ = dτ from Example 2.12. LetP⊂ TM⊗C

be the subbundle
P := kerTCπN,

whereπN : T∗N → N denotes the cotangent bundle projection. ThenP is a polarisation of
(M,σ), called theverticalpolarisation. Note that

P∼= TN⊗C →֒ TM⊗C.

Example 3.14(Kähler polarisation). Let M be a complex manifold, and letH be a Hermitian
metric onTM. Let g be the real part ofH, and letω beminusthe imaginary part ofH. (The
minus sign makes the notation in this example compatible with the notation in the rest of this
thesis.) The pair(M,H) is called aKähler manifold if dω = 0. In that case,(M,ω) is a
symplectic manifold.

Let J : TM→ TM be the complex structure onM. Then

g(−,−) = ω(−,J−)

is a Riemannian metric onM. Becauseg andH are determined byω andJ, we may also denote
the Kähler manifold(M,H) by (M,ω,J), or (M,ω) by abuse of notation.

TheKähler polarisationof (M,ω) is the−i eigenspace ofJ acting onTM⊗C:

P := {JX− iX ;X ∈ TM}.

A function f ∈C∞(M) is holomorphic if and only ifZ( f ) = 0 for all Z ∈ Γ∞(M,P).
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Given a symplectic manifold(M,ω), a prequantisation(Lω ,(−,−)Lω ,∇) of (M,ω) and a
polarisationP⊂ TM⊗C, the geometric quantisation of(M,ω) can be defined as

QI (M,ω) := {s∈ Γ∞(M,Lω);∇Zs= 0 for all Z ∈ Γ∞(M,P)}. (3.5)

This definition of quantisation is often applied to compact Kähler manifolds, and it is this case
that we will generalise in the course of this chapter.

Definition 3.15 (Quantisation I). Let (M,ω) be a compact Kähler manifold, such that[ω] is
an integral cohomology class. LetP be the Kähler polarisation ofM, and let(Lω ,(−,−)Lω ,∇)
be a prequantisation. Then theKähler-quantisationof (M,ω) is the finite-dimensional vector
space (3.5).

We can give the line bundleLω the structure of aholomorphicline bundle, by requiring that
its space of holomorphic sections isQI (M,ω). The vector spaceQI (M,ω) is therefore indeed
finite-dimensional. A reason for using sections of a line bundle instead of functions onM in the
definition of quantisation, is the fact that there are no nonconstant holomorphic functions on a
compact complex manifold, whereas a holomorphic line bundle on such a manifold may have
interesting sections.

Remark 3.16. In the situation of Definition 3.15, consider the Dolbeault complex onM with
coefficients inLω :

0 //Ω0,0(M;Lω)
∂̄⊗1Lω //Ω0,1(M;Lω)

∂̄⊗1Lω // . . .
∂̄⊗1Lω //Ω0,dM(M;Lω) //0.

HeredM is the real dimension ofM. The zeroth cohomology spaceH0,0(M;Lω) is the space of
holomorphic sections ofLω , which we defined to beQI(M,ω). This implies thatQI (M,ω) is
not the zero space if the line bundleLω is sufficiently positive.

Indeed, ifLω⊗∧0,dMTM is a positive line bundle, then by Kodaira’s vanishing theorem (see
e.g. [90], Section VI.2), all Dolbeault cohomology spacesH0,k(M;Lω) vanish fork > 0. The
Hirzebruch–Riemann–Roch theorem expresses the number

dM

∑
k=0

(−1)kdimH0,k(M;Lω) = dimH0,0(M;Lω)

as the integral overM of a certain differential form. IfLω is positive enough, this number turns
out to be nonzero.

If the line bundleLω is positive, but not positive enough, then we can replaceLω by a tensor
powerLω⊗n, to make it sufficiently positive. This amounts to replacingthe symplectic formω
by a multiplenω. Roughly speaking, we can think ofn as being proportional to 1/h̄ so that
choosingLω positive enough, i.e. choosingn big enough, comes down tōh being small enough.

3.3 Quantisation via the Dolbeault–Dirac operator

In this section, we improve Definition 3.15 of geometric quantisation in two ways. First, we give
a definition (Definition 3.17) that yields a nonzero quantisation in more cases than Definition
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3.15, and then we rephrase Definition 3.17 in a way that allowsus to generalise it to possibly
non-Kähler symplectic manifolds. Both definitions reduceto Definition 3.15 if the prequantum
line bundle is positive enough.

Definition 3.17 (Quantisation II). Let (M,ω) be a compact Kähler manifold, suppose that[ω]
is an integral cohomology class, and let(Lω ,(−,−)Lω ,∇) be a prequantisation. We define the
quantisation of(M,ω) as

QII (M,ω) :=
n

∑
k=0

(−1)kH0,k(M;Lω),

the alternating sum of the Dolbeault cohomology spaces ofM with coefficients inLω . This
is a virtual vector space, i.e. a formal difference of vectorspaces, whose isomorphism class is
determined by the integer

n

∑
k=0

(−1)k dimH0,k(M;Lω).

If the line bundleLω is positive enough, then the definition of quantisation agrees with the
previous one (see Remark 3.16).

The Dolbeault–Dirac operator

Definition 3.17 may be reformulated in a way that makes sense even when the manifoldM
is not Kähler. Let(M,ω) be a compact symplectic manifold. Suppose that[ω] is an integral
cohomology class, and let(Lω ,(−,−)Lω ,∇) be a prequantisation. LetJ be an almost complex
structure onTM that iscompatiblewith ω:

Definition 3.18. An almost complex structureJ on a symplectic manifold(M,ω) is said to be
compatiblewith ω, if the symmetric bilinear form

g := ω(−,J−)

is a Riemannian metric onM.

Compatible almost complex structures always exist (see forexample [27], pp. 111–112).
As we noted before, the connection∇ onLω defines a differential operator

∇ : Ωk(M;Lω)→Ωk+1(M;Lω),

such that for allα ∈Ωk(M) ands∈ Γ∞(M,Lω),

∇(α⊗s) = dα⊗s+(−1)kα ∧∇s.

Consider the projection

π0,∗ : Ω∗C(M;Lω)→Ω0,∗(M;Lω),
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according to the decompositionΩk
C(M;Lω) =

⊕
p+q=k Ωp,q(M;Lω). Define the differential

operator
∂̄Lω : Ω0,q(M;Lω)→Ω0,q+1(M;Lω)

by
∂̄Lω := π0,∗ ◦∇.

The Riemannian metricg induces a metric on the bundle
∧0,∗T∗M, which we also denote

by g. Let (−,−) be the inner product onΩ0,∗
c (M;Lω) such that for allα,β ∈ Ω0,∗

c (M) and all
s, t ∈ Γ∞(M,Lω),

(α⊗s,β ⊗ t) =

∫

M
g(α,β )(m)(s, t)Lω(m)dm.

wheredm is the Liouville measure. Let̄∂ ∗Lω by the formal adjoint of∂̄Lω , defined by the re-
quirement that

(∂̄Lω ϕ,ψ) = (ϕ, ∂̄ ∗Lω ψ)

for all ϕ,ψ ∈Ω0,∗(M;Lω), whereϕ has compact support.

Definition 3.19. TheDolbeault–Dirac operatoris the elliptic differential operator

∂̄Lω + ∂̄ ∗Lω : Ω0,∗(M;Lω)→Ω0,∗(M;Lω).

This operator maps forms of even degree to forms of odd degree, and vice versa.

Dolbeault-quantisation

Definition 3.20 (Quantisation III). TheDolbeault-quantisationof (M,ω) is defined as the vir-
tual vector space

ker
((

∂̄Lω + ∂̄ ∗Lω
)
|Ω0,even(M;Lω )

)
−ker

((
∂̄Lω + ∂̄ ∗Lω

)
|Ω0,odd(M;Lω )

)
,

which is the index of the Dolbeault–Dirac operator

∂̄Lω + ∂̄ ∗Lω : Ω0,even(M;Lω)→Ω0,odd(M;Lω). (3.6)

In other words,

QIII (M,ω) := index
(
∂̄Lω + ∂̄ ∗Lω

)
. (3.7)

Because this operator is elliptic andM is compact, its index is well-defined.

Remark 3.21. In general, letE = E0⊕E1→M be aZ2-graded vector bundle, equipped with
a metric, over a compact manifold. LetD be an elliptic differential operator onE. Suppose
thatD is symmetric with respect to theL2-inner product in sections ofE with respect to a given
measure onM, and that it interchanges sections ofE0 andE1 Then, as in (3.7), we will often
slightly abuse notation by writing

indexD := index
(
D : Γ∞(E0)→ Γ∞(E1)

)

= [kerD∩Γ∞(E0)]− [kerD∩Γ∞(E1)].
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Remark 3.22(Quantisation III for Kähler manifolds). If M is a complex manifold, andLω is a
holomorphic line bundle overM, then we can define the elliptic differential operator

(∂̄ + ∂̄ ∗)⊗1Lω : Ω0,∗(M;Lω)→Ω0,∗(M;Lω) (3.8)

as follows. Locally, one has

Ω0,q(U ;Lω |U)∼= Ω0,q(U)⊗O(U) O(U,Lω |U).

HereU is an open subset ofM over whichLω trivialises,O(U) denotes the space of holomor-
phic functions onU , andO(U,Lω |U) is the space of holomorphic sections ofLω onU . Because
(by definition)∂̄ f = 0 for holomorphic functionsf , we can locally define the differential oper-
ator

∂̄ ⊗1Lω : Ω0,q(U ;Lω |U)→Ω0,q+1(U ;Lω |U),

by
∂̄ ⊗1Lω (α⊗s) = ∂̄α⊗s,

for all α ∈ Ω0,q(U) ands∈ O(U,Lω |U). These local operators patch together to a globally
defined operator

∂̄ ⊗1Lω : Ω0,q(M;Lω)→Ω0,q+1(M;Lω),

from which we can define the operator (3.8) by

(∂̄ + ∂̄ ∗)⊗1Lω := ∂̄ ⊗1Lω +(∂̄ ⊗1Lω )∗.

If (M,ω) is a compact Kähler manifold that admits a prequantum line bundle(Lω ,(−,−
)Lω ,∇), then the Dolbeault–Dirac operator∂̄Lω + ∂̄ ∗Lω turns out to have the same principal sym-
bol, and hence the same index, as the operator(∂̄ + ∂̄ ∗)⊗1Lω . So for Kähler manifolds, Defi-
nition 3.20 may be rephrased as

QIII (M,ω) := index
(
(∂̄ + ∂̄ ∗)⊗1Lω : Ω0,even(M;Lω)→Ω0,odd(M;Lω)

)
.

Lemma 3.23. If (M,ω) is a Kähler manifold, then Definitions II and III of geometric quantisa-
tion agree.

Proof. Note that

H0,k(M;Lω) = ker
(

∂̄ k⊗1Lω

)
/ im

(
∂̄ k−1⊗1Lω

)

∼= ker
(

∂̄ k⊗1Lω

)
∩

(
im

(
∂̄ k−1⊗1Lω

))⊥

= ker
(

∂̄ k⊗1Lω

)
∩ker

(
∂̄ k−1⊗1Lω

)∗

= ker
((

∂̄ k +
(

∂̄ k−1
)∗)
⊗1Lω

)
,

because the images of̄∂ k and
(
∂ k−1

)∗
lie in different spaces.



40 CHAPTER 3. GEOMETRIC QUANTISATION

We conclude that

H0,even(M;Lω) =
⊕

k even
ker

(
∂̄ k +

(
∂̄ k−1

)∗)
⊗1Lω

= ker
((

∂̄ + ∂̄ ∗
)
⊗1Lω |Ω0,even(M;Lω )

)
,

and similarly,

H0,odd(M;Lω) =
⊕

k odd

ker
(

∂̄ k +
(

∂̄ k−1
)∗)
⊗1Lω

= ker
((

∂̄ + ∂̄ ∗
)
⊗1Lω |Ω0,odd(M;Lω )

)
.

3.4 Quantisation via theSpinc-Dirac operator

Prequantisations and almost complex structures are the crucial ingredients of the definition of
quantisation via the Dolbeault–Dirac operator. These two ingredients can, in some sense, be
combined into the single notion of a Spinc-structure. Such a structure allows us to give another
definition of geometric quantisation, which is slightly different from the previous one. We
will use this definition in Theorem 6.13 about discrete series representations of semisimple Lie
groups.

It is possible to restate Definition 3.20 of Dolbeault-quantisation in terms of Spinc-structures
associated to almost complex structures and prequantum line bundles. See for example [79].
This definition is different from the one we give in this section, where we do not use almost
complex structures. The difference between these definitions is explained in [62].

Spinc-structures and Dirac operators

We begin by introducing Spinc-structures on manifolds. More information can be found in [22]
or in [53], Appendix D. Forn ∈ N, n≥ 2, the group Spin(n) is by definition the connected
double cover of SO(n). It can be constructed explicitly as follows.

The Clifford algebra of a vector spaceV with a quadratic formq is the quotient of the tensor
algebra ofV by the two-sided ideal generated by the elementsv⊗ v− q(v), for v ∈ V. See
[22, 23, 53] for more information. LetCn be the Clifford algebra ofRn with the quadratic form
q(x) =−x2

1−·· ·−x2
n. Then Spin(n) is the group inCn generated by elements of norm one and

degree two:
Spin(n) = 〈xy;x,y∈ Sn−1⊂ Rn⊂Cn〉.

The group Spinc(n) is defined as

Spinc(n) := Spin(n)×Z2 U(1).

HereZ2 is embedded into Spin(n) as the kernel of the covering mapλ : Spin(n)→ SO(n), and
into U(1) as the subgroup{±1}.
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More generally, we have the groups Spin(V) and Spinc(V), for any finite-dimensional vector
spaceV equipped with a quadratic form. They are defined completely analogously to the groups
Spin(n) and Spinc(n), respectively.

Definition 3.24. A Spinc-structureon a vector bundleE→M of rankr is a pair(P,ψ), consist-
ing of a right principal Spinc(n)-bundleP→M and a vector bundle isomorphism

ψ : P×Spinc(r) Rr → E.

Here Spinc(r) acts onRr via the homomorphism Spinc(r)→ SO(r) given by[a,z] 7→ λ (a), for
a∈ Spin(r) andz∈U(1).

A Spinc-structureon a manifold is a Spinc-structure on its tangent bundle. A manifold
equipped with a Spinc-structure is called a Spinc-manifold.

A Spinc-structure on a vector bundleE → M induces a metric and an orientation onE,
obtained from the Euclidean metric and the standard orientation onRdM , via the mapψ. If E
was already equipped with these structures, then the mapψ is supposed to preserve them. That
is, ψ is an isometric isomorphism of oriented vector bundles.

If an action of a groupG on M is given, then an equivariant Spinc-structure onM is a
Spinc-structure(P,ψ), whereG acts onP from the left, andψ is assumed to beG-equivariant.

We will sometimes sloppily use the term Spinc-structure for the principal Spinc-bundleP.

Remark 3.25(Spin-structures). A Spin-structureis defined in the same way as a Spinc-structure,
with the group Spinc(r) replaced by Spin(r) everywhere. A Spin-structureP→ M on a vec-
tor bundle of rankr naturally induces a Spinc-structure on this bundle, equal toP×Spin(r)
Spinc(r)→M.

Now supposen ∈ N is even. We denote thecanonical representationof Cn by c : Cn→
End(∆n) (see [53, 22, 23]). The vector space∆n is naturally isomorphic toC2n/2

. The restriction
to Spin(n) of this representation decomposes into two irreducible subrepresentations∆n = ∆+

n ⊕
∆−n of equal dimension. Forx∈Rn⊂Cn, we have

x∆+
n := c(x)∆+

n ⊂ ∆−n ;

x∆−n := c(x)∆−n ⊂ ∆+
n .

(3.9)

The representation∆n of Spin(n) extends to the group Spinc(n) via the formula

[a,z] ·δ = z(a ·δ ),

for a∈ Spin(n), z∈ U(1) andδ ∈ ∆n. The Spinc-Dirac operator acts on sections of thespinor
bundleassociated to the Spinc-structure onM:

Definition 3.26. Let (P,ψ) be a Spinc-structure on an even-dimensional manifoldM. The
spinor bundleon M associated to this Spinc-structure is the vector bundle

S := P×Spinc(dM) ∆dM .

The isomorphism∆dM
∼= C2dM/2

induces a Hermitian metric onS . The spinor bundle has a
natural decompositionS = S +⊕S −, induced by the decomposition∆dM = ∆+

dM
⊕∆−dM

.
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The action ofTM onS , called theClifford actionand denoted bycTM, is defined as follows.
Let [p,x] ∈ P×Spinc(n) Rn ∼= TM be given. Then for allδ ∈ ∆dM , the Clifford action is defined
by

cTM([p,x])[p,δ ] := [p,x·δ ]. (3.10)

Note that by (3.9), the Clifford action interchanges the sub-bundlesS + andS −. The induced
action of vector fields on sections of the spinor bundle will also be denoted bycTM.

To define the Spinc-Dirac operator on an even-dimensional manifoldM, we suppose a Her-
mitian connection∇ on the spinor bundle to be given.

Definition 3.27. The Spinc-Dirac operator/DM on M, associated to the Spinc-structure(P,ψ)
and the connection∇, is defined by the property that for all orthonormal local frames{e1, . . . ,edM}
of TM, we locally have

/DM =
dM

∑
j=1

cT M(ej)∇ej .

This operator maps sections ofS + to sections ofS − and vice versa.
The principal symbolσ/DM

of the Spinc-Dirac operator is given by

σ/DM
(ξ ,δ ) = (ξ , icTM(ξ ∗)δ )

Here(ξ ,δ )∈ π∗MS , with πM the cotangent bundle projection ofM. The tangent vectorξ ∗ ∈TM
is the one associated toξ via the Riemannian metric onM. The square of this principal symbol
is given by scalar multiplication by‖ξ‖2, so thatσ/DM

is invertible, and the Spinc-Dirac operator
is elliptic.

Furthermore, the Spinc-Dirac operator is symmetric with respect to theL2-inner product
of compactly supported smooth sections of the spinor bundle([92], [22], page 69). ThisL2-
inner product is defined using the volume form onM associated to the Riemannian metric.
Finally, if M is equipped with aG-equivariant Spinc-structure, then the spinor bundle has a
natural structure of aG-vector bundle. If the connection onS is G-equivariant, then so is the
Spinc-Dirac operator.

Spinc-quantisation

Let (M,ω) be a compact symplectic manifold. In the definition of Spinc-quantisation, we use
a slightly different notion of prequantisation from the oneintroduced in Section 3.1. To define
Dolbeault-quantisation, we assumed that the cohomology class[ω] was integral. For Spinc-
quantisation, we assume that the cohomology class

[ω]+
1
2

c1
(∧0,dM

C (TM,J)
)
∈H2

dR(M) (3.11)

is integral, for some almost complex structureJ onM, not necessarily compatible withω. This
integrality condition is independent of the choice ofJ. Integrality of (3.11) implies in particular
that[2ω] is an integral cohomology class, so that(M,2ω) is prequantisable.
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Definition 3.28. A Spinc-prequantisationof (M,ω) is a prequantisation(L2ω ,(−,−)L2ω ,∇), as
in Definition 3.4, of the symplectic manifold(M,2ω). That is, the curvature form of∇ is 4π i ω
instead of 2π i ω.

Note that ifLω is a normal prequantum line bundle over(M,ω), then
(
Lω)⊗2

is a Spinc-
prequantum line bundle. We will motivate this definition in Lemma 3.32.

In the case of Spinc-quantisation, the link between the Spinc-structure and the prequantisa-
tion is given by the determinant line bundle:

Definition 3.29. Thedeterminant homomorphismdet : Spinc(n)→ U(1) is given by

det[a,z] = z2,

for a∈ Spin(n) andz∈ U(1).
Let P→ M be a principal Spinc(n)-bundle. Thedeterminant line bundleof P is the line

bundle
det(P) := P×Spinc(n) C→M,

where Spinc(n) acts onC via the determinant homomorphism.

Definition 3.30(Quantisation IV). Let (M,ω) be a compact symplectic manifold, and suppose
that the cohomology class (3.11) is integral. Then there is aSpinc-prequantisation(L2ω ,(−
,−)L2ω ,∇) of (M,ω), and a Spinc structureP→ M on M whose determinant line bundle is
(isomorphic to)L2ω (see Remark 3.31). Let

/DL2ω
M : Γ∞(M,S +)→ Γ∞(M,S −)

be the Spinc-Dirac operator on the spinor bundleS , with respect to any connection onS . Its
index is the Spinc-quantisationof (M,ω):

QIV (M,ω) := index/DL2ω
M .

Note that the principal symbol, and hence the index, of/DL2ω
M does not depend on the choice

of connection onS .

Remark 3.31. Integrality of (3.11) implies that a Spinc-structureP as in Definition 3.30 always
exists. Indeed, letJ be any almost complex structure onM, not necessarily compatible withω.
By integrality of (3.11), the line bundle

L2ω ⊗∧0,dM
C (TM,J)→M

always has a square rootLJ. ThenP may be taken to be the standard Spinc-structure associated
to LJ andJ, as described for example in [27], Proposition D.50.

The specific choice of the Spinc-structureP is irrelevant in Definition 3.30, as long as its
determinant line bundle isL2ω .

The link between Definitions 3.4 and 3.28 of prequantisation, and between Definitions 3.20
and 3.30 of geometric quantisation, is the following.
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Lemma 3.32.Let (M,ω) be a compact symplectic manifold, and let Lω →M be a prequantum

line bundle. Then L2ω :=
(
Lω)⊗2→M is a Spinc-prequantum line bundle. Let J be an almost

complex structure on M, compatible withω. If the line bundle

∧0,dM
C (TM,J)→M

is trivial, then the Dolbeault-quantisation of(M,ω), with respect to Lω , equals theSpinc-
quantisation of(M,ω), with respect to L2ω .

Sketch of proof.In the situation of this lemma, the spinor bundleS is isomorphic to
∧0,∗T∗M⊗

Lω , and this isomorphism intertwines the principal symbols ofthe Spinc- and Dolbeault–Dirac
operators (up to a nonzero scalar factor). �

3.5 Equivariant quantisation

So far, we have only defined quantisation in the absence of a group action. These definitions
generalise naturally to the equivariant setting. Let(M,ω) be a compact symplectic manifold,
equipped with a symplectic action by a groupG. Let a (Spinc- or normal) equivariant prequan-
tisation be given.

In the case of Dolbeault-quantisation, letJ be aG-equivariant almost complex structure on
M, compatible withω. If the action ofG onM is proper, then such an almost complex structure
always exists (see [27], Example D.12 and Corollary B.35). In the case of Spinc-quantisation,
the Spinc-structureP in Definition 3.30 can be given the structure of aG-equivariant Spinc-
structure, by applying the construction in Remark 3.31 to anequivariant almost complex struc-
ture onM. Choose aG-equivariant connection on the corresponding spinor bundle. It then
follows that the virtual vector spacesQI(M,ω)–QIV (M,ω) are invariant under the representa-
tion of G given by (3.4), and therefore carry representations ofG.

If G = K is a compact Lie group, then these quantisations therefore define elements of the
representation ringof K:

Definition 3.33. Let K be a compact Lie group. Therepresentation ring R(K) of K is the
quotient of the free abelian group with one generator for each isomorphism class of finite-
dimensional representations ofK, by the equivalence relation[V] + [W] ∼ [V ⊕W], for all
finite-dimensionalK-representationsV andW. The tensor product of representations induces a
commutative product onR(K).

In particular, we have

QIII (M,ω) = K-index
(
∂̄Lω + ∂̄ ∗Lω

)
∈ R(K); (3.12)

QIV (M,ω) = K-index/DL2ω

M ∈ R(K). (3.13)

Here the Dolbeault–Dirac operator∂̄Lω + ∂̄ ∗Lω and the Spinc-Dirac operator/DL2ω

M are understood
as operators between the spaces of even- and odd-graded antiholomorphic differential forms
with values in with values inLω , or sections of the spinor bundle, as in Definitions 3.20 and
3.30.
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The goal of this thesis is to generalise the ‘quantisation commutes with reduction’ theorem
in Section 3.7 to noncompactM andG. Definitions (3.12) and (3.13) cannot directly be gener-
alised to this case, for two reasons. The first is that ifM is noncompact, then the kernels of the
Dolbeault- and Spinc-Dirac operators need no longer be finite-dimensional. The second reason
is that the representation ring has to be defined in terms of finite-dimensional representations,
to avoid problems with formal differences of infinite-dimensional vector spaces, and that the
finite-dimensional representations of noncompact Lie groups do not include all the interesting
ones. Indeed, for noncompact simple groups the only finite-dimensional unitary representa-
tions are direct sums of the trivial one. We will use the solution to these problems proposed
by Landsman [50], which is to replace the representation ring of a group by theK-theory of its
C∗-algebra, and theK-index by the analytic assembly map. This is explained in Chapters 4, 5
and 6.

3.6 Quantisation of symplectic reductions

Because we always suppose that the orbit space of a given group action is compact, all sym-
plectic reductions we consider are compact as well. We can therefore quantise these reductions
in the usual way, which we describe in this section.

Suppose thatG is a group,(M,ω) is a HamiltonianG-manifold, with momentum map
Φ, and that(Lω ,(−,−)Lω ,∇) is an equivariant prequantisation. SupposeM/G is compact.
Consider the symplectic reduction(M0,ω0) of (M,ω) at zero. If 0 is a regular value ofΦ, and
G acts properly and freely onΦ−1(0), then we have the line bundle

Lω0 :=
(
Lω |Φ−1(0)

)
/G→M0. (3.14)

If p : Φ−1(0)→ M0 is the quotient map, andi : Φ−1(0) →֒ M is the inclusion, then we have
p∗Lω0 ∼= i∗Lω . TheG-invariant Hermitian metric(−,−)Lω induces a metric(−,−)Lω0 on Lω0,
by

(G · l ,G · l ′)Lω0 := (l , l ′)Lω ,

for all m∈ Φ−1(0) andl , l ′ ∈ Lω
m. Furthermore, there is a unique connection∇M0 on Lω0 such

thatp∗∇M0 = i∗∇ (see [28], Theorem 3.2). The triple
(
Lω0,(−,−)Lω0 ,∇M0

)
is a prequantisation

of (M0,ω0).
To define the Dolbeault-quantisation of the the symplectic reduction(M0,ω0), we choose an

almost complex structureJM0 on M0, compatible withω0. We then form the Dolbeault–Dirac
operator∂̄Lω0 + ∂̄ ∗Lω0 with respect toJM0. As in Section 3.3, the Dolbeault-quantisation is the
index of this operator:

QIII (M0,ω0) = index
(
∂̄Lω0 + ∂̄ ∗Lω0

)
.

For Spinc-quantisation, letP→M be aG-equivariant Spinc-structure with determinant line
bundleL2ω . In [64], Paradan shows thatP induces a Spinc-structureP0 on M0 whose deter-
minant line bundle isL2ω0. The Spinc-quantisation of(M0,ω0) is then defined, as in Section
3.4, as the index of the Spinc-Dirac operator on the spinor bundleS0 of P0, with respect to any
connection onS0:

QIV (M0,ω0) = index/DL2ω0
M0

.
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Even if the action ofG onΦ−1(0) is not assumed to be free, it is still locally free by Lemma
2.24. If the action ofG onΦ−1(0) is proper, then it has compact stabilisers, so that the reduced
spaceM0 is an orbifold. It is then still possible to define a Dolbeault- or Spinc-Dirac operator on
M0, and its index is still denoted byQIII (M0,ω0) or byQIV (M0,ω0), respectively. These indices
can be computed via Kawasaki’s orbifold index theorem (see [41], or [59], Theorem 3.3).

If 0 is not a regular value ofΦ, thenM0 is not necessarily an orbifold. In [60], Meinrenken
and Sjamaar deal with this situation in the compact setting.Because their methods may not work
in the noncompact setting, we will avoid working with such singular spaces by only considering
regular values ofΦ.

Next, let any elementξ ∈ g∗ be given. The Spinc-quantisationQIV (Mξ ,ωξ ) of the symplectic
reduction of(M,ω) at ξ can be defined analogously to the caseξ = 0.

For Dolbeault-quantisation, supposeξ has the property that〈ξ ,X〉 ∈ 2π iZ for all X ∈
kerexp. Thenξ lifts to a homomorphismeξ : Gξ → U(1) (with Gξ the stabiliser ofξ with

respect to the coadjoint action). LetOξ be the coadjoint orbit throughξ , and consider the line
bundle

LOξ
:= G×Gξ Cξ →G/Gξ

∼= O
ξ ,

whereGξ acts onCξ via the homomorphismeξ .

By the shifting trick (Remark 2.22), the diagonal action ofG on M×O−ξ is Hamiltonian,
and its symplectic reduction at zero is symplectomorphic to(Mξ ,ωξ ). Consider the exterior

product line bundleLω ⊠ LO−ξ
over M×O−ξ , with metric and connection induced by those

on Lω and some choices of metric and connection onLO−ξ
. The quantisationQ(Mξ ,ωξ ) is

by definition the quantisation of the reductionat zeroof (M×O−ξ ,ω ×ω−ξ ), prequantised

by Lω ⊠LO−ξ
, as described above. By homotopy invariance of the index, this quantisation is

independent of the choices of the connection and the metric on LO−ξ
. We will denote the line

bundle overMξ = (M×O−ξ )0 induced byLω ⊠LO−ξ
as in (3.14) byLωξ .

3.7 Quantisation commutes with reduction: the compact case

In the case of compact Lie groupsK, quantum reduction is easy to define. Indeed, quantum
reduction at the trivial representation, denoted byR0

K is defined by taking subspaces ofK-
invariant vectors:

R0
K : R(K)→ Z;

[V]− [W] 7→ dimVK−dimWK,
(3.15)

for all finite-dimensional representationsV andW of K.

Dolbeault-quantisation

With the notion of quantum reduction described above, , we have the following ‘quantisation
commutes with reduction’ theorem in the case of Dolbeault-quantisation.
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Theorem 3.34(Dolbeault-quantisation commutes with reduction). Let (M,ω) be a compact
Hamiltonian K-manifold, with momentum mapΦ. Suppose there is a K-equivariant prequanti-
sation of(M,ω). If 0∈Φ(M), then

R0
K

(
QIII (M,ω)

)
= QIII (M0,ω0),

with QIII as in Definition 3.20. If0 6∈Φ(M), then the integer on the left hand side equals zero.

This theorem was proved in various degrees of generality in [38, 59, 60, 63, 79, 84]. The
most general proof, without any regularity assumptions on the momentum map or on the group
action, is the one given in [60]. IfQIII is replaced byQI , Theorem 3.34 was proved by Guillemin
and Sternberg in [28]. After Guillemin and Sternberg published their result, and before Theorem
3.34 was proved in this generality, the latter theorem became know as theGuillemin–Sternberg
conjecture. An overview is given in [70].

Theorem 3.34 can be symbolically expressed by the ‘quantisation commutes with reduction’-
diagram

(K �M,ω) � Q //
_

R0
K

��

G�Q(M,ω)
_

R0
K

��
(M0,ω0)

� Q // Q(M0,ω0) = Q(M,ω)K.

(3.16)

Here on the left hand side,R0
K denotes symplectic reduction at zero.

Theorem 3.34 admits a generalisation to reduction at other representations than the trivial
one. Quantum reduction at an arbitrary irreducible representationU of K is defined by taking
the multiplicity ofU in a given representation:

RU
K : R(K)→ Z;

[V]− [W] 7→ [V : U ]− [W : U ].
(3.17)

Here[V : U ] denotes the multiplicity ofU in V, which by Schur’s lemma equals the dimension
of Hom(U,V)K.

To state a ‘quantisation commutes with reduction’ theorem at other irreducible representa-
tions than the trivial one, we now apply some representationtheory of compact Lie groups to
link quantum reduction at a given irreducible representation to symplectic reduction at some
element ofk∗. Let T < K be a maximal torus, lett ⊂ k be its Lie algebra, and lett∗+ ⊂ t∗ be
a choice of positive Weyl chamber. LetΛ+ ⊂ it∗+ be the set of dominant integral weights with
respect to the positive roots for(k, t) corresponding tot∗+. The elementsλ ∈ Λ+ are in one-
to-one correspondence with the irreducible representations ofK. This correspondence is given
by λ 7→ Vλ , whereVλ is the irreducible representation ofK with highest weightλ . We will
write Rλ

K := RVλ
K for the reduction map atVλ , and(Mλ ,ωλ ) := (M−iλ ,ω−iλ ) for the symplectic

reduction of(M,ω) at−iλ ∈ t∗ →֒ k∗. The embeddingt∗ →֒ k∗ is given by

t∗ ∼= (k∗)Ad(T) ⊂ k∗.

Theorem 3.35(Dolbeault-quantisation commutes with reduction). Let (M,ω) be a compact
Hamiltonian K-manifold, with momentum mapΦ. Suppose there is a K-equivariant prequanti-
sation of(M,ω). Then for allλ ∈ Λ+∩ iΦ(M),

Rλ
K

(
QIII (M,ω)

)
= QIII (Mλ ,ωλ ),



48 CHAPTER 3. GEOMETRIC QUANTISATION

with QIII as in Definition 3.20. Ifλ 6∈ iΦ(M), then this integer equals zero.

In other words, we get a complete decomposition

QIII (M,ω) =
⊕

λ∈Λ+∩iΦ(M)

QIII (Mλ ,ωλ )Vλ ,

of the virtualK-representationQIII (M,ω) into irreducibles.
In the compact case, Theorem 3.35 can be deduced from Theorem3.34. This deduction is

possible because of the shifting trick and the following example.

Example 3.36(The Borel–Weil theorem). The Borel–Weil theorem in representation theory
is a special case of Theorem 3.35. However, all known proofs of Theorem 3.35 depend on the
Borel–Weil theorem to deduce this theorem from Theorem 3.34. Hence the Borel–Weil theorem
is not obtained as a corollary to Theorem 3.35, but only serves as an illustration.

To deduce the Borel–Weil theorem from Theorem 3.35, consider Example 2.13 about coad-
joint orbits. Letλ ∈ Λ+ be given, and letOλ be the coadjoint orbit through−iλ . Note that
Oλ ∼= K/Kλ as smooth manifolds. There is a complex structure onK/Kλ which givesOλ

the structure of a Kähler manifold. We have the prequantum line bundleLOλ
over (Oλ ,ωλ ),

defined as

LOλ
= K×Kλ Cλ → K/Kλ ,

whereKλ acts onCλ via the global weighteλ : Kλ →U(1). It can be shown that this line bundle
is ‘positive enough’, so that by Kodaira’s vanishing theorem, we haveH0,k(Oλ ;LOλ ) = 0 if
k > 0. Definitions I – III of geometric quantisation therefore coincide in this case, and we see
that Theorem 3.35 implies that

QIII (O
λ ,ωλ ) = Vλ .

This is a version of the Borel–Weil theorem (see e.g. [85], Theorem 6.3.7). See also [12].

Example 3.36 illustrates the mathematical relevance of Theorem 3.35. This theorem is
of mathematical interest because it is a link between symplectic geometry and representation
theory. In other words, a link between themathematics behindclassical mechanics and the
mathematics behindquantum mechanics. This mathematical link is a more important reason
why the author is interested in Theorem 3.34 than a possible physical link between classical
mechanics and quantum mechanics that this theorem may provide.

Using the Borel–Weil theorem, we can show that Theorem 3.35 follows from Theorem 3.34.
We will use the fact that

QIII (M×N,ω×ν) = QIII (M,ω)⊗QIII (N,ν) (3.18)

for HamiltonianK-manifolds(M,ω) and(N,ν). This relation follows for example from the
Künneth formula for Dolbeault-cohomology.

Lemma 3.37.Theorem 3.34 implies Theorem 3.35.
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Proof. Let λ ∈ Λ+ be given. Then using the shifting trick (Remark 2.22), Theorem 3.34 and
formula (3.18), we get

QIII (Mλ ,ωλ ) = QIII
(
(M×O

−λ )0,(ω×ω−λ )0
)

= R0
K

(
QIII (M×O

−λ ,ω×ω−λ )
)

=
(
QIII (M,ω)⊗QIII (O

−λ ,ω−λ )
)K

.

Now by the general form of the Borel–Weil theorem, we haveQIII (O
−λ ,ω−λ ) = V∗λ , so that

QIII (Mλ ,ωλ ) =
(
QIII (M,ω)⊗V∗λ

)K
= Rλ

K

(
QIII (M,ω)

)
.

See also [60], Corollary 2.11.

Spinc-quantisation

For Spinc-quantisation, we have the following result, which is Theorem 1.7 in Paradan’s paper
[64].

Theorem 3.38(Spinc-quantisation commutes with reduction). Let(M,ω) be a compact Hamil-
tonian K-manifold, with momentum mapΦ. Suppose there is a K-equivariantSpinc-prequantisation
of (M,ω). Letρ be half the sum of the positive roots of(k, t) with respect tot∗+.

If all stabilisers of the action of K on M areabelian, then for allλ ∈ Λ+∩ iΦ(M),

Rλ
K

(
QIV (M,ω)

)
= QIV (Mλ+ρ ,ωλ+ρ),

with QIV as in Definition 3.30. Ifλ 6∈ iΦ(M), then this integer equals zero.

The condition that the action ofK on M has abelian stabilisers is related to the fact that
there may be several different coadjoint orbits ink∗ whose Spinc-quantisation equals a given
irreducible representation ofK. This ambiguity, which is not present in the case of Dolbeault-
quantisation, can be removed by imposing the condition thatthe action has abelian stabilisers.

Generalisations

Various generalisations of Theorems 3.34 and 3.38 have beenconsidered. Vergne [83] has found
an approach to quantising certain classes of actions by noncompact groups on noncompact man-
ifolds. In [64], Paradan proves a version of the Guillemin–Sternberg conjecture for Hamiltonian
actions by compact groupsK on possibly non-compact manifolds, under some assumptionsthat
are satisfied by regular elliptic coadjoint orbits of semisimple groups. He defines the quantisa-
tion of such an action as the index of a certain transversallyelliptic symbol, which is an element
of the generalised character ringR−∞(K). The unpublished work of Duflo and Vargas on re-
stricting discrete series representations of semisimple groups to semisimple subgroups can also
be interpreted as a ‘quantisation commutes with reduction’result for Hamiltonian actions on
coadjoint orbits.
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Generalising in another direction, Bos [11] defines a notionof Hamiltonian Lie groupoid
actions, and proves a Guillemin–Sternberg conjecture for Hamiltonian actions of proper Lie
groupoids on bundles of compact Kähler manifolds.

In [50], Landsman proposes a generalisation of Theorem 3.34to actions by noncompact
groups on noncompact manifolds, as long as the orbit space ofsuch an action is compact. This
generalisation is formulated in the language ofnoncommutative geometry, as we will explain in
Chapters 4, 5 and 6.

The aim of the author’s Ph.D. project was to prove Landsman’sgeneralisation in as many
cases as possible. Part III contains a proof of this generalisation for groupsG that have a
discrete normal subgroupΓ such thatG/Γ is compact, such asG = Rn or G discrete. In Part
IV, we prove a generalisation of Theorem 3.38 for semisimplegroups, whereλ parametrises
the discrete series representations of such a group.

The strategy of the proofs in this thesis is to deduce the noncompact case from the compact
case. Thus, Theorems 3.34 and 3.38 are essential ingredients of our proofs, and we do not
obtain these theorems as corollaries to our results. The reduction to the compact case is made
possible by the ‘naturality of the assembly map’-results that we prove in Part II.



Chapter 4

Noncommutative geometry

We will generalise the ‘quantisation commutes with reduction’ results in the compact case,
Theorems 3.34 and 3.38, to the noncompact case using tools from noncommutative geometry.
These tools the areK-theory andK-homology ofC∗-algebras. In Chapter 5, we will introduce
KK-theory, which a powerful tool that generalises bothK-theory andK-homology. UsingKK-
theory, we then define theanalytic assembly mapused in the Baum–Connes conjecture. This
map will replace theK-index in Definitions 3.20 and 3.30 of geometric quantisation.

Further explanations, as well as the proofs we omit, can be found in [10, 17, 18, 23, 52, 87].

4.1 C∗-algebras

The central objects of study in noncommutative geometry areC∗-algebras. Actually, ‘non-
commutative topology’ is a more accurate term for the study of C∗-algebras without further
structure. Indeed, the basis of noncommutative geometry isthe idea that all information about
a locally compact Hausdorff spaceX is contained in the algebraC0(X) of (complex-valued)
continuous functions onX that ‘vanish at infinity’. These algebras have natural structures of
commutativeC∗-algebras, and the central goal in noncommutative geometryis to extend the
tools of topology and geometry, such asK-theory and (co)homology, to noncommutativeC∗-
algebras.

The basic theory

Let us explain the example of the algebraC0(X) in some more detail.

Example 4.1(Continuous functions vanishing at infinity). LetX be a locally compact Hausdorff
space. A functionf on X is said tovanish at infinityif for all ε > 0 there is a compact subset
C⊂ X such that for allx∈ X \C, we have| f (x)|< ε. The vector space of continuous functions
on X vanishing at infinity is denoted byC0(X). Note that ifX is compact, then all functions on
X vanish at infinity (just takeC = X).

51
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For f ,g∈C0(X) andx∈ X, set

‖ f‖∞ := sup
y∈X
| f (y)|;

f ∗(x) := f (x);

( f g)(x) = f (x)g(x). (4.1)

ThenC0(X) is a Banach space in the norm‖·‖∞, and a commutative algebra overC with respect
to the pointwise product (4.1). Furthermore, we have for allf ,g∈C0(X),

‖ f g‖∞ ≤ ‖ f‖∞‖g‖∞;

‖ f ∗ f‖∞ = ‖ f‖2∞.

The structure onC0(X) mentioned in Example 4.1, and its properties (apart from commuta-
tivity) are the motivation for the following definition.

Definition 4.2. A C∗-algebrais a Banach space(A,‖ · ‖), equipped with an associative bilinear
product(a,b) 7→ aband an antilinear mapa 7→ a∗ whose square is the identity, such that for all
a,b∈ A, we have

(ab)∗ = b∗a∗;

‖ab‖ ≤ ‖a‖‖b‖;
‖a∗a‖= ‖a‖2.

A homomorphism ofC∗-algebras is a linear homomorphism of algebras that intertwines star
operations. Such homomorphisms are automatically bounded.

It follows from theC∗-algebra axioms that‖a∗‖= ‖a‖ for all a in aC∗-algebra.
The following result shows that studying locally compact Hausdorff spaces is equivalent to

studying commutativeC∗-algebras. It is proved for example in [18], Theorem 1.4.1.

Theorem 4.3(Gelfand–Naimark for commutativeC∗-algebras). Every commutativeC∗-algebra
is isomorphic to the C∗-algebra of continuous functions that vanish at infinity on alocally
compact Hausdorff space. If two commutative C∗-algebras C0(X) and C0(Y) are isomorphic,
then X and Y are homeomorphic.

A propercontinuous mapf between two locally compact Hausdorff spacesX andY induces
a homomorphism ofC∗-algebras

f ∗ : C0(Y)→C0(X),

defined by pulling back functions alongf . In this way,C0 is a contravariant functor from the
category of locally compact Hausdorff spaces, with proper continuous maps, to the category of
commutativeC∗-algbras. Together with the fact that all homomorphisms between two commu-
tativeC∗-algebrasC0(X) andC0(Y) are defined by pulling back along some proper continuous
map, Theorem 4.3 implies that this functor defines an equivalence of categories.

Note that a commutativeC∗-algebra has a unit if and only if the corresponding space is
compact. This correspondence will be used in Section 4.2 onK-theory.

The following example is the standard example of a noncommutativeC∗-algebra.
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Example 4.4. Let H be a Hilbert space, and letB(H ) be the algebra of bounded operators
onH . Fora∈B(H ), let ‖a‖ be the operator norm ofa, and leta∗ be its adjoint, defined by

(x,ay) = (a∗x,y)

for all x,y∈H . ThenB(H ), equipped with these structures, is aC∗-algebra.

In fact, allC∗-algebras can be realised as subalgebras of an algebra of bounded operators on
a Hilbert space (see [18], Theorem 2.6.1):

Theorem 4.5(Gelfand–Naimark for generalC∗-algebras). Every C∗-algebra is isomorphic to
a norm-closed subalgebra ofB(H ) that in addition is closed under the∗-operation, for some
Hilbert spaceH .

Example 4.6.Let X be a locally compact Hausdorff space. Given a measure onX, with respect
to the Borelσ -algebra ofX, we can form the Hilbert spaceL2(X). For suitable measures
(the counting measure always works), the representation ofC0(X) in L2(X) as multiplication
operators yields an embedding ofC0(X) into B(L2(X)).

Group C∗-algebras

The two kinds ofC∗-algebras we will use most in this thesis are commutative ones andgroup
C∗-algebras. LetG be a locally compact Hausdorff topological group, equippedwith a left Haar
measuredg. For two functionsϕ,ψ ∈Cc(G), theirconvolution productϕ ∗ψ is defined by

(ϕ ∗ψ)(g) :=
∫

G
ϕ(g′)ψ(g′−1g)dg. (4.2)

The functionϕ∗ is defined by
ϕ∗(g) := ϕ(g−1)∆(g)−1, (4.3)

where∆ is the modular function onG with respect todg, defined byd(gh) = ∆(h)dg for all
h∈G. We will only considerunimodulargroups, defined by the property that∆ is the constant
function 1. In other words, by the property that any left Haarmeasure is also right invariant
(and vice versa).

The full and reducedC∗-algebras ofG are defined as completions ofCc(G) in certain norms,
with multiplication and∗-operation defined as the continuous extensions of (4.2) and(4.3).

To define these norms, we consider unitary representations(H ,ρ) of G. For ϕ ∈Cc(G),
we have the operator

ρ(ϕ) :=
∫

G
ϕ(g)ρ(g)dg ∈B(H ).

The norm‖ · ‖ used to define thefull C∗-algebra C∗(G) of G is

‖ϕ‖ := sup
(H ,ρ)∈Ĝ

‖ρ(ϕ)‖B(H ).

HereĜ denotes theunitary dualof G, i.e. the set of all irreducible unitary representations of
G. This supremum is finite, because‖ρ(ϕ)‖B(H ) ≤ ‖ϕ‖L1(G) for all ϕ ∈Cc(G) and all unitary
representations(H ,ρ) of G.
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Thereduced C∗-algebra C∗r (G) of G is the completion ofCc(G) in the norm‖ · ‖r , given by

‖ϕ‖r := ‖λ G(ϕ)‖B(L2(G)).

Hereλ G : G→ U(L2(G)) is the left regular representation
(
λ G(g)ϕ

)
(g′) = ϕ(g−1g′).

Note thatλ G(ϕ)ψ = ϕ ∗ψ for all ϕ ∈Cc(G) andψ ∈ L2(G).
The convolution product onC∗(G) andC∗r (G) is commutative if and only ifG is commuta-

tive. Hence, by Theorem 4.3, for abelian groupsG, there are locally compact Hausdorff spaces
X andY such that

C∗(G)∼= C0(X);

C∗r (G)∼= C0(Y).
(4.4)

It turns out that bothX andY may be taken to be the unitary dualĜ of G. The isomorphisms
(4.4) are given by the Fourier transform.

So for abelian groupsG, we haveC∗(G) = C∗r (G). This equality also holds ifG is compact
(but not necessarily abelian). Indeed, by the Peter–Weyl theorem ([46], Theorem IV.4.20) every
irreducible representation of a compact groupG occurs in the left regular representation ofG in
L2(G). In general, a group is calledamenableif its full and reducedC∗-algebras are equal.

TheC∗-algebra of a compact Lie group can be described explicitly as follows. We will use
this description in the proof of Proposition 4.29. LetK be a compact Lie group, and consider
the direct sum ⊕

π∈K̂

B(Vπ), (4.5)

where, as before,̂K is the set of irreducible (unitary) representations(Vπ ,π) of K, and this direct
sum by definition consists of the sequences(aπ)π∈K̂ such thataπ ∈B(Vπ) for all π , and

lim
π→∞
‖aπ‖B(Vπ ) = 0.

(That is, for allε > 0, there is a finite setX ⊂ K̂ such that‖aπ‖B(Vπ ) < ε for all π outsideX.)
Equipped with the norm

‖(aπ)π∈K̂‖ := sup
π∈K̂

‖aπ‖B(Vπ)

and the natural∗-operation, (4.5) becomes aC∗-algebra.

Proposition 4.7. There is an isomorphism of C∗-algebras

C∗(K)∼=
⊕

π∈K̂

B(Vπ). (4.6)

Sketch of proof.Consider the Hilbert space

L̂2(K) :=
{

a = (aπ)π∈K̂ ∈ ∏
π∈K̂

B(Vπ);(a,a) := ∑
π∈K̂

tr(a∗πaπ) < ∞
}

.
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It follows from the Peter–Weyl theorem (see e.g. [46], Theorem 4.20) that the Plancherel trans-
form P : L2(K)→ L̂2(K), given by

(P f)π =
√

dimVπ π( f )

for f ∈ L2(K) andπ ∈ K̂, is a unitary isomorphism. Consider the mapϕ : C∗(K)→B(L̂2(K))
that onC(K) is given by

ϕ( f ) = Pπ( f )P−1,

and extended continuously to all ofC∗(K). This map can be shown to be an isomorphism
of C∗-algebras onto its image, which is the right hand side of (4.6), acting onL̂2(K) by left
multiplication. �

Additional concepts

We conclude this section with some definitions that we will use occasionally.

Definition 4.8. A C∗-algebra is said to beσ -unital if it has a countable approximate unit. That
is, there is a sequence(ej)

∞
j=1 in A, such that for alla∈ A, the sequences(eja)∞

j=1 and(aej)
∞
j=1

converge toa.

Example 4.9. Full and reduced groupC∗-algebras areσ -unital; a sequence inCc(G) that con-
verges to the distributionδe is an approximate identity.

A commutativeC∗-algebraC0(X) is σ -unital if X is σ -compact. If(Cj)
∞
j=1 is an increasing

collection of compact subsets ofX such that
⋃∞

j=1Cj = X, then an approximate identity can be
constructed as a sequence of functions inCc(X) such that thejth function equals 1 onCj .

Definition 4.10. Let A be aC∗-algebra. By Theorem 4.5, it can be embedded into the algebra
of bounded operators on some Hilbert spaceH . Themultiplier algebraof A is the algebra

M(A) := {T ∈B(H );TA⊂ A andAT ⊂ A}.

Example 4.11.Let X be a locally compact Hausdorff space, and consider theC∗-algebraC0(X)
as an algebra of operators onL2(X), for some measure onX. ThenM(C0(X)) = Cb(X), theC∗-
algebra of continuous bounded functions onX. Being a unitalC∗-algebra, the algebraCb(X)
equalsC(βX) for some compact Hausdorff spaceX, called theStone–̌Cech compactificationof
X.

The following property of multiplier algebras will play a role in the definition of the homo-
morphismVN (see page 104).

Lemma 4.12.Any homomorphism of C∗-algebras A→B extends to a homomorphism M(A)→
M(B).

See [87], Proposition 2.2.16.
In particular, any representationπ : A→B(H ) of a C∗-algebraA in a Hilbert spaceH

extends to a representation

π : M(A)→M(B(H )) = B(H ).
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Definition 4.13. A positive elementof aC∗-algebraA is an elementa∈A for which there exists
an elementb∈ A such thata = b∗b.

Example 4.14.If H is a Hilbert space, then a positive element ofB(H ) is an elementa such
that

(x,ax)≥ 0

for all x∈H .

The tensor product of twoC∗-algebrasA andB can be formed in several ways, that is, with
respect to several different norms on the algebraic tensor productA⊗B. See [87], Appendix T
for more information.

Definition 4.15. Theminimal tensor product A⊗min B is the completion of the algebraic tensor
productA⊗B as a subalgebra ofB(HA⊗HB), if A andB are realised as algebras of bounded
operators on two Hilbert spacesHA andHB, respectively. The resulting norm onA⊗min B is
denoted by‖ · ‖min.

Definition 4.16. Themaximal tensor product A⊗maxB is the completion of the algebraic tensor
productA⊗B in the norm

∥∥∑
k

ak⊗bk
∥∥

max := sup
∥∥∑

k

πA(ak)πB(bk)
∥∥

B(H )
, (4.7)

for ak ∈ A andbk ∈ B, where the supremum is taken over all commuting representations πA :
A→B(H ) andπB : B→B(H ) of A andB on the same Hilbert spaceH .

The supremum in (4.7) actually turns out to be a maximum.
For any norm‖·‖ onA⊗Bwith the property that the completion in this norm is aC∗-algebra,

one has
‖ · ‖min≤ ‖ · ‖ ≤ ‖ · ‖max,

which explains the names of these norms. AC∗-algebraA is callednuclear if for all otherC∗-
algebrasB, the minimal and maximal norms onA⊗B coincide. Then there is only one way to
form the tensor product ofA with any other givenC∗-algebra (if this tensor product is required
to be aC∗-algebra).

Example 4.17.CommutativeC∗-algebras are nuclear. In particular, one has

C0(X1)⊗C0(X2)∼= C0(X1×X2) (4.8)

for all locally compact Hausdorff spacesX1 andX2.

Example 4.18.For all locally compact Hausdorff groupsG1 andG2, one has

C∗(G1)⊗maxC
∗(G2)∼= C∗(G1×G2);

C∗r (G1)⊗minC∗r (G2)∼= C∗r (G1×G2).
(4.9)
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4.2 K-theory

One of the nicest results in noncommutative topology is the generalisation of Atiyah–Hirzebruch
topologicalK-theory for locally compact Hausdorff spaces, i.e. commutativeC∗-algebras, to ar-
bitraryC∗-algebras. We begin with the definition of topologicalK-theory, and then we rephrase
this definition in aC∗-algebraic way. This allows us to generalise the definition to arbitrary
C∗-algebras.

TopologicalK-theory

We first consider acompactHausdorff spaceX.

Definition 4.19. The(topological) K-theoryof X is the abelian groupK0(X) whose generators
are isomorphism classes[E] of (complex) vector bundles overX, subject to the relation

[E]+ [F] = [E⊕F ]

for all vector bundlesE andF overX.
A continuous mapf : X→Y between compact Hausdorff spaces induces a mapf ∗ : K0(Y)→

K0(X), defined via the pullback of vector bundles alongf . This turnsK0 into a contravariant
functor from the category of compact Hausdorff spaces to thecategory of abelian groups.

More information about topologicalK-theory can be found in [3]. Note that a general
element ofK0(X) is a formal difference[E]− [F] of isomorphism classes of vector bundles.

Vector bundles over locally compact, but not compact spacesare not as well-behaved as
those over compact spaces. Therefore, theK-theory of a general locally compact Hausdorff
spaceX is not defined directly as in Definition 4.19, but via the one-point compactificationX+

of X.
Let X+ = X∪{∞} be the one-point compactification ofX. Let

i : {∞} →֒ X+

be the inclusion map of the point at infinity. Consider the functorially induced map

i∗ : K0(X+)→ K0({∞}).

Note that vector bundles over the one-point space{∞} are just finite-dimensional vector spaces,
whose isomorphism classes are characterised by their dimensions. ThereforeK0({∞})∼= Z.

Definition 4.20. The K-theory of the locally compact Hausdorff spaceX is the kernel of the
mapi∗. It is denoted byK0(X).

As a consequence of this definition, the only maps between locally compact Hausdorff
spaces that induce maps onK-theory are the ones that extend to continuous maps between one-
point compactifications. These are theproper continuous maps. Hence topologicalK-theory
is a contravariant functor from the category of locally compact Hausdorff spaces, with proper
continuous maps, to the category of abelian groups. (See also the remark below Theorem 4.3.)
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K-theory of unital C∗-algebras

Let us rephrase the definition ofK0(X) in terms of theC∗-algebraC0(X). First suppose thatX
is compact, so thatC0(X) equals the algebraC(X) of all continuous functions onX.

If E→ X is a vector bundle, then the spaceΓ(E) of its continuous sections has the natural
structure of aC(X)-module, given by pointwise multiplication. Two suchC(X)-modulesΓ(E)
andΓ(F) are isomorphic if and only ifE ∼= F as vector bundles. Note that there is a natural
isomorphism ofC(X)-modulesΓ(E⊕F)∼= Γ(E)⊕Γ(F). Furthermore, for any vector bundle
E→ X, there is a vector bundleF→ X such thatE⊕F is trivial, say isomorphic toX×Rn (see
[3], Corollary 1.4.14). This implies that

Γ(E)⊕Γ(F)∼= Γ(E⊕F) = Γ(X×Rn)∼= C(X)n.

More generally, a moduleM over aC∗-algebra (or ring)A is calledfinitely generatedand
projectiveif there exists anA-moduleN such thatM⊕N is a finitely generated freeA-module,
i.e. of the formAn for somen ∈ N. It turns out thatany finitely generated projectiveC(X)-
module is isomorphic to the moduleΓ(E), for some vector bundleE→ X. Hence Definition
4.19 ofK-theory for compact spaces can be restated as follows:

Proposition 4.21(Serre–Swan). The K-theory of the compact Hausdorff space X is the abelian
group whose generators are isomorphism classes[M] of finitely generated projective C(X)-
modules, subject to the relation

[M]+ [N] = [M⊕N]

for all finitely generated projective modulesM andN over C(X).

The definition of topologicalK-theory provided by Proposition 4.21 can be generalised to
arbitraryC∗-algebras with a unit.

Definition 4.22. LetA be aC∗-algebra with a unit. TheK-theoryof A is the group in Proposition
4.21, withC(X) replaced byA. This abelian group is denoted byK0(A).

A unital homomorphismf : A→B of unitalC∗-algebras induces a mapf∗ : K0(A)→K0(B).
This map is defined by[M] 7→ [M⊗ f B], for finitely generated projective (right)A-modulesM.
The tensor productM⊗ f B is the algebraic tensor productM⊗B overC, with the equivalence
relation

(m·a)⊗b∼m⊗ ( f (a)b),

for all m∈M, a ∈ A andb ∈ B, divided out. This makes theK-theory of unitalC∗-algebras
a covariant functor. By Lemma 4.23 below, this functoriality generalises the functoriality of
topologicalK-theory for compact spaces.

Note that this time we use a subscript 0 instead of a superscript, because we are dealing with
a covariant functor onC∗-algebras, rather than a contravariant functor on topological spaces.

Lemma 4.23. Let X and Y be compact Hausdorff spaces, let f: X→Y be a continuous map,
and let E→ Y be a vector bundle. Consider the homomorphism of C∗-algebras f∗ : C(Y)→
C(X) defined by pulling back functions along f . There is an isomorphism

Γ(X, f ∗E)∼= Γ(Y,E)⊗ f ∗C(X).

See [23], Proposition 2.12.
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K-theory of generalC∗-algebras

The extension of Definition 4.22 to possibly non-unitalC∗-algebras is analogous to the exten-
sion of Definition 4.19 to Definition 4.20. Indeed, ifX is a locally compact Hausdorff space,
then

C0(X)⊕C∼= C(X+).

The isomorphism is given by( f ,z) 7→ f̃ +z, where f̃ ∈C(X+) is given by

f̃ (x) = f (x) for all x∈ X;

f̃ (∞) = 0.

The multiplication, star operation and the norm onC0(X)⊕C are defined by

( f +z)(g+w) := f g+zg+wg+zw;

( f +z)∗ := f ∗+ z̄;

‖ f +z‖ := max
y∈X+
| f (y)+z|

= sup
x∈X
| f (x)+z|

= ‖ f +z‖B(C0(X)),

for f ,g∈C0(X) andz,w∈C. The resultingC∗-algebra is called theunitisationof C0(X).
The inclusion mapi : {∞} →֒ X+ induces the map

i∗ : C0(X)⊕C∼= C0(X
+)→C (4.10)

given by the natural projection onto the termC. Then we have

Proposition 4.24.The topological K-theory of X is the kernel of the map

i∗ :=
(
i∗

)
∗ : K0(C(X+))→ K0(C)∼= Z

induced by(4.10).

For a generalC∗-algebra, we proceed as follows.

Definition 4.25. Let (A,‖ · ‖A) be aC∗-algebra. Itsunitisation A+ is defined as the algebra
A+ := A⊕C, with multiplication, star operation and norm given by

(a+z)(b+w) := ab+zb+wa+zw;

(a+z)∗ := a∗+ z̄;

‖a+z‖A+ := ‖a+z‖B(A),

for a,b∈ A andz,w∈ C. Here‖a+z‖B(A) is the norm ofa+z as a bounded operator on the
Banach spaceA, given by left multiplication.
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For aC∗-algebraA, consider the map

i∗ : A+→ C,

a+z 7→ z.

We denote the induced map onK-theory by

i∗ :=
(
i∗

)
∗ : K0(A

+)→ K0(C)∼= Z.

Definition 4.26. TheK-theoryof A is the kernel of the mapi∗. It is denoted byK0(A).

Hence for all locally compact Hausdorff spaces, we haveK0(X) = K0(C0(X)).
For unitalA, Definition 4.26 reduces to Definition 4.22. Note that for anyC∗-algebraA,

every finitely generated projectiveA-module can be extended to an finitely generated projective
A+-module, which is in the kernel of the mapi∗. Such modules therefore define classes in
K0(A), as in the unital case, although they usually do not exhaust the whole groupK0(A).

Remark 4.27(K-theory via projections). TheK-theory of a unitalC∗-algebraA is often defined
using projections in the ‘infinite matrix algebra’

M∞(A) := lim
−→

Mn(A),

i.e. elementspsuch thatp2 = p= p∗. These correspond to projectiveA-modules viap 7→ p
(
An

)
,

for p a projection inMn(A). The functoriality ofK-theory is then induced by

f (p)i j = f (pi j ) ∈ B,

if f : A→ B is a homomorphism ofC∗-algebras andp∈M∞(A) is a projection.
By the way, in this picture another reason whyK-theory for non-unitalC∗-algebras has to

be defined separately becomes apparent. Indeed, ifX is a connected, locally compact but not
compact Hausdorff space, then there are no nonzero projections inM∞(C0(X)), because the
trace of such a projection is a constant function onX.

Remark 4.28(HigherK-groups). For any integern, and anyC∗-algebraA, one has theK-theory
groupKn(A) := K0

(
A⊗C0(R

n)
)
. Bott periodicityis the statement thatKn+2(A)∼= Kn(A) for all

suchn andA (naturally inA). Therefore, it is enough to consider theK-theory groupsK0(A)
andK1(A). In this thesis, we will only useK0(A). This is eventually related to the fact that we
consider symplectic, and hence even-dimensional manifolds.

The K-theory of the C∗-algebra of a compact group

The onlyC∗-algebras whoseK-theory we will use in this thesis are (full or reduced) group
C∗-algebras (see Section 4.1). For compact groupsK, this K-theory group1 is isomorphic to

1This is one of the few occasions where we use the capital letter K to denote both a compact group and a
K-theory functor. We hope this is not too confusing.
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the abelian group underlying the representation ringR(K). Indeed, let(Vπ ,π) be a finite-
dimensional representation ofK. ThenVπ has the structure of a projectiveC∗(K)-module,
given by

f ·v := ρ( f )v =

∫

K
f (k)π(k)vdk. (4.11)

Here f ∈C(K), v∈Vπ , dk is a Haar measure onK, and thisC(K)-module structure onV extends
continuously to aC∗(K)-module structure.

Proposition 4.29.This procedure induces an isomorphism of abelian groups

R(K)∼= K0(C
∗(K)). (4.12)

Proof. The proof of this proposition is based on Proposition 4.7, which states that

C∗(K)∼=
⊕

π∈K̂

B(Vπ). (4.13)

Let a sequence(Xn)
∞
n=1 of finite subsets of̂K be given, such thatXn ⊂ Xn+1 for all n, and that⋃∞

n=1Xn = K̂. Then it follows from the definition of inductive limits of Banach algebras ([10],
Section 3.3) that ⊕

π∈K̂

B(Vπ) = lim
−→

⊕

π∈Xn

B(Vπ).

We conclude that, by continuity ofK-theory with respect to inductive limits (see [10], 5.2.4
or [52], Theorem 6.3.2),

K0(C
∗(K))∼= lim

−→
K0

( ⊕

π∈Xn

B(Vπ)
)

= lim
−→

⊕

π∈Xn

K0(B(Vπ))

=
⊕

π∈K̂

K0(B(Vπ))

=
⊕

π∈K̂

Z · [Vπ ]

= R(K).

In the second line from the bottom,Vπ is first viewed as aB(Vπ)-module, and then as an
irreducible representation ofK. The fact that the resulting isomorphismK0(C∗(K))∼= R(K) is
given by the procedure described above Proposition 4.29, follows from the explicit form of the
isomorphism (4.13), as given in the proof of Proposition 4.7.

Recall that for compact groups, the full and reducedC∗-algebras coincide.
Proposition 4.29 is crucial to the motivation of the definition of quantisation we will use

(Definition 6.1). This quantisation takes values in theK-theory group of the (full or reduced)
C∗-algebra of the group in question. By Proposition 4.29, thiscorresponds to an element of the
representation ring in the case of compact groups.
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4.3 K-homology

As we said at the end of the previous section, the quantisation procedure we use takes values in
theK-theory of the group that acts on the symplectic manifold that is to be quantised. In the case
of compact groups and manifolds, geometric quantisation was defined as the equivariant index
of a Dirac operator. In the noncompact case, theK-theory element that is the quantisation of
a symplectic action will be the ‘generalised equivariant index’ of an ‘abstract elliptic operator’
defined by the same Dirac operator. To be more precise, the ‘abstract elliptic operators’ on a
G-spaceX will be the elements of theK-homology group KG0 (X) defined in this section. The
‘generalised equivariant index’ of such an element is its image under theanalytic assembly map,
which is defined in Section 5.2.

The definition of K-homology

We begin with the abstract definition of theK-homology groupKG
0 (X). We will later state a the-

orem that (some) first order elliptic differential operators on a smooth manifold define elements
of the associatedK-homology group. The Dirac operators that we use to define quantisation are
examples of such elliptic operators.

Let X be a locally compact Hausdorff space. LetG be a locally compact Hausdorff topo-
logical group acting properly onX.

Definition 4.30. 1. Anequivariant K-homology cycle, or equivariant abstract elliptic oper-
ator overX is a triple(H ,F,π), where

• H is aZ2-graded Hilbert space carrying a graded unitary representation of G (such
as the spaceL2(E), for someZ2-graded HermitianG-vector bundleE→ X, with
respect to some measure onX);

• F is a bounded operator onH which is odd with respect to the grading (such as an
odd zeroth order pseudo-differential operator onE, whenX andE are smooth);

• π is a graded representation ofC0(X) in H (such as the pointwise multiplication
operator ofC0(X) onL2(E)).

The triple(H ,F,π) is supposed to satisfy the assumptions that for allg ∈ G and f ∈
C0(X), we have

π(g · f ) = gπ( f )g−1, (4.14)

and the operators[F,π( f )], π( f )(F2−1) andπ( f )[g,F] are compact.

2. TwoK-homology cycles(H ,F,π) and(H ′,F ′,π ′) are said to beunitarily equivalentif
there is a unitary isomorphismH ∼= H ′ that intertwines the representations ofG and of
C0(X) onH andH ′, as well as the operatorsF andF ′.

3. TwoK-homology cycles(H ,F,π) and(H ,F ′,π) are calledoperator homotopicif there
is a continuous path(Ft)t∈[0,1] in B(H ) such that(H ,Ft ,π) is aK-homology cycle for
all t, andF0 = F, F1 = F ′.

4. Theequivariant K-homologyof X is the abelian groupKG
0 (X) with one generator for ev-

ery unitary equivalence class of equivariantK-homology cycles overX, with the relations
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• [H ,F,π] = [H ,F ′,π] if (H ,F,π) and(H ,F ′,π) are operator homotopic;

• [H ⊕H ′,F⊕F ′,π⊕π ′] = [H ,F,π]+ [H ′,F ′,π ′].
K-homology is a covariant functor on the category of locally compact Hausdorff proper

G-spaces with equivariant continuous proper maps: such a mapf : X→Y induces a map

f∗ : KG
0 (X)→ KG

0 (Y),

given by
[H ,F,π] 7→ [H ,F,π ◦ f ∗].

As with K-theory, we also have an odd versionKG
1 of K-homology. We will not use this odd

part, however.

Functional calculus

An operator in aK-homology cycle is supposed to be bounded, and can be thoughtof as an
abstract zeroth order pseudo-differential operator. We will mainly considerK-homology classes
defined by Dirac operators, which are first-order differential operators. These do not define
bounded operators on the space ofL2-sections of the spinor bundle, and hence do not directly
define aK-homology class. A way to associate aK-homology class to an unbounded operator
is to usefunctional calculusto turn this unbounded operator into a bounded one.

An (unbounded) operatoron a Hilbert spaceH is a linear map

D : domD→H ,

where domD⊂H is a dense subspace. The operatorD is symmetricif for all x,y∈ domD,

(Dx,y)H = (x,Dy)H .

Theadjoint of D is the operatorD∗ with domain

domD∗ := {x∈H ; the linear functiony 7→ (x,Dy)H on domD is bounded},
and defined by(D∗x,y)H = (x,Dy)H for all x ∈ domD∗ and y ∈ domD. The operatorD
is calledself-adjoint if domD∗ = domD, andD∗ = D on this common domain. Functional
calculus is defined for self-adjoint operatorsD. For any bounded measurable functionf on
the spectrum ofD, it allows us to defined a bounded operatorf (D) in a suitable way. See for
example [68], page 261 for the definition of this operator.

A symmetric operator that is not self-adjoint sometimes hasa self-adjointclosure. An oper-
atorD onH is closableif the closure of its graph inH ×H is again the graph of an operator
D on H . This operatorD is then called theclosureof D. The domain ofD is the completion
of domD in the norm‖ · ‖D, which is defined by

‖x‖2D := ‖x‖2H +‖Dx‖2H , (4.15)

for all x∈ domD.
If the closure ofD is self-adjoint, then we callD essentially self-adjoint, and we can apply

the functional calculus toD. We will usually write f (D) instead of f (D) if D is essentially
self-adjoint.

The following result about functional calculus of unbounded operators follows directly from
the definition as given for example in [68], page 261.
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Lemma 4.31. Let H be a Hilbert space, and let D: domD→H be a self-adjoint operator.
Let H ′ be another Hilbert space, and let T: H →H ′ be a unitary isomorphism. Let f be a
measurable function onR. Then

T f(D)T−1 = f (TDT−1).

K-homology classes of first order elliptic differential operators

To define aK-homology class associated to an essentially self-adjointelliptic differential oper-
atorD, we will use the operatorb(D), whereb is anormalising function:

Definition 4.32. A normalising functionis a smooth functionb : R→ [−1,1] with the properties
that

• b is odd;

• b(x) > 0 for all x > 0;

• limx→±∞ b(x) =±1.

The most common normalising function used in the context ofK-homology isb(x) = x√
1+x2 .

This function has the technical disadvantage that the operator b(D) need not beproperly sup-
ported, which is required to apply the analytic assembly map to the associatedK-homology
class. More on this in Section 5.2.

We are now prepared to define theK-homology class associated to a symmetric first order
elliptic differential operator. LetM be a smooth manifold, on which a locally compact Hausdorff
topological groupG acts properly. LetE = E+⊕E− → M be aZ2-gradedG-vector bundle,
equipped with aG-invariant Hermitian metric, and let

D : Γ∞(E)→ Γ∞(E)

be aG-equivariant first order elliptic differential operator that maps sections ofE+ to sections
of E− and vice versa. Suppose thatM is equipped with aG-invariant measure, and consider the
unbounded operatorD : Γ∞

c (E)→ L2(E) onL2(E). Suppose it is symmetric. Then it is closable
and essentially self-adjoint ([34], Lemma 10.2.1 and Corollary 10.2.6). We can therefore form
the bounded operatorb(D) on L2(E), whereb is a normalising function. Finally, let

πM : C0(M)→B(L2(E))

be the representation defined by pointwise multiplication of sections by functions.
The manifoldM is said to becomplete for Dif there is aproper function f ∈C∞(M) such

that[D, f ] ∈B(L2(E)).

Theorem 4.33. If M is completefor D, then(L2(E),b(D),πM) is an equivariant K-homology
cycle over X. Its K-homology class is independent of the choice of b.

Proof. See [34], Theorem 10.6.5 for the non-equivariant case. The equivariant case then follows
from Lemma 4.31.
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We denote thisK-homology class by[D].

Remark 4.34. Two elliptic operatorsD0 andD1 on the same vector bundle, as in Theorem
4.33, define the same class inK-homology if they have the same principal symbol. Indeed, in
that case, the operatorDt := tD1+(1− t)D0 satisfies the assumptions of Theorem 4.33 for all
t ∈ [0,1], and we obtain a homotopy between[D0] and[D1].

Remark 4.35. In the situation of Theorem 4.33, it is possible to define aK-homology class[D]
associated toD in an appropriate way, even ifM is not complete forD (see [34], Proposition
10.8.2). However, this class does not have the explicit form[D] = [L2(E),b(D),πM] that it has
if M is complete forD. We use this form in the proof of Corollary 8.11, and therefore we always
assume that this completeness condition is satisfied.

Our main application of Theorem 4.33 is the following.

Corollary 4.36. Let M be an even-dimensional manifold, acted on by a locally compact Haus-
dorff group G. Suppose M has a G-equivariantSpinc-structure, and letS be the associated
spinor bundle. TheSpinc-structure on M induces a G-invariant Riemannian metric on M. This
metric induces a G-invariant density on M, which we use to define L2-sections ofS .

Let/DM be theSpinc-Dirac operator on M, defined using any G-equivariant Hermitian con-
nection onS . If M is complete as a metric space, then/DM satisfies the conditions of Theorem
4.33, and hence defines a class

[
/DM

]
∈ KG

0 (X).

Proof. The Dirac operator is elliptic, symmetric, and odd with respect to the grading onS
(see e.g. [20], Lemma 5.5). By the description of the geodesic distance onM in terms of Dirac
operator as given in [17], Chapter VI.1, we see that completeness ofM as a metric space implies
thatM is complete for/DM.

A similar result holds for the Dolbeault–Dirac operator on an almost complex Riemannian
manifold.

Remark 4.37. The principal symbol of the Dirac operator/DM does not depend on the choice of
the connection onS . Hence the class

[
/DM

]
is independent of this choice, by Remark 4.34.

We have seen that a Dirac operator defines an abstract elliptic operator in the sense ofK-
homology. We will define quantisation as the ‘generalised equivariant index’ of this abstract
elliptic operator. This generalised equivariant index is the analytic assembly map, which we
will define in Section 5.2. It is defined in terms ofKK-theory, which is a powerful tool that
generalises bothK-homology andK-theory.
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KK-theory and the assembly map

Kasparov’sKK-theory is a bivariant functor that assigns an abelian groupKK0(A,B) to two
C∗-algebrasA andB. If G is a group acting onA andB in a reasonable way, then we also
have the equivariantKK-theory groupKKG

0 (A,B) of A andB. As in the case ofK-theory and
K-homology,KK-theory has an even and an odd part, and we will only use the even part.

There are three useful features ofKK-theory that we will use in this thesis.

1. KK-theory generalises bothK-theory andK-homology, in the sense that

KKG
0 (C0(X),C) = KG

0 (X) (5.1)

for all locally compact Hausdorff properG-spacesX, and

KK0(C,B)∼= K0(B) (5.2)

for all σ -unitalC∗-algebrasB (such as groupC∗-algebras).

2. UsingKK-theory, we can define theanalytic assembly map

µG
X : KG

0 (X)→ K0(C
∗
(r)(G))

(for a locally compact Hausdorff spaceX equipped with a proper action by a locally
compact Hausdorff groupG, such thatX/G is compact) as a map

µG
X : KG

0 (X)→ KK0(C,C∗(r)(G)),

via the isomorphism (5.2). HereC∗(r)(G) denotes either the reduced or the fullC∗-algebra
of G.

3. There is a product onKK-theory, the most general form of which is a map

KKG1
0 (A1,B1⊗C)×KKG2

0 (C⊗A2,B2)
×C−−→ KKG1×G2

0 (A1⊗A2,B1⊗B2), (5.3)

for groupsG1 andG2, G1-C∗-algebrasA1 andB1, aC∗-algebraC, andG2-C∗-algebrasA2

andB2. Here one can use any tensor product ofC∗-algebras. This general form is defined
via the special case whereB1 = A2 = C.

The product (5.3), called theKasparov product, is functorial many respects, and associa-
tive in a suitable sense. We will mainly use this product in the proof of Theorem 9.1.

66
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The construction ofKK-theory was motivated by index theory, and in particular by adesire
to find generalisations and more elegant proofs of the Atiyah–Singer index theorem. One result
of this desire was the construction of the analytic assemblymap, which is our main applica-
tion of KK-theory, and is treated in Section 5.2. In Section 5.3, we introduce Baaj and Julg’s
unbounded picture ofKK-theory, and describe the analytic assembly map in this setting. This
description will be used in the proof of Theorem 9.3 about multiplicativity of the assembly map
with respect to the Kasparov product.

5.1 The definition ofKK-theory

Because the definition ofKK-theory is quite involved, we will try to be as brief as possible about
this definition. This section may therefore seem like a big pile of unmotivated definitions on
first reading, and we suggest that readers who are not yet familiar with KK-theory skim through
this section, and later return to look at the details when they are needed. We will almost only
be concerned with the special cases (5.1) and (5.2), withB theC∗-algebra of a group. We will
therefore rarely use the machinery of this chapter in its full generality.

More information onKK-theory can be found in [10, 33], and in Kasparov’s original papers
[39, 40].

In this section, allC∗-algebras are supposed to beseparable. A commutativeC∗-algebra
C0(X) is separable ifX is metrisable. Because we usually work with smooth manifolds, this
condition is not an important restriction.

Hilbert C∗-modules

The basic objects in the definition ofKK-theory are theadjointable operatorson Hilbert mod-
ulesoverC∗-algebras.

Definition 5.1. Let A be aC∗-algebra. A(right) Hilbert A-moduleis a (complex) vector space
E , equipped with the structure of a rightA-module, and with an ‘A-valued inner product’

(−,−)E : E ×E → A,

which is additive in both entries, and has the following properties:

• for all e, f ∈ E anda∈ A, we have(e, f a)E = (e, f )E a;

• for all e, f ∈ E , we have(e, f )E = ( f ,e)∗
E

;

• for all e∈ E , the element(e,e)E ∈ A is positive;

• E is complete in the norm‖ · ‖E , defined by‖e‖2
E

= ‖(e,e)E ‖A, for e∈ E .

A homomorphism of HilbertA-modules is a homomorphism ofA-modules that preserves
theA-valued inner products. An isomorphism is a bijective homomorphism.

The tensor productE1⊗ E2 of a Hilbert A1-moduleE1 and a HilbertA2-moduleE2 is the
algebraic tensor product ofE1 andE2 as complex vector spaces, completed in theA1⊗A2-
valued inner product

(e1⊗e2,e
′
1⊗e′2)E1⊗E2 := (e1⊗e′1)E1⊗ (e2⊗e′2)E2.
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Hereej ,e′j ∈ E j , and one has to specify which tensor product is used to formA1⊗A2.

Note that a HilbertC-module is nothing more than a Hilbert space. The motivatingexample
for the definition of Hilbert modules overC∗-algebras is the following.

Example 5.2.Let X be a locally compact Hausdorff space, and letE be a vector bundle overX,
with a Hermitian structure(−,−)E. Let Γ0(E) be the space of continuous sectionss of E such
that the functionx 7→ (s(x),s(x))E vanishes at infinity. ThenΓ0(E) is a HilbertC0(X)-module,
whose module structure is given by pointwise multiplication, and with theC0(X)-valued inner
product

(s, t)Γ0(E)(x) := (s(x), t(x))E,

for all s, t ∈ Γ0(E) andx∈ X.

The algebras of bounded and compact operators on a Hilbert space have the following gen-
eralisations to HilbertC∗-modules.

Definition 5.3. Let A be aC∗-algebra, and letE be a HilbertA-module. The algebraB(E ) of
adjointable operatorsonE consists of theC-linearA-module homomorphismsT : E → E for
which there is another such homomorphismT∗ that satisfies

(Te, f )E = (e,T∗ f )E

for all e, f ∈ E .

All adjointable operators are bounded with respect to the norm ‖ · ‖E , andB(E ) is aC∗-
algebra in the operator norm ([10], Proposition 13.2.2).

Definition 5.4. The subalgebraF (E ) ⊂B(E ) of finite rank operatorson E is by definition
algebraically generated by operators of the form

θe1,e2 : e3 7→ e1(e2,e3)E ,

for e1,e2 ∈ E . TheC∗-algebraK (E ) of compact operatorsonE is by definition the closure of
F (E ) in B(E ).

Kasparov bimodules

The basic building blocks ofKK-theory are the Kasparov bimodules.

Definition 5.5. Let A andB beC∗-algebras. AKasparov(A,B)-bimoduleis a triple(E ,F,π),
where

• E is a countably generated HilbertB-module;

• π : A→B(E ) is a homomorphism ofC∗-algebras;

• F ∈B(E ) is an adjointable operator such that for alla∈ A, the operators[F,π(a)], (F−
F∗)π(a) and(F2−1E )π(a) arecompact.
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One says thatF ‘almost commutes withπ ’, is ‘almost self-adjoint’, and ‘almost Fredholm’.1

To define equivariantKK-theory, we will useZ2-graded Kasparov bimodules, equipped with
suitable actions by a groupG.

Definition 5.6. A Z2-graded Hilbert moduleover aC∗-algebraA is a HilbertA-moduleE with
a decompositionE = E 0⊕E 1, such thatae∈ E k for all a∈ A ande∈ E k.

A Z2-grading on a Hilbert moduleE naturally inducesZ2-gradings on theC∗-algebras
B(E ) andK (E ).

For the remainder of this section, letG be a locally compact Hausdorff group that is second
countable, i.e. whose topology has a countable basis.

Definition 5.7. A G-C∗-algebrais aC∗-algebra equipped with a continuous (left)G-action. IfA
is aG-C∗-algebra, then aG-Hilbert A-moduleis a HilbertA-module equipped with a continuous
(left) action ofG by bounded, invertibleC-linear operators, such that

• for all e,e′ ∈ E andg∈G, one has(g ·e,g ·e′)E = g · (e,e′)E ;

• for all g∈G, e∈ E anda∈ A, we haveg · (ea) = (g ·e)(g ·a).

The only G-C∗-algebras we will use in this thesis are of the formC0(X), whereX is a
G-space.

A Z2-gradedG-Hilbert module is just what the name means, with the requirement that the
G-action respects the grading.

Definition 5.8. Let A and B be G-C∗-algebras. AZ2-graded equivariant Kasparov(A,B)-
bimoduleis Kasparov(A,B)-bimodule(E ,F,π), with the additional properties that

• E is aZ2-gradedG-Hilbert B-module;

• π : A→B(E ) is aG-equivariant homomorphism ofC∗-algebras that respect the gradings,
whereG acts onB(E ) via conjugation;

• F ∈B(E ) reverses the grading onE and has the properties that the mapg 7→ gFg−1 from
G to B(E ) is norm-continuous, and is ‘almost equivariant’, in the sense that for allg∈G
anda∈ A, the operator(gFg−1−F)π(a) is compact.

The definition

We continue using the notation of Definition 5.8. The equivariant KK-theory ofA and B is
the set ofZ2-graded equivariant Kasparov(A,B)-bimodules, modulounitary equivalenceand
homotopy.

Definition 5.9. TwoZ2-graded equivariant Kasparov(A,B)-bimodules(E0,F0,π0) and(E1,F1,π1)
are said to be

1A bounded operatorF on a Hilbert spaceH is calledFredholmif there is a bounded operatorF ′ onH such
that the operatorsFF ′−1H andF ′F−1H are compact. Fredholm operators have finite-dimensional kernels and
cokernels, which makes them the central objects of study in index theory.
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• unitarily equivalentif there is aG-equivariant isomorphism of HilbertB-modulesE0
∼= E1

that respects the gradings, and intertwinesF0 andF1, andπ0(a) andπ1(a), for all a∈ A;

• homotopicif there is aZ2-graded equivariant Kasparov
(
A,C([0,1],B)

)
-bimodule(E ,F,π),

with the following property. Forj = 0,1, let evj : C([0,1],B)→ B be the evaluation map
at j. Then, for j = 0,1, theZ2-graded equivariant Kasparov(A,B)-bimodule

(
E ⊗evj B,F⊗1B,π⊗1B

)

has to be unitarily equivalent to(E j ,Fj ,π j). HereE ⊗evj B is the tensor productE ⊗B over
C, modulo the equivalence relationeϕ ⊗b∼ e⊗evj(ϕ)b, for all e∈ E , ϕ ∈C([0,1],B)
andb∈ B.

Remark 5.10.A special case of homotopy ofZ2-graded equivariant Kasparov(A,B)-bimodules
isoperator homotopy. This is the fact that twoZ2-graded equivariant Kasparov(A,B)-bimodules
(E ,F,π) and(E ,F ′,π) are homotopic if there is a norm-continuous mapt 7→ Ft from [0,1] to
B(E ) such that for allt, (E ,Ft ,π) is aZ2-graded equivariant Kasparov(A,B)-bimodule, and
F0 = F andF1 = F ′.

If A is separable andB is σ -unital, then the combined equivalence relation unitary equiva-
lence & operator homotopy is the same as the homotopy equivalence relation ([10], Theorem
18.5.3).

Definition 5.11. Theequivariant KK-theoryof A andB is the abelian groupKKG
0 (A,B) of Z2-

graded equivariant Kasparov(A,B)-bimodules modulo homotopy, with addition induced by the
direct sum. The inverse is given by

−(E 0⊕E
1,F,π) = (E 1⊕E

0,−F,π).

Functoriality ofKK-theory if defined as follows. Iff : A1→ A2 is an equivariant homo-
morphism ofZ2-gradedG-C∗-algebras, then for allB, we have the mapf ∗ : KKG

0 (A2,B)→
KKG

0 (A1,B), given by
f ∗[E ,F,π] = [E ,F,π ◦ f ].

If, on the other hand,ψ : B1 → B2 is such a homomorphism, the for allA, the mapψ∗ :
KKG

0 (A,B1)→ KKG
0 (A,B2) is given by

ψ∗[E ,F,π ] = [E ⊗ψ B,F⊗1B,π⊗1B]

Thus,KKG
0 is a contravariant functor in the first variable, and a covariant functor in the second

one.

If the groupG is trivial, we omit it from the notation and writeKK0(A,B) := KK{e}0 (A,B).

Properties ofKK

It follows directly from the definitions, and Remark 5.10, that if X is a locally compact Haus-
dorff space on whichG acts properly, then

KKG
0 (C0(X),C) = KG

0 (X),
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the equivariantK-homology ofX. In general, the equivariantK-homology of aG-C∗-algebraA
is defined as

K0
G(A) := KKG

0 (A,C).

On the other hand, we have

Theorem 5.12.If B is aσ -unital C∗-algebra, then

KK0(C,B)∼= K0(B). (5.4)

See [10], Proposition 17.5.5 and Theorem 18.5.3.
For unitalB, the isomorphism (5.4) is given by the map defined as follows.First note that

for any HilbertB-moduleE , there is only one possibleC∗-algebra homomorphismC→B(E ).
Therefore, a Kasparov(C,B)-module may be denoted by(E ,F). The isomorphism is given by

[E ,F] 7→ [kerF̃+]− [kerF̃−] ∈ K0(B),

whereF̃ =

(
0 F̃−

F̃+ 0

)
is an operator onE = E 0⊕E 1, homotopic toF, such that ker̃F+

and kerF̃− are finitely generated projectiveB-modules. Existence of such an operatorF̃ can be
deduced from Mingo’s generalisation of Kuiper’s theorem. See [87], Corollary 16.7, Theorem
16.8 and Theorem 17.3.11.

The final, and possibly most important feature ofKK-theory is the existence of the Kasparov
product (5.3). We will not define this product here, since itsdefinition is even more technical
than the rest of this section. Thorough discussions of this product can be found in [10], Chapter
18, in [33], and in Kasparov’s own papers [39, 40].

We will only use some properties of the Kasparov product, themost important of which
is its simpler form in theunbounded pictureof KK-theory, as described in Section 5.3, in the
special case whereC = C.

5.2 The analytic assembly map

The analytic assembly map is a generalisation of the equivariant index of elliptic differential
operators on compact manifolds, acted on by compact groups.It is the key ingredient of the
Baum–Connes conjecture.

The definition of the assembly map

Let X be a locally compact Hausdorff space, on which a second countable, locally compact
Hausdorff groupG acts properly. Suppose that the orbit spaceX/G is compact, i.e. that the
action ofG onX is cocompact. The(analytic) assembly mapis the map

µG
X : KG

0 (X)→ K0(C
∗(G)),

or more precisely,
µG

X : KG
0 (X)→ KK0(C,C∗(G)),
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given by
µG

X [H ,F,π] = [E ,FE ],

with E andFE defined as follows.
Consider the subspace

Hc := π(Cc(X))H ⊂H .

Define theCc(G)-valued inner product(−,−)E onHc by setting

(ξ ,η)E (g) = (ξ ,g ·η)H ,

for all ξ ,η ∈Hc andg∈G. Let ‖ · ‖E be the associated norm onHc, as in Definition 5.1, with
A = C∗(G). ThenE is the completion ofHc in this norm. The (right)C∗(G)-module structure
onE is given by

ξ · f =
∫

G
f (g)g ·ξ dg,

for ξ ∈Hc, f ∈Cc(G), and by continuous extension. TheC∗(G)-valued inner product onE is
the continuous extension of(−,−)E .

To define the operatorFE onE induced byF, we needF to have the following property.

Definition 5.13. The operatorF is calledproperly supportedif for every f ∈Cc(X) there is an
h∈Cc(X) such that

π(h)Fπ( f ) = Fπ( f ).

If H is a space of sections of a vector bundle overX, andπ is defined by pointwise mul-
tiplication, thenF is properly supported if it is ‘local’, in the sense that it maps compactly
supported sections to compactly supported sections. It is always possible to chooseF so that
it is properly supported, without changing the corresponding K-homology class (see also the
remark after Definition (3.6) in [8]):

Lemma 5.14.For all K-homology classes[H ,F,π]∈ K0
G(X), there is an operator̃F ∈B(H )

which is properly supported and G-equivariant, such that(H , F̃,π) is an equivariant K-
homology cycle over X, and that[H ,F,π] = [H , F̃,π].

Sketch of proof.Let f ∈Cc(X) be a function such that for allx∈ X,
∫

G
f 2(gx)dg= 1

(see Lemma 7.8). Set

F̃ = AG
f (F) :=

∫

G
gπ( f )Fπ( f )g−1dg.

ThenF̃ is a bounded, properly supported,G-equivariant operator onH (see Lemma 7.11, with
N replaced byG). It can be shown thatF andF̃ are homotopic, so that the claim follows.�

Remark 5.15. The onlyK-homology classes we will use are those associated to equivariant
elliptic differential operators (see Theorem 4.33). The operators in these classes are equivariant
by Lemma 4.31, and they are even properly supported for suitable choices of normalising func-
tions (see Proposition 8.3). We will therefore never have touse Lemma 5.14. We have included
it so that we can define the analytic assembly map on generalK-homology cycles.
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If F is properly supported, then it mapsHc into itself. We will show (Lemma 7.7) that ifF
is also equivariant, the restriction ofF to Hc is adjointable with respect to the inner product
(−,−)E , so that it induces an adjointable operator onE . This is the operatorFE .

Remark 5.16. There is also a version of the assembly map that takes values in theK-theory
of the reduced C∗-algebra ofG. It is defined in the same way as above, withC∗(G) replaced
by C∗r (G) everywhere. We will use the same notationµG

X for these two versions, since this will
usually not cause too much confusion.

The assembly maps for the full and reduced groupC∗-algebras are related as follows. The
identity map onCc(G) is bounded as a map

(
Cc(G),‖ · ‖C∗(G)

)
→

(
Cc(G),‖ · ‖C∗r (G)

)
.

Hence it extends to a continuous mapC∗(G)→C∗r (G), which in turn induces a map onK-theory

λG : K0(C
∗(G))→ K0(C

∗
r (G)).

It follows from the definitions that the following diagram commutes:

KG
0 (X)

µG
X //

µG
X &&MMMMMMMMMM

K0(C∗(G))

λG
��

K0(C∗r (G)).

The assumption thatX/G is compact is needed to prove that the assembly map is well-
defined. If this condition is not satisfied, then it is still possible to define the assembly map on
therepresentable K-homology ofX:

RKG
0 (X) := lim

−→
A⊂X

KG
0 (A),

whereA runs over theG-invariant subsetsA⊂X such thatA/G is compact. However, because a
Dirac operator on aG-manifoldM does not naturally define a class inRKG

0 (M), we will always
assume that the orbit spaces of the actions we consider are compact.

The assembly map was introduced to state theBaum–Connes conjecture. This conjecture
states that ifEG is a classifying space for properG-actions (see [8], Sections 1 and 2, and
Appendix 1), then the assembly map

µG
EG : RKG

0 (EG)→ K0(C
∗
r (G))

is an isomorphism of abelian groups. More on the Baum–Connesconjecture can be found in
[8, 61, 80]. A proof for groups with finitely many connected components is given in [15].

The assembly map in the compact setting

The reason why the assembly map can be interpreted as a generalised equivariant index is the
following fact.
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Proposition 5.17. Let M be a compact manifold, on which a compact group K acts properly.
Let D be a first order elliptic differential operator on M as inTheorem 4.33, so that we have the
class[D] ∈ KK

0 (M). Then

µK
M[D] = K-indexD ∈R(K)∼= K0(C

∗(K)).

Sketch of proof.Let pt be the one-point space, and consider the mapp : KK
0 (M)→ KK

0 (pt)
induced by collapsingM to a point:

p[H ,F,π] = [H ,F],

where on the right hand side, the representation ofC(pt) = C on H is given by scalar multi-
plication. It follows directly from the definition of the assembly map, and from compactness of
M, that the following diagram commutes:

KK
0 (M)

p
��

µK
M // K0(C∗(K)).

KK
0 (pt)

µK
pt

88rrrrrrrrrrr

(5.5)

Now sinceKK
0 (pt)∼= R(K) via the index map, it can be shown that

p[D] = K-indexD ∈ R(K),

for all K-homology classes[D] ∈ KK
0 (M) as in the statement of the proposition. Furthermore, it

turns out thatµK
pt is the isomorphismR(K)∼= KK

0 (pt)∼= K0(C∗(K)) described above Proposition
4.29. Therefore, the proposition follows from commutativity of diagram (5.5). �

Sketch of an alternative proof.An alternative proof of Proposition 5.17 is based on an explicit
description of the assembly map in the compact case. Indeed,by Proposition 4.7, we have
C∗(K)∼= ⊕

π∈K̂ B(Vπ). For every irreducible (unitary) representation(Vπ ,π) of K, and withM,
E, D andK = G as in Theorem 4.33, letEπ →M/K be the vector bundle

Eπ := (E⊗B(Vπ))/K.

HereK acts onE⊗B(Vπ) by k · (e⊗a) = k ·e⊗a◦ k−1, for all k ∈ K, e∈ E anda∈B(Vπ).
The K-equivariant operatorD on Γ∞(E) naturally induces an operatorDπ on Γ∞(Eπ), which
acts trivially onB(Vπ).

Let
⊕

π∈K̂ L2(Eπ) be the completion of the algebraic direct sum in the
⊕

π∈K̂ B(Vπ)-valued
inner product given by

(s1
π ⊗ϕ1

π ,s2
π ⊗ϕ2

π) =
∫

M
(s1

π(m),s2
π(m))E

(
ϕ1

π(m)
)∗ϕ1

π(m)dm,

for sj
π ∈ L2(E) andϕ j

π ∈ L2(M,B(Vπ)) such thatsj
π ⊗ϕ j

π ∈ L2(E⊗B(Vπ))K ∼= L2(Eπ). The
resulting norm on

⊕
π∈K̂ L2(Eπ) is explicitly given by

∥∥∥
⊕

π∈K̂

sπ

∥∥∥ = sup
π∈K̂

‖sπ‖L2(Eπ),
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for sπ ∈ L2(Eπ). In this way,
⊕

π∈K̂ L2(Eπ) becomes a Hilbert
⊕

π∈K̂ B(Vπ)-module, and we
claim that

µK
M[D] =

[⊕

π∈K̂

L2(Eπ),
⊕

π∈K̂

b(Dπ)
]
∈ K0

(⊕

π∈K̂

B(Vπ)
)
∼= K0(C

∗(K)), (5.6)

whereb is a normalising function.
The equality (5.6) follows from the fact that the map

T : L2(E) = L2(E)c→
⊕

π∈K̂

L2(Eπ)

given by

(Ts)(Km)v=

∫

K
k ·s(k−1m)⊗k ·vdk,

for all s∈ L2(E) andv∈Vπ , extends to an isomorphismE ∼= ⊕
π∈K̂ L2(Eπ) of Hilbert C∗(K)-

modules, which intertwines the operatorsb(D)E onE and
⊕

π∈K̂ b(Dπ) on
⊕

π∈K̂ L2(Eπ).
To finish the proof of Proposition 5.17, one shows that the class (5.6) is mapped to the class

⊕

π∈K̂

[kerD+
π ]− [kerD−π ] ∈R(K),

which equals

⊕

π∈K̂

[(
kerD+⊗B(Vπ)

)K]
−

[(
kerD−⊗B(Vπ)

)K]
=

⊕

π∈K̂

[
(kerD+⊗V∗π )K⊗Vπ

]
−

[
(kerD−⊗V∗π )K⊗Vπ

]
= [kerD+]− [kerD−],

by Schur’s lemma. �

Note that the ‘index’-aspect of the assembly map, by which wemean taking a kernel and a
cokernel, lies in the isomorphismsKK0(C,C∗(K))∼= K0(C∗(K))∼= R(K) of Theorem 5.12 and
Proposition 4.29, and not in the actual definition of the assembly map itself.

Because of Proposition 5.17, we will see that Definitions 6.1and 6.2 of quantisation reduce
to Definitions 3.20 and 3.30 in the compact case.

5.3 The unbounded picture ofKK-theory

In [7], Baaj and Julg developed a realisation ofKK-theory using unbounded operators instead of
bounded ones. The advantage of this realisation is that the Kasparov product has a simpler form
in this setting. We will use this form in the proof of Theorem 9.3. The intuitive idea is that the
unbounded Kasparov bimodules introduced by Baaj and Julg are generalisations of first order
elliptic pseudo-differential operators, whereas the bounded Kasparov bimodules of Definition
5.5 generalise elliptic pseudo-differential operators oforder zero.
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UnboundedKK-theory

Definition 5.18. Let A and B be C∗-algebras. AnunboundedZ2-graded Kasparov(A,B)-
bimoduleis a triple(E ,D,π), whereE andπ are as in Definition 5.8 (without the groupG),
andD is a self-adjoint unbounded operator2 on E that reverses the grading onE , and has the
following properties.

• D is regular, in the sense that the image of 1E +D2 is dense inE ;

• for all a∈ A, the operatorπ(a)(1+D2)−1 is compact;

• the set ofa∈ A such that the graded commutator[D,π(a)] is well-defined on domD and
extends continuously to an adjointable operator onE , is dense inA.

The set of unboundedZ2-graded Kasparov(A,B)-bimodules is denoted byΨ0(A,B).

The central result in unboundedKK-theory is the following (see [7], Proposition 2.3).

Theorem 5.19.The map
β : Ψ0(A,B)→ KK0(A,B)

defined by

β (E ,D,π) =
[
E ,

D√
1+D2

,π
]

is a well-defined surjection.

The unbounded Kasparov product

Now, for j = 1,2, letA j andB j beC∗-algebras. Suppose that the algebrasA j are separable, and
that theB j areσ -unital. In the special case whereC = C, the Kasparov product (5.3) has the
following description in terms of unbounded Kasparov bimodules.

Let (E j ,D j ,π j)∈Ψ0(A j ,B j) be given. LetD be the closure of the operatorD1⊗1E2 +1E1⊗
D2 onE1⊗E2. Then define

(E1,D1,π1)× (E2,D2,π2) := (E1⊗E2,D,π1⊗π2).

Theorem 5.20.This is an element ofΨ0(A1⊗A2,B1⊗B2), and the following diagram com-
mutes:

Ψ0(A1,B1)×Ψ0(A2,B2)
× //

β×β
��

Ψ0(A1⊗A2,B1⊗B2)

β
��

KK0(A1,B1)×KK0(A2,B2)
× // KK0(A1⊗A2,B1⊗B2).

See [7], Theorem 3.2.

2Self-adjoint unbounded operators on Hilbert modules overC∗ algebras are defined analogously to such oper-
ators on Hilbert spaces (see Section 4.3).
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Remark 5.21(Equivariant unboundedKK-theory). There is an equivariant version of unbounded
KK-theory. The operators in equivariant unbounded Kasparov bimodules are supposed so sat-
isfy a condition that is much weaker than equivariance with respect to the given group actions.
We will only use equivariant unboundedK-homology of topological spaces however (that is,
A1 andA2 are commutative, andB1 = B2 = C). In that case it suffices to consider unbounded
Kasparov bimodules with strictly equivariant operators, by Lemma 5.14.

The assembly map

Next, we describe the analytic assembly map in the unboundedpicture ofKK-theory. We will
use this description in the proof of Theorem 9.3.

For full groupC∗-algebras, the assembly map in the unbounded picture is defined in Kucerovsky’s
appendix to [61], in the following way. LetG be a second countable, locally compact Haus-
dorff group, acting properly on a locally compact HausdorffspaceX, with compact quotient.
The assembly map in the unbounded picture is given by

µG
X (H ,D,π) = (E ,DE ) ∈Ψ0(C,C∗G), (5.7)

for all (H ,D,π) ∈ ΨG
0 (C0(X),C). The HilbertC∗(G)-moduleE is defined as usual for the

assembly map. The definition of the operatorDE onE is more involved.
First, letH̃ be the auxiliary HilbertC∗(G)-module defined as the completion of the Hilbert

Cc(G)-moduleCc(G,H ) with respect to theCc(G)⊂C∗(G)-valued inner product

(ϕ,ψ)
H̃

(g) :=
∫

G

(
ϕ(g′),ψ(g′g)

)
H

dg′, (5.8)

whereϕ,ψ ∈ Cc(G,H ), g ∈ G, anddg′ is a Haar measure onG. Next, leth ∈ Cc(X) be a
function such that for allx∈ X, ∫

G
h2(gx)dg= 1

(see Lemma 7.8).
Let p∈Cc(X×G) be the projection given by

p(x,g) := h(x)h(g−1x). (5.9)

This function is compactly supported by properness of the action of G on X. Let π̃ : Cc(X×
G)→B(H̃ ) be the representation given by

(
π̃( f )ϕ

)
(g) =

∫

G
π( f (−,g′))g′ ·ϕ(g′−1g)dg′,

for f ∈Cc(X×G), ϕ ∈Cc(G,H ) andg∈ G. (The representatioñπ can actually be extended
to the crossed productC0(X)⋊G, but we will not use this extension.)

Then the map
α : π̃(p)Cc(G,H )→Hc,

given by

π̃(p)ϕ 7→
∫

G
g−1π(h)ϕ(g)dg,
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preserves theC∗(G)-valued inner products and theC∗(G)-module structures onH̃ and onE ,
and induces an isomorphism̃π(p)H̃ ∼= E of Hilbert C∗(G)-modules. We will writeẼ :=
π̃(p)H̃ .

To define the operatorDE on E we first consider an operatorD
Ẽ

on Ẽ . This operator is
defined as the closure of the operatorD̃ on Ẽ , given by

D̃
(
π̃(p)ϕ

)
:= π̃(p)

(
D◦ϕ

)
, (5.10)

on the domain dom̃D := π̃(p)Cc(G,domD). We finally set

DE := αD
Ẽ

α−1,

on the domain domDE = α
(
domD

Ẽ

)
.

In the proof of Theorem 9.3, we will actually use the following definition of the assembly
map:

µ̃G
X (H ,D,π) :=

(
Ẽ ,D

Ẽ

)
∈Ψ0(C,C∗G), (5.11)

which gives the same class inK0(C∗(G)) as (5.7), becauseα is an isomorphism.
Kucerovsky’s proof that the above constructions give a well-defined description of the as-

sembly map in the unbounded picture is valid for discrete groups, but it admits a straightforward
generalisation to possibly nondiscrete (unimodular) ones. One simply replaces sums by inte-
grals, and uses the fact that the integral over a compact, finite Borel space of a continuous family
of adjointable operators is again an adjointable operator (see Lemma 7.2). In addition, in the
proof of Lemma 2.15 in [61], one takesβ−1(π( f )η) = π̃(p)ψ, with ψ(g) = π(h)π(g · f )g ·η
(where theβ in [61] is ourα). This reduces to Valette’sβ−1(π( f )η) = π̃(p)π̃(〈h| f 〉)η̄ in the
discrete case.

To use the unbounded picture of the assembly map forreducedgroupC∗-algebras, one can
use the above description for the fullC∗-algebra, use the mapβ to descend toKK-theory, and
then apply the mapλG (see Remark 5.16).



Chapter 6

Noncommutative geometry and
quantisation: statement of the results

In this chapter, we state the two main results of this thesis.Using the techniques from Chap-
ters 4 and 5, we extend the Guillemin–Sternberg conjecture,Theorem 3.34, to noncompact
groups and manifolds. To state this generalisation, we replace the index by the assembly map.
The assumptions that the group and the manifold in question are compact are replaced by the
assumption that the quotient space of the action is compact,i.e. that the action is cocompact.

We first state a generalisation of Theorem 3.34 to cocompact Hamiltonian actions by any
Lie group. This generalisation, Conjecture 6.4, was formulated by Landsman in [50], and is the
subject of Section 6.1. We will prove a special case of this conjecture, Theorem 6.5, in Part III.

In Section 6.3, we state a generalisation of Theorem 3.38 to cocompact Hamiltonian actions
by semisimpleLie groups. This generalisation, Theorem 6.13, is based on V. Lafforgue’s work
on discrete series representations in the context of theK-theory of reduced groupC∗-algebras,
which is summarised in Section 6.2. In Part IV, we prove Theorem 6.13.

6.1 Quantisation commutes with reduction for cocompact group
actions

Let (M,ω) be a symplectic manifold. LetG be a Lie group acting properly and in Hamiltonian
fashion on(M,ω), with momentum mapΦ. Suppose thatM/G is compact.

Quantisation of cocompact actions

We first generalise Dolbeault-quantisation to the cocompact case. LetJ be aG-equivariant
almost complex structure onM, compatible withω. Such aJ always exists, by [27], Example
D.12 and Corollary B.35. Letg := ω(−,J −) be the associated Riemannian metric onM.
Suppose that there is aG-equivariant prequantisation(Lω ,(−,−)Lω ,∇) of the action ofG on
(M,ω) (see Remark 3.9).

Let ∂̄Lω + ∂̄ ∗Lω be the Dolbeault–Dirac operator on the vector bundle
∧0,∗T∗M⊗Lω (Defini-

tion 3.19). It defines a class
[
∂̄Lω + ∂̄ ∗Lω ] ∈ KG

0 (M) by Corollary 4.36. This class is independent
of the connection∇ and the choice ofJ.

79
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Definition 6.1 (Quantisation V, Landsman [50]). The Dolbeault-quantisationof the action of
G on (M,ω) is theK-theory class

QV(M,ω) := µG
M

[
∂̄Lω + ∂̄ ∗Lω

]
∈ K0(C

∗(G)).

The definition of Spinc-quantisation can be generalised in a similar way. Let(L2ω ,(−,−)L2ω ,∇)
be a G-equivariant Spinc-quantisation of(M,ω), and letP→ M be an equivariant Spinc-
structure onM with determinant line bundleL2ω . Let/DLω

M be the Spinc-Dirac operator on the as-
sociated spinor bundle (Definition 3.27). Then we have theK-homology class

[
/DLω

M

]
∈ KG

0 (M),
by Corollary 4.36.

Definition 6.2 (Quantisation VI). The Spinc-quantisationof the action ofG on (M,ω) is the
K-theory class

QVI(M,ω) := µG
M

[
/DLω

M

]
∈ K0(C

∗
r (G)).

Note that we now use the reducedC∗-algebra ofG, instead of the full one used in Definition
6.1. The reason for this difference is that we will use Definition 6.1 to state a ‘quantisation
commutes with reduction’-result for reduction at the trivial representation, which implies that
we have to use the full groupC∗-algebra. We will use Definition 6.2 to state a ‘quantisation
commutes with reduction’-result for reduction at discreteseries representations of semisimple
Lie groups, and in that case, it is more natural to work with the reduced groupC∗-algebra.
This choice between the full and the reducedC∗-algebra is not at all related to the difference
between Dolbeault-quantisation and Spinc-quantisation, and both types of quantisation can be
defined using the full or reduced groupC∗-algebra.

Remark 6.3. Now that we have given the sixth and last definition of geometric quantisation,
let us summarise the relations between these definitions.

• If M andG arecompact, then we have

QV(M,ω) = QIII (M,ω);

QVI(M,ω) = QIV (M,ω)

(see Proposition 5.17).

• If the line bundle
∧0,dM

C (TM,J) is trivial for some equivariant almost complex structure
J, compatible withω, then

QVI(M,ω) = QV(M,ω),

and if, in addition,M andG are compact, then

QIV (M,ω) = QIII (M,ω)

(see Lemma 3.32).

• If M andG are compact, and(M,ω) is Kähler, then

QIII (M,ω) = QII (M,ω)

(see Lemma 3.23).
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• If M andG are compact,(M,ω) is Kähler, andω is positive, then

QII (M,nω) = QI (M,nω),

for n large enough (see Remark 3.16).

We will only useQV andQVI from now on.

Reduction

The reduction map
R0

G : K0(C
∗(G))→ Z (6.1)

that generalises taking the multiplicity of the trivial representation as in (3.15), is defined as
follows. The map ∫

G : Cc(G)→ C (6.2)

given by
∫

G( f ) =
∫

G
f (g)dg

(with dga Haar measure) is the one associated to the trivial representation ofG. It is continuous
with respect to the norm‖ · ‖C∗(G) onCc(G). Because the trivial representation is not contained
in L2(G) for noncompactG, the map (6.2) is not continuous with respect to the norm on the
reducedgroupC∗-algebra ofG in the noncompact case. This is why we work with the full one
here.

The continuous extension of (6.2) to a mapC∗(G)→ C induces a map onK-theory

R0
G := (

∫
G)∗ : K0(C

∗(G))→ K0(C)∼= Z (6.3)

Using the fact that the constant function 1 onG is in Cc(G)⊂C∗(G) if G is compact, one can
show that the mapR0

G is given by (3.15) for compactG = K.
SinceM/G is compact, the symplectic reductionM0 = Φ−1(0)/G is compact as well. Sup-

pose that 0 is a regular value ofΦ. Then the quantisationQIII (M0,ω0) is well-defined (see
Section 3.6). Here we useQIII instead ofQV , sinceQIII (M0,ω0) = QV(M0,ω0) if M0 is smooth,
and we do not know ifQV(M0,ω0) is well-defined ifM0 is an orbifold. This would depend on
an orbifold version of Corollary 4.36.

We now have all ingredients needed to state the following conjecture.

Conjecture 6.4(Guillemin–Sternberg–Landsman conjecture). If 0∈Φ(M), then the following
integers are equal:

R0
G

(
QV(M,ω)

)
:= (

∫
G)∗

(
µG

M

[
∂̄Lω + ∂̄ ∗Lω

])
= QIII (M0,ω0).

If 0 6∈Φ(M), then R0
G

(
QV(M,ω)

)
= 0.

In [50], Landsman states Conjecture 6.4 as a special case of amore far-reaching conjec-
ture called ‘functoriality of quantisation’. The latter conjecture states that quantisation can be
defined as a functor between the category of Poisson manifolds, with Weinstein dual pairs as
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arrows, and the category ofC∗-algebras, withKK-groups as sets of arrows. The object part of
this conjectural quantisation functor should be defined by deformation quantisation, whereas
the arrow part should be given by geometric quantisation.

A subgroupH < G is calledcocompactif G/H is compact. In Part III, we prove the follow-
ing result:

Theorem 6.5.Suppose G has a cocompact, discrete, normal subgroupΓ⊳G. Suppose further-
more that thatΓ acts freely on M. Finally, assume that M is complete1 in the Riemannian metric
g. With these additional assumptions, Conjecture 6.4 is true.

In the setting of Theorem 6.5, we will denote the compact group G/Γ by K. Examples of
groupsG that satisfy the assumptions of Theorem 6.5 are:

• G = K is compact, andΓ = {eG};

• G = Γ is discrete, andK = {eK};

• G = Rn, Γ = Zn andK = Tn for somen∈ N,

or direct products of these three examples. In fact, ifG is connected, thenΓ must be central,
andG is the direct product of a compact group and a vector space.

Remark 6.6. One can try to make life easier by assuming that the action ofG on M is free.
However, in the situation of Theorem 6.5, this assumption implies thatG is discrete.

Indeed, if the action is locally free then by Smale’s lemma (Lemma 2.24), the momentum
mapΦ is a submersion, and in particular an open mapping. And sinceit is G-equivariant, it
induces

ΦG : M/G→ g∗/Ad∗(G),

which is also open. So, sinceM/G is compact, the image

ΦG(M/G)⊂ g∗/Ad∗(G)

is a compact open subset. Becauseg∗/Ad∗(G) is connected,2 it must therefore be compact.
This, however, can only be the case (under the assumptions ofTheorem 6.5) whenG is discrete.
Indeed, we have

Ad∗(G)∼= Ad∗(K)⊂GL(k∗)∼= GL(g∗).

So Ad∗(G) is compact, andg∗/Ad∗(G) cannot be compact, unlessg∗ = 0, i.e.G is discrete.

Example 6.7. Suppose(M1,ω1) is a compact symplectic manifold,K is a compact Lie group,
and let a proper Hamiltonian action ofK on M1 be given. Suppose that(M1,ω1) has an equiv-
ariant prequantisation. LetΓ be a discrete group acting properly and freely on a symplectic
manifold (M2,ω2), leavingω2 invariant. Suppose thatM2/Γ is compact, and that there is an
equivariant prequantisation of(M2,ω2). Then the direct product action ofK×Γ on M1×M2

satisfies the assumptions of Theorem 6.5.

Remark 6.8. In the case whereG is a torsion-free discrete group acting freely onM, Theorem
6.5 follows from a result of Pierrot ([67], Theorème 3.3.2).

1see Remark 4.35
2If G = K is a compact connected Lie group, thenk∗/Ad∗(K) is a Weyl chamber.
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A refinement?

To state a more refined version of Conjecture 6.4, which includes reduction at more representa-
tions that just the trivial one, we need an ‘orbit method’ forthe groupG. The orbit method is
an idea of Kirillov [42, 43, 44]. It is an attempt to realise irreducible unitary representationsH

as quantisationsH = HO of coadjoint orbitsO ⊂ g∗ (see Example 2.13) in a subsetA⊂ g∗.
The symplectic reduction ofM at a coadjoint orbitO can be defined asMO := Φ−1(O)/G.

If all irreducible representationsHO define classes
[
HO

]
∈ K0(C∗(G)), then we can try to

make sense of the folllowing statement:

“µG
M

[
/DL

M

]
=

⊕

O⊂A

Q(MO ,LO)
[
HO

]
” . (6.4)

Or, if RO
G : K0(C∗(G))→ Z is a suitable reduction map,

“RO
G

(
µG

M

[
/DL

M

])
= Q(MO ,LO)” . (6.5)

For compact groups, the appropriate orbit method is the Borel–Weil theorem (Example
3.36). For discrete series representations, the ‘orbit method’ we will use is described in Section
6.2, although this method does not use coadjoint orbits, butother homogeneous spaces. The
resulting version of (6.5) is Theorem 6.13, which is stated using Spinc-quantisation instead of
Dolbeault-quantisation. We will prove this result in Part IV.

A final note is that the decomposition (6.4) only makes sense if the setA/G is discrete.
Otherwise, the direct sum would have to be replaced by a direct integral with respect to a
suitable measure onA/G. The author has no idea how to state a ‘quantisation commuteswith
reduction’ theorem in this situation. In any case, this shows that it is natural to restrict one’s
attention to discrete series representations of a semisimple group when trying to state (6.4)
rigorously for such groups.

6.2 Discrete series representations andK-theory

In [48], V. Lafforgue reproves some classical results aboutdiscrete series representations by
Harish-Chandra [30, 31], Atiyah & Schmid [5] and Parthasarathy [65], usingK-homology,K-
theory and assembly maps. We will give a quick summary of the results in [48] that we will use
in this thesis.

For the remainder of this chapter, letG be a connected3 semisimple Lie group with finite
centre. LetK < G be a maximal compact subgroup, and letT < K be a maximal torus. Sup-
pose thatT is also a Cartan subgroup ofG, so thatG has discrete series representations by
Harish-Chandra’s criterion [31]. Discrete series representations are representations whose ma-
trix elements are square-integrable overG. They form a discrete subset of the unitary dual of
G.

In [65], Parthasarathy realises the irreducible discrete series representations ofG as theL2-
indices of Dirac operators/DV , whereV runs over the irreducible representations ofK. Atiyah

3Theorem 6.13 and the results in this Part IV (possibly in modified forms) are also valid for groups with finitely
many connected components, but the assumption thatG is connected allows us to circumvent some technical
difficulties.
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and Schmid do the same in [5], replacing Harish-Chandra’s work by results from index the-
ory. In [71, 72, 73], Slebarsky considers the decompositioninto irreducible representations of
G of L2-indices of Dirac operators on any homogeneous spaceG/L, with L < G a compact,
connected subgroup.

Dirac induction

For a given irreducible representationV of K, the Dirac operator/DV used by Parthasarathy and
Atiyah–Schmid is defined as follows. Letp⊂ g be the orthogonal complement tok with respect
to the Killing form. Thenp is an Ad(K)-invariant linear subspace ofg, andg = k⊕p. Consider
the inner product onp given by the restriction of the Killing form. The adjoint representation

Ad : K→GL(p)

of K on p takes values in SO(p), because the Killing form is Ad(K)-invariant, andK is con-
nected. We suppose that it has a lift̃Ad to the double cover Spin(p) of SO(p). It may be
necessary to replaceG andK by double covers for this lift to exist. Then the homogeneous
spaceG/K has aG-equivariant Spin-structure

PG/K := G×K Spin(p)→G/K.

HereG×K Spin(p) is the quotient ofG×Spin(p) by the action ofK defined by

k(g,a) = (gk−1, Ãd(k)a),

for k∈ K, g∈G anda∈ Spin(p).
Fix an orthonormal basis{X1, . . . ,Xdp

} of p. Using this basis, we identify Spin(p) ∼=
Spin(dp). Let ∆dp

be the canonical 2
dp
2 -dimensional representation of Spin(dp) (see Section

3.4). Becausep is even-dimensional,∆dp
splits into two irreducible subrepresentations∆+

dp
and

∆−dp
. Consider theG-vector bundles

E±V := G×K (∆±dp
⊗V)→G/K.

Note that
Γ∞(G/K,E±V )∼=

(
C∞(G)⊗∆±dp

⊗V
)K

, (6.6)

whereK acts onC∞(G)⊗∆±dp
⊗V by

k · ( f ⊗δ ⊗v) = ( f ◦ lk−1⊗ Ãd(k)δ ⊗k ·v) (6.7)

for all k∈ K, f ∈C∞(G), δ ∈ ∆dp
andv∈V. Herelk−1 denotes left multiplication byk−1.

Using the basis{X1, . . . ,Xdp
} of p and the isomorphism (6.6), define the differential operator

/DV : Γ∞(E+
V )→ Γ∞(E−V ) (6.8)

by the formula

/DV :=
dp

∑
j=1

Xj ⊗c(Xj)⊗1V . (6.9)
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Here in the first factor,Xj is viewed as a left invariant vector field onG, and in the second factor,
c : p→ End(∆dp

) is the Clifford action (see Section 3.4). This action is odd with respect to the
grading on∆dp

. The operator (6.8) is the Spin-Dirac operator onG/K (see [65], Proposition 1.1
and [22], Chapter 3.5).

Lafforgue (see also Wassermann [86]) uses the same operatorto define a ‘Dirac induction
map’

D-IndG
K : R(K)→ K0(C

∗
r (G)) (6.10)

by

D-IndG
K[V] :=

[(
C∗r (G)⊗∆dp

⊗V
)K

,b
(
/DV)]

, (6.11)

whereb : R→R is a normalising function, e.g.b(x) = x√
1+x2 . The expression on the right hand

side defines a class in Kasparov’sKK-groupKK0(C,C∗r (G)), which is isomorphic to theK-
theory groupK0(C∗r (G)) by Theorem 5.12. In [86], Wassermann proves the Connes–Kasparov
conjecture, which states that this Dirac induction map is a bijection for linear reductive groups.

Reduction

The relation between the Dirac induction map and the work of Atiyah & Schmid and of Parthasarathy
can be seen by embedding the discrete series ofG into K0(C∗r (G)) via the map

H 7→ [H ] := [dH cH ],

whereH is a Hilbert space with inner product(−,−)H , equipped with a discrete series repre-
sentation ofG, cH ∈C(G) is the function

cH (g) = (ξ ,g ·ξ )H

(for a fixedξ ∈H of norm 1), anddH is the inverse of theL2-norm ofcH (so that the function
dH cH hasL2-norm 1). BecausedH cH is a projection inC∗r (G), it indeed defines a class in
K0(C∗r (G)) (see Remark 4.27).

Next, Lafforgue defines a map4

RH
G : K0(C

∗
r (G))→ Z (6.12)

that amounts to taking the multiplicity of the irreducible discrete series representationH , as
follows. Consider the map

C∗r (G)→K (H )

(theC∗-algebra of compact operators onH ), given onCc(G)⊂C∗r (G) by

f 7→
∫

G
f (g)π(g)dg. (6.13)

Here π is the representation ofG in H . SinceK0(K (H )) ∼= Z, this map induces a map
K0(C∗r (G))→ Z onK-theory, which by definition is (6.12).

4In Lafforgues’s notation,RH
G (x) = 〈H ,x〉.
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The mapRH
G has the property that for all irreducible discrete series representationsH and

H ′ of G, one has

RH
G ([H ′]) =

{
1 if H ∼= H ′

0 if H 6∼= H ′.

Hence it can indeed be interpreted as a multiplicity function. For compact groups, it follows
from Schur orthogonality that this is indeed the usual multiplicity.

In Section 6.1 we used the full groupC∗-algebra to define reduction at the trivial representa-
tion. This is because the trivial representation is not square-integrable for noncompact groups.
Indeed, the map (6.2) extends continuously to a function onC∗(G), but not to a function on
C∗r (G). Now we can use the reduced groupC∗-algebra, since the map (6.13) is continuous with
respect to the norm onC∗r (G), for discrete series representationsπ . It is natural to use the re-
duced groupC∗-algebra when studying discrete series representations, since they are contained
in the left regular representation ofG on L2(G), and the reducedC∗-algebra is defined in terms
of this representation.

Dirac induction links the reduction mapRH
G to the reduction map 3.17 in the following way.

Let R= R(g, t) be the root system of(g, t), let Rc := R(k, t) ⊂ R be the subset of compact
roots, and letRn := R\Rc be the set of noncompact roots. LetR+

c ⊂ Rc be a choice of positive
compact roots, and letΛk

+ be the set of dominant integral weights of(k, t) with respect toR+
c .

Let H be an irreducible discrete series representation ofG. Let λ be the Harish-Chandra
parameter ofH (see [30, 31]) such that(α,λ ) > 0 for all α ∈R+

c . Here(−,−) is a Weyl group
invariant inner product ont∗C. Let R+ ⊂R be the positive root system defined by

α ∈ R+ ⇔ (α,λ ) > 0,

for α ∈ R. ThenR+
c ⊂ R+, and we denote byR+

n := R+ \R+
c the set of noncompact positive

roots. We will writeρ := 1
2 ∑α∈R+ α andρc := 1

2 ∑α∈R+
c

α. We will use the fact thatλ −ρc lies
on the dominant weight latticeΛk

+, sinceλ ∈ Λk
+ +ρ .

Note that the dimension of the quotientG/K equals the number of noncompact roots, which
is twice the number of positive noncompact roots, and hence even.

Lemma 6.9. Let µ ∈ Λk
+ be given. Let Vµ be the irreducible representation of K with highest

weightµ. We have

RH
G

(
D-IndG

K[Vµ ]
)

=

{
(−1)

dimG/K
2 if µ = λ −ρc

0 otherwise.
(6.14)

The relation (6.14) can be summarised as

RH
G ◦D-IndG

K = (−1)
dimG/K

2 Rλ−ρc
K ,

with Rλ−ρc
K as defined below Definition 3.17.

Proof. According to Lafforgue [48], Lemma 2.1.1, we have

RH
G

(
D-IndG

K [Vµ ]
)

= dim
(
V∗µ ⊗∆∗dp

⊗H
)K

=
[
∆∗dp
⊗H |K : Vµ

]
, (6.15)
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the multiplicity ofVµ in ∆∗dp
⊗H |K. Let us compute this multiplicity.

By Harish-Chandra’s formula (Harish-Chandra [31], Schmid[69], Theorem on page 95/96),
the characterΘλ of H is given by

Θλ |Treg = (−1)
dimG/K

2
∑w∈W(k,t) ε(w)ewλ

∏α∈R+

(
eα/2−e−α/2

)
.

Hereε(w) = det(w), andW(k, t) is the Weyl group of(k, t). The characterχ∆dp
of the represen-

tation

K
Ãd−→ Spin(p)→GL(∆dp

), (6.16)

on the other hand, is given by (Parthasarathy [65], Remark 2.2)

χ∆dp
|Treg :=

(
χ∆+

dp

−χ∆−dp

)
|Treg = ∏

α∈R+
n

(
eα/2−e−α/2).

It follows from this formula that for allt ∈ Treg,

χ∆∗dp
(t) = χ∆dp

(t−1) = χ∆dp
(t),

and hence

(
Θλ χ∆∗dp

)
|Treg = (−1)

dimG/K
2

∑w∈W(k,t) ε(w)ewλ

∏α∈R+
c

(
eα/2−e−α/2

)

= (−1)
dimG/K

2 χλ−ρc
,

by Weyl’s character formula. Hereχλ−ρc
is the character of the irreducible representation ofK

with highest weightλ −ρc.
Therefore, by (6.15),

RH
G

(
D-IndG

K[Vµ ]
)

=
[
∆∗dp
⊗H |K : Vµ

]

= (−1)
dimG/K

2 [Vλ−ρc
: Vµ ]

=

{
(−1)

dimG/K
2 if µ = λ −ρc

0 otherwise.

Remark 6.10. Lemma 6.9 is strictly speaking not an orbit method, because the coadjoint orbit
throughµ is only equal toG/K if K = T, andµ does not lie on any root hyperplanes.

6.3 Quantisation commutes with reduction at discrete series
representations of semisimple groups

Consider the situation of Section 6.1, with the additional assumptions and notation of Section
6.2. We will state a rigorous version of (6.5) in this setting, under the assumption that the image
of Φ lies inside thestrongly elliptic setg∗se⊂ g∗. We first clarify this assumption, and then state
our result for semisimple groups.
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The setg∗se

Let us define the subsetg∗se⊂ g∗ of strongly elliptic elements. We always viewk∗ as a subspace
of g∗ via the linear isomorphismk∗ ∼= p0 (via restriction fromg to k), with p0 the annihilator of

p in g∗. As before, the dual spacet∗ is identified with the subspace
(
k∗

)Ad∗(T)
of k∗.

Let t∗+⊂ t∗ be a choice of positive Weyl chamber. We denote by ‘ncw’ the set of noncompact
walls:

ncw := {ξ ∈ t∗;(α,ξ ) = 0 for someα ∈ Rn}, (6.17)

where as before,(−,−) is a Weyl group invariant inner product ont∗C. We then define

g∗se := Ad∗(G)(t∗+ \ncw). (6.18)

Equivalently,g∗se is the set of all elements ofg∗ with compact stabilisers under the coadjoint
action, and also the interior of the elliptic setg∗ell := Ad(G)k∗. We will also use the notation

k∗se := Ad∗(K)(t∗+ \ncw). (6.19)

Note thatk∗se⊂ k∗ is an open dense subset, and thatg∗se= Ad∗(G)k∗se. The setg∗se is generally
not dense ing∗.

The reason for our assumption that the momentum map takes values ing∗se is that we are
looking at multiplicities of discrete series representations. These can be seen as ‘quantisations’
of certain coadjoint orbits that lie insideg∗se (see Schmid [69], Parthasarathy [65] and also
Paradan [64]). In general, the ‘quantisation commutes withreduction’ principle implies that the
quantisation of a Hamiltonian action decomposes into irreducible representations associated
to coadjoint orbits that lie in the image of the momentum map.Hence if we suppose that
this image lies insideg∗se, we expect the quantisation of the action to decompose into discrete
series representations. In [89], Proposition 2.6, Weinstein proves thatg∗se is nonempty if and
only if rankG = rankK, which is Harish-Chandra’s criterion for the existence of discrete series
representations ofG.

The most direct application of the assumption that the imageof the momentum map lies in
g∗se is the following lemma, which we will use several times.

Lemma 6.11.Let ξ ∈ g∗se. Thengξ ∩p = {0}.

Proof. Let X ∈ gξ ∩p be given. We consider the one-parameter subgroup exp(RX) of G. Be-
causeξ ∈ g∗se, the stabiliserGξ is compact. Because exp(RX) is contained inGξ , it is therefore
either the image of a closed curve, or dense in a subtorus ofGξ . In both cases, its closure is
compact.

On the other hand, the map exp :p→ G is an embedding (see e.g. [46], Theorem 6.31c).
Hence, ifX 6= 0, then exp(RX) is a closed subset ofG, diffeomorphic toR. Because the closure
of exp(RX) is compact by the preceding argument, we conclude thatX = 0.

Now suppose thatΦ(M)⊂ g∗se. Then the assumption that the action ofG on M is proper is
actually unnecessary:

Lemma 6.12. If Φ(M)⊂ g∗se, then the action of G on M is automatically proper.
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Proof. In [89], Corollary 2.13, it is shown that the coadjoint action of G on g∗se is proper. This
is a slightly stronger property than the fact that elements of g∗se have compact stabilisers, and it
implies properness of the action ofG on M.

Indeed, let a compact subsetC⊂M be given. It then follows from continuity and equivari-
ance ofΦ, and from properness of the action ofG ong∗se that the closed set

GC := {g∈G;gC∩C 6= /0}
⊂ {g∈G;gΦ(C)∩Φ(C) 6= /0}

is compact, i.e. the action ofG onM is proper.

The result

Compactness ofM/G is enough to guarantee compactness of the reduced spacesMξ = Φ−1(ξ )/Gξ
∼=

Φ−1(G · ξ )/G, but it can even be shown that in this setting,Φ is a proper map. This gives an-
other reason why the reduced spaces are compact.

We can finally state our result. LetH be an irreducible discrete series representation. Let
λ ∈ it∗ be its Harish-Chandra parameter such that(α,λ ) > 0 for all α ∈R+

c . As before, we will
write (Mλ ,ωλ ) := (M−iλ ,ω−iλ ) for the symplectic reduction of(M,ω) at−iλ ∈ t∗+\ncw⊂ g∗se.
Then our generalisation of Theorem 3.38 is:

Theorem 6.13(Quantisation commutes with reduction at discrete series representations). Con-
sider the situation of Conjecture 6.4, with the difference that (M,ω) is now supposed to have
a G-equivariantSpinc-prequantisation(Lω ,(−,−)Lω ,∇) instead of a normal one. Suppose
that the additional assumptions of this section hold, and that the action of G on M hasabelian
stabilisers. If−iλ is a regular value ofΦ, then

RH
G

(
QVI(M,ω)

)
:= RH

G

(
µG

M

[
/DL2ω

M

])
= (−1)

dimG/K
2 QIV (Mλ ,ωλ ).

If −iλ does not lie in the image ofΦ, then the integer on the left hand side equals zero.

We will prove this theorem in Part IV, via a reduction to the compact case.
As in Theorem 6.5, we use the compact version of quantisationto define the quantisation

QIV (Mλ ,ωλ ) of the symplectic reduction, since this version is well-defined in the orbifold case.
If G = K, then the irreducible discrete series representationH is the irreducible repre-

sentationVλ−ρc
of K with highest weightλ − ρc (see [69], corollary on page 105). Hence

RH
G amounts to taking the multiplicity ofVλ−ρc

, as remarked after the definition ofRH
G . The

assumption thatM/G is compact is now equivalent to compactness ofM itself. Therefore The-
orem 6.13 indeed reduces to Theorem 3.38 in this case. As mentioned before, our proof of
Theorem 6.13 is based on this statement for the compact case,so that we cannot view Theorem
3.38 as a corollary to Theorem 6.13.

To obtain results about discrete series representations, we would like to apply Theorem 6.13
to cases whereM is a coadjoint orbit of some semisimple group, such that the quantisation of
this orbit in the sense of Definition 6.1 is theK-theory class of a discrete series representation
of this group. The condition thatM/G is compact rules out any interesting applications in
this direction, however. If we could generalise Theorem 6.13 to a similar statement where the
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assumption thatM/G is compact is replaced by the assumption that the momentum map is
proper, then we might be able to deduce interesting corollaries in representation theory.

One such application could be analogous to unpublished workof Duflo and Vargas about
restricting discrete series representations to semisimple subgroups. In this case, the assumption
that the momentum map is proper corresponds to their assumption that the restriction map from
some coadjoint orbit to the dual of the Lie algebra of such a subgroup is proper.

An interesting refinement of a special case of Duflo and Vargas’s work was given by Paradan
[64], who gives a multiplicity formula for the decomposition of the restriction of a discrete series
representation ofG to K, in terms of symplectic reductions of the coadjoint orbit corresponding
to this discrete series representation.



Part II

Naturality of the assembly map

91



92

The two main results in this thesis are Theorems 6.5 and 6.13.We will prove these results
by deducing them from the compact case, Theorems 3.34 and 3.38. This deduction is based
on the results in this part, which express ‘naturality of theassembly map’. For discrete groups,
this naturality is proved in Valette’s part of [61]. The proof in [61] is split into two parts: the
‘epimorphism case’ and the ‘monomorphism case’.

We first give a generalisation of Valette’s epimorphism caseto possibly non-discrete groups
(Theorem 7.1). The proof of this theorem is a straightforward generalisation of Valette’s.

Then, we give an explicit description of the epimorphism case for K-homology classes of
equivariant elliptic differential operators. This is Corollary 8.11, which is the key result in our
proof of Theorem 6.5.

Finally, we generalise a very special case of the monomorphism case to inclusions of maxi-
mal compact subgroups into semisimple Lie groups. This is Theorem 9.1, which is the central
step in the ‘quantisation commutes withinduction’ result, Theorem 14.5, in Part IV. The latter
result in turn is the key to the deduction of Theorem 6.13 fromTheorem 3.38.

In Parts III and IV, we show that the ‘naturality of the assembly map’ results in this part are
‘well-behaved’ with respect to theK-homology classes of the Dirac operators we use to define
quantisation. These facts, together with Theorems 3.34 and3.38, will imply Theorems 6.5 and
6.13.

This part contains almost all of the noncommutative geometry in this thesis. In Parts III and
IV, we will almost only use differential and symplectic geometry (the most notable exception is
Chapter 11). Readers who are less familiar with noncommutative geometry than with the other
subjects of this thesis should feel free to skip the proofs inthis part, and only read the main
results, Theorems 7.1 and 9.1, before going on to Part III.



Chapter 7

The epimorphism case

Theorem 6.5 is partly a consequence of naturality of the assembly map. For discrete groups,
this naturality is explained in detail by Valette in [61]. Inthis chapter, we generalise the ‘epi-
morphism part’ of Valette’s theorem to possibly non-discrete groups. This generalisation is
basically a straightforward exercise in replacing sums by integrals and finite sets by compact
ones. Where Valette uses the facts that finite sums of boundedoperators on Hilbert spaces are
bounded operators, and that finite sums of compact operatorson HilbertC∗-modules are again
compact, we use the lemmas in Section 7.1. These lemmas, together with Lemma 7.18 and
the final part of the proof of Theorem 7.1 are our own input, therest of this chapter consists of
slight generalisations of arguments from [61].

Throughout this chapter,G is a locally compact unimodular group, equipped with a Haar
measuredg, acting properly on a locally compact Hausdorff spaceX. We consider a closed
normal subgroupN of G, and a left-invariant Haar measuredn on N. We suppose thatX/G is
compact.

In Section 7.4, we will also need the assumption that eitherX/N or N is compact. This
assumption may not be necessary, but we need it for our arguments. We will apply the results
in this chapter to the case whereN is compact in Section 9.1, and to the case whereX/N is
compact in Section 10.1.

The version of naturality of the assembly map that we will need is the following.

Theorem 7.1. The Valette homomorphism VN, defined in Section 7.4, makes the following dia-
gram commutative:

KG
0 (X)

µG
X //

VN
��

K0(C∗(G))

R0
N

��

KG/N
0 (X/N)

µG/N
X/N // K0(C∗(G/N)).

HereµG
X andµG/N

X/N are analytic assembly maps as explained in Section 5.2, and the map

R0
N = (

∫
N)∗ : K0(C

∗(G))→ K0(C
∗(G/N)) (7.1)

is functorially induced by the map
∫

N : C∗(G)→C∗(G/N) given on f ∈Cc(G) by [24]

∫
N( f ) : Ng 7→

∫

N
f (ng)dn. (7.2)

93
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In Chapter 8, we describe the image of aK-homology class defined by an elliptic differential
operator under the homomorphismVN (see Corollary 8.11). This description will allow us to
prove Theorem 6.5 in Part III.

A version of naturality of the assembly map for locally compact groups can also be distilled
from [14].

Sections 7.1–7.3 consist of preparations for the definitionof the homomorphismVN in Sec-
tion 7.4, and for the proof of Theorem 7.1 in Section 7.5.

7.1 Integrals of families of operators

In this chapter, there are several occasions where we consider integrals of families of operators.
The following facts will be used in those situations.

Adjointable operators and integrals

Lemma 7.2. Let (M,µ) be a compact Borel space with finite measure, letE be a Hilbert A-
module, and let

ϕ : M→B(E )

be a continuous map. Then the integral
∫

M
ϕ(m)dµ(m)

defines an adjointable operator onE , determined by

(
ξ ,

∫

M
ϕ(m)dµ(m)η

)
E

=

∫

M
(ξ ,ϕ(m)η)E dµ(m) ∈ A, (7.3)

for all ξ ,η ∈ E .

Proof. The integral on the right hand side of (7.3) converges, becauseµ(M) is finite, and be-
cause the mapm 7→ (ϕ(m)ξ ,η)E is continuous on the compact spaceM, and hence bounded. It
follows directly from the definition (7.3) of the operator

∫
M ϕ(m)dµ(m) that it has an adjoint,

given by (∫

M
ϕ(m)dµ(m)

)∗
=

∫

M
ϕ(m)∗dµ(m).

We will often use the fact that ‘adjointable operators commute with integrals’, in the fol-
lowing sense:

Lemma 7.3. Let (M,µ) be a measure space, letE be a Hilbert A-module, and let

ϕ : M→B(E )

be a measurable function. That is to say, the integral
∫

M ϕ(m)dµ(m) is a well-defined ad-
jointable operator onE , determined by(7.3).
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LetE ′ be another Hilbert A-module, and let T: E → E ′ be an adjointable operator. Then
∫

M
T ◦ϕ(m)dµ(m) = T ◦

∫

M
ϕ(m)dµ(m).

Proof. The statement follows directly from (7.3).

Compact operators and integrals

In the proof of Lemma 7.12 we will use the fact that in some cases, ‘the integral over a compact
set of a family of compact operators is compact’. To be more precise:

Lemma 7.4. Let (M,µ) be a compact Borel space with finite measure. LetE be a Hilbert C∗-
module, and letϕ : M→K (E ) be a continuous compact operator-valued map. Suppose that
ϕ is ‘uniformly compact’, in the sense that there exists a sequence

(
ϕ j

)∞
j=1 : M→F (E ) such

that
‖ϕ j −ϕ‖∞ := sup

m∈M
‖ϕ j(m)−ϕ(m)‖B(E )

tends to zero as j→∞. Suppose furthermore that for every j∈N, there is a sequence
(
ϕk

j

)∞
k=1 :

M→F (E ) of simple functions (i.e. measurable functions having finitely many values), such
that for all ε > 0 there is an n∈N such that for all j,k≥ n, ‖ϕk

j −ϕ j‖< ε. Then the integral

∫

M
ϕ(m)dµ(m)

defines a compact operator onE .

Proof. For all j,k∈N, the integral
∫

M ϕk
j (m)dµ(m) is a finite sum of finite rank operators, and

hence a finite rank operator itself. And because‖ϕ j
j −ϕ‖∞→ 0 as j tends to∞, we have

∫

M
ϕ j

j (m)dµ(m)→
∫

M
ϕ(m)dµ(m)

in B(E ). Hence
∫

M ϕ(m)dµ(m) is a compact operator.

In the following situation, the assumptions of Lemma 7.4 aremet:

Lemma 7.5. LetE be a Hilbert C∗-module, and let(M,µ) be a compact Borel space with finite
measure. Suppose M is metrisable. Letα,β : M→B(E ) be continuous, and let T∈K (E )
be a compact operator. Define the mapϕ : M →K (E ) by ϕ(m) = α(m)Tβ (m). This map
satisfies the assumptions made in Lemma 7.4.

Proof. Choose a sequence(Tj)
∞
j=1 in F (E ) that converges toT. Form∈M, set

ϕ j(m) = α(m)Tjβ (m)

Then
‖ϕ j −ϕ‖∞ ≤ ‖α‖∞‖Tj −T‖B(E )‖β‖∞→ 0
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as j → ∞. Note thatα andβ are continuous functions on a compact space, so their sup-norms
are finite.

Choose sequences of simple functionsαk,β k : M→B(E ) such that‖αk−α‖∞ → 0 and
‖β k−β‖∞→ 0 as j goes to∞ (see Lemma 7.6 below). For allj,k∈N, set

ϕk
j (m) := αk(m)Tjβ k(m),

for m∈M. Note that

‖ϕk
j −ϕ j‖∞ = sup

m∈M
‖αk(m)Tjβ k(m)−α(m)Tjβ (m)‖

≤ sup
m∈M

(
‖αk(m)Tjβ k(m)−αk(m)Tjβ (m)‖

+‖αk(m)Tjβ (m)−α(m)Tjβ (m)‖
)

≤ ‖αk‖∞‖Tj‖‖β k−β‖∞ +‖αk−α‖∞‖Tj‖‖β‖∞.

The sequencesk 7→ ‖αk‖∞ and j 7→ ‖Tj‖ are bounded, sinceαk→ α andTj → T. Hence,
because the sequences‖αk−α‖∞ and‖β k−β‖∞ tend to zero, we see that‖ϕk

j −ϕ j‖ can be
made smaller than anyε > 0 for k large enough, uniformly inj.

Lemma 7.6. Let (M,µ) be a metrisable compact Borel space with metric d, let Y be a normed
vector space, and letα : M→Y be a continuous map.

Then there exists a sequence of simple mapsαk : M→Y such that the sequence

‖α−αk‖∞ := sup
m∈M
‖α(m)−αk(m)‖Y

goes to zero as k goes to infinity.

Proof. For everyk ∈ N, choose a finite covering̃Uk = {Ṽ1
k , . . . ,Ṽnk

k } of M by balls of radius
1
k . From eachŨk, we construct a partitionUk = {V1

k , . . . ,Vnk
k } of M, by settingV1

k := Ṽ1
k , and

V j
k := Ṽ j

k \
⋃ j−1

i=1 Ṽ i
k, for j = 2, . . . ,nk. Note that the setsV j

k are Borel-measurable. For allk∈ N

and j ∈ {1, . . . ,nk}, choose an elementmj
k ∈V j

k . Define the simple mapαk : M→Y by

αk(m) := α(mj
k) if m∈V j

k .

Note that, becauseα is continuous (and uniformly continuous becauseM is compact), for
everyε > 0 there is akε ∈ N such that for allm,n∈M,

d(m,n) <
1
kε

⇒ ‖α(m)−α(n)‖Y < ε.

Hence for allε > 0, all k > kε , and allm∈M (saym∈V j
k ),

‖α(m)−αk(m)‖Y = ‖α(m)−α(mj
k)‖Y < ε.

So‖α−αk‖∞ indeed goes to zero.
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7.2 Extension of operators to HilbertC∗-modules

From now on, let(H ,F,π) be aG-equivariantK-homology cycle overX. In the definition of
the assembly map, a HilbertC∗(G)-moduleE is constructed from the Hilbert spaceH , namely
as the closure of the spaceHc = π(Cc(X))H in a certain norm (see Section 5.2). We shall
prove the well-known fact thatF induces an operator onE , because we will also use some of
the ingredients in this proof later in this chapter.

Lemma 7.7. Let T∈B(H ) be properly supported and G-equivariant. Then T preservesHc,
and T|Hc extends continuously to an adjointable operator TE onE .

In the proof of Lemma 7.7, and also later, we will use:

Lemma 7.8. There is a nonnegative function c∈Cc(X) such that for all x∈ X,

∫

G
c(gx)dg= 1.

Proof. Because the quotientX/G is compact, there is a nonnegative functionh∈Cc(X) such
that for allx∈ X, the orbitGx intersects the interior of the support ofh. Therefore,

∫

G
h(gx)dx> 0

for all x∈ X. Let c∈Cc(X) be the function

c(x) :=
h(x)∫

Gh(gx)dg
.

By right invariance ofdg, this function has the desired property.

Corollary 7.9. Let hN ∈Cc(X/N). Then there is a function h∈Cc(X) such that for all x∈ X,

∫

N
h(nx)dn= hN(Nx). (7.4)

Proof. If X/N is compact, choose

h(x) := c(x)hN(Nx),

wherec is the function from Lemma 7.8 (withG replaced byN). Otherwise setY := p−1(supphN),
with p : X→ X/N the quotient map. The preceding argument yields a functionh∈Cc(Y) such
that for ally∈Y, ∫

N
h(ny)dn= hN(Ny).

Since∂Y = p−1(∂ supphN), we haveh|∂Y = 0. Henceh can be extended by zero outsideY to a
continuous function onX. This extension satisfies (7.4).
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An auxiliary map S

Let L2(G,H ) be the Hilbert space of functionsϕ : G→ H whose norm-squared function
g 7→ (ϕ(g),ϕ(g))H is integrable overG. Let c∈Cc(X) be the function from Lemma 7.8, and
let f :=

√
c. Just as Valette does in [61], we define the linear map

S: H → L2(G,H )

by
Sξ (g) = π( f )g ·ξ .

Lemma 7.10. The map S is an isometry, intertwines the representation of Gin H and the
right regular representation of G in L2(G,H ), and it mapsHc into the space L2c(G,H ) of
compactly supported L2-functions from G toH .

Proof. The facts thatG acts unitarily onH , π is a ∗-homomorphism and a nondegenerate
representation, together with Lemma 7.3 and the definition of f , imply thatSis an isometry. So
in particular, the image ofS lies insideL2(G,H ). Furthermore, it follows from the definitions
that S intertwines the representation ofG in H and the right regular representation ofG in
L2(G,H ).

By equivariance ofπ , we have for allh∈Cc(X), all ξ ∈H and allg∈G,

S(π(h)ξ )(g) = π( f )gπ(h)ξ = π( f gh)g ·ξ .

Since the action ofG on X is proper, the latter expression is a compactly supported function
of g. In other words, the image of the spaceHc under the mapS is contained in the space
L2

c(G,H ).

The spacesHc andL2
c(G,H ) carryCc(G)⊂C∗(G)-valued inner products given by

(ξ ,η)C∗(G)(g) = (ξ ,g ·η)H , (7.5)

for ξ ,η ∈Hc andg∈G, and

(ϕ,ψ)C∗(G)(g) = (ϕ,ρG(g)ψ)L2(G,H ), (7.6)

for ϕ,ψ ∈ L2
c(G,H ) and g ∈ G. Here ρG denotes the right regular representation ofG in

L2(G,H ): (ρG(g)ψ)(g′) = ψ(g′g). With respect to these inner products, the adjoint of the
restrictionS: Hc→ L2

c(G,H ) is the map

S∗ : L2
c(G,H )→Hc

given by

S∗ϕ =

∫

G
g−1π( f )ϕ(g)dg. (7.7)

This follows from a computation involving an application ofLemma 7.3.
Another important property of the mapsSandS∗ is that the compositionS∗S is the identity

onHc, by definition of f and by Lemma 7.3.
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Proof of Lemma 7.7.BecauseT is properly supported, it preservesHc. Via the mapS, the
restriction ofT to Hc induces the operatorSTS∗ on L2

c(G,H )∼= L2
c(G)⊗̂H , which is a dense

subspace of the HilbertC∗(G)-moduleC∗(G)⊗H . This embedding ofL2
c(G,H ) intoC∗(G)⊗

H is isometric with respect to theC∗(G)-valued inner product (7.6) onL2
c(G,H ) and the

C∗(G)-valued inner product onC∗(G)⊗H given by

(α⊗ξ ,β ⊗η)C∗(G)⊗H = (ξ ,η)H α ∗β ∗,

for α,β ∈C∗(G) andξ ,η ∈H . We will show that the operatorSTS∗ defines an adjointable
operator onC∗(G)⊗H with respect to this inner product. We then conclude thatT = S∗STS∗S
is adjointable as well.

To see thatSTS∗ defines an adjointable operator onC∗(G)⊗H , letϕ ∈ L2
c(G,H ) be given.

Then for allg∈G, one computes

STS∗ϕ(g) =
∫

G
π( f )Tπ(g′ f )g′ϕ(g′−1g)dg′.

IdentifyingL2
c(G,H ) with L2

c(G)⊗̂H , we see that for allχ ∈ L2
c(G) andξ ∈H ,

STS∗(χ⊗ξ ) =
∫

G
χ(g′−1g)π( f )Tπ(g′ f )g′ξ dg′.

In other words,

STS∗ =
∫

G
λ G(g′)⊗

(
π( f )Tπ(g′ f )g′

)
dg′, (7.8)

whereλ G denotes the left regular representation ofG in L2(G).
The integrand in (7.8) is compactly supported, since by equivariance ofπ andT,

π( f )Tπ(g′ f ) = π( f )g′Tπ( f )g′−1 = g′π(g′−1 f )π(h)Tπ( f )g′−1

for someh ∈ Cc(X), becauseT is properly supported. And because the action ofG on X is
proper, the map

g′ 7→ π(g′−1 f )π(h) = π
(
(g′−1 f )h

)

has compact supportΣ. Note that, forχ,χ ′ ∈ L2
c(G) andξ ,ξ ′ ∈H , theCc(G)-valued inner

product (7.6) is given by

(χ⊗ξ ,χ ′⊗ξ ′)C∗(G)(g) =
(
χ,ρG(g)χ ′

)
L2(G)

(ξ ,ξ ′)H ,

for g∈ G. Since by Lemma 7.2, the operators
∫

Σ π( f )Tπ(g′ f )g′dg′ on H and
∫

Σ λ G(g′)dg′

on L2(G) are adjointable, and since the left and right regular representations ofG in L2(G)
commute, the operatorS∗TS∗ is adjointable. �

7.3 The averaging process

In the proof that the homomorphismVN is well-defined, we will use a certain averaging process.
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Averaging

As before, let(H ,F,π) be an equivariantK-homology cycle overX.

Lemma 7.11.For T ∈B(H ) and f ∈Cc(X), set

AG
f (T) :=

∫

G
gπ( f )Tπ( f )g−1dg.

1. AG
f (T) is a well-defined bounded operator onH ;

2. AG
f (T) is properly supported;

3. AG
f (T) is G-equivariant.

Proof. 1. SupposeT is self-adjoint. (Otherwise apply the following argument to the real and
imaginary parts ofT.) Then for allg∈G, we have the inequalities inB(H ):

−gπ( f 2)g−1‖T‖B(H )1H ≤ gπ( f )Tπ( f )g−1≤ gπ( f 2)g−1‖T‖B(H )1H .

Therefore,

−
∫

G
gπ( f 2)g−1‖T‖B(H )1H dg≤ AG

f (T)≤
∫

G
gπ( f 2)g−1‖T‖B(H )1H dg.

And hence, by equivariance property (4.14) ofπ ,

‖AG
f (T)‖ ≤

∥∥∥
∫

G
gπ( f 2)g−1dg

∥∥∥‖T‖

=
∥∥∥
∫

G
π(g · f 2)dg

∥∥∥‖T‖

=
∥∥∥π

(∫

G
g · f 2dg

)∥∥∥‖T‖

≤
∥∥∥
∫

G
g · f 2dg

∥∥∥
∞
‖T‖,

where we have used the fact that the function

x 7→
∫

G
f 2(gx)dg

is inC(X)G∼= C(X/G), and hence bounded, by compactness ofX/G.
2. Letϕ ∈Cc(X). Then, using equivariance ofπ in the second equality, we see that

AG
f (T)π(ϕ) =

∫

G
gπ( f )Tπ( f )g−1π(ϕ)dg

=
∫

G
π(g · f )gTπ( f g−1 ·ϕ)g−1dg. (7.9)

Let K ⊂ G be the compact setK := {g∈ G; f g−1ϕ 6= 0}. This set is compact because theG-
action onX is proper. Choose a functionψ ∈Cc(X) that equals 1 on the compact set

⋃
g∈K g ·

suppf . Then, sinceψ g · f = g · f for all g∈ K, it follows from (7.9) that

π(ψ)AG
f (T)π(ϕ) = AG

f (T)π(ϕ).

3. Equivariance ofAG
f (T) follows from left invariance of the Haar measuredg.
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Averaging compact operators

Let T be a bounded operator onH , and leth∈Cc(X) be given. Then by Lemma 7.11, the aver-
aged operatorAG

h (T) is properly supported andG-equivariant. So by Lemma 7.7, the operator
AG

h (T) induces an adjointable operator onE . We will need the following lemma to prove that
the homomorphismVN is well-defined.

Lemma 7.12. If T is a compact operator, then the operator onE induced by AGh (T) is compact
as well.

Proof. Let c∈Cc(X) be the function from Lemma 7.8, letf :=
√

c, and letSbe the operator
from Lemma 7.10. Applying (7.8) to the operatorAG

h (T), we obtain

SAG
h (T)S∗ =

∫

G

∫

G
π( f )

(
g′π(h)Tπ(h)g′−1)π(g · f )(λG(g)⊗g) dgdg′

=
∫

G

∫

G
π( f g′ ·h)g′Tπ(hg′−1g · f )

(
λG(g)⊗g′−1g

)
dgdg′, (7.10)

where we have used Lemma 7.3 and equivariance ofπ .
Since the action ofG on X is proper, the setK := {g′ ∈ G; f g′ ·h 6= 0} is compact. Hence

the setL :=
⋃

g′∈K{g∈ G;hg′−1g · f 6= 0} is compact as well. The support of the integrand in
(7.10) is contained inK×L, so it is compact. We see that (7.10) is the integral over a compact
space of a family of compact operators. By Lemma 7.5, this family satisfies the assumptions of
Lemma 7.4. The latter lemma therefore implies thatSAG

h (T)S∗ defines a compact operator on
C∗(G)⊗H , so thatAG

h (T) = S∗SAG
h (T)S∗Sdefines a compact operator onE .

7.4 The homomorphismVN

Definition of VN

TheValette homomorphism

VN : KG
0 (X)→ KG/N

0 (X/N)

is given by
VN[H ,F,π] = [HN,FN,πN],

with HN, FN andπN defined as follows.
We equip the vector spaceHc = π(Cc(X))H with the sesquilinear form

(ξ ,η)N :=
∫

N
(ξ ,n ·η)H dn.

(For all ξ ,η ∈Hc, the integrand is compactly supported.) This form is positive semidefinite:

Lemma 7.13.For all ξ ∈Hc, one has

(ξ ,ξ )N ≥ 0. (7.11)
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Proof. We will prove that the compactly supported function

(ξ ,ξ )C∗(N) : n 7→ (ξ ,n ·ξ )H

onN, defines a positive element ofC∗(N). We then note that any homomorphism ofC∗-algebras
preserves positivity. Hence, applying the trivial representation to(ξ ,ξ )C∗(N), we see that

∫

N
(ξ ,ξ )C∗(N)(n)dn= (ξ ,ξ )N ≥ 0.

To show that(ξ ,ξ )C∗(N) is a positive element ofC∗(N), we will use a map very similar to
the mapSof Lemma 7.10. SinceX/N is not necessarily compact, the mapSmay not be well-
defined if we replaceG by N. However, writeξ = π(h)η, for someh ∈Cc(X) andη ∈H .
Then

Y := N ·supph ⊂ X,

is a properN-space, such thatY/N is compact. Therefore, by Lemma 7.8, there is a function
f ∈Cc(Y) such that for ally∈Y,

∫

N
f (n ·y)2dn= 1.

We define the map
Sξ : H → L2(N,H )

by
Sξ (ζ )(n) = π( f )n ·ζ .

This map has similar properties to the properties of the mapSgiven in Lemma 7.10. The adjoint
of the mapSξ with respect to theC∗(N)-valued inner products analogous to (7.5) and (7.6) is
given by (7.7), withG replaced byN.

The main difference betweenS andSξ is the fact thatS∗ξ Sξ is not the identity onHc in
general. However, we do have

S∗ξ Sξ (ξ ) =
∫

N
n−1π( f )π( f )nπ(h)η dn

=

∫

N
π(n · f 2)dnπ(h)η

= π(h)η
= ξ ,

since the function
∫

N n · f 2dn equals 1 on the support ofh. Therefore, we see that

(ξ ,ξ )C∗(N) = (ξ ,S∗ξ Sξ ξ )C∗(N) = (Sξ ξ ,Sξ ξ )C∗(N).

We will shortly demonstrate that for allϕ ∈ L2
c(N,H ), the function(ϕ,ϕ)C∗(N) is a positive

element ofC∗(N). Then takingϕ = Sξ shows that(ξ ,ξ )C∗(N) is positive inC∗(N).
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Let ϕ ∈ L2
c(N,H ), and choose a Hilbert basis(ei)i∈I of H . Write ϕ(n) = ∑i∈I ϕi(n)ei,

with ϕi ∈ L2
c(N) for all i ∈ I . Then

(ϕ,ϕ)C∗(N)(n) =

∫

N
∑
i∈I

ϕ̄i(n
′)ϕi(n

′n)dn′

= ∑
i∈I

∫

N
ϕ∗i (n′−1)ϕi(n

′n)dn′

= ∑
i∈I

ϕ∗i ∗ϕi(n).

Now note that all functionsϕ∗i ∗ϕi are positive inC∗(N).

Because of this lemma, the form(−,−)N induces an inner product on the quotient space
Hc/ker(−,−)N. We defineHN to be the completion ofHc/ker(−,−)N with respect to this
inner product.

Next, let us define the operatorFN. From now on, we suppose that eitherX/N is compact, orN
is compact.

Let EN be the HilbertC∗(N)-module defined as the completion ofHc with respect to the
C∗(N)-valued inner product given by

(ξ ,η)EN(n) = (ξ ,n ·η)H , (7.12)

for ξ ,η ∈Hc andn∈N.
First, supposeX/N is compact. Then, by Lemma 7.7, the operatorF induces an adjointable

operatorFEN on EN. Since adjointable operators are bounded, there is ac > 0 such that for all
ξ ∈ EN,

‖FENξ‖2EN
≤ c‖ξ‖2EN

.

Therefore, the operatorc1EN −F∗
EN

FEN is a positive element ofB(EN), which implies that for
all ξ ∈ EN, the element

(
(c−F∗

EN
FEN)ξ ,ξ

)
EN

of C∗(N) is positive. In other words,

(FENξ ,FENξ )EN ≤ c(ξ ,ξ )EN (7.13)

in C∗(N). In particular, ifξ ∈Hc, and we apply the trivial representation, we can conclude that

(Fξ ,Fξ )N ≤ c(ξ ,ξ )N.

Therefore,F extends continuously to a bounded operatorFN onHN.
If N is compact, then we have:

Lemma 7.14.For all ξ ∈Hc,

(Fξ ,Fξ )N ≤ ‖F‖2B(H )(ξ ,ξ )N.

Hence also in this case, the operatorF induces a bounded operatorFN onHN.
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Proof. By equivariance ofF, and by compactness ofN, we have

(Fξ ,Fξ )N =
∫

N
(Fξ ,Fn ·ξ )H dn

=
1

vol(N)

∫

N

∫

N
(n′Fn′−1 ·ξ ,Fn ·ξ )H dndn′

=
1

vol(N)

∫

N

∫

N
(Fn′−1 ·ξ ,Fn′−1n ·ξ )H dndn′. (7.14)

Applying Lemma 7.2, we obtain a bounded operator

η 7→
∫

N
n ·η dn

onH , such that for allη,η ′ ∈H :

(
η,

∫

N
n ·η ′dn

)
H

=

∫

N
(η,n ·η ′)H dn.

By Lemma 7.3 and left invariance ofdn, we see that (7.14) equals

1
vol(N)

(
F

(∫

N
n′−1 ·ξ dn′

)
,F

(∫

N
n ·ξ dn

))

H

=
1

vol(N)

(
F

(∫

N
n ·ξ dn

)
,F

(∫

N
n ·ξ dn

))

H

≤
‖F‖2

B(H )

vol(N)

∫

N

∫

N
(n ·ξ ,n′ ·ξ )H dn′dn

≤
‖F‖2

B(H )

vol(N)
vol(N)max

n∈N

(∫

N
(n ·ξ ,n′ ·ξ )H dn′

)

= ‖F‖2
B(H ) max

n∈N

∫

N
(ξ ,n−1n′ ·ξ )H dn′

= ‖F‖2
B(H )(ξ ,ξ )N,

by left invariance ofdn.

Finally, the representationπ of C0(X) in H extends to the multiplier algebraCb(X) of
C0(X) (see Example 4.11). We embed the algebraC0(X/N) into Cb(X) via the isomorphism
C(X/N)∼= C(X)N. The operators onH of the formπ( f ), with f ∈C(X)N, are properly sup-
ported andN-equivariant. So by the argument used in the definition ofFN, π induces a repre-
sentation

πN : C0(X/N)→B(HN).

VN is well-defined

Let us prove that the triple(HN,FN,πN) actually defines a class inKG/N
0 (X/N). In the proof,

we will use a different description of the Hilbert spaceHN.
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Consider the Hilbert spaceEN⊗C∗(N) C = EN⊗∫
N

C, which is defined as the quotient of the
tensor productEN⊗C by the equivalence relation

(ξ · f )⊗z∼ ξ ⊗ ∫
N( f )z,

for all ξ ∈ EN, f ∈C∗(N) andz∈ C. Here the map
∫

N : C∗(N)→ C is defined analogously to
(6.2). That is, by ∫

N( f ) :=
∫

N f (n)dn

for all f ∈Cc(N), and extended continuously to all ofC∗(N). The inner product onEN⊗C∗(N) C

is given by (
[ξ ⊗z], [ξ ′⊗z′]

)
EN⊗C∗(N)C

:=
∫

N

(
(ξ ,ξ ′)EN

)
zz̄′.

It is a straightforward matter to prove the following lemma:

Lemma 7.15. The linear mapHc⊗C→Hc given byξ ⊗ z 7→ zξ induces a unitary isomor-
phismEN⊗C∗(N) C→HN.

Using this description ofHN we can now prove:

Lemma 7.16. The triple(HN,FN,πN) defines a class in KG/N
0 (X/N), with FN properly sup-

ported.

Proof. We will show that for allhN ∈C0(X/N), the bounded operators

[πN(hN),FN] and πN(hN)(F2
N−1)

on HN are compact. All other properties ofK-homology cycles follow by a straightforward
verification.

Let hN ∈ Cc(X/N) be given. It is sufficient to prove the claim for allhN in this dense
subspace ofC0(X/N). Let h ∈Cc(X) be the function from Corollary 7.9. Then

∫
N n · hdn=

p∗hN, with p : X→X/N the quotient map. We may suppose thathN is real-valued, for otherwise
we can apply the following argument to the real and imaginaryparts ofhN.

We split the proof of Lemma 7.16 into two parts, by first considering the case whereX/N is
compact, and then proving the result for compactN.

Assume thatX/N is compact. Then we have the bounded operatorFEN on EN induced by
F as in Lemma 7.7. The isomorphismEN⊗C∗(N) C ∼= HN from Lemma 7.15 intertwines the
operatorFN on HN and the operatorFEN ⊗1 on EN⊗C∗(N) C. Indeed, for allξ ∈Hc and all
z∈ C, we have(FEN⊗1)[ξ ⊗z] = [Fξ ⊗z], andFN[zξ ] = [zFξ ].

Let us first prove that[πN(hN),FN] is a compact operator onHN. BecauseF is properly
supported, there is anf1∈Cc(X) such thatπ( f1)Fπ(h) = Fπ(h). Choosef ∈Cc(X) such thatf
equals 1 on suppf1∪supph. Then f h= h, andπ( f )Fπ(h)= π( f )π( f1)Fπ(h)= π( f1)Fπ(h)=
Fπ(h). Now

[π(p∗hN),F] =

∫

N
n[π(h),F]n−1dn, (7.15)

by Lemma 7.3 and equivariance ofπ . Note that

Fπ(h) = π( f )Fπ(h) = π( f )Fπ(h)π( f ). (7.16)
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SinceF, π( f ) and π(h) are self-adjoint operators, taking adjoints in (7.16) yields π(h)F =
π( f )π(h)Fπ( f ). Hence

[π(h),F] = π( f )[π(h),F]π( f ),

and (7.15) equalsAN
f ([π(h),F]).

By assumption, the commutator[π(h),F] is compact. SinceX/N is compact, we can there-
fore apply Lemma 7.12, and conclude that[π(p∗hN),F] induces a compact operator[π(p∗hN),F]EN

onEN. Because the isomorphismEN⊗C∗(N)C
∼=HN intertwines the compact operator[π(p∗hN),F]EN⊗

1 onEN⊗C∗(N) C and the operator[πN(hN),FN] onHN, the latter is compact as well.
To prove compactness ofπN(hN)(F2

N−1), let hN andh be as above. Then

π(p∗hN)(F2−1) =
∫

N
nπ(h)(F2−1)n−1dn. (7.17)

BecauseF is properly supported, so isF2. So there is a functionf ∈Cc(X) such that

F2π(h) = π( f )F2π(h) = π( f )F2π(h)π( f ).

Taking the adjoint of this equality, we see that (7.17) equals AN
f

(
π(h)(F2−1)

)
, which is com-

pact. As above, this implies thatπN(hN)(F2
N−1) is compact.

Next, we suppose thatN is compact. We saw that

[π(p∗hN),F] = AN
f ([π(h),F]).

By Lemma 7.17 below, the operatorAN
f ([π(h),F])N onHN is compact. Hence the operator

[πN(hN),FN] = [π(p∗hN),F]N

is compact as well. A similar argument can be used to prove that πN(hN)(F2
N−1) is compact.

Finally, to prove thatFN is properly supported, lethN ∈ Cc(X/N) and h ∈ Cc(X) be as
above. We saw that, becauseF is properly supported, there is a functionf ∈Cc(X) such that
π( f )Fπ(h) = Fπ(h) and f h = h. Then as before,

Fπ(p∗hN) =

∫

N
Fnπ(h)n−1dn

=
∫

N
nπ( f )Fπ(h)n−1dn

=

∫

N
nπ( f )Fπ(h)π( f )n−1dn

= AN
f (Fπ(h)).

SetKN := p(suppf ), and letϕN ∈Cc(X/N) be equal to 1 onKN. Thenp∗ϕN f = f , and hence

π(p∗ϕN)AN
f (Fπ(h)) =

∫

N
π(p∗ϕN)nπ( f )Fπ(h)π( f )n−1dn

=
∫

N
nπ(n−1 · p∗ϕN)π( f )︸ ︷︷ ︸

=π( f )

Fπ(h)π( f )n−1dn

= AN
f (Fπ(h)).
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And therefore,
πN(ϕN)FNπN(hN) = FNπN(hN).

In the proof of Lemma 7.16, we used the following analogue of Lemma 7.12.

Lemma 7.17. Suppose N is compact. Let T∈ K (H ) and h∈ Cc(X) be given. Then the
operator AN

h (T)N onHN, induced by ANh (T), is compact as well.

Proof. Let
(
Tj

)∞
j=1 be a sequence of finite rank operators onH that converges toT in B(H ).

We first claim that the averaged operatorsAN
h (Tj) have finite rank, for allj. Indeed, ifTj is a

rank 1 operator:
Tj(ξ ) = (η,ξ )H ζ

for all ξ ∈H , then for all suchξ ,

AN
h (Tj)(ξ ) =

∫

N
(nπ(h)η,ξ )H nπ(h)ζ dn

⊂ spann∈N n ·π(h)ζ .

By compactness ofN and unitarity of the representation ofN in H , the unit sphere in the latter
space is compact. This space is therefore finite-dimensional, so thatAN

h (Tj) is indeed a finite
rank operator. In general, ifTj is a finite sum of rank 1 operators, we see thatAN

h (Tj) is still a
finite rank operator.

Furthermore, we have for allj,

‖AN
h (Tj)−AN

h (T)‖B(H ) =
∥∥∥
∫

N
nπ(h)(Tj−T)π(h)n−1dn

∥∥∥
B(H )

≤ vol(N)‖π(h)‖2
B(H )‖Tj −T‖B(H ),

which tends to zero. Lemma 7.14 implies that

‖AN
h (Tj)N−AN

h (T)N‖B(HN) ≤ ‖AN
h (Tj)−AN

h (T)‖B(H ),

and we see thatAN
h (Tj)N→ AN

h (T)N in B(HN).
Now the operatorsAN

h (Tj)N have finite rank. Indeed, if the image ofAN
h (Tj) is contained in

the finite-dimensional subspaceVj ⊂H , then, sinceAN
h (Tj) is properly supported,

AN
h (Tj)Hc⊂Hc∩Vj ,

and the image ofAN
h (Tj)N is contained in the (finite-dimensional) closure ofHc∩Vj in HN. It

therefore follows thatAN
h (T)N is a compact operator onHN.

The last step in the construction of the mapVN is the fact that it is well-defined onK-
homology classes:

Lemma 7.18.The map VN maps equivalent K-homology cycles to equivalent cycles.
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Proof. It follows from the definition ofVN that it maps unitarily equivalent cycles to unitarily
equivalent cycles.

To show thatVN preserves operator homotopy, it is enough to prove that there is a con-
stantC > 0 such that for allK-homology cycles(H ,F,π) with F properly supported and
G-equivariant, one has

‖FN‖B(HN) ≤C‖F‖B(H ).

I.e. the mapF 7→ FN is bounded.
For compactN, it follows from Lemma 7.14 that‖FN‖B(HN)≤ ‖F‖B(H ), and we are done.

Therefore, suppose thatX/N is compact.
Let (H ,F,π) be aK-homology cycle overX, with F properly supported andG-equivariant.

As before, letEN be the completion ofHc in the inner product (7.12). By Lemma 7.7,F induces
a bounded operatorFEN onEN, and by (7.8) we have

‖FEN‖B(EN) = ‖SFENS∗‖B(L2(N,H ))

=
∥∥∥
∫

N
λ N(n)⊗π( f )Fπ(n · f )ndn

∥∥∥,

where f ∈Cc(X) has the property that
∫

N f (nx)2dn= 1 for all x∈ X. Becauseλ N(n) andn are
unitary operators onL2(N) andH respectively, this norm is at most equal to

∫

K
‖π( f )‖B(H )‖π(n · f )‖B(H )‖F‖B(H ) dn= vol(K)‖π( f )‖2

B(H )‖F‖B(H ),

whereK is the compact set{n∈ N; f ·n f 6= 0}. Set

C := vol(K)‖π( f )‖2
B(H ),

so that‖FEN‖B(EN) ≤C‖F‖B(H ).
Then for allξ ∈Hc, we have‖FENξ‖EN ≤C‖F‖B(H )‖ξ‖EN. Therefore, as in (7.13), we

see that
C2‖F‖2

B(H )(ξ ,ξ )C∗(N)− (FENξ ,FENξ )C∗(N)

is a positive element ofC∗(N). Applying the trivial representation, we conclude that

C2‖F‖2
B(H )‖ξ‖2N−‖Fξ‖2N ≥ 0

for all ξ ∈Hc, i.e. ‖FN‖B(HN) ≤C‖F‖B(H ).

7.5 Proof of naturality of the assembly map

Having finished the construction of the homomorphismVN, we are now ready to prove Theorem
7.1.

Proof of Theorem 7.1.

Step 1: the KG/N
0 (X/N)-cycles. Let [H ,F,π] ∈ KG

0 (X), and supposeF is G-equivariant and
properly supported. Our goal is to show that

(
∫

N)∗ ◦µG
X [H ,F,π] = µG/N

X/N [HN,FN,πN]
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as elements ofK0(C∗(G/N)).
LetE andFE be the HilbertC∗(G)-module and the operator onE constructed from the cycle

(H ,F,π) as in the definition of the assembly map. That is,

µG
X [H ,F,π] = [E ,FE ].

The HilbertC∗(G/N)-module part of(
∫

N)∗ ◦µG
X [H ,F,π] is

EG/N := E ⊗C∗(G)C∗(G/N),

whereC∗(G) acts onC∗(G/N) via the homomorphism
∫

N. TheC∗(G/N)-valued inner product
onEG/N is given by (

[ξ ⊗a], [η⊗b]
)
EG/N

= a∗
(∫

N

(
(ξ ,η)E

))
b,

for all ξ ,η ∈ E anda,b∈C∗(G/N). The operator part of(
∫

N)∗ ◦µG
X [H ,F,π ] is

FEG/N
:= FE ⊗1.

On the other hand, the HilbertC∗(G/N)-module part ofµG/N
X/N [HN,FN,πN] is a certain com-

pletionẼG/N of the space
HN,c = πN(Cc(X/N))HN.

The completionẼG/N of HN,c is taken in the norm

‖ξN‖2ẼG/N
= ‖Ng 7→ (ξN,Ng·ξN)N‖C∗(G/N).

The operator partF
ẼG/N

of µG/N
X/N [HN,FN,πN] is defined as the continuous extension ofFN, as in

Lemma 7.7.

Step 2: an isomorphism.If ξ ∈Hc, we will write ξ N := ξ + ker(−,−)N for its class inHN.
Then for all ξ ∈Hc, we haveξ N ∈HN,c. Indeed, letf ∈ Cc(X) and ζ ∈H be such that
ξ = π( f )ζ . Let hN ∈Cc(X/N) be equal to 1 on the image of suppf in X/N. Then

ξ N = π(p∗hN)π( f )ζ +ker(−,−)N

= πN(hN)
(
π( f )ζ +ker(−,−)N

)

= πN(hN)ξ N.

Define the linear map
Ψ : Hc⊗Cc(G)Cc(G/N)→HN,c

by

Ψ[ξ ⊗ϕ] =

∫

G/N
ϕ(Ng−1)Ng·ξ Nd(Ng),

whered(Ng) is the Haar measure onG/N normalised such that1 for all h∈Cc(G),
∫

G
h(g)dg=

∫

Ng∈G/N

∫

n∈N
h(gn)dnd(Ng). (7.18)

1The correct way to define the integral on the right hand side of(7.18) is via a measurable sectionG/N→G.
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We will show thatΨ is an isometry with respect to theCc(G/N) ⊂C∗(G/N)-valued inner
products on the spaces in question. This implies thatΨ extends to an isometry between the
completions in these inner products:

Ψ : EG/N = Hc⊗Cc(G)Cc(G/N)→H N,c = ẼG/N.

It will turn out that Ψ is surjective, and intertwines the operatorsFEG/N
andF

ẼG/N
. This will

complete the proof.
To prove thatΨ is an isometry, letξ ,η ∈Hc andϕ,ψ ∈Cc(G/N) be given. Then for all

g∈G, one computes

([ξ ⊗ϕ], [η⊗ψ])EG/N
(Ng) =

∫

G/N

∫

G/N
ϕ̄(Ng′−1)ψ(Ng′′−1g′−1g)(ξ ,g′′ ·ξ )N d(Ng′)d(Ng′′) =

(Ψ[ξ ⊗ϕ],Ψ[η⊗ψ])
ẼG/N

(Ng). (7.19)

Next, we show thatΨ : EG/N→ ẼG/N has dense image, and is hence surjective, because it
is an isometry. Indeed, letξ ∈Hc. We will show thatξ N lies in the closure of the image of
Ψ. BecauseHc/ker(−,−)N is dense inHN,c, which in turn is dense iñEG/N, this proves that
Ψ has dense image. Let us construct a sequence inHc⊗Cc(G) Cc(G/N) whose image underΨ
converges toξ N. Let (ϕ j

N)∞
j=1 be a sequence inCc(G/N) such that for allj, ϕ j

N is a nonnegative
real valued function with integral 1, and that

lim
j→∞

ϕ j
N = δNe,

as distributions onG/N (with respect to the Haar measured(Ng)). Then for all j,

‖Ψ(ξ ⊗ϕ j
N)−ξ N‖N =

∥∥∥
∫

N/G
Ng·ξ N ϕ j

N(Ng−1)d(Ng)−
∫

N/G
ξ N ϕ j

N(Ng−1)d(Ng)
∥∥∥

N
≤

∫

N/G
ϕ j

N(Ng−1)‖Ng·ξ N−ξ N‖d(Ng),

which tends to zero asj→ ∞. SoΨ is surjective.
Finally, it follows directly from the definitions thatΨ◦ (FE ⊗1) = F

ẼG/N
◦Ψ. �



Chapter 8

K-homology classes of differential
operators

In this chapter, we will compute the image under the homomorphismVN from Theorem 7.1
of a K-homology class associated to an equivariant elliptic differential operator on a vector
bundle over a smooth manifold. The result is Corollary 8.11.In Chapter 10, we will specialise
Corollary 8.11 to Dirac operators in the case of a free actionby a discrete group, proving
Theorem 6.5. Corollary 8.11 will also play a role in Section 9.4.

8.1 L2-spaces of sections of a vector bundle

Let G be a unimodular Lie group with a Haar measuredg, and letN be a closed, normal
subgroup ofG, with a left invariant Haar measuredn. Let M be a smooth manifold on whichG
acts properly, such that the action ofN on M is free. SupposeM/G is compact.

Now letq : E→M be aG-vector bundle, equipped with aG-invariant Hermitian metric(−
,−)E. Letdmbe aG-invariant measure onM, and letL2(M,E) be the space of square-integrable
sections ofE with respect to this measure. LetπM : C0(M) → B(L2(M,E)) be the repre-
sentation defined by multiplying sections with functions. Let L2(M,E)N be the Hilbert space
constructed fromL2(M,E) as in the definition of the homomorphismVN. We will show that
L2(M,E)N is G/N-equivariantly and unitarily isomorphic to the Hilbert spaceL2(M/N,E/N)
of square-integrable sections of the quotient vector bundle

qN : E/N→M/N.

The L2-inner product on sections ofE/N is defined via the metric onE/N induced by the
one onE, and the measuredO on M/N with the property that for all measurable sections1

ϕ : M/N→M and all f ∈Cc(M),
∫

M
f (m)dm=

∫

M/N

∫

N
f (n ·ϕ(O))dndO (8.1)

(see [13], Proposition 4b, page 44).

1Measurable in the sense that the inverse image of any Borel measurable subset ofM is Borel measurable in
M/N.
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112 CHAPTER 8. K-HOMOLOGY CLASSES OF DIFFERENTIAL OPERATORS

Note that in this example, the space

L2
c(M,E) := π(Cc(M))L2(M,E)

is the space of compactly supportedL2-sections ofE. Consider the linear map

χ : L2
c(M,E)→ L2(M/N,E/N), (8.2)

defined by

χ(s)(Nm) := N ·
∫

N
n ·s(n−1m)dn,

for all s∈ L2
c(M,E) andm∈M. Becauses is compactly supported and the action is proper, the

integrand is compactly supported for allm∈M.

Proposition 8.1. The mapχ induces a G/N-equivariant unitary isomorphism

χ : L2(M,E)N
∼=−→ L2(M/N,E/N). (8.3)

Proof. It follows from a lengthy but straightforward computation that the mapχ is isometric,
in the sense that for alls∈ L2

c(M,E),

‖χ(s)‖L2(M/N,E/N) = ‖s‖N,

where‖ · ‖N is the norm corresponding to the inner product(−,−)N. Henceχ induces an
injective linear map

χ : L2
c(M,E)/K → L2(M/N,E/N), (8.4)

whereK is the space of sectionss∈ L2
c(M,E) with ‖s‖N = 0.

Furthermore, the mapχ has dense image, see Lemma 8.2 below. It therefore extends toa
unitary isomorphism

χ : L2(M,E)N→ L2(M/N,E/N).

The fact thatN is a normal subgroup implies that this isomorphism intertwines the pertinent
representations ofG/N.

Lemma 8.2. The image of the mapχ in (8.2)contains the space L2
c(M/N,E/N) of compactly

supported L2-sections of E/N→M/N.

Proof. Let σ ∈ L2
c(M/N,E/N). We will construct a sections∈ L2

c(M,E) such thatχ(s) = σ ,
using the following diagram:

E
pE //

q

��

E/N

qN
��

M
p // M/N.

Here the horizontal maps are quotient maps and define principal fibre bundles, and the vertical
maps are vector bundle projections.



8.1 L2-SPACES OF SECTIONS OF A VECTOR BUNDLE 113

Let {U j} be an open cover of suppσ ⊂M/N that admits local trivialisations

τ j : p−1(U j)
∼=−→U j ×N;

θN
j : q−1

N (U j)
∼=−→U j ×E0,

whereE0 is the typical fibre ofE. Because suppσ is compact, the cover{U j}may be supposed
to be finite. Via the isomorphism of vector bundlesp∗(E/N)∼= E, the trivialisationsθN

j induce
local trivialisations ofE:

θ j : q−1(p−1(U j))
∼=−→ p−1(U j)×E0.

And then, we can form trivialisations

τE
j : p−1

E (q−1
N (U j))

∼=−→ q−1
N (U j)×N,

by

p−1
E (q−1

N (U j)) = q−1(p−1(U j))

∼= p−1(U j)×E0 via θ j
∼= U j ×N×E0 via τ j

∼= q−1
N (U j)×N via θN

j .

Here the symbol ‘∼=’ indicates anN-equivariant diffeomorphism. It follows from the definition
of the trivialisationθ j thatτE

j composed with projection ontoq−1
N (U j) equalspE, so thatτE

j is
indeed an isomorphism of principalN-bundles.

For everyj, define the sectionsj ∈ L2(M,E) by

sj(τ−1
j (O ,n)) =

(
τE

j

)−1
(σ(O),n)

for all O ∈U j andn∈ N, and extended by zero outsidep−1(U j). By compactness of suppσ ,
there is a compact subsetC̃⊂M that intersects allN-orbits in suppσ . Let K ⊂ N be a compact
subset ofdn-volume 1, and setC := K ·C̃. Then for allm∈M, the volume of the compact set

Vm := {n∈N;n−1m∈C}

is at least 1. Define the section ˜s of E by

s̃(m) =

{
∑ j sj(m) if m∈C

0 if m 6∈C.

Thens̃∈ L2
c(M,E), and for allm∈M,

χ(s̃)(Nm) = ∑
j ,

Nm∈U j

∫

Vm

pE
(
n ·sj(n

−1m)
)

dn

= ∑
j ,

Nm∈U j

∫

Vm

pE
((

τE
j

)−1
(σ(Nm),n ·ψ(n−1m))

)
dn, (8.5)
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where(Nm,ψ(n−1m)) := τ j(n−1m). Now sincepE ◦
(
τE

j

)−1
is projection ontoq−1

N (U j), the
expression (8.5) equals

#{ j;Nm∈U j}vol(Vm)σ(Nm).

Settingϕ(m) := #{ j;Nm∈U j}vol(Vm) gives a measurable functionϕ on M which is bounded
below by 1 andN-invariant by invariance ofdn. Hence

s :=
1
ϕ

s̃,

is a sections∈ L2
c(M,E) for which χ(s) = σ .

8.2 Differential operators

Let G andE→M be as in Section 8.1. LetD : Γ∞(M,E)→ Γ∞(M,E) be aG-equivariant first
order differential operator that is symmetric with respectto theL2-inner product on compactly
supported sections. ThenD defines an unbounded operator onL2(M,E). We assume that this
operator has a self-adjoint extension, which we also denoteby D.

Functional calculus and properly supported operators

Applying the functional calculus to the self-adjoint extension ofD, we define the bounded, self-
adjoint operatorb(D) onL2(M,E), for any bounded measurable functionb onR. The operator
b(D) is G-equivariant because of Lemma 4.31.

We will later consider the case where
(
L2(M,E),b(D),πM

)
is a K-homology cycle, and

apply the mapVN to this cycle. It is therefore important to us that the operator b(D) is properly
supported (Definition 5.13) for well-chosen functionsb:

Proposition 8.3. If b is a bounded measurable function with compactly supported (distribu-
tional) Fourier transformb̂, then the operator b(D) is properly supported.

The proof of this proposition is based on the following two facts, whose proofs can be found
in [34], Section 10.3.

Proposition 8.4. If b is a bounded measurable function onR with compactly supported Fourier
transform, then for all s, t ∈ Γ∞

c (M,E),

(
b(D)s, t

)
L2(M,E)

=
1

2π

∫

R

(
eiλDs, t

)
L2(M,E)

b̂(λ )dλ .

This is Proposition 10.3.5. from [34]. By Stone’s theorem, the operatoreiλD is characterised
by the requirements thatλ 7→ eiλD is a group homomorphism fromR to the unitary operators
onL2(M,E), and that for alls∈ Γ∞

c (M,E),

∂
∂λ

∣∣∣∣
λ=0

eiλDs= iDs.
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Lemma 8.5. Let s∈ Γ∞
c (M,E), and let h∈C∞

c (M) be equal to1 on the support of s. Letλ ∈R

such that|λ |< ‖[D,πM(h)]‖−1. Then

suppeiλDs⊂ supph.

This follows from the proof of Proposition 10.3.1. from [34].

Proof of Proposition 8.3.Let R> 0 be such that supp̂b⊂ [−R,R]. Let f ∈Cc(M), and choose
h∈C∞

c (M) such thath equals 1 on the support off , and that‖[D,πM(h)]‖ ≤ 1
R. Let 1M be the

constant function 1 onM. Then by Lemma 8.5,

πM(1M−h)eiλDπM( f ) = 0, (8.6)

for all λ ∈]−R,R[. Here we have extended the nondegenerate representationπM of C0(M) on
L2(M,E) to the multiplier algebraCb(M) of C0(M). So by Proposition 8.4, we have for all
s, t ∈ Γ∞

c (M,E),
(
πM(1M−h)b(D)πM( f )s, t

)
L2(M,E)

=
(
b(D)πM( f )s,πM(1M− h̄)t

)
L2(M,E)

=
1

2π

∫

R

(
eiλDπM( f )s,πM(1M− h̄)t

)
L2(M,E)

b̂(λ )dλ

=
1

2π

∫ R

−R

(
πM(1M−h)eiλDπM( f )s, t

)
L2(M,E)

b̂(λ )dλ

= 0,

by (8.6). So (
1−πM(h)

)
b(D)πM( f ) = πM(1M−h)b(D)πM( f ) = 0,

and henceb(D) is properly supported. �

The image ofb(D) under VN

Now suppose thatD is elliptic and thatb is a normalising function with compactly supported
Fourier transform. Ifg is a smooth, even, compactly supported function onR, and f := g∗g

is its convolution square, thenb(λ ) :=
∫
R

eiλx−1
ix f (x)dx is such a function (see [34], Exercise

10.9.3).
Becauseb(D) is properly supported it preservesL2

c(M,E), and the construction used in the
definition of the mapVN applies tob(D). The resulting operatorb(D)N onL2(M,E)N is defined
by commutativity of the following diagram:

L2
c(M,E) //

b(D)
��

L2(M,E)N

b(D)N
��

L2
c(M,E) // L2(M,E)N.

On the other hand, the operatorD induces an unbounded operator onL2(M/N,E/N), be-
cause it restricts to

D̃N : Γ∞(M,E)N→ Γ∞(M,E)N.

We then use the following fact:
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Proposition 8.6. Let H be a group acting properly and freely on a manifold M. Letq : E→M
be an H-vector bundle. Then the induced projection

qH : E/H→M/H

defines a vector bundle over M/H.
Let Γ∞(M,E)H be the space of H-invariant sections of E. The linear map

ψE : Γ∞(M,E)H → Γ∞(M/H,E/H), (8.7)

defined by
ψE(s)(H ·m) = H ·s(m),

is an isomorphism of C∞(M)H ∼= C∞(M/H)-modules.

Sketch of proof.The inverse ofψE is the pullback along the quotient mapp : M→M/H,

p∗ : Γ∞(M/H,E/H)→ Γ∞(M,E)H ,

defined by
(p∗σ)(m) = (m,σ(Hm)) ∈ p∗(E/H)∼= E,

for σ ∈ Γ∞(M/H,E/H). The isomorphismp∗(E/H)∼= E is given by

(m,He) 7→ e, (8.8)

for m∈M ande∈ Em. �

Using Proposition 8.6, we define

DN := ψ−1
E D̃NψE : Γ∞(M/N,E/N)→ Γ∞(M/N,E/N). (8.9)

We regardDN as an unbounded operator onL2(M/N,E/N). It is symmetric with respect to
theL2-inner product, and hence essentially self-adjoint by [34], Corollary 10.2.6. We therefore
have the bounded operatorb(DN) on L2(M/N,E/N).

Our claim is:

Proposition 8.7. The isomorphismχ from Proposition 8.1 intertwines the operators b(D)N and
b(DN):

L2(M,E)N
χ //

b(D)N
��

L2(M/N,E/N)

b(DN)
��

L2(M,E)N
χ // L2(M/N,E/N).

We will prove this claim by reducing it to the commutativity of another diagram. This
diagram involves the Hilbert spacẽL2(M/N,E/N), which is defined as the completion of the
spaceΓ∞(M,E)N in the inner product

(σ ,τ) :=
∫

M/N

(
σ(ϕ(O)),τ(ϕ(O)

)
E dO ,
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for any measurable sectionϕ : M/N→M. The mapψE from Proposition 8.6 extends continu-
ously to a unitary isomorphism

ψ̃E : L̃2(M/N,E/N)→ L2(M/N,E/N).

The unbounded operator̃DN on L̃2(M/N,E/N) is essentially self-adjoint becauseDN is,
and becausẽψE intertwines the two operators. Hence we haveb(D̃N) ∈B

(
L̃2(M/N,E/N)

)
.

We will deduce Proposition 8.7 from Lemma 8.8:

Lemma 8.8. The following diagram commutes:

L2
c(M,E)

∫
Nn·

//

b(D)
��

L̃2(M/N,E/N)

b(D̃N)
��

L2
c(M,E)

∫
Nn·

// L̃2(M/N,E/N),

where the map
∫

Nn· is given by2

(∫
Nn · (s)

)
(Nm) =

∫

N
n ·s(n−1m)dn.

Proof. Step 1.Because the representation ofN in L2(M,E) is unitary, we have
(∫

Nn · (s), t
)

L2(M,E)
=

(
s,

∫
Nn · (t)

)
L2(M,E)

for all s, t ∈ L2
c(M,E).

Step 2.By equivariance ofD, we have
(∫

Nn·
)
◦D = D̃N ◦ ∫

Nn·

onΓ∞
c (M,E).

Step 3.For all s∈ Γ∞
c (M,E), we have

∂
∂λ

∣∣∣∣
λ=0

∫
Nn · ◦eiλDs=

∫

N

∂
∂λ

eiλDn ·sdn

= i
∫

N
n ·Dsdn

= iD̃N∫
N n·(s) (by Step 2)

=
∂

∂λ

∣∣∣∣
λ=0

eiλ D̃N∫
Nn · (s).

So by Stone’s theorem, ∫
Nn · ◦eiλD = eiλ D̃N ◦

∫
Nn·

2Note that the spacẽL2(M/N,E/N) can be realised as a space of sections ofE.
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for all λ ∈ R.

Step 4. By using Proposition 8.4 and Steps 1 and 3 several times, we finally see that for all
s, t ∈ Γ∞

c (M,E),

(
b(D̃N)

∫
Nn · (s), t

)
L2(M,E)

=
1

2π

∫

R

(
eiλ D̃N∫

Nn · (s), t
)

L2(M,E)
b̂(λ )dλ

=
1

2π

∫

R

(∫
Nn ·eiλDs, t

)
L2(M,E)

b̂(λ )dλ

=
1

2π

∫

R

(
eiλDs,

∫
Nn · (t)

)
L2(M,E)

b̂(λ )dλ

=
(
b(D̃)s,

∫
Nn · (t)

)
L2(M,E)

=
(∫

Nn ·b(D̃)s, t
)

L2(M,E)
.

This completes the proof.

We now derive Proposition 8.7 from Lemma 8.8.

Proof of Proposition 8.7.Consider the following cube:

L2
c(M,E)

∫
Nn·

//

b(D)
��

��@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

L̃2(M/N,E/N)

b(D̃N)
�� ψ̃E

""E
E

E
E

E
E

E
E

E
E

E
E

E
E

E
E

E
E

E
E

E
E

L2
c(M,E) //

��@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

L̃2(M/N,E/N)

E
E

E
E

E
E

E
E

E
E

E

ψ̃E

""E
E

E
E

E
E

E
E

E
EL2(M,E)N χ

//

b(D)N
��

L2(M/N,E/N)

b(DN)
��

L2(M,E)N
χ // L2(M/N,E/N).

The rear square (with the operatorsb(D) andb(D̃N) in it) commutes by Lemma 8.8. The left
hand square (with the operatorsb(D) andb(D)N) commutes by definition ofb(D)N, and the
right hand square (withb(D̃N) andb(DN)) commutes by Lemma 4.31. The top and bottom
squares commute by definition of the mapχ , so that the front square commutes as well, which
is Proposition 8.7. �

8.3 Multiplication of sections by functions

Let G, M andE be as in Sections 8.1 and 8.2. As before, let

πM : C0(M)→B(L2(M,E))

and
πM/N : C0(M/N)→B(L2(M/N,E/N))
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be the representations defined by multiplication of sections by functions. Let

πM
N : C0(M/N)→B(L2(M,E)N)

be the representation obtained fromπM by the procedure in Section 7.4.

Lemma 8.9. The isomorphism(8.3) intertwines the representationsπM
N andπM/N.

Proof. The representationπM
N is induced by
(
πM)N : C(M/N)→B(L2

c(M,E)),
(
πM)N

( f )s(m) = f (N ·m)s(m).

For all f ∈C(M/N), s∈ L2
c(M,E) andm∈M, we therefore have

χ
(
πM

N ( f )s
)
(N ·m) = χ

((
πM)N

( f )s
)

(N ·m)

= N ·
∫

N
n · f (N ·n−1m)s(n−1 ·m)dn

= N · f (N ·m)
∫

N
n ·s(n−1 ·m)dn

=
(

πM/N( f )χ(s)
)

(N ·m).

8.4 Conclusion

Let G, M, E, D, DN, πM andπM/N be as in Sections 8.1 – 8.3. Suppose that the vector bundle
E carries aZ2-grading with respect to which the operatorD is odd. SupposeD is elliptic and
essentially self-adjoint as an unbounded operator onL2(M,E).3 Let b be a normalising function
with compactly supported Fourier transform. Then Proposition 8.1, Proposition 8.7 and Lemma
8.9 may be summarised as follows.

Theorem 8.10.Let
(
L2(M,E)N,b(D)N,πM

N

)
be the triple obtained from

(L2(M,E),b(D),πM) by the procedure of Section 7.4. Then there is a unitary isomorphism

χ : L2(M,E)N→ L2(M/N,E/N)

that intertwines the representations of G/N, the operators b(D)N and b(DN), and the represen-
tationsπM

N andπM/N.

Corollary 8.11. The image of the class

[D] :=
[
L2(M,E),b(D),πM]

∈ KG
0 (M)

under the homomorphism VN defined in Section 7.4 is

VN[D] =
[
L2(M/N,E/N),b(DN),πM/N]

=
[
DN]
∈ KG/N

0 (M/N).

3This is the case ifM is complete andD is a Dirac operator onM, see Corollary 4.36.



120 CHAPTER 8. K-HOMOLOGY CLASSES OF DIFFERENTIAL OPERATORS

Remark 8.12. If the action ofG on M happens to be free, then Corollary 8.11 allows us to
restate the Guillemin–Sternberg–Landsman conjecture 6.4without using techniques from non-
commutative geometry. Indeed, for free actions we have

R0
G◦µG

M

[
∂̄Lω + ∂̄ ∗Lω

]
= µ{e}M/G◦VG

[
∂̄Lω + ∂̄ ∗Lω

]
(by Theorem 7.1)

= index
(
∂̄Lω + ∂̄ ∗Lω

)G
(by Corollary 8.11)

= dim
(

ker
(
∂̄Lω + ∂̄ ∗Lω

)+
)G
−dim

(
ker

(
∂̄Lω + ∂̄ ∗Lω

)−)G
.

Note that even though the vector spaces ker
(
∂̄Lω + ∂̄ ∗Lω

)±
may be infinite-dimensional, theirG-

invariant parts are not, because they are the kernels of the elliptic operators
((

∂̄Lω + ∂̄ ∗Lω
)±)G

on the compact manifoldM/G. So Conjecture 6.4 becomes

dim
(

ker
(
∂̄Lω + ∂̄ ∗Lω

)+
)G
−dim

(
ker

(
∂̄Lω + ∂̄ ∗Lω

)−)G
= index∂̄Lω0 + ∂̄ ∗Lω0 .

In the setting of Theorem 6.5, the assumption that the actionis free is a very restrictive one,
see Remark 6.6.



Chapter 9

Inclusions of maximal compact subgroups
into semisimple groups

The monomorphism part of Valette’s ‘naturality of the assembly map’ is harder to generalise
to nondiscrete groups than the epimorphism part (Theorem 7.1). The reason for this is more or
less that the geometry of homogeneous spaces of nondiscretegroups is usually nontrivial. More
specifically, the problem is that a principal fibre bundleG→ G/H has no smooth transversal
in general. We will generalise this monomorphism part to thecase of inclusions of maximal
compact subgroupsK of semisimple Lie groupsG. The geometry ofG/K enters into this
theorem via a Dirac operator/DG,K. This generalisation (Theorem 9.1) is one of the key steps
in a ‘quantisation commutes withinduction’ result (Theorem 14.5) that we will use to deduce
Theorem 6.13 from the compact case.

In the proof of Theorem 9.1, we will actually use the epimorphism case of naturality of the
assembly map, Theorem 7.1, and Corollary 8.11 from the previous section, in Sections 9.1 and
9.4, respectively.

Let G be a connected semisimple Lie group with finite centre, and let K < G be a maximal
compact subgroup. LetN be a smooth manifold,1 equipped with aK-action. LetM := G×K N
be the quotient ofG×N by theK-action given by

k · (g,n) = (gk−1,kn),

for k ∈ K, g ∈ G andn ∈ N. Because this action is proper and free,M is a smooth manifold.
Left multiplication on the factorG induces an action ofG on M.

Theorem 9.1(Naturality of the assembly map forK →֒ G). The mapK-IndG
K, defined by com-

mutativity of the left hand side of diagram(9.2), makes the following diagram commutative:

KG
0 (M)

µG
M // K0(C∗r (G))

KK
0 (N)

µK
N //

K-IndG
K

OO

R(K).

D-IndG
K

OO
(9.1)

1In the previous two chapters, we usedN to denote a normal subgroup. We hope this is not too confusing.

121
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This result is analogous to Theorem 4.1 from [4], which is used by Paradan in [63] to
reduce the Guillemin–Sternberg conjecture for compact groups to certain subgroups. Our proof
of Theorem 6.13 is analogous to this part of Paradan’s work.

We will prove Theorem 9.1 by decomposing diagram (9.1) as follows:

KG
0 (M)

µG
M // K0(C∗r (G))

KG×∆(K)
0 (G×N)

µG×∆(K)
G×N //

V∆(K)

OO

K0(C∗r (G×K))

R0
K

OO

KG×K×K
0 (G×N)

µG×K×K
G×N //

ResG×K×K
G×∆(K)

OO

K0(C∗r (G×K×K))

ResG×K×K
G×∆(K)

OO

KK
0 (N)

µK
N

//

K-IndG
K

::

[/DG,K ]×−
OO

R(K).

D-IndG
K

ee

µG×K
G [/DG,K ]×−

OO

(9.2)

In this diagram, all the horizontal maps involving the letter µ are analytic assembly maps. The
symbol ‘×’ denotes the Kasparov product, and∆(K) is the diagonal subgroup ofK×K. The
map D-IndGK was defined in (6.11). The other maps will be defined in the remainder of this
chapter.

The K-homology class[/DG,K] ∈ KG×K
0 (G) is defined as follows. Note that the Spin-Dirac

operator onG/K is the operator/DG/K = /DC, with C the trivial K-representation, and/DC as

in (6.9). Let pG : G→ G/K be the quotient map, letS G/K := G×K ∆p be the spinor bundle
on G/K, and consider the trivial vector bundlep∗GS G/K = G×∆dp

→ G. Let /DG,K be the

operator on this bundle given by the same formula (6.9) as theoperator/DV , with V = C the
trivial representation. This operator satisfies

/DG,K(p∗Gs) = p∗G
(
/DCs

)
,

for all sectionssof S G/K →G/K. We will use the fact that it is equivariant with respect to the
action ofG×K onG×∆dp

defined by

(g,k) · (g′,δ ) = (gg′k−1, Ãd(k) ·δ ),

for g,g′ ∈ G, k ∈ K andδ ∈ ∆dp
. It is elliptic (see Lemma 15.6), and therefore defines a class

[/DG,K] ∈ KG×K
0 (G).

We will distinguish between the different subdiagrams of (9.2) by calling them the ‘left-
hand’, ‘top’, ‘middle’, ‘bottom’ and ‘right-hand’ diagrams. Commutativity of the left-hand
diagram is the definition of the map K-IndG

K. In this chapter we will prove that the other dia-
grams commute as well, thus giving a proof of Theorem 9.1.
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9.1 The top diagram: naturality of the assembly map for epi-
morphisms

In this section, we suppose thatG is a locally compact Hausdorff group, and thatK⊳G is a
compactnormal subgroup ofG. Furthermore, letX be a locally compact, Hausdorff, proper
G-space such thatX/G is compact. Commutativity of the the top diagram is a specialcase of
commutativity of the following diagram:

KG/K
0 (X/K)

µG/K
X/K

//

µG/K
X/K

**
K0(C∗(G/K))

λG/K

// K0(C∗r (G/K))

KG
0 (X)

µG
X //

VK

OO

µG
X

44
K0(C∗(G))

λG //

R0
K

OO

K0(C∗r (G)).

R0
K

OO
(9.3)

We have used the same notation for the assembly map with respect to the full groupC∗-algebra
as for the assembly map with respect to the reduced one. The mapsλG/K andλG were defined
in Remark 5.16, where it was also noted that they make the top and bottom parts of diagram
(9.3) commutative. The mapsVK andR0

K are defined as in the epimorphism case of naturality
of the assembly map, Theorem 7.1. It is a striking feature of our version of naturality of the
assembly map for the monomorphismK →֒G that it actually relies on the epimorphism case in
this way.

It remains to prove that the right-hand part of diagram (9.3)commutes. But this is easily
seen to be true, as theC∗-algebra homomorphisms that induce the mapsR0

K, λG and λG/K
commute on the dense subspaceCc(G) of C∗(G) (since the maps inducingλG andλG/K are the
identity onCc(G) andCc(G/K), respectively, and they are continuous).

9.2 The middle diagram: restriction to subgroups

In the middle diagram of (9.2), the map

ResG×K×K
G×∆(K) : KG×K×K

0 (G×N)→ KG×∆(K)
0 (G×N)

is simply given by restricting representations and actionsof G×K×K to G×∆(K). The other
restriction map,

ResG×K×K
G×∆(K) : K0(C

∗
r (G×K×K))→ K0(C

∗
r (G×∆(K))), (9.4)

is harder to define. (The restriction mapCc(G×K×K)→Cc(G×∆(K)) is not continuous in
the norms of the reduced groupC∗-algebras involved, for example.)

We define the map (9.4) using theKünneth formula. SinceG is a connected Lie group (in
particular, it is an almost connected locally compact topological group), it satisfies the Baum–
Connes conjecture with arbitraryG-trivial coefficients (see [16], Corollary 0.5). By Corollary
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0.2 of [16], the algebraC∗r (G) therefore satisfies the Künneth formula. In particular,

K0(C
∗
r (G×K×K))∼= K0(C

∗
r (G)⊗minC∗r (K×K))

∼= K0(C
∗
r (G))⊗K0(C

∗
r (K×K))

∼= K0(C
∗
r (G))⊗R(K×K).

Here we have used the fact that the representation ringR(K×K) is torsion-free, and the fact
thatC∗r (G1)⊗minC∗r (G2) ∼= C∗r (G1⊗G2) for all locally compact Hausdorff groupsG1 andG2.
Analogously, we have an isomorphismK0(C∗r (G×K))∼= K0(C∗r (G))⊗R(K).

The isomorphism is given by the Kasparov product. This product is defined as the compo-
sition

KK0(C,C∗r (G))⊗KK0(C,C∗r (K×K))
1⊗τC∗r (G)−−−−−→

KK0(C,C∗r (G))⊗KK0(C
∗
r (G),C∗r (G)⊗minC∗r (K×K))

×C∗r (G)−−−−→
KK0(C,C∗r (G)⊗minC∗r (K×K)), (9.5)

whereτC∗r (G) is defined by tensoring from the left byC∗r (G), and× denotes the Kasparov product
(see [10], Chapter 18.9). Let

ResK×K
∆(K) : R(K×K)→R(∆(K)) = R(K)

be the usual restriction map to the diagonal subgroup. We define (9.4) as the map

1K0(C∗r (G))⊗ResK×K
∆(K) : K0(C

∗
r (G))⊗R(K×K)→ K0(C

∗
r (G))⊗R(K).

Commutativity of the middle diagram now follows from

Lemma 9.2.Let X be a locally compact, Hausdorff, proper G×K-space with compact quotient,
and let Y be a compact, Hausdorff K-space. Then the followingdiagram commutes:

KG×∆(K)
0 (X×Y)

µG×∆(K)
X×Y // K0(C∗r (G×K))

KG×K×K
0 (X×Y)

ResG×K×K
G×∆(K)

OO

µG×K×K
X×Y // K0(C∗r (G×K×K)).

ResG×K×K
G×∆(K)

OO

Proof. Let a = [H ,F,π]∈ KG×K×K
0 (X×Y), b = [EG,FG] ∈ K0(C∗r (G)) and[V] ∈R(K×K) be

given, such that

µG×K×K
X×Y (a) = b× [C∗r (G)⊗V] = [EG⊗V,FG⊗1V ] ∈ K0(C

∗
r (G×K×K)).

Because the assembly and restriction maps areZ-module homomorphisms, it is sufficient to
prove the claim in this case where the image ofa is a simple tensor.

If we write

[E ,FE ] := µG×K×K
X×Y (a) ∈ K0(C

∗
r (G×K×K));

[E ′,FE ′] := µG×∆(K)
X×Y ◦ResG×K×K

G×∆(K) (a) ∈ K0(C
∗
r (G×K)),
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then the operatorsFE andFE ′ coincide on the dense mutual subspaceHc of E andE ′. It is
therefore enough to prove that

E
′ ∼= EG⊗C

(
V|∆(K)

)

as HilbertC∗r (G×K)-modules.
Using the usual choice of representatives of the classesb and [E ,FE ] we have an isomor-

phism of HilbertC∗r (G×K×K)-modules

ψ : E
∼=−→ EG⊗V.

Define the map

ϕ : E
′ ∼=−→ EG⊗

(
V|∆(K)

)

by ϕ|Hc = ψ|Hc, and continuous extension. The mapϕ is well-defined, and indeed an isomor-
phism, if it is a homomorphism of HilbertC∗r (G×K)-modules. To show thatϕ preserves the
C∗r (G×K)-valued inner products, letξ1,ξ2 ∈Hc be given, and suppose thatϕ(ξ j) = ej ⊗v j ∈
EG⊗V for j = 1,2. (By linearity ofϕ, it is indeed enough to consider the case where theϕ(ξ j)
are simple tensors.) Then for allg∈G andk∈ K,

(
ϕ(ξ1),ϕ(ξ2)

)
EG⊗V|∆(K)

(g,k) = (e1,e2)EG(g)
(
v1,(k,k) ·v2

)
V

=
(
ψ(ξ1),ψ(ξ2)

)
EG⊗V(g,k,k)

= (ξ1,ξ2)E (g,k,k),

becauseψ is an isomorphism of HilbertC∗(G×K×K)-modules. The latter expression equals
(
ξ1,(g,k,k) ·ξ2

)
H

= (ξ1,ξ2)E ′(g,k),

which shows thatϕ preserves the inner products.
Finally, becauseψ is a homomorphism ofC∗r (G×K×K)-modules, the mapϕ is a homo-

morphism ofC∗r (G×K)-modules onHc, and hence on all ofE ′.

9.3 The bottom diagram: multiplicativity of the assembly
map

Commutativity of the bottom diagram is a special case of the multiplicativity property of the
assembly map that we will prove in this section. This property generalises multiplicativity of the
index with respect to Atiyah’s ‘sharp product’ of elliptic operators, as described in [4], Theorem
3.5. In this section, we will denote the tensor product of HilbertC∗-modules (see Definition 5.1)
by ⊗̂, to emphasise the difference with the algebraic tensor product⊗.

For this section, letG1 and G2 be locally compact Hausdorff topological groups, acting
properly on two locally compact metrisable spacesX1 andX2, respectively. SupposeX1/G1 and
X2/G2 are compact. Consider the Kasparov product maps

KG1
0 (X1)⊗KG2

0 (X2)
×−→ KG1×G2

0 (X1×X2);

K0(C
∗
(r)(G1))⊗K0(C

∗
(r)(G2))

×−→ K0(C
∗
(r)(G1×G2)). (9.6)
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Here the symbolC∗(r) denotes either the full or the reduced groupC∗-algebra, and we have used
theC∗-algebra isomorphisms (4.8) and (4.9).

Analogously to (9.5), the Kasparov product (9.6) is actually the composition

KK0(C,C∗(r)(G1))⊗KK0(C,C∗(r)(G2))
1⊗τC∗

(r)
(G1)

−−−−−−→

KK0(C,C∗(r)(G1))⊗KK0(C
∗
(r)(G1),C

∗
(r)(G1)⊗C∗(r)(G2))

×C∗
(r)

(G1)

−−−−−→
KK0(C,C∗(r)(G1)⊗C∗(r)(G2)) = KK0(C,C∗(r)(G1×G2)). (9.7)

The tensor product denotes the maximal tensor product in thecase of fullC∗-algebras, and the
minimal tensor product for reducedC∗-algebras.

Theorem 9.3(Multiplicativity of the assembly map). If X1 and X2 are metrisable, then for all

a j ∈ K
G j
0 (Xj), we have

µG1
X1

(a1)×µG2
X2

(a2) = µG1×G2
X1×X2

(a1×a2) ∈ K0(C
∗
(r)(G1×G2)).

Here the assembly maps are defined with respect to either the full of the reduced groupC∗-
algebras. We supposeX1 andX2 to be metrisable, because theC∗-algebrasC0(X1) andC0(X2)
are then separable, so that we can use Baaj and Julg’s unbounded description of the Kasparov
product. Theorem 9.3 may well be true for non-metrisable spaces, but we will only apply it to
smooth manifolds anyway.

In the proof of Theorem 9.3, we will use the unbounded pictureof KK-theory (see Section
5.3), because of the easy form of the Kasparov product in thissetting. The construction of
the unbounded assembly map in Section 5.3 works for full groupC∗-algebras, so the following
proof applies only to this case. Theorem 9.3 for reduced groupC∗-algebras can then be deduced
using the mapsλG1 andλG2 defined in Remark 5.16.

Proof of Theorem 9.3.For j = 1,2, let

a j = (H j ,D j ,π j) ∈ΨG j
0 (C0(Xj),C)

be given. Then
µ̃G j

Xj
(a j) =

(
Ẽ j ,DẼ j

)
,

as in (5.11). The product of̃µG1
X1

(a1) andµ̃G2
X2

(a2) is

µ̃G1
X1

(a1)× µ̃G2
X2

(a2) = (Ẽ1⊗̂Ẽ2,DẼ1⊗̂Ẽ2
) ∈Ψ0(C,C∗(G1×G2)). (9.8)

HereD
Ẽ1⊗̂Ẽ2

is the closure of the operator

D
Ẽ1
⊗1

Ẽ2
+1

Ẽ2
⊗D

Ẽ2
,

on the domain domD
Ẽ1
⊗domD

Ẽ2
.

On the other hand, the producta1×a2 is

(H1⊗̂H2,DH1⊗̂H2
,π) ∈ΨG1×G2

0 (C0(X1×X2),C), (9.9)
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with DH1⊗̂H2
the closure of the operator

D1⊗1H2 +1H1⊗D2

on domD1⊗ domD2. Furthermore, we have abbreviatedπ := π1⊗ π2 for later convenience.
Applying the unbounded assembly mapµ̃G1×G2

X1×X2
to the cycle (9.9), we obtain

(
Ẽ ,D

Ẽ

)
∈Ψ0(C,C∗(G1×G2)), (9.10)

whereẼ := π̃(p)H̃1⊗̂H2. Herep := p1⊗ p2, with p j the projection inCc(Xj×G j) as defined
in (5.9). Furthermore, the operatorD

Ẽ
is the closure of the operator̃DH1⊗̂H1

, as defined in
(5.10), withD = DH1⊗̂H2

.

First, let us show thatẼ = Ẽ1⊗̂Ẽ2. Note thatH̃1⊗̂H2 is the completion of the space
Cc(G1×G2,H1⊗̂H2) with respect to theC∗(G1×G2)-valued inner product(−,−)

H̃1⊗̂H2
,

defined analogously to (5.8). On the other hand,

Ẽ1⊗̂Ẽ2 = π̃1(p1)H̃1⊗̂π̃2(p2)H̃2 = π̃(p)H̃1⊗̂H̃2,

since it is not hard to check thatπ̃( f1⊗ f2) = π̃1( f1)⊗ π̃2( f2) for all f j ∈Cc(Xj ×G j). Here
H̃1⊗̂H̃2 is the completion ofCc(G1,H1)⊗Cc(G2,H2) in theC∗(G1)⊗C∗(G2)∼=C∗(G1×G2)-
valued inner product given by

(
ϕ1⊗ϕ2,ψ1⊗ψ2

)
H̃1⊗̂H̃2

= (ϕ1,ψ1)H̃1
⊗ (ϕ2,ψ2)H̃2

,

for ϕ j ,ψ j ∈Cc(G j ,H j). It follows directly from the definition (5.8) of the inner products(−
,−)

H̃1⊗̂H2
and(−,−)

H̃1⊗̂H̃2
, that they coincide on the subspaceCc(G1,H1)⊗Cc(G2,H2) ⊂

Cc(G1×G2,H1⊗̂H2).
We claim that the completion ofCc(G1,H1)⊗Cc(G2,H2) with respect to this inner product

contains the spaceCc(G1×G2,H1⊗̂H2). Then we indeed havẽH1⊗̂H2
∼= H̃1⊗̂H̃2, and hence

Ẽ = π̃(p)
(
H̃1⊗̂H2

)∼= π̃(p)
(
H̃1⊗̂H̃2

)
= Ẽ1⊗̂Ẽ2,

as HilbertC∗(G1×G2)-modules. The proof of this claim is based on the inequality

‖(ϕ,ϕ)
H̃1⊗̂H̃2

‖C∗(G1×G2) ≤ ‖ϕ‖
2
L1(G1×G2,H1⊗̂H2)

:=

(∫

G1×G2

‖ϕ(g1,g2)‖H1⊗̂H2
dg1dg2

)2

,
(9.11)

for all ϕ ∈Cc(G1,H1)⊗Cc(G2,H2). This inequality is proved in Lemma 9.4 below. Because
of this estimate, the completion ofCc(G1,H1)⊗Cc(G2,H2) with respect to the inner product
(−,−)

H̃1⊗̂H̃2
contains the completion of this tensor product in the norm‖ · ‖L1(G1×G2,H1⊗̂H2)

,
which in turn containsCc(G1×G2,H1⊗̂H2).

Next, we prove that the two unbounded cycles (9.8) and (9.10)define the same class in
KK-theory. By Lemma 10 and Corollary 17 from [47], this followsif we can show that

domD
Ẽ1⊗̂Ẽ2

⊂ domD
Ẽ
, and (9.12)

D
Ẽ
|domD

Ẽ1⊗̂Ẽ2
= D

Ẽ1⊗̂Ẽ2
. (9.13)
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We first prove (9.12). Note that the domain ofD
Ẽ1⊗̂Ẽ2

is the completion of domD
Ẽ1
⊗

domD
Ẽ2

in the norm‖ · ‖D
Ẽ1⊗̂Ẽ2

, as in (4.15), given by

‖ϕ1⊗ϕ2‖2D
Ẽ1⊗̂Ẽ2

:= ‖ϕ1⊗ϕ2‖2H̃1⊗̂H̃2
+‖D

Ẽ1
ϕ1⊗ϕ2 +ϕ1⊗D

Ẽ2
ϕ2‖2H̃1⊗̂H̃2

, (9.14)

for all ϕ j ∈ domD
Ẽ j

. The domain ofD
Ẽ j

in turn is the completion of̃π j(p j)Cc(G j ,domD j) in
the norm‖ · ‖D

Ẽ j
, defined analogously to (9.14).

To prove (9.12), we consider the subspace

V := π̃1(p1)Cc(G1,domD1)⊗ π̃2(p2)Cc(G2,domD2)

of domD
Ẽ1
⊗domD

Ẽ2
. We begin by showing that the completion ofV in the norm‖ · ‖D

Ẽ1⊗̂Ẽ2
contains domD

Ẽ1
⊗domD

Ẽ2
. This will imply that

V = domD
Ẽ1
⊗domD

Ẽ2

= domD
Ẽ1⊗̂Ẽ2

,
(9.15)

with completions taken in the norm‖ · ‖D
Ẽ1⊗̂Ẽ2

.

For j = 1,2, letϕ j ∈ domD
Ẽ j

be given. Let
(
ϕk

j

)∞
k=1 be a sequence iñπ j(p j)Cc(G j ,domD j)

such that
lim
k→∞
‖ϕk

j −ϕ j‖D
Ẽ j

= 0.

We claim that
lim
k→∞

∥∥ϕk
1⊗ϕk

2−ϕ1⊗ϕ2
∥∥

D
Ẽ1⊗̂Ẽ2

= 0, (9.16)

which implies thatϕ1⊗ ϕ2 lies in the completion ofV in the norm‖ · ‖D
Ẽ1⊗̂Ẽ2

. This claim
is proved in Lemma 9.5 below. General elements of domD

Ẽ1
⊗domD

Ẽ2
are (finite) sums of

simple tensors likeϕ1⊗ϕ2, and can be approximated by sums of sequences like
(
ϕk

1⊗ϕk
2

)∞
k=1.

Hence the completion ofV in the norm‖ · ‖D
Ẽ1⊗̂Ẽ2

indeed contains domD
Ẽ1
⊗domD

Ẽ2
, so that

(9.15) holds.
Finally, observe that domD

Ẽ
is the completion of

π(p)Cc(G1×G2,domDH1⊗̂H2
)

in the norm‖ · ‖D
Ẽ
, which is again defined analogously to (9.14). SinceV is contained in

π(p)Cc(G1×G2,domDH1⊗̂H2
), the completion ofV in the norm‖·‖D

Ẽ
is contained in domD

Ẽ
.

Furthermore, the operatorsD
Ẽ

andD
Ẽ1⊗̂Ẽ2

coincide onV, since their restrictions toV are both
given by

π̃1(p1)ϕ1⊗ π̃2(p2)ϕ2 7→ π̃1(p1)D1◦ϕ1⊗ π̃2(p2)ϕ2+ π̃1(p1)ϕ1⊗ π̃2(p2)D2◦ϕ2.

This implies that the norms‖ · ‖D
Ẽ

and‖ · ‖D
Ẽ1⊗̂Ẽ2

are the same onV, so that the completion of

V with respect to‖ · ‖D
Ẽ

equals the completion ofV with respect to‖ · ‖D
Ẽ1⊗̂Ẽ2

, which equals
domD

Ẽ1⊗̂Ẽ2
, by (9.15). We conclude that

domD
Ẽ1⊗̂Ẽ2

= V ⊂ domD
Ẽ
,
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as claimed.
Claim (9.13) now follows, because by (9.15), the restriction of D

Ẽ
to domD

Ẽ1⊗̂Ẽ2
is the

closure ofD
Ẽ
|V , which equalsD

Ẽ1⊗̂Ẽ2
|V . The closure of the latter operator isD

Ẽ1⊗̂Ẽ2
, again by

(9.15), and we are done. �

Lemma 9.4. The inequality(9.11)holds for allϕ ∈Cc(G1,H1)⊗Cc(G2,H2).

Proof. For suchϕ, we have

‖(ϕ,ϕ)
H̃1⊗̂H̃2

‖C∗(G1×G2) ≤ ‖(ϕ,ϕ)
H̃1⊗̂H̃2

‖L1(G1×G2)

=
∫

G1×G2

∣∣∣∣
∫

G1×G2

(
ϕ(g′1,g

′
2),ϕ(g′1g1,g

′
2g2)

)
H1⊗̂H2

dg′1dg′2

∣∣∣∣ dg1dg2

≤
∫

G1×G2

∫

G1×G2

∣∣∣
(
ϕ(g′1,g

′
2),ϕ(g′1g1,g

′
2g2)

)
H1⊗̂H2

∣∣∣dg′1dg′2dg1dg2

≤
∫

G1×G2

∫

G1×G2

‖ϕ(g′1,g
′
2)‖H1⊗̂H2

‖ϕ(g′1g1,g
′
2g2)‖H1⊗̂H2

dg′1dg′2dg1dg2,

by the Cauchy-Schwartz inequality. Because of left invariance of the Haar measuresdg1 and
dg2, the latter expression is the square of theL1-norm ofϕ.

Lemma 9.5. The limit(9.16)equals zero.

Proof. Since for j = 1,2, we have

0 = lim
k→∞
‖ϕk

j −ϕ j‖2D
Ẽ j

= lim
k→∞

(
‖ϕk

j −ϕ j‖2H̃ j
+‖D

Ẽ j
ϕk

j −D
Ẽ j

ϕ j‖2H̃ j

)
, (9.17)

both terms in (9.17) tend to zero ask→ ∞. Let us rewrite (9.16) in a way that allows us to use
this fact. By definition of the norm‖ · ‖D

Ẽ1⊗̂Ẽ2
, we have

∥∥ϕk
1⊗ϕk

2−ϕ1⊗ϕ2
∥∥2

D
Ẽ1⊗̂Ẽ2

=

∥∥ϕk
1⊗ϕk

2−ϕ1⊗ϕ2
∥∥2

H̃1⊗̂H̃2
+

∥∥D
Ẽ1

ϕk
1⊗ϕk

2−D
Ẽ1

ϕ1⊗ϕ2 + ϕ̃k
1⊗D

Ẽ2
ϕk

2−ϕ1⊗D
Ẽ2

ϕ2
∥∥2

H̃1⊗̂H̃2
.

Using the triangle inequality and the fact that

‖ψ1⊗ψ2‖H̃1⊗̂H̃2
≤ ‖ψ1‖H̃1

‖ψ1‖H̃1

for all ψ j ∈ H̃ j (this follows from the fact that anyC∗-norm on a tensor product issubcross, see
[87], Corollary T.6.2), we see that this number is less than or equal to

(
‖ϕk

1−ϕ1‖H̃1
‖ϕk

2‖H̃2
+‖ϕ1‖H̃1

‖ϕk
2−ϕ2‖H̃2

)2
+

(
‖D

Ẽ1
ϕk

1−D
Ẽ1

ϕ1‖H̃1
‖ϕk

2‖+‖DẼ1
ϕ1‖H̃1

‖ϕk
2−ϕ2‖H̃2

+

‖ϕk
1−ϕ1‖H̃1

‖D
Ẽ2

ϕk
2‖H̃2

+‖ϕ1‖H̃1
‖D

Ẽ2
ϕk

2−D
Ẽ2

ϕ2‖H̃2

)2
. (9.18)

By the observation at the beginning of this proof, all terms in (9.18) contain a factor that goes
to zero ask→ ∞. Since the other factors are bounded functions ofk, the claim follows.
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9.4 The right-hand diagram: a decomposition of the induc-
tion map D-IndG

K

In this section, we complete the proof of Theorem 9.1 by proving commutativity of the right-
hand diagram in (9.2). In this proof, we will use commutativity of the top, middle and bottom
diagrams in the case whereN is a point.

But first, we give the following description of the map D-IndG
K. LetV be a finite-dimensional

unitary representation ofK, and let/DV be the Dirac operator defined in (6.9). The closure of this
operator is an unbounded self-adjoint operator on the spaceof L2-sections ofEV , which is odd
with respect to theZ2-grading. This space ofL2-sections is isomorphic to the space

(
L2(G)⊗

∆dp
⊗V

)K
, where theK-action is again defined by (6.7) (with smooth functions replaced by

L2-functions, of course). Letb be a normalising function, so that we have the class
[(

L2(G)⊗∆dp
⊗V

)K
,b(/DV),πG/K

]
∈ KG

0 (G/K).

HereπG/K denotes the representation ofC0(G/K) on L2(G/K,EV) as multiplication operators.

Lemma 9.6. In this situation, we have

D-IndG
K[V] = µG

G/K

[(
L2(G)⊗∆dp

⊗V
)K

,b(/DV),πG/K
]
∈ K0(C

∗
r (G)).

Proof. Write
[E ,FE ] := µG

G/K

[(
L2(G)⊗∆dp

⊗V
)K

,b(/DV),πG/K
]
.

Since the restriction ofFE to
(
Cc(G)⊗∆dp

⊗V
)K

is the restriction ofb(/DV) to this space, we
only need to prove that

E =
(
C∗r (G)⊗∆dp

⊗V
)K

(9.19)

as HilbertC∗r (G)-modules.
To prove this equality, we note that for allf , f ′ ∈ (L2(G))c and allg∈G,

( f , f ′)E (g) = ( f ,g · f ′)L2(G) =
(

f ∗ ( f ′)∗
)
(g),

as one easily computes. This implies that theC∗r G-valued inner product onE is the same as the
one on

(
C∗r (G)⊗∆dp

⊗V
)K

.
TheC∗r (G)-module structure ofE is given by

h · ( f ⊗δ ⊗v) =

∫

G
h(g)g · ( f ⊗δ ⊗v)dg

= (h∗ f )⊗δ ⊗v,

for all h∈Cc(G), f ∈ L2(G), δ ∈ ∆dp
andv∈V. Hence the equality (9.19) includes theC∗r (G)-

module structure.

Proof of commutativity of the right-hand diagram.Consider the vector bundlesV and{0}
over a point. Let 0V : V → {0} be the only possible operator between (the spaces of smooth
sections of) these bundles. It defines a class[0V] = [V⊕{0},0V] ∈ KK

0 (pt), and we have

µK
pt[0V ] = [V] ∈ R(K).
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Now we find that

D-IndG
K[V] = µG×K×K

G/K

[(
L2(G)⊗∆dp

⊗V
)K

,b(/DV),πG/K
]

by Lemma 9.6,
= µG

G/K ◦V∆(K) ◦ResG×K×K
G×∆(K) [/DG,K⊗1V ]

by Corollary 8.11 and the fact that/DV is the restriction of/DG,K⊗1V to K-invariant elements of
C∞(G)⊗∆dp

⊗V,

= µG
G/K ◦V∆(K) ◦ResG×K×K

G×∆(K)

(
[/DG,K]× [0V]

)

= R0
K ◦ResG×K×K

G×∆(K) ◦µ
G×K
G

(
[/DG,K]× [V]

)
,

by commutativity of the top, middle and bottom diagrams whenN is a point. �

Remark 9.7. Supposing thatV is irreducible, we could also have applied the Borel–Weil(–Bott)
theorem to realise the class[V] ∈ R(K) asµK

K/T [/Diλ ], whereiλ is the highest weight ofV, and
/Diλ is the Dolbeault–Dirac operator onK/T coupled to the usual line bundle that is used in the
Borel–Weil theorem. We would then have used commutativity of the top, middle and bottom
diagrams forN = K/T.



Part III

Groups with a cocompact, discrete, normal
subgroup
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This part is devoted to a proof of Theorem 6.5. The ingredients of this proof are:

1. the Guillemin–Sternberg conjecture in the compact case (Theorem 3.34);

2. the epimorphism part of naturality of the assembly map (Theorem 7.1);

3. symplectic reduction in stages (Theorem 2.25);

4. quantum reduction in stages (10.5);

5. specialisation (10.8) of Corollary 8.11 to Dirac operators, in the case of a free action by a
discrete group.

We combine these ingredients into Diagram 10.1, which givesan outline of our proof. The main
technical step that then remains is Proposition 10.1, whichwe prove in Section 10.3.

In Chapter 11, we illustrate Theorem 6.5 by giving an independent proof of this theorem, in
the case thatG is discrete and abelian. This proof, based on a paper by Lusztig [55] (see also [8],
pp. 242–243) gives considerable insight in the situation, and does not rely on naturality of the
assembly map. It is based on an explicit computation of the image underµΓ

M of a K-homology
class[D] associated to aΓ-equivariant elliptic differential operatorD on aΓ-vector bundleE
over aΓ-manifoldM. Because in this caseC∗(Γ) ∼= C(Γ̂) (with Γ̂ the unitary dual ofΓ), this
image corresponds to the formal difference of two equivalence classes of vector bundles over
Γ̂. These bundles are described as the kernel and cokernel of a ‘field of operators’

(
Dα

)
α∈Γ̂

on a ‘field of vector bundles’
(
Eα → M/Γ

)
α∈Γ̂. The operatorsDα and the bundlesEα are

constructed explicitly fromD andE, respectively. The quantum reduction of the classµΓ
M[D] is

the index of the operatorD1 on E1→M/Γ, where 1∈ Γ̂ is the trivial representation. Because
D1 is the operatorDΓ mentioned above, in this case Theorem 6.5 follows from the computation
in Chapter 10.

Finally, in Sections 11.5 and 11.6 we check the discrete abelian case in an explicit compu-
tation. We will see that the quantisation of the action ofZ2 on R2 corresponds to a certain line
bundle over the two-torusT2 = Ẑ2. The quantum reduction of thisK-theory class is the rank of
this line bundle, the integer 1. This is also the quantisation of the reduced spaceT2 = R2/Z2,
as can be seen either directly or by applying Atiyah–Singer for Dirac operators. Although this
is the simplest example of Guillemin–Sternberg for noncompact groups and spaces, it is not a
trivial matter to find a suitable prequantisation in this case.



Chapter 10

Dirac operators and the mapVΓ

In this chapter, we finish the proof of Theorem 6.5. We first sketch an outline of this proof in
Section 10.1, and then state and prove the remaining technical step in Sections 10.2 and 10.3.

10.1 Outline of the proof

We use the notation and assumptions from Section 6.1 and Theorem 6.5. In particular,G is a
Lie group,Γ ⊳G is a discrete normal subgroup, such thatK := G/Γ is compact. Furthermore,
(M,ω) is a proper HamiltonianG-manifold, on whichΓ acts freely. The assumption thatM/G
is compact is now equivalent to compactness ofM/Γ.

The third and fourth ingredients mentioned at the beginningof the introduction to Part III
allow us to set up the following diagram:

Preq(G�M,ω)
[∂̄•+∂̄ ∗• ] //

R0
Γ

��

KG
0 (M)

µG
M // K0(C∗(G))

R0
Γ

��
Preq(K �M�Γ,ωM�Γ)

[∂̄•+∂̄ ∗• ] //

R0
K

��

KK
0 (M�Γ)

µK
M�Γ // K0(C∗(K))

R0
K

��
Preq

(
(M�Γ)�K,ω(M�Γ)�K

) index(∂̄•+∂̄ ∗• ) // Z.

(10.1)

Here the following notation is used. Preq(G�M,ω) is the set of allG-equivariant prequanti-
sations of(M,ω). A necessary condition for Preq(G� M,ω) to be nonempty is the require-
ment that the cohomology class[ω] ∈ H2(M,R) be integral. Since we assume(M,ω) to be
equivariantly prequantisable, this condition must be satisfied. Similarly, Preq(K �M�Γ,ωM�Γ)

is defined given theK-action onM�Γ induced by theG-action onM, and Preq
(
(M�Γ)�

K,ω(M�Γ)�K
)

is just the set of prequantisations of the symplectic orbifold

(
(M�Γ)�K,ω(M�Γ)�K

)∼= (M�G,ωM�G); (10.2)

this isomorphism follows from Theorem 2.25. Note that in this case,M�Γ = M/Γ, sinceΓ is
discrete.

134
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The mapsR0
Γ andR0

K on the left hand (classical) side of (10.1) are given by the construction
(3.14) of a prequantisation on a symplectic reduction, induced by an equivariant prequantisation
on the original manifold. The quantum counterparts of thesemaps on the right hand side of
(10.1) are defined by

R0
Γ := (∑Γ)∗ ; (10.3)

R0
K := (

∫
K)∗ . (10.4)

Here(∑Γ)∗ : K0(C∗(G))→K0(C∗(K)) is the map functorially induced by the map∑Γ :C∗(G)→
C∗(G/Γ) given by (

∑Γ f
)
(Γg) = ∑

γ∈Γ
f (γg),

initially defined on f ∈Cc(G) and continuously extended to all ofC∗(G). This map was more
generally defined for any closed normal subgroupN of G in (7.1). Finally, the maps[∂̄•+ ∂̄ ∗• ]
are defined by taking theK-homology class of the Dolbeault–Dirac operator coupled toa given
prequantum line bundle, as explained in Corollary 4.36. Thus the commutativity of the upper
part of diagram (10.1) is the equality

µK
M/Γ[∂̄Lω/Γ + ∂̄ ∗Lω/Γ] = R0

Γ
(
µG

M[∂̄Lω + ∂̄ ∗Lω ]
)
,

for any prequantum line bundleLω →M. Commutativity of the lower part is the statement

index
(
∂̄L

ω(M/Γ)�K + ∂̄ ∗
L

ω(M/Γ)�K

)
= R0

K

(
µK

M/Γ[∂̄Lω/Γ + ∂̄ ∗Lω/Γ]
)
.

It is easily shown that ∫
K ◦∑Γ =

∫
G,

so that by functoriality ofK0, one has

R0
K ◦R0

Γ = R0
G. (10.5)

The classical version of (10.5) follows from (10.2). Using the classical and quantum versions
of this equality, we see that the outer diagram in (10.1) is equal to

Preq(G�M,ω)

R0
G

��

QV // K0(C∗(G))

R0
G

��
Preq(MG,ωG)

QV // Z.

(10.6)

HereQV is the quantisation map of Definition 6.1, so that commutativity of diagram (10.6) is
precisely Theorem 6.5.

We will prove commutativity of diagram (10.6) by showing that the two inner diagrams in
(10.1) commute. Now the lower diagram commutes by the validity of the Guillemin–Sternberg
conjecture for compactK (Theorem 3.34), whereas the upper diagram decomposes as

Preq(G�M,ω)
[∂̄•+∂̄ ∗• ] //

R0
Γ

��

KG
0 (M)

µG
M //

VΓ
��

K0(C∗(G))

R0
Γ

��
Preq(K �M/Γ,ωM/Γ)

[∂̄•+∂̄ ∗• ]// KK
0 (M/Γ)

µK
M/Γ // K0(C∗(K)),

(10.7)
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whereVΓ is the map defined in Section 7.4, withN = Γ. The right hand inner diagram in (10.7)
commutes by the epimorphism case of naturality of the assembly map, Theorem 7.1. So it is
only left to prove that the left hand diagram in (10.7) commutes. Explicitly, commutativity of
this diagram means that

VΓ[∂̄Lω + ∂̄ ∗Lω ] = [∂̄Lω/Γ + ∂̄ ∗Lω/Γ]. (10.8)

We will deduce this equality from Corollary 8.11. Indeed, Proposition 10.1 states that if
∂̄Lω + ∂̄ ∗Lω is the Dolbeault–Dirac operator onM, coupled toLω , then the operator

(
∂̄Lω + ∂̄ ∗Lω

)Γ

from Corollary 8.11 is precisely the Dolbeault–Dirac operator on the quotientM/Γ coupled to
the line bundleLω/Γ. In Section 10.3 we prove this proposition, and hence (10.8).

10.2 The isomorphism

The main step in our proof of (10.8) is the following proposition. We hope that the use of the
letterΓ to denote a both discrete group and a space of sections will not cause any confusion.

Proposition 10.1. Consider the Dolbeault–Dirac operator̄∂Lω + ∂̄ ∗Lω on Ω0,∗(M;Lω), and the

induced operator
(
∂̄Lω + ∂̄ ∗Lω

)Γ
on

Γ∞ (
M/Γ,

(∧0,∗T∗M⊗Lω)
/Γ

)
,

as defined in(8.9). There is an isomorphism

Ξ : Ω0,∗(M/Γ;Lω/Γ)→ Γ∞ (
M/Γ,

(∧0,∗T∗M⊗Lω)
/Γ

)

that is isometric with respect to the L2-inner product and intertwines the Dolbeault–Dirac op-
erator ∂̄Lω/Γ + ∂̄ ∗Lω/Γ onΩ0,∗(M/Γ;Lω/Γ) and the operator

(
∂̄Lω + ∂̄ ∗Lω

)Γ
.

Consequently,Ξ induces a unitary isomorphism between the correspondingL2-spaces, which
by Lemma 4.31 intertwines the bounded operators obtained from ∂̄Lω/Γ + ∂̄ ∗Lω/Γ and

(
∂̄Lω +

∂̄ ∗Lω
)Γ

using a normalising function with compactly supported Fourier transform. Hence (10.8)
follows, as

VΓ
([

∂̄Lω + ∂̄ ∗Lω
])

=
[(

∂̄Lω + ∂̄ ∗Lω
)Γ

]
by Corollary 8.11

= [∂̄Lω/Γ + ∂̄ ∗Lω/Γ] by Proposition 10.1.

The isomorphism ofC∞(M/Γ)-modulesΞ in Proposition 10.1 is defined as follows. The
quotient mapp : M → M/Γ induces the vector bundle homomorphismT p : TM→ T(M/Γ).
SinceT p is invariant with respect to the action ofΓ on TM, it descends to a vector bundle
homomorphism

(T p)Γ : (TM)/Γ→ T(M/Γ).

Because the groupΓ is discrete, this map is an isomorphism. This is the most important reason
why we assumeΓ to be discrete. We denote the transpose of the isomorphism(T p)Γ by

(T∗p)Γ : T∗(M/Γ)→ (T∗M)/Γ.
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This gives ∧
(T∗p)Γ :

∧
T∗(M/Γ)→∧

(T∗M)/Γ, (10.9)

and sinceT p intertwines the almost complex structures onTM andT(M/Γ), we obtain

∧0,∗(T∗p)Γ :
∧0,∗T∗(M/Γ)→∧0,∗(T∗M)/Γ. (10.10)

On the spaces of smooth sections of the vector bundles in question, the isomorphisms (10.9)
and (10.10) induce isomorphisms ofC∞(M/Γ)-modules

Ψ : Ω∗(M/Γ)→ Γ∞(
M/Γ,(

∧
T∗M)/Γ

)
; (10.11)

Ψ0,∗ : Ω0,∗(M/Γ)→ Γ∞ (
M/Γ,

(∧0,∗T∗M
)
/Γ

)
. (10.12)

Now the isomorphismΞ is defined as

Ξ : Ω0,∗(M/Γ;Lω/Γ)∼=

Ω0,∗(M/Γ)⊗C∞(M/Γ) Γ∞(M/Γ,Lω/Γ)
Ψ0,∗⊗1Γ∞(M/Γ,Lω /Γ)−−−−−−−−−−−→

Γ∞ (
M/Γ,

(∧0,∗T∗M
)
/Γ

)
⊗C∞(M/Γ) Γ∞(M/Γ,Lω/Γ)

∼= Γ∞ (
M/Γ,

(∧0,∗T∗M⊗Lω)
/Γ

)
.

It is isometric by definition of the measuredO onM/Γ, defined in (8.1), and the metrics on the
vector bundles involved. An equivalent definition of the measuredO is

∫

M/Γ
f (O)dO :=

∫

U
f (m)dm,

for f ∈C(M/Γ), whereU ⊂M is any fundamental domain of theΓ-action. Here by a funda-
mental domain, we mean an open subsetU ⊂M such thatΓ ·U is dense inM, and that for all
γ ∈ Γ andm∈U ,

γ ·m∈U ⇒ γ = e.

It remains to prove thatΞ intertwines the operators̄∂Lω/Γ + ∂̄ ∗Lω/Γ and
(
∂̄Lω + ∂̄ ∗Lω

)Γ
.

10.3 Proof of Proposition 10.1

The connections

LetψLω : Γ∞(M,Lω)Γ→Γ∞(M/Γ,Lω/Γ) be the isomorphism ofC∞(M)Γ∼=C∞(M/Γ)-modules
from Proposition 8.6, withE = Lω andH = Γ. Also consider the pullbackp∗ of differential
forms onM/Γ to invariant differential forms onM. It defines an isomorphism ofC∞(M/Γ)∼= C∞(M)Γ-
modules

p∗ : Ω∗(M/Γ)→Ω∗(M)Γ.

The prequantum connection∇Γ on the prequantum line bundleLω/Γ→ M/Γ is defined by
the property thatp∗∇Γ = ∇ (see Section 3.6). Explicitly, this definition can be expressed by
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commutativity of the following diagram:

Ω∗(M;Lω)Γ ∇ //

∼=
��

Ω∗(M;Lω)Γ

∼=
��

Ω∗(M)Γ⊗C∞(M)Γ Γ∞(M,Lω)Γ Ω∗(M)Γ⊗C∞(M)Γ Γ∞(M,Lω)Γ

Ω∗(M/Γ)⊗C∞(M/Γ) Γ∞(M/Γ,Lω/Γ)

p∗⊗ψ−1
Lω ∼=

OO

Ω∗(M/Γ)⊗C∞(M/Γ) Γ∞(M/Γ,Lω/Γ)

p∗⊗ψ−1
Lω ∼=

OO

Ω∗(M/Γ;Lω/Γ)
∇Γ

//

∼=
OO

Ω∗(M/Γ;Lω/Γ).

∼=
OO

(10.13)

By definition of the almost complex structure onT(M/Γ), we have

p∗
(
Ω0,q(M/Γ)

)
= Ω0,q(M)Γ

for all q. Therefore, commutativity of diagram (10.13) implies thatthe following diagram
commutes:

Ω0,∗(M;Lω)Γ ∂̄Lω // Ω0,∗(M;Lω)Γ

Ω0,∗(M/Γ;Lω/Γ)
∂̄Lω /Γ //

p∗⊗ψ−1
Lω ∼=

OO

Ω0,∗(M/Γ;Lω/Γ),

p∗⊗ψ−1
Lω ∼=

OO
(10.14)

with ∂̄Lω and∂̄Lω/Γ as in Definition 3.19.

The Dirac operators

By definition of the measuredO on M/Γ, the metricgΓ on T(M/Γ) induced by the metric
g = ω(−,J−) onTM, and the metric(−,−)Lω/Γ onLω/Γ, induced by the metric(−,−)Lω on
Lω , the isomorphism

p∗⊗ψ−1
Lω : Ω0,∗(M/Γ;Lω/Γ)→Ω0,∗(M;Lω)Γ

is isometric with respect to the inner product onΩ0,∗(M/Γ;Lω/Γ) defined by

(α⊗σ ,β ⊗ τ) =
∫

M/Γ
gΓ(α,β )(σ ,τ)Lω/Γ dO , (10.15)

for all α,β ∈ Ω0,∗(M/Γ) andσ ,τ ∈ Γ∞(M/Γ,Lω/Γ), and the inner product onΩ0,∗(M;Lω)Γ

defined by

(ζ ⊗s,ξ ⊗ t) =
∫

U
g(ζ ,ξ )(m)(s, t)Lω(m)dm, (10.16)

for all ζ ,ξ ∈Ω0,∗(M)Γ ands, t ∈ Γ∞(M,Lω)Γ. (Recall thatU ⊂M is a fundamental domain for
theΓ-action.)
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In the definition of the Dolbeault–Dirac operator̄∂Lω/Γ +
(
∂̄Lω/Γ

)∗ on M/Γ, the formal

adjoint
(
∂̄Lω/Γ

)∗
is defined with respect to the inner product (10.15). If we denote the metric

(−,−)Lω on Lω by HLω
for the moment, then the formal adjoint∂̄ ∗Lω is defined by

∫

M
(g⊗HLω

)
(
∂̄ ∗Lω η,θ

)
(m)dm=

∫

M
(g⊗HLω

)
(
η, ∂̄Lω θ

)
(m)dm,

for all η,θ ∈Ω0,∗(M;Lω), θ with compact support. But this is actually the same as the formal
adjoint of ∂̄Lω with respect to the inner product (10.16):

Lemma 10.2.Let Γ be a discrete group, acting properly and freely on a manifoldM, equipped
with a Γ-invariant measure dm. Suppose M/Γ is compact. Let E→ M be aΓ-vector bundle,
equipped with aΓ-invariant metric(−,−)E. Let

D : Γ∞(M,E)→ Γ∞(M,E)

be aΓ-equivariant differential operator. Let

D∗ : Γ∞(M,E)→ Γ∞(M,E)

be the operator such that for all s, t ∈ Γ∞(M,E), t with compact support,
∫

M
(D∗s, t)E(m)dm=

∫

M
(s,Dt)E(m)dm.

Let U ⊂ M be a fundamental domain for theΓ-action. Then the restriction of D∗ to
Γ∞(M,E)Γ satisfies ∫

U
(D∗s, t)E(m)dm=

∫

U
(s,Dt)E(m)dm, (10.17)

for all s, t ∈ Γ∞(M,E)Γ.

Proof. We will show that for alls∈ Γ∞(M,E)Γ, and allt in a dense subspace ofΓ∞(M,E)Γ, the
equality (10.17) holds. Letτ be a section ofE, with compact support inU . Define the sectiont
of E by extending the restrictionτ|U Γ-invariantly toM. The space of all sectionst obtained in
this way is dense inΓ∞(M,E)Γ with respect to the topology induced by the inner product

(s, t) :=
∫

U
(s, t)E(m)dm

used in (10.17).
Then for alls∈ Γ∞(M,E)Γ,

∫

U
(D∗s, t)E(m)dm=

∫

M
(D∗s,τ)E(m)dm

=
∫

M
(s,Dτ)E(m)dm

=
∫

U
(s,Dt)E(m)dm.
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We conclude thatp∗⊗ψ−1
Lω is an isometric isomorphism with respect to the inner products

used to define the adjoints̄∂ ∗Lω and
(
∂̄Lω/Γ

)∗
. Hence the commutativity of diagram (10.14)

implies:

Corollary 10.3. The following diagram commutes:

Ω0,∗(M;Lω)Γ
∂̄Lω +∂̄ ∗Lω // Ω0,∗(M;Lω)Γ

Ω0,∗(M/Γ;Lω/Γ) //

∂̄Lω /Γ+∂̄ ∗Lω /Γ

p∗⊗ψ−1
Lω ∼=

OO

Ω0,∗(M/Γ;Lω/Γ).

p∗⊗ψ−1
Lω ∼=

OO

Remark 10.4. Corollary 10.3 shows that for free actions by discrete groups, a much stronger
statement than the Guillemin–Sternberg–Landsman conjecture holds. Indeed, by Remark 8.12
the Guillemin–Sternberg conjecture states that the restriction of the operator̄∂Lω + ∂̄ ∗Lω toΩ0,∗(M;Lω)Γ

is related to the operator̄∂Lω/Γ + ∂̄ ∗Lω/Γ by the fact that their indices are equal (as operators on

smooth, not necessarilyLω 2, sections). But these operators are in fact more strongly related:
they are intertwined by an isometric isomorphism.

End of the proof of Proposition 10.1

The last step in the proof of Proposition 10.1 is a decomposition of the isomorphism

p∗ : Ω∗(M/Γ)→Ω∗(M)Γ.

Lemma 10.5.The following diagram commutes:

Ω∗(M/Γ)
p∗

∼=
//

Ψ ∼=
��

Ω∗(M)Γ

ψ∧T∗M

∼=
vvlllllllllllll

Γ∞(
M/Γ,(

∧
T∗M)/Γ

)
,

whereΨ is the isomorphism(10.11), andψ∧T∗M is the isomorphism from Proposition 8.6.

The proof of this lemma is a short and straightforward computation.

Proof of Proposition 10.1.Together with Lemma 10.5 and the definition of the operator
(
∂̄Lω + ∂̄ ∗Lω

)Γ
: Γ∞ (

M/Γ,
(∧0,∗T∗M⊗Lω)

/Γ
)
→ Γ∞ (

M/Γ,
(∧0,∗T∗M⊗Lω)

/Γ
)
,

Corollary 10.3 implies that the following diagram commutes:

Ω0,∗(M;Lω)Γ

∼=ψ∧0,∗T∗M⊗ψLω
��

∂̄Lω +∂̄ ∗Lω // Ω0,∗(M;Lω)Γ

∼= ψ∧0,∗T∗M⊗ψLω
��

Γ∞ (
M/Γ,

(∧0,∗T∗M⊗Lω)
/Γ

)
//

(
∂̄Lω +∂̄ ∗Lω

)Γ

Γ∞ (
M/Γ,

(∧0,∗T∗M⊗Lω)
/Γ

)

Ω0,∗(M/Γ;Lω/Γ)

∼=Ξ=Ψ0,∗⊗1

OO

∂̄Lω /Γ+∂̄ ∗Lω /Γ // Ω0,∗(M/Γ;Lω/Γ).

∼=Ξ=Ψ0,∗⊗1

OO



10.3 PROOF OFPROPOSITION10.1 141

Indeed, the outside diagram commutes by Corollary 10.3 and Lemma 10.5, and the upper square
commutes by definition of

(
∂̄Lω + ∂̄ ∗Lω

)Γ
. Hence the lower square commutes as well, which is

Proposition 10.1. �



Chapter 11

Special case: abelian discrete groups

We now consider the situation of Theorem 6.5, with the additional assumption thatG = Γ
is an abelian discrete group. Then the Guillemin–Sternbergconjecture can be proved directly,
without using naturality of the assembly map (Theorem 7.1).This proof is based on Proposition
10.1, and the description of the assembly map in this specialcase given by Baum, Connes and
Higson [8], Example 3.11 (which in turn is based on Lusztig [55]). We will first explain this
example in a little more detail than given in [8], and then show how it implies Theorem 6.5 for
abelian discrete groups.

This chapter only serves to illustrate Theorem 6.5, and the rest of this thesis does not depend
on it. We have therefore chosen to give less detailed arguments in this chapter than in the other
ones.

11.1 The assembly map for abelian discrete groups

The proof of the Guillemin–Sternberg conjecture for discrete abelian groups is based on the
following result:

Proposition 11.1.Let M, E, D and DΓ be as in Section 8.4. Suppose that G= Γ is abelian and
discrete. Using the normalising function b(x) = x√

1+x2 , we form the operator F:= b(D), so that
we have the class

[L2(M,E),F,πM] ∈ KΓ
0 (M).

Then1

R0
Γ ◦µΓ

M

[
L2(M,E),F

]
= indexDΓ.

In view of Proposition 10.1, Proposition 11.1 implies our Guillemin–Sternberg conjecture
(i.e. Theorem 6.5) for discrete abelian groups.

Kernels of operators as vector bundles

Using Example 3.11 from [8], we can explicitly compute

[E ,FE ] := µΓ
M

[
L2(M,E),F

]
∈ KK0(C,C∗(Γ)). (11.1)

1Recall that we use indexDΓ to denote the formal difference of the even and odd parts of the kernel ofDΓ.

142
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Note that since the groupΓ is discrete, its unitary dual̂Γ is compact. And becauseΓ is abelian,
all irreducible unitary representations are of the form

Uα : Γ→ U(1),

for α ∈ Γ̂. Fourier transform defines an isomorphismC∗(Γ)∼= C0(Γ̂). Therefore,

KK0(C,C∗(Γ))∼= K0(C
∗(Γ))∼= K0(C0(Γ̂))∼= K0(Γ̂).

BecausêΓ is compact, the image of[E ,FE ] in K0(Γ̂) is the difference of the isomorphism
classes of two vector bundles overΓ̂. These two vector bundles can be determined as follows.
For all α ∈ Γ̂, we define the Hilbert spaceHα as the space of all measurable sectionssα of E
(modulo equality almost everywhere), such that for allγ ∈ Γ,

γ ·sα = Uα(γ)−1sα ,

and such that the norm
‖sα‖2α = (sα ,sα)α (11.2)

is finite, where the inner product(−,−)α is defined by

(sα , tα)α :=
∫

M/Γ

(
sα(ϕ(O)), tα(ϕ(O))

)
EdO ,

whereϕ is any measurable section of the principal fibre bundleM→M/Γ. The spaceHα is
isomorphic to the space ofL2-sections of the vector bundleEα , where

Eα := E/(γ ·e∼U−1
α (γ)e)→M/Γ.

Let H D
α be the dense subspace

H
D

α := {sα ∈Hα ∩Γ∞(M,E);Dsα ∈Hα} ⊂Hα . (11.3)

Because the operatorD is Γ-equivariant, it restricts to an unbounded operator

Dα : H
D

α →Hα

onHα . It is essentially self-adjoint by [34], Corollary 10.2.6., and hence induces the bounded
operator

Fα :=
Dα√

1+D2
α
∈B(Hα). (11.4)

The grading onE induces a grading onHα with respect to whichDα andFα are odd. The
operatorsFα are elliptic pseudo-differential operators:

Lemma 11.2. Let D be an elliptic, first order differential operator on a vector bundle E→M,
and suppose D defines an essentially self-adjoint operator on L2(M,E) with respect to some
measure on M and some metric on E. Then the operator F:= D√

1+D2 is an elliptic pseudo-
differential operator.
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Proof. It is sufficient to show that(1+D2)−
1
2 is a pseudo- differential operator. According to

[9], a bounded operatorA : L2(Rn)→ L2(Rn) is a pseudo-differential operator onRn if and only
if all iterated commutators withx j (as a multiplication operator) and∂∂x j

are bounded operators.
This immediately yields the lemma forM = Rn (cf. [9], Theorem 4.2). To extend this result
to the manifold case, we recall that an operatorA : C∞(M)→ D ′(M) on a manifoldM is a
pseudo-differential operator when for each choice of smooth functions f , g with support in a
single coordinate neighbourhood,f Ag is a pseudo-differential operator onRn. (Here one has to
admit nonconnected coordinate neighbourhoods.)

Now write (1+D2)−
1
2 as a Dunford integral (cf. [21], pp. 556–577), as follows:

(1+D2)−
1
2 =

1
2π i

∮

C
(1+z)−

1
2(z−D2)−1dz.

HereC is any contour around the spectrum ofD. To compute the commutators off (1+D2)−
1
2g

with x j and ∂
∂x j

, one may take these inside the contour integral. Boundedness of all iterated
commutators then easily follows, using the fact thatf andg have compact support.

The same argument, with the exponent−1
2 replaced by12, shows that(1+D2)

1
2 is a pseudo-

differential operator, and ellipticity of(1+D2)−
1
2 follows.

We were informed of the above proof by Elmar Schrohe. An independent proof of this
lemma was suggested to us by John Roe, who mentioned that in the case at hand the functional
calculus for (pseudo-)differential operators developed in [78] for compact manifolds may be ex-
tended to the noncompact case. A third proof may be constructed using heat kernel techniques,
as in the unpublished Diplomarbeit of Hanno Sahlmann (Rainer Verch, private communication).

Consider the field of Hilbert spaces

(Hα)α∈Γ̂→ Γ̂. (11.5)

In the next section, we will give this field the structure of acontinuousfield of Hilbert spaces
by specifying its space of continuous sectionsΓ

(
Γ̂,(Hα)α∈Γ̂

)
. Consider the subfields

(
kerD+

α
)

α∈Γ̂→ Γ̂;
(
kerD−α

)
α∈Γ̂→ Γ̂.

(11.6)

These are indeed well-defined subfields of(Hα)α∈Γ̂ because kerD±α = kerF±α by the elliptic
regularity theorem (here we use Lemma 11.2), and by the fact that the operator 1√

1+D−α D+
α

is

invertible.
Suppose that the fields (11.6) are vector bundles overΓ̂ in the topology on (11.5) that

we will define in Section 11.2. As in the proof thatKK0(C,C(Γ̂)) ∼= K0(C(Γ̂)) (see the re-
mark below Theorem 5.12), the operatorD can always be replaced by an operator for which
Γ
((

kerD±α
)

α∈Γ̂
)

are finitely generated projectiveC(Γ̂)-modules, that is, for which
(
kerD±α

)
α∈Γ̂

are vector bundles, and that theK-theory class

µΓ
M

[
L2(M,E),F

]
∈ KK(C,C(Γ̂))

is the same, whether we make this replacement or not.
Then:
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Proposition 11.3.The image of the class
[
L2(M,E),F

]
∈ KΓ

0 (M) under the assembly mapµΓ
M

is
µΓ

M

[
L2(M,E),F

]
=

[(
kerD+

α
)

α∈Γ̂

]
−

[(
kerD−α

)
α∈Γ̂

]
∈ K0(Γ̂).

Proposition 11.3 will be proved in the next two sections.

11.2 The Hilbert C∗-module part of the assembly map

In this section we determine the HilbertC∗(Γ) ∼= C0(Γ̂)-moduleE in (11.1). The result is
Proposition 11.7.

A unitary isomorphism

Let dα be the measure on̂Γ corresponding to the counting measure onΓ via the Fourier trans-
form. Consider the Hilbert space

H :=
∫ ⊕

Γ̂
Hαdα.

That is,H consists of the measurable maps

s : Γ̂→ (Hα)α∈Γ̂;

α 7→ sα ,

such thatsα ∈Hα for all α, and

‖s‖2H = (s,s)H :=
∫

Γ̂
‖sα‖2αdα < ∞.

Define the linear mapV : H → L2(M,E) by

(Vs)(m) :=
∫

Γ̂
sα(m)dα.

Lemma 11.4.The map V is a unitary isomorphism, with inverse

(
V−1σ

)
α(m) = ∑

γ∈Γ
γ ·σ(γ−1m)Uα(γ), (11.7)

for all σ ∈ Γc(M,E)⊂ L2(M,E).

Remark 11.5. It follows from unitarity ofV thatVs is indeed anL2-section ofE for all s∈ H.
Conversely, a direct computation shows that for allσ ∈ L2(M,E), α ∈ Γ̂ andγ ∈ Γ, one has

γ ·
(
V−1σ

)
α = Uα(γ)−1(V−1σ

)
α ,

so thatV−1σ lies inH .
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Sketch of proof of Lemma 11.4.The proof is based on the observations that for allα ∈ Γ̂,

∑
γ∈Γ

Uα(γ) = δ1(α), (11.8)

whereδ1 ∈D ′(Γ̂) is theδ -distribution at the trivial representation 1∈ Γ̂, and that for allγ ∈ Γ,
∫

Γ̂
Uα(γ)dα = δγe, (11.9)

the Kronecker delta ofγ and the identity element. Using these facts, one can easily verify that
V is an isometry, and that (11.7) is indeed the inverse ofV.

�

The representationπH of Γ in H corresponding to the standard representation (3.4) ofΓ
in L2(M,E) via the isomorphismV is given by

(πH (γ)s)α = Uα(γ)−1sα .

This follows directly from the definitions of the spaceHα and the mapV.

Fourier transform

By definition of the assembly map, the HilbertC∗(Γ)-moduleE is the closure of the space
Γc(M,E) in the norm

‖σ‖2E := ‖γ 7→ (σ ,γ ·σ)L2(M,E)‖C∗(Γ).

TheC∗(Γ)-module structure ofE is defined by

f ·σ = ∑
γ∈Γ

f (γ)γ ·σ ,

for all f ∈Cc(Γ) andσ ∈ Γc(M,E). The isomorphismV induces an isomorphism of the Hilbert
C∗(Γ)-moduleE with the closureEH of V−1(Γc(M,E))⊂H in the norm

‖s‖2EH
:= ‖γ 7→ (Vs,γ ·Vs)L2(M,E)‖C∗(Γ) = ‖γ 7→ (s,πH (γ)s)H ‖C∗(Γ),

by unitarity ofV. TheC∗(Γ)-module structure onEH corresponding to the one onE via V is
given by

f ·s= ∑
γ∈Γ

f (γ)πH (γ)s, (11.10)

for all f ∈ Γc(Γ) ands∈V−1(Γc(M,E)).
Next, we use the isomorphismC0(Γ̂) ∼= C∗(Γ) defined by the Fourier transformψ 7→ ψ̂,

where
ψ̂(γ) =

∫

Γ̂
ψ(α)Uα(γ)dα

for all ψ ∈ Γc(Γ̂). Because of (11.8) and (11.9), the inverse Fourier transform is given byf 7→ f̂ ,
where for f ∈Cc(Γ), one has

f̂ (α) = ∑
γ∈Γ

f (γ)Uα(γ)−1.
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So via the Fourier transform, the HilbertC∗(Γ)-moduleEH corresponds to the Hilbert
C0(Γ̂)-moduleÊH , which is the closure of the spaceV−1(Γc(M,E)) in the norm

‖s‖2
ÊH

=
∥∥∥α 7→ ∑

γ∈Γ
(s,πH (γ)s)H Uα(γ)−1

∥∥∥
C0(Γ̂)

= sup
α∈Γ̂

∣∣∣∑
γ∈Γ

(s,πH (γ)s)H Uα(γ)−1
∣∣∣. (11.11)

Continuous sections

Using the following lemma, we will describe the HilbertC0(Γ̂)-moduleÊH as the space of
continuous sections of a continuous field of Hilbert spaces.

Lemma 11.6.For all s, t ∈V−1(Γc(M,E)),

∑
γ∈Γ

(s,πH (γ)t)H Uα(γ)−1 = (sα , tα)α .

Proof. Let ϕ be a measurable section of the principal fibre bundleM→M/Γ. Then by (11.8),

∑
γ∈Γ

(s,πH (γ)t)H Uα(γ)−1 =

∑
γ∈Γ

(∫

Γ̂

∫

M/Γ

(
sβ (ϕ(O)),Uβ(γ)−1tβ (ϕ(O))

)
E dO dβ

)
Uα(γ)−1 =

∫

M/Γ

(
sα(ϕ(O)), tα(ϕ(O))

)
E dO = (sα , tα)α .

We conclude from (11.11) and Lemma 11.6 thatÊH is the closure ofV−1(Γc(M,E)) in the
norm

‖s‖2
ÊH

= sup
α∈Γ̂
‖sα‖2α .

Therefore, it makes sense todefinethe spaceΓ
(
Γ̂,(Hα)α∈Γ̂

)
of continuous sections of the field

of Hilbert spaces(Hα)α∈Γ̂ as theC0(Γ̂)-module ÊH (cf. [19, 77]). Then our construction
implies

Proposition 11.7. The Hilbert C∗(Γ)-moduleE is isomorphic to the Hilbert C0(Γ̂)-module
Γ
(
Γ̂,(Hα)α∈Γ̂

)
.

Let us verify explicitly that the representations ofC0(Γ̂) in ÊH and in Γ
(
Γ̂,(Hα)α∈Γ̂

)

are indeed intertwined by the isomorphism induced byV and the Fourier transform: for all
f ∈Cc(Γ) and alls∈V−1(Γc(M,E)), we have

( f ·s)α = ∑
γ∈Γ

f (γ)(πH (γ)s)α by (11.10)

= ∑
γ∈Γ

f (γ)Uα(γ)−1sα

= f̂ (α)sα .
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11.3 The operator part of the assembly map

Proposition 11.8. Consider the adjointable operator F
ÊH

=
(
Fα

)
α∈Γ̂ on the Hilbert C0(Γ̂)-

moduleÊH = Γ
(
Γ̂,(Hα)α∈Γ̂

)
, given by

(
F

ÊH
s
)

α := Fαsα ,

for all α ∈ Γ̂ and s∈ Γ
(
Γ̂,(Hα)α∈Γ̂

)
. Here Fα is the operator(11.4). Then for all s∈

V−1(Γc(M,E)), we have
FVs= VF

ÊH
s.

Proof. The claim is that for all suchs, and allm∈M,

FVs(m) =
∫

Γ̂
Fαsα(m)dα.

Let H D ⊂H be the space ofs∈H such thatVs∈ Γ∞
c (M,E), andsα ∈H D

α for all α ∈ Γ̂
(see (11.3)).

Note that we haveDVs(m) =
∫

Γ̂ Dsα(m)dα for all s∈H D andm∈M. Because of Lemma
4.31 this proves the proposition, sinceH D is dense inH .

Proof of Proposition 11.3.SinceΓc(M,E) is dense inE andV−1(Γc(M,E)) is dense in
ÊH , Propositions 11.7 and 11.8 imply that

µΓ
M

[
L2(M,E),F

]
= [E ,FE ]

= [ÊH ,F
ÊH

]

=
[
Γ
(
Γ̂,(Hα)α∈Γ̂

)
,(Fα)α∈Γ̂

]
∈ KK0(C,C0(Γ̂)).

The image of this class inK0(C0(Γ̂)) is the formal difference of projectiveC0(Γ̂)-modules
[
ker

(
(F+

α )α∈Γ̂
)]
−

[
ker

(
(F−α )α∈Γ̂

)]
. (11.12)

By compactness ofM/Γ and the elliptic regularity theorem, the kernels ofF+
α andF−α are equal

to the kernels ofD+
α andD−α , respectively. By the remark above Proposition 11.3, we may

suppose that the kernels ofD+
α andD−α define vector bundles over̂Γ. Then by Lemma 11.9

below, the class (11.12) equals
[
Γ
(
Γ̂,

(
kerD+

α
)

α∈Γ̂
)]
−

[
Γ
(
Γ̂,

(
kerD−α

)
α∈Γ̂

)]
.

Under the isomorphismK0(C0(Γ̂))∼= K0(Γ̂), the latter class corresponds to
[(

kerD+
α
)

α∈Γ̂
]
−

[(
kerD−α

)
α∈Γ̂

]
∈ K0(Γ̂).

�

Lemma 11.9. Let H be a continuous field of Hilbert spaces over a topological space X, and
let ∆ be its space of continuous sections. LetH ′ be a subset ofH such that for all x∈ X,
H ′

x := Hx∩H ′ is a linear subspace ofHx. Set

∆′ := {s∈ ∆;s(x) ∈H
′

x for all x ∈ X}.
Let s: X→H ′ be a section. Then s is continuous in the subspace topology ofH ′ in H if

and only if s∈ ∆′.
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Proof. Let s : X →H be a section. Thens is a continuous section ofH ′ in the subspace
topology if and only ifs is a continuous section ofH ands(x) ∈H ′

x for all x. The topology on
H is defined in such a way thats is continuous if and only ifs∈ ∆ [19, 77].

11.4 Reduction

We will now describe the reduction mapR0
Γ : K0(C∗(Γ))→ Z, and prove Proposition 11.1.

Lemma 11.10.Let Γ be an abelian discrete group, and let i: {1} →֒ Γ̂ be the inclusion of the
trivial representation. The following diagram commutes:

K0(C∗(Γ))
R0

Γ //

∼=
��

K0(C)

∼=
��

K0(Γ̂)
i∗ // K0({1}).

That is,
R0

Γ ([E]) = dimE1 = rank(E) ∈ Z,

for all vector bundles E→ Γ̂.

The proof is a straightforward verification.

End of proof of Proposition 11.1.From Lemma 11.10 and Proposition 11.3, we conclude
that

R0
Γ ◦µΓ

M

[
L2(M,E),F

]
= [kerD+

1 ]− [kerD−1 ] = indexD1 ∈ Z.

The Hilbert spaceH1 is isomorphic toL2(M/Γ,E/Γ), and this isomorphism intertwinesD1

andDΓ. Hence Proposition 11.1 follows. �

11.5 Example: the action ofZ2n on R2n

For some natural numbern, let M be the manifoldM = T∗Rn ∼= R2n ∼= Cn. An element ofM
is denoted by(q, p) := (q1, p1, . . . ,qn, pn), whereq j , p j ∈ R, or by q+ ip = z := (z1, . . . ,zn),
wherezj = q j + ip j ∈ C. We equipM with the standard symplectic formω := ∑n

j=1dpj ∧dqj ,
as in (2.2).

Let Γ be the groupΓ = Z2n ∼= Zn + iZn. The action ofΓ on M by addition is denoted by
α. Our aim is to find a prequantisation for this action and the corresponding Dirac operator for
generaln, and the quantisation of this action forn = 1.

Prequantisation

Let L := M×C→M be the trivial line bundle. Inspired by the construction of line bundles on
tori with a given Chern class (see e.g. [25], pp. 307–317), welift the action ofΓ on M to an
action ofΓ onL (still calledα), by setting

ej · (z,w) = (z+ej ,w);

ie j · (z,w) = (z+ ie j ,e
−2π iz j w).
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Herez∈M, w∈C, and
ej := (0, . . . ,0,1,0, . . . ,0) ∈ Zn,

the 1 being in thejth place. The corresponding representation ofΓ in the space of smooth
sections ofL is denoted byρ :

(ρk+il s)(z) = αk+il s(z−k− il ),

for k, l ∈ Zn andz∈M. Define the metric(−,−)L onL by
(
(z,w),(z,w′)

)
L = h(z)ww̄′,

wherez∈M, w,w′ ∈ C, andh∈C∞(M) is defined by

h(q+ ip) := e2π ∑ j(p j−p2
j ).

Let ∇ be the connection onL defined by

∇ := d+2π i
n

∑
j=1

p j dzj +π dpj .

Proposition 11.11.The triple(L,(−,−)L,∇) defines an equivariant prequantisation for(M,ω).

The proof of this proposition is a set of tedious computations. Because of the term 2π i ∑n
j=1 p j dqj

in the expression for the connection∇, it has the right curvature form. The terms−2π ∑n
j=1 p j dpj

andπ dpj do not change the curvature, and have been added to make∇ equivariant. At the same
time, the latter two terms ensure that there is aΓ-invariant metric (namely(−,−)L) with respect
to which∇ is Hermitian.

As we mentioned in Section 6.1, there is a procedure in [32] tolift the action ofZ2n on
R2n to a projective action onL that leaves the connection (for example)∇′ := d+2π i ∑ j p j dqj

invariant. This projective action turns out to be an actual action in this case, and preserves the
standard metric onL. We thus obtain prequantisation of this action that looks much simpler than
the one given in this chapter. However, we found our formulasto be more suitable to compute
the kernel of the associated Dirac operator.

The Dirac operator

In this section, we compute the Dolbeault–Dirac operator∂̄L + ∂̄ ∗L on M, coupled toL. We will
simplify our notation by denoting this operator by/D in the rest of this chapter. To compute the
quantisation of the action we are considering, we need to compute the kernels of

/D+ := /D|Ω0,even(M);

/D− := /D|Ω0,odd(M).

This is not easy to do in general. But forn = 1, these kernels are computed in Section 11.6.
In our expression for the Dirac operator, we will use multi-indices

l = (l1, . . . , lq)⊂ {1, . . . ,n},
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whereq ∈ {0, . . . ,n} and l1 < · · · < lq. We will write dz̄l := dz̄l1 ∧ . . .∧ dz̄lq. If l = /0, we
set dz̄l := 1M, the constant function 1 onM. Note that{dz̄l}l⊂{1,...,n} is a C∞(M)-basis of
Ω0,∗(M;L).

Givenl ⊂ {1, . . . ,n} and j ∈ {1, . . . ,n}, we define

ε jl := (−1)#{r∈{1,...,q};lr< j},

plus one if an even number oflr is smaller thanj, and minus one if the number of suchlr is odd.
From the definition of the Dolbeault–Dirac operator one thendeduces:

Proposition 11.12.For all l ⊂ {1, . . . ,n} and all f ∈C∞(M), we have

/D
(

f dz̄l) = ∑
j∈l

ε jl

(
−2

∂ f
∂zj

+(iπ−4π ip j) f

)
dz̄l\{ j}

+ ∑
1≤ j≤n,

j 6∈l

ε jl

(
∂ f
∂ z̄j

+
iπ
2

f

)
dz̄l∪{ j}.

(11.13)

11.6 The casen = 1

We now consider the case wheren = 1. That is,M = C andΓ = Z+ iZ. We can then explicitly
compute the quantisation of the action ofΓ onM. This will allow us to illustrate the Guillemin–
Sternberg–Landsman conjecture by computing the four corners in diagram (3.16).

If n = 1, Proposition 11.12 reduces to

Corollary 11.13. The Dirac operator onC, coupled to L, is given by

/D( f1+ f2dz̄) =

(
∂ f1
∂ z̄

+
iπ
2

f1

)
dz̄−2

∂ f2
∂z

+(iπ−4π i p) f2.

That is to say, with respect to the C∞(M)-basis{1M,dz̄} of Ω0,∗(M;L), the Dirac operator/D
has the matrix form

/D =

(
0 /D−

/D+ 0

)
,

where

/D+ =
∂
∂ z̄

+
iπ
2

;

/D− =−2
∂
∂z

+ iπ−4π i p.

In this case, the kernels of/D+ and/D− can be determined explicitly:

Proposition 11.14.The kernel of/D+ consists of the sections s of L given by

s(z) = e−iπ z̄/2ϕ(z),
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whereϕ is a holomorphic function.
The kernel of/D− is isomorphic to the space of smooth sections t of L given by

t(z) = eiπz/2+π|z|2−πz2/2 ψ(z),

whereψ is a holomorphic function.

The unitary dual of the groupZ+ iZ = Z2 is the torusT2. Therefore, by Proposition 11.3,
the quantisation of the action ofZ+ iZ on C is the class inKK(C,C∗(Z2)) that corresponds to
the class [(

ker/D+
(α,β )

)
(α,β )∈T2

]
−

[(
ker/D−(α,β )

)
(α,β )∈T2

]

in K0(T2). It will turn out that the kernels of/D+
(α,β )

and/D−
(α,β )

indeed define vector bundles

overT2. Let us compute these kernels.

Proposition 11.15.Let λ ,µ ∈ R. Define the section sλ µ ∈ Γ∞(M,L) by

sλ µ(z) = eiλze−π p ∑
k∈Z

e−πk2
e−k(λ+iµ+2π)e2π ikz.

Setα := eiλ andβ := eiµ . Thenker/D+
(α,β ) = Csλ µ .

Remark 11.16.For all λ ,µ ∈R, we have

sλ+2π,µ = eλ+iµ+3πsλ µ ;

sλ ,µ+2π = sλ µ .

Hence the vector spaceCsλ µ ⊂ Γ∞(M,L) is invariant underλ 7→ λ +2π andµ 7→ µ +2π . This
is in agreement with the fact thatCsλ µ is the kernel of/D+

(eiλ ,eiµ )
.

Sketch of proof of Proposition 11.15.Let λ ,µ ∈R, ands∈ Γ∞(M,L) = C∞(C,C). Suppose
s is in the kernel of/D+

(eiλ ,eiµ )
. Let ϕ be the holomorphic function from Proposition 11.14, and

write
ϕ̃(z) := e−iλze−iπz/2ϕ(z) = ∑

k∈Z

ake2π ikz

(note that for allz∈C, one has̃ϕ(z+1) = ϕ̃(z)). Then it follows from invariance ofsunder the
action of the subgroupiZ of Γ thatak = e−πk2

e−k(λ+iµ+2π)a0, which gives the desired result.�

Proposition 11.17.The kernel of/D−
(α,β )

is trivial for all (α,β ) ∈ T2.

Sketch of proof.Let λ ,µ ∈R and lett dz̄∈Ω0,1(M;L) = Γ∞(M,L)dz̄. Suppose thatt dz̄∈ ker/
D−

(eiλ ,eiµ )
. Let ψ be the holomorphic function from Proposition 11.14, and write

ψ̃(z) := eπ(z̄2+iz̄)/2−iλ z̄ψ(z) = ∑
k∈Z

ck e2π ikz̄

(note that for allz∈C, one hasψ̃(z+1) = ψ̃(z)). Then it follows from invariance oft dz̄under
the action of the subgroupiZ of Γ thatck = eπk2

ek(λ−iµ−2π)c0, which implies thatc0 = 0. �

We conclude:
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Proposition 11.18.The quantisation of the action ofZ2 onC is the class in K0(T2) defined by
the vector bundle2 (

Csλ µ
)
(eiλ ,eiµ )∈T2→ T2.

By Lemma 11.10, we now find that the reduction of the quantisation of the action ofZ2 on
R2 is the one-dimensional vector spaceC ·s0,0⊂ Γ∞(M,L), where

s0,0(z) = e−π p ∑
k∈Z

e−πk2
e−2πke2π ikz.

As we saw in Section 11.1, it follows from Proposition 10.1 that this is precisely the index of
the Dolbeault–Dirac operator̄∂L/Z2 + ∂̄ ∗L/Z2 on the torusT2, coupled to the line bundleL/Z2 via

the connection induced by∇. Schematically, we therefore have

Z2�R2 � Q //
_

R0
Z2

��

(
Csλ µ

)
(eiλ ,eiµ )∈T2
_

R0
Z2

��

T2 � Q // C ·s0,0.

(11.14)

Note that it is a coincidence that the two-torus appears twice in this diagram: in this example
M/Γ = T2 = Γ̂.

Remark 11.19.The fact that the geometric quantisation of the torusT2 is one-dimensional can
alternatively be deduced from the Atiyah–Singer index theorem for Dirac operators. Indeed,
let ∂̄L/Z2 + ∂̄ ∗L/Z2 be the Dirac operator on the torus, coupled to the quotient line bundleL/Z2.
Then by Atiyah–Singer, in the form stated for example in [27]on page 117, one has

Q(T2) = index
(
∂̄L/Z2 + ∂̄ ∗L/Z2

)
=

∫

T2
ech1(L/Z2)

=

∫

T2
dp∧dq

= 1,

the symplectic volume of the torus, i.e. the volume determined by the Liouville measure.

2By Remark 11.16, this is indeed a well-defined vector bundle.



Part IV

Discrete series representations of
semisimple groups

154



155

In Part IV, we consider a cocompact Hamiltonian action of a semisimple Lie groupG on a
symplectic manifold(M,ω), and prove Theorem 6.13. The strategy of this proof is to deduce
Theorem 6.13 from the (known) case of the action of a maximal compact subgroupK < G on
the compact submanifoldN := Φ−1(k∗) of M, with Φ : M→ g∗ the momentum map.

We will see in Chapter 12 that there are inverse constructions

H-CrossGK : G�M  K � N := Φ−1(k∗);

H-IndG
K : K � N  G�M := G×K N.

These are called Hamiltonian cross-section and Hamiltonian induction, respectively. In Chapter
13, we define induction procedures for prequantisations, almost complex structures and Spinc-
structures, compatible with this Hamiltonian induction procedure.

The central result in Part IV is Theorem 14.5, which states that ‘quantisation commutes with
induction’. Roughly speaking, this is expressed by the diagram

(M = G×K N,ω) � QG // QG(M,ω) ∈ K0(C∗r (G))

(N,ν)
_

H-IndG
K

OO

� QK // QK(N,ν) ∈R(K).

D-IndG
K

OO

HereR(K) is the representation ring ofK, K0(C∗r (G)) is theK-theory of the reducedC∗-algebra
of G, and D-IndGK is the Dirac induction map (6.10). In Chapter 14, we tie the other chapters
in Part IV together, by showing how Theorem 14.5 implies Theorem 6.13, and by sketching a
proof of Theorem 14.5. The details of this proof are filled in in Chapter 15.

Our proof Theorem 14.5 is based on naturality of the assemblymap for the inclusion ofK
into G (Theorem 9.1). In Chapter 15, we show that this naturality result is well-behaved with
respect to theK-homology classes of the Dirac operators we use, thus proving Theorem 14.5.

Unless stated otherwise, we will use the notation and assumptions of Chapter 6. A large
part of Part IV is about the relation between structures on the manifoldsM andN. To avoid
confusion, we use a superscriptM or N to indicate if a given structure is defined onM or onN.
In this way, we will have the momentum mapsΦM andΦN, and the almost complex structures
JM andJN, for example.



Chapter 12

Induction and cross-sections of
Hamiltonian group actions

In this chapter, we explain the Hamiltonian induction and Hamiltonian cross-section construc-
tions mentioned in the introduction to Part IV. We will see inSection 12.4 that they are each
other’s inverses. Our term ‘Hamiltonian induction’ is quite different from Guillemin and Stern-
berg’s term ‘symplectic induction’ introduced in [29], Section 40.

Many results in this chapter are known for the case where the pair (G,K) is replaced by
(K,T). See for example [54, 63].

12.1 The tangent bundle to a fibred product

In our study of the manifoldG×K N, we will use an explicit description of its tangent bundle,
which we will now explain.

For this section, letG be any Lie group,H < G any closed subgroup, andN a left H-
manifold. We consider the action ofH on the productG×N defined by

h · (g,n) = (gh−1,hn),

for all h ∈ H, g ∈ G andn ∈ N. We denote the quotient of this action byG×H N, or by M.
Because the action ofH on G×N is proper and free,M is a smooth manifold. We would like
to describe the tangent bundle toM explicitly.

To this end, we endow the tangent bundleTH ∼= H×h with the group structure

(h,X)(h′,X′) := (hh′,Ad(h)X′+X),

for h,h′ ∈ H andX,X′ ∈ h. This is a special case of the semidirect product group structure on
a productV ⋊ H, whereV is a representation space ofH. We consider the action of the group
TH on TG×TN defined by

(h,X) · (g,Y,v) := (gh−1,Ad(h)Y−X,Tnh(v)+Xhn),

for h∈ H, X ∈ h, (g,Y) ∈ G× g ∼= TG, n∈ N andv∈ TnN. Let TG×T H TN be the quotient
of this action. It is a vector bundle overM, with projection map[g,X,v] 7→ [g,n] (notation as
above). We letG act onTG×TH TN by left multiplication on the first factor.

156
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Proposition 12.1.There is a G-equivariant isomorphism of vector bundles

Ψ : TG×TH TN→ TM,

given by
Ψ[g,Y,v] = T p(g,Y,v),

with p : G×N→M the quotient map.

Proof. Let us first show thatΨ is well-defined. Letg∈G, Y ∈ g, v∈ TnN, h∈ H andX ∈ h be
given. Letγ be a curve inN with γ(0) = n andγ ′(0) = v. Define the curveδ in G×N by

δ (t) =
(
gh−1exp(t Ad(h)Y)exp(−tX),exp(tX) ·h · γ(t)

)
.

Then
δ ′(0) = (gh−1,Ad(h)Y−X,Tnh(v)+Xhn) ∈G×g×ThnN.

Now since for allt,

p◦δ (t) = p
(
gh−1exp(t Ad(h))exp(−tX),exp(tX) ·h · γ(t)

)

= p
(
gexp(tY)h−1exp(−tX),exp(tX) ·h · γ(t)

)

= p
(
gexp(tY),γ(t)

)
,

we have

T p(gh−1,Ad(h)Y−X,Tnh(v)+Xhn) =
d
dt

∣∣∣∣
t=0

p◦δ (t)

=
d
dt

∣∣∣∣
t=0

p
(
gexp(tY),γ(t)

)

= T p(g,Y,v).

SoΨ is indeed well-defined.
The mapΨ is a surjective vector bundle homomorphism becauseT p : TG× TN→ TM

is. Because the bundlesTM andTG×T H TN have the same rank, the mapΨ is therefore an
isomorphism of vector bundles.

Now suppose that there is an Ad(H)-invariant linear subspacep ⊂ g such thatg = h⊕ p

(such as in the caseH = K we consider in the rest of Part IV). Then there is a possibly simpler
description ofTM, that we will also use later. Consider the action ofH on the productG×
TN×p given by

h · (g,v,Y) = (gh−1,Tnh(v),Ad(h)Y),

and denote the quotient byG×H (TN×p).

Lemma 12.2.The map
Ξ : TG×TH TN→G×H (TN×p),

given by
Ξ[g,Y,v] = [g,v+(Yh)n,Yp]

for all g ∈G, Y∈ g, n∈N and v∈ TnN, is a well-defined, G-equivariant isomorphism of vector
bundles. Here Yh and Yp are the components of Y inh and p respectively, according to the
decompositiong = h⊕p.
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Because of Proposition 12.1 and Lemma 12.2, we haveTM∼= G×H (TN×p) asG-vector
bundles.1

Proof. We first show thatΞ is well-defined. Indeed, for allg∈ G, Y ∈ g, n∈ N andv∈ TnN,
and for allh∈H andX ∈ h, we have

Ξ[(h,X) · (g,Y,v)] =

[gh−1,Tnh(v)+Xhn+
(
(Ad(h)Y−X)h

)
hn,(Ad(h)Y−X)p] =

[gh−1,Tnh(v)+
(
Ad(h)(Yh)

)
hn,Ad(h)Yp] ∈G×H (TN×p). (12.1)

Here we have used the fact that the decompositiong = h⊕p is Ad(H)-invariant. Furthermore,
we have

(
Ad(h)(Yh)

)
hn =

d
dt

∣∣∣∣
t=0

exp(t Ad(h)Yh)hn

=
d
dt

∣∣∣∣
t=0

hexp(tYh)n

= Tnh
(
Yh

)
n.

Hence (12.1) equals

[h · (g,v+(Yh)n,Yp)] = [g,v+(Yh)n,Yp] = Ξ[g,Y,v],

which shows thatΞ is well-defined.
It is obvious thatΞ is fibrewise linear. Let us prove that it is fibrewise injective: with notation

as above, suppose that
Ξ[g,Y,v] = [g,v+(Yh)n,Yp] = 0.

That is,Y ∈ h andv =−(Yh)n. And therefore,

[g,Y,v] = [(e,−Y) · (g,0,0)] = [g,0,0],

andΞ is fibrewise injective. Hence, becauseΞ is a map between vector bundles of the same
rank, it is a fibrewise linear isomorphism.

Finally, the isomorphismΞ is G-equivariant because on both sides,G acts by left multipli-
cation on the first factor.

In Chapter 13, we will use the following version of Proposition 12.1 and Lemma 12.2.

Corollary 12.3. In the situation of Lemma 12.2, there is an isomorphism of G-vector bundles

TM∼=
(
p∗G/HT(G/H)

)
⊕ (G×H TN),

where pG/H : M→G/H is the natural projection.

Proof. The claim follows from Proposition 12.1, Lemma 12.2, and thefact that

T(G/H)∼= G×H p,

whereH acts onp via Ad.

1A version of this fact is used without a proof in [6] on page 503.
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12.2 Hamiltonian induction

We return to the standard situation in Part IV, whereG is a semisimple group, andK < G is a
maximal compact subgroup.

The symplectic manifold

Let (N,ν) be a symplectic manifold on whichK acts in Hamiltonian fashion, with momentum
map ΦN : N → k∗. Suppose that the image ofΦN lies in the setk∗se, defined in (6.19). As
in Section 12.1, we consider the fibred productM = G×K N, equipped with the action ofG
induced by left multiplication on the first factor. As a consequence of Proposition 12.1 and
Lemma 12.2, we have for alln∈ N,

T[e,n]M ∼= TnN⊕p.

We define a two-formω onM by requiring that it isG-invariant, and that for allX,Y ∈ p, n∈N
andv,w∈ TnN,

ω[e,n](v+X,w+Y) := νn(v,w)−〈ΦN(n), [X,Y]〉. (12.2)

Note that[X,Y] ∈ k for all X,Y ∈ p, so the pairing in the second term is well-defined. We claim
thatω is a symplectic form. This is analogous to formula (7.4) from[63].

Proposition 12.4.The formω is symplectic.

Proof. The formω is closed, because it is the curvature form of a connection ona line bundle
overM. This will be proved in Section 13.1.

Next, we show thatω is nondegenerate. ByG-invariance ofω, it is enough to prove this at
points of the form[e,n], with n∈ N. Let v∈ TnN andX ∈ p be given, such that for allw∈ TnN
andY ∈ p, we have

ω[e,n](v+X,w+Y) = 0. (12.3)

Then in particular,
ω[e,n](v+X,w) = νn(v,w) = 0

for all suchw, and hencev = 0 by nondegeneracy ofν.
On the other hand, we have

0 = ω[e,n](v+X,Y)

for all Y ∈ p, which equals

−〈ΦN(n), [X,Y]〉= 〈ad∗(X)ΦN(n),Y〉= 〈XΦN(n),Y〉.

Analogously, forZ ∈ k we have

〈XΦN(n),Z〉=−〈ΦN(n), [X,Z]〉,

which also equals zero, since[X,Z] ∈ p andΦN(n) ∈ k∗ ∼= p0. Therefore,XΦN(n) = 0, which
by Lemma 6.11 implies thatX = 0, sinceΦN(N) ⊂ k∗se. We conclude thatω[e,n] is indeed
nondegenerate.
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The momentum map

Next, consider the mapΦM : M→ g∗ given by

ΦM[g,n] = Ad∗(g)ΦN(n). (12.4)

This map is well-defined byK-equivariance ofΦN. Furthermore, it is obviouslyG-equivariant,
and its image lies ing∗se.

Proposition 12.5.The mapΦM is a momentum map for the action of G on M.

Proof. We first prove the defining property of momentum maps,

dΦM
X =−XMyω (12.5)

for all X ∈ g, at points of the form[e,n], with n∈ N. To this end, we compute the tangent map
T[e,n]ΦM in the following way. Letv∈ TnN andY ∈ p be given. Letγ be a curve inN such that
γ(0) = n andγ ′(0) = v. Then

T[e,n]ΦM(v+Y) =
d
dt

∣∣∣∣
t=0

ΦM[exp(tY),γ(t)]

=
d
dt

∣∣∣∣
t=0

Ad∗(exptY)ΦN(γ(t))

=
d
dt

∣∣∣∣
t=0

ΦN(γ(t))+
d
dt

∣∣∣∣
t=0

Ad∗(exptY)ΦN(n)

= TnΦN(v)+ad∗(Y)ΦN(n).

Now letX ∈ g and letY,v be as before. WriteX = Xk +Xp, with Xk ∈ k andXp ∈ p. Then

〈d[e,n]ΦM
X ,v+Y〉= 〈T[e,n]ΦM(v+Y),X〉

= 〈TnΦN(v),X〉+ 〈ad∗(Y)ΦN(n),X〉
= 〈TnΦN(v),Xk〉+ 〈ΦN(n), [X,Y]k〉. (12.6)

By the defining property ofΦN, and because[X,Y]k = [Xp,Y], the expression (12.6) equals

−νn
(
(Xk)n,v

)
+ 〈ΦN(n), [Xp,Y]〉=−ω[e,n]((Xk)n+Xp,v+Y).

By Lemma 12.6 below, we haveX[e,n] = (Xk)n + Xp, which yields equality (12.5) at the point
[e,n].

To prove (12.5) on all ofM, we note that on both sides of this equation, pulling back along
an elementg∈G amounts to replacingX by Ad(g)X, as one can compute. Therefore, equality
(12.5) at points of the form[e,n] implies the general case.

In the proof of Proposition 12.5, we used:

Lemma 12.6.With notation as before, we have

X[e,n] = (Xk)n+Xp

in TnN⊕p∼= T[e,n]M.
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Proof. Using the isomorphismsTM ∼= TG×TK TN andTG×TK TN∼= G×K (TN× p) from
Proposition 12.1 and Lemma 12.2, we compute

X[e,n] =
d
dt

∣∣∣∣
t=0

[exptX,n] ∈ T[e,n]M

7→ [e,X,0] ∈ TG×TK TN

= [e,Xp,
(
Xk)n]

7→ (Xk)n+Xp ∈ TnN⊕p.

Definition 12.7. The Hamiltonian inductionof the Hamiltonian action ofK on (N,ν) is the
Hamiltonian action ofG on (M,ω):

H-IndG
K(N,ν,ΦN) := (M,ω,ΦM).

Example 12.8.Let ξ ∈ t∗ \ ncw be given, and consider the coadjoint orbitN := K · ξ ⊂ k∗.
The Hamiltonian induction of the coadjoint action ofK on N is the coadjoint action ofG on
the coadjoint orbitM := G · ξ , including the natural symplectic forms and momentum maps.
Indeed, the map

G ·ξ →G×K N

given byg ·ξ 7→ [g,ξ ] is a symplectomorphism.

12.3 Hamiltonian cross-sections

We now turn to the inverse construction to Hamiltonian induction, namely theHamiltonian
cross-section. In this case, we start with a HamiltonianG-manifold (M,ω), with momentum
mapΦM. Such a cross-section will indeed be symplectic and carry a HamiltonianK-action,
under the assumption that the image ofΦM is contained ing∗se. A Hamiltonian cross-section
is a kind of double restriction: it is both a restriction to a subgroup ofG and a restriction to a
submanifold ofM.

Most of this section is based on the proof of the symplectic cross-section theorem in Lerman
et al. [54].

As before, we identifyk∗ with the subspacep0 of g∗. The main result of this section is:

Proposition 12.9. If ΦM(M)⊂ g∗se, then N:=
(
ΦM

)−1
(k∗) is a K-invariant symplectic subman-

ifold of M, andΦN := ΦM|N is a momentum map for the action of K on N.

We denote the restricted symplectic formω|N by ν.

Definition 12.10. TheHamiltonian cross-sectionof the Hamiltonian action ofG on (M,ω) is
the Hamiltonian action ofK on (N,ν):

H-CrossGK(M,ω,ΦM) := (N,ν,ΦN).
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In Proposition 12.15, we will see thatM ∼= G×K N, so thatM/G is compact if and only if
N is.

To prove Proposition 12.9, we have to show thatN is a smooth submanifold ofM, and that
the restricted formω|N is symplectic. Then the submanifoldN is K-invariant byK-equivariance
of ΦM, and the fact thatΦN is a momentum map is easily verified. We begin with some prepara-
tory lemmas, based on the proof of the symplectic cross-section theorem mentioned above.

For the remainder of this section, letm∈M be given, and writeξ := ΦM(m).

Lemma 12.11.The linear map

ψ : Tm(G ·m)→ Tξ (G ·ξ )

given by
ψ(Xm) = Xξ

for X ∈ g, is symplectic, in the sense that for all X,Y ∈ g,

ωm(Xm,Ym) =−〈ξ , [X,Y]〉.

Proof. First note thatψ is well-defined because by equivariance ofΦM, we havegm⊂ gξ .
Furthermore, by the properties ofΦM we have

ωm(Xm,Ym) =−〈dmΦM
X ,Ym〉

=−〈TmΦM(Ym),X〉

=− d
dt

∣∣∣∣
t=0
〈ΦM(exp(tY)m),X〉

=− d
dt

∣∣∣∣
t=0
〈Ad∗(exptY)ΦM(m),X〉

=−〈ad∗(Y)ξ ,X〉
=−〈ξ , [X,Y]〉.

Lemma 12.12.We have the following inclusions of subspaces ofg∗:

g0
ξ ⊂ TmΦM(TmM)⊂ g0

m.

Proof. The second inclusion is the easiest one to prove. Indeed, letv ∈ TmM andX ∈ gm be
given. Then by definition of momentum maps,

〈TmΦM(v),X〉= 〈dmΦM
X ,v〉=−ω(Xm,v) = 0,

sinceXm = 0.
To prove the first inclusion, we consider the maps

g0
ξ
∼=

(
g/gξ

)∗ ∼= T∗ξ (G ·ξ )
#←−∼= Tξ (G ·ξ )

ψ←− Tm(G ·m) →֒ TmM.
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Here ‘#’ denotes the isomorphism induced by the standard symplectic form onG · ξ (see Ex-
ample 2.13).

Let η ∈ g0
ξ be given, and choosev∈ Tm(G ·m) such that the images ofv andη in Tξ (G ·ξ )

under the maps above coincide. (Note that such av exists sinceψ is surjective.) We claim that
TmΦM(v) = η. Indeed, writev = Xm for anX ∈ g. Then for allY ∈ g,

〈η,Y〉= 〈ξ , [X,Y]〉=−ωm(Xm,Ym)

by the definition of the map #, and by Lemma 12.11. By definitionof ΦM, the latter expression
equals〈TmΦM(v),Y〉, which proves the claim.

Lemma 12.13.If m∈ N⊂M, then the subspace

p ·m := {Xm;X ∈ p} ⊂ TmM

is symplectic.

Proof. Step 1:we have

Tξ (G ·ξ )∼= g ·ξ = (k+p) ·ξ = Tξ (K ·ξ )+p ·ξ .

Step 2:the subspacep ·ξ ⊂ Tξ (G ·ξ ) is symplectic.
Indeed, by Step 1 and Lemma 12.14 below, it is enough to prove that p · ξ andTξ (K · ξ ) are
symplectically orthogonal. LetX ∈ k andY ∈ p be given. Becausem∈ N, we haveξ ∈ k∗, and
also ad∗(X)ξ ∈ k∗ ∼= p0. Hence

〈ξ , [X,Y]〉=−〈ad∗(X)ξ ,Y〉= 0.

Step 3:the subspacep ·m⊂ TmM is symplectic.
Indeed, let a nonzeroX ∈ p be given. We are looking for aY ∈ p such thatωm(Xm,Ym) 6= 0.
Note that by Lemma 6.11, we have ad∗(X)ξ = Xξ 6= 0. So by Step 2, there is aY ∈ p for which
〈ξ , [X,Y]〉 6= 0. Hence by Lemma 12.11,

ωm(Xm,Ym) =−〈ξ , [X,Y]〉 6= 0.

In Step 2 of the proof of Lemma 12.13, we used

Lemma 12.14.Let (W,σ) be a symplectic vector space, and let U,V ⊂W be linear subspaces.
Suppose that W= U +V, and that U and V are symplectically orthogonal. Then U and Vare
symplecticsubspaces.

Proof. We prove the claim forU . Let u∈U \{0} be given. Choosew∈W such thatσ(u,w) 6=
0. SinceW = U +V, there areu′ ∈U andv∈V such thatw = u′+v. For suchu′, we have

σ(u,u′) = σ(u,w) 6= 0.
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After these preparations, we are ready to prove Proposition12.9.

Proof of Proposition 12.9.We first show thatN is smooth. This is true ifΦM satisfies the
transversality condition that for alln∈N, with η := ΦM(n), we have

Tηg∗ = Tηk∗+TnΦM(TnM).

(See e.g. [35], Chapter 1, Theorem 3.3.) By Lemma 12.12, we have g0
η ⊂ TnΦM(TnM), and

by Lemma 6.11, we havegη ∩p = {0}. Now, using the fact thatV0 +W0 = (V ∩W)0 for two
linear subspacesV andW of a vector space, we see that

Tηk∗+TnΦM(TnM)⊃ p0+g0
η = (p∩gη)0 = {0}0 = g∗.

This shows thatN is indeed smooth.
Next, we prove thatω|N is a symplectic form. It is closed becauseω is, so it remains to

show that it is nondegenerate. Letn∈ N be given. By Lemma 12.14, it is enough to show that
TnM = TnN+p ·n, and thatTnN andp ·n are symplectically orthogonal.

We prove thatTnM = TnN⊕p ·n, by first noting that

dimN = dimM−dimg∗+dimk∗ = dimM−dimp.

Becausegn⊂ gΦM(n), andgΦM(n)∩p = {0} by Lemma 6.11, we have dimp = dim(p ·n), and

dimTnM = dimTnN+dim(p ·n).

It is therefore enough to prove thatTnN∩ p · n = {0}. To this end, letX ∈ p be given, and
supposeXn ∈ TnN. That is,TnΦM(Xn) ∈ k∗, which is to say that for allY ∈ p,

ωn(Xn,Yn) =−〈TnΦM(Xn),Y〉= 0.

By Lemma 12.13, it follows thatXn = 0, so that indeedTnN∩p ·n = {0}.
Finally, we show that for allv∈ TnN andX ∈ p, we haveωn(v,Xn) = 0. Indeed, for suchv

andX, we haveTnΦM(v) ∈ k∗ ∼= p0, so

ωn(v,Xn) = 〈TnΦM(v),X〉= 0.

�

12.4 Hamiltonian induction and taking Hamiltonian cross-
sections are mutually inverse

Let us prove the statement in the title of this section. One side of it (Proposition 12.15) will be
used in the proof of Theorem 6.13 in Section 14.3. We will not use the other side (Proposition
12.16).
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Induction of a cross-section

First, we have

Proposition 12.15.Let (M,ω,ΦM) and (N,ν,ΦN) := H-CrossGK(M,ω,ΦM) be as in Section
12.3. Consider the manifold̃M := G×K N, with symplectic formω̃ equal to the formω in

(12.2). Define the map̃ΦM as the mapΦM in (12.4). Then the map

ϕ : M̃→M

given by
ϕ[g,n] = g ·n

is a well-defined, G-equivariant symplectomorphism, andϕ∗ΦM = Φ̃M.
Put differently,H-IndG

K ◦H-CrossGK is the identity, modulo equivariant symplectomorphisms
that intertwine the momentum maps.

It follows from this proposition thatM/G = N/K, so thatM/G is compact if and only ifN
is compact.

Proof. The statement about the momentum maps follows fromG-equivariance ofΦM.
The mapϕ is well-defined by definition of the action ofK on G×N. It is obviouslyG-

equivariant. Furthermore,ϕ is smooth because the action ofG onM is smooth (this was a tacit
assumption), and by definition of the smooth structure on thequotientG×K N.

To prove injectivity ofϕ, let g,g′ ∈G andn,n′ ∈N be given, and suppose thatg·n = g′ ·n′.
BecauseΦM(N)⊂ k∗se, there arek,k′ ∈ K andξ ,ξ ′ ∈ t∗+ \ncw such that

ΦM(n) = k ·ξ ;

ΦM(n′) = k′ ·ξ ′.

Then by equivariance ofΦM, we havegk · ξ = g′k′ · ξ ′. Becauset∗+ \ ncw is a fundamental
domain for the coadjoint action ofG ong∗se, we must haveξ = ξ ′, and

k′−1g′−1gk∈Gξ ⊂ K.

Sok′′ := g′−1g∈ K. Hence
g′k′′n = g ·n = g′ ·n′,

andk′′ ·n = n′. We conclude that

[g′,n′] = [gk′′−1,k′′ ·n] = [g,n],

andϕ is injective.
To prove surjectivity ofϕ, let m∈ M be given. SinceΦM(m) ∈ g∗se, there areg ∈ G and

ξ ∈ t∗+ \ncw such thatΦM(m) = g · ξ . Setn := g−1m. ThenΦM(n) = ξ ∈ k∗, son∈ N, and
ϕ[g,n] = m.
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Next, we show that the inverse ofϕ is smooth. We prove this using the inverse function
theorem: smoothness ofϕ−1 follows from the fact that the tangent mapTϕ is invertible. Or,
equivalently, from the fact that the map̃Tϕ , defined by the following diagram, is invertible.

T(G×K N)
Tϕ // TM

TG×TK TN.

Ψ ∼=
OO

T̃ϕ

88rrrrrrrrrrr

HereΨ is the isomorphism from Proposition 12.1. Explicitly, the mapT̃ϕ is given by

T̃ϕ[g,X,v] = Tϕ ◦T p(g,X,v)

= Tα(g,X,v),

for all g∈ G, X ∈ g andv∈ TnN, with α : G×N→M the action map. Letγ be a curve inN
with γ(0) = n andγ ′(0) = v. Then we find that

Tα(g,X,v) =
d
dt

∣∣∣∣
t=0

exp(tX)g · γ(t)

= Xgn+Tng(v).

(12.7)

Because the vector bundlesTG×TK TN andTM have the same rank, it is enough to show
thatT̃ϕ is surjective. To this end, letm∈M andw∈ TmM be given. Sinceϕ is surjective, there
areg∈G andn∈ N such thatm= g ·n. Furthermore, we have

TnM = TnN+g ·n.

Indeed, in our situation we even haveTnM = TnN⊕ p ·n (see the proof of Proposition 12.9).
Hence

TmM = Tng(TnM) = Tng(TnN+g ·n).

Therefore, there arev∈ TnN andX ∈ g such that

w = Tng(v+Xn)

= Tng(v)+
(
Ad(g)X

)
g·n

= T̃ϕ[g,Ad(g)X,v],

by (12.7). This shows that̃Tϕ is indeed surjective.
Finally, we prove thatϕ is a symplectomorphism. Letn ∈ N, v,w ∈ TnN andX,Y ∈ p be

given. We will show that

ωn
(
T[e,n]ϕ(v+X),T[e,n]ϕ(w+Y)

)
= ωn(v,w)−〈ΦM(n), [X,Y]〉.

By G-invariance of the symplectic formsω andω̃ , this implies thatϕ is a symplectomorphism
on all of M̃.

Similarly to (12.7), we find thatT[e,n]ϕ(v+X) = v+Xn. Therefore,

ωn
(
T[e,n]ϕ(v+X),T[e,n]ϕ(w+Y)

)
= ωn(v+Xn,w+Yn)

= ωn(v,w)+ωn(Xn,Yn), (12.8)

sinceTnN andp ·n are symplectically orthogonal (see the end of the proof of Proposition 12.9).
Now applying Lemma 12.11 to the first term in (12.8) gives the desired result.
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Cross-section of an induction

Conversely to Proposition 12.15, we have:

Proposition 12.16.Let (N,ν,ΦN) and (M,ω,ΦM) := H-Ind(N,ν,ΦN) be as in Section 12.2.
SupposeΦN(N)⊂ k∗se. Then

(N,ν)∼=
((

ΦM)−1
(k∗),ω|

(ΦM)−1(k∗)

)
,

and this isomorphism intertwines the momentum mapsΦN andΦM.
In other words,H-CrossGK ◦H-IndG

K is the identity, modulo equivariant symplectomorphisms
that intertwine the momentum maps.

Proof. We claim that (
ΦM)−1

(k∗) = {[e,n];n∈N}=: Ñ. (12.9)

The mapn 7→ [e,n] is a diffeomorphism fromN to Ñ. It is clear that this diffeomorphism is
K-equivariant, and intertwines the momentum mapsΦN andΦM.

To prove that
(
ΦM

)−1
(k∗) = Ñ, let [g,n] ∈M be given, and supposeΦM[g,n] = g·ΦN(n) ∈

k∗. BecauseΦN(N)⊂ k∗se, we have

g ·ΦN(n) ∈
(
G · k∗se

)
∩ k∗ = k∗se.

So there arek,k′ ∈ K andξ ,ξ ′ ∈ t∗+ \ncw such that

ΦN(n) = k ·ξ ;

g ·ΦN(n) = k′ ·ξ ′.

Hencegk·ξ = k′ ·ξ ′, and sincet∗+ \ncw is a fundamental domain for the coadjoint action ofG
ong∗se, we haveξ ′ = ξ . So

k′−1gk∈Gξ ⊂ K,

and henceg∈ K. We conclude that[g,n] = [e,g−1n], which proves (12.9) (the inclusioñN ⊂(
ΦM

)−1
(k∗) follows from the definition ofΦM).

For eachn ∈ N, the natural isomorphismv 7→ [e,0,v] from TnN to T[e,n]Ñ intertwines the
respective symplectic forms, by definition of those forms.



Chapter 13

Induction of prequantisations and
Spinc-structures

We extend the induction procedure of Chapter 12 to prequantisations and to Spinc-structures,
used to define quantisation. For prequantisations, it is possible to define restriction to a Hamil-
tonian cross-section in a suitable way. For our purposes, itis not necessary to restrict Spinc-
structures.

13.1 Prequantisations

Since we are interested in quantising Hamiltonian actions,let us look at induction of prequan-
tum line bundles, and at restriction to Hamiltonian cross-sections.

Restriction to Hamiltonian cross-sections

The easy part is restriction. Indeed, let(M,ω) be a HamiltonianG-manifold, letΦM be a
momentum map withΦM(M)⊂ g∗se, and let(N,ν,ΦN) be the Hamiltonian cross-section of this
action. Now letLω →M be a prequantum line bundle, let(−,−)Lω be aG-invariant Hermitian
metric onLω , and let∇M be aG-equivariant Hermitian connection onLω with curvature 2π i ω.
Let ∇N be the connection onLν := Lω |N defined as the pullback of∇M along the inclusion map
N →֒M. It is given by

∇N(
s|N

)
=

(
∇Ms

)
|N,

for all sectionss∈ Γ∞(Lω). This is indeed a connection, with curvature

R∇N = R∇M |N = 2π i ω|N = 2π i ν.

Furthermore, it is Hermitian with respect to the restriction (−,−)Lν of (−,−)Lω . That is,
(Lν ,(−,−)Lν ,∇N) is a prequantisation of the action ofK on N.

In the same way, we see that a Spinc-prequantum line bundle on(M,ω), that is, a prequan-
tum line bundle on(M,2ω), restricts to a Spinc-prequantum line bundle on(N,2ν).

168
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Induction: an auxiliary connection ∇
Now let us consider induction of prequantisations. As in Section 12.2, let(N,ν) be a Hamil-
tonianK-manifold, with momentum mapΦN. Let (M,ω,ΦM) be the Hamiltonian induction of
these data. Let

(
Lν ,(−,−)Lν ,∇N

)
be an equivariant prequantisation of the action ofK on N.

As in the case of restriction, the following argument extends directly to Spinc-prequantisations.
Consider the line bundle

Lω := G×K Lν →M,

with the natural projection map[g, l ] 7→ [g,n] for g∈G, n∈ N andl ∈ Lν
n . Let (−,−)Lω be the

G-invariant Hermitian metric onLω induced by(−,−)Lν : for all g,g′ ∈G, n∈N andl , l ′ ∈ Lν
n ,

set (
[g, l ], [g′, l ′]

)
Lω := (l , l ′)Lν .

In the remainder of this section, we will construct a connection ∇M onLω , such that
(
Lω ,(−,−

)Lω ,∇M
)

is aG-equivariant prequantisation of(M,ω). This is by definition the prequantisation
induced by

(
Lν ,(−,−)Lν ,∇N

)
.

To construct the connection∇M, we consider the line bundle

L := G×Lν →G×N,

with the obvious projection map(g, l) 7→ (g,n), for all g∈G, l ∈ Lν
n . ThenLω = L/K, whereK

acts onL by
k · (g, l) = (gk−1,k · l),

for k∈ K, g∈G andl ∈ Lν . By Proposition 8.6, we therefore have a linear isomorphism

ψL : Γ∞(L)K → Γ∞(Lω),

given by
ψL(σ)[g,n] = [σ(g,n)]. (13.1)

We will construct∇M as the connection induced by aK-equivariant connection∇ on L. The
spaceΓ∞(L) of sections ofL is isomorphic to the space

Γ̃∞(L) := {s : G×N
C∞
−→ Lν ;s(g,n) ∈ Lν

n for all g∈G andn∈N.}

Indeed, the isomorphism is given bys 7→ σ , whereσ(g,n) = (g,s(g,n)). Fors∈ Γ̃∞(L), g∈G
andn∈ N, we write

sg(n) := s(g,n) =: sn(g).

(We will use the same notation whens is replaced by a function onG×N.) Then for fixedg, sg

is a section ofLν , and for fixedn, sn is a function

sn : G→ Lν
n .

Let s∈ Γ̃∞(L), X ∈ g, v∈ X(N), g∈G andn∈ N be given. We define

(
∇v+Xs

)
(g,n) :=

(
∇N

v sg
)
(n)+X(sn)(g)+2π i ΦN

Xk
(n)s(g,n). (13.2)
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Here we have writtenX = Xk+Xp ∈ k⊕p. (The subscriptk in Xk in (13.2) is actually superfluous,
because we identifyk∗ with p0 ⊂ g∗.) In the expressionX(sn), we viewX as a left invariant
vector field onG, acting on the functionsn. Note that all tangent vectors inT(g,n)(G×N) are
of the formXg + vn = (g,X,vn) ∈ TgG×TnN, and therefore the above formula determines∇
uniquely. We claim that∇ is aK-equivariant connection onL with the right curvature, so that it
induces a connection∇M on Lω with curvatureω.

Lemma 13.1.The formula(13.2)defines a connection∇ on L.

Proof. The Leibniz rule for∇ follows from the fact that forf ∈C∞(G×N), X ∈ g, v∈ X(N),
g∈G andn∈N, one has

(v+X)( f )(g,n) = v( fg)(n)+X( f n)(g).

Linearity overC∞(G×N) in the vector fields follows from the fact that, with notationas
above, (

f (v+X)
)
(g,n)

=
(

f nX
)

g+
(

fgv
)
(n).

Locality is obvious.

Properties of the connection∇
Let (−,−)L be the Hermitian metric onL given by

(
(g, l),(g′, l ′)

)
L := (l , l ′)Lν

for all g,g′ ∈G andl , l ′ ∈ Lν
n .

Lemma 13.2.The connection∇ is Hermitian with respect to this metric.

Proof. Let s, t ∈ Γ̃∞(L), X ∈ g, v∈ X(N), g∈G andn∈N be given. Then
(
∇v+Xs, t

)
L(g,n)+

(
s,∇v+Xt

)
L(g,n) =

((
∇N

v sg
)
(n), t(g,n)

)
L +

(
s(g,n),

(
∇N

v tg
)
(n)

)
L

+
(
X(sn)(g), t(g,n)

)
L +

(
s(g,n),X(tn)(g)

)
L

+
(
2π i ΦN

Xk
(n)s(g,n), t(g,n)

)
L +

(
s(g,n),2π i ΦN

Xk
(n)t(g,n)

)
L.

By sesquilinearity of(−,−)L, the last two terms cancel. And since∇N is Hermitian, we are left
with

v
(
(s, t)L

)
(g,n)+X

(
(s, t)L

)
(g,n) = (v+X)

(
(s, t)L

)
(g,n),

which shows that∇ is indeed Hermitian.

Next, we compute the curvature of∇.

Lemma 13.3.The curvature R∇ of ∇ is given by

R∇(v+X,w+Y)(g,n) = 2π i
(
νn(v,w)−〈ΦN(n), [X,Y]k〉

)
,

for all X ,Y ∈ g, v,w∈ X(N), g∈G and n∈N.
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Proof. We compute:
(
∇v+X∇w+Ys

)
(g,n) =
(
∇N

v ∇N
wsg

)
(n)+∇N

v

(
n′ 7→

(
Ysn

′)
(g)

)
(n)

+X
(
g′ 7→

(
∇N

wsg′
)
(n)

)
(g)+2π i ΦN

Yk
(n)(Xsn)(g)

+(XYsn)(g)+2π i
(
v(ΦN

Yk
)sg

)
(n)

+2π i
(
ΦN

Yk
∇N

v sg
)
(n)+2π i

(
ΦN

Xk
∇N

wsg
)
(n)

−4π2(ΦN
Xk

ΦN
Yk

sg
)
(n)+2π i ΦN

Xk
(n)Y(sn)(g).

(13.3)

In this expression, the following terms are symmetric inv+X andw+Y:

• 2π i ΦN
Yk

(n)(Xsn)(g)+2π i ΦN
Xk

(n)Y(sn)(g);

• 2π i
(
ΦN

Yk
∇N

v sg
)
(n)+2π i

(
ΦN

Xk
∇N

wsg
)
(n);

• −4π2
(
ΦN

Xk
ΦN

Yk
sg

)
(n).

Furthermore, note that

∇N
v

(
n′ 7→

(
Ysn

′)
(g)

)
(n) = ∇N

v

(
n′ 7→ d

dt

∣∣∣∣
t=0

s(exp(−tY)g,n′)
)
(n)

=
d
dt

∣∣∣∣
t=0

(
∇N

v sexp(−tY)g

)
(n)

= Y
(
g′ 7→

(
∇N

v sg′
)
(n)

)
(g).

Therefore, the following term in (13.3) is also symmetric inv+X andw+Y:

∇N
v

(
n′ 7→

(
Ysn

′)
(g)

)
(n)+X

(
g′ 7→

(
∇N

wsg′
)
(n)

)
(g).

We conclude that in the commutator[∇v+X,∇w+Y], most terms in (13.3) drop out, and we are
left with (

[∇v+X,∇w+Y]s
)
(g,n) =

([
∇N

v ,∇N
w

]
sg

)
(n)+

(
[X,Y]sn)(g). (13.4)

On the other hand, note that as vector fields onG×N, the Lie brackets[X,v] and [Y,w]
vanish. Therefore,

[v+X,w+Y] = [X,Y]+ [v,w],

so that
(
∇[v+X,w+Y]s

)
(g,n) =

(
∇[X,Y]+[v,w]s

)
(g,n)

=
(
∇N

[v,w]sg
)
(n)+

(
[X,Y]sn)(g)+2π i ΦN

[X,Y]k
(n)s(g,n) (13.5)

Finally, taking the difference of (13.4) and (13.5), we obtain
(
R∇(v+X,w+Y)s

)
(g,n) =

(
R∇N(v,w)sg

)
(n)−2π i ΦN

[X,Y]k
s(g,n)

= 2π i
(
νn(vn,wn)−〈ΦN(n), [X,Y]k〉

)
s(g,n).
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It remains to show that the connection∇ induces the desired connection∇M on Lω . This
will follow from K-equivariance of∇.

Lemma 13.4. The connection∇ is K-equivariant in the sense that for all X∈ g, v∈ X(N),
k∈ K, s∈ Γ∞(L), g∈G and n∈ n, we have

k ·
(
∇v+Xs

)
= ∇k·(v+X)k ·s.

Proof. By definition of the connection∇, we have

(
k ·

(
∇v+Xs

))
(g,n) =

k ·
((

∇N
v sgk

)
(k−1n)

)
+k ·

(
X(sk−1n)(gk)

)
+ΦN

Xk
(k−1n)k ·

(
s(gk,k−1n)

)
. (13.6)

We examine this expression term by term.
By K-equivariance of∇N, the first term in (13.6) equals

k ·
((

∇N
v sgk

)
(k−1n)

)
=

(
k ·

(
∇N

v sgk
))

(n)

=
(
∇N

k·vk ·sgk
)
(n)

=
(
∇N

k·v(k ·s)g
)
(n).

The second term equals

k ·
(
X(sk−1n)(gk)

)
= k · d

dt

∣∣∣∣
t=0

s(gkexp(tX),k−1n)

= k · d
dt

∣∣∣∣
t=0

s(gexp(t Ad(k)X)k,k−1n)

= k ·
(
Ad(k)X(sk−1n)

)
.

Furthermore, note that for allg∈G andn∈N, we have

(
Ad(k)X

)
G×N(g,n) =

d
dt

∣∣∣∣
t=0

(
exp(t Ad(k)X)g,n

)

=
( d

dt

∣∣∣∣
t=0

kexp(tX)k−1g,0
)

=
(
Tk−1gk(Xk−1g),0

)

=
(
k · (XG×N)

)
(g,n).

Finally, byK-equivariance ofΦN, the last term in (13.6) is

〈ΦN(k−1n),Xk〉k ·
(
s(gk,k−1n)

)
= 〈ΦN(n),Ad(k)Xk〉(k ·s)(g,n).

Therefore, (
k ·

(
∇v+Xs

))
(g,n) = (∇k·X+k·vk ·s)(g,n).
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We now define∇M via the isomorphismψL in (13.1). Note that by Proposition 12.1 and
Lemma 12.2, we have

X(M)∼= Γ∞(G×K N,G×K (TN×p))

∼= Γ∞(G×N,G×TN×p)K

⊂ Γ∞(G×N,(G×g)×TN)K

= X(G×N)K

We will write j : X(M) →֒X(G×N)K for this embedding map. Forw∈X(M) ands∈ Γ∞(L)K,
we define the connection∇M by

∇M
w ψL(s) := ψL

(
∇ j(w)s

)
.

Becauses and j(w) areK-invariant, and∇ is K-equivariant, we indeed have∇ j(w)s∈ Γ∞(L)K,
the domain ofψL.

It now follows directly from the definitions and from Lemmas 13.1, 13.2 and 13.3 that∇M

is a Hermitian connection onLω with curvatureω.

Induction and restriction

The induction and restriction procedures for line bundles described above are each other’s in-
verses (modulo equivariant line bundle isomorphisms), although this does not include the con-
nections on the bundles in question:

Lemma 13.5. (i) Let N be a K-manifold, and qN : EN→ N a K-vector bundle. Then
(
G×K EN)

|Ñ ∼= EN,

with Ñ as in(12.9).
(ii) Let M be a G-manifold, EM → M a G-vector bundle. Let N⊂ M be a K-invariant

submanifold, and denote the restriction of EM to N by EN. Let ϕ : G×K N→ M be the map
ϕ[g,n] = gn. Then

ϕ∗EM ∼= G×K EN.

Proof. (i) Note that
(
G×K EN)

|Ñ =
{
[g,v] ∈G×K EN; [g,qN(v)] = [e,n] for ann∈ N

}

=
{
[e,v] ∈G×K EN;v∈ EN}

∼= EN.

(ii) Note that
ϕ∗EM =

{(
[g,n],v

)
;g∈G,n∈N andv∈ EM

gn

}
.

The map
(
[g,n],v

)
7→ [g,v] is the desired vector bundle isomorphism ontoG×K EN.

For our purposes, it does not matter that this lemma says nothing about connections that
may be defined on the vector bundles in question, because theK-homology classes defined
by Dirac operators associated to such connections are homotopy invariant. In our setting, the
vector bundle isomorphisms in the proof of Lemma 13.5 do intertwine the metrics(−,−)Lω and
(−,−)Lν on the respective line bundles.
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13.2 Spinc-structures

Because we want to compare the Dirac operators onM andN, we now look at induction of
Spinc-structures. As before, we consider a semisimple groupG with maximal compact sub-
groupK, and aK-manifoldN. We form the fibred productM := G×K N, and we will show how
aK-equivariant Spinc-structure onN induces aG-equivariant Spinc-structure onM. It will turn
out that the operation of taking determinant line bundles intertwines the induction process for
Spinc-structures in this section, and the induction process for prequantum line bundles in the
previous one.

General constructions

The construction of induced Spinc-structures we will use, is based on the following two facts,
of which we were informed by Paul-Émile Paradan.

Lemma 13.6. For j = 1,2, let Ej → M be a real vector bundle over a manifold M. Suppose
E1 and E2 are equipped with metrics and orientations. Let Pj →M be aSpinc-structure on Ej ,
with determinant line bundle Lj →M. Then there is aSpinc-structure P→M on the direct sum
E1⊕E2→M, with determinant line bundle L1⊗L2.

Proof. Let r j be the rank ofE j , and writer := r1+ r2. Consider the double covering map

π : Spinc(r)→ SO(r)×U(1),

given by[a,z] 7→ (λ (a),z), wherea∈Spin(r), z∈U(1), andλ : Spin(r)→SO(r) is the standard
double covering. Consider the subgroups

H ′ := SO(r1)×SO(r2)×U(1)

of SO(r)×U(1), andH := π−1(H ′) of Spinc(r). Noting that

H ′ ∼= (SO(r1)×U(1))×U(1) (SO(r2)×U(1)),

we see that
H ∼= Spinc(r1)×U(1) Spinc(r2).

Let P1×U(1) P2 be the quotient ofP1×P2 by the U(1)-action given by

z(p1, p2) = (p1z, p2z−1),

for z∈U(1) andp j ∈ Pj . Define

P :=
(
P1×U(1) P2

)
×H Spinc(r).

Then we have naturally defined isomorphisms

P×Spinc(r) Rr ∼=
(
P1×U(1) P2

)
×H (Rr1⊕Rr2)

∼=
(
P1×Spinc(r1) Rr1

)
⊕

(
P2×Spinc(r2) Rr2

)

∼= E1⊕E2.



13.2 Spinc-STRUCTURES 175

The determinant line bundle ofP is

det(P) =
(
P1×U(1) P2

)
×H C,

where H acts onC via the determinant homomorphism. Note that, for allh = [h1,h2] ∈
Spinc(r1)×U(1) Spinc(r2) ∼= H, we have det(h) = det(h1)det(h2). Using this equality, one can
check that the map

(
P1×U(1) P2

)
×H C→

(
P1×Spinc(r1) C

)
⊗

(
P2×Spinc(r2) C

)
,

given by
[p1, p2,z] 7→ [p1,z]⊗ [p2,1],

defines an isomorphism det(P)∼= det(P1)⊗det(P2).

Lemma 13.7. Let G be a Lie group, acting on a smooth manifold N. Let H< G be a closed
subgroup, and consider the fibred product M:= G×H N. Let EN→ N be an oriented H-vector
bundle of rank r, equipped with an H-invariant metric. Then,as in Section 13.1, we can form
the G-vector bundle

EM := G×H EN→M.

If PN→ N is an H-equivariantSpinc-structure on E, then PM := G×H PN is a G-invariant
Spinc-structure on EM. If LN → N is the determinant line bundle of PN, then the determinant
line bundle of PM is G×H LN.

Proof. The first claim is a direct consequence of the fact that the actions ofH and Spinc(r) on
PN commute. For the same reason, we have

det(PM) =
(
G×H PN)

×Spinc(r) C

= G×H
(
PN×Spinc(r) C

)

= G×H LN.

An induced Spinc-structure

Let a K-equivariant Spinc-structurePN on N be given. To construct aG-equivariant Spinc-
structure onM = G×K N, we recall that, by Corollary 12.3,

TM∼= (p∗G/KT(G/K))⊕ (G×K TN), (13.7)

with pG/K : M → G/K the natural projection. As in Section 6.2, we assume that thehomo-

morphism Ad :K→ SO(p) lifts to a homomorphism̃Ad : K→ Spin(p). ThenG/K carries the
natural Spin-structure

PG/K := G×K Spin(p),

whereK acts on Spin(p) via Ãd.
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Lemma 13.8.The principalSpinc(p)-bundle

PG/K
M := G×K (N×Spinc(p))→M

defines aSpinc-structure on p∗G/KT(G/K). Its determinant line bundle is trivial.

Proof. We have

G×K (N×Spinc(p))×Spinc(p) p
∼= G×K (N×p)

∼= p∗G/K(G×K p)

∼= p∗G/KT(G/K).

Note that the determinant homomorphism is trivial on the subgroup Spin(p) < Spinc(p),
and thatÃd(K) < Spin(p). Therefore, the action ofK onC, given by the composition

K
Ãd−→ Spin(p) →֒ Spinc(p)

det−→ U(1),

is trivial. We conclude that

det
(
PG/K

M

)∼= G×K (N×C)∼= M×C,

as claimed.

Using the decomposition (13.7) ofTM, and the constructions from Lemmas 13.6 and 13.7,
we now obtain a Spinc-structurePM → M on M, from the Spinc-structuresPG/K

M → M and
PN→ N. Explicitly,

PM :=
(
G×K (N×Spinc(p))

)
×U(1)

(
G×K PN)

×H Spinc(dM).

By Lemmas 13.6 and 13.7, and by triviality of det
(
PG/K

M

)
, we see that the determinant line

bundle ofPM equals
det

(
PM)

= G×K det
(
PN)

.

In particular, if the determinant line bundle ofPN is a Spinc-prequantum line bundleL2ν → N,
then

det
(
PM)

= G×K L2ν = Lω (13.8)

is the Spinc-prequantum line bundle onM constructed in Section 13.1.



Chapter 14

Quantisation commutes with induction

Our proof that quantisation commutes with reduction for semisimple groups is a reduction to
the case of compact groups. This reduction is possible because of the ‘quantisation commutes
with induction’ result in this chapter (Theorem 14.5). It is analogous to Theorem 7.5 from [63].
After stating this result, we show how, together with the quantisation commutes with reduction
result for the compact case, it implies Theorem 6.13. Our proof that quantisation commutes
with induction is based on naturality of the assembly map forthe inclusionK →֒ G (Theorem
9.1). This proof is outlined in Section 14.4, with details given in Chapter 15.

14.1 The setsCSEHamPS(G) and CSEHamPS(K)

We first restate the results of Chapters 12 and 13 in a way that will allow us to draw a ‘quanti-
sation commutes with induction’ diagram.

Definition 14.1. The set SEHamP(G) of Hamiltonian G-actions with momentum map val-
ues in thestrongly elliptic set, with Spinc-prequantisations, consists of classes of sextuples
(M,ω,ΦM,L2ω ,(−,−)L2ω ,∇M), where

• (M,ω) is a symplectic manifold, equipped with a symplecticG-action;

• ΦM : M→ g∗ is a momentum map for this action, andΦM(M)⊂ g∗se;

•
(
L2ω ,(−,−)L2ω .∇M

)
is aG-equivariant Spinc-quantisation of(M,ω).

Two classes[M,ω,ΦM,L2ω ,(−,−)L2ω ,∇M] and[M′,ω ′,ΦM′,L2ω ′ ,(−,−)L2ω ′ ,∇M′] of such sex-

tuples are identified if there is an equivariant symplectomorphismϕ : M→M′ such thatϕ∗ΦM′ =
ΦM, ϕ∗L2ω ′ = L2ω andϕ∗(−,−)L2ω ′ = (−,−)L2ω . We do not requireϕ to relate the connec-

tions∇M and∇M′ to each other. For the purpose of quantisation, it is enough that it relates their
curvatures byϕ∗R∇M′ = R∇M , which follows from the facts thatϕ is a symplectomorphism, and

that∇M and∇M′ are prequantum connections.
Analogously, SEHamP(K) is the set of classes[N,ν,ΦN,L2ν ,(−,−)L2ν ,∇N], where(N,ν)

is a HamiltonianK-manifold, with momentum mapΦN, with image ink∗se, and (L2ν ,(−,−
)L2ν ,∇N) is aK-equivariant Spinc-prequantisation of(N,ν). The equivalence relation between
these classes is the same as before.
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Using this definition, we can summarise the results of Sections 12.2, 12.3, 12.4 and 13.1 as
follows:

Theorem 14.2.There are well-defined maps

H-IndG
K : SEHamP(K)→ SEHamP(G)

and
H-CrossGK : SEHamP(G)→ SEHamP(K),

given by

H-IndG
K [N,ν,ΦN,L2ν ,(−,−)L2ν ,∇N] = [M,ω,ΦM,L2ω ,(−,−)L2ω ,∇M]

as in Sections 12.2 and 13.1, and

H-CrossGK[M,ω,ΦM,L2ω ,(−,−)L2ω ,∇M] = [N,ν,ΦN,L2ν ,(−,−)L2ν ,∇N]

as in Sections 12.3 and 13.1. They are each other’s inverses.

To state our ‘quantisation commutes with reduction’ result, we need slightly different sets
from SEHamP(G) and SEHamP(K). For these sets we only have an induction map, and we do
not know if it is possible to define a suitable cross-section map.

Definition 14.3. The set CSEHamPS(G) of cocompactHamiltonian G-actions on complete
manifolds, with momentum map values in thestronglyelliptic set, with Spinc-prequantisations
and Spinc-structures, consists of classes of septuples(M,ω,ΦM,L2ω ,(−,−)L2ω ,∇M,PM), with
(M,ω,ΦM,L2ω ,(−,−)L2ω ,∇M) as in Definition 14.1,M/G compact, andPM a G-equivariant
Spinc-structure onM, such that

• M is complete in the Riemannian metric induced byPM;

• the determinant line bundle ofPM is isomorphic toL2ω .

The equivalence relation is the same as in Definition 14.1. There is no need to incorporate
the Spinc-structures into this equivalence relation, besides the condition on the determinant line
bundles of these structures that is already present.

The set CSEHamPS(K) is defined analogously. In this case, the condition thatN/K is
compact is equivalent to compactness ofN.

For these sets, we have the induction map

H-IndG
K : CSEHamPS(K)→CSEHamPS(G), (14.1)

with

H-IndG
K[N,ν,ΦN,L2ν ,(−,−)L2ν ,∇N,PN] = [M,ω,ΦM,L2ω ,(−,−)L2ω ,∇M,PM],

as defined in Sections 12.2, 13.1 and 13.2.
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14.2 Quantisation commutes with induction

Consider an element[M,ω,ΦM,L2ω ,(−,−)L2ω ,∇M,PM] ∈ CSEHamPS(G). Using a connec-
tion on the spinor bundle associated toPM, we can define the Spinc-Dirac operator/DL2ω

M on M,
as in Section 3.4. In Definition 6.2, we defined the quantisation of the action ofG on (M,ω) as
the image of theK-homology class of/DL2ω

M under the analytic assembly map:

QVI(M,ω) = µG
M

[
/DL2ω

M

]
.

as we noted before, this definition does not depend on the choice of connection on the spinor
bundle.

Definition 14.4. The quantisation map

QG
VI : CSEHamPS(G)→ K0(C

∗
r (G))

is defined by

QG
VI[M,ω,ΦM,L2ω ,(−,−)L2ω ,∇M,PM] = µG

M

[
/DL2ω

M

]
.

Analogously, we have the quantisation map

QK
VI : CSEHamPS(K)→ K0(C

∗
r K)

given by

QK
VI[N,ν,ΦN,L2ν ,(−,−)L2ν ,∇N,PN] = µK

N

[
/DL2ν

N

]
,

which corresponds toK-index/DL2ν

N ∈ R(K) by Proposition 5.17.

Using the Dirac induction map (6.10) and the Hamiltonian induction map (14.1), we can
now state the following result:

Theorem 14.5(Quantisation commutes with induction). The following diagram commutes:

CSEHamPS(G)
QG

VI // K0(C∗r (G))

CSEHamPS(K)
QK

VI //

H-IndG
K

OO

R(K).

D-IndG
K

OO
(14.2)

This is the central result of Part IV. We will outline its proof in Section 14.4, and fill in the
details in Chapter 15.

14.3 Corollary: [Q,R] = 0 for semisimple groups

As announced, we derive Theorem 6.13 from Theorem 14.5 and the fact that Spinc-quantisation
commutes with reduction in the compact case (Theorem 3.38).
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Proof of Theorem 6.13.Let G, K, (M,ω), ΦM = Φ, L2ω = L, (−,−)L2ω = (−,−)L and∇M = ∇
be as in Theorem 6.13. Set

(N,ν,ΦN,L2ν ,(−,−)L2ν ,∇N) := H-CrossGK(M,ω,ΦM,L2ω ,(−,−)L2ω ,∇M).

Let PN → N be aK-equivariant Spinc-structure onN, with determinant line bundleL2ν . Let
PM→M be the induced Spinc-structure onM, as described in Section 13.2. Since the determi-
nant line bundle ofPM is L2ω , by (13.8) and part(ii) of Lemma 13.5, we have the elements

[N,ν,ΦN,L2ν ,(−,−)L2ν ,∇N,PN] ∈ CSEHamPS(K);

[M,ω,ΦM,L2ω ,(−,−)L2ω ,∇M,PM] ∈ CSEHamPS(G).

By Proposition 12.15, we have

H-IndG
K[N,ν,ΦN,L2ν ,(−,−)L2ν ,∇N,PN] = [M,ω,ΦM,L2ω ,(−,−)L2ω ,∇M,PM].

Now let H andλ be as in Theorem 6.13. Then by Theorem 14.5, Proposition 5.17and
Lemma 6.9, we have

RH
G ◦µG

M

[
/DL2ω

M

]
= RH

G ◦D-IndG
K(K-index/DL2ν

N )

= (−1)dimG/K[K-index/DL2ν

N : Vλ−ρc
].

Because Spinc-quantisation commutes with reduction for the action ofK onN (Theorem 3.38),
we have

[K-index/DL2ν

N : Vλ−ρc
] = QIV

(
Nλ ,ωλ

)

if −iλ ∈ΦN(N), and zero otherwise. Recall thatN =
(
ΦM

)−1
(k∗), so that−iλ ∈ΦN(N) if and

only if −iλ ∈ΦM(M). Furthermore, note thatGν ⊂ K for all ν ∈ t∗+ \ncw, so thatGν = Kν for
suchν. ThereforeNλ = Mλ , which completes the proof. �

14.4 Outline of the proof

The most important ingredient of the proof of Theorem 14.5 isTheorem 9.1, ‘naturality of the
assembly map for the inclusion ofK into G’. The reason why this theorem helps us to prove
Theorem 14.5 is the fact that the map K-IndG

K that appears in Theorem 9.1 relates the Dirac

operators/DL2ν

N and/DL2ω

M to each other:

Proposition 14.6.The mapK-IndG
K maps the K-homology class of the operator/DL2ν

N to the class

of /DL2ω

M .

Combining Theorem 9.1 and Proposition 14.6, we obtain a proof of Theorem 14.5:

Proof of Theorem 14.5.Let

x = [N,ν,ΦN,L2ν ,(−,−)L2ν ,∇N,PN] ∈ CSEHamPS(K)
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be given, and write

[M,ω,ΦM,L2ω ,(−,−)L2ω ,∇M,PM] := H-IndG
K(x).

Then by Proposition 14.6 and Theorem 9.1,

QG
VI

(
H-IndG

K(x)
)

= µG
M

[
/DL2ω

M

]

= µG
M ◦K-IndG

K

[
/DL2ν

N

]

= D-IndG
K ◦µK

N

[
/DL2ν

N

]

= D-IndG
K

(
QK

VI(x)
)
.

�

It remains to prove Proposition 14.6. This proof will be given in Chapter 15.



Chapter 15

Dirac operators and the mapK-IndG
K

This chapter is devoted to the proof of Proposition 14.6. We will define an operator̃/D
L2ω

M whose

K-homology class is the image of the class of/DL2ν

N under the map K-IndGK. Then we prove some

general facts about principal symbols, and finally we use these facts to show that/DL2ω

M and/̃D
L2ω

M
define the same class inK-homology, proving Proposition 14.6.

Throughout this chapter, we will consider a class

[N,ν,ΦN,L2ν ,(−,−)L2ν ,∇N,PN] ∈ CSEHamPS(K),

and we will write

[M,ω,ΦM,L2ω ,(−,−)L2ω ,∇M,PM] :=

H-IndG
K[N,ν,ΦN,L2ν ,(−,−)L2ν ,∇N,PN] ∈CSEHamPS(G).

15.1 Another Dirac operator onM

Let us construct the differential operator/̃D
L2ω

M mentioned in the introduction to this chapter. Just

like the Spinc-Dirac operator/DL2ω
M , it acts on sections of the spinor bundle

S
M := PM×Spinc(dM) ∆dM →M, (15.1)

associated to the Spinc-structurePM defined in Section 13.2.

In the definition of the operator̃/D
L2ω

M , we will use the following decomposition of the spinor
bundleS M:

Lemma 15.1.We have a G-equivariant isomorphism of vector bundles over M,

S
M ∼=

(
(G×∆dp

)⊠S
N)

/K,

where K acts on(G×∆dp
)⊠S N by

k ·
(
(g,δp)⊗sN)

= (gk−1, Ãd(k)δp)⊗k ·sN,

for k∈ K, g∈G, δp ∈ ∆dp
and sN ∈S N.

182
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Proof. We have the following chain of isomorphisms:

S
M ∼=

(
PG/K

M ×U(1) (G×K PN)
)
×H ∆dp

⊗∆dN

∼=
(
PG/K

M ×Spinc(dp) ∆dp

)
⊗

(
G×K PN×Spinc(dN) ∆dN

)

∼= (G×N×∆dp
)/K⊗ (G×S

N)/K
∼=

(
(G×∆dp

)⊠S
N)

/K.

(15.2)

The first isomorphism in (15.2) is induced by theH-equivariant isomorphism∆dM
∼= ∆dp

⊗
∆dN.

The second isomorphism is given by

[
pG/K

M , [g, pN],δp⊗δN
]
7→ [pG/K

M ,δp]⊗
[
[g, pN],δN

]
,

for all pG/K
M ∈ PG/K

M , g∈G, pN ∈ PN, δp ∈ ∆dp
andδN ∈ ∆dN .

The third isomorphism is the obvious one, given the definitions ofPG/K
M andS N.

Finally, the fourth isomorphism is a special case of the isomorphism

E/G⊗F/G∼= (E⊗F)/G,

if H is a group acting freely on a manifoldM, andE→M andF →M areG-vector bundles.
Explicitly, the isomorphism (15.2) is given by

[
[g,n,a], [g, pN],δdp

⊗δN
]
7→

[
(g,aδp)⊗ [pN,δN]

]
,

for g∈G, n∈N, a∈ Spinc(p), pN ∈ PN, δp ∈ ∆dp
andδN ∈ ∆dN .

Next, let/DG,K be the operator defined on page 122, and consider the operator

/DG,K⊗1+1⊗/DL2ν

N : Γ∞(
G×N,(G×∆dp

)⊠S
N)
→ Γ∞(

G×N,(G×∆dp
)⊠S

N)
,

which is odd with respect to the grading on the tensor product(G×∆dp
)⊠S N induced by the

gradings on∆dp
andS N. Because the operators/DG,K and/DL2ν

N areK-equivariant, we obtain an
operator

/̃D
L2ω

M := (/DG,K⊗1+1⊗/DL
N)K (15.3)

on

Γ∞(
G×N,(G×∆dp

)⊠S
N)K ∼= Γ∞(

M,
(
(G×∆dp

)⊠S
N⊗

)
/K

)

∼= Γ∞(M,S M),

by Proposition 8.6 and Lemma 15.1.

The importance of the operator/̃D
L2ω

M lies in the following fact:

Lemma 15.2.The image of the class[/DL2ν

N ] ∈ KK
0 (N) under the mapK-IndG

K is the class of̃/D
L2ω

M
in KG

0 (M).
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Proof. By Theorem 10.8.7 from [34],1 the Kasparov product[/DG,K]× [/DL2ν

N ] ∈ KG×K×K
0 (G×

N) is the class of the operator/DG,K ⊗1+ 1⊗ /DL2ν

N on (G×∆dp
)⊠S N. It then follows from

Corollary 8.11 that the latter class is mapped to the class of/̃D
L2ω

M .

Therefore, Proposition 14.6 follows if we can prove that/̃D
L2ω

M and/DL2ω

M define the same
K-homology class. We prove this fact by showing that their principal symbols are equal (see
Remark 4.34).

15.2 Principal symbols

This section contains some general facts about the principal symbols of differential operators
that are constructed from other differential operators. These facts may be well-known and
straightforward to prove, but we have included them here forcompleteness’ sake.

Tensor products

First, let X andY be smooth manifolds, and letE → X andF → Y be vector bundles. Let
DE : Γ∞(E)→ Γ∞(E) andDF : Γ∞(F)→ Γ∞(F) be differential operators of the same order
d. Consider the exterior tensor productE⊠F → X×Y, and letD := DE⊗1+1⊗DF be the
operator onΓ∞(E⊠F) given by

D(s⊠ t) = DEs⊠ t +s⊠DF t,

for s∈ Γ∞(E) andt ∈ Γ∞(F).
As before, we denote the cotangent bundle projection of a manifold M by πM. The principal

symbols of the operatorsDE, DF andD are vector bundle homomorphisms

σDE : π∗XE→ π∗XE;

σDF : π∗YF → π∗YF;

σD : π∗X×Y(E⊠F)→ π∗X×Y(E⊠F).

Let

θ : π∗X×Y(E⊠F)→ π∗XE⊠π∗YF

be the isomorphism of vector bundles overT∗(X×Y)∼= T∗X×T∗Y given by

θ
(
(ξ ,η),(e⊗ f )

)
= (ξ ,e)⊗ (η, f ),

for x∈ X, y∈Y, ξ ∈ T∗x X, η ∈ T∗y Y, e∈ Ex and f ∈ Fy. The first fact about principal symbols
that we will use is:

1This can also be seen in the unbounded picture ofKK-theory.
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Lemma 15.3.The following diagram commutes:

π∗X×Y(E⊠F)
σD //

θ ∼=
��

π∗X×Y(E⊠F)

θ ∼=
��

π∗XE⊠π∗YF
σDE⊗1+1⊗σDF

// π∗XE⊠π∗YF.

Proof. Let g∈C∞(X), h∈C∞(Y), s∈ Γ∞(E) andt ∈ Γ∞(F) be given. LetpX : X×Y→ X and
pY : X×Y→Y be the natural projections. Then we have the functionp∗Xg+ p∗Yh∈C∞(X×Y).
Let x∈ X andy∈Y be given. Setµ := d(x,y)(p∗Xg+ p∗Yh) ∈ T∗(x,y)X×Y. Note that all elements
of this cotangent space can be written in this way (for certain functionsg andh). We compute:

σD(µ,s(x)⊗ t(y)) =
(
µ, lim

λ→∞

1
λ d e−iλ (p∗Xg+p∗Yh)D

(
eiλ (p∗Xg+p∗Yh)s⊠ t

)
(x,y)

)
=

(
µ, lim

λ→∞

1
λ d

[
(e−iλg⊗e−iλh)

(
DE

(
eiλgs

)
⊠eiλht +eiλgs⊠DF

(
eiλht

)]
(x,y)

)
=

(
µ,σDE(dxg,s(x))⊗ t(y)+s(x)⊗σDF(dyh, t(y))

)
.

In other words,

θ ◦ σD ◦ θ−1((dxg,s(x))⊗ (dyh, t(y))
)
=

(
σDE⊗1+1⊗σDF

)(
(dxg,s(x))⊗ (dyh, t(y))

)
.

Pullbacks

Next, letX andY again be smooth manifolds, and letq : E→Y be a vector bundle. Letf : X→Y
be a smooth map. (We will later apply this to the situationX = G×N, Y = M, E = S M⊗L2ω ,
and f the quotient map.) LetDE be a differential operator onE, of orderd. Let D f ∗E be a
differential operator on the pullback bundlef ∗E with the property that for alls∈ Γ∞(E),

D f ∗E( f ∗s) = f ∗(DEs).

Consider the vector bundle
f ∗(T∗Y⊕E)→ X.

It consists of triples(x,ξ ,e) ∈ X× T∗Y×E, with f (x) = πY(ξ ) = q(e). Using this vector
bundle, we write down the diagram

π∗YE
σDE // π∗YE

f ∗(T∗Y⊕E)

a

OO

b
��

σ̃DE // f ∗(T∗Y⊕E)

a

OO

b
��

π∗X( f ∗E)
σD f∗E // π∗X( f ∗E),

(15.4)
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where for all(x,ξ ,e) ∈ f ∗(T∗Y⊕E),

a(x,ξ ,e) := (ξ ,e)

b(x,ξ ,e) :=
(
(Tx f )∗ξ ,x,e

)

σ̃DE(x,ξ ,e) :=
(
x,σDE(ξ ,e)

)
.

Lemma 15.4.Diagram(15.4)commutes.

Proof. The upper half of diagram (15.4) commutes by definition of themapσ̃DE .
To prove commutativity of the lower half, letx ∈ X, ϕ ∈C∞(Y) ands∈ Γ∞(E) be given.

Then

σD f∗E

(
b
(
x,df (x)ϕ,s( f (x))

))
= σD f∗E

(
(Tx f )∗df (x)ϕ,x,s( f (x))

)

= σD f∗E

(
dx( f ∗ϕ),( f ∗s)(x)

)

=
(
dx( f ∗ϕ), lim

λ→∞

1
λ d

(
e−iλ f ∗ϕD f ∗Eeiλ f ∗ϕ f ∗s

)
(x)

)

=
(
dx( f ∗ϕ), lim

λ→∞

1
λ d

(
f ∗

(
e−iλϕDEeiλϕs

)
(x)

)

=
(
dx( f ∗ϕ), lim

λ→∞

1
λ d

(
x,

(
e−iλϕDEeiλϕs

)
( f (x))

)

=
(
(Tx f )∗df (x)ϕ,x,σDE(df (x)ϕ,s( f (x)))

)

= b
(
σ̃DE(x,df (x)ϕ,s( f (x)))

)
.

Rather than diagram (15.4), we would prefer a diagram with a direct vector bundle homo-
morphism fromπ∗YE to π∗X( f ∗E) in it. It is however impossible to define such a map in general.
The best we can do is to define it for each pointx∈ X separately: let

(b◦a−1)x : π∗YE|T∗f (x)Y→ πX( f ∗E)|T∗x X

be the map
(b◦a−1)x(ξ ,e) =

(
(Tx f )∗ξ ,e

)
.

Using this map, we obtain the following statement, which is actually equivalent to Lemma 15.4.

Corollary 15.5. For all x ∈ X, the following diagram commutes:

π∗YE|T∗f (x)Y
σDE |T∗f (x)Y //

(b◦a−1)x
��

π∗YE|T∗f (x)Y
(b◦a−1)x

��
π∗X( f ∗E)|T∗x X

σD f∗E |T∗x X
// π∗X( f ∗E)|T∗x X.

One last remark that we will use later, is that the maps(b◦ a−1)x are injective ifTx f is
surjective. So iff is a submersion, all(b◦a−1)x are injective.
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15.3 The principal symbols of/DL2ω

M and /̃D
L2ω

M .

Let gN andgM be the Riemannian metrics onN andM, respectively, induced by the Spinc-
structuresPN andPM. We use the same notation for the mapgM : TM→ T∗M given byv 7→
gM(v,−), and similarly forgN. The Dirac operators/DL2ω

M and/DL2ν

N have principal symbols

σ
/DL2ω

M
:π∗MS

M→ π∗MS
M;

σ
/DL2ν

N
:π∗NS

N→ π∗NS
N,

given by the Clifford action (3.10):

σ
/DL2ω

M
(ξ ,sM) =

(
ξ ,cTM

(
i(gM)−1(ξ )

)
sM)

; (15.5)

σ
/DL2ν

N
(η,sN) =

(
η,cTN

(
i(gN)−1(η)

)
sN)

,

for m∈M, ξ ∈ T∗mM, sM ∈S M
m andn∈N, η ∈ T∗n N, sN ∈S N

n .

To determine the principal symbol of/̃D
L2ω

M , we need the following basic fact:

Lemma 15.6. The principal symbol of the operator/DG,K on the trivial bundle G×∆dp
→G is

given by
σ/DG,K

(g,ξ ,δp) = (g,ξ ,cp(iξp∗)δp),

for g∈ G, ξ ∈ g∗ andδp ∈ ∆dp
. Hereξp∗ is the component ofξ in p∗ ∼= k0 according tog∗ =

p0⊕ k0, and we identifyp∗ with p, andp with Rdp , using a B-orthonormal basis{X1, . . . ,Xdp
}

of p.

Proof. Let g∈G, f ∈C∞(G) andτ ∈C∞(G,∆dp
) be given. Then

σ/DG,K
(dg f ,τ(g)) =

(
dg f , lim

λ→∞

1
λ

(
e−iλ f /DG,K(eiλ f τ)

)
(g)

)

=
(
dg f , lim

λ→∞

1
λ

(
e−iλ f ∑

j
cp(Xj)Xj(e

iλ f τ)
)
(g)

)
.

This expression equals

(
dg f , lim

λ→∞

1
λ

(
∑

j
cp(Xj)

(
iλXj( f )τ +Xj(τ)

))
(g)

)
=

(
dg f , i ∑

j
cp(Xj)〈dg f ,Telg(Xj)〉τ(g)

)
.

Hence for allξ ∈ g∗, δp ∈ ∆dp
, we have

σ/DG,K
(g,ξ ,δp) =

(
g,ξ , i ∑

j
cp(〈ξ ,Xj〉Xj)δp

)

= (g,ξ ,cp(iξp)δp) ,

since{Xj} is a basis ofp, orthonormal with respect to the Killing form.
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We are now ready to prove that/DL2ω
M and/̃D

L2ω

M have the same principal symbol, and hence
define the same class inK-homology. This will conclude the proof of Proposition 14.6, which
was the remaining step in the proof of Theorem 14.5. As we saw in Section 14.3, the latter
theorem implies Theorem 6.13, which is our second main result.

Proposition 15.7.The following diagram commutes:

π∗MS M
σ

/DL2ω
M //

∼=
��

π∗MS M

∼=
��

π∗M
((

(G×∆dp
)⊠S N

)
/K

) σ
/̃DL2ω
M // π∗M

((
(G×∆dp

)⊠S N
)
/K

)

p∗
(
T∗M⊕ ((G×∆dp

)⊠S N)/K
)

a

OO

b
��

σ̃
/̃DL2ω
M // p∗

(
T∗M⊕ ((G×∆dp

)⊠S N)/K
)

a

OO

b
��

π∗G×N

(
p∗((G×∆dp

)⊠S N)/K
)

∼=h
��

// π∗G×N

(
p∗((G×∆dp

)⊠S N)/K
)

∼=h
��

π∗G×N

(
(G×∆dp

)⊠S N
)

∼=θ
��

σ
/DG,K⊗1+1⊗/DL2ν

N // π∗G×N

(
(G×∆dp

)⊠S N
)

∼=θ
��

π∗G(G×∆dp
)⊠π∗NS N

σ/DG,K
⊗1+1⊗σ

/DL2ν
N // π∗G(G×∆dp

)⊠π∗NS N.

(15.6)

Here the isomorphism h is induced by the general isomorphismp∗(E/H) ∼= E, as defined
in (8.8). The fourth horizontal map from the top is just defined as the composition h−1 ◦
(σ

/DG,K⊗1+1⊗/DL2ν
N

)◦h, i.e. by commutativity of the second square from the bottom.

Proof. It follows from Lemma 15.3 that the bottom square of (15.6) commutes. Note that

(
/DG,K⊗1+1⊗/DL2ν

N

)
p∗s= p∗

(
/̃D

L2ω

M s
)

for all s∈ Γ∞((
(G×∆dp

)⊠S N
)
/K

)
(see the sketch of the proof of Proposition 8.6). We can

therefore apply Lemma 15.4 to see that the second and third squares in (15.6) from the top
commute as well. We will first show that the outside of diagram(15.6) commutes, and then
deduce commutativity of the top subdiagram.

Let g∈ G, n∈ N, η ∈ T∗n N, ξ ∈ p∗, pN ∈ PN, δp ∈ ∆dp
andδN ∈ ∆dN be given. Then we

have the element
(
(g,n), [g,η,ξ ],

[
(g,δp)⊗ [pN,δN]

])
∈ p∗

(
T∗M⊕ ((G×∆dp

)⊠S
N)/K

)
. (15.7)

Here we have used Proposition 12.1 and Lemma 12.2. Applying the mapa and the (inverse of
the) isomorphism in the upper left corner of (15.6) to this element, we obtain

(
[g,η,ξ ],

[
[g,n,eSpinc(p)], [g, pN],δp⊗δN

])

∈ π∗M
(
PG/K

M ×U(1) (G×K PN)×H ∆dp
⊗∆dN

)∼= π∗MS
M. (15.8)
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HereeSpinc(p) is the identity element of Spinc(p).

Let ζ ∈
(
RdN

)∗
be the covector such thatη ∈ T∗N corresponds to[pN,ζ ] ∈ PN×Spinc(dN)(

RdN
)∗

. Thenσ
/̃D

L2ω
M

applied to (15.8) gives

(
[g,η,ξ ],

[
[g,n,eSpinc(p)], [g, pN],cp⊕RdN (iξ , iζ )(δp⊗δN)

])
,

where we identify
(
RdN

)∗ ∼= RdN using the standard Euclidean metric, andp∗ ∼= p using the
Killing form. By definition of the Clifford modules∆k (see e.g. [22], page 13), this equals

(
[g,η,ξ ],

[
[g,n,eSpinc(p)], [g, pN],cp(iξ )δp⊗δN +δp⊗cRdN (iζ )δdN

])
.

(This is the central step in the proof of Proposition 14.6.)
The image of the latter element under the mapsθ ◦h◦ (b◦a−1)(g,n) is

(
(g,ξ ),(g,cp(iξ )δp)

)
⊗

(
η, [pN,δN]

)
+

(
(g,ξ ),(g,δp)

)
⊗

(
η, [pN,cRdN (iζ )δN]

)
,

which by Lemma 15.6 equals the image under the map

(
σ/DG,K

⊗1+1⊗σ
/DL2ν

N

)
◦θ ◦h◦b

of (15.7). Therefore, the outside of diagram (15.6) commutes.
Now note that for all(g,n)∈G×N, the compositionθ ◦h◦(b◦a−1)(g,n) is injective, because

p is a submersion (see the remark after Corollary 15.5). This fact, together with commutativity
of the outside of diagram (15.6), implies that the top part of(15.6) commutes as well.



Samenvatting in het Nederlands

Een van de nadelen van het promoveren in de wiskunde is dat je nooit over je werk kan praten
met mensen die niet weten wat bijvoorbeeld deK-theorie van eenC∗-algebra is (ze wetenniet
wat ze missen2). Aan de andere kant geeft dat je werk ook wel een soort mysterieuze charme
(toch. . . ?). In ieder geval ga ik in deze samenvatting toch proberen om iets over mijn onderzoek
te zeggen dat ook begrijpelijk is voor mensen die geen wiskunde gestudeerd hebben. Ik ben er
al vier jaar over aan het nadenken hoe ik dat het beste kan aanpakken, en uiteindelijk heb ik
besloten dat ik de titel van mijn proefschrift ga uitleggen aan de hand van een voorbeeld.

De Nederlandse vertaling van de titel van mijn proefschriftis “Kwantisatie3 commuteert
met reductie voor cocompacte Hamiltonse groepsacties.”Een redelijk cryptische zin voor de
meeste mensen. Het belangrijkste deel van die titel is het eerste stuk: “kwantisatie commuteert
met reductie”. Ik zal die woorden uitleggen aan de hand van een auto op de snelweg, zoals in
Figuur 1.

100 km/u

200 km

Figuur 1: Een auto op de snelweg

Kwantisatie

Eerst het woord ‘kwantisatie’. Dat betekent dat je van de normale, klassieke beschrijving van
een situatie de kwantummechanische beschrijving ervan maakt.

Wat betekent dat in het geval van de auto? De klassieke beschrijving van de situatie is wat
we allemaal gewend zijn. Stel, je rijdt in een auto en je vraagt je af hoe laat je thuis zal zijn.
Als je dan (zoals in Figuur 1) weet dat je 200 km van huis bent, en je 100 km per uur rijdt,
dan weet je ook dat je over twee uur thuis bent. Je kan natuurlijk in de tussentijd in de file

2Zie paragraaf 4.2.
3Dat schrijf je sinds 1996 inderdaad met ‘kw’.

190
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komen te staan, of haast krijgen en 150 km per uur gaan rijden,maar dat zou het verhaal een
beetje verpesten. De twee dingen die je moet weten zijn duswaar je bent(hoe ver van huis
bijvoorbeeld) enhoe hard je gaat. Die twee stukjes informatie, plaats en snelheid, noemen we
de klassieke beschrijving4 van de situatie.

De kwantummechanica is de natuurkunde van de erg kleine dingen. Daarbij gaat het er
volkomen anders aan toe dan je gewend bent. Het belangrijkste punt in de kwantummechanica
is dat je niet meer zeker weetwaar iets precies is, maar dat je alleen dekansweet dat iets hier
of daar is. Als je een auto op de snelweg op een kwantummechanische manier beschrijft, dan
weet je niet meer of je 190, 200 of 210 km van huis bent, maar alleen dekansdat je nog zo ver
moet rijden, zoals bijvoorbeeld in Figuur 2. In dit voorbeeld kan de auto op drie plaatsen zijn,

210 km

190 km
200 km

kans = 25% kans = 50% kans = 25%

Figuur 2: Een kwantum-auto

maar het kunnen er net zo goed twee, zeven of zelfs oneindig veel zijn.

Dat is natuurlijk onzin, in het echt weet je best waar je bent.Dit gaat ook alleen maar op
voor auto’s die kleiner zijn dan zeg 0,0000001 mm. Dus zelfs met een Nissan Micra of een
Smart merk je er niets van.

De snelheid van de auto mogen we nu vergeten. Als je de kansverdeling5 weet van de plaats
van een auto, dan blijk je via een wiskundig trucje6 ook de kansverdeling van zijn snelheid te
kunnen bepalen, maar dat laten we nu even zitten.

Wat betekent het woord ‘kwantisatie’ nu? Dat betekent dat jede klassieke beschrijving
neemt, de verzameling vanalle mogelijkeplaatsen en snelheden van de auto (zoals in Figuur 1),
en die vervangt door de kwantummechanische beschrijving, de verzameling vanalle mogelijke
kansverdelingen van de plaats van de auto (zoals in Figuur 2).7

4In dit proefschrift komt vaak de term ‘symplectische variëteit’ (‘symplectic manifold’ in het Engels, zie Def-
inition 2.1) voor. Dat is min of meer de verzameling van alle mogelijke plaatsen en snelheden van een auto, een
knikker of wat dan ook. Dat een symplectische variëteit meestal(M,ω) heet betekent trouwens niet datM voor de
plaats staat enω voor de snelheid. Plaats en snelheid zitten allebei in dieM, enω is iets dat je kan gebruiken om
te bepalen hoe die auto of die knikker verder gaat bewegen.

5Als ik het in dit proefschrift over een ‘Hilbertruimte’ (‘Hilbert space’) heb, dan is dat min of meer de verza-
meling van alle mogelijke kansverdelingen van de plaats vaneen auto, een knikker, of iets anders.

6de Fourier-transformatie
7Er zijn verschillende wiskundige definities van kwantisatie. Zie Definitions 3.15, 3.17, 3.20, 3.30, 6.1 en 6.2.

Degene die ik gebruikt heb zijn de meest algemene, Definitions 6.1 en 6.2.
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Reductie

Nu het woord ‘reductie’. Dat heeft alles te maken metsymmetrie. Een gezicht is bijvoorbeeld
(bijna) spiegelsymmetrisch, en een appel (bijna) rotatiesymmetrisch. In het voorbeeld van de
auto kijken we naar een ander soort symmetrie. Stel dat je door een saai, symmetrisch polder-
landschap rijdt, met precies om de 100 km een boom en een huis (zie Figuur 3). Dat landschap

100 km100 km etc.

Figuur 3: Een klassieke auto in een symmetrisch landschap

blijft hetzelfde als je het 100 km opschuift. Met andere woorden: 100 km verschuiven is een
symmetrie8 van het landschap. Als alle bomen en huizen er hetzelfde uitzien tenminste, maar
dat nemen we even aan.

Als je je nu niet afvraagt wanneer je bijjouw huis bent, maar wanneer je bijeenhuis bent,
dan hoef je niet meer te weten waar je precies op de weg zit, maar alleen hoe ver je van het
dichtstbijzijnde huis bent. Het maakt dan niet uit of je 100 km verderop zit, of 200 km, etc.

Nu maken we even een denkstap. We zijn allemaal wel eens verdwaald geweest, en dan
vraag je je soms af “Ben ik hier niet al eerder langs gereden?”Dat vraagt de automobilist in
Figuur 3 zich ook af. Hij weet niet of alle bomen en huizen er hetzelfde uitzien, of dat hij in
een rondje aan het rijden is, zoals in Figuur 4. Hij weet natuurlijk wel of hij naar links moet

Omtrek: 100 kmOmtrek: 100 km

Figuur 4: De reductie: een ronde weg

sturen of rechtdoor rijdt, maar op een ronde weg van 100 km merk je het verschil toch bijna niet.
Figuur 4 heet de(klassieke) reductievan Figuur 3. Of, om preciezer te zijn, de verzameling van
alle mogelijkeplaatsen en snelheden van een auto op de ronde weg in Figuur 4 is de reductie

8De termen ‘groep’ (‘group’), ‘groepsactie’ (‘group action’) of zelfs ‘Hamiltonse groepsactie’ (‘Hamiltonian
group action’, Definition 2.6) in dit proefschrift slaan allemaal op zulke symmetrieën. In dit voorbeeld is degroep
de verzameling van alle gehele getallenn = . . . ,−1,0,1,2,3, . . ., en degroepsactieis het verschuiven van de weg
overn maal 100 km. Deze groepsactie blijkt Hamiltons te zijn.



SAMENVATTING IN HET NEDERLANDS 193

van de verzameling vanalle mogelijkeplaatsen en snelheden van een auto op de symmetrische
weg in Figuur 3.

Als er iets symmetrisch aan de hand is, dan kun je vaak net zo goed naar een kleinere
situatie kijken, zoals de weg in Figuur 4 kleiner is (namelijk 100 km lang) dan de weg in Figuur
3 (oneindig lang). Die kleinere situatie heet dan de reductie9 van de symmetrische situatie. Het
is vaak makkelijker om met de reductie te werken dan met de grote situatie, hoewel dat niet
direct uit dit voorbeeld blijkt.

Commuteert kwantisatie met reductie?

Nu komt alles samen dat we tot zover gezien hebben. Dat kan watveel informatie tegelijk zijn,
dus dit is even een moment om goed op te letten.

Zoals ik al zei is centrale thema van mijn proefschrift de zin“Kwantisatie commuteert met
reductie”. Die betekent dat eerst de klassieke reductie nemen, en daarvan de kwantisatie, het-
zelfde oplevert als eerste de kwantisatie nemen, en daarvande kwantum-reductie.10

De reductie van Figuur 3 is Figuur 4. De kwantisatie van die reductie is de kwantummech-
anische versie van Figuur 4, die in Figuur 5 uitgebeeld is. Hier bedoel ik eigenlijk weer de

kans = ... kans = ... kans = ...

Omtrek: 100 km

Figuur 5: De kwantisatie van de reductie

verzameling van alle mogelijke kansverdelingen van de plaats van de auto op de ronde weg.
Dit willen we vergelijken met de (kwantum-)reductie van de kwantisatie van Figuur 3. Die

kwantisatie ziet eruit als Figuur 6.

kans = ...kans = ...

kans = ...

Figuur 6: Een kwantum-auto in een symmetrisch landschap

9Zie Definition 2.17.
10Op de voorkant van dit proefschrift staat de afkorting[Q,R] = 0 van de zin “Kwantisatie commuteert met

reductie”. In die afkorting staatQ voor kwantisatie (‘quantisation’),R voor reductie, en[Q,R] voor het ‘verschil’
tussen eerst de reductie nemen en dan de kwantisatie en eerstde kwantisatie nemen en daarna de reductie. Dat
verschil is niet echt goed gedefinieerd, dus[Q,R] = 0 is een symbolische afkorting, en niet een echte formule.
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Maar wat is daar de reductie van? Dat is een moeilijke vraag. Je wil in ieder geval dat
die reductie hetzelfde is als Figuur 5, zodat kwantisatie inderdaad met reductie commuteert.
Maar de standaardmanier11 om de reductie van Figuur 6 te definiëren is om de verzameling
te nemen van alle kansverdelingen die niet veranderen als jeze verschuift over 100 km. Een
voorbeeld van zo’n kansverdeling staat in Figuur 7. Dat is helaas een onzinnige kansverdeling.

kans = 60 % kans = 60 % kans = 60 %

kans = 10 %kans = 10 % kans = 10 %

Figuur 7: De reductie van de kwantisatie?

Alle kansen samen zouden namelijk precies 1 moeten zijn, maar in Figuur 7 zijn alle kansen
samen gelijk aan

60%+10%+60%+10%+60%+10%+ · · · ,
en daar komt niet 1 uit. (Er komt zelfs ‘oneindig’ uit, wat al helemaal nergens op slaat.)

Dus commuteert kwantisatie nu met reductie? In dit voorbeeld weten we niet eens wat de
reductie van de kwantisatie is, dus we kunnen de vraag überhaupt niet goed formuleren. . . Dat
probleem wordt veroorzaakt doordat de weg die we bekijken oneindig uitgestrekt is, waardoor
een goede kansverdeling nooit hetzelfde kan blijven als je hem 100 km opschuift, zoals we net
zagen.

Compact en niet-compact

Iets dat oneindig uitgestrekt is, zoals de weg in Figuur 3, noemen we in de wiskundeniet-
compact. Voorbeelden van andere niet-compacte dingen zijn lijnen,vlakken en oneindig lange
cilinders. Wél compact zijn bijvoorbeeld cirkels (zoals de weg in Figuur 4), boloppervlakken
en oppervlakken van autobanden, want die zijn begrensd.12

In de jaren ’80 en ’90 is er een hoop (wiskundig) onderzoek gedaan naar de vraag of kwan-
tisatie commuteert met reductie, maar alleen als alles compact is. (En dan blijkt het antwoord
“Ja” te zijn.) Omdat je in het niet-compacte geval problemenkrijgt zoals ik hierboven uitlegde,
was daar nog nooit naar gekeken. Mijn promotor Klaas Landsman heeft een manier gevon-
den om ook in niet-compacte situaties de vraag of kwantisatie commuteert met reductie op een
wiskundig precieze manier te stellen.13 De afgelopen 4 jaar heb ik geprobeerd om die vraag
voor zo veel mogelijk situaties te beantwoorden. In de situaties die ik bekeken heb, is het
antwoord weer “Ja”.14

11Zie (3.15).
12Ik wek hier misschien de indruk dat ‘compact’ hetzelfde betekent als ‘begrensd’, maar dat is niet helemaal

zo. Een begrensd lijnstuk waarvan de eindpunten niet meedoen is bijvoorbeeld niet compact. Als de eindpunten
wel meedoen is zo’n lijnstuk wel compact. Het cruciale verschil is dat een continue functie op een lijnstukmet
eindpunten altijd een maximale en minimale waarde aanneemt, terwijl dat niet zo is voor een lijnstukzonder
eindpunten. Denk bijvoorbeeld aan de functief (x) = 1

x op het lijnstuk]0,1[, dat bestaat uit alle getallen die groter
zijn dan 0 en kleiner dan 1.

13Zie Conjecture 6.4. (‘Conjecture’ betekent ‘vermoeden’.)
14Zie Theorems 6.5 en 6.13. (‘Theorem’ betekent ‘stelling’.)
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Ik heb dus naar niet-compacte snelwegen gekeken, zoals in Figuur 3, maar alleen als ze zo
symmetrisch waren dat hun reductie compact was, zoals de ronde, begrensde weg in Figuur 4.
Dat is de betekenis van het woord ‘cocompact’ in de titel van mijn proefschrift.

Tot slot moet ik bekennen dat het voorbeeld in deze samenvatting niet in mijn proefschrift
past, omdat de reductie in Figuur 4 toch eigenlijk niet compact is. De oorzaak daarvan is dat
een auto op een ronde weg wel elke snelheid kan hebben die je wil. (Dit is nu niet alleen
een wiskundige utopie, maar meer een algemeen mannelijke. Waarmee ik niet wil beweren
dat vrouwen geen wiskunde kunnen doen, of niet hard zouden willen rijden natuurlijk.) Het
snelheids-gedeelte van Figuur 4 is daardoor wel oneindig uitgestrekt, oftewel niet compact.
In Section 11.6 bekijk ik een variant van dit voorbeeld waarbij het ook niet uitmaakt of je
bijvoorbeeld 80 km per uur rijdt of 180, of 280, etc. Dat heeftniets meer met de realiteit te
maken, maar dan commuteert kwantisatie wel mooi met reductie.15

Maar wat heb je daar nou aan?

Als iemand iets over wiskunde schrijft of vertelt, dan raak ik meestal snel mijn interesse kwijt
als ik niet snapwaaromje naar de wiskunde zou willen kijken waar het over gaat. Daarwordt
vaak weinig aandacht aan besteed, omdat het meestal moeilijk uit te leggen is. Dat geldt ook
voor mijn proefschrift, maar ik wil toch een paar redenen noemen waarom je het interessant of
nuttig kan vinden dat kwantisatie commuteert met reductie.

Ten eerste is het een test voor de definities van kwantisatie en reductie. Als kwantisatie
niet commuteert met de reductie, dan is er (vind ik) iets mis met de definitie van kwantisatie
en/of reductie. Mijn begeleider Klaas Landsman heeft definities bedacht van kwantisatie en
(kwantum-)reductie, en het is dus een goed teken dat met die definities kwantisatie en reductie
inderdaad met elkaar commuteren, in de gevallen die ik bekeken heb.

Ten tweede is het vaak niet makkelijk om de kwantisatie te bepalen van een klassieke re-
ductie. Maar als kwantisatie commuteert met reductie, dan kun je, in plaats van die klassieke
reductie te kwantiseren, net zo goed de hele situatie kwantiseren (wat makkelijker is), en daar-
van de reductie nemen (wat ook te doen moet zijn).

De derde reden is voor mij de belangrijkste. Die reden is dat “kwantisatie commuteert
met reductie” een verband aangeeft tussen dewiskundeachter de klassieke mechanica en de
wiskundeachter de kwantummechanica. En de stukjes wiskunde die ik het mooist vind zijn
de stukjes die een verband aangeven tussen dingen die op het eerste gezicht totaal verschillend
lijken.

De stellingen in dit proefschrift zijn zo abstract dat natuurkundigen er (nog. . . ) niets aan
hebben. Maar ze geven wel een verband aan tussen de wiskunde achter de klassieke mechanica,
diesymplectische meetkundeheet, en de wiskunde achter de kwantummechanica, dierepresen-
tatietheorieheet, of in mijn gevalK-theorie. Die vakgebieden lijken niets met elkaar te maken
te hebben, als je niet weet dat kwantisatie commuteert met reductie. Dat er wél een verband is
tussen die onderwerpen is niet alleen mooi, maar zorgt er ookvoor dat we ze allebei beter gaan
begrijpen. En daar houden wij van, van dingen begrijpen.

15Zie diagram (11.14).
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Notation

Topological spaces

For any topological spaceX, and any (continuous) vector bundleE overX,

• C(X): the space of continuous functions onX;

• Cc(X): the space of compactly supported continuous functions onX;

• Γ(E) = Γ(M,E): the space of continuous sections ofE;

• Γc(E) = Γc(M,E): the space of compactly supported continuous sections ofE;

• E⊠F : if F →Y is another vector bundle, the exterior product vector bundle overX×Y;

• L2(X), L2(X,E): if X is equipped with a measure, the Hilbert space ofL2-functions onX
and the Hilbert space ofL2-sections of a Hermitian vector bundleE overX;

• X+: the one-point compactification ofX, if X is locally compact;

• pt: the one-point space.

Smooth manifolds

For any smooth manifoldM, and any (smooth) vector bundleE overM,

• C∞(M): the space of smooth functions onM;

• C∞
c (M): the space of compactly supported smooth functions onM;

• Γ∞(E) = Γ∞(M,E): the space of smooth sections ofE;

• Γ∞
c (E) = Γ∞

c (M,E): the space of compactly supported smooth sections ofE;

• Ωk(M;E): the space of smooth sections of
∧kT∗M⊗E→M;

• Ωp,q(M;E): the space of smooth sections of
∧p,qT∗M⊗E→M, if M is equipped with

an almost complex structure;

• X(M): the space of smooth vector fields onM;

• iv: contraction of differential forms by the vector fieldv;
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• R∇: the curvature of a connection∇ onE;

• σD: the principal symbol of a (pseudo-)differential operatorD onE.

Lie groups, Lie algebras and representations

• g, h: the Lie algebras of Lie groupsG, H etc.;

• B: the Killing form on a Lie algebra;

• [V : W]: the multiplicity of a representationW in a (finite-dimensional) representationV;

• Vλ : the irreducible representation of a compact Lie group withhighest weightλ ∈ Λ+;

• Treg: the regular elements of a torusT, i.e. the set{expX;X∈ t,〈α,X〉 6∈2π i Z for all rootsα};

• XG: for X a set equipped with an action by a groupG, the set of fixed points of the action;

• LX: for X in the Lie algebra of a Lie group acting on a smooth manifold, the Lie deriva-
tive of differential forms, with respect toX;

• V0: for V a subspace of a vector spaceW, the annihilator{ξ ∈W∗;ξ |V = 0}.
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