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Introduction

Historical background

In their 1982 paper [28], Guillemin and Sternberg proved eotem that became known as
‘quantisation commutes with reduction’, or symbolicallyQ, R] = 0. For a Hamiltonian ac-
tion by a compact Lie grou on a compact Kahler manifoldM, w), their result asserts that
the space oK-invariant vectors in the geometric quantisation spacgvafw) equals the geo-
metric quantisation of the symplectic reduction(df, w) by the action oK. Here geometric
quantisation was defined as the (finite-dimensional) spibelomorphic sections of a certain
holomorphic line bundle ovev.

A more general definition of geometric quantisation, attidal to Bott, is formulated in
terms of Dirac operators. A compact symplegtienanifold(M, w) always admits & -equivariant
almost complex structure that is compatible watheven if the manifold is not Kahler. Via this
almost complex structure, one can define a Dolbeault—Dijpacator or a SpifirDirac operator,
coupled to a certain line bundle, whose index is interpretethe geometric quantisation of
(M, w). Alternatively, one can associate a Spatructure to the symplectic forwo, and define
the quantisation ofM, w) as the index of a SpfrDirac operator on the associated spinor bun-
dle. Since Dirac operators are elliptic, and silwtés compact, these indices are well-defined
formal differences of finite-dimensional representatioh¥, that is to say, elements of the
representation ring df.

In this more general setting, the fact that quantisationroates with reduction, or ‘Guillemin—
Sternberg conjecture’, was proved in many different wagd,ia various degrees of generality,
by several authors [38, 59, 60, 63, 79, 84]. The requirenmwattM andK are compact re-
mained present, however. An exception is the paper [64] hickvParadan proves a version of
the Guillemin—Sternberg conjecture whéveis allowed to be noncompact in certain circum-
stances. An approach to quantising actions by honcompaapgron nhoncompact manifolds
was also given by Vergne, in [83].

These compactness assumptions are undesirable from ag@lhysint of view, since most
classical phase spaces (such as cotangent bundles) arenmg@ct. Furthermore, one would
also like to admit noncompact symmetry groups. Howeveppireg the compactness assump-
tions poses severe mathematical difficulties, since theximd a Dirac operator on a noncom-
pact manifold is no longer well-defined, and neither is thr@sentation ring of a noncompact
group.

In [50], Landsman proposes a solution to these problemsaat in cases where the quotient
of the group action is compact. (The action is then said tedmmpac) He replaces the
representation ring of a group by tketheory of itsC*-algebra, and the equivariantindex by the

6



INTRODUCTION 7

analytic assembly map that is used in the Baum—Connes ¢arged_andsman’s formulation
of the Guillemin—Sternberg conjecture reduces to the cemeed in [38, 59, 60, 63, 79, 84] if
the manifold and the group in question are compact. The ddgarof this formulation is that
it still makes sense if one only assumes compactness of titsspace of the action.

The first main result in this thesis is a proof of Landsmantisegelisation of the Guillemin—
Sternberg conjecture for Hamiltonian actions by groGpsith a normal, discrete subgrodip
such thatG/T is compact.

In the compact case, the Guillemin—Sternberg conjectupies a more general multiplicity
formula for the decomposition of the geometric quantisatd (M, w) into irreducible repre-
sentations oK. This implication is based on the Borel-Weil theorem, whghiself a special
case of the multiplicity formula that follows from the G@thin—Sternberg conjecture. In the
noncompact case, it is harder to state and prove such a fhaiyiformula. This is caused
by the fact that the Borel-Weil theorem is a statement abootpactgroups, and by the fact
that the geometric quantisation of a symplectic manifoldass aK-theory class instead of a
(virtual) representation.

For semisimple groupS, we tackle these difficulties using V. Lafforgue’s work ir8]4on
discrete series representations &atheory. We then obtain our second main result, which is a
formula for the multiplicity of theK-theory class associated to a discrete series represemtati
in the geometric quantisation of a cocompact Hamiltor@manifold. For this result, we
assume that the image of the momentum map lies istitomgly elliptic set This is the set of
elements of the dual of the Lie algebra®fthat have compact stabilisers with respect to the
coadjoint action. The coadjoint orbits in this set correspto discrete series representations in
the orbit philosophy.

Outline of this thesis

In this thesis, we combine two branches of mathematics: &gtip geometry and noncommu-
tative geometry. To help readers who are specialised in btigese branches understand the
other one, we give a rather detailed theoretical backgrauiart I. In Chapter 1, which is in-
tended for a general mathematical audience, we explainity&iqal motivation of the research
in this thesis. Chapters 2-5 are introductions to sympeggiometry, geometric quantisation
and noncommutative geometry. We conclude Part | with Catin which we state our two
main results, Theorems 6.5 and 6.13.

The proofs of these results follow the same strategy: weackethem from the compact case
of the Guillemin—Sternberg conjecture, using naturalityh@ assembly map. This naturality
of the assembly map is the core of the noncommutative geanpert of this thesis, and is
described in Part II. It contains two cases: naturality footient maps, and (a very special case
of) naturality for inclusion maps. Besides these two casesturality of the assembly map, the
third main result in Part Il is Corollary 8.11, about the ineagf K-homology classes associated
to elliptic differential operators under the Valette honwphism. This homomorphism is the
crucial ingredient of naturality of the assembly map for tigrt maps.

In Part Ill, we show that the ‘Guillemin—Sternberg—Landsimaonjecture for groups with
a cocompact, normal, discrete subgroup is a consequencerofi&y 8.11. We give an alter-
native proof in the special case where the group is abelidrdastrete, and conclude with the
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example of the action d? onR? by addition.

To prove the multiplicity formula for discrete series reggatations in the case of actions
by semisimple groups, we prove an intermediate result tleatall ‘quantisation commutes
with inductiori. This is the central result of Part IV, and its proof is basedour version of
naturality of the assembly map for inclusion maps. In thid,pae define ‘Hamiltonian induc-
tion’ and ‘Hamiltonian cross-sections’, to construct nearklltonian actions from given ones.
These constructions are each other’s inverses, and thetigaion commutes with induction’-
theorem provides a link between these constructions anBDitlae induction map used in the
Connes—Kasparov conjecture, and (more importantly to ug)afforgue’s work on discrete
series representations Krtheory. This will allow us to deduce the multiplicity forraufor
discrete series representations from the Guillemin—8&Fgiconjecture in the compact case.

Credits

Chapters 1 — 5 only contain standard material, except perthegpalternative proof of Proposi-
tion 5.17. Section 6.1 is based on Landsman’s paper [50]S&ation 6.2 is an explanation of
the facts in [48] that we use. Gert Heckman proved Lemma 6.850

Chapter 7 is a reasonably straightforward generalisafiimeaepimorphism case of Valette’s
‘naturality of the assembly map’-result in [61] to possiblyndiscrete groups.

The idea of our proof of Theorem 6.5, as described in Sectibh, 1s due to Klaas Lands-
man. Sections 11.1-11.3 are based on Example 3.11 frorm@pmLusztig’s paper [55]. The
proof of Lemma 11.2 was suggested to us by Elmar Schrohe.

Section 12.3 is based on the proof of the symplectic crosgesetheorem in [54]. Some of
the remaining facts in Chapter 12 and in Chapter 13 may be kniowhe case where the pair
(G,K) is replaced by the pailK, T), although the author has not found them in the literature.
The induction procedure for Sghstructures described in Section 13.2, was explained tyus b
PaulEmile Paradan.

Our proof of Theorem 6.13 was inspired by Paradan’s arti@Bg, [and Paradan’s personal
explanation of the ideas behind this paper.

Prerequisites

This thesis is aimed at readers who are familiar with

e basic topology;

basic Riemannian and almost complex geometry;

basic Banach and Hilbert space theory;

basic Lie theory, and representation theory of compact toegs;

the theory of (pseudo-)differential operators on vectarddes and their principal sym-
bols, in particular elliptic differential operators anceihindices.
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Assumptions

In the topological context, all vector bundles and groujoast are tacitly supposed to be con-
tinuous. In the smooth context they are supposed to be smooth

Unless stated otherwise, all functions are complex-valaed all Hilbert spaces and vector
bundles are supposed to be complex, apart from vector baindlestructed from tangent bun-
dles. Inner products on complex vector spaces are supposegllinear in the first entry, and
antilinear in the second one.

Publications

Chapters 7, 8, 10 and 11 were taken from the paper [37], wijtiatly with Klaas Landsman,
which has been accepted for publicatiorkistheory.

The end of Section 5.3, Sections 6.2 and 6.3, Chapter 9 anpt€kal2 — 15 were taken
from the paper [36], which has been submitted for publicatio
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The bulk of this first part, Chapters 2-5, consists of intioiuns to the two branches of
mathematics that we use: symplectic geometry and noncoativeigeometry. These intro-
ductions start at a basic level, so that the reader does wettbhabe a specialist in both of
these areas to be able to read this thesis. Readers who dliarfavith symplectic geometry
and/or noncommutative geometry can skip the relevant ehnsypdr just quickly take a look at
the notation and the results we will use.

In Chapter 1 we give some physical background, and in Ch&ptez state our two main
results: Theorems 6.5 and 6.13. All material in Part | isdéad, except Chapter 6, and possibly
the alternative proof of Proposition 5.17.



Chapter 1

Classical and quantum mechanics

We begin by briefly reviewing classical and quantum mectsanithis provides the physical
motivation of the research in this thesis. The physicalarotf quantisation will be explained,
to motivate the abstract mathematical Definitions 3.157,33120, 3.30 and 6.1. Chapter 1 is
only meant to provide this motivation, and the rest of thessth does not logically depend on it.

The mathematics behind classical mechanics with symmetimeated in Chapter 2. The
mathematics behind quantum mechanics with symmetry ishibery of equivariant operators
on Hilbert spaces carrying unitary representations of gtaeip. Chapters 4 and 5 on noncom-
mutative geometry deal with a way of looking at this theory.

1.1 Classical mechanics

Let us look at an example. Consider a point particle of rmassoving in 3-dimensional Eu-
clidean spac®3. Letq= (g*,0° ¢°) be the position coordinates of the particle. Suppose the
particle is acted upon by an external force fiEldR3 — R3 that is determined by a potential
functionV € C*(R3), by

ov oV 0V>‘

F:_grawz_(a—cﬂ’a—cﬁ’ﬁ—cﬁ

(1.1)

Then the motion of the particle, as a function of titmés given by a curvey in R3, determined
by the differential equation

F(y(t)) =my"(t), (1.2)

which is Newton’s second lak = ma
Let &(t) := my/(t) be the momentum of the particle at tirhas it moves along the curye
Then (1.1) and (1.2) may be rewritten as

V(t) = (1) w3
(1) = —grao (y(t).

Given this system of equations, the particle’s trajectgsrgdetermined uniquely if both its po-
sition q := y(tp) and momentunp := d(tp) at a timetp are given. This motivates the defini-
tion of the phase spacef the particle aR® = R3 x R3, consisting of all possible positions

12



1.1 Q.ASSICAL MECHANICS 13

q= (g%, ¢% g%) and momentag = (p, p?, p°) the particle can have. A point in phase space,
called astate determines the motion of the particle, through Newtonis (4.3).

To rewrite (1.3) in a way that will clarify the link betweerasisical and quantum mechanics,
consider théHamiltonian function He C*(RR®), given by the total energy of the particle:

3
a.0)= 53 G (1.4)

Furthermore, for two function$, g € C*(RR), we define the Poisson bracket

B Jof dg o0f dg
0} = z apl oq [7'qj opl

e C*(R®). (1.5)

One can check that the Poisson bracket is a Lie brack8¢R®), and that it has theerivation
propertythat for all f,g,h € C*(R®),

{f,gh} =g{f,h}+{f,g}h. (1.6)

The reason why we consider this bracket is that it allows wuegtate (1.3) as follows. Write

y(t) = (Y'(t), (1), ¥’(1));
5(t) = (84(t), 5%(t), 53(t)).

Then (1.3) is equivalent to the system of equations

(V) ®) = {(H.a'}(n1). 8(1);
(8")'(t) = {H, P} (y(t), 3(1)),

for j = 1,2,3, whereg!, p! € C*(RR®) denote the coordinate functions. Renaming the curves
q(t) := y(t) andp(t) := 4(t), we obtain the more familiar form

(@) ={H.q'};
(p')" = {H,p'}.

Hereqg! andp’ denote both the components of the curgesdp and the coordinate functions
onR®, making (1.8) shorter and more suggestive, but mathentigtieas clear than (1.7).

To describe the curvgsand?d in a different way, we note that the linear mép- {H, f },
from C*(R®) to itself, is a derivation by (1.6). Hence it defines a vecteldf&y on R, called
the Hamiltonian vector fielbf H. Let ¢+ : R® — R be the flow of this vector field over time
t. That s,

(1.7)

(1.8)

d

5| f(E"(ap)=&(Hap ={H }ap
t=0

for all f € C*(R®) and(q, p) € R®. Then, ify(0) = g and&(0) = p, conditions (1.7) simply
mean that

(v(t),8(t)) = 4" (q, p). (1.9)
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An observablein this setting is by definition a smooth function of the pimsitand the
momentum of the particle, i.e. a functidnc C*(RR®). The Hamiltonian function and the Pois-
son bracket allow us to write the time evolution equationmf abservabld as the following
generalisation of (1.7):

& (1(y0).5(1))) = {H. £ (v10),3(1)). (1.10)

Herey and & are curves irR3 satisfying (1.7). This time evolution equation fércan be
deduced from the special case (1.7) using the chain rule. Wse® that (1.10) is similar to
the time evolution equation (1.16) in quantum mechanics.

In (1.10), the statéy, ) of the system changes in time, whereas the obsenfaldecon-
stant. To obtain a time evolution equation that resembles|tiantum mechanical version more
closely, we define the time-dependent versionC*® (R x R®) of f, by

f(t,q.p) == f(e%(q,p)) = fi(a, p).
Then by (1.9), equation (1.10) becomes

of
|, = {H, f}. (1.11)

Motivated by this example of one particle R® moving in a conservative force field, we
define aclassical mechanical systetm be a triple(M,{—,—},H), whereM is a smooth man-
ifold called thephase spacéreplacingR® in the preceding example}—,—} is a Lie bracket
onC®(M) satisfying (1.6) for allf,g,h € C*(M), andH is a smooth function oM, called the
Hamiltonianfunction. The brackef—, —} is called a Poisson bracket, and the M {—, —})
is aPoisson manifoldin this thesis, we will considesymplectic manifoldéDefinition 2.1), a
special kind of Poisson manifolds. Given a classical meicladsystem, the dynamics of any
observablg € C*(M) is determined by the classical time evolution equation1(iL.1

For more extensive treatments of the Hamiltonian formafatf classical mechanics, see
[1, 2].

1.2 Quantum mechanics

The quantum mechanical description of a particle is quifeidint from the classical one. The
position of a particle is no longer uniquely determined igiwm mechanics, but one can only
compute the probability of finding the particle in a certagion. The same goes for any other
observable.

Consider once more a particle movinglf. The probability of finding the particle in a
(measurable) regioA C R2 is then given by

/AII.U(OI>|2dq, (1.12)

wherey is the(position) wave functioof the particle. For the integral (1.12) to be well-defined
for all measurablé\, it is necessary thap is anL?-function. Furthermore, the probability that
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the particle exists anywhere at all (which we assume. .. ik bqual to 1 and to

[ Jw(@Pda
R

Therefore the_2-norm of ¢ equals 1. Finally, since for any real numkerthe functionsy
and €%y determine the same probability density|?, the relevant phase space in quantum
mechanics is

{W e L2®%); ||yl = 1}/ U(), (1.13)

whezre g{l) acts onL?(R3) by scalar multiplication. The quotient (1.13) is the préij}eespace
P(L%(R?)).

We will always work with the Hilbert spack?(R?) rather than its projective space, since
it is easier to work with in several respects, and siR¢e?(R®)) can obviously be recovered
from it. The operators of?(L?(R?)) that are relevant for quantum mechanics are induced by
the unitary and anti-unitary operators bf{R?). This is Wigner’s theorem, see [76], Appendix
D or [91], pp. 233-236.

We have so far considered a quantum mechanical system atdapidiet in time. In the
Schibdinger pictureof quantum dynamics, one considers time dependent wavédasgs on
R x R3, where the first factdR represents time, denoted byAs before, letnbe the mass of the
particle, and leV be the potential function that determines the force actimg.or he quantum
mechanical time evolution of the stateis then determined by thechibdinger equatioh

Ly R 2 9%y

whereh is Planck’s constant divided by
The differential operatdr
ﬁZ 3 02
H=———+) —+V

2m 2, (07
is called theHamiltonianof this system. We see that the quantum mechanical Harraltoni
arises from the classical one (1.4) if we replageby iﬁaiq]. Historically, this was the very
first step towards quantisation. By Stone’s theorem (sefg Té&orem 7.17 or [68], Theorem
VIII.7), equation (1.14) is equivalent to

G =e hH gy, (1.15)

whereyx(q) := (t,q) for all g € R3.
In this quantum mechanical setting, an observable is aastfint operatot a on L2(R?).
The spectrum of such an operator is the set of possible valutee observable that can be

LIf the functiony is not sufficiently differentiable, then its derivativesositd be interpreted in the distribution
sense. On the domain on which the differential operator erritht hand side of (1.14) is self-adjoint, the time

derivative ofy is defined as the Iimi% . =limp_g w with respect to th&?-norm.
2This is operator is not defined on alllof(R®), but only on a dense subspace. It isutoundeaperator (see

Section 4.3).
3Again, this operator may be unbounded, and need only be lyeatefined.
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obtained in a measurement. The expectation value of a mezasut of the observabewhen
the system in in the statg is given by

(W.ap)z = [ W@ @D @ dg

Up to now, we have used the Schrodinger picture of quantumamiycs, where states evolve
in time, and observables remain fixed. In the Heisenbergi@cstates are time independent,
whereas observables vary in time. Thus, in our situatioml@servable is a curve— a; of
self-adjoint operators ob?(R?3), such that for all stateg,

(Yo, a o) 2 = (Yk, aolk), 2.
By (1.15), this implies that

a = eiHagenH.
This, in turn, is equivalent to

da| i

dt), R
the commutatdrHa; — a;H of the operator$i anda;. This time evolution equation in quantum
mechanics is very similar to the classical time evolutionaopn (1.11). This is the basis of
any theory about quantising observables.

In general, aguantum mechanical systdin the Heisenberg picture) consists of a Hilbert
spaces (replacingL?(R®)) called thephase spageand a self-adjoint operafoH, called the
Hamiltonian Observables are curves- a; of self-adjoint operators ov?’, whose dependence
ont is determined by (1.16).

H, &, (1.16)

1.3 Quantisation

The term ‘quantisation’ refers to any way of constructing gmantum mechanical description of
a physical system from the classical mechanical descripfio a classical mechanical system
(M,{—,—1},H), a quantisation procedure should associate a quantum mieahgystem

Q(Mv{_v_}vH):(%vﬁ) (1.17)

(where the hat o is used to distinguish the quantum Hamiltonian from thesitzd one).
Such constructions go back to the pioneers of quantum mesh@ohr, Heisenberg, Schrodinger,
Dirac). Overviews are given in [49, 51].

In addition, one would like to be able to quantise obsensabl@uantisation of observables
is often required to be a Lie algebra homomorphism

(C*(M),{—,—-}) 9, ({self-adjoint operators oﬂf},iﬁ[—,—]) (1.18)

4The definition of the commutator of two unbounded operatsradtually a more delicate matter than we
suggest here, but we will not go into this point.
Spossibly unbounded



1.4 S'MMETRY AND [Q,Rj=0 17

such thatQ(H) = H. If this quantisation map is a Lie algebra homomorphismn the time
evolution equations (1.11) and (1.16), we have
)

A < df
dt B dt

for all f € C*(M). However, we will see that quantisation of observables cabe a Lie

algebra homomorphism, if it is also required to have soméiaddl desirable properties.

From a physical point of view, it is only required that thessdgcal and quantum mechanical
time evolution equations are related by quantisation ‘@ltmit h — 0’. That is, quantisation
of observables should only be a Lie algebra homomorphistiglitnit. If it is an actual Lie
algebra homomorphism, this implies that the laws of quantiymamics are the same as the
laws of classical dynamics, which is obviously not the cabBkevertheless, the requirement
that quantisation of observables is a Lie algebra homomsmpls often imposed in geometric
quantisation, possibly because it is mathematically mhtand because it at least gives some
relation between classical and quantum dynamics.

Other properties one might like to see in a quantisationgaare are the following (cf. [27],
page 89).

t=0

e Let 1y be the constant function 1 dvi, and letl ,» be the identity operator ax#’. Then
Q(1m) = iRl

e If a set of functions{ f;}jc; separates points almost everywhereNdnthen the set of
operatorg Q(fj) }jes acts irreducibly, i.e. no nonzero proper subspacegofs invariant
under allQ(f;).

But Groenewold & van Hove’s ‘no go theorems’ [26, 82, 81] stHtat such a quantisation
procedure does not exist. This may not be too surprisinggive highly restrictive assumption
that quantisation of observables is a Lie algebra homonsmph

There are various ways to define quantisation in such a wayathaany as possible of
the above requirements are satisfied, or that they are sdtigfymptotically ‘as tends to
zero'. In this thesis however, we hardly pay any attentiothi observable side (1.18) of
geometric quantisation. Instead, we consider a matheatlgtiGggorous approach to (1.17),
based omgeometric quantisatioa la Bott. This procedure gives a way to construct the quantu
mechanical phase spag€ from the classical onéM, {—,—}). The prequantisation formula
(see Definition 3.6) then gives a quantisation map for (savhsgrvables, that is actually a Lie
algebra homomorphism. But as we said, this will only be a sdeark.

Quantising phase spaces may not seem like the most integgsit of quantisation, but
it turns out that this has interesting features (especraliyhematical ones), particularly in the
presence ofymmetry

1.4 Symmetry and ‘quantisation commutes with reduction’

If a physical system possesses a symmetry, it can often luziloed in terms of a ‘smaller’
system. Replacing a system by this smaller system is cedbection It is defined in a precise
way for classical mechanics in Definitions 2.17 and 2.21\Wwelor quantum mechanics, this
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notion of reduction is harder to define rigorously. The quanteduction procedure we will
work with is given by (6.3) and (6.12).
In classical mechanics, a symmetry of a systdm{—, —},H) is an action of a grouf® on
M that leaves the brackét-, —} and the functiorH invariant. Under certain circumstances (if
the action iHamiltonian see Definition 2.6) such a symmetry allows us to define theaed
system
(MGa {_7 _}Ga HG) - R(M7 {_7 _}7 H)

In quantum mechanics, a symmetry of a syste##f,H) is a unitary representation of a
groupG on 77, such thaH is a G-equivariant operator. We can then, again under favourable
circumstances, define the reduced system

(#6,Hg) = R(JC,H).

The central motto in this thesis (and indeed, in its titl€)ggantisation commutes with reduc-
tion’, or symbolically, {Q,R] = 0'. This is the equality

R(Q(Mv {_7 _}7 H)) = Q(R(Mv {_7 _}7 H))

This equality is often expressed by commutativity (up to ibasle notion of isomorphism) of
the following diagram:

(M, {—,—},H)——Q(M,{—,—}.H) = (#.A)

7| E

(Mg, {—,—}o.Ha) —= Q(Mg, {—, — }, He) 2 (%, Ha).

If one only considers the phase space part of quantisatidnestuction, thefiQ, R = 0 has
been proved for compadl andG. This is known as th&uillemin—Sternberg conjectufsee
[28, 38, 59, 60, 63, 79, 84]). The goal of this thesis is to gelse the Guillemin—Sternberg
conjecture to noncompadd and G, under the assumption that the orbit spatgG is still
compact. To state and prove this generalisation, we usaitpeds from noncommutative ge-
ometry. We have found proofs in the case whéreas a cocompact, discrete, normal subgroup
(Theorem 6.5) and in the case wh&es semisimple (Theorem 6.13).

The mathematics underlying classical mechanics is syrtiplgeometry, to which we now
turn.



Chapter 2

Symplectic geometry

As we saw in Chapter 1, the mathematical structure of a dalsphase space is that of a
Poisson manifold. We will only consider particularly nicads of Poisson manifolds, namely
symplectic manifold@efinition 2.1). The ideal form of symmetry in the sympledetting is
a Hamiltonian group action(Definition 2.6). This involves an action of a Lie group thatsh
an associated conserved quantity called@mentum mapFor Hamiltonian actions, we can
make the classical reduction process mentioned in Secttbmare precise (Definitions 2.17
and 2.21). We give many examples of Hamiltonian group astitmgive the reader a feeling
for what is going on.

The proofs of most facts in this chapter and the next have begtted, but they are usually
straightforward. More information about the role of syngtiegeometry in classical mechanics
can be found for example in [29, 57, 75].

2.1 Symplectic manifolds

Let us define the special kind of Poisson manifold called dgotiw manifold. A Poisson man-
ifold is symplectic if the Poisson structure is nondegetgeimsome sense (compare Theorems
2.4 and 2.5), which makes symplectic manifolds easier t&wath than general Poisson man-
ifolds.

Definition 2.1. A symplectic manifolds a pair(M, w), whereM is a smooth manifold and
is a differential form orM of degree 2, such that

1. wisclosed in the sense thatw = 0;

2. w is nondegeneratein the sense that for ath € M, the mapT,M — T;M, given by
V— w(V,—), is alinear isomorphism.
Such a formw is called asymplectic form

When explicitly verifying that a given two-form is nondegeate, we will often use the

fact that nondegeneracy of is equivalent to the property that for ati € M and all nonzero
v e TyM, there is av € T)M such thatom(v,w) # 0.

19
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Example 2.2. A symplectic vector spads a vector space equipped with a nondegenerate,
antisymmetric bilinear form. When viewed as a differenfietn of degree 2, this bilinear form
is a symplectic form on the given vector space.

The natural notion of isomorphism of symplectic manifolsisalledsymplectomorphism

Definition 2.3. Let (M, w) and(N, v) be symplectic manifolds. A diffeomorphisgn: M — N
is called asymplectomorphistif ¢ *v = w.

Let (M, w) be a symplectic manifold. The canonical Poisson bra¢ket—} on C*(M)
is defined as follows. Fof € C*(M), the Hamiltonian vector field&; of f is defined by the
equality

df =w(&,—) e Q(M). (2.1)

Becauseaw is nondegenerate, this determidggauniquely. We then set

{f,0}:=¢&:(9) = w(ég,&r) = —&4(f) €C®(M),

for f,g € C®(M). This can be shown to be a Poisson bracket, as defined at thef Sedtion
1.1. In particular, the Jacobi identity f¢r-, —} follows from the fact thatv is closed.

It follows from the nondegeneracy af thatM is even-dimensional. From a physical point
of view, this corresponds to the fact that to each ‘positimnahsion’ in a classical phase space,
there is an associated ‘momentum dimension’. The simpkashple is the manifoltyl := R?",
for ann € N, with coordinates

(a,p) = (a*,p% ... " p"),
and the symplectic form

n . -
W= deJAdq‘. (2.2)
j=1
In fact, all symplectic manifolds are locally of this form:

Theorem 2.4(Darboux) Let (M, w) be a symplectic manifold, and letenM be given. Then
there exists an open neighbourhoodun and local coordinate&y, p) on U, such that

n . .
wu=73 dp' Adq.
=1

The coordinategq, p) are calledDarboux coordinates For a proof of this theorem, see
[29], Theorem 22.1.

In Darboux coordinates, the Poisson bracket associatedetgytmplectic form is given
by the standard expression (1.5), with 3 replacechby dimM/2, andf,g € C*(M). The
difference between symplectic manifolds and general Boissanifolds is illustrated nicely by
Weinstein’s following result (see [88], Corollary 2.3).

Theorem 2.5. Let (M,{—,—}) be a Poisson manifold, and let @M be given. Then there
exists an open neighbourhood U of m and local coordinétgp, c) on U, such that in these
coordinates, the Poisson bracket has the standard {dr&).

The coordinategq, p, c) are calledDarboux—Weinstein coordinatedereq and p are maps
U — R", for the samen € N, andc is a map fromJ to R4IMM-2n,

In the Section 2.3, we will give some more examples of syntgecanifolds. We will then
also see that the natural group actions defined on these éarp in facHamiltonian
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2.2 Hamiltonian group actions

The relevant actions of a group on a symplectic manifoldM, w) are those that leave the
symplectic formw invariant:g*w = w for all g € G. Such actions are calleymplectiactions.
Suppose thab is a Lie group, and thatM, w) is a symplectic manifold equipped with a sym-
plectic G-action. For every) € g (the Lie algebra of5), we have the induced vector fiekj,
on M, given by
. _d

(Xm) i =X 1= 5t t:Oexp(tX)m, (2.3)
for all me M. Because the action is symplectic, the Lie derivatitew equals zero for each
X € g. Using Cartan’s formulazk = dix,, +ix,d (whereix, denotes contraction witky), we
get

Ozgxa):d(ixMa)), (2.4)

sincedw = 0. In other words, the one-forig,, w is closed. The action is callédamiltonianif
this form isexact in the following special way:

Definition 2.6. In the above situation, the action Gfon (M, w) is calledHamiltonianif there
exists a smooth map

d:M—g"
with the following two properties.

1. ForallX € g, letdx € C*(M) be the function defined by pairirlg with X. Its derivative
is given by

2. The mapP is equivariant with respect to the coadjoint action Gfon g*.
Such a mapb is called anomentum méof the action.

Note that ifG is connected, equation (2.4) implies that every Hamiltoaaction is sym-
plectic. Because we will also consider non-connected growp reserve the term Hamiltonian
for symplectic actions.

Property (2.5) can be rephrased in terms of Hamiltonianordatlds, by saying that for
all X € g, one hase, = —Xu. If Gis connected, the® is equivariant if and only if for all
X,Y € g, we have{®x, Dy } = By ). Thatis, if and only if® is a Poisson map with respect to
the standard Poisson structuregin

The presence or absence of minus signs in these formulasdiepa the sign conventions
used in the definitions of momentum maps, Hamiltonian vefattis and vector fields induced
by Lie algebra elements.

1Sometimes a momentum map is not required to be equivariathe action is calledtrongly Hamiltonian
if it is.
2or ‘moment map’, as people on the east coast of the Unite@Sli&e to say
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Remark 2.7 (Uniqueness of momentum maps$) ® and®’ are two momentum maps for the
same action, then for aX € g,
d(Py — DY) =0.

If M is connected, this implies that the differerbg — ® is a constant function, say, on
M. By definition of momentum maps, the constagtdepends linearly oiX. So there is a an
element € g* such that

P =¢.

By equivariance of momentum maps, the eleméns fixed by the coadjoint action d& on
g*. In fact, given a momentum map, the space of elemengs tifat are fixed by the coadjoint
action parametrises the set of all momentum maps for thengiggon.

In the next section we give some examples of Hamiltonian gractions. We end this
section by giving some techniques to construct new exanfifgasgiven ones.

Lemma 2.8 (Restriction to subgroups).et H < G be a closed subgroup, with Lie algelya
Let

p:g-—h"
be the restriction map from to b.

Suppose that G acts on a symplectic manifddw) in a Hamiltonian way, with momentum
map® : M — g*. Then the restricted action of H on M is also Hamiltonian. Tohenposition

IS a momentum map.

Remark 2.9. An interpretation of Lemma 2.8 is that the momentum map istomal with
respect to symmetry breaking. For example, consider a palysystem ol particles inR3
(Example 2.16). If we add a function to the Hamiltonian tlatnvariant under orthogonal
transformations, but not under translations, then the Haman is no longer invariant under
the action of the Euclidean motion gro@ However, it is still preserved by the subgrou3p
of G. In other words, th&-symmetry of the system is broken into arff3psymmetry. By
Lemma 2.8, angular momentum still defines a momentum maghaidttis still a conserved
guantity (see Remark 2.15).

Lemma 2.10(Invariant submanifolds)Let (M, w) be a symplectic manifold, equipped with
a Hamiltonian action of G, with momentum mdp: M — g*. Let NC M be a G-invariant
submanifold, with inclusion map N — M. Assume that the restricted forriw is a symplectic
form on N (i.e. that it is nondegenerate). Then the action airfGN is Hamiltonian. The
composition

N—M-—g

IS a momentum map.

The next lemma will play a role in Example 2.16, and in shéfting trick (Remark 2.22).
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Let (M1, ) and (M2, wp) be symplectic manifolds. Suppose that there is a Hamiltonia
action of a groups on both symplectic manifolds, with momentum mapsand ®,, respec-
tively. The Cartesian product manifol; x M, carries the symplectic forr; x wp, which is
defined as

W1 X Wp = P + Poay,

wherep; : My x Mo — M; denotes the canonical projection map.
Consider the diagonal action G'on My x M,

g- (Mg, M) = (g- My, g-My),
forge Gandm € M;.
Lemma 2.11(Cartesian products)rhis action is Hamiltonian, with momentum map

q31><q32:|\/|1><|\/|2—>g*,
(@1 x D2) (M, Mp) = P1(My) + Po(My),

form € M;.

2.3 Examples of Hamiltonian actions

The most common classical phase spaces are cotangentsundle

Example 2.12(Cotangent bundles) et N be a smooth manifold, and I8 := T*N be its
cotangent bundle, with projection map : T*N — N. The tautological 1-formt on M is
defined by

(Tn:v) = (N, Tp (V)
forn € T*N andv € T, M. The one-fornt is called ‘tautological’ because for all 1-fornason

N, we have
a*T=a.

Here on the left hand sidey is regarded as a map froh to M, along which the fornt is
pulled back.
Letq=(ql,...,q%) be local coordinates on an open neighbourhood of an elemefl.

Consider the corresponding coordinapesn T*N in the fibre direction, defined bgk = %qk.
Then locally, one has
T= Z pk ddf.
The 2-form
a::dr:de(/\dq( (2.6)

is a symplectic form o, called thecanonical symplectic form
Let G be a Lie group acting oN. The induced action d& on M,

g-n = (Tgngil)*n S Tg*an
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forge G,ne N andn € TN, is Hamiltonian, with momentum map
Ox = lixy T,

for all X € g. Explicitly:
(1) := (N, Xmy(m))
for X e gandn € T*N.

The following example forms the basis of Kirillov's ‘orbitethod’ [42, 43, 44]. The idea
behind this method is that unitary irreducible represématcan sometimes be obtained as ge-
ometric quantisations of coadjoint orbits. An example a$ idea is the Borel-Weil theorem
(Example 3.36), which can be used to generalise the ‘quaitis commutes with reduction’
theorem in the compact setting (Theorem 3.34) to a stateaenit reduction at arbitrary irre-
ducible representations (Theorem 3.35), as shown in Lem8&Ya 3

Example 2.13(Coadjoint orbits) Let G be a connected Lie group. Fix an elemérg g*. We
define the bilinear fornaw? on g by

@t (X,Y) 1= —(&,[X,Y]),

for all X,Y € g. This form is obviously antisymmetric.
Thecoadjoint actionAd* of G ong* is given by

(Ad*(g)n,X) = (n,Ad(g"H)X)

forallg € G, n € g andX € g. The infinitesimal version of this action is denoted by,aahd
defined by
<adk<X)I’],Y> = _<r’7 [X7Y]>7

forall X,Y € gandn € g*.
Let Gs be the stabiliser group & with respect to the coadjoint action:

Gg :={g€ G Ad"(g)§ =&}
The Lie algebra of G; equals

gg = {Xegad(X)¢=0}
= {Xegw'(X,Y)=0 forallY € g}, (2.7)

by definition ofw?. By (2.7), the formw? defines a symplectic form on the quotienfy; .
Let
0% :=G-&=G/G;

be the coadjoint orbit through. The tangent space

Tgﬁf %g/gg
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carries the symplectic forr?. This form can be extende@invariantly to a symplectic form
w on the whole manifol@’%. Itis shown in [44], Theorem 1, that it is closed. This syncfite
form is called thecanonical symplectic forran the coadjoint orbft&%.

The coadjoint action o6 on ¢¢ is Hamiltonian. The inclusion

®: 0% — gt
IS a momentum map.

The following example can be used to show that a momentum retiped a conserved
quantity of a physical system.

Example 2.14(Time evolution) Let (M, w) be a symplectic manifold, and let be a smooth
function onM. If we interpretH as the Hamiltonian of some physical systenibrthen we saw

in (1.9) that the time evolution of the system is given by tloevft — €+ of the Hamiltonian
vector fieldéy of H. If this flow is defined for alt € R, then it defines an action of the Lie group
R onM. This action is Hamiltonian, with momentum mapd : M — R = R*. In physics, itis
well known that energy, given by the Hamiltonian functianthe conserved quantity associated
to invariance under time evolution. The minus sign in frohHois a consequence of our sign
conventions.

Remark 2.15. The interpretation of a momentum map as a conserved quamiggs when a
Hamiltonian action of a Lie grou on a symplectic manifoldM, w) is given (with momentum
map®), along with aG-invariant (Hamiltonian) functioid on M. Then for allX € G, the time
dependence abx is given by

Sl (@) ox=(ox)
t=0
= W(&ay, &)
= —&ay(H)
= Xm(H)
— 07

sinceH is G-invariant.

In terms of the Poisson bracket, the above computation shmtdoth time invariance of
®x (for all X € g) andG-invariance ofH (for connecteds) are equivalent to the requirement
that{H,®x} =0forall X € g.

This can be seen as a form of Noether’s theorem, which retgtesnetries of a physical
system to conserved quantities (see [27], page 16).

Example 2.16(N particles inR?®). To motivate the term ‘momentum map’, we give an example
from classical mechanics. It is based on Example 2.12 almiahgent bundles, and Lemma
2.11 about Cartesian products.
Consider a physical system Nfparticles moving ifR3. The corresponding phase space is
the manifold
M= (T*R3)" 2RO,

3In terms of Poisson geometry, coadjoint orbits are the sgoijul leaves of the Poisson manifajtl
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Let (i, pi) be the coordinates on tfigh copy of T*R3 = R® in M. We write

G = (q|17q|27q|3)7

pi = (pi, P2, p?),

and
(9,p) = ((9z,P1),---, (AN, Pn)) € M.
Using Example 2.12 and Lemma 2.11, we equip the manNbldgith the symplectic form

w::idglmqudn%dq%dp%dq%

Let G be the Euclidean motion group &f:
G:=R3x0(3),
whose elements are pairgA), with v e R3 andA € O(3), with multiplication defined by
(v,A)(w,B) = (v+Aw AB),
for all elementgv, A) and(w, B) of G. Its natural action oiR?® is given by
(V,A) - X = AX+V,

for (vA) € G, x€ RS,

Consider the induced action Gfon M. As remarked before, the physically relevant actions
are those that preserve the Hamiltonian. In this examptagiHamiltonian is preserved &y
then the dynamics does not depend on the position or thetatiem of theN particle system as
a whole. In other words, no external forces act on the system.

By Example 2.12 and Lemma 2.11, the actiorGobn M is Hamiltonian. The momentum
map can be written in the form

N
d(q, p) = Zi(pi,Qi < pi) € (R?) x0(3)" =g".

Note that the Lie algebra(3) is isomorphic tdR3, equipped with the exterior produst. We
identify R3 with its dual (and hence with(3)*) via the standard inner product.

The quantityzi’\‘:1 pi is the total linear momentum of the system, gﬂ_jl gi X pi is the total
angular momentum. As we saw in Remark 2.15, the momentum shnameé-independent if
the group action preserves the Hamiltonian. In this exastple implies that the total linear
momentum and the total angular momentum of the system aseoged quantities.

2.4 Symplectic reduction

Half of the ‘quantisation commutes with reduction’ prineiphat is the subject of this thesis is
the term ‘reduction’. Half again of this term is reductiontbe classical side, which we explain
in this section.
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The definition
For cotangent bundles (see Example 2.12) the appropriéiteraf reduction is
R:T'"N— T*(N/G), (2.8)

which is well-defined ifN /G is again a smooth manifold. Inde€;N is the phase space of a
system withconfiguration spacéi.e. space of all possible positior¥) and it seems thad /G
is a natural choice for the reduced configuration space.

More generally, we would like to associate to a Hamilton@@manifold (M, w) a sym-
plectic manifoldR(M, w), in such a way that (2.8) is a special case. We immediatelyrste
R(M) = M/G is not a good choice, since it does not generalise (2.8) siiés discrete. Fur-
thermore, there is no way to define a canonical symplectio fomM /G (althoughM /G does
inherit a canonical Poisson structure frgM, w)). A better definition of reduction is the fol-
lowing one.

Definition 2.17. Let (M, w) be a symplectic manifold, and 1& be a Lie group. Suppose a
Hamiltonian action ofG on (M, w) is given, with momentum ma@. Suppose that @ g* is

a regular valut of ®. Then®~1(0) is a smooth submanifold d¥l, which is G-invariant by
equivariance ofp. Suppose that the restricted action@bn ®~1(0) is proper and free. Then
the symplectic reduction (at zer@f the Hamiltonian action o6 on (M, w) is the symplectic
manifold (Mo, wy), where

Mo := @ 1(0)/G,
anday is the unique symplectic form dvg such that

P ap = j o, (2.9)
with p and | the quotient and inclusion maps in

d 10 —>M

ip
Mo.

Theorem 2.18(Marsden—Weinstein)Such a symplectic formy exists, and is uniquely deter-
mined by the propert{2.9).

For a proof, see [58]. Another common notation Mo, wy) is (M//G, wyc). Another
term for symplectic reduction iglarsden—Weinstein reduction

It turns out to be useful to also consider symplectic redunctit other values than® g*.
Before explaining this, we look at some examples of symmeetuction at zero.

Proposition 2.19. Consider Example 2.12 about cotangent bundles. Supposththaction of
G on N is proper and free. Let*TN/G) be the cotangent bundle of the (smooth) quotieftBN
equipped with the canonical symplectic foog = d1s. The symplectic reduction 6T *N, o)
by the action of G is symplectomorphic(tb*(N/G), og):

((T*N)o, o) = (T*(N/G), 05).

4That s, for allm € ®~1(0), the tangent maf,® is surjective.
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A special case of reduction of cotangent bundles is theiatg.

Example 2.20(N particles inR3 revisited) In Example 2.16, we considered a classical me-
chanical system dfl particles moving irR3. We will now describe the symplectic reduction of
the phase spadd = (T*R3)N of this system by the action of the subgrdRpof the Euclidean
motion groupG = R3 x O(3).

Consider the action oM of the translation subgroug® of G. By Lemma 2.8, the total
linear momentum of the system defines a momentum map for ¢hisna By Theorem 2.19,
the reduced phase space for this restricted action is

Mo = (T*R), = T*(R3N/R3).

LetV be the(3N — 3)-dimensional vector spa@® /R3. As coordinates oN, one can take
N
(i::qi—chqj:VeR?’, i=1,...N,
=1

for any set of coefficient§c; } with sum 1. The coordinates then satisfy the single relation
N —
ZlCi g =0.
i=

A physically natural choice for thej is

_ M

CTiame

wherem; is the mass of particlg. The coordinates; are then related by

N —
i;mWZO

Thus, the reduced phase space may be interpreted as theo§ptates of thé particle system
in which the centre of mass is at rest in the origin.

Cj:

Reduction at other values of the momentum map

In the definition of symplectic reduction, we used the letl &f the momentum map at the
value 0. Reductions at other values also turn out to be istiege

Definition 2.21. Let (M, w) be a symplectic manifold equipped with a Hamilton{asaction,
with momentum magb. Let ¢ € g* be given, and leG¢ be its stabiliser with respect to the
coadjoint action. Suppose thétis a regular value ofp, and thatG; acts properly and freely
on ®1(&). Thesymplectic reduction af of the Hamiltonian action o6 on (M, w) is then
defined as the symplectic manifolt¥ls, ws ), where

Mg == @ 1(&)/Gs,

and the symplectic formy is defined by the condition analogous to (2.9).
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The inclusion magp~1(&) — ®~1(G- &) induces a diffeomorphisiil; = ®~1(G- &) /G.
When we do not specify the value at which we take a sympleetiaction, this value is always
zero.

When considering questions about symplectic reductiamscan often use thahifting trick
to generalise results about reduction at zero to resultgtalbduction at arbitrary momentum
map values.

Remark 2.22(The shifting trick) The symplectic reduction of a Hamiltonian group actiotGof
on (M, w) at any regular valué € g* of the momentum map can be obtained as the symplectic
reduction at 0 of a certain symplectic manifold containvhgby an action ofG.

Indeed, letg? = G- & = G/G¢ be the coadjoint orbit of5 through ¢ (see Example

2.13). We noted thal; = ®~1(G-&)/G. Consider the two symplectic manifold® ¢ =

G- (—&),w %) and(M, w). On these symplectic manifolds, we have Hamilton@&actions,
with momentum maps

j_E:ﬁ_E%g*
d:M—g".

Consider the Hamiltonian action & on the Cartesian produ¢t—¢ x M, w ¢ x w) (see
Lemma 2.11). As we saw, a momentum map for this action is

j,5x¢:ﬁ_5xM—>g*,
(J—E X (D)(n,m) =N —|—(D(m),

for n € ¢~¢ andme M. The symplectic reduction of the action@fon &—¢ x M at the value
0 is equal to the symplectic reductionidfat & :

(j_e x @) H0)/G={(g-(—&),m) € 6% xM;g- (&) + B(m) = 0} /G
=07G-¢)/G
&~ Mg.

This exhibitsM; as the symplectic reduction at zero of a Hamiltonian action.

The Guillemin—Sternberg conjecture, which we attempt toegalise to noncompact groups
and manifolds, is usually proved for symplectic reductibzexo, and then generalised to re-
duction at arbitrary momentum map values via the shiftindktfsee Lemma 3.37).

Final remarks

Remark 2.23(Regularity assumptions)n the definition of symplectic reduction at an element
¢ € g*, we assumed thdt was a regular value of the momentum n#pand that the stabiliser
G; acted properly and freely oir~1(&). The freeness assumption may be dropped if one is
willing to work with orbifoldsinstead of smooth manifolds.

Indeed, if¢ is a regular value o, then the action o on ®~1(&) is alwayslocally freg
i.e. has discrete stabilisers. This result is known as SsEmma, see Lemma 2.24 below.
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We always suppose that a given action is proper. Then alilisexs of the action of5; on
®~1(&) are compact and discrete, and hence finite. This impliesfohatny regular valug
of ®, the symplectic reductioNl; is an orbifold, andws is a symplectic form in the orbifold
sense. Although we will not work with orbifolds in this thesive do prove our two main results
in cases where the symplectic reduction is an orbifold. Thigossible because the compact
versions (Theorems 3.34 and 3.38) of our main results hotterorbifold case, and because
generalising these results to our noncompact settingsramesquire the use of orbifolds.
Worse singularities arise whehis not a regular value ob. However, Meinrenken and
Sjamaar [60] have found a way to state and prove a ‘quardrsabmmutes with reduction’
result in this generality, by using Kirwan’s desingulatisa process [45]. Since it is not clear
a priori if their approach also works for noncompact groupd eanifolds, we will restrict
ourselves to the orbifold case.

Lemma 2.24(Smale) In the setting of Definition 2.21, the eleménis a regular value ofb if
and only if for all points me ®~1(&), the infinitesimal stabilisegn, is trivial.

This fact follows from the defining relation (2.5) of the mom@m map. It was originally
formulated in [74], Proposition 6.2.

In Part Ill, we will use the following ‘reduction in stagettieorem. LeiG be a Lie group,
acting in Hamiltonian fashion on a symplectic manif¢M, w), with momentum maj. Let
N <1 G be a closed, normal subgroup. By Lemma 2.8, the actioN oh M is Hamiltonian.
Suppose that @ n* is a regular value of the momentum map induceddpyand let(M/
N, cv/n) be the symplectic reduction at zero of this action.

Theorem 2.25(Reduction in stages)rhe action of the quotient group/@l on (M /N, tv/n)
is Hamiltonian, with momentum mapy : M /N — (g/n)* given by

(PN(NM), X +1n) 1= (P(M), X)

forallme M and X e g. Suppose thal € g* and0 € (g/n)* are regular values ofo and @y,
respectively. Then the symplectic reduction (at zero) isfahtion is symplectomorphic to the
symplectic reductiofM /G, wvc) of (M, w) by G.

For a proof, see [56], or [49], Theorem 1V.1.8.2.



Chapter 3

Geometric quantisation

This chapter is about geometric quantisation in the comgassd. Some parts of it are necessary
to understand Definitions 6.1 and 6.2 in the noncompact easde other parts only serve as
motivation for these definitions.

The quantisation of a symplectic manifdlél, w) should be a Hilbert spac#’. The easiest
way to construct such a Hilbert space would be setting

A= L2(M),

with respect to théiouville measuregjiven by the volume forn%n, with dimM = 2n. This first
guess can be improved in two ways.

First of all, instead of functions okl, we will look at sections of a line bundle’ — M.
Given a suitable Hermitian metric and a connectionLéh we then have a way to ‘quantise
observables’ (see Definition 3.6). Such a line bundle witheérimand a connection is called a
prequantisatiorof (M, w). This is explained in Section 3.1.

More importantly, as we saw in Section 1.2, the quantisatioR® should bel ?(R3), not
L?(R®). The problem how to ‘shrinkl.>(M,L®) to a more appropriate quantisation space can
be solved using eithgrolarisations(Section 3.2) oDirac operators(Sections 3.3 and 3.4).

Another indication that?(M,L%) is ‘too big’ is that quantisation only commutes with re-
duction if it is defined as the smaller space mentioned in tegipus paragraph. The author
views the ‘quantisation commutes with reduction’ prineipk araxiomof quantisation and re-
duction; if this principle is violated, then something mhetwrong with the quantisation and/or
reduction procedures one is using. The ‘quantisation cor@snuith reduction’ principle is ex-
plained in Section 3.7 for actions of compact groups on catpanifolds, and for cocompact
actions it is explained in Chapter 6.

3.1 Prequantisation

The first step towards geometric quantisatioprsquantisation A prequantisation of a sym-
plectic manifold(M, w) is a Hermitian line bundl&® overM, equipped with a Hermitian con-
nection whose curvature form isi?w. The geometric quantisation @¥1, w) will (initially) be
defined as a subspace of the space of sections of this lindebdrte Hermitian structure drf”
turns this space into a Hilbert space, and the connectidi’allows us to quantise observables
to a certain extent.

31
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Line bundles

We begin with some background information about line busidletM be a smooth manifold,
and letL — M be a smooth complex line bundle owdr The space of smooth sectionslofs
denoted by (M, L), or by”(L). The space of smooth differential forms bhof degreek,
with coefficients inL, is the space

QX(M;L) :=T(M, A T*M @ L).

Definition 3.1. If (—,—)L is a Hermitian metric o, then a connectiofll onL is calledHer-
mitianif for all s,t € F*(M, L),

d(s;t)L = (Os,t)L+ (s, 0t). € QY(M).
A connection] onL can be uniquely extended to a linear map
0: QX(M;L) — Q< 1(Mm;L),
such that for alr € Q¥(M) andB € Q(M; L), the following generalised Leibniz rule holds:
O(aAB) =aADOB+(—1)%da AB.
A consequence of this Leibniz rule is that the squarg of
02: Q%(M; L) — Q¥ 2(Mm; L),
is aC”(M)-linear mapping. Hence it is given by multiplication by ateém two-form.
Definition 3.2. Thecurvature (form)of a connectiori] onL is the two-form
21 w € QE(M) :=T*(M,A\°T*M @ C)

such that for alse (M, L),
Ps=2mw®s. (3.1)

An equivalent formulation of (3.1) is that for all vector fislv andw on M, theC*(M)-
linear map
[Ov, Ow] — O : T2 (M, L) — F*(M, L) (3.2)

is given by multiplication by the functionr& w(v, w).

It turns out thatw is real, closed (théianchi identity, and that the cohomology class
[w] € H2,(M) is integral. That is, it lies in the image of the map?(M;Z) — HZ5(M). Or,
equivalently, for all compact, two-dimensional submalui$oS C M, the number[sw is an
integer.

Conversely, we have the following theorem. For a proof, 8¢ [

Theorem 3.3(Weil). Let M be a smooth manifold) a real, closed two-form on M, with integral
cohomology clasfw] € HZ:(M).

Then there is a line bundle“.— M, with a Hermitian metriqd —, —)_», and a Hermitian
connectior] whose curvature form i87i w.

Definition 3.4. A triple (L?, (—,—)L», 0) as in Theorem 3.3 is prequantisatiorfor (M, w).
The line bundld.? is called aprequantum line bundle
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Observables

In this thesis, we are not concerned with quantising obs&dega However, to motivate the
definition of prequantisation, let us explain a possiblerapph to quantising observables using
a prequantisation. First, recall the definition (2.1) of Hi&mnian vector fields. The map— &5

is a Lie algebra homomorphism from the Poisson algéBfgM), {—, —}) of (M, w) to the Lie
algebrax (M) of vector fields orM:

Lemma 3.5. For all f,ge C*(M),
(€1, 80) = &t1.0)-

This lemma can be proved via a straightforward local vetificein Darboux coordinates.

We mentioned in Section 1.3 that it is a common assumptidrythentisation of observables
is a Lie algebra homomorphism from the Poisson algébfjM),{—,—}) to the algebra of
operators on the quantum phase space, with the Lie brackeedeas the commutator. Here
we omit the constaryt in (1.18). The quantum phase space obtained via geometittigation
will be a subspace of the space of smooth sections of a praguaine bundleL® — M.
If the prequantisation operator (defined below) associties classical observable preserves
this subspace, then the induced operator on the quanture gpase can be interpreted as the
guantisation of the classical observable.

Definition 3.6. Let (L®,(—,—)L»,0) be a prequantisation fqiM, w). Let f € C*(M), and
consider the linear operat® f) on (M, L%), defined by

P(f):= O, —2mif. (3.3)

It is called theprequantisation operatoof the functionf.
The linear map
P:C”(M) — End(r”(M,L%))

defined by (3.3), is calledrequantisation
Prequantisation is indeed a Lie algebra homomorphism:

Theorem 3.7(Kostant — Souriau)Prequantisation is a Lie algebra homomorphism with respect
to the Poisson bracket on"CM) and the commutator bracket of operatorsigh(M, L%).

A proof of this theorem can be given by using Lemma 3.5 andabethat]? = 271 w. This
is a reason for looking at sections of a prequantum bundteandsof at functions.

Equivariant prequantisations

Since we are interested in Hamiltonian group actions on $gctip manifolds, and not just in
the symplectic manifolds themselves, we now take a look efjyentisations of such group
actions. Let(M, w) be a symplectic manifold, and I& be a Lie group acting symplectically
on (M, w).

Definition 3.8. An equivariant prequantisationf the action ofG on M is a prequantisation
(LF*(M,L?®), (-, —)Le,0) of (M, w) with the following additional properties.
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e L% is aG-equivariant line bundle;
e the metric(—, —)_ is G-invariant;

e the connectiof] is G-equivariant as an operator 6xf(M;L%).

Equivariance of] is equivalent to the requirement that for all sectiead” *(L%), all vector
fieldsv € X(M) and allg € G, we have

g- (Ovs) =0gvg-s.
Here the sectiog- sand the vector fielg - v are defined by

(g-s)(m) =g-s(g~m); (3.4)
(g : V)m = Tgflmg(vgflm)
forallme M.

Remark 3.9 (Existence of equivariant prequantisatiands can be seen in the example in
Section 11.5, it is not always clear if an equivariant predisation exists.

If Gis compact, then existence of an equivariant prequartdiséiequivalent to integrality
of the equivariant cohomology clage — ®] (see [27], Theorem 6.7). If the manifol is sim-
ply connected and the gropis discrete, then Hawkins [32] gives a procedure to lift tbios
of G onM to a projective action on the trivial line bundle oWy such that a given connection
Is equivariant. Under a certain condition (integrality ajraup cocycle), this projective action
is an actual action.

In general however, existence of an equivariant prequatidis of a given Hamiltonian ac-
tion does not follow from a result like Theorem 3.3, and hased@ssumed. In Section 13.1, we
show how in some cases, an equivariant prequantisationecaaristructed from a prequantisa-
tion of an action by a compact group on a compact submanifold.

In the literature on the Guillemin—Sternberg conjecturgjally a more specific kind of
equivariant prequantisation is considered. To define ti@igymntisation, suppose thd, w) is
a HamiltonianG-manifold, with momentum mag. Let (L, (—, —)_», ) be a prequantisation
of (M, w), which is not yet assumed to be equivariant. Suppdsés a G-line bundle. The
induced action of the Lie algebgeon*(L%) is defined by

X(s)(m) = % o exp(tX)s(exp(—tX)m),

for X € g,se (L) andme M.

Proposition 3.10. Suppose that G is connected, and that the actignarf " (L?) is given by
theKostant formula
X(S) = —P((Dx> = _DEXMS+ 2711 OxS.

Then(L®, (—,—)L»,0) is an equivariant prequantisation of the action of G @, w). That is,
the metric(—, —)L» is G-invariant, and the connectidi is G-equivariant.

The author is not aware of a proof of this fact in the literafdout such a proof is a straight-
forward matter of verifying the desired properties, usihg fact that(L®,(—,—) »,0) is a
prequantisation.

A reason why we consider the more general equivariant preggadions, as in Definition
3.8, is that we will also consider non-connected groups i iRa
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3.2 Quantisation via polarisations

The first way to quantise a prequantised symplectic manifdlc) is by using gpolarisation
of the complex tangent spateM¢ := TM ®x C.

Definition 3.11. Let (V,w) be a symplectic vector space of dimensian Z'he symplectic
form w extends complex-linearly to the complexificatidm® C. A polarisationof V@ C is a
complex Lagrangian subspaefV @ C. That is,P+ = P, whereP" is the subspace &f @ C
orthogonal tdP with respect taw.

Definition 3.12. Let (M, w) be a symplectic manifold, and IBtbe a smooth subbundle of the
complexified tangent bundlEM @ C. ThenP is called apolarisationof (M, w) if it has the
following properties.

1. The subspadgy, C TyM ® C is a polarisation of TyM @ C, ) for all me M.
2. The signature@m, sm) of the forms(—, —)p., on P/ (PmN Py) are locally constant o.

3. The subbundI® of TM® C is integrable That is, the space of sections®fis closed
under the Lie bracket of vector fields.

Example 3.13(Vertical polarisation) Let N be a manifold, and leé¥ be the cotangent bundle
T*N, equipped with the standard symplectic foom= dt from Example 2.12. LePC TM® C
be the subbundle

P:=kerTcry,

wherery : T*N — N denotes the cotangent bundle projection. TReis a polarisation of
(M, 0), called thevertical polarisation. Note that

P=TN®C—TMxC.

Example 3.14(Kahler polarisation)Let M be a complex manifold, and I&ét be a Hermitian
metric onT M. Let g be the real part ofl, and letew be minusthe imaginary part oH. (The
minus sign makes the notation in this example compatiblk thié notation in the rest of this
thesis.) The paifM,H) is called aKahler manifoldif dw = 0. In that case(M,w) is a
symplectic manifold.

LetJ: TM — TM be the complex structure dvi. Then

is a Riemannian metric dd. Becausg andH are determined by andJ, we may also denote
the Kahler manifoldM,H) by (M, w,J), or (M, w) by abuse of notation.
TheKahler polarisationof (M, w) is the—i eigenspace aof acting onTM® C:

P:={IX—-iX;X € TM}.

A function f € C*(M) is holomorphic if and only iZ(f) =0 for allZ € I'*(M, P).
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Given a symplectic manifoldM, w), a prequantisatiofL®, (—, —)L»,0) of (M,w) and a
polarisationP C TM® C, the geometric quantisation 01, w) can be defined as

Q(M,w) :={sel”(M,L?®);0zs=0forallZe " (M,P)}. (3.5)

This definition of quantisation is often applied to compaéhker manifolds, and it is this case
that we will generalise in the course of this chapter.

Definition 3.15 (Quantisation I) Let (M, w) be a compact Kahler manifold, such thai is
an integral cohnomology class. LBtbe the Kahler polarisation &fl, and let(L?, (—, —)L«, 0)
be a prequantisation. Then tKéhler-quantisatiorof (M, w) is the finite-dimensional vector
space (3.5).

We can give the line bundle” the structure of dolomorphidine bundle, by requiring that
its space of holomorphic sections@ (M, w). The vector spac®, (M, w) is therefore indeed
finite-dimensional. A reason for using sections of a linedlemstead of functions ol in the
definition of quantisation, is the fact that there are no loistant holomorphic functions on a
compact complex manifold, whereas a holomorphic line beiadi such a manifold may have
interesting sections.

Remark 3.16. In the situation of Definition 3.15, consider the Dolbeawiplex onM with
coefficients inL®:

5 1w 5 1w 5 1w
0 . Qovo(M;L‘*’) ®L Qovl(M;L‘*’) @1 @1 QovdM(M;L‘*’) ~0.

Heredy is the real dimension d¥l. The zeroth cohomology spatt°(M;L®) is the space of
holomorphic sections df®, which we defined to b&, (M, w). This implies thaQ, (M, w) is
not the zero space if the line bund!® is sufficiently positive.

Indeed, ifLY ® /\QdMT M is a positive line bundle, then by Kodaira’s vanishing tleaoisee
e.g. [90], Section VI.2), all Dolbeault conomology spatts‘(M;L®) vanish fork > 0. The
Hirzebruch—Riemann—Roch theorem expresses the number

dm

S (=)*dimH(M;L®) = dimH0(M; L®)

k=0
as the integral ovevl of a certain differential form. IL® is positive enough, this number turns
out to be nonzero.

If the line bundleL? is positive, but not positive enough, then we can repldtby a tensor
powerL®®", to make it sufficiently positive. This amounts to replacihg symplectic fornmw
by a multiplencw. Roughly speaking, we can think afas being proportional to/h so that
choosing_% positive enough, i.e. choosimgig enough, comes down ftbeing small enough.

3.3 Quantisation via the Dolbeault—Dirac operator

In this section, we improve Definition 3.15 of geometric gtigation in two ways. First, we give
a definition (Definition 3.17) that yields a nhonzero quariitsain more cases than Definition
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3.15, and then we rephrase Definition 3.17 in a way that allasvid generalise it to possibly
non-Kahler symplectic manifolds. Both definitions redte®efinition 3.15 if the prequantum
line bundle is positive enough.

Definition 3.17 (Quantisation Il) Let (M, w) be a compact Kahler manifold, suppose thait
is an integral cohomology class, and (e, (—, —)_ »,) be a prequantisation. We define the
quantisation ofM, w) as

M,0) = S (~1KHOK(M;L9),
Qi (M, ) k;( )THEN( )

the alternating sum of the Dolbeault cohomology spaces! afith coefficients inL®. This
is a virtual vector space, i.e. a formal difference of vesjoaces, whose isomorphism class is
determined by the integer

S (D dimHOK(M;L?).
kZO( )" dimH=E(M; L)

If the line bundleL® is positive enough, then the definition of quantisation egneith the
previous one (see Remark 3.16).

The Dolbeault-Dirac operator

Definition 3.17 may be reformulated in a way that makes sexsa when the manifold
is not Kahler. Let(M, w) be a compact symplectic manifold. Suppose f{latis an integral
cohomology class, and 1éL*, (—, —) «, ) be a prequantisation. Ldtbe an almost complex
structure ol M that iscompatiblewith c:

Definition 3.18. An almost complex structur&on a symplectic manifoldM, w) is said to be
compatiblewith w, if the symmetric bilinear form

g:=w(—,J—)
is a Riemannian metric oM.

Compatible almost complex structures always exist (seeXample [27], pp. 111-112).
As we noted before, the connectidinon L® defines a differential operator

0: QX(M;L?) — Q< 1(M;L®),
such that for alr € Q¥(M) ands € (M, L%),
O(a®s) =da @s+ (—1)ka ADs.
Consider the projection

% 1 Q5 (M;LY) — Q% (M;L?),



38 CHAPTER 3. GEOMETRIC QUANTISATION

according to the decompositid@¥.(M;L®) = D gk QPI(M;L?). Define the differential
operator _
Ao : QOU(M; L) — QO4HL(M; L)

by _
0o =1 ol

The Riemannian metrig induces a metric on the bundi*T*M, which we also denote
by g. Let (—,—) be the inner product 0@8’*(M; L®) such that for alla, 3 € QQ?*(M) and all
st e F°(M,L%),

(@spot) = [ g B)(m(sts(mdm

wheredm s the Liouville measure. LedTE‘w by the formal adjoint of5|_w, defined by the re-
quirement that

(00, W) = (9, Ful))
for all ¢, € Q%*(M;L®), whereg has compact support.

Definition 3.19. The Dolbeault—Dirac operatois the elliptic differential operator
Lo+ 0t QO (M;L?) — Q%% (M;L?).

This operator maps forms of even degree to forms of odd degnekvice versa.

Dolbeault-quantisation

Definition 3.20 (Quantisation Ill) The Dolbeault-quantisatioof (M, w) is defined as the vir-
tual vector space

ker((ﬁLw + (9[2;) |Qo,even(M;|_w)> —ker ( (d_w + aiw) |Qo7odd(M;|_w)> 5
which is the index of the Dolbeault—Dirac operator
OLo + 0w - QO M; LY) — Q00U @), (3.6)

In other words,

Qui (M, @) := index(dLo + dw). (3.7)

Because this operator is elliptic aMlis compact, its index is well-defined.

Remark 3.21. In general, leE = E°@ E! — M be aZ,-graded vector bundle, equipped with
a metric, over a compact manifold. LBtbe an elliptic differential operator 0. Suppose
thatD is symmetric with respect to the-inner product in sections & with respect to a given
measure oM, and that it interchanges sectionsE#f andE?! Then, as in (3.7), we will often
slightly abuse notation by writing

indexD := index(D : F*(E®) — I'*(E))
— [kerDNT*(E®)] — [kerDNT(EL)).
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Remark 3.22(Quantisation Il for Kahler manifolds)f M is a complex manifold, and® is a
holomorphic line bundle ovevl, then we can define the elliptic differential operator

(0+0%) @10 QOF(M; L) — QO*(M; L) (3.8)
as follows. Locally, one has
Q%(U; L) = Q%) ®4u) O (U, L)

HereU is an open subset &l over whichL® trivialises, &’ (U) denotes the space of holomor-
phic functions olJ, and&'(U,L?|y) is the space of holomorphic sectionddf onU. Because
(by definition)d f = 0 for holomorphic functiond, we can locally define the differential oper-
ator

0@ 10 QOUU;LY)y) — QOILU;LY)y),

by _ _
0R1e(d®s)=00®S,

for all a € Q%4(U) ands € ¢(U,L%|y). These local operators patch together to a globally
defined operator B
0 ®1Lo: QO(M; L) — QOAFI(\M; LY,

from which we can define the operator (3.8) by
(d_—l— d_*) X 1|_w = 0_® 1|_w —+ (d_@) 1|_w)*.

If (M, w) is a compact Kahler manifold that admits a prequantum lumedte (L®, (—, —
)Le, ), then the Dolbeault-Dirac operatér. +- ", turns out to have the same principal sym-
bol, and hence the same index, as the opefa@ear9*) ® 1 ». So for Kahler manifolds, Defi-
nition 3.20 may be rephrased as

Qu (M, w) := index((d_+ 0) @ 1o : QOEVEYM; L©) — QO0dd(\; L‘*’)) :

Lemma 3.23.1f (M, w) is a Kahler manifold, then Definitions Il and 1l of geometric quasa-
tion agree.

Proof. Note that

HOK(M; L?) = ker <0k® 1|_w> /im <5k71 ® 1Lw>
S ker(5k® 1Lw) N (im (5'(71@ 1L“’>)L
(

—ker(d¥® 1Lw> N ker(z?‘“1 ® 1Lw) ’

because the images af and ((9k_1)>k lie in different spaces.
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We conclude that

HoeeM; L) = @ ker(0K+ (0K 1) ) @100

k even

= ker<(5+ 5*) & 1|_w|QO,even(M;|_w)) ,

and similarly,

0,0dd k(g1 * "
HO.0dd(\: L) — keadker(a (a ) )®1L

= ker(((;—i— d_*) & 1|_w|QO,odd(M;|_w)> .

3.4 Quantisation via theSpirf-Dirac operator

Prequantisations and almost complex structures are tleatimgredients of the definition of
quantisation via the Dolbeault—Dirac operator. These twgpadients can, in some sense, be
combined into the single notion of a Spistructure Such a structure allows us to give another
definition of geometric quantisation, which is slightly fdifent from the previous one. We
will use this definition in Theorem 6.13 about discrete serepresentations of semisimple Lie
groups.

It is possible to restate Definition 3.20 of Dolbeault-qusation in terms of Spinstructures
associated to almost complex structures and prequant@rblindles. See for example [79].
This definition is different from the one we give in this seati where we do not use almost
complex structures. The difference between these defsii®explained in [62].

Spirf-structures and Dirac operators

We begin by introducing Sptrstructures on manifolds. More information can be found2i?| |
or in [53], Appendix D. Fom € N, n > 2, the group Spifm) is by definition the connected
double cover of SQn). It can be constructed explicitly as follows.

The Clifford algebra of a vector spa¥ewith a quadratic forng is the quotient of the tensor
algebra ofV by the two-sided ideal generated by the elememtsy — q(v), forve V. See
[22, 23, 53] for more information. Lé&E, be the Clifford algebra aR" with the quadratic form
q(x) = —x2 —--- —x2. Then Spittn) is the group irC, generated by elements of norm one and
degree two:

Spinn) = (xy;x,ye S"1c R"c Cy).
The group Spif(n) is defined as
Spirf(n) := Spin(n) xz, U(1).

HereZ; is embedded into Sp{n) as the kernel of the covering map: Spin(n) — SO(n), and
into U(1) as the subgroupt1}.
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More generally, we have the groups SpMnand Spifi(V), for any finite-dimensional vector
space/ equipped with a quadratic form. They are defined completadyagously to the groups
Spin(n) and Spifi(n), respectively.

Definition 3.24. A Spir®-structureon a vector bundl& — M of rankr is a pair(P, (), consist-
ing of a right principal Spif(n)-bundleP — M and a vector bundle isomorphism

y:P X Spirf(r) R" — E.

Here Spifi(r) acts onR" via the homomorphism Sgitr) — SO(r) given by|[a, 7 — A(a), for
ae Spinr) andze U(1).

A Spin®-structureon a manifold is a Spfastructure on its tangent bundle. A manifold
equipped with a Spfastructure is called a Sgirmanifold

A Spin®-structure on a vector bundie — M induces a metric and an orientation &n
obtained from the Euclidean metric and the standard otientan R%, via the mapy. If E
was already equipped with these structures, then theynasupposed to preserve them. That
IS, Y is an isometric isomorphism of oriented vector bundles.

If an action of a groupgG on M is given, then an equivariant Spistructure onM is a
Spirf-structure(P, (), whereG acts onP from the left, andy is assumed to b&-equivariant.

We will sometimes sloppily use the term Spistructure for the principal SpirbundleP.

Remark 3.25(Spin-structures)A Spin-structureis defined in the same way as a Spatructure,
with the group Spifir) replaced by Spifr) everywhere. A Spin-structuf@ — M on a vec-
tor bundle of rankr naturally induces a Spirstructure on this bundle, equal B X spinr)
Spirf(r) — M.

Now supposen € N is even. We denote theanonical representatioof C, by c: C, —

EndAn) (see [53, 22, 23]). The vector spasgis naturally isomorphic t@2"?. The restriction
to Spin(n) of this representation decomposes into two irreducibleepriesentations, = Al &
A, of equal dimension. Fore R" C C,, we have

XA = c(X)AF C A
T 0A A 9)
XD, =c(X)A, CA,.
The representatioft, of Spin(n) extends to the group Sgifn) via the formula
[a,Z]-d=1za-9),

for a € Spin(n), ze U(1) andd € A,. The Spifi-Dirac operator acts on sections of tsginor
bundleassociated to the Sgustructure orM:

Definition 3.26. Let (P, () be a Spifi-structure on an even-dimensional maniféid The
spinor bundleon M associated to this Sdirstructure is the vector bundle

S =P X Spirf(dy) AdM .

The isomorphisnl\y,, = C2™’% induces a Hermitian metric or¥’. The spinor bundle has a
natural decompositioy’ = . @.#~, induced by the decompositidy,, = AOTM Dl -
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The action off M on.¥, called theClifford actionand denoted bgry, is defined as follows.
Let [p,X] € P xgpir(n) R" = TM be given. Then for alb € Aq,, the Clifford action is defined
by

crm([p,X)[p, 8] == [p,x- 3]. (3.10)

Note that by (3.9), the Clifford action interchanges the-buhdles”* and.”~. The induced
action of vector fields on sections of the spinor bundle Wibae denoted bgr .

To define the SpinDirac operator on an even-dimensional manifeldwe suppose a Her-
mitian connectiori] on the spinor bundle to be given.

Definition 3.27. The Spift-Dirac operatory,, on M, associated to the Spustructure(P, )
and the connectiof, is defined by the property that for all orthonormal locahies{e, . . ., €y, }

of TM, we locally have
dwm

Dy = ZlcTM(ej)Dej-
j=

This operator maps sections.of " to sections of#~ and vice versa.
The principal symbol:r@M of the Spint-Dirac operator is given by

@, (€,0) = (§,icTm(¢7)9)

Here(&, d) € m;., with ry the cotangent bundle projectionidf The tangent vectadf* € TM
is the one associated via the Riemannian metric dd. The square of this principal symbol
is given by scalar multiplication by |2, so thatay | is invertible, and the SpfaDirac operator
is elliptic.

Furthermore, the SpfrDirac operator is symmetric with respect to th&inner product
of compactly supported smooth sections of the spinor bufii®], [22], page 69). Thid.?-
inner product is defined using the volume form Ehassociated to the Riemannian metric.
Finally, if M is equipped with &5-equivariant Spifistructure, then the spinor bundle has a
natural structure of &-vector bundle. If the connection o#f is G-equivariant, then so is the
Spirf-Dirac operator.

Spirf-quantisation

Let (M, w) be a compact symplectic manifold. In the definition of Spimantisation, we use
a slightly different notion of prequantisation from the antroduced in Section 3.1. To define
Dolbeault-quantisation, we assumed that the cohomoloaysfl] was integral. For Spfa
guantisation, we assume that the cohomology class

1
(@] + écl(/\%“'M (TM,J)) € H3x(M) (3.11)
is integral, for some almost complex structdren M, not necessarily compatible with. This

integrality condition is independent of the choicelofntegrality of (3.11) implies in particular
that[2w) is an integral cohomology class, so tlist, 2w) is prequantisable.
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Definition 3.28. A Spin-prequantisatiorof (M, w) is a prequantisatio(L??, (—, —), 20, ), as
in Definition 3.4, of the symplectic manifoldM, 2w). That is, the curvature form af is 47 w
instead of 21 .

Note that ifL® is a normal prequantum line bundle ov&, w), then (L“’)®2 is a Spinf-
prequantum line bundle. We will motivate this definition iarhma 3.32.

In the case of Spfaguantisation, the link between the Spstructure and the prequantisa-
tion is given by the determinant line bundle:

Definition 3.29. Thedeterminant homomorphisdet : Spirfi(n) — U(1) is given by
defa, 7 = Z,

for a € Spin(n) andze U(1).
Let P — M be a principal Spif{n)-bundle. Thedeterminant line bundlef P is the line
bundle
det(P) =P X spirf(n) C—M,

where Spifi(n) acts onC via the determinant homomorphism.

Definition 3.30 (Quantisation 1V) Let (M, w) be a compact symplectic manifold, and suppose
that the cohomology class (3.11) is integral. Then there $piaf-prequantisatior{L?®, (—
,— )20, 0) of (M, w), and a Spif structureP — M on M whose determinant line bundle is
(isomorphic to)L2® (see Remark 3.31). Let

L T2 (M,.7T) — T®(M,.77)
be the Spif-Dirac operator on the spinor bundlé, with respect to any connection off. Its
index is the Spifrquantisationof (M, w):

Qv (M, w) := indexpL,”.

Note that the principal symbol, and hence the inde@kﬁ? does not depend on the choice
of connection on?.

Remark 3.31. Integrality of (3.11) implies that a SdirstructureP as in Definition 3.30 always
exists. Indeed, lel be any almost complex structure bh not necessarily compatible with.
By integrality of (3.11), the line bundle

L2 @ AZM(TM,J) — M

always has a square rolo. ThenP may be taken to be the standard Sgstructure associated
toLj andJ, as described for example in [27], Proposition D.50.

The specific choice of the SgustructureP is irrelevant in Definition 3.30, as long as its
determinant line bundle is*®.

The link between Definitions 3.4 and 3.28 of prequantisato between Definitions 3.20
and 3.30 of geometric quantisation, is the following.
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Lemma 3.32.Let (M, w) be a compact symplectic manifold, and 1&t+ M be a prequantum

line bundle. Then ¥ := (L‘*’)®2 — M is a Spirf-prequantum line bundle. Let J be an almost
complex structure on M, compatible widl If the line bundle

AZM(TM,J) — M

is trivial, then the Dolbeault-quantisation ¢M, w), with respect to ¥, equals theSpirf-
quantisation of M, w), with respect to £%.

Sketch of proofin the situation of this lemma, the spinor bundfeis isomorphic toA\>*T*M ®
L%, and this isomorphism intertwines the principal symbolthef Spirt- and Dolbeault-Dirac
operators (up to a nonzero scalar factor). O

3.5 Equivariant quantisation

So far, we have only defined quantisation in the absence ob@pgaction. These definitions
generalise naturally to the equivariant setting. (Mt w) be a compact symplectic manifold,
equipped with a symplectic action by a gro@pLet a (Spifi- or normal) equivariant prequan-
tisation be given.

In the case of Dolbeault-quantisation, Jebe aG-equivariant almost complex structure on
M, compatible withw. If the action ofG onM is proper, then such an almost complex structure
always exists (see [27], Example D.12 and Corollary B.3B)hk case of Spfaquantisation,
the Spirf-structureP in Definition 3.30 can be given the structure ofSaequivariant Spift
structure, by applying the construction in Remark 3.31 te@mvariant almost complex struc-
ture onM. Choose &-equivariant connection on the corresponding spinor kndll then
follows that the virtual vector spac€y (M, w)—Qn (M, w) are invariant under the representa-
tion of G given by (3.4), and therefore carry representationS.of

If G =K is a compact Lie group, then these quantisations thereffieedelements of the
representation ringf K:

Definition 3.33. Let K be a compact Lie group. Thepresentation ring ) of K is the
quotient of the free abelian group with one generator fohdaomorphism class of finite-
dimensional representations Kf, by the equivalence relatiofv] + W] ~ [V & W], for all
finite-dimensionaK-representationg andW. The tensor product of representations induces a
commutative product oR(K).

In particular, we have

Qu (M, w) = K-index(do + dfw) € R(K); (3.12)
Qu (M, @) = K-indexps € R(K). (3.13)

Here the Dolbeault—Dirac operauirw + 5[%) and the SpifiDirac operatolfbk,lzw are understood
as operators between the spaces of even- and odd-gradbdlamtorphic differential forms
with values in with values i, or sections of the spinor bundle, as in Definitions 3.20 and
3.30.
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The goal of this thesis is to generalise the ‘quantisationrootes with reduction’ theorem
in Section 3.7 to noncompabt andG. Definitions (3.12) and (3.13) cannot directly be gener-
alised to this case, for two reasons. The first is thi i§ noncompact, then the kernels of the
Dolbeault- and SpirDirac operators need no longer be finite-dimensional. Beesd reason
is that the representation ring has to be defined in terms ité-{fitimensional representations,
to avoid problems with formal differences of infinite-dinséonal vector spaces, and that the
finite-dimensional representations of noncompact Lie gsado not include all the interesting
ones. Indeed, for noncompact simple groups the only finitedsional unitary representa-
tions are direct sums of the trivial one. We will use the soluto these problems proposed
by Landsman [50], which is to replace the representatiampoifra group by thé-theory of its
C*-algebra, and th&-index by the analytic assembly map. This is explained ingidra 4, 5
and 6.

3.6 Quantisation of symplectic reductions

Because we always suppose that the orbit space of a givep guion is compact, all sym-
plectic reductions we consider are compact as well. We canetbre quantise these reductions
in the usual way, which we describe in this section.

Suppose thaG is a group,(M,w) is a HamiltonianG-manifold, with momentum map
®, and that(L®,(—,—)_»,0) is an equivariant prequantisation. Supp®4¢G is compact.
Consider the symplectic reductigMp, ap) of (M, w) at zero. If O is a regular value @f, and
G acts properly and freely o—1(0), then we have the line bundle

L® = (L®|p-1()) /G — Mo. (3.14)

If p: ®1(0) — Mo is the quotient map, anid: ®~1(0) — M is the inclusion, then we have
p*L* = i*L®. TheG-invariant Hermitian metri¢—, —)_» induces a metri¢—, —) « on L%,
by

(G-1,G-1") = (I,1") Lo,

for all me ®~1(0) andl,l’ € LY. Furthermore, there is a unique connectidf® on L such
thatp*OMo = i*[0 (see [28], Theorem 3.2). The trip(e®, (—, —) &, M) is a prequantisation
of (Mo, ).

To define the Dolbeault-quantisation of the the sympleetittiction(Mg, ap), we choose an
almost complex structurg™o on Mo, compatible withawy. We then form the Dolbeault—Dirac
operatord « + 9w, With respect taJMo. As in Section 3.3, the Dolbeault-quantisation is the
index of this operator:

Qu (Mo, ab) = index(d e + ]y

For Spirf-quantisation, leP — M be aG-equivariant Spiftstructure with determinant line
bundleL??. In [64], Paradan shows th&induces a SpinstructurePy on Mg whose deter-
minant line bundle i42%. The Spif-quantisation ofMp, ap) is then defined, as in Section
3.4, as the index of the Sgubirac operator on the spinor bundig, of Py, with respect to any
connection on%y:

Qv (Mo, wp) = indexdiy.°.
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Even if the action o on ®~1(0) is not assumed to be free, it is still locally free by Lemma
2.24. If the action of5 on ®~1(0) is proper, then it has compact stabilisers, so that the estluc
spaceMy is an orbifold. It is then still possible to define a DolbeaattSpirf-Dirac operator on
Mo, and its index is still denoted by (Mo, wn) or by Qy (Mo, ay), respectively. These indices
can be computed via Kawasaki’s orbifold index theorem (dé&¢ pr [59], Theorem 3.3).

If O is not a regular value ob, thenM is not necessarily an orbifold. In [60], Meinrenken
and Sjamaar deal with this situation in the compact setBegause their methods may not work
in the noncompact setting, we will avoid working with suchgilar spaces by only considering
regular values ofb.

Next, let any elemenf € g* be given. The SpinquantisatiorQy (Mg, w;) of the symplectic
reduction of(M, w) até can be defined analogously to the cse 0.

For Dolbeault-quantisation, suppogehas the property thaté,X) € 2miZ for all X €
kerexp. Ther€ lifts to a homomorphisne? : G — U(1) (with G¢ the stabiliser of with

respect to the coadjoint action). L&¥ be the coadjoint orbit through, and consider the line
bundle

L7 = Gxg, Cg — G/Gg = 67,

whereGg acts onC; via the homomorphisret.

By the shifting trick (Remark 2.22), the diagonal action®bn M x ¢~¢ is Hamiltonian,
and its symplectic reduction at zero is symplectomorphi@Me, ws). Consider the exterior
product line bundld.® X Lo overM x ¢~%, with metric and connection induced by those
on L% and some choices of metric and connectionLén®. The quantisatiolQ(Mg, ws ) is
by definition the quantisation of the reductiahzeroof (M x ¢—¢,w x w~¢), prequantised
by LY X Lﬁff, as described above. By homotopy invariance of the index,qirantisation is
independent of the choices of the connection and the matric’o’ . We will denote the line
bundle oveM; = (M x 0~%)oinduced byL® X L * asin (3.14) by %,

3.7 Quantisation commutes with reduction: the compact case

In the case of compact Lie groups quantum reduction is easy to define. Indeed, quantum
reduction at the trivial representation, denotedRyyis defined by taking subspaces It
invariant vectors:

R} :R(K) — Z;

V] — W] — dimVK — dimwX, (3.15)

for all finite-dimensional representatiodsandW of K.

Dolbeault-quantisation

With the notion of quantum reduction described above, , we tthe following ‘quantisation
commutes with reduction’ theorem in the case of Dolbeau#irgisation.
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Theorem 3.34(Dolbeault-quantisation commutes with reductiobgt (M, w) be a compact
Hamiltonian K-manifold, with momentum mdp Suppose there is a K-equivariant prequanti-
sation of(M, w). If 0 € ®(M), then

RR (Qu (M, )) = Qu (Mo, a),
with Qy as in Definition 3.20. 1D ¢ ®(M), then the integer on the left hand side equals zero.

This theorem was proved in various degrees of generalit®dn $9, 60, 63, 79, 84]. The
most general proof, without any regularity assumptions@romentum map or on the group
action, is the one given in [60]. @y, is replaced by, Theorem 3.34 was proved by Guillemin
and Sternberg in [28]. After Guillemin and Sternberg puididtheir result, and before Theorem
3.34 was proved in this generality, the latter theorem becamow as thé&uillemin—Sternberg
conjecture An overview is given in [70].

Theorem 3.34 can be symbolically expressed by the ‘quditiiseommutes with reduction’-
diagram

(KOM,0)—2 =GO QM,w) (3.16)

IR& IE:
(Mo, &) — 2> Q(Mo, a) = Q(M, w)X.

Here on the left hand sidé{& denotes symplectic reduction at zero.

Theorem 3.34 admits a generalisation to reduction at otesentations than the trivial
one. Quantum reduction at an arbitrary irreducible repred®nU of K is defined by taking
the multiplicity ofU in a given representation:

R :R(K) — Z;

V)= W] VU] = WU (3.17)

Here|V : U] denotes the multiplicity o) in V, which by Schur’s lemma equals the dimension
of Hom(U,V)K.

To state a ‘quantisation commutes with reduction’ theoréwtlzer irreducible representa-
tions than the trivial one, we now apply some representdtienry of compact Lie groups to
link quantum reduction at a given irreducible represeatato symplectic reduction at some
element oft*. Let T < K be a maximal torus, letC ¢ be its Lie algebra, and let C t* be
a choice of positive Weyl chamber. L&t C it} be the set of dominant integral weights with
respect to the positive roots fot, t) corresponding ta*. The elementd\ € A, are in one-
to-one correspondence with the irreducible represemstdK. This correspondence is given
by A — V,, whereV, is the irreducible representation Kfwith highest weightA. We will
write R} := RXA for the reduction map at,, and(M,,w, ) := (M_j,, w_j, ) for the symplectic
reduction of(M, w) at—iA € t* — £*. The embedding® — ¢* is given by

¢ o (E*)Ad(T) C B

Theorem 3.35(Dolbeault-quantisation commutes with reductiobgt (M, w) be a compact
Hamiltonian K-manifold, with momentum mdp Suppose there is a K-equivariant prequanti-
sation of(M, w). Then for allA € AL NiP(M),

Rk (Qu (M, w)) = Qu (M), @),
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with Qy as in Definition 3.20. I € id(M), then this integer equals zero.

In other words, we get a complete decomposition

QiMw)= @ Qu(My,w )V,

AEALNID(M)

of the virtualK-representatioQy (M, w) into irreducibles.
In the compact case, Theorem 3.35 can be deduced from Th&8dmThis deduction is
possible because of the shifting trick and the followingregée.

Example 3.36(The Borel-Weil theorem)The Borel-Weil theorem in representation theory
is a special case of Theorem 3.35. However, all known probf$ieorem 3.35 depend on the
Borel-Weil theorem to deduce this theorem from Theorem.3#&hce the Borel-Weil theorem
is not obtained as a corollary to Theorem 3.35, but only seagean illustration.

To deduce the Borel-Weil theorem from Theorem 3.35, con&gdample 2.13 about coad-
joint orbits. LetA € AL be given, and let’? be the coadjoint orbit throughiA. Note that
0* =~ K /K, as smooth manifolds. There is a complex structureKgi, which gives&”
the structure of a Kahler manifold. We have the prequaninmbundleL?” over (6, w),
defined as

L7 =K xk, Cy — K/Ky,

whereK) acts onC, via the global weigh¢’ : Ky — U(1). It can be shown that this line bundle
is ‘positive enough’, so that by Kodaira’s vanishing theorave haveH%K(6?;L%) = 0 if

k > 0. Definitions | — Il of geometric quantisation therefordramde in this case, and we see
that Theorem 3.35 implies that

Qu (6%, ") =Vj.
This is a version of the Borel-Weil theorem (see e.g. [85kdrem 6.3.7). See also [12].

Example 3.36 illustrates the mathematical relevance ofoildra 3.35. This theorem is
of mathematical interest because it is a link between syttiplgeometry and representation
theory. In other words, a link between theathematics behindlassical mechanics and the
mathematics behinquantum mechanics. This mathematical link is a more imporason
why the author is interested in Theorem 3.34 than a posshjsigal link between classical
mechanics and quantum mechanics that this theorem maydprovi

Using the Borel-Weil theorem, we can show that Theorem 2B&#s from Theorem 3.34.
We will use the fact that

Qu (M xN,wxVv)=0Qu(M,w)®Qu(N,v) (3.18)

for HamiltonianK-manifolds (M, w) and (N, v). This relation follows for example from the
Kunneth formula for Dolbeault-cohomology.

Lemma 3.37. Theorem 3.34 implies Theorem 3.35.
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Proof. Let A € A be given. Then using the shifting trick (Remark 2.22), Tle@013.34 and
formula (3.18), we get

Qu (My, @) =Qu (M x 07*)o, (wx w*)o)
:R&(Qm(Mxﬁ , WX W A))

—A

)

= (Qu (M, w) ®Qu (6~ )"

Now by the general form of the Borel-Weil theorem, we h@ye(0*, w ) = Vy, so that

Qu (M), @) = (Qu (M, w) ®Vj‘)K = RX (Qu (M, w)).

See also [60], Corollary 2.11.

Spirf-quantisation

For Spirf-quantisation, we have the following result, which is Theorl.7 in Paradan’s paper
[64].

Theorem 3.38(Spirf-quantisation commutes with reductioret (M, w) be a compact Hamil-
tonian K-manifold, with momentum meyp Suppose there is a K-equivarigdpirf-prequantisation
of (M, w). Letp be half the sum of the positive roots(éft) with respect ta’, .

If all stabilisers of the action of K on M arabelian then for allA € A, Ni®d(M),

Rk (Qv (M, w)) = Qv (M), @ 1p);
with Qy as in Definition 3.30. IR ¢ i®(M), then this integer equals zero.

The condition that the action & on M has abelian stabilisers is related to the fact that
there may be several different coadjoint orbitsirwhose Spifrquantisation equals a given
irreducible representation #f. This ambiguity, which is not present in the case of Dolbeaul
quantisation, can be removed by imposing the conditionttteaiction has abelian stabilisers.

Generalisations

Various generalisations of Theorems 3.34 and 3.38 havedm®idered. Vergne [83] has found
an approach to quantising certain classes of actions byomapact groups on noncompact man-
ifolds. In [64], Paradan proves a version of the GuillemiterSberg conjecture for Hamiltonian
actions by compact groupson possibly non-compact manifolds, under some assumptiais
are satisfied by regular elliptic coadjoint orbits of semiglie groups. He defines the quantisa-
tion of such an action as the index of a certain transvers#liptic symbol, which is an element
of the generalised character rilRg*(K). The unpublished work of Duflo and Vargas on re-
stricting discrete series representations of semisimales to semisimple subgroups can also
be interpreted as a ‘quantisation commutes with reductiesilt for Hamiltonian actions on
coadjoint orbits.
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Generalising in another direction, Bos [11] defines a notbhamiltonian Lie groupoid
actions, and proves a Guillemin—Sternberg conjecture famitonian actions of proper Lie
groupoids on bundles of compact Kahler manifolds.

In [50], Landsman proposes a generalisation of Theorem & 2&tions by noncompact
groups on honcompact manifolds, as long as the orbit spasechfan action is compact. This
generalisation is formulated in the languag@ohcommutative geomefgs we will explain in
Chapters 4, 5 and 6.

The aim of the author’s Ph.D. project was to prove Landsmgergeralisation in as many
cases as possible. Part Ill contains a proof of this gesata&in for group<s that have a
discrete normal subgroup such thatG/I" is compact, such a8 = R" or G discrete. In Part
IV, we prove a generalisation of Theorem 3.38 for semisingptips, wherel parametrises
the discrete series representations of such a group.

The strategy of the proofs in this thesis is to deduce the oropact case from the compact
case. Thus, Theorems 3.34 and 3.38 are essential ingredieour proofs, and we do not
obtain these theorems as corollaries to our results. Thectied to the compact case is made
possible by the ‘naturality of the assembly map’-result the prove in Part Il.



Chapter 4

Noncommutative geometry

We will generalise the ‘quantisation commutes with reductiresults in the compact case,
Theorems 3.34 and 3.38, to the noncompact case using toatsfoncommutative geometry.
These tools the an€-theory andK-homology ofC*-algebras. In Chapter 5, we will introduce
KK-theory, which a powerful tool that generalises bdtktheory andk-homology. UsingKK-
theory, we then define thenalytic assembly mapsed in the Baum—Connes conjecture. This
map will replace th&-index in Definitions 3.20 and 3.30 of geometric quantigatio

Further explanations, as well as the proofs we omit, can tweddn [10, 17, 18, 23, 52, 87].

4.1 Cr*-algebras

The central objects of study in noncommutative geometryCiralgebras Actually, ‘non-
commutative topology’ is a more accurate term for the studZwalgebras without further
structure. Indeed, the basis of noncommutative geometheigdea that all information about
a locally compact Hausdorff spaeéis contained in the algebi@y(X) of (complex-valued)
continuous functions oX that ‘vanish at infinity’. These algebras have natural $tmes of
commutativeC*-algebras, and the central goal in noncommutative geonetiy extend the
tools of topology and geometry, such lkgheory and (co)homology, to honcommutat@e
algebras.

The basic theory

Let us explain the example of the algel@ X) in some more detail.

Example 4.1(Continuous functions vanishing at infinityet X be a locally compact Hausdorff
space. A functiorf on X is said tovanish at infinityif for all € > 0 there is a compact subset
C C X such that for alk € X\ C, we have f(x)| < €. The vector space of continuous functions
on X vanishing at infinity is denoted ¥ (X). Note that ifX is compact, then all functions on
X vanish at infinity (just tak€ = X).

51
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For f,g € Cy(X) andx € X, set

[flleo == sup{ £(y)l;
yeX
(%) = £(%);
(fg) (%) = F(X)g(x). (4.1)

ThenCp(X) is a Banach space in the nofjm|~, and a commutative algebra ov@mwith respect
to the pointwise product (4.1). Furthermore, we have foff ajl € Co(X),

1190l < [0l 0 oo;
1 F oo = 11113

The structure o€y (X) mentioned in Example 4.1, and its properties (apart fromroata-
tivity) are the motivation for the following definition.

Definition 4.2. A C*-algebrais a Banach spad@\, || - ||), equipped with an associative bilinear
product(a,b) — aband an antilinear map— a* whose square is the identity, such that for alll
a,b e A, we have

(ab)* =b*a’;
labi] < f[al [|bl;
la*al| = [la]l®.

A homomorphism o€*-algebras is a linear homomorphism of algebras that intees\star
operations. Such homomorphisms are automatically bounded

It follows from theC*-algebra axioms thata*|| = ||a/| for all ain aC*-algebra.
The following result shows that studying locally compacusi@orff spaces is equivalent to
studying commutativ€*-algebras. It is proved for example in [18], Theorem 1.4.1.

Theorem 4.3(Gelfand—Naimark for commutativ&'-algebras) Every commutative Galgebra
is isomorphic to the Galgebra of continuous functions that vanish at infinity otoaally
compact Hausdorff space. If two commutativealgebras @(X) and G(Y) are isomorphic,
then X and Y are homeomorphic.

A propercontinuous mag between two locally compact Hausdorff spagesndY induces
a homomorphism ot*-algebras

£ Co(Y) — Co(X),

defined by pulling back functions alorfg In this way,Cy is a contravariant functor from the
category of locally compact Hausdorff spaces, with propatiouous maps, to the category of
commutativeC*-algbras. Together with the fact that all homomorphisma/ben two commu-
tativeC*-algebrasCy(X) andCy(Y) are defined by pulling back along some proper continuous
map, Theorem 4.3 implies that this functor defines an egemea of categories.

Note that a commutativ€*-algebra has a unit if and only if the corresponding space is
compact. This correspondence will be used in Section 4R-timeory.

The following example is the standard example of a noncorativeiC*-algebra.
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Example 4.4.Let 2# be a Hilbert space, and |e8(.77’) be the algebra of bounded operators
onJ?. Forae #(7), let||a|| be the operator norm @f, and leta* be its adjoint, defined by

(x.ay) = (a'xy)
for all x,y € 2. Then% (), equipped with these structures, i€&aalgebra.

In fact, allC*-algebras can be realised as subalgebras of an algebraraddxboperators on
a Hilbert space (see [18], Theorem 2.6.1):

Theorem 4.5(Gelfand—Naimark for gener&l*-algebras) Every C-algebra is isomorphic to
a norm-closed subalgebra o8(.7#) that in addition is closed under thieoperation, for some
Hilbert spaces7 .

Example 4.6.Let X be a locally compact Hausdorff space. Given a measupé onth respect
to the Borelo-algebra ofX, we can form the Hilbert spade?(X). For suitable measures
(the counting measure always works), the representati@(@f) in L?(X) as multiplication
operators yields an embedding@j(X) into Z(L?(X)).

Group C*-algebras

The two kinds ofC*-algebras we will use most in this thesis are commutatives @amelgroup
C*-algebras Let G be a locally compact Hausdorff topological group, equippéd a left Haar
measurelg. For two functionsp, Y € C¢(G), theirconvolution product *  is defined by

(6+w)(@):= [ 0@ gdg 42)

The functiong* is defined by
$*(9) == ¢(g HA(9) (4.3)

whereA is the modular function oG with respect tadg, defined byd(gh) = A(h)dg for all
h € G. We will only consideunimodulargroups, defined by the property thfats the constant
function 1. In other words, by the property that any left Hasgasure is also right invariant
(and vice versa).

The full and reduce@*-algebras ofs are defined as completions@f(G) in certain norms,
with multiplication and*-operation defined as the continuous extensions of (4.2}

To define these norms, we consider unitary representatiefio) of G. For ¢ € C¢(G),
we have the operator

p(9):= [ #(@p(g)dg € H(F).
The norm|| - || used to define thiull C*-algebra C'(G) of G is

¢l := sup [|p(@)llzr)-
(H.p)EG

Here G denotes theinitary dualof G, i.e. the set of all irreducible unitary representations of
G. This supremum is finite, becauge(9)|| () < (9|l g) for all ¢ € Cc(G) and all unitary
representation§7, p) of G.
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Thereduced C-algebra G (G) of G is the completion o€;(G) in the norm|| - ||, given by
I1lr == [A%(D) ]l 5L26))-
HereA®: G — U(L?(G)) is the left regular representation

(A%(9)¢)(d) = (g7 'd).

Note thatAS(¢)y = ¢ =  for all ¢ € C(G) andy € L%(G).

The convolution product 08*(G) andC;(G) is commutative if and only i is commuta-
tive. Hence, by Theorem 4.3, for abelian gro@ghere are locally compact Hausdorff spaces
X andY such that

C'(G) = Cof

X

(4.4)

It turns out that bottX andY may be taken to be the unitary du@lof G. The iIsomorphisms
(4.4) are given by the Fourier transform.

So for abelian group&, we haveC*(G) = C;(G). This equality also holds i& is compact
(but not necessarily abelian). Indeed, by the Peter—Weglrtm ([46], Theorem 1V.4.20) every
irreducible representation of a compact gréapccurs in the left regular representatiorin
L?(G). In general, a group is calleimenabléf its full and reducedC*-algebras are equal.

TheC*-algebra of a compact Lie group can be described explicitfiphows. We will use
this description in the proof of Proposition 4.29. lketbe a compact Lie group, and consider
the direct sum

D #(Vn), (4.5)

ek

where, as beforé is the set of irreducible (unitary) representati¢¥ig, 77) of K, and this direct
sum by definition consists of the sequentas) . such that,; € #(Vy) for all i, and

ﬁ(\/ﬂ) — O

(That is, for alle > 0, there is a finite se&X c K such that|arn|| (v, < € for all outsideX.)
Equipped with the norm

1(@n) ek || = supl|anl| zvy)
ek

and the naturat-operation, (4.5) become<Ci-algebra.

Proposition 4.7. There is an isomorphism of‘@algebras

K) = €D Z(Vn). (4.6)
meK
Sketch of proofConsider the Hilbert space
[2(K):= {a (an) ek € |_| P$(Vn); (a,a) Z tr(ayan) < oo}

ek e K



4.1C*-ALGEBRAS 55

It follows from the Peter—Weyl theorem (see e.g. [46], Tleeo#.20) that the Plancherel trans-
formP: L?(K) — L?(K), given by

(Pf)p=+/dimVgm(f)

for f € L?(K) andme K, is a unitary isomorphism. Consider the miapC*(K) — 2(L2(K))
that onC(K) is given by
¢(f) =Pm(f)P,

and extended continuously to all 6f(K). This map can be shown to be an isomorphism
of C*-algebras onto its image, which is the right hand side of)(4a6ting onL?(K) by left
multiplication. O

Additional concepts
We conclude this section with some definitions that we wi# ascasionally.

Definition 4.8. A C*-algebra is said to be-unital if it has a countable approximate unit. That
is, there is a sequence;j)T_; in A, such that for alb € A, the sequence®;a)}_; and(aej)}_;
converge ta.

Example 4.9. Full and reduced grou@*-algebras ar@-unital; a sequence i6;(G) that con-
verges to the distributiod is an approximate identity.

A commutativeC*-algebraCo(X) is o-unital if X is o-compact. If(C;)7’_, is an increasing
collection of compact subsets ¥fsuch thatJi__; Cj = X, then an approximate identity can be
constructed as a sequence of function§§(X) such that thgth function equals 1 o@;.

Definition 4.10. Let A be aC*-algebra. By Theorem 4.5, it can be embedded into the algebra
of bounded operators on some Hilbert spate Themultiplier algebraof A is the algebra

M(A) = {T € Z(#); TAC AandAT C A}.

Example 4.11.Let X be a locally compact Hausdorff space, and consideCthalgebraCy(X)
as an algebra of operators bfiX), for some measure ox. ThenM(Cy(X)) = Cp(X), theC*-
algebra of continuous bounded functionsXnBeing a unitalC*-algebra, the algebi@,(X)
equalsC(BX) for some compact Hausdorff spa¥ecalled theStone-€ech compactificationf
X.

The following property of multiplier algebras will play aleoin the definition of the homo-
morphismVy (see page 104).

Lemma 4.12. Any homomorphism of'Galgebras A— B extends to a homomorphism(A —
M(B).

See [87], Proposition 2.2.16.
In particular, any representation: A — #(°) of aC*-algebraA in a Hilbert space”’
extends to a representation

T M(A) — M(B(H)) = B(H).
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Definition 4.13. A positive elemeraf aC*-algebraA is an elemena € A for which there exists
an elemenb € A such that = b*b.

Example 4.14.1f > is a Hilbert space, then a positive elementAf7’) is an elemené such
that
(x,ax) >0

for all x e J7.

The tensor product of twG*-algebrasA andB can be formed in several ways, that is, with
respect to several different norms on the algebraic tensaluysctA® B. See [87], Appendix T
for more information.

Definition 4.15. Theminimal tensor product Amin B is the completion of the algebraic tensor
productA® B as a subalgebra oB(#a @ 7#3), if AandB are realised as algebras of bounded
operators on two Hilbert space$a and. /g, respectively. The resulting norm &R min B is
denoted by - || min-

Definition 4.16. Themaximal tensor product AmaxB is the completion of the algebraic tensor
productA® B in the norm

138 e = SUR S 7@ 7 B0 | 1 (4.7)

for ax € A andby € B, where the supremum is taken over all commuting represensatr, :
A— B(H) andr : B— A() of AandB on the same Hilbert spac¥’.

The supremum in (4.7) actually turns out to be a maximum.
For any norr| - || onA® B with the property that the completion in this norm i8"aalgebra,
one has

[+ lmin < [ [T <[] [l max,

which explains the names of these normsCAalgebraA is callednuclearif for all other C*-
algebrasB, the minimal and maximal norms @\ B coincide. Then there is only one way to
form the tensor product & with any other giverC*-algebra (if this tensor product is required
to be aC*-algebra).

Example 4.17.CommutativeC*-algebras are nuclear. In particular, one has

Co(X1) ®@Co(X2) = Co(X1 x X2) (4.8)
for all locally compact Hausdorff spacs andX,.
Example 4.18.For all locally compact Hausdorff grougs andG,, one has

C*(G1) ®@maxC"(G2) = C*(G1 x Gp);

C7(G1) EminG} (G2) = G (Gy x o). (*9)
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4.2 K-theory

One of the nicest results in noncommutative topology is #reegalisation of Atiyah—Hirzebruch
topologicalK-theory for locally compact Hausdorff spaces, i.e. comiting&*-algebras, to ar-
bitrary C*-algebras. We begin with the definition of topologigatheory, and then we rephrase
this definition in aC*-algebraic way. This allows us to generalise the definitmmrtbitrary
C*-algebras.

Topological K-theory

We first consider @ompactHausdorff spac.

Definition 4.19. The (topological) K-theoryof X is the abelian group®(X) whose generators
are isomorphism classés| of (complex) vector bundles ové, subject to the relation

[E]+[F]=[E®F]

for all vector bundle& andF overX.

A continuous mag : X — Y between compact Hausdorff spaces induces afhal®(Y) —
KO(X), defined via the pullback of vector bundles alohgThis turnsk® into a contravariant
functor from the category of compact Hausdorff spaces ta#tegory of abelian groups.

More information about topologicd-theory can be found in [3]. Note that a general
element oiK9(X) is a formal differencéE] — [F] of isomorphism classes of vector bundles.

Vector bundles over locally compact, but not compact spacesot as well-behaved as
those over compact spaces. Therefore,Khineory of a general locally compact Hausdorff
spaceX is not defined directly as in Definition 4.19, but via the omméap compactificatiorX™
of X.

Let XT = X U{} be the one-point compactification Xf Let

i {oo} e XT
be the inclusion map of the point at infinity. Consider thechanially induced map
i1 KO(XH) — KO({eo}).

Note that vector bundles over the one-point spaeg are just finite-dimensional vector spaces,
whose isomorphism classes are characterised by their dioren Therefor&®({e}) = Z.

Definition 4.20. The K-theory of the locally compact Hausdorff spaXes the kernel of the
mapi*. It is denoted byK°(X).

As a consequence of this definition, the only maps betweeallyocompact Hausdorff
spaces that induce maps Krtheory are the ones that extend to continuous maps between o
point compactifications. These are f@per continuous maps. Hence topologi¢&itheory
is a contravariant functor from the category of locally catipHausdorff spaces, with proper
continuous maps, to the category of abelian groups. (Sedtesemark below Theorem 4.3.)
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K-theory of unital C*-algebras

Let us rephrase the definition BP(X) in terms of theC*-algebraCo(X). First suppose that
is compact, so thdly(X) equals the algebi@(X) of all continuous functions oK.

If E — X is a vector bundle, then the spdctée) of its continuous sections has the natural
structure of &C(X)-module, given by pointwise multiplication. Two su€iiX)-moduled (E)
andl (F) are isomorphic if and only iE = F as vector bundles. Note that there is a natural
isomorphism ofC(X)-modulesl (E® F) =T (E) &I (F). Furthermore, for any vector bundle
E — X, there is a vector bundle — X such thaE ¢ F is trivial, say isomorphic tX x R" (see
[3], Corollary 1.4.14). This implies that

FME)er(F)=ME®F)=T(XxR")=C(X)".

More generally, a modul®t over aC*-algebra (or ring)A is calledfinitely generatedand
projectiveif there exists am\-moduleft such thab)t & M is a finitely generated fre&-module,
i.e. of the formA" for somen € N. It turns out thatany finitely generated projectiv€(X)-
module is isomorphic to the modul&E), for some vector bundlE — X. Hence Definition
4.19 ofK-theory for compact spaces can be restated as follows:

Proposition 4.21(Serre-Swan)The K-theory of the compact Hausdorff space X is the abelian
group whose generators are isomorphism clag88s$ of finitely generated projective (&X)-
modules, subject to the relation

9]+ [N = [Me N

for all finitely generated projective modul@8 and9t over O X).

The definition of topologicaK-theory provided by Proposition 4.21 can be generalised to
arbitraryC*-algebras with a unit.

Definition 4.22. Let A be aC*-algebra with a unit. Th&-theoryof Ais the group in Proposition
4.21, withC(X) replaced byA. This abelian group is denoted By(A).

A unital homomorphisnf : A— B of unitalC*-algebras induces a mdp: Ko(A) — Ko(B).
This map is defined bj)t] — [ ¢ B], for finitely generated projective (righ#}-modulest.
The tensor produébt ®¢ B is the algebraic tensor produbt ® B overC, with the equivalence
relation

(m-a)@b~m® (f(a)b),

for all me 9, a € A andb € B, divided out. This makes thié-theory of unitalC*-algebras
a covariant functor. By Lemma 4.23 below, this functonatieneralises the functoriality of
topologicalK-theory for compact spaces.

Note that this time we use a subscript O instead of a supptsibacause we are dealing with
a covariant functor o€*-algebras, rather than a contravariant functor on topoligpaces.

Lemma 4.23.Let X and Y be compact Hausdorff spaces, leXf— Y be a continuous map,
and let E— Y be a vector bundle. Consider the homomorphism*eélgebras f : C(Y) —
C(X) defined by pulling back functions along f. There is an isorhismp

r(X,f'E) =T (Y,E)®¢C(X).
See [23], Proposition 2.12.
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K-theory of generalC*-algebras

The extension of Definition 4.22 to possibly non-undtalgebras is analogous to the exten-
sion of Definition 4.19 to Definition 4.20. Indeed,Xfis a locally compact Hausdorff space,
then

Co(X) & C 2 C(XH).

The isomorphism is given bif ,z) — f+z wheref € C(X*) is given by

f(x)=f(x) forallxeX;
f~(oo) =0.

The multiplication, star operation and the norm@yiX) & C are defined by

(f+2)(g+w) := fg+2zg+wg+zw,
(f+2":=f"+7
f = f
If +2| yrggfl (y)+2
= sup|f(x) +Z
XeX

= It +2l| zcox))

for f,g € Co(X) andz,w € C. The resultingC*-algebra is called thenitisationof Cy(X).
The inclusion map: {«} — X induces the map

i*: Co(X)C =2 Co(XH) = C (4.10)
given by the natural projection onto the tein Then we have
Proposition 4.24. The topological K-theory of X is the kernel of the map
i = (i), : Ko(C(XT)) = Ko(C) = Z
induced by4.10)
For a generaC*-algebra, we proceed as follows.

Definition 4.25. Let (A, || - ||a) be aC*-algebra. lItsunitisation A" is defined as the algebra
AT := A@ C, with multiplication, star operation and norm given by

(a+2)(b+w):=ab+zb+wa+ zw,
(a+2*:=a"+z
|la+2Z||a+ i=|la+2z

PB(A)»

fora,b € Aandzw e C. Herel|a+2z|| z() is the norm ofa+z as a bounded operator on the
Banach spacA, given by left multiplication.
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For aC*-algebraA, consider the map

i*: AT = C,
a+z— 2z

We denote the induced map &ntheory by
Iy 1= (I*)* : Ko(A+) — Ko(C) = Z.
Definition 4.26. TheK-theoryof A is the kernel of the map. It is denoted byKg(A).

Hence for all locally compact Hausdorff spaces, we H&¥%X) = Ko(Co(X)).

For unital A, Definition 4.26 reduces to Definition 4.22. Note that for &iyalgebraA,
every finitely generated projectivemodule can be extended to an finitely generated projective
At-module, which is in the kernel of the map Such modules therefore define classes in
Ko(A), as in the unital case, although they usually do not exh&eswhole grougo(A).

Remark 4.27(K-theory via projections)TheK-theory of a unitaC*-algebraA is often defined
using projections in the ‘infinite matrix algebra’

Mao(A) := lim Mn(A),

i.e. elementp such thap? = p= p*. These correspond to projectiemodules vigp — p(A”),
for p a projection inMp(A). The functoriality ofk-theory is then induced by

f(p)ij = f(pij) €B,

if f:A— Bisahomomorphism df*-algebras ang € M« (A) is a projection.

By the way, in this picture another reason wKytheory for non-unitaC*-algebras has to
be defined separately becomes apparent. Indeedisifa connected, locally compact but not
compact Hausdorff space, then there are no nonzero pajsciin M, (Co(X)), because the
trace of such a projection is a constant functiornxon

Remark 4.28(HigherK-groups) For any integen, and anyC*-algebraA, one has th&-theory
groupKy(A) 1= Ko(A® Co(RM)). Bott periodicityis the statement th#t,, 2(A) = Kq(A) for all
suchn andA (naturally inA). Therefore, it is enough to consider tetheory groupo(A)
andKi(A). In this thesis, we will only us&g(A). This is eventually related to the fact that we
consider symplectic, and hence even-dimensional masifold

The K-theory of the C*-algebra of a compact group

The onlyC*-algebras whos&-theory we will use in this thesis are (full or reduced) group
C*-algebras (see Section 4.1). For compact grddpthis K-theory group is isomorphic to

1This is one of the few occasions where we use the capital IEtt® denote both a compact group and a
K-theory functor. We hope this is not too confusing.
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the abelian group underlying the representation Rif). Indeed, let(Vy, ) be a finite-
dimensional representation &f. ThenV; has the structure of a projectiv& (K)-module,
given by

f~v::p(f)v:/Kf(k)n(k)vdk (4.11)

Heref € C(K), ve Vy, dkis a Haar measure df, and thisC(K)-module structure oW extends
continuously to £*(K)-module structure.

Proposition 4.29. This procedure induces an isomorphism of abelian groups
R(K) = Ko(C*(K)). (4.12)
Proof. The proof of this proposition is based on Proposition 4.7ictvistates that

C*(K) = P 2(Vn). (4.13)

ek

Let a sequenceXy),_, of finite subsets oK be given, such thaX, c X1 for all n, and that
Un-1 %n» = K. Then it follows from the definition of inductive limits of Bach algebras ([10],
Section 3.3) that
D #(Vn) =lim D B(Vn).
meK TTEXn
We conclude that, by continuity &f-theory with respect to inductive limits (see [10], 5.2.4
or [52], Theorem 6.3.2),

Kol(C*(K)) = lim Ko € (Vi)
e Xn

— lim € Ko(# (Vi)

In the second line from the bottorv; is first viewed as a#(Vy)-module, and then as an
irreducible representation &f. The fact that the resulting isomorphisty(C*(K)) = R(K) is
given by the procedure described above Proposition 4.26we from the explicit form of the
isomorphism (4.13), as given in the proof of Proposition 4.7 0J

Recall that for compact groups, the full and redu€éehlgebras coincide.

Proposition 4.29 is crucial to the motivation of the defmitiof quantisation we will use
(Definition 6.1). This quantisation takes values in Kx¢heory group of the (full or reduced)
C*-algebra of the group in question. By Proposition 4.29, toisesponds to an element of the
representation ring in the case of compact groups.
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4.3 K-homology

As we said at the end of the previous section, the quantisptiocedure we use takes values in
theK-theory of the group that acts on the symplectic manifoldithen be quantised. In the case
of compact groups and manifolds, geometric quantisatiohdedined as the equivariant index
of a Dirac operator. In the noncompact case, Khtheory element that is the quantisation of
a symplectic action will be the ‘generalised equivariaeix' of an ‘abstract elliptic operator’
defined by the same Dirac operator. To be more precise, tistréa elliptic operators’ on a
G-spaceX will be the elements of th&-homology group @(X) defined in this section. The
‘generalised equivariant index’ of such an element is isgemunder thanalytic assembly map
which is defined in Section 5.2.

The definition of K-homology

We begin with the abstract definition of tkehomology group(c?(X). We will later state a the-
orem that (some) first order elliptic differential operaton a smooth manifold define elements
of the associatel-homology group. The Dirac operators that we use to definatgadion are
examples of such elliptic operators.

Let X be a locally compact Hausdorff space. &be a locally compact Hausdorff topo-
logical group acting properly oX.

Definition 4.30. 1. Anequivariant K-homology cycler equivariant abstract elliptic oper-
ator overX is a triple(s7, F, i), where

e J7 is aZy-graded Hilbert space carrying a graded unitary repretentaf G (such
as the spack?(E), for someZ,-graded HermitiarG-vector bundleE — X, with
respect to some measure X

e F is a bounded operator o#” which is odd with respect to the grading (such as an
odd zeroth order pseudo-differential operatoisgnvhenX andE are smooth);

e 7Tis a graded representation ©f(X) in 2 (such as the pointwise multiplication
operator ofCo(X) onL?(E)).

The triple (27, F, ) is supposed to satisfy the assumptions that fogal G and f €
Co(X), we have
=gn(f)g™", (4.14)

m(g- f -
andr(f)[g,F] are compact.

)

and the operator&, ri( )], m1(f)(F? —1)

2. TwoK-homology cycleg.7#,F, ) and(#”,F', 1) are said to benitarily equivalentf
there is a unitary isomorphisg#’ = 7" that intertwines the representationg®and of
Co(X) on# and.7’, as well as the operatoEsandF’.

3. TwoK-homology cycles.7#, F, m) and(.#,F’, i) are callecoperator homotopid there
is a continuous pattR )i (o4 in #(¢) such thal 7, k, ) is aK-homology cycle for
allt,andR=F,F =F'.

4. Theequivariant K-homologgf X is the abelian groub(g(X) with one generator for ev-
ery unitary equivalence class of equivaridnhomology cycles oveX, with the relations
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o [, F,m=[sF, nif (s,F nand(s,F m) are operator homotopic;
i [%@%/J:@F/?n@ nl] = [%,F,T(]-l—[%”’,F',H’].

K-homology is a covariant functor on the category of locallynpact Hausdorff proper
G-spaces with equivariant continuous proper maps: such afmp— Y induces a map

f 1 KG(X) = KG(Y),

given by
[, F, 1 — [, F, 0o f7].

As with K-theory, we also have an odd versiéfr of K-homology. We will not use this odd
part, however.

Functional calculus

An operator in a&-homology cycle is supposed to be bounded, and can be thofigist an
abstract zeroth order pseudo-differential operator. Wiewdinly consideiK-homology classes
defined by Dirac operators, which are first-order differ@ntiperators. These do not define
bounded operators on the spacd.éfsections of the spinor bundle, and hence do not directly
define aK-homology class. A way to associat&ahomology class to an unbounded operator
is to usefunctional calculugo turn this unbounded operator into a bounded one.

An (unbounded) operatawn a Hilbert space?’ is a linear map

D :domD — 7,
where donD C /7 is a dense subspace. The oper&ias symmetridf for all X,y € domD,
(DX,Y).r = (X, DY) -
Theadjointof D is the operatoD* with domain
domD* := {x € JZ; the linear functiory — (x,Dy) ,» on donmD is bounded,

and defined by D*x,y).» = (X,Dy),» for all x € domD* andy € domD. The operatoD

is calledself-adjointif domD* = domD, andD* = D on this common domain. Functional
calculus is defined for self-adjoint operatdds For any bounded measurable functibron
the spectrum oD, it allows us to defined a bounded operaf¢D) in a suitable way. See for
example [68], page 261 for the definition of this operator.

A symmetric operator that is not self-adjoint sometimesasaslf-adjoinclosure An oper-
atorD on 7 is closableif the closure of its graph i’ x .77 is again the graph of an operator
D on.#. This operatoD is then called thelosureof D. The domain oD is the completion
of domD in the norm|| - ||p, which is defined by

IXI13 = 11X + IDx]1 3 (4.15)

for all x e domD.

If the closure oD is self-adjoint, then we calD essentially self-adjointand we can apply
the functional calculus t®. We will usually write f (D) instead off (D) if D is essentially
self-adjoint.

The following result about functional calculus of unbouddgerators follows directly from
the definition as given for example in [68], page 261.
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Lemma 4.31. Let s# be a Hilbert space, and let bdomD — J# be a self-adjoint operator.
Let .77’ be another Hilbert space, and letT>Z7 — 7’ be a unitary isomorphism. Let f be a
measurable function oR. Then

THD)T 1=f(TDTY).

K-homology classes of first order elliptic differential opeators

To define &K-homology class associated to an essentially self-adgdliptic differential oper-
atorD, we will use the operatds(D), whereb is anormalising function

Definition 4.32. A normalising functiorns a smooth functiob : R — [—1, 1] with the properties
that

e bisodd
e b(x) > 0forallx>0;

® Iim)(;)j:oo b(X) =+1.

The most common normalising function used in the contekt-bbmology ish(x) = ﬁ

This function has the technical disadvantage that the tqelndD) need not beroperly sup-
ported which is required to apply the analytic assembly map to $soaated-homology
class. More on this in Section 5.2.

We are now prepared to define tkehomology class associated to a symmetric first order
elliptic differential operator. Le¥l be a smooth manifold, on which a locally compact Hausdorff
topological groupG acts properly. LeE = ET ®E~ — M be aZ,-gradedG-vector bundle,
equipped with &-invariant Hermitian metric, and let

D:I™(E) — (E)

be aG-equivariant first order elliptic differential operatorathmaps sections & * to sections
of E~ and vice versa. Suppose ti\dtis equipped with &-invariant measure, and consider the
unbounded operat® : I'?(E) — L?(E) onL?(E). Suppose it is symmetric. Then it is closable
and essentially self-adjoint ([34], Lemma 10.2.1 and dargl10.2.6). We can therefore form
the bounded operattx D) on L?(E), whereb is a normalising function. Finally, let

™ : Co(M) — B(L2(E))

be the representation defined by pointwise multiplicatibseations by functions.
The manifoldM is said to becomplete for DOf there is aproperfunction f € C*(M) such
that[D, f] € Z(L?(E)).

Theorem 4.33.1f M is completefor D, then(L?(E),b(D), ™) is an equivariant K-homology
cycle over X. Its K-homology class is independent of thecehaii b.

Proof. See [34], Theorem 10.6.5 for the non-equivariant case. gilueariant case then follows
from Lemma 4.31. O
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We denote thi&-homology class byD].

Remark 4.34. Two elliptic operatordDy and D; on the same vector bundle, as in Theorem
4.33, define the same classKnrhomology if they have the same principal symbol. Indeed, in
that case, the operatby :=tD1 + (1—t)Dg satisfies the assumptions of Theorem 4.33 for all
t € [0,1], and we obtain a homotopy betwe@y] and[D1].

Remark 4.35. In the situation of Theorem 4.33, it is possible to defité-aomology clas$D]
associated t® in an appropriate way, evenM is not complete foD (see [34], Proposition
10.8.2). However, this class does not have the explicit fidin= [L?(E),b(D), V] that it has
if M is complete foD. We use this form in the proof of Corollary 8.11, and therefae always
assume that this completeness condition is satisfied.

Our main application of Theorem 4.33 is the following.

Corollary 4.36. Let M be an even-dimensional manifold, acted on by a localigmact Haus-
dorff group G. Suppose M has a G-equivari@pirf-structure, and let¥ be the associated
spinor bundle. Th&pirf-structure on M induces a G-invariant Riemannian metric onT¥is
metric induces a G-invariant density on M, which we use toddff-sections of7.

Letl,, be theSpirf-Dirac operator on M, defined using any G-equivariant Hefaritcon-
nection ons’. If M is complete as a metric space, tHgy satisfies the conditions of Theorem
4.33, and hence defines a cldBg, | € K§(X).

Proof. The Dirac operator is elliptic, symmetric, and odd with mspto the grading on”
(see e.g. [20], Lemma 5.5). By the description of the geadgistance oM in terms of Dirac
operator as givenin [17], Chapter V1.1, we see that compexs oM as a metric space implies
thatM is complete foB,,. O

A similar result holds for the Dolbeault—Dirac operator anadmost complex Riemannian
manifold.

Remark 4.37. The principal symbol of the Dirac operaidy does not depend on the choice of
the connection or”’. Hence the clasi,,] is independent of this choice, by Remark 4.34.

We have seen that a Dirac operator defines an abstractetipérator in the sense &f-
homology. We will define quantisation as the ‘generalisedivagiant index’ of this abstract
elliptic operator. This generalised equivariant indexhis ainalytic assembly map, which we
will define in Section 5.2. It is defined in terms KK-theory, which is a powerful tool that
generalises bot-homology anK-theory.



Chapter 5

KK-theory and the assembly map

Kasparov'skK-theory is a bivariant functor that assigns an abelian gridkig(A, B) to two
C*-algebrasA andB. If G is a group acting oA andB in a reasonable way, then we also
have the equivariarKK-theory groupKK(?(A, B) of AandB. As in the case oK-theory and
K-homologyKK-theory has an even and an odd part, and we will only use the peaue.

There are three useful featureskif-theory that we will use in this thesis.

1. KK-theory generalises bot-theory andk-homology, in the sense that
KKG'(Co(X),C) = K§(X) (5.1)
for all locally compact Hausdorff prop&-spacesK, and
KKo(C,B) 2 Ko(B) (5.2)
for all o-unitalC*-algebra®B (such as groug*-algebras).
2. UsingKK-theory, we can define thanalytic assembly map
KR 1 K§ (X) — Ko(C(G))

(for a locally compact Hausdorff spacé equipped with a proper action by a locally
compact Hausdorff grou@, such thaiX /G is compact) as a map

pg 1 K§(X) — KKo(C,Cf,y(G)),

via the isomorphism (5.2). He@{kr)(G) denotes either the reduced or the fiittalgebra
of G.

3. There is a product oKkK-theory, the most general form of which is a map
KKS!(A1,B; ®C) x KK (C® Az, By) =S KKSV 2 (A A0, B1®By),  (5.3)

for groupsG; andG,, G1-C*-algebrash; andB,, aC*-algebraC, andG,-C*-algebras®,
andB,. Here one can use any tensor produdCofalgebras. This general form is defined
via the special case wheBg = A, = C.

The product (5.3), called th€asparov productis functorial many respects, and associa-
tive in a suitable sense. We will mainly use this product m pnoof of Theorem 9.1.

66
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The construction oKK-theory was motivated by index theory, and in particular loeaire
to find generalisations and more elegant proofs of the Atigager index theorem. One result
of this desire was the construction of the analytic assemidp, which is our main applica-
tion of KK-theory, and is treated in Section 5.2. In Section 5.3, wethice Baaj and Julg’s
unbounded picture dfK-theory, and describe the analytic assembly map in thigigetT his
description will be used in the proof of Theorem 9.3 abouttipli¢ativity of the assembly map
with respect to the Kasparov product.

5.1 The definition of KK-theory

Because the definition &K -theory is quite involved, we will try to be as brief as po$siabout
this definition. This section may therefore seem like a blg pf unmotivated definitions on
first reading, and we suggest that readers who are not ydidamith KK-theory skim through
this section, and later return to look at the details whew #re needed. We will almost only
be concerned with the special cases (5.1) and (5.2), Bvitte C*-algebra of a group. We will
therefore rarely use the machinery of this chapter in itisgfeiherality.

More information orkKK-theory can be found in [10, 33], and in Kasparov’s origirabers
[39, 40].

In this section, allC*-algebras are supposed to ¥eparable A commutativeC*-algebra
Co(X) is separable i is metrisable. Because we usually work with smooth mansfotlis
condition is not an important restriction.

Hilbert C*-modules

The basic objects in the definition BK-theory are thadjointable operator®n Hilbert mod-
ulesoverC*-algebras.

Definition 5.1. Let A be aC*-algebra. A(right) Hilbert A-modules a (complex) vector space
&, equipped with the structure of a rightmodule, and with anA-valued inner product’

(—,—)g:EXE—A
which is additive in both entries, and has the following pdies:
e foralle f € £ andac A we havee, fa)e = (e f)e8a;
o foralle f € &, we have(e, f)s = (f,€)%;
e forall ec &, the elemente e)» € Ais positive;

e & is complete in the norrf- ||, defined by||e||2 = ||(€,€) ¢, for e € &.

A homomorphism of HilberA-modules is a homomorphism éfmodules that preserves
the A-valued inner products. An isomorphism is a bijective horogphism.

The tensor producty ® &> of a Hilbert A;--module&y and a HilbertA,-moduleé is the
algebraic tensor product @f; and &> as complex vector spaces, completed in A& Ay-
valued inner product

(el ® e27e(1® %)51@6‘72 = (el@ e(l)éal ® (ez ® %)éaZ
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Hereej,e’j € &}, and one has to specify which tensor product is used to formA,.

Note that a HilberC-module is nothing more than a Hilbert space. The motivaghxample
for the definition of Hilbert modules ové&*-algebras is the following.

Example 5.2.Let X be a locally compact Hausdorff space, andddte a vector bundle ove,
with a Hermitian structuré—, —)e. Letl'o(E) be the space of continuous sectiaaf E such
that the functiorx — (s(x), s(x))e vanishes at infinity. Thefg(E) is a HilbertCy(X)-module,
whose module structure is given by pointwise multiplicatiand with theCy(X)-valued inner
product

(8. rg(e) () = (0,1 (X) e,

forall s;t € I'o(E) andx € X.

The algebras of bounded and compact operators on a Hilkeresmave the following gen-
eralisations to Hilber€*-modules.

Definition 5.3. Let A be aC*-algebra, and let’ be a HilbertA-module. The algebr&g (&) of
adjointable operator®n & consists of theC-linear A-module homomorphismE : & — & for
which there is another such homomorphisinthat satisfies

(Tef)e=(eT f)e
foralle f € &.

All adjointable operators are bounded with respect to thenno- |
algebra in the operator norm ([10], Proposition 13.2.2).

¢, and A (&) is aC*-

Definition 5.4. The subalgebra# (&) C #(&) of finite rank operatoron & is by definition
algebraically generated by operators of the form

Beye, : €3 — €1(€2,63) ¢,
for ey, e, € &. TheC*-algebra’z (&) of compact operatoren & is by definition the closure of
F(8)In B(E).

Kasparov bimodules

The basic building blocks d{K-theory are the Kasparov bimodules.

Definition 5.5. Let A andB be C*-algebras. AKasparov(A, B)-bimoduleis a triple (&, F, r),
where

e & is a countably generated Hilbdtmodule;
e 11: A— A(&) is a homomorphism d*-algebras;

e F € #(&) is an adjointable operator such that foralt A, the operator$F, ri(a)], (F —
F*)m(a) and(F? — 1) m(a) arecompact
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One says tha ‘almost commutes withr, is ‘almost self-adjoint’, and ‘almost Fredholn?'.
To define equivariarKK -theory, we will us€Z,-graded Kasparov bimodules, equipped with
suitable actions by a group.

Definition 5.6. A Z»-graded Hilbert modul®ver aC*-algebraA is a HilbertA-module& with
a decompositiod” = &9 &1, such thamec & for allac Aande e &,

A Zy-grading on a Hilbert module naturally inducesZ,-gradings on theC*-algebras
B(&) andFx (&).

For the remainder of this section, IBtbe a locally compact Hausdorff group that is second
countable, i.e. whose topology has a countable basis.

Definition 5.7. A G-C*-algebrais aC*-algebra equipped with a continuous (léaction. IfA
is aG-C*-algebra, then &-Hilbert A-modulds a HilbertA-module equipped with a continuous
(left) action ofG by bounded, invertibl€-linear operators, such that

e foralle € € £ andge G, one hafg-e,g9-€)s =9-(6€)s;
e forallge G,ec & andac A we haveg- (ea) = (g-e)(g-a).

The only G-C*-algebras we will use in this thesis are of the fo@g(X), whereX is a
G-space.

A Z,-gradedG-Hilbert module is just what the name means, with the requénat that the
G-action respects the grading.

Definition 5.8. Let A and B be G-C*-algebras. AZ»-graded equivariant KasparoyA, B)-
bimoduleis Kasparou A, B)-bimodule(&’, F, 1), with the additional properties that

e & is aZp-gradedG-Hilbert B-module;

o T:A— A(&)is aG-equivariant homomorphism @f*-algebras that respect the gradings,
whereG acts on#(&£’) via conjugation;

o F € #(&) reverses the grading @hand has the properties that the ngap gF g~ from
Gto #(&) is norm-continuous, and is ‘almost equivariant’, in thesethat for alg € G
anda € A, the operatofgFg~* — F)7i(a) is compact.

The definition

We continue using the notation of Definition 5.8. The equamrKK-theory of A andB is
the set ofZ,-graded equivariant Kaspard®, B)-bimodules, modulanitary equivalencand
homotopy

Definition 5.9. Two Z,-graded equivariant Kaspar¢&, B)-bimodules &y, Fo, ) and(&1, F1, 1)
are said to be

A bounded operatdf on a Hilbert space? is calledFredholmif there is a bounded operatBf on.7# such
that the operatoiSF’ — 1, andF’F — 1, are compact. Fredholm operators have finite-dimensiomatkgand
cokernels, which makes them the central objects of studydax theory.



70 CHAPTER 5. KK-THEORY AND THE ASSEMBLY MAP

¢ unitarily equivalentif there is aG-equivariant isomorphism of HilbeB-modulessy = &1
that respects the gradings, and intertwiRgandF;, andm(a) andm(a), for alla € A,

e homotopidf there is aZ,-graded equivariant Kaspar¢, C([0, 1], B) )-bimodule(&’, F, ),
with the following property. Foij = 0,1, let ey : C([0,1],B) — B be the evaluation map
atj. Then, forj = 0,1, theZ,-graded equivariant Kaspards, B)-bimodule

(& ®ev; B,F ® 15, T® 1)

has to be unitarily equivalent @}, Fj, 7). Here&’ ®ey, Bis the tensor produet © B over
C, modulo the equivalence relati@p @b ~ e® evj(¢)b, forallec &, ¢ € C([0,1],B)
andb € B.

Remark 5.10. A special case of homotopy @h-graded equivariant Kasparg&, B)-bimodules
is operator homotopyThis is the fact that twé@,-graded equivariant Kaspar@#, B)-bimodules
(&,F,m) and(&,F’, m) are homotopic if there is a norm-continuous niap K from [0, 1] to
A(&) such that for alt, (£,R, m) is aZy-graded equivariant Kaspard#, B)-bimodule, and
Fo=F andFl =F.

If Ais separable anB is o-unital, then the combined equivalence relation unitanyivest
lence & operator homotopy is the same as the homotopy egmigalrelation ([10], Theorem
18.5.3).

Definition 5.11. Theequivariant KK-theoryof A andB is the abelian grouKKOG(A, B) of Z,-
graded equivariant Kaspar®®, B)-bimodules modulo homotopy, with addition induced by the
direct sum. The inverse is given by

—(E%@ &L F M = (61 &0 —F, ).

Functoriality of KK-theory if defined as follows. If : Ay — Ay is an equivariant homo-
morphism ofZ,-gradedG-C*-algebras, then for aB, we have the mag™* : KK(?(AZ,B) —
KKS(A1,B), given by

f*[&,F,n =[&,F, mo f].

If, on the other handy : By — By is such a homomorphism, the for & the mapy. :
KKS(A,B1) — KKE(A,By) is given by

Y[, F,m = [ ®yB,F®1g, T® lg]

Thus,KK§ is a contravariant functor in the first variable, and a cawmtrfunctor in the second
one.

If the groupG is trivial, we omit it from the notation and writ€Ko (A, B) := KKée} (A B).

Properties of KK

It follows directly from the definitions, and Remark 5.10atlif X is a locally compact Haus-
dorff space on whicl® acts properly, then

KKS (Co(X),C) =KF(X),
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the equivarianK-homology ofX. In general, the equivariaiit-homology of aG-C*-algebraA
is defined as
KQ(A) :=KKS(A,C).

On the other hand, we have

Theorem 5.12.1f B is a o-unital C*-algebra, then
KKo(C,B) 2 Ko(B). (5.4)

See [10], Proposition 17.5.5 and Theorem 18.5.3.

For unitalB, the isomorphism (5.4) is given by the map defined as folldvitst note that
for any HilbertB-module#’, there is only one possibt&*-algebra homomorphisf — %4(&).
Therefore, a KaspardiC, B)-module may be denoted §¥’,F). The isomorphism is given by

[£,F] — [kerF ] — [kerF~] € Ko(B),
Fr 0
and ke — are finitely generated projecti&modules. Existence of such an operdfazan be
deduced from Mingo’s generalisation of Kuiper’s theorerae $87], Corollary 16.7, Theorem
16.8 and Theorem 17.3.11.

The final, and possibly most important featurdéi-theory is the existence of the Kasparov
product (5.3). We will not define this product here, sincedidinition is even more technical
than the rest of this section. Thorough discussions of ttudyrct can be found in [10], Chapter
18, in [33], and in Kasparov’s own papers [39, 40].

We will only use some properties of the Kasparov product,ntwst important of which
is its simpler form in thaunbounded picturef KK-theory, as described in Section 5.3, in the
special case wheig = C.

whereF = ( 0 ) is an operator o = £ @ &1, homotopic toF, such that ke +

5.2 The analytic assembly map

The analytic assembly map is a generalisation of the egamvaindex of elliptic differential
operators on compact manifolds, acted on by compact graupsthe key ingredient of the
Baum—Connes conjecture

The definition of the assembly map

Let X be a locally compact Hausdorff space, on which a second abletlocally compact
Hausdorff groupG acts properly. Suppose that the orbit spX¢& is compact, i.e. that the
action ofG on X is cocompactThe (analytic) assembly maig the map

KR 1 KG(X) — Ko(C*(G)),

or more precisely,
KR : K§(X) — KKo(C,C*(G)),
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given by
u)((;[%vﬁn] = [éa,Fé’],

with & andF, defined as follows.
Consider the subspace
e = T(Ce(X)) A C H.

Define theC;(G)-valued inner produdt—, —) ¢ on J#; by setting

(&,n)e(9) =(&,9-N) 7,

forall £,n € 7z andg € G. Let|| - || » be the associated norm o#, as in Definition 5.1, with
A=C*(G). Thené is the completion of; in this norm. The (rightC*(G)-module structure
oné& is given by

E-f=/Gf(9)g-Edg,

for & € %, f € Cc(G), and by continuous extension. T6&(G)-valued inner product o is
the continuous extension ¢f, —) ».
To define the operatdts on & induced by, we need- to have the following property.

Definition 5.13. The operatoF is calledproperly supportedif for every f € C.(X) there is an
h € Cc(X) such that
n(h)Fr(f) =Fm(f).

If 27 is a space of sections of a vector bundle o¥eandrt is defined by pointwise mul-
tiplication, thenF is properly supported if it is ‘local’, in the sense that it psacompactly
supported sections to compactly supported sections. lgya possible to choode so that
it is properly supported, without changing the correspogdi-homology class (see also the
remark after Definition (3.6) in [8]):

Lemma 5.14. For all K-homology classes?, F, ] € K2(X), there is an operatoF € B(#)
which is properly supported and G-equivariant, such that” F, 1) is an equivariant K-
homology cycle over X, and thp¥’,F, it} = [, F, 1.

Sketch of proofLet f € C.(X) be a function such that for atle X,

/G f2(gx)dg=1

(see Lemma 7.8). Set
F=A%(F):= /ng(f)Fn(f)gldg.

ThenF is a bounded, properly supportégkequivariant operator op” (see Lemma 7.11, with
N replaced byG). It can be shown thd andF are homotopic, so that the claim follows. ]

Remark 5.15. The onlyK-homology classes we will use are those associated to etanva
elliptic differential operators (see Theorem 4.33). Therapors in these classes are equivariant
by Lemma 4.31, and they are even properly supported forldaitdnoices of normalising func-
tions (see Proposition 8.3). We will therefore never havesmLemma 5.14. We have included
it so that we can define the analytic assembly map on geKehamology cycles.
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If F is properly supported, then it map%; into itself. We will show (Lemma 7.7) that ¥
is also equivariant, the restriction &f to .77 is adjointable with respect to the inner product
(—,—)e, so that it induces an adjointable operatornThis is the operatdf.

Remark 5.16. There is also a version of the assembly map that takes vaiue K-theory
of thereduced C-algebra ofG. It is defined in the same way as above, With(G) replaced
by C;/(G) everywhere. We will use the same notatjgp for these two versions, since this will
usually not cause too much confusion.

The assembly maps for the full and reduced gr@ualgebras are related as follows. The
identity map orC¢(G) is bounded as a map

(Ce(G). |- ller(a)) = (Ce(G), Il - lIcr () -
Hence it extends to a continuous N@&G) — C;(G), which in turn induces a map d¢rtheory
Ac 1 Ko(C*(G)) — Ko(C/(G)).

It follows from the definitions that the following diagramromutes:

The assumption thaX /G is compact is needed to prove that the assembly map is well-
defined. If this condition is not satisfied, then it is stillgsible to define the assembly map on
therepresentable khomology ofX:

RKS(X) := limK$(A),
ACX

whereA runs over th&-invariant subsetd C X such thatA/G is compact. However, because a
Dirac operator on &-manifoldM does not naturally define a classRKS (M), we will always
assume that the orbit spaces of the actions we consider amgaco.

The assembly map was introduced to stateBham—Connes conjecturd his conjecture
states that IfEG is a classifying space for prop&-actions (see [8], Sections 1 and 2, and
Appendix 1), then the assembly map

Hes : RKG(EG) — Ko(C/ (G))
is an isomorphism of abelian groups. More on the Baum—Coooegcture can be found in

[8, 61, 80]. A proof for groups with finitely many connectechgoonents is given in [15].

The assembly map in the compact setting

The reason why the assembly map can be interpreted as a lgggteeqjuivariant index is the
following fact.
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Proposition 5.17. Let M be a compact manifold, on which a compact group K actpeng.
Let D be a first order elliptic differential operator on M asTieorem 4.33, so that we have the
class[D] € KK (M). Then

ufS[D] = K-indexD € R(K) 2 Ko(C*(K)).

Sketch of proof.Let pt be the one-point space, and consider the mag{ (M) — K& (pt)
induced by collapsini/! to a point:

p[%,F,Tl’]:[%,F],

where on the right hand side, the representatio@(pt) = C on J# is given by scalar multi-
plication. It follows directly from the definition of the amsbly map, and from compactness of
M, that the following diagram commutes:

KK (M) 4 Ko(C(K)). (5.5)
pl /&

()
Now sinceK{ (pt) =2 R(K) via the index map, it can be shown that
p[D] =K-indexD € R(K),

for all K-homology classefD] € KK (M) as in the statement of the proposition. Furthermore, it
turns out thapf; is the isomorphisnR(K) =2 K (pt) 22 Ko(C*(K))) described above Proposition
4.29. Therefore, the proposition follows from commutdyivaf diagram (5.5). O

Sketch of an alternative prooAn alternative proof of Proposition 5.17 is based on an expli
description of the assembly map in the compact case. Indse@roposition 4.7, we have
C*(K) = @,k #(Vn). For every irreducible (unitary) representatidfy, i) of K, and withM,
E, D andK = G as in Theorem 4.33, |&; — M/K be the vector bundle

En:=(E®B(Vn))/K.

HereK acts onE @ %(Vy) by k- (e®a) =k-e®aok™?, forallk € K, ec E anda € %(Vy).
The K-equivariant operatod on I'*(E) naturally induces an operat@r; on I'*(Ey), which
acts trivially on#(Vr).

Let @,k L%(En) be the completion of the algebraic direct sum in@e_p % (Vx)-valued
inner product given by

(h 0855 93) = [ (sh(m), SH(m))e (9%(m) " 9 (m) dm

for sl € L2(E) and ¢} € L2(M, (Vy)) such thassh ® ¢4 € L2(E® B(Vn))K = L2(Ey). The
resulting norm or@®, ¢ L?(Ey) is explicitly given by

ek

| sv| = suplisnl e, -
ek
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for sy € L2(Ep). In this way,@ .k L?(Ex) becomes a Hilber® ..z %(Vr)-module, and we
claim that

D]_[@LZ (En), D b(D ]EK()(@@V,T)%KO(C*(K)), (5.6)

ek ek ek

whereb is a normalising function.
The equality (5.6) follows from the fact that the map

T:L%E) =L%E)c — P L*En)

ek

given by
(TS)(Km /k s(k~m) @ k-vdk

for all s€ L2(E) andv € Vi, extends to an isomorphisé = @, L%(E,) of Hilbert C*(K)-
modules, which intertwines the operatt(®) s on & and@®,,. b(Dr) on B¢ L*(En).

To finish the proof of Proposition 5.17, one shows that thesc(&.6) is mapped to the class

&P [kerD}] — [kerDy] € R(K),

ek

which equals

&b [(kerD*@%(Vn))K] — [(kerD™ ®<@(Vn))K] =
ek
P [(kerD" @ V;)* @V — [(kerD™ @V;i)K ®Vy] = [kerD"] — [kerD ],

ek

by Schur’'s lemma. O

Note that the ‘index’-aspect of the assembly map, by whichnvean taking a kernel and a
cokernel, lies in the isomorphisni¥o(C,C*(K)) = Ko(C*(K)) = R(K) of Theorem 5.12 and
Proposition 4.29, and not in the actual definition of the addg map itself.

Because of Proposition 5.17, we will see that Definitionsafid 6.2 of quantisation reduce
to Definitions 3.20 and 3.30 in the compact case.

5.3 The unbounded picture ofKK-theory

In [7], Baaj and Julg developed a realisatiorkaf-theory using unbounded operators instead of
bounded ones. The advantage of this realisation is thatalspdtov product has a simpler form
in this setting. We will use this form in the proof of Theoren3.9The intuitive idea is that the
unbounded Kasparov bimodules introduced by Baaj and Jelgemeralisations of first order
elliptic pseudo-differential operators, whereas the ldmahKasparov bimodules of Definition
5.5 generalise elliptic pseudo-differential operatorsralier zero.
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UnboundedKK-theory

Definition 5.18. Let A and B be C*-algebras. AnunboundedZ;-graded Kasparo\A, B)-
bimoduleis a triple (&,D, 1), where& and T are as in Definition 5.8 (without the group),
andD is a self-adjoint unbounded operatam & that reverses the grading @ and has the
following properties.

e Disregular, in the sense that the image of + D? is dense in¢’;
o forall ac A, the operatori(a)(1+ D?)~1is compact;

e the set ofa € A such that the graded commutafby, r7(a)] is well-defined on dor® and
extends continuously to an adjointable operatogois dense irA.

The set of unbounded,-graded Kasparo(A, B)-bimodules is denoted ¥ (A, B).
The central result in unboundé&d-theory is the following (see [7], Proposition 2.3).
Theorem 5.19.The map
B : LPO(A7 B) - KKO(A7 B)

defined by
D

B(é:D,T[) = [éa? ma

5

is a well-defined surjection.

The unbounded Kasparov product

Now, for j = 1,2, letA; andBj beC*-algebras. Suppose that the algelkaare separable, and
that theB; are o-unital. In the special case whe@e= C, the Kasparov product (5.3) has the
following description in terms of unbounded Kasparov bimled.

Let (&j,Dj, ) € Wo(Aj,Bj) be given. LeD be the closure of the operatdf ® 15, + 14 ®
D, on &1 ® &». Then define

(&1,D1, 1) X (62,D2,1®) := (610 62,D, Mm@ ).

Theorem 5.20.This is an element d¥y(A; ® Az, B ® By), and the following diagram com-

mutes:
X

Wo(A1,B1) x Wo(A2,B2) Wo(A1® Az, B1 ® By)

BXBL lB

KKo(A1, B1) x KKo(Ag, Bp) —— KKo(A1 ® A, B @ By).

See [7], Theorem 3.2.

2Self-adjoint unbounded operators on Hilbert modules @/ealgebras are defined analogously to such oper-
ators on Hilbert spaces (see Section 4.3).
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Remark 5.21(Equivariant unboundedK -theory) There is an equivariant version of unbounded
KK-theory. The operators in equivariant unbounded Kaspairowedules are supposed so sat-
isfy a condition that is much weaker than equivariance wagpect to the given group actions.
We will only use equivariant unboundéd-homology of topological spaces however (that is,
A; andA, are commutative, anB; = B, = C). In that case it suffices to consider unbounded
Kasparov bimodules with strictly equivariant operatoss| bmma 5.14.

The assembly map

Next, we describe the analytic assembly map in the unbouptare of KK-theory. We will
use this description in the proof of Theorem 9.3.

For full groupC*-algebras, the assembly map in the unbounded picture isedafirKucerovsky’s
appendix to [61], in the following way. Le&B be a second countable, locally compact Haus-
dorff group, acting properly on a locally compact HausdsgaceX, with compact quotient.
The assembly map in the unbounded picture is given by

H)%(jf, D7 7T) = ((g? Dé’) € LIJ0<(C7C*G)7 (57)

for all (2#,D,m) € W§(Co(X),C). The HilbertC*(G)-module& is defined as usual for the
assembly map. The definition of the operddpr on & is more involved.

First, let.7 be the auxiliary HilberC*(G)-module defined as the completion of the Hilbert
Cc(G)-moduleC.(G, 7#) with respect to th€:(G) C C*(G)-valued inner product

(6.0, = [ (9(¢).¥(d9),,, 7. )

where¢, € C¢(G, ), g € G, anddd is a Haar measure 0B. Next, leth € Cc(X) be a
function such that for alk € X,

/ h?(gx)dg=1
G

(see Lemma 7.8).
Let p € Cc(X x G) be the projection given by

p(x,9) :=h(x)h(g x). (5.9)

This function is compactly supported by properness of thwaof G on X. Let iT: C¢(X X

G) — #() be the representation given by

((1)9) (@) = [ m(f(~.g))d- (¢ g)dg.

for f € Cc(X x G), ¢ € Ce(G, ) andg € G. (The representatioit can actually be extended
to the crossed produ€l(X) x G, but we will not use this extension.)
Then the map
a: 7(p)Ce(G, ) — He,

given by
i(pg — [ g e (g)dg



78 CHAPTER 5. KK-THEORY AND THE ASSEMBLY MAP

preserves th€*(G)-valued inner products and ti& (G)-module structures o’ and oné,
and induces an isomorphisim(p).# = & of Hilbert C*(G)-modules. We will write& :=
m(p) 2 . .

To define the operatdds on & we first consider an operat@;z on &'. This operator is
defined as the closure of the operdioon &, given by

D(7(p)9) := fi(p)(Do ), (5.10)
on the domain dom := 71(p)C¢(G,domD). We finally set

Ds:=aDsa 1,
on the domain do s = o (domD).
In the proof of Theorem 9.3, we will actually use the follogidefinition of the assembly
map: N
fig(#,D,m):=(£,Dz) € Wo(C,C'G), (5.11)

which gives the same classk@p(C*(G)) as (5.7), because is an isomorphism.

Kucerovsky’s proof that the above constructions give adefined description of the as-
sembly map in the unbounded picture is valid for discreteigsobut it admits a straightforward
generalisation to possibly nondiscrete (unimodular) or@@se simply replaces sums by inte-
grals, and uses the fact that the integral over a compadg Birel space of a continuous family
of adjointable operators is again an adjointable operatee (Lemma 7.2). In addition, in the
proof of Lemma 2.15 in [61], one takegs L (m(f)n) = 7i(p)w, with (g) = rm(h)m(g- f)g-n
(where theB in [61] is oura). This reduces to ValetteB 1 (m1(f)n) = 71(p)7((h|f))n in the
discrete case.

To use the unbounded picture of the assembly mapefitucedgroupC*-algebras, one can
use the above description for the falt-algebra, use the mgp to descend tiKK-theory, and
then apply the mapg (see Remark 5.16).



Chapter 6

Noncommutative geometry and
guantisation: statement of the results

In this chapter, we state the two main results of this thddsng the techniques from Chap-
ters 4 and 5, we extend the Guillemin—Sternberg conjecilineprem 3.34, to noncompact
groups and manifolds. To state this generalisation, weaoepihe index by the assembly map.
The assumptions that the group and the manifold in quest®ic@mpact are replaced by the
assumption that the quotient space of the action is compacthat the action is cocompact.

We first state a generalisation of Theorem 3.34 to cocompauntiltbnian actions by any
Lie group. This generalisation, Conjecture 6.4, was foated by Landsman in [50], and is the
subject of Section 6.1. We will prove a special case of thigexture, Theorem 6.5, in Part Ill.

In Section 6.3, we state a generalisation of Theorem 3.38dorapact Hamiltonian actions
by semisimpld.ie groups. This generalisation, Theorem 6.13, is based. daNbrgue’s work
on discrete series representations in the context okthieeory of reduced grou@*-algebras,
which is summarised in Section 6.2. In Part IV, we prove Theo6.13.

6.1 Quantisation commutes with reduction for cocompact grap
actions

Let (M, w) be a symplectic manifold. L& be a Lie group acting properly and in Hamiltonian
fashion on(M, w), with momentum mayP. Suppose tha¥l /G is compact.

Quantisation of cocompact actions

We first generalise Dolbeault-quantisation to the cocompase. Let] be aG-equivariant
almost complex structure dl, compatible withcw. Such al always exists, by [27], Example
D.12 and Corollary B.35. Lefj:= w(—,J —) be the associated Riemannian metricn
Suppose that there is@G-equivariant prequantisatioi.*’, (—, —)_», ) of the action ofG on
(M, w) (see Remark 3.9).

Let d .« + d]'» be the Dolbeault—Dirac operator on the vector bur;f(ﬂéT*M ® L? (Defini-
tion 3.19). It defines a cIas[ﬁLw +0/] € K&(M) by Corollary 4.36. This class is independent
of the connectior] and the choice dd.

79
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Definition 6.1 (Quantisation V, Landsman [50] he Dolbeault-quantisatiorof the action of
Gon (M, w) is theK-theory class

Qv(M, @) := i [0 + 9] € Ko(C*(G)).

The definition of Spifrquantisation can be generalised in a similar way.(L&?, (—, —) 20, 0)
be aG-equivariant Spiftquantisation of(M,w), and letP — M be an equivariant Spfn
structure orM with determinant line bundle?®. Letl;b,';,,w be the SpiR-Dirac operator on the as-
sociated spinor bundle (Definition 3.27). Then we havedtHeomology clasgpy,’] € KS(M),
by Corollary 4.36.

Definition 6.2 (Quantisation V1) The Spirt-quantisationof the action ofG on (M, w) is the
K-theory class

Qi (M, w) = i B | € Ko(C(G).

Note that we now use the redudétialgebra ofG, instead of the full one used in Definition
6.1. The reason for this difference is that we will use Defnit6.1 to state a ‘quantisation
commutes with reduction’-result for reduction at the &iviepresentation, which implies that
we have to use the full group*-algebra. We will use Definition 6.2 to state a ‘quantisation
commutes with reduction’-result for reduction at discredgies representations of semisimple
Lie groups, and in that case, it is more natural to work with teduced groug*-algebra.
This choice between the full and the redu€&dalgebra is not at all related to the difference
between Dolbeault-quantisation and Spiuantisation, and both types of quantisation can be
defined using the full or reduced groGp-algebra.

Remark 6.3. Now that we have given the sixth and last definition of geomemantisation,
let us summarise the relations between these definitions.

e If M andG arecompactthen we have
Qv(M,w) = Qu (M, w);
Q/|(M,(U) = QN<M7('O)
(see Proposition 5.17).

o If the line bundle/\%oIM (TM,J) is trivial for some equivariant almost complex structure
J, compatible withw, then

Qui(M, w) = Qv(M, w),
and if, in addition M andG are compact, then
Qv (M, w) = Qu (M, w)
(see Lemma 3.32).
e If M andG are compact, antM, w) is Kahler, then
Qu (M, w) = Qi (M, w)

(see Lemma 3.23).



6.1[Q,R| =0 FOR COCOMPACT GROUP ACTIONS 81

e If M andG are compact,M, w) is Kahler, andw is positive then

Qi (M, nw) = Qi (M, nw),
for nlarge enough (see Remark 3.16).

We will only useQy andQy, from now on.

Reduction

The reduction map
RS : Ko(C*(G)) — Z (6.1)

that generalises taking the multiplicity of the trivial repentation as in (3.15), is defined as
follows. The map

Jo:Ce(G) = C (6.2)
given by
Jo(h = [ f(g)dg

(with dga Haar measure) is the one associated to the trivial regegs®nofG. It is continuous
with respect to the norm- [|c«g) 0nCc(G). Because the trivial representation is not contained
in L2(G) for noncompac, the map (6.2) is not continuous with respect to the norm en th
reducedgroupC*-algebra ofG in the noncompact case. This is why we work with the full one
here.

The continuous extension of (6.2) to a n@G) — C induces a map oK-theory

R :=(Jg), : Ko(C*(G)) — Ko(C) = Z (6.3)

Using the fact that the constant function 1@ns in C¢(G) C C*(G) if G is compact, one can
show that the maﬁg is given by (3.15) for compacs = K.

SinceM /G is compact, the symplectic reductitvty = ®~(0) /G is compact as well. Sup-
pose that O is a regular value ¢f Then the quantisatio®y (Mo, ap) is well-defined (see
Section 3.6). Here we usg instead ofQy, sinceQy (Mg, tn) = Qv (Mo, wp) if Mg is smooth,
and we do not know iy (Mg, wp) is well-defined ifMg is an orbifold. This would depend on
an orbifold version of Corollary 4.36.

We now have all ingredients needed to state the followingemtuare.

Conjecture 6.4(Guillemin—Sternberg—Landsman conjectué)0 € ®(M), then the following
integers are equal:

RS (Qv(M, w)) = (Jg), (U [5_Lw+5[kw}) = Qu (Mo, wp).
If 0 ¢ (M), then R (Qv(M, w)) =0.

In [50], Landsman states Conjecture 6.4 as a special casenaira far-reaching conjec-
ture called ‘functoriality of quantisation’. The lattermjecture states that quantisation can be
defined as a functor between the category of Poisson masjfalith Weinstein dual pairs as
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arrows, and the category Gf-algebras, wittKK-groups as sets of arrows. The object part of
this conjectural quantisation functor should be defined éfpicnation quantisation, whereas
the arrow part should be given by geometric quantisation.

A subgroupH < Giis calledcocompactf G/H is compact. In Part 11, we prove the follow-
ing result:

Theorem 6.5. Suppose G has a cocompact, discrete, normal subdreu@®. Suppose further-
more that thaf acts freely on M. Finally, assume that M is complétethe Riemannian metric
g. With these additional assumptions, Conjecture 6.4 is.tru

In the setting of Theorem 6.5, we will denote the compact gi@ylr by K. Examples of
groupsG that satisfy the assumptions of Theorem 6.5 are:

e G=K s compact, andl = {eg};
e G=T isdiscrete, an = {ex};
e G=R" T =Z"andK = T" for somen € N,

or direct products of these three examples. In fad§ i6 connected, theh must be central,
andG is the direct product of a compact group and a vector space.

Remark 6.6. One can try to make life easier by assuming that the actic®d oh M is free.
However, in the situation of Theorem 6.5, this assumptioplies thatG is discrete
Indeed, if the action is locally free then by Smale’s lemmarfima 2.24), the momentum
map @ is a submersion, and in particular an open mapping. And strieeG-equivariant, it
induces
®®:M/G— g*/Ad*(G),

which is also open. So, siné¢/G is compact, the image
®°(M/G) C g*/ Ad*(G)

is a compact open subset. Becag$¢Ad*(G) is connected, it must therefore be compact.
This, however, can only be the case (under the assumptidrisemirem 6.5) whef is discrete.
Indeed, we have

Ad*(G) 2 Ad*(K) C GL(¥") = GL(g").

So Ad‘(G) is compact, ang*/ Ad*(G) cannot be compact, unlegs= 0, i.e.G is discrete.

Example 6.7. Suppos€M;i, wy ) is a compact symplectic manifol#, is a compact Lie group,
and let a proper Hamiltonian action Kfon M; be given. Suppose th&t11, ) has an equiv-
ariant prequantisation. Lét be a discrete group acting properly and freely on a symglecti
manifold (M2, a,), leavingwy, invariant. Suppose thaél, /" is compact, and that there is an
equivariant prequantisation @Mz, ). Then the direct product action &f x ' on M1 x M>
satisfies the assumptions of Theorem 6.5.

Remark 6.8. In the case wher& is a torsion-free discrete group acting freelyMnTheorem
6.5 follows from a result of Pierrot ([67], Theoreme 3.3.2)

lsee Remark 4.35
2If G = K is a compact connected Lie group, tHépAd* (K) is a Weyl chamber.
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A refinement?

To state a more refined version of Conjecture 6.4, which gheueduction at more representa-
tions that just the trivial one, we need an ‘orbit method’ floe groupG. The orbit method is
an idea of Kirillov [42, 43, 44]. It is an attempt to realisesiducible unitary representatiogt’
as quantisations? = .77, of coadjoint orbitst’ C g* (see Example 2.13) in a subget g*.

The symplectic reduction d¥l at a coadjoint orbit’ can be defined ad, := ®1(0)/G.
If all irreducible representations?;; define classe$.7#,] € Ko(C*(G)), then we can try to
make sense of the folllowing statement:

“ug Pl = P QMs,Lo) [#5]". (6.4)
OCA

Or, if RE : Ko(C*(G)) — Z is a suitable reduction map,

RE (ki P]) = QMs, L) (6.5)

For compact groups, the appropriate orbit method is the IB@feil theorem (Example
3.36). For discrete series representations, the ‘orbihatetwe will use is described in Section
6.2, although this method does not use coadjoint orbitspthér homogeneous spaces. The
resulting version of (6.5) is Theorem 6.13, which is statsihg Spirt-quantisation instead of
Dolbeault-quantisation. We will prove this result in Part |

A final note is that the decomposition (6.4) only makes seh#eei setA/G is discrete
Otherwise, the direct sum would have to be replaced by atdintegral with respect to a
suitable measure oft/G. The author has no idea how to state a ‘quantisation commuites
reduction’ theorem in this situation. In any case, this shtwat it is natural to restrict one’s
attention to discrete series representations of a semisigrpup when trying to state (6.4)
rigorously for such groups.

6.2 Discrete series representations and-theory

In [48], V. Lafforgue reproves some classical results alubisitrete series representations by
Harish-Chandra [30, 31], Atiyah & Schmid [5] and Parthatgard65], usingK-homology,K-
theory and assembly maps. We will give a quick summary ofekalts in [48] that we will use

in this thesis.

For the remainder of this chapter, Btbe a connectédsemisimple Lie group with finite
centre. Letk < G be a maximal compact subgroup, andTex K be a maximal torus. Sup-
pose thafl is also a Cartan subgroup &, so thatG has discrete series representations by
Harish-Chandra’s criterion [31]. Discrete series repnésBons are representations whose ma-
trix elements are square-integrable o@rThey form a discrete subset of the unitary dual of
G.

In [65], Parthasarathy realises the irreducible discretis representations 6fas thel?-
indices of Dirac operatoav, whereV runs over the irreducible representationgkofAtiyah

3Theorem 6.13 and the results in this Part IV (possibly in rfiediforms) are also valid for groups with finitely
many connected components, but the assumptionGhiat connected allows us to circumvent some technical
difficulties.
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and Schmid do the same in [5], replacing Harish-Chandraikwg results from index the-
ory. In[71, 72, 73], Slebarsky considers the decomposititmirreducible representations of
G of L%-indices of Dirac operators on any homogeneous sf®ite with L < G a compact,
connected subgroup.

Dirac induction

For a given irreducible representatigrof K, the Dirac operatdjiv used by Parthasarathy and
Atiyah—Schmid is defined as follows. LegtC g be the orthogonal complementttavith respect
to the Killing form. Thenp is an AdK)-invariant linear subspace gf andg = ¢ ®p. Consider
the inner product op given by the restriction of the Killing form. The adjoint regentation

Ad: K — GL(p)

of K on p takes values in S@), because the Killing form is AK)-invariant, andK is con-

nected. We suppose that it has a Al to the double cover Spfp) of SQ(p). It may be
necessary to replad® andK by double covers for this lift to exist. Then the homogeneous
spaceG/K has aG-equivariant Spin-structure

PC/K .= G xk Spin(p) — G/K.
HereG xk Spin(p) is the quotient of5 x Spin(p) by the action oK defined by
k(g,a) = (gk *,Ad(K)a),

for k € K, g € G anda € Spin(p).
Fix an orthonormal basi$Xy,...,Xq,} of p. Using this basis, we identify Spim) =

d
Spin(dy). LetAq, be the canonical 2 -dimensional representation of Spij) (see Section
3.4). Because is even-dimensional)q, splits into two irreducible subrepresentati(n'g'ig and

Ay, - Consider thes-vector bundles
+._ +
Ey i=Gxk (8 ®V) — G/K.

Note that
r(G/K,Ef) = (C*(G) @A V)", (6.6)

whereK acts orC*(G) © &3 ®V by

k- (fod®V)=(fol,1®@Ad(K)S®K-V) (6.7)

forallke K, f € C®(G), d € Ay, andv € V. Herel, -1 denotes left multiplication b L.
Using the basi$X, ..., Xq, } of p and the isomorphism (6.6), define the differential operator

Y (E)) — T (E)) (6.8)
by the formula
dp
PV =Y Xj@c(X)®ly. (6.9)
=1
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Here in the first factorX; is viewed as a left invariant vector field &) and in the second factor,
c:p — EndAyg,) is the Clifford action (see Section 3.4). This action is odthwespect to the
grading omdqy,. The operator (6.8) is the Spin-Dirac operator@fK (see [65], Proposition 1.1
and [22], Chapter 3.5).
Lafforgue (see also Wassermann [86]) uses the same op&vatefine a ‘Dirac induction
map’
D-Ind$ : R(K) — Ko(C*(G)) (6.10)

by
D-IndS[V] := [(cr*(e) © A, ®V)K,b(l;bv)] , (6.11)

whereb: R — R is a normalising function, e.dp(x) = ﬁ The expression on the right hand

side defines a class in KasparoX&-group KKo(C,C/(G)), which is isomorphic to thé&-
theory groupKo(C;(G)) by Theorem 5.12. In [86], Wassermann proves the Connes-aKasp
conjecture, which states that this Dirac induction map igection for linear reductive groups.

Reduction

The relation between the Dirac induction map and the worktfeh & Schmid and of Parthasarathy
can be seen by embedding the discrete seri€sinfo Ko(C;(G)) via the map

A | = [d o],

where.sZ is a Hilbert space with inner produgct, —) », equipped with a discrete series repre-
sentation ofG, ¢ € C(G) is the function

Cw(9)=(§,9-&)»

(for a fixed& € 27 of norm 1), andl is the inverse of the2-norm ofc_, (so that the function
d~C hasL?-norm 1). Becausd ,C,. is a projection irC;/(G), it indeed defines a class in
Ko(C/(G)) (see Remark 4.27).

Next, Lafforgue defines a mép

RY :Ko(C/(G)) = Z (6.12)

that amounts to taking the multiplicity of the irreduciblsctete series representatioff, as
follows. Consider the map
C(G) — x ()

(theC*-algebra of compact operators gff), given onC¢(G) C C;/(G) by

fis /G f(g) m(g) dg. (6.13)

Here 11 is the representation db in J#. SinceKo(.# (7¢)) = Z, this map induces a map
Ko(C/(G)) — Z onK-theory, which by definition is (6.12).

4In Lafforgues’s notationRZ (x) = (4, X).
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The mapRéf has the property that for all irreducible discrete seripsasentations?’ and

7' of G, one has
oo [ 1 it
RED={ 5 i an

Hence it can indeed be interpreted as a multiplicity functti&or compact groups, it follows
from Schur orthogonality that this is indeed the usual miitity.

In Section 6.1 we used the full gro@j-algebra to define reduction at the trivial representa-
tion. This is because the trivial representation is not sgfirgtegrable for noncompact groups.
Indeed, the map (6.2) extends continuously to a functio€ai&), but not to a function on
C/(G). Now we can use the reduced grdDpalgebra, since the map (6.13) is continuous with
respect to the norm o@; (G), for discrete series representatiamslt is natural to use the re-
duced groufC*-algebra when studying discrete series representatiomts #ey are contained
in the left regular representation 6fon L?(G), and the reduce@*-algebra is defined in terms
of this representation.

Dirac induction links the reduction mzRgf to the reduction map 3.17 in the following way.
Let R= R(g,t) be the root system dfg, t), let R; := R(¢,t) C R be the subset of compact
roots, and leR, := R\ R; be the set of noncompact roots. IRt C R; be a choice of positive
compact roots, and let’. be the set of dominant integral weights(éft) with respect tdR/ .
Let »# be an irreducible discrete series representatioB.ofet A be the Harish-Chandra
parameter of7 (see [30, 31]) such thdtr,A) > O for alla € Rf. Here(—, —) is a Weyl group
invariant inner product off.. LetR"™ C Rbe the positive root system defined by

acR" & (a,A)>0,

for a € R ThenR{ C R", and we denote bRl := R" \ R{ the set of noncompact positive
roots. We will writep := 35 qer+ @ @andpc 1= 3 3 4 cgs 0. We will use the fact thak — p lies

on the dominant weight lattic® , sinceA € At +p.
Note that the dimension of the quotigatK equals the number of noncompact roots, which
is twice the number of positive noncompact roots, and hewes.e

Lemma 6.9. Let u € A% be given. Let ¥ be the irreducible representation of K with highest
weightu. We have

dmG/K
Réf(D-lndE[V“]) — { (-1) 2 ifu=A—pc (6.14)

0 otherwise.

The relation (6.14) can be summarised as

RZ oD-IndS = (~1)""2" R, ™,
with Rﬁ_’% as defined below Definition 3.17.
Proof. According to Lafforgue [48], Lemma 2.1.1, we have

7 : * * K
R (D-IndZ|Vy]) = dim(Vj; @ Ay © )
= [A, © |k V], (6.15)
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the multiplicity ofV,, in A’ap ® |k Let us compute this multiplicity.
By Harish-Chandra’s formula (Harish-Chandra [31], Sch{6&], Theorem on page 95/96),
the characte®, of ./ is given by

) A
mex  Twew(en EW)E

Macre (€72 —e 972).

Heree(w) = detw), andW (&, t) is the Weyl group oft, t). The characte)‘(Adp of the represen-
tation

Oy lreo = (~1)

K 2% spin(p) — GL(Ag,), (6.16)
on the other hand, is given by (Parthasarathy [65], Rema&Xk 2.
e 1= (Xag, — o ) o = [] (€72~ %),
P P acRf

It follows from this formula that for alt € T"9,
XA’ap (t) = XAdp (til) = XAdp (t)7

and hence

. A
dlmS/K ZWGW(E,’L) S(W) el

[Naere (ea/z - e—a/z)
dimG/K
= (_1) 2 XA —Pc?
by Weyl's character formula. Heng, _,_is the character of the irreducible representatioK of
with highest weighA — pc.
Therefore, by (6.15),

R (D-IndR[Vu]) = [B4, ® 7]k : V]
dimG/K

— ()" MgV
_ { (—)™" it p=2 - po

(©a XAgp) |reg = (—1)

0 otherwise.

O

Remark 6.10. Lemma 6.9 is strictly speaking not an orbit method, becdusedadjoint orbit
throughp is only equal toG/K if K =T, andu does not lie on any root hyperplanes.

6.3 Quantisation commutes with reduction at discrete sere
representations of semisimple groups

Consider the situation of Section 6.1, with the additiorsslamptions and notation of Section
6.2. We will state a rigorous version of (6.5) in this settingder the assumption that the image
of @ lies inside thestrongly elliptic seig. C g*. We first clarify this assumption, and then state
our result for semisimple groups.
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The setgée

Let us define the subsgi, C g* of strongly elliptic elements/Ne always viewt* as a subspace
of g* via the linear isomorphisrt = p° (via restriction fromg to £), with p° the annihilator of

p in g*. As before, the dual spa¢eis identified with the subspac(d!*)Ad*(T) of ¢*.
Lett? C t* be achoice of positive Weyl chamber. We denote by ‘ncw’ theseoncompact
walls:
new = {& € t*;(a,&) = 0 for somea € R}, (6.17)

where as beford,—, —) is a Weyl group invariant inner product ¢p. We then define
gse:=Ad*(G)(t \ ncw). (6.18)

Equivalently,gsc is the set of all elements @ with compact stabilisers under the coadjoint
action, and also the interior of the elliptic g, := Ad(G)¢*. We will also use the notation

tei=Ad™(K)(tL \ ncw). (6.19)

Note thatti, C €* is an open dense subset, and tfigt= Ad*(G)ts. The setgl. is generally
not dense irg*.

The reason for our assumption that the momentum map takessvalg, is that we are
looking at multiplicities of discrete series represemtasi. These can be seen as ‘quantisations’
of certain coadjoint orbits that lie insidg, (see Schmid [69], Parthasarathy [65] and also
Paradan [64]). In general, the ‘quantisation commutes ridluction’ principle implies that the
guantisation of a Hamiltonian action decomposes into ucdile representations associated
to coadjoint orbits that lie in the image of the momentum majence if we suppose that
this image lies insidgs, we expect the quantisation of the action to decompose istyete
series representations. In [89], Proposition 2.6, Weingteoves thaigs, is nonempty if and
only if rankG = rankK, which is Harish-Chandra’s criterion for the existenceisttete series
representations d@b.

The most direct application of the assumption that the inigee momentum map lies in
g5eis the following lemma, which we will use several times.

Lemma 6.11.Leté € gi Thengs Np = {0}.

Proof. Let X € gz Np be given. We consider the one-parameter subgroufifexpof G. Be-
causet < g the stabiliseGg is compact. Because effpX) is contained irGg, it is therefore
either the image of a closed curve, or dense in a subtor@; ofin both cases, its closure is
compact.

On the other hand, the map exp -~ G is an embedding (see e.g. [46], Theorem 6.31c).
Hence, ifX # 0, then expRX) is a closed subset @, diffeomorphic toR. Because the closure
of exp(RX) is compact by the preceding argument, we concludeXhatO. O

Now suppose thab(M) C gi. Then the assumption that the action®bn M is proper is
actually unnecessary:

Lemma 6.12.If (M) C g&, then the action of G on M is automatically proper.
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Proof. In [89], Corollary 2.13, it is shown that the coadjoint actiof G on g% is proper. This
is a slightly stronger property than the fact that elemehigghave compact stabilisers, and it
implies properness of the action Gfon M.

Indeed, let a compact subget- M be given. It then follows from continuity and equivari-
ance of®, and from properness of the action®fn gi. that the closed set

Gc :={ge G;gCNC # 0}
C{geG;gd(C)NP(C) #£ 0}

is compact, i.e. the action & onM is proper. O

The result

Compactness ¥ /G is enough to guarantee compactness of the reduced sﬁzl@ce@—l(f)/Gg =
®~ (G- &)/G, but it can even be shown that in this settidgis a proper map. This gives an-
other reason why the reduced spaces are compact.

We can finally state our result. Le#’ be an irreducible discrete series representation. Let
A €it* be its Harish-Chandra parameter such tlmatA ) > 0 for all a € R!. As before, we will
write (M), wy ) := (M_j,, w_;, ) for the symplectic reduction ¢M, w) at—iA €t \ncwcC g,
Then our generalisation of Theorem 3.38 is:

Theorem 6.13(Quantisation commutes with reduction at discrete seepgesentations)Con-
sider the situation of Conjecture 6.4, with the differentat{M, w) is now supposed to have
a G-equivariantSpirf-prequantisation(L®, (—, —)_»,0) instead of a normal one. Suppose
that the additional assumptions of this section hold, arad the action of G on M haabelian
stabilisers. If—iA is a regular value ofp, then

dimG/K

RY (Qu(M, ) :==RZ (1§ P5°]) = (=177 Qu(My, ).

If —iA does not lie in the image @b, then the integer on the left hand side equals zero.

We will prove this theorem in Part IV, via a reduction to themgmact case.

As in Theorem 6.5, we use the compact version of quantisadialefine the quantisation
Qv (M, wy ) of the symplectic reduction, since this version is well-dedi in the orbifold case.

If G =K, then the irreducible discrete series representatdns the irreducible repre-
sentationV, _,. of K with highest weightA — p. (see [69], corollary on page 105). Hence
Réf amounts to taking the multiplicity of, _,_, as remarked after the definition %f The
assumption tha¥l /G is compact is now equivalent to compactnesMadfself. Therefore The-
orem 6.13 indeed reduces to Theorem 3.38 in this case. Asianedtbefore, our proof of
Theorem 6.13 is based on this statement for the compactszatigat we cannot view Theorem
3.38 as a corollary to Theorem 6.13.

To obtain results about discrete series representatiang/ould like to apply Theorem 6.13
to cases wher®/ is a coadjoint orbit of some semisimple group, such that trengsation of
this orbit in the sense of Definition 6.1 is thetheory class of a discrete series representation
of this group. The condition tha¥l /G is compact rules out any interesting applications in
this direction, however. If we could generalise TheorenB@dla similar statement where the
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assumption thaM /G is compact is replaced by the assumption that the momentumisna
proper, then we might be able to deduce interesting coredian representation theory.

One such application could be analogous to unpublished wbiBkuflo and Vargas about
restricting discrete series representations to semisisydbgroups. In this case, the assumption
that the momentum map is proper corresponds to their asgumipat the restriction map from
some coadjoint orbit to the dual of the Lie algebra of suchaysaup is proper.

An interesting refinement of a special case of Duflo and Véasgasrk was given by Paradan
[64], who gives a multiplicity formula for the decompositiof the restriction of a discrete series
representation d& to K, in terms of symplectic reductions of the coadjoint orbitresponding
to this discrete series representation.



Part Il

Naturality of the assembly map
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The two main results in this thesis are Theorems 6.5 and &\E3will prove these results
by deducing them from the compact case, Theorems 3.34 aBd 3lds deduction is based
on the results in this part, which express ‘naturality oféiseembly map’. For discrete groups,
this naturality is proved in Valette’s part of [61]. The pfao [61] is split into two parts: the
‘epimorphism case’ and the ‘monomorphism case’.

We first give a generalisation of Valette’s epimorphism daggossibly non-discrete groups
(Theorem 7.1). The proof of this theorem is a straightfoohgeneralisation of Valette’s.

Then, we give an explicit description of the epimorphismectts K-homology classes of
equivariant elliptic differential operators. This is Chaoy 8.11, which is the key result in our
proof of Theorem 6.5.

Finally, we generalise a very special case of the monomsnpbase to inclusions of maxi-
mal compact subgroups into semisimple Lie groups. This eofém 9.1, which is the central
step in the ‘quantisation commutes witlduction result, Theorem 14.5, in Part IV. The latter
result in turn is the key to the deduction of Theorem 6.13 fidmorem 3.38.

In Parts Il and IV, we show that the ‘naturality of the ass@mbap’ results in this part are
‘well-behaved’ with respect to th€-homology classes of the Dirac operators we use to define
quantisation. These facts, together with Theorems 3.38a88] will imply Theorems 6.5 and
6.13.

This part contains almost all of the noncommutative geoyriatthis thesis. In Parts 11l and
IV, we will almost only use differential and symplectic geeiry (the most notable exception is
Chapter 11). Readers who are less familiar with noncomrwvetgeometry than with the other
subjects of this thesis should feel free to skip the prooftis part, and only read the main
results, Theorems 7.1 and 9.1, before going on to Part Ill.



Chapter 7

The epimorphism case

Theorem 6.5 is partly a consequence of naturality of thenalssemap. For discrete groups,
this naturality is explained in detail by Valette in [61]. timis chapter, we generalise the ‘epi-
morphism part’ of Valette’s theorem to possibly non-disergroups. This generalisation is
basically a straightforward exercise in replacing sumsrggrals and finite sets by compact
ones. Where Valette uses the facts that finite sums of boungietors on Hilbert spaces are
bounded operators, and that finite sums of compact opermatdrslbertC*-modules are again
compact, we use the lemmas in Section 7.1. These lemmashéogeith Lemma 7.18 and
the final part of the proof of Theorem 7.1 are our own input,rést of this chapter consists of
slight generalisations of arguments from [61].

Throughout this chaptef is a locally compact unimodular group, equipped with a Haar
measuredg, acting properly on a locally compact Hausdorff spXceWe consider a closed
normal subgroupN of G, and a left-invariant Haar measute on N. We suppose that /G is
compact.

In Section 7.4, we will also need the assumption that ei¥é& or N is compact. This
assumption may not be necessary, but we need it for our argsm©é/e will apply the results
in this chapter to the case whexeis compact in Section 9.1, and to the case whéfél is
compact in Section 10.1.

The version of naturality of the assembly map that we willchisethe following.

Theorem 7.1. The Valette homomorphisny Mdefined in Section 7.4, makes the following dia-

gram com mutative:

g

K (X) Ko(C*(G))
le lRR,

G/N
X /N

KSN(X/N) —> Ko(C*(G/N)).

Hereu)((3 andu)(f//,'\\'l are analytic assembly maps as explained in Section 5.2 hantap
R = (Jn). 1 Ko(C*(G)) — Ko(C*(G/N)) (7.1)
is functorially induced by the mafy, : C*(G) — C*(G/N) given onf € C¢(G) by [24]
fN(f):NgH/Nf(ng)dn. (7.2)

93
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In Chapter 8, we describe the image af-domology class defined by an elliptic differential
operator under the homomorphisdrg (see Corollary 8.11). This description will allow us to
prove Theorem 6.5 in Part Ill.

A version of naturality of the assembly map for locally coroipgroups can also be distilled
from [14].

Sections 7.1-7.3 consist of preparations for the definiche homomorphisiy in Sec-
tion 7.4, and for the proof of Theorem 7.1 in Section 7.5.

7.1 Integrals of families of operators

In this chapter, there are several occasions where we earnsiegrals of families of operators.
The following facts will be used in those situations.

Adjointable operators and integrals

Lemma 7.2. Let (M, 1) be a compact Borel space with finite measure idte a Hilbert A-
module, and let
¢ M— B(E)

be a continuous map. Then the integral

[ #(m)du(m
M

defines an adjointable operator @, determined by

(& [ o(mydu(min) = [ (E.o(min)edu(m eA (73

forall é,n e é&.

Proof. The integral on the right hand side of (7.3) converges, beea(M) is finite, and be-
cause the mam+— (¢ (m)&, n)e is continuous on the compact spddeand hence bounded. It
follows directly from the definition (7.3) of the operatdy; ¢ (m) du(m) that it has an adjoint,

given by .
(f, omaum ) = [ g(mydum.
U

We will often use the fact that ‘adjointable operators corterwith integrals’, in the fol-
lowing sense:

Lemma 7.3. Let (M, i) be a measure space, tbe a Hilbert A-module, and let
¢ M— B(&E)

be a measurable function. That is to say, the integialp (m)du(m) is a well-defined ad-
jointable operator ong’, determined by7.3).
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Let&”’ be another Hilbert A-module, and let 18 — &’ be an adjointable operator. Then

[ Topmdu(m) =To [ ¢(mdu(m).
M M

Proof. The statement follows directly from (7.3). O

Compact operators and integrals

In the proof of Lemma 7.12 we will use the fact that in some sa'ke integral over a compact
set of a family of compact operators is compact’. To be moeeipe:

Lemma 7.4. Let (M, u) be a compact Borel space with finite measure. £dte a Hilbert C--
module, and let : M — J# (&) be a continuous compact operator-valued map. Suppose that
¢ is ‘uniformly compact’, in the sense that there exists a s-eqa(d)j)j:l :M — Z (&) such

that

19 — ¢l = nS]g“I;)Hde (M) — o (M) 55

tends to zero as 4 «. Suppose furthermore that for everg N, there is a sequenc(ed)]k)f:1 ;
M — % (&) of simple functions (i.e. measurable functions havingdinitmany values), such
that for all € > O there is an ne N such that for all jk > n, ¢Jk— ¢j|| < &. Then the integral

| #(mydu(m)
M
defines a compact operator @h

Proof. For all j,k € N, the integralfy, ¢Jk(m)du(m) is a finite sum of finite rank operators, and
hence a finite rank operator itself. And becaﬂlq)%— ¢l — O asj tends too, we have

[ #ltmdum) — | ¢(mdu(m)
M M

in A(&). Hencefy, ¢ (m)du(m) is a compact operator. O
In the following situation, the assumptions of Lemma 7.4ragt:

Lemma 7.5. Let& be a Hilbert C'-module, and lefM, 1) be a compact Borel space with finite
measure. Suppose M is metrisable. tep : M — (&) be continuous, and let € 7 (&)
be a compact operator. Define the mgp M — # (&) by ¢(m) = a(m)TB(m). This map
satisfies the assumptions made in Lemma 7.4.

Proof. Choose a sequenc®j)j’_; in .7 (&) that converges td. Forme M, set
¢;(m) = a(m)TjB(m)

Then
[9j —@lleo < [lO[ec]| Tj =T

2(6)|IBlleo — 0
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asj — o. Note thata andf are continuous functions on a compact space, so their supsno
are finite.

Choose sequences of simple functiaris gk : M — %(&) such that|aX — a|l, — 0 and
|B¥— Bl — 0 asj goes tow (see Lemma 7.6 below). For gllk € N, set

¢(m) := a*(m)T;B%(m),
for me M. Note that
19K — @jlleo = rﬁgﬁﬁ”d"(fﬂ)ﬂﬁ"(fﬂ) —a(mT;B(m)]|

< sup<||ak(m)T,-Bk(m) —a¥(m)T;B(m)|

meM
+ @ (m)TB(m) - a(m)T;B(m)|)
<[ leo [T 118 = Blleo + @ = @t o] T 1| Bl -
The sequencek — |aX||l» and j + |Tj|| are bounded, sincek — a andTj — T. Hence,

because the sequend&st — a||. and || B¥ — B||« tend to zero, we see thﬁlpjk — ¢;|| can be
made smaller than arg/> O for k large enough, uniformly in. O

Lemma 7.6. Let (M, i) be a metrisable compact Borel space with metric d, let Y bermmad
vector space, and let : M — Y be a continuous map.
Then there exists a sequence of simple nedsM — Y such that the sequence

k . k
o — 0"l == supl[a(m) — a*(m)[ly
meM

goes to zero as k goes to infinity.

Proof. For everyk € N, choose a finite coveringy = {V},...,V;*} of M by balls of radius
ke From eaqh]kl we construct a partiio = {V{,...,V} of M, by settingv¢ := ¢, and
V=V UV, for j =2, ny. Note that the setd, are Borel-measurable. For &l N

andj € {1,...,nc}, choose an element, € /.. Define the simple map*: M — Y by

akm):=a(m) ifmev)

Note that, because is continuous (and uniformly continuous becatés compact), for
everye > 0 there is & € N such that for alm,n € M,

d(m,n)<i = Jla(m)—a(n)|y <e.

ke

Hence for alle > 0, allk > k¢, and allme M (saym erj),

la(m) —ak(m)|ly = [|a(m) —a(m) [}y < e.

So||a — a¥||. indeed goes to zero. O
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7.2 Extension of operators to HilbertC*-modules

From now on, le{ .77, F, ) be aG-equivariantK-homology cycle ovekK. In the definition of
the assembly map, a Hilbe2t (G)-moduleé’ is constructed from the Hilbert spagé, namely

as the closure of the spacé; = 1(Cc(X))s# in a certain norm (see Section 5.2). We shall
prove the well-known fact thd induces an operator ofi, because we will also use some of
the ingredients in this proof later in this chapter.

Lemma 7.7. Let T € #() be properly supported and G-equivariant. Then T presepgs
and T| ,» extends continuously to an adjointable operatgron &'

In the proof of Lemma 7.7, and also later, we will use:

Lemma 7.8. There is a nonnegative functioredC¢(X) such that for all xc X,

/ c(gx)dg=1.
G

Proof. Because the quotiett/G is compact, there is a nonnegative functloa C¢(X) such
that for allx € X, the orbitGxintersects the interior of the supportlofTherefore,

/ h(gx)dx> 0
G

for all x e X. Letc € C¢(X) be the function

h(x)
c(X) i= ————.
% Ton(endo
By right invariance oflg, this function has the desired property. O

Corollary 7.9. Let hy € C¢(X/N). Then there is a function & C;(X) such that for all xc X,
/ h(nx)dn= hy (NX). (7.4)
N

Proof. If X/N is compactchoose
h(x) := c(x)hn(NX),

wherecis the function from Lemma 7.8 (witG replaced byN). Otherwise seY := p~1(supphy),
with p: X — X/N the quotient map. The preceding argument yields a fun¢tielC;(Y) such
that for ally €Y,

/Nh(ny) dn= hn(Ny).

SincedY = p~1(dsuppy), we haven|yy = 0. Henceh can be extended by zero outsidéo a
continuous function oX. This extension satisfies (7.4). O



98 CHAPTER 7. THE EPIMORPHISM CASE

An auxiliary map S

Let L?(G, .»#) be the Hilbert space of functions : G — # whose norm-squared function
g— (¢(9),9(9)).»~ is integrable ove6. Letc e C¢(X) be the function from Lemma 7.8, and
let f := ,/C. Just as Valette does in [61], we define the linear map

S: H — L2(G, )
by
S (9)=n(f)g-<.

Lemma 7.10. The map S is an isometry, intertwines the representation of & and the
right regular representation of G in4(G, »#), and it maps# into the space ¥(G, »#) of
compactly supported?functions from G to/7.

Proof. The facts thalG acts unitarily ons#’, mis a x-homomorphism and a nondegenerate
representation, together with Lemma 7.3 and the definitfoin onply thatSis an isometry. So
in particular, the image o8 lies insideL?(G, 7). Furthermore, it follows from the definitions
that S intertwines the representation &fin .77 and the right regular representation &fin
L2(G, ).

By equivariance oft, we have for alh € C¢(X), all £ € 7 and allg € G,

S(m(h)¢)(9) = n(f)gm(h)¢ = m(fgh)g- <.

Since the action o6 on X is proper, the latter expression is a compactly supportadtion
of g. In other words, the image of the spa¢& under the mafs is contained in the space
L2(G, 7). O

The spaces# andL2(G, .»#) carryCe(G) C C*(G)-valued inner products given by

for &, n € ¢ andg € G, and
(9, W) 6)(9) = (9,09 W) 26.2); (7.6)

for ¢, € L3(G,.#) andg € G. Here p® denotes the right regular representationGofn
L%(G,.2): (pC(9)w)(d) = W(g'g). With respect to these inner products, the adjoint of the
restrictionS: % — L2(G, 2#) is the map

S L2(G, ) —
given by
s¢ - [ g'n(N)e(9)dg 7.7
G

This follows from a computation involving an applicationlefmma 7.3.
Another important property of the mafsandS- is that the compositioB8'Sis the identity
on 7%, by definition off and by Lemma 7.3.
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Proof of Lemma 7.7 BecauseT is properly supported, it preserveg:. Via the mapS, the
restriction ofT to % induces the operat@T S onL2(G, 7)) = L2(G)&.#, which is a dense
subspace of the Hilbe@* (G)-moduleC*(G) ® . This embedding df2(G, 7#) intoC*(G) ®
A is isometric with respect to th€*(G)-valued inner product (7.6) ob2(G,.»#) and the
C*(G)-valued inner product 068*(G) ® ¢ given by

(@®&,B@N)c-(@)onr = (&:N)x 0B,

for a,B € C*(G) and&,n € . We will show that the operat®T S defines an adjointable
operator orC*(G) ® s with respect to this inner product. We then conclude ThatS*'ST SS
is adjointable as well.

To see thaBT S defines an adjointable operator®h(G) .77, let ¢ € L2(G, ##) be given.
Then for allg € G, one computes

STSg(9) = [ m(N)Tn(g g9 (g "g)dg.
Identifying L2(G, .2#) with L2(G)&.2#, we see that for alf € L2(G) andé € .7,

STS(x2&) = [ x(g g n(HTmg ) gEdg.
In other words,
STS:/G)\G(g’)®(n(f)Tn(g’f)g’)dg{, (7.8)

whereA © denotes the left regular representatiorGah L2(G).
The integrand in (7.8) is compactly supported, since by\egisince ofrandT,

n()Tr(g f) = n(H)gTn(f)g ' =gmg *f)nh)Tn(f)g*

for someh € C.(X), becausd is properly supported. And because the actiorisadn X is
proper, the map

g — m(g~tf)m(h) = (g~ )h)

has compact suppoR. Note that, fory, x’ € L3(G) and &, &’ € 7, theCy(G)-valued inner
product (7.6) is given by

(X &X' @& )ce)(9) = (X.P°(9)X) 2 (§: &)
for g € G. Since by Lemma 7.2, the operatdisr(f)Tm(g' f)g'dg on . # and [ AS(¢) dd

on L?(G) are adjointable, and since the left and right regular regions ofG in L?(G)
commute, the operat@&' T S is adjointable. O

7.3 The averaging process

In the proof that the homomorphisv is well-defined, we will use a certain averaging process.
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Averaging
As before, let 77, F, ) be an equivariarK-homology cycle oveK.
Lemma 7.11.For T € #(s¢) and f € C(X), set

~ [Lon(t)Tn(1)g *dg
G
1. AS(T) is a well-defined bounded operator off;
2. AS(T) is properly supported;

3. AS(T) is G-equivariant.

Proof. 1. Supposd is self-adjoint. (Otherwise apply the following argumenthe real and
imaginary parts off.) Then for allg € G, we have the inequalities i (.7¢):

—gn(f3)g Tl g 1w < gn(H)Tr(f)g ™ < gm(t2)g | Tl| e Lr-
Therefore,

— [ oG Tl Lo dg < AX(T) < [ @207 T e L g

And hence, by equivariance property (4.14ynpf
A8 <|| Lont2)g *agiT]

= || [ ma- g

= ([ r2a) i
<| [ o-2ag| il

where we have used the fact that the function

X — / f2(gx)dg
G

is in C(X)® = C(X/G), and hence bounded, by compactnes¥ 4.
2. Let¢ € C:(X). Then, using equivariance afin the second equality, we see that

AE(TI(9) = [ gn(f)Tri)g *nig)dg

:/Gng-f )gTr(fg - ¢)g 'dg. (7.9)

Let K C G be the compact sé := {g € G; f g~1¢ # 0}. This set is compact because Be
action onX is proper. Choose a functiap € C¢(X) that equals 1 on the compact $¢f-x 9-
suppf. Then, sincapg- f =g- f for all g € K, it follows from (7.9) that

(W)AZ(T)Ti($) = AP(T)T(9).

3. Equivariance oA%(T) follows from left invariance of the Haar measute O
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Averaging compact operators

Let T be a bounded operator o, and leth € C¢(X) be given. Then by Lemma 7.11, the aver-
aged operatoAﬁ(T) is properly supported an@-equivariant. So by Lemma 7.7, the operator
AS(T) induces an adjointable operator éh We will need the following lemma to prove that
the homomorphisriy is well-defined.

Lemma 7.12.1f T is a compact operator, then the operator &rinduced by )%(T) is compact
as well.

Proof. Let ¢ € C¢(X) be the function from Lemma 7.8, Iét:= ,/c, and letS be the operator
from Lemma 7.10. Applying (7.8) to the operat@sﬁ(T), we obtain

sms = [ [ n(h) (@ Trtng ) m(o- ) (hole) ©9) dadg
= /G/G H(fg/.h)g’TIT(hg—lg. f) ()\G(g) ®g/—lg) dgdd, (7.10)

where we have used Lemma 7.3 and equivariange of

Since the action o6 on X is proper, the s := {d € G; fd'- h # 0} is compact. Hence
the setl := Uyek {9 € G; hg~1g- f # 0} is compact as well. The support of the integrand in
(7.10) is contained ik x L, so it is compact. We see that (7.10) is the integral over goamin
space of a family of compact operators. By Lemma 7.5, thislfesatisfies the assumptions of
Lemma 7.4. The latter lemma therefore implies t84¢(T)S* defines a compact operator on
C*(G) ® #, so thatA®(T) = S'SAS(T)S'Sdefines a compact operator 6 O

7.4 The homomorphismVy

Definition of Wy

The Valette homomorphism
W 1 KS(X) — KSMN(X/N)

is given by
VN[%7 F?”] = [%7FN7TIN]7

with 77, Fy and iy defined as follows.
We equip the vector spack; = m(C(X)).7# with the sesquilinear form

(&,n)N I=/N(€,n-n)%»dn.

(For allé, n € s#, the integrand is compactly supported.) This form is pesisiemidefinite:

Lemma 7.13.For all £ € J#, one has

(&,&)n=>0. (7.11)
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Proof. We will prove that the compactly supported function

(&, &)y in—(&,n-&)

onN, defines a positive element@f(N). We then note that any homomorphisnGifalgebras
preserves positivity. Hence, applying the trivial repreaéon to(¢, & )c-(n), we see that

[ (& mmdn= (& &) =0

To show that(&, §)cx(n) is a positive element &&*(N), we will use a map very similar to
the mapSof Lemma 7.10. Sinc& /N is not necessarily compact, the mamay not be well-
defined if we replac& by N. However, write§ = ri(h)n, for someh € C(X) andn € 7.
Then

Y:=N-supph CX,

is a propemMN-space, such that/N is compact. Therefore, by Lemma 7.8, there is a function
f € Ce(Y) such thatforaly €,

/f(n-y)zdnzl.
N

We define the map
S 1 — L3N, #)

by
S (¢)(n)=m(f)n-{.

This map has similar properties to the properties of the 8gipen in Lemma 7.10. The adjoint
of the mapS; with respect to th€*(N)-valued inner products analogous to (7.5) and (7.6) is
given by (7.7), withG replaced byN.

The main difference betweedand & is the fact thatsgsg is not the identity ons#; in
general. However, we do have

Sgsg(é):/Nn17T(f)n(f)nn(h)ndn

/N m(n- f2)dnm(h)n
mh)n

= '57
since the functiorjy n- f2dnequals 1 on the support bf Therefore, we see that
(&, &) ) = (8:5:Ss€ ) vy = (S5&.Se€ e (n)-

We will shortly demonstrate that for afi € L2(N,.#), the function(¢, ¢ )c-(n) is a positive
element ofC*(N). Then takingp = S shows thaté, &)c+ () is positive inC*(N).
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Let ¢ € LZ(N,.»#), and choose a Hilbert bas(s)ic; of 2. Write ¢(n) = ¢, ¢i(n)e,
with ¢; € LZ(N) for alli € 1. Then

(6.0)cn) /Z¢.

— /¢i (M Hgi(n'nydrl
|e N

= ZdJi* *¢i(n)

Now note that all functiong;”  ¢; are positive irC*(N). O

Because of this lemma, the forfr-, —)n induces an inner product on the quotient space
st/ ker(—, —)n. We defines# to be the completion af#;/ ker(—, —)n with respect to this
inner product.

Next, let us define the operatby. From now on, we suppose that eithéfN is compact, oiN
is compact.

Let &\ be the HilbertC*(N)-module defined as the completion .gf with respect to the
C*(N)-valued inner product given by

(&;Mea(n)=(&,n-N) s, (7.12)

for é,n € s andn e N.

First, suppos& /N is compact. Then, by Lemma 7.7, the oper&odnduces an adjointable
operatorFg, on &y. Since adjointable operators are bounded, therecis-& such that for all
¢ € &N,

2 2
IFs.¢ 1%, < clléll%,:

Therefore, the operatai g, — Fa Fa is a positive element of2(4y ), which implies that for
all € &\, the elemeng(c—FZ Fq)¢.€) . of C*(N) is positive. In other words,

(Faué Faué)a <c(é,€)a (7.13)
in C*(N). In particular, if§ € 7, and we apply the trivial representation, we can conclude th
(F&,FE)n <c(&,é)N.

ThereforeF extends continuously to a bounded oper&@on 7.
If N is compact, then we have:

Lemma 7.14.For all & € J#4,

(FE.FEN < IIF 150 (& En.

Hence also in this case, the operdtoinduces a bounded operatg§ on 4.
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Proof. By equivariance of, and by compactness bf, we have
(FE,F«E)N:/(FE,Fn-é)%dn
/—1
voI(N // (WFN'~+-&,Fn- &) »dndd

1 1 1
~ voI(N) // &,FNT - &) s dndr. (7.14)

Applying Lemma 7.2, we obtain a bounded operator
nH/an
N
on .7, such that for alh,n’ € s7:
! o n’
(n,/Nn n dn)%—/Nm,n n')»dn.
By Lemma 7.3 and left invariance dh, we see that (7.14) equals
1 /—1
oI (F(/Nn Edr{),F(/Nn Edn))%
1
~ vol(N) <F</ n-Edn),F(/ nfdn))%p

< |\Fﬂﬂl@ // n.&,n-&),pdridn

||F||W> ,
< WVOI(N)%%X(/,\I(n-E,n ~€)%dd)

= IFI3 ) max [ (8070 &) it

by left invariance ofdn. O

Finally, the representatiorr of Co(X) in . extends to the multiplier algeb@,(X) of
Co(X) (see Example 4.11). We embed the algebséX /N) into Cy(X) via the isomorphism
C(X/N) = C(X)N. The operators or# of the formr(f), with f € C(X)N, are properly sup-
ported andN-equivariant. So by the argument used in the definitiof\gfrr induces a repre-

sentation
i 1 Co(X/N) — B(I).

Wy is well-defined

Let us prove that the triples, Fy, iy) actually defines a class IﬁéB/N(X/N). In the proof,
we will use a different description of the Hilbert spag&,.
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Consider the Hilbert spacy Rc+(N) C=6N ® C, which is defined as the quotient of the
tensor producéy ® C by the equivalence relation

(§-Hlez~do y(f)z

forall ¢ € &y, f € C*(N) andze C. Here the mag : C*(N) — C is defined analogously to

(6.2). That s, by
In(F) == fy f(n)dn
forall f € Cc(N), and extended continuously to all@f(N). The inner product oéy ®c+(n) C

is given by
(€®7,[&@7]) e e = IN(EE)a)Z.
It is a straightforward matter to prove the following lemma:

Lemma 7.15. The linear maps; ® C — 7 given byé ® z— z& induces a unitary isomor-
phisméy ®cx(N) C — .

Using this description af# we can now prove:

Lemma 7.16. The triple (A, Fn, Tiy) defines a class in g(/N(X/N), with Ry properly sup-
ported.

Proof. We will show that for allhy € Co(X/N), the bounded operators

[me(hw), ] and () (RS- 1)

on 7 are compact. All other properties 8-homology cycles follow by a straightforward
verification.

Let hy € Ce(X/N) be given. It is sufficient to prove the claim for dii in this dense
subspace 0€y(X/N). Leth e C¢(X) be the function from Corollary 7.9. Thefyn-hdn=
p*hn, with p: X — X/N the quotient map. We may suppose thais real-valued, for otherwise
we can apply the following argument to the real and imagimenys ofhy.

We split the proof of Lemma 7.16 into two parts, by first coesidg the case whet¢/N is
compact, and then proving the result for compgdct

Assume thaiX /N is compact. Then we have the bounded opergggron &y induced by
F as in Lemma 7.7. The isomorphisfy ®c(N) C = 74 from Lemma 7.15 intertwines the
operatorky on 7y and the operatofg, ® 1 on &y ®c+(n) C. Indeed, for allé € 4 and all
ze C, we haveFg4, ®1)[§ ® 7 = [F& ® 2], andRy[zE] = [zFE].

Let us first prove thafry(hn), Fy] is @ compact operator ogry. Because- is properly
supported, there is ain € C¢(X) such that( f1)F ri(h) = Fri(h). Choosef € Ce(X) such thatf
equals 1 on supfa Usupph. Thenfh=h, andr(f)F ri(h) = ri(f) re( 1) F ri(h) = mi( f1)Fri(h) =
F ri(h). Now

(m(p"w),F] = [ nim(h), Fln~tdn, (7.15)
N
by Lemma 7.3 and equivariance @f Note that

Fr(h) = mn(f)Fm(h) = i(f)Frr(h) (). (7.16)
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SinceF, m(f) and m(h) are self-adjoint operators, taking adjoints in (7.16) gsetr(h)F =

ri(f)r(h)Fm(f). Hence
[7(h), F] = mi(f) [m(h), F]ma(f),

and (7.15) equals ([r(h),F]).

By assumption, the commutator(h), F] is compact. Sinc& /N is compact, we can there-
fore apply Lemma 7.12, and conclude tfratp*hy ), F| induces a compact operatar( p*hy), F 4,
onéy. Because the isomorphisfiy ®c(n) C = IR intertwines the compact operater p*hn ), F] 5, ®
1 onén@c-n) C and the operatdry (hy), Fn] on J4, the latter is compact as well.

To prove compactness af (hy)(F3 — 1), lethy andh be as above. Then

(" hn) (F2— 1) = /Nnn(h)(Fz—l)nldn. (7.17)

Becausé- is properly supported, so 5. So there is a functiofi € C;(X) such that

F2m(h) = r( f)F2m(h) = ri(f)F?m(h)m( f).

Taking the adjoint of this equality, we see that (7.17) ex;uék‘#l(n(h)(F2

pact. As above, this implies that, (hy)(FZ — 1) is compact.
Next, we suppose that is compact. We saw that

[m(p"hw), F] = AR([ri(h), F)).

By Lemma 7.17 below, the operatA?‘ h),F])n on 24 is compact. Hence the operator

[ (hn), Fn] = [1(p*hn), Fn

is compact as well. A similar argument can be used to proveridy ) (RS — 1) is compact.

Finally, to prove thaty is properly supported, lety € Cc(X/N) andh € C¢(X) be as
above. We saw that, becauseds properly supported, there is a functiére C¢(X) such that
r(f)Fm(h) = Fri(h) and fh = h. Then as before,

—1)), which is com-

Fn(p*hN):/Nan(h)nldn
:/ nrt( f)Fri(h)n~tdn
_/ nrt( f)Fri(h)r(f)n~tdn
= A} (Fri(h)).
SetKy := p(suppf), and letpyn € Cc(X/N) be equal to 1 oy. Thenp*¢y f = f, and hence
(P gAY (Frith) = [ 7(p* o) F ) F)n-2din

_/nn pén)m(f) Fith) ()~ dn
1)

— AY(Fr(h)).
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And therefore,
i (dn) v (hy) = By (hy).

In the proof of Lemma 7.16, we used the following analogueahima 7.12.

Lemma 7.17. Suppose N is compact. Letd .7 () and he C(X) be given. Then the
operator AY(T)n on .74, induced by X(T), is compact as well.

Proof. Let (Tj)‘;":1 be a sequence of finite rank operatorsihthat converges td in %(.7).

We first claim that the averaged operatA#(Tj) have finite rank, for allj. Indeed, ifT; is a
rank 1 operator:

Ti(&)=(.&)nC
forall £ € o7, then for all suck¢,

ANT)(E) = [ (7). &) nih) dn
C spangyn-m(h)d.

By compactness dfl and unitarity of the representationlgfin .72, the unit sphere in the latter
space is compact. This space is therefore finite-dimenbieoahatAr’\“(Tj) is indeed a finite
rank operator. In general, T is a finite sum of rank 1 operators, we see mRi(Tj) is still a
finite rank operator.

Furthermore, we have for ajl

HA”(TJ)—AN(T)H%(%) = H/Nnﬂ(h)(Tj —T)m(h)n~tdn

< vol(N)[I7(h) 55 ) 1T — Tl o

B(A)

which tends to zero. Lemma 7.14 implies that
AN (TN =AY (TN s < IIAN(TH) — AN (T)
and we see tha (Tj)n — AN(T)n in Z(A).

Now the operator#)(T;)n have finite rank. Indeed, if the image Al (T;) is contained in
the finite-dimensional subspadgeC 7, then, sinceﬂ\L\‘ (T;) is properly supported,

B(H)>

AN(T)) 4 C NV,

and the image OA”(TJ')N is contained in the (finite-dimensional) closureJgt NV; in J&. It
therefore follows thaf\Y (T )y is a compact operator o#4. O

The last step in the construction of the mdyp is the fact that it is well-defined oK-
homology classes:

Lemma 7.18. The map { maps equivalent K-homology cycles to equivalent cycles.
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Proof. It follows from the definition ofy that it maps unitarily equivalent cycles to unitarily
equivalent cycles.

To show thatVy preserves operator homotopy, it is enough to prove thaettsea con-
stantC > 0 such that for alK-homology cycles.7Z,F, ) with F properly supported and
G-equivariant, one has

1PNl (40 < CIIF

l.e. the magF — Fy is bounded.

For compach, it follows from Lemma 7.14 thatF|| 24, < [|IF |l %), and we are done.
Therefore, suppose thAt/N is compact.

Let (27, F, ) be aK-homology cycle oveK, with F properly supported an@-equivariant.
As before, letsy be the completion of#; in the inner product (7.12). By Lemma 7FH jnduces
a bounded operatdig, on &y, and by (7.8) we have

B

IFeanllz(sv) = ISFaS | sz, 0))
_ H/AN(n)®n(f)Fn(n- f)ndn
N

Y

wheref € C¢(X) has the property thaf, f (nx)2dn= 1 for all x € X. Because\N(n) andn are
unitary operators oh?(N) and.»# respectively, this norm is at most equal to

F

/K 17CE) | 17N - ) 0) [F | ey A= VOLK)ITECE )15 IF DL )

whereK is the compact sgin € N; f - nf £ 0}. Set
C 1= vol(K) | 71(F) |25,

so that||Fe || (4 < CIIF [l z(r)-
Then for all§ € J7, we have||Fg & ||lg, < ClF||z()lI€]l&- Therefore, as in (7.13), we
see that

CIF 150 (€, vy — (Fs P& )esny
is a positive element &2*(N). Applying the trivial representation, we conclude that

C2IF 125 1€ IR — IFEIIR = 0

7.5 Proof of naturality of the assembly map

Having finished the construction of the homomorphigmwe are now ready to prove Theorem
7.1

Proof of Theorem 7.1.
Step 1: the @N(X/N)-cycles. Let [7,F,m] € K§(X), and suppos€ is G-equivariant and
properly supported. Our goal is to show that

G/

(fN)*O“)%[%7 F7 T[] = HX/NN[jﬁ\hFNa nN]
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as elements dfo(C*(G/N)).
Let & andFs be the HilberC*(G)-module and the operator ghconstructed from the cycle
(2, F, m) as in the definition of the assembly map. That is,

H)%[%,F,T[] = [&,Fs].
The HilbertC*(G/N)-module part of fy), o U [+#,F, i is
&6\ =& ®cr(6)C'(G/N),

whereC*(G) acts onC*(G/N) via the homomorphisnfy,. TheC*(G/N)-valued inner product
on &g/ is given by

(€@ neb),, , =a (h((En)b
for all £,n € & anda,b € C*(G/N). The operator part offy), o u¢ [, F, 1] is
FgG/N =Fs®1.

On the other hand, the HilbeZt' (G/N)-module part opf//NN [, Fn, Th] IS a certain com-

pletionégy of the space
e = TN(Ce(X/N)) I

The completion?G/N of JA ¢ is taken in the norm

H5N||%G/N = [INg+— (én,Ng- én)Nllce(o/n)-

The operator parl%(gaG/N of u)(f//NN [, Fn, Ti] is defined as the continuous extensiofgf as in

Lemma?7.7.
Step 2: an isomorphismif & € 2, we will write EN := & 4 ker(—, —)y for its class in/4.
Then for all& € %, we haveéN ¢ A c. Indeed, letf € C(X) and{ € s be such that
& =mn(f){. Lethy € C¢(X/N) be equal to 1 on the image of supm X/N. Then
EN = m(p*hn) 1i(£)Z + ker(—, —)n
= iy (hn) (1( ) +ker(—, —)n)
= 1y (hn)EN.
Define the linear map
W %(X)CC(G) CC(G/N) — %70
by
WE@d)= [ 9(Ng NG Ed(Ng)

whered(Ng) is the Haar measure @&/N normalised such thafor all h € C¢(G),

/cgh(g)dg:/NgeG/N/nGN h(gn)dnd(Ng). (7.18)

1The correct way to define the integral on the right hand sid@ 48) is via a measurable sectiGiN — G.
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We will show thatW is an isometry with respect to tl&(G/N) c C*(G/N)-valued inner
products on the spaces in question. This implies ¥axtends to an isometry between the
completions in these inner products:

W: /N = HBc,6) Ce(G/N) — e = ég)n-

It will turn out thatW is surjective, and intertwines the operatEg%/N and F@gG/N. This will

complete the proof.
To prove that¥ is an isometry, le€.n € % and¢, Y € C(G/N) be given. Then for all
g € G, one computes

([E®¢],[n@Y])s,(Ng) =
S o FING NG 9)(€. 6 E)nd(NG) d(NG) =
(VIE© 9] W ¢z, (NY. (719)

Next, we show tha¥ : &g/ — éG/N has dense image, and is hence surjective, because it

is an isometry. Indeed, l&t € 4. We will show thatéN lies in the closure of the image of
V. Because;/ ker(—, —)n is dense i ¢, which in turn is dense idg )y, this proves that
W has dense image. Let us construct a sequeng&ifc, ) Cc(G/N) whose image undep

converges t@N. Let (¢,{,)‘J?°:1 be a sequence i©:(G/N) such that for allj, ¢,{, is a nonnegative
real valued function with integral 1, and that

lim ¢} = e,
] —0
as distributions oi&5/N (with respect to the Haar measwéNg)). Then for allj,

|W(E @ ol)—&"n=
Ng-£'gh(Ng dNg — | &M ol(Ng Hding| <

o4 (Ng H)|INg- EN — V|| d(Ng),
N/G

e

which tends to zero ag— «. SoW is surjective.
Finally, it follows directly from the definitions th&¥ o (Fs ® 1) = F@gG/N oW, O



Chapter 8

K-homology classes of differential
operators

In this chapter, we will compute the image under the homoimsmVy from Theorem 7.1
of a K-homology class associated to an equivariant ellipticedéiitial operator on a vector
bundle over a smooth manifold. The result is Corollary 81hIlChapter 10, we will specialise
Corollary 8.11 to Dirac operators in the case of a free achipra discrete group, proving
Theorem 6.5. Corollary 8.11 will also play a role in Sectio#.9

8.1 L?-spaces of sections of a vector bundle

Let G be a unimodular Lie group with a Haar measdig and letN be a closed, normal
subgroup ofG, with a left invariant Haar measuda. Let M be a smooth manifold on whida
acts properly, such that the actionMfon M is free. Suppos# /G is compact.

Now letq: E — M be aG-vector bundle, equipped with@Ginvariant Hermitian metri¢—
,—)e. Letdmbe aG-invariant measure o, and let_L?(M, E) be the space of square-integrable
sections ofE with respect to this measure. Lat! : Co(M) — Z(L*(M,E)) be the repre-
sentation defined by multiplying sections with functionst L?>(M, E) be the Hilbert space
constructed from.?(M, E) as in the definition of the homomorphisviy. We will show that
L?(M, E)y is G/N-equivariantly and unitarily isomorphic to the Hilbert sgd.?(M/N,E/N)
of square-integrable sections of the quotient vector indl

gn : E/N — M/N.

The L2-inner product on sections & /N is defined via the metric o /N induced by the
one onE, and the measuréZ on M/N with the property that for all measurable sectibns
¢ :M/N— M and allf € Cc(M),

/Mf(m)dm:/M/N/’\lf(n~¢(ﬁ))dndﬁ 8.1)

(see [13], Proposition 4b, page 44).

IMeasurable in the sense that the inverse image of any Borasunable subset &fl is Borel measurable in
M/N.

111
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Note that in this example, the space
LE(M,E) 1= 11(Ce(M))L*(M, E)
is the space of compactly supportedsections of. Consider the linear map
X : L3(M,E) — L3(M/N,E/N), (8.2)
defined by
X(s)(Nm) := N~/Nn-s(nl )dn,

for allse L2(M,E) andm € M. Becausesis compactly supported and the action is proper, the
integrand is compactly supported for alle M.

Proposition 8.1. The mapx induces a GN-equivariant unitary isomorphism
X 1 LA(M,E)Ny = L2(M/N,E/N). (8.3)

Proof. It follows from a lengthy but straightforward computatidrat the magy is isometric,
in the sense that for afic L2(M, E),

X (S)I2m/ne Ny = lISlIng

where|| - ||n is the norm corresponding to the inner prodget —)y. Hencey induces an
injective linear map

X :L2(M,E)/# — L>(M/N,E/N), (8.4)
where. 7 is the space of sectiorssc L2(M, E) with |||y = O.
Furthermore, the map has dense image, see Lemma 8.2 below. It therefore exterads to
unitary isomorphism
X : L2(M,E)n — L3(M/N,E/N).
The fact thatN is a normal subgroup implies that this isomorphism intaresgi the pertinent
representations @&/N. O

Lemma 8.2. The image of the map in (8.2) contains the space2(M /N, E/N) of compactly
supported B-sections of EN — M/N.

Proof. Let o € LZ(M/N,E/N). We will construct a sectios € LZ(M, E) such thatx(s) = o,
using the following diagram:

E—" E/N
lq lOIN
p

Here the horizontal maps are quotient maps and define pahfdpe bundles, and the vertical
maps are vector bundle projections.
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Let {U;} be an open cover of suppcC M /N that admits local trivialisations

7j:p HU))
o) -yt (Uj)

L e

Uj xN;
UjXEO7

whereEy is the typical fibre oE. Because supp is compact, the coveU;} may be supposed
to be finite. Via the isomorphism of vector bundiggE /N) = E, the trivialisationsﬁ’jN induce
local trivialisations ofE:

p_l(Uj) x Eo.

L

6;:q *(pt(U)))
And then, we can form trivialisations
15 pet(ant(U)) — at(U)) x N,
by
pel(ant(U)) = at(pt(uy)))
~plUj)xEy via§,
=UjxNxEy viar,
~gyt(Uj) xN  viagl.

Here the symbol=’ indicates arN-equivariant diffeomorphism. It follows from the definitio
of the trivialisation8; that rjE composed with projection ontqﬁl(u j) equalspg, so thatrjE is
indeed an isomorphism of principabundles.

For everyj, define the sectios; € L?(M,E) by

si(17Y(0,n)) = (1F) "(0(0),n)

for all & € Uj andn € N, and extended by zero outsi@el(uj). By compactness of supp
there is a compact subsetC M that intersects alN-orbits in sup. LetK C N be a compact
subset ofinvolume 1, and sef := K - C. Then for allm e M, the volume of the compact set

Vm:={neN;n"ImecC}
is at least 1. Define the sectisof E by

~__J Sisj(m ifmeC
S(m)_{ "0 ifmec.

Thense L2(M,E), and for allme M,

x@Nm = 5 | pe(n-si(nm)dn
J7 m
NmMeU;

= 3 [ pel((x) o(Nm).n-w(n tm)) dn 5

NmeU;
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where (Nm ¢(n~1m)) := 1j(n"tm). Now sincepg o (rjE)*l is projection ontagy(Uj), the
expression (8.5) equals
#{j;Nme Uj}vol(Vm) g(Nm).

Settingg (m) :=#{j;Nme Uj} vol(Vim) gives a measurable functignon M which is bounded
below by 1 andN-invariant by invariance afin. Hence

1§
¢7

is a sectiors € LZ(M, E) for which x(s) = o. O

Si=

8.2 Differential operators

Let G andE — M be as in Section 8.1. L& : *(M,E) — '*(M, E) be aG-equivariant first
order differential operator that is symmetric with respedtheL?-inner product on compactly
supported sections. Théhdefines an unbounded operatorlciiM, E). We assume that this
operator has a self-adjoint extension, which we also dempi

Functional calculus and properly supported operators

Applying the functional calculus to the self-adjoint exd@amn ofD, we define the bounded, self-
adjoint operatob(D) onL?(M, E), for any bounded measurable functioonR. The operator
b(D) is G-equivariant because of Lemma 4.31.

We will later consider the case whe(e?(M,E),b(D), M) is aK-homology cycle, and
apply the majvy to this cycle. It is therefore important to us that the oparbtD) is properly
supported (Definition 5.13) for well-chosen functidns

Proposition 8.3. If b is @ bounded measurable function with compactly suggeb(tistribu-
tional) Fourier transfornmb, then the operator (D) is properly supported.

The proof of this proposition is based on the following twotfa whose proofs can be found
in [34], Section 10.3.

Proposition 8.4. If b is a bounded measurable function®rwith compactly supported Fourier
transform, then for allg € ¢ (M, E),

1 . .
(b)) 2n) = 577 [, (@2°51) z40.)DA) 02

This is Proposition 10.3.5. from [34]. By Stone’s theoreg, operatoe’P is characterised
by the requirements that — €2P is a group homomorphism froif to the unitary operators
onL?(M,E), and that for als € F'?(M, E),

0

o iADe_
3 é'Ps=iDs.

A=0
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Lemma 8.5. Let se 'y (M, E), and let he CZ’(M) be equal tal on the support of s. Let € R
such thatA | < ||[D, ™ (h)]||~%. Then

suppe’Ps c supph.

This follows from the proof of Proposition 10.3.1. from [34]

Proof of Proposition 8.3Let R > 0 be such that sugipc [-R,R]. Let f € C;(M), and choose
h € C2(M) such thah equals 1 on the support 6f and that|[D, 7™ (h)]|| < é. Let 1y be the
constant function 1 oM. Then by Lemma 8.5,

™ (1y —h)é*PrM(f) =0, (8.6)

for all A €] — R R[. Here we have extended the nondegenerate representétionCo(M) on
L?(M,E) to the multiplier algebra,(M) of Co(M). So by Proposition 8.4, we have for all
stely(M,E),

(mM(1m —h)b(D)rM (f)s 1) = (b(D)rM(f)s, ™ (1v — h)t)

L2(M,E) L2(M,E)
%T/(e”\DnM ). 7 (Lag — )t) 2 00 2, DOA) A
i/ (1w — WP (£)s1) 2y £ BA) OA
=0,
by (8.6). So
(1™ (h))b(D)M(f) = ™ (1m — h)b(D) ™ (f) =0,
and hencd(D) is properly supported. O

The image ofb(D) under Wy

Now suppose thdD is elliptic and thato is a normalising function with compactly supported
Fourier transform. Iy is a smooth, even, compactly supported functiorRorand f := g*g
is its convolution square, then(A) := [ e'Aif(*lf(x)dx is such a function (see [34], Exercise
10.9.3).

Becauséy(D) is properly supported it preserve§(M, E), and the construction used in the
definition of the mapvy applies tab(D). The resulting operatdi(D)y onL?(M, E)y is defined
by commutativity of the following diagram:

L2(M,E) — L?(M,E)n
lb(D) \Lb(D)N
L2(M,E) —= L?(M,E)N.
On the other hand, the operairinduces an unbounded operator6i{M /N, E /N), be-
cause it restricts to N
DN (M E)N — r (M E)N.
We then use the following fact:
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Proposition 8.6. Let H be a group acting properly and freely on a manifold M. §eE — M
be an H-vector bundle. Then the induced projection

q":E/H —M/H

defines a vector bundle over M.
Letr*(M,E)" be the space of H-invariant sections of E. The linear map

Ye:T°(M,E)! - T®(M/H,E/H), (8.7)

defined by
Ye(s)(H-m) =H-s(m),
is an isomorphism of & M)" = C*(M/H)-modules.

Sketch of proofThe inverse ofJg is the pullback along the quotient mgp M — M/H,
p*:T°(M/H,E/H) — ™(M,E)",

defined by
(pro)(m) = (m a(Hm)) < p*(E/H)=E,

foro e F*(M/H,E/H). The isomorphisnp*(E/H) = E is given by

(mHe) — e, (8.8)

forme M ande € En. O
Using Proposition 8.6, we define

DN := g 'DNye : T°(M/N,E/N) — I'*(M/N,E/N). (8.9)

We regardDN as an unbounded operator bA(M/N,E/N). It is symmetric with respect to
theL2-inner product, and hence essentially self-adjoint by [84Jrollary 10.2.6. We therefore
have the bounded operatafDN) onL?(M/N,E/N).

Our claimis:

Proposition 8.7. The isomorphisry from Proposition 8.1 intertwines the operatordhy and
b(DN):

L?(M,E)y —~ L2(M/N,E/N)
lb(D)N lb(DN)
L2(M, E)n —— L2(M/N,E/N).
We will prove this claim by reducing it to the commutativity another diagram. This

diagram involves the Hilbert spacé(M /N, E/N), which is defined as the completion of the
spacd ®(M,E)N in the inner product

(@.0):= [, (06(0).1(8(0)cd0.
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for any measurable sectign: M/N — M. The mapye from Proposition 8.6 extends continu-
ously to a unitary isomorphism

Pe : L2(M/N,E/N) — L2(M/N,E/N).

The unbounded operat@" on £2(M/N,E/N) is essentially self-adjoint becaus®' is,
and becaus€ intertwines the two operators. Hence we haydN) € 2(L%(M/N,E/N)).
We will deduce Proposition 8.7 from Lemma 8.8:

Lemma 8.8. The following diagram commutes:

L2(M,E) M>|12(|\/|/N,E/N)

lb(D) lb(ﬁN)
n .
LZ(M,E) e L2(M/N,E/N),

where the magyn- is given by

(an-(s)>(Nm):/n-s(n‘lm)dn.
N
Proof. Step 1Because the representation\vfn L2(M, E) is unitary, we have

(N-(9:8) 0, = (840 0)

L2(M,E L2(M,E)
forall st € L3(M,E).

Step 2By equivariance oD, we have

<an-> oD =DN o [y
only(M,E).
Step 3Forallse 'g(M,E), we have

0

N

:i/n-Dsdn
N
=iDNfyn(s)  (by Step2)

4 0" [ n-(s).

Al

A=0

So by Stone’s theorem, i
Jun-o€*P = Bo fin.

2Note that the spade?(M /N, E/N) can be realised as a space of sectioris.of
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forall A € R.

Step 4. By using Proposition 8.4 and Steps 1 and 3 several times, \abyfisee that for all
stely(M,E),

1

21
1

2n

(BB™) - (9 20y = 37 [, (€2 - (9):0) 2 A A

/U n-e? St)LZ(M,E)B(A)dA
= o [ (@5 [0 (0) BN

(( )S, Jun ())LZME)
= (Jun-b(D)s, )LZ(M,E)'

This completes the proof. 0J

We now derive Proposition 8.7 from Lemma 8.8.

Proof of Proposition 8.7Consider the following cube:

Jnn

L2(M,E) M= [2(M/N,E/N)
b(DN)l

[2M/N,E/N) N

Je
LZ(M,EN L2(M/N,E/N)
lb(D)N \ lb(DN)

L?(M,E)n L2(M/N,E/N).

The rear square (with the operatdn@®) andb(DN) in it) commutes by Lemma 8.8. The left
hand square (with the operatdsD) andb(D)n) commutes by definition ob(D)y, and the
right hand square (witlh(DN) andb(DN)) commutes by Lemma 4.31. The top and bottom
squares commute by definition of the myapso that the front square commutes as well, which
is Proposition 8.7. O

8.3 Multiplication of sections by functions
Let G, M andE be as in Sections 8.1 and 8.2. As before, let

™ : Co(M) — Z(L%(M,E))

and
™M/ Co(M/N) — B(LA(M/N,E/N))
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be the representations defined by multiplication of sestlmnfunctions. Let
N :Co(M/N) — Z(L*(M,E))
be the representation obtained fratM by the procedure in Section 7.4.
Lemma 8.9. The isomorphisn8.3) intertwines the representationg' and 7i/N,
Proof. The representatiory' is induced by
()™ :C(M/N) — Z(LEM.E)),
(TYN(£)s(m) = F(N - m)s(m).

Forall f € C(M/N), s€ L2(M,E) andm & M, we therefore have

X(WES)(N-m) = x ()" (F)s) (N-m)
= N-/Nn~ f(N-n"Im)s(n"t-m)dn

N- f(N-m)/Nn-s(n‘l-m)dn
= (®N(F)x(9)) (N-m).

8.4 Conclusion

LetG, M, E, D, DN, i and™/N be as in Sections 8.1 — 8.3. Suppose that the vector bundle
E carries aZ,-grading with respect to which the operafiis odd. Suppos® is elliptic and
essentially self-adjoint as an unbounded operatdr’ghl, E).3 Letb be a normalising function
with compactly supported Fourier transform. Then Propasi.1, Proposition 8.7 and Lemma
8.9 may be summarised as follows.

Theorem 8.10.Let (L?(M,E)n, b(D)n, 7Y ) be the triple obtained from
(L2(M,E),b(D), ™) by the procedure of Section 7.4. Then there is a unitary isphism

X i L2(M,E)n — L3(M/N,E/N)

that intertwines the representations of K&, the operators D)y and b(DN), and the represen-
tationsmg! and /N,

Corollary 8.11. The image of the class
D] == [L2(M,E),b(D), ] € K§(M)
under the homomorphismy\defined in Section 7.4 is

Vi [D] = [L2(M/N,E/N),b(DN), /N] = [DN] € kg™ (M/N).

3This is the case iM is complete and is a Dirac operator oM, see Corollary 4.36.
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Remark 8.12. If the action of G on M happens to be free, then Corollary 8.11 allows us to
restate the Guillemin—Sternberg—Landsman conjecture/héut using techniques from non-
commutative geometry. Indeed, for free actions we have

R opus [5Lw + 5[‘0)} = u,\{ﬂe/}G oVg [ciw + 5@} (by Theorem 7.1)
= index(d_Lw + 5@)6 (by Corollary 8.11)
- G - - G
—dim(ker(L0 + 6{0) ")~ dim(ker(0Lo + 60) ")
Note that even though the vector spaceiﬁeﬂr d_fw)i may be infinite-dimensional, the@-

— — G
invariant parts are not, because they are the kernels oﬂltbtioeoperators((ﬁw + c?fw)i)
on the compact manifoltfl /G. So Conjecture 6.4 becomes

; Y 3\ T G ; Y ok O\~ G . 5 Tk
d|m<ker(aLw+0Lw) ) —d|m<ker(aLw+0Lw) ) = indexd w + .

In the setting of Theorem 6.5, the assumption that the acibee is a very restrictive one,
see Remark 6.6.



Chapter 9

Inclusions of maximal compact subgroups
Into semisimple groups

The monomorphism part of Valette’s ‘naturality of the asbgmmap’ is harder to generalise
to nondiscrete groups than the epimorphism part (Theoréin The reason for this is more or
less that the geometry of homogeneous spaces of nondigcoetes is usually nontrivial. More
specifically, the problem is that a principal fibre bun@e— G/H has no smooth transversal
in general. We will generalise this monomorphism part todage of inclusions of maximal
compact subgroupK of semisimple Lie group$s. The geometry ofG/K enters into this
theorem via a Dirac operatﬁerK. This generalisation (Theorem 9.1) is one of the key steps
in a ‘quantisation commutes wiihductiori result (Theorem 14.5) that we will use to deduce
Theorem 6.13 from the compact case.

In the proof of Theorem 9.1, we will actually use the epimasphcase of naturality of the
assembly map, Theorem 7.1, and Corollary 8.11 from the pusvéection, in Sections 9.1 and
9.4, respectively.

Let G be a connected semisimple Lie group with finite centre, ahl le& G be a maximal
compact subgroup. L&t be a smooth manifold equipped with &-action. LetM := G xg N
be the quotient oG x N by theK-action given by

k- (97 n) = (gk_17 kn),

for k € K, g € G andn € N. Because this action is proper and frégjs a smooth manifold.
Left multiplication on the facto6 induces an action d& on M.

Theorem 9.1(Naturality of the assembly map f& — G). The magK-IndS, defined by com-
mutativity of the left hand side of diagraf®.2), makes the following diagram commutative:

KS(M) L Ko(Cr(0)) ©.1)
K-deT TD-Ind(K;
KK(N) — o R(K).

LIn the previous two chapters, we usedo denote a normal subgroup. We hope this is not too confusing

121
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This result is analogous to Theorem 4.1 from [4], which isdubg Paradan in [63] to
reduce the Guillemin—Sternberg conjecture for compaatgsdo certain subgroups. Our proof
of Theorem 6.13 is analogous to this part of Paradan’s work.

We will prove Theorem 9.1 by decomposing diagram (9.1) devid:

G

KS(M) ——— Ko(C/(G)) 9.2)
Va(K) Srak) RY
GxAK) (G x N) 22N Ko (G (G x K))
K-nd@ | Reg RS Re€iAk) |D-Ind
KSK*K(G x N) ‘ﬂ:&o(@*(G x KxK))
Poklx— w3 *Px]x—
KK(N) " R(K).

In this diagram, all the horizontal maps involving the lefteare analytic assembly maps. The
symbol ‘x’ denotes the Kasparov product, aA(K) is the diagonal subgroup &f x K. The
map D-IncE was defined in (6.11). The other maps will be defined in the nedes of this
chapter.

The K-homology clasdds ] € KS*K(G) is defined as follows. Note that the Spin-Dirac
operator onG/K is the operatoB =D%, with C the trivial K-representation, ard® as
in (6.9). Letpg : G — G/K be the quotient map, le#®/K := G xk A, be the spinor bundle
on G/K, and consider the trivial vector bundjg.# /K = G x Ag, — G. LetDgy be the
operator on this bundle given by the same formula (6.9) asaﬂmato@v, with V = C the
trivial representation. This operator satisfies

I356,}( (PGS) = Pg (@(CS) ;

for all sectionss of #¢/K — G/K. We will use the fact that it is equivariant with respect te th
action ofG x K on G x Aq, defined by

(9, - (9, 0) = (agk 1, Ad(K) - 5),

forg,d € G, ke K andd € Ag,. Itis elliptic (see Lemma 15.6), and therefore defines asclas

Dokl € K(?XK(G)-

We will distinguish between the different subdiagrams oR)%y calling them the ‘left-
hand’, ‘top’, ‘middle’, ‘bottom’ and ‘right-hand’ diagrasm Commutativity of the left-hand
diagram is the definition of the map K-Iﬁd In this chapter we will prove that the other dia-
grams commute as well, thus giving a proof of Theorem 9.1.
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9.1 The top diagram: naturality of the assembly map for epi-
morphisms

In this section, we suppose thatis a locally compact Hausdorff group, and that G is a
compactnormal subgroup ofG. Furthermore, leX be a locally compact, Hausdorff, proper
G-space such that /G is compact. Commutativity of the the top diagram is a spemak of
commutativity of the following diagram:

i
/\
KE/M (X /K) — Ko(C*(G/K)) —= Ko(C; (G/K)) 9.3)
T X//K ] G/K
Vk R& R&
KS(X) % Ko(C* (@) —2%~ Ko(G7 (G)).
\/
g

We have used the same notation for the assembly map withatasp@e full groupC*-algebra

as for the assembly map with respect to the reduced one. TheXga andAg were defined

in Remark 5.16, where it was also noted that they make thendpbattom parts of diagram
(9.3) commutative. The map& andRﬁ are defined as in the epimorphism case of naturality
of the assembly map, Theorem 7.1. It is a striking featureunfversion of naturality of the
assembly map for the monomorphism— G that it actually relies on the epimorphism case in
this way.

It remains to prove that the right-hand part of diagram (8@nmutes. But this is easily
seen to be true, as th&-algebra homomorphisms that induce the m%s Ag and Ag
commute on the dense subsp&g€G) of C*(G) (since the maps inducimgs andAg i are the
identity onC¢(G) andC(G/K), respectively, and they are continuous).

9.2 The middle diagram: restriction to subgroups

In the middle diagram of (9.2), the map
RE‘%XKXK KGXKXK(GXN) K(?XA( )(GXN)

is simply given by restricting representations and actmfis x K x K to G x A(K). The other
restriction map,

Regxle< C(Gx K xK)) = Ko(CH (G x A(K))), (9.4)

is harder to define. (The restriction m@p(G x K x K) — C¢(G x A(K)) is not continuous in
the norms of the reduced gro@j-algebras involved, for example.)

We define the map (9.4) using tkéinneth formula SinceG is a connected Lie group (in
particular, it is an almost connected locally compact togaal group), it satisfies the Baum—
Connes conjecture with arbitrafy-trivial coefficients (see [16], Corollary 0.5). By Coraija
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0.2 of [16], the algebr&;(G) therefore satisfies the Kiinneth formula. In particular,

10

Ko(Cr (G x K xK)) = Ko(Cr (G) @minCr (K x K))

= Ko(C(G)) ® Ko(Cf (K x K))
= Ko(Cr (G)) ®R(K x K).

Here we have used the fact that the representationRiigx K) is torsion-free, and the fact
thatC/ (G1) ®minC; (G2) = C/(G1 ® G») for all locally compact Hausdorff groups; andGs,.
Analogously, we have an isomorphist(C; (G x K)) = Ko(C;(G)) ® R(K).

The isomorphism is given by the Kasparov product. This pcodudefined as the compo-
sition
* * 1®TC?(G)
KKo(C,C(G)) ® KKo(C,C/ (K x K))

Ci(G)

KKo(C,Cf (G)) ® KKo(C(G), G (G) @minCy (K x K)) —<,
KKO(Cvc;k(G) ®m|nc;k(K X K>)7 (95)

wheretc: ) is defined by tensoring from the left 17 (G), andx denotes the Kasparov product
(see [10], Chapter 18.9). Let

Re§(XK*§ :R(K x K) = R(A(K)) = R(K)
be the usual restriction map to the diagonal subgroup. Weel€9i.4) as the map
Lko(ci () ©Req ) : Ko(Cf (G)) @ R(K x K) — Ko(Cf (G)) ®R(K).
Commutativity of the middle diagram now follows from

Lemma 9.2.Let X be alocally compact, Hausdorff, prope®&-space with compact quotient,
and letY be a compact, Hausdorff K-space. Then the follodiagram commutes:

GxA(K)

e
KA (X x Y) = Ko(C/ (G x K)
Re%xKxKT TRE§XKXK
KSHK (X x V) 22 Ko (CH(G x K x K)).

GxA

Proof. Leta=[2,F, 1 € K&KK(X x Y), b= [&5,Fs] € Ko(C#(G)) and[V] € R(K x K) be
given, such that

“)C(;;QFXK( ) =bx [C;F(G) ®V] = [Cg)G(X)V, FG®1V] € Ko(C;F(G x K x K))

Because the assembly and restriction mapsZaneodule homomorphisms, it is sufficient to
prove the claim in this case where the imageadf a simple tensor.
If we write

[&,Fs] = H§§$XK(3) € Ko(Gr (G x K x K));
(6 Fol = pgre™ oRe€ KK (@) € Ko(CH(GxK)),
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then the operatorBs andF. coincide on the dense mutual subspaégof & and&”. It is
therefore enough to prove that
&' = E®c (Vaw))

as HilbertC/ (G x K)-modules.
Using the usual choice of representatives of the classesl[£, F¢] we have an isomor-
phism of HilbertC; (G x K x K)-modules

W:E = EgV.

Define the map
¢ &= (§G® (V‘A(K))

by ¢|.4 = Y|, and continuous extension. The mays well-defined, and indeed an isomor-
phism, if it is a homomorphism of Hilbe@; (G x K)-modules. To show thag preserves the
C; (G x K)-valued inner products, Ik, > € 77¢ be given, and suppose thiatéj) = ej @ vj €
@V for j =1,2. (By linearity of@, it is indeed enough to consider the case wherepilg)
are simple tensors.) Then for gl G andk € K,

(#(80):9(82)) sy, (O K) = (E1,€2)5 ()(Vl,(kk) 2)y

(
(LIJ( ))é"’ ®V<gvk k)
(51752) (gvk k)

becausep is an isomorphism of Hilbe€* (G x K x K)-modules. The latter expression equals

(¢1,(9,k k) - &2) ,, = (E1,&2) £(9,K),

which shows tha$ preserves the inner products.
Finally, becausey is a homomorphism dof; (G x K x K)-modules, the map is a homo-
morphism ofC; (G x K)-modules ons%, and hence on all of”. O

9.3 The bottom diagram: multiplicativity of the assembly
map

Commutativity of the bottom diagram is a special case of thétiplicativity property of the
assembly map that we will prove in this section. This propgeneralises multiplicativity of the
index with respect to Atiyah’s ‘sharp product’ of elliptiperators, as described in [4], Theorem
3.5. In this section, we will denote the tensor product obEIitC*-modules (see Definition 5.1)
by &, to emphasise the difference with the algebraic tensorymtagl.

For this section, leG; and G, be locally compact Hausdorff topological groups, acting
properly on two locally compact metrisable spasgsndXs,, respectively. Supposé /G1 and
X2/G, are compact. Consider the Kasparov product maps

K (X1) @ KE2(Xp) 25 KEYC2 (X x Xo);
Ko(C{y)(G1)) ® Ko(Cjy(G2)) = Ko(Cly (G1 x G2)). (9.6)
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Here the symbd]:a) denotes either the full or the reduced gr@ipalgebra, and we have used

theC*-algebra isomorphisms (4.8) and (4.9).
Analogously to (9.5), the Kasparov product (9.6) is actutile composition

1®TCE})(G]_)

XC* (Gl>
* * * * r
KKo(C,Cf,)(G1)) @ KKo(Cy (G1),Cjy (G1) © Cfy (G)) ———

KKO(C7CE})<G].) ®C2<r)<62)) = KKO(C7CE})(Gl X GZ)) (97)

The tensor product denotes the maximal tensor product inabe of fullC*-algebras, and the
minimal tensor product for reduc&li-algebras.

Theorem 9.3(Multiplicativity of the assembly map)if X; and X are metrisable, then for all
aj € KS'(Xj), we have

Hiot(ag) X p? (82) = pg s (a1 x @) € Ko(Clr)(Gy x Go)).

Here the assembly maps are defined with respect to eitheultred the reduced grou@™-
algebras. We supposg andX; to be metrisable, because tG&-algebray(X;) andCo(X2)
are then separable, so that we can use Baaj and Julg’s urdmbdedcription of the Kasparov
product. Theorem 9.3 may well be true for non-metrisablespabut we will only apply it to
smooth manifolds anyway.

In the proof of Theorem 9.3, we will use the unbounded pictir€K-theory (see Section
5.3), because of the easy form of the Kasparov product insitisng. The construction of
the unbounded assembly map in Section 5.3 works for full gf@ualgebras, so the following
proof applies only to this case. Theorem 9.3 for reducedp@talgebras can then be deduced
using the mapag, andAg, defined in Remark 5.16.

Proof of Theorem 9.3or j =1,2, let
G.
aj = (%,Dj,ﬂ'j) S qJO](CO(Xj>7C>

be given. Then
~ Gj

Iix ( ) (éaijg’J)a
asin (5.11). The product q?ffll(al) andux2 (a) is
figt(2a) x 2 (82) = (£1662,Dj05) € Wo(C,C*(G1x Gp)). (9-8)
HereDg ; z is the closure of the operator
Dwﬁl ® lwgz - lwgz ® Dwﬁz’

on the domain dor ; ®domD z,
On the other hand the produi:ltx ais

(SAEH,D 0, T) € WHTP(Co(Xe x X2), C), 9.9)
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with D . 2 4, the closure of the operator
D1®1+ 1 ®D2

on donD; ® domD,. Furthermore, we have abbreviatad= m ® 1% for later convenience.
Applying the unbounded assembly mﬁlﬁlxez to the cycle (9.9), we obtain

1x X2

(6,Dz) € Wo(C,C*(GyxGyp)), (9.10)

whereé = fi(p) #4&.55. Herep := p1 ® pp, with p; the projection irCe(Xj x Gj) as defined
in (5.9). Furthermore, the operatbr; is the closure of the operat@ . ,,, as defined in
First, let us show that’ = £&1&&. Note thats4 .4 is the completion of the space
Cc(Gy x Gy, 74 &) with respect to theC* (G x Gp)-valued inner product—, —)
defined analogously to (5.8). On the other hand,
166, = Tu(p1) A To(p2) 2 = Ti(p) A& Ao,
since it is not hard to check tha f1 ® f2) = 7 (f1) @ 7e(f2) for all f; € Cc(X;j x G;). Here

A& 5 is the completion o€c(Gy, .74 ) © Ce(Go, #3) in theC* (G1) ©C* (Gy) 22 C* (G x Gy)-
valued inner product given by

(01@ $2. V1@ U2) 1722 1 = (91, Un) 12 @ (92, 42) 15,

for ¢j, Y; € Cc(Gj, 7). It follows directly from the definition (5.8) of the inner gulucts(—
,—)M and(A—, —) #5. that they coincide on the subspa@gGy, 1) ® Ce(Go, #2) C
Ce(G1 x G, JARI3).

We claim that the completion @;(G1, #1) ® Cc (G, .#2) with respect to this inner product

contains the spa@.(Gy x Gy, 71 ®.5#). Then we indeed have#]®.5%5 = Jﬁ@iﬁg, and hence

HEH

& =Ti(p) (#A&5) = Ti(p) (=%21®=%22) = 588,
as HilbertC*(Gy x G,)-modules. The proof of this claim is based on the inequality

2
(o, ¢>;ﬁ®y5§||c*(Glez) <|l¢ ||L1(Gl><Gg7ff;’L®%§)

— ([ o ¢

for all ¢ € Cc(G1,.741) ® Cc(Gp, #2). This inequality is proved in Lemma 9.4 below. Because
of this estimate, the completion 6f(G,.741) ® C¢(Gg, 7##2) with respect to the inner product
(= —).#¢.% contains the completion of this tensor product in the NG 1, «c,. 7% 6.7):
which in turn contain€(Gy x Gy, SAR.7#3).

Next, we prove that the two unbounded cycles (9.8) and (d&fipe the same class in
KK-theory. By Lemma 10 and Corollary 17 from [47], this folloWsve can show that

2 (9.11)
;ﬁ@%ﬁdgldgz) )

domDg ;7 C domDgz, and (9.12)

D(§|domD(§1®52 = Dg7'1®(§>2 (913)
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We first prove (9.12). Note that the domain g,@@gz is the completion of dor‘@@al ®
domDg, in the norm|| - ||D£71®£72, asin (4.15), given by

(9.14)

2 . 2 2
1$1®82l[5, .- = 192® $2[574 7 + 1Dz 91© b2+ p1 @D 5 02(1 % 2 1

for all ¢; € domDz . The domain oDz in turn is the completion off; (p;)C(Gj, domDj) in
the norm| - [[p, , defined analogously to (9.14).
To prove (9.12), we consider the subspace

V = 7 (p1)Cc(G1,domD1) ® Tb(p2)Cc(G2,domDy)

of domD(gl ® dongaz. We begin by showing that the completion\6fin the norm|| - ||Dglé%g2
contains dond z, ® domD . This will imply that

V =domD; @domDy, (©.15)
= dongD@g,Z, .

with completions taken in the norfp HD%@%%'
Forj=1,2, let¢; € domD; be given. Let(¢¥),_, be asequence i (p;)Cc(Gj,domD;)
such that
lim 19}~ ;1o =0.

We claim that

im [|¢5© 95— d12 92|, =0, (9.16)

H%Mz
which implies that¢; ® ¢, lies in the completion oV in the norm|| - ||D§1Mz. This claim
is proved in Lemma 9.5 below. General elements of dlgrlnzadomDé;z are (finite) sums of

simple tensors likg1 ® @2, and can be approximated by sums of sequenceicﬁk@ 4’5);0:1-
Hence the completion &f in the norm|| - ”Dé‘l@fz indeed contains doz ® domDz, so that

(9.15) holds.
Finally, observe that dofd; is the completion of

1(P)Ce(G1 % G2,domD ;2 3 )

in the norm|| - |p,, which is again defined analogously to (9.14). SiNcés contained in
T(P)Cc(G1 x Gz,domD ;¢ ), the completion o¥ in the norm|| - ||p . is contained in dorD ;.
Furthermore, the operatobs; andD : z coincide oV, since their restrictions td are both
given by

T8(p1)$1 @ TB(p2) 2 — Ta(P1)D10o 1 ® TB(P2) P2+ Ta(P1) $1 ® TB(P2) D20 P2

This implies that the norm- |p. and|| - ||, 55, ATE the same ovi, so that the completion of
V with respect to| - |[p, equals the completion of with respect tq| - HD&%' which equals
domDg s 2 , by (9.15). We conclude that

domD; ¢z =V C domDyg,
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as claimed.

Claim (9.13) now follows, because by (9.15), the restrivtad Dz to domD g # is the
closure ofD z|v, which equaldD g ¢ z |v. The closure of the latter operatorg; - z , again by
(9.15), and we are done. O

Lemma 9.4. The inequality9.11)holds for all¢ € C(G1, 77) @ Ce(Gg, #2).
Proof. For such¢, we have

1(9:9) 768 lc (Gix6) < 11(9:9) s7.5lL1Gix6,)

GG /G o (4’(9/179/2)7¢(9/19179/292))%®%dd1dd2‘ dgdgp
1 2 1 2

< dd. ddhbdan d
_/Gleg/Glez 6 dgdaidg

<[ (ks 19(0101. 6502 e 10k dehdar dee,
Gl><GZ Gl><Gg

(9(91,92), ¢ (0191, %9%2)) sz

by the Cauchy-Schwartz inequality. Because of left invaréof the Haar measurésgy and
dp, the latter expression is the square of tRenorm of ¢. O

Lemma 9.5. The limit(9.16)equals zero.
Proof. Since forj = 1,2, we have

— i K_ 402
0= molldn — ¢ ||D05j
= lim (116}~ 61[12 + 1Dz 0¥ —Dz #1l1% ) . (9.17)
both terms in (9.17) tend to zero las— «. Let us rewrite (9.16) in a way that allows us to use
this fact. By definition of the nornj - HD%@%%’ we have
Ko pk 2 _
|65 ® o5 ¢1®¢2H%% =
k k 2
|61 ©¢3 — d1® 02|70+
K o pk k k 2
D4, #1 © ¢3 —Dys ¢1® b2+ G1 ©D 507 — d1@ D022 -
Using the triangle inequality and the fact that

[ @ el 725 < Y]

for all ; € 4 (this follows from the fact that ang*-norm on a tensor productsibcrosssee
[87], Corollary T.6.2), we see that this number is less thaaqual to

il oz

2
k k k
(16 = @l 410517, + 11811171 85 — B2ll ) "+
(IID5,8 ~ D501 18511 + 1D, 811l 7| 85 — Bl s, +

2
% — 911141104, 85 17, + 9] |0 5,85~ Dy ball ) - (9.18)

By the observation at the beginning of this proof, all term$9.18) contain a factor that goes
to zero ak — co. Since the other factors are bounded functionis, ¢fie claim follows. O
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9.4 The right-hand diagram: a decomposition of the induc-
tion map D-Indg

In this section, we complete the proof of Theorem 9.1 by prg\aommutativity of the right-
hand diagram in (9.2). In this proof, we will use commutayiaf the top, middle and bottom
diagrams in the case whelkkis a point.

But first, we give the following description of the map D-ﬁ1d.etV be a finite-dimensional
unitary representation ¢, and Iewv be the Dirac operator defined in (6.9). The closure of this
operator is an unbounded self-adjoint operator on the spiicésections oy, which is odd
with respect to thé,-grading. This space df>-sections is isomorphic to the spade?(G) ®

Aq, ®V)K, where theK-action is again defined by (6.7) (with smooth functions aept by
L2-functions, of course). Léi be a normalising function, so that we have the class

[(L2(G) @Ay, ®V) <, b@Y), 15 k] € KS(G/K).
Hererg k denotes the representation@f(G/K) on L?(G/K,Ey) as multiplication operators.
Lemma 9.6. In this situation, we have
D-IndZ V] = S [(L2(G) @ Ag, ®V).bBY), o k] € Ko(C/(G)).
Proof. Write
(€. Fsl = Sk [(L2(G) @ Ag, ®V)“.b®Y), T ] -

Since the restriction df to (Cc(G) ® Ay, ®V)K is the restriction ob(®") to this space, we
only need to prove that
& = (C/(G) @ g, ®V)" (9.19)

as HilbertC; (G)-modules.
To prove this equality, we note that for dll f’ € (L?(G))¢ and allg € G,

(f.)es(9) = (f,9- 1) 26 = (F*(1)")(9),
as one easily computes. This implies that@i&-valued inner product o# is the same as the
one on(C;(G) ® Aqg, ®V)K.
TheC;(G)-module structure of’ is given by
h-(fodv) = /Gh(g)g- (f@3@v)dg
=(hxf)@dxvV,

forallhe C.(G), f € L?(G), 5 € Ag, andv € V. Hence the equality (9.19) includes Gg(G)-
module structure. O

Proof of commutativity of the right-hand diagrar@onsider the vector bundl&and{0}
over a point. Let Q :V — {0} be the only possible operator between (the spaces of smooth
sections of) these bundles. It defines a cl@s$= [V @ {0},0y] € K& (pt), and we have

HilOv] = V] €R(K).
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Now we find that
K
D'|nd(|2[ ] “g/XKKXK[(LZ(G)@)Adp ®V) 7b@v)77TG/K}
by Lemma 9.6,
_HG/K OVA ORG% KXKDGK(X)].V]

by Corollary 8.11 and the fact tht’ is the restriction obg  ® 1y to K-invariant elements of
C*(G) @A, ®V,

= /JG/K o Va(k) © Reaﬁm (Do x [Ov])

=Reo Rea%XKXK oug (1 DG <% V1),

by commutativity of the top, middle and bottom diagrams wNes a point. O

Remark 9.7. Supposing tha¥ is irreducible, we could also have applied the Borel-W&ittt)
theorem to realise the clapg] € R(K) asufé/T[ i1}, whereiA is the highest weight d¢, and

[2;, is the Dolbeault-Dirac operator &€/T coupled to the usual line bundle that is used in the
Borel-Weil theorem. We would then have used commutativitthe top, middle and bottom
diagrams foN = K/T.



Part |l

Groups with a cocompact, discrete, normal
subgroup
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This part is devoted to a proof of Theorem 6.5. The ingredienthis proof are:
1. the Guillemin—Sternberg conjecture in the compact casedrem 3.34);

2. the epimorphism part of naturality of the assembly mapfram 7.1);

3. symplectic reduction in stages (Theorem 2.25);

4. quantum reduction in stages (10.5);
5

. specialisation (10.8) of Corollary 8.11 to Dirac operstin the case of a free action by a
discrete group.

We combine these ingredients into Diagram 10.1, which gavesutline of our proof. The main
technical step that then remains is Proposition 10.1, wivielprove in Section 10.3.

In Chapter 11, we illustrate Theorem 6.5 by giving an indejeen proof of this theorem, in
the case thab is discrete and abelian. This proof, based on a paper byigysa{ (see also [8],
pp. 242—-243) gives considerable insight in the situationd, @oes not rely on naturality of the
assembly map. It is based on an explicit computation of trag'erundeu,\r,, of a K-homology
class[D] associated to &-equivariant elliptic differential operatdd on al -vector bundleE
over al-manifold M. Because in this casg*(I") = C(") (with I the unitary dual of"), this
image corresponds to the formal difference of two equivageriasses of vector bundles over
[. These bundles are described as the kernel and cokernefiefcadf operators’(Dq) P
on a ‘field of vector bundles(Eq — M/F)aef. The operator®, and the bundleg§, are
constructed explicitly fronD andE, respectively. The quantum reduction of the clﬁ,§$D] is
the index of the operatdd; onE; — M/I", where 1¢ [ is the trivial representation. Because
D, is the operatoD’ mentioned above, in this case Theorem 6.5 follows from tmeprdation
in Chapter 10.

Finally, in Sections 11.5 and 11.6 we check the discreteaiehse in an explicit compu-
tation. We will see that the quantisation of the actiorZéfon R? corresponds to a certain line
bundle over the two-torug? = Z2. The guantum reduction of this-theory class is the rank of
this line bundle, the integer 1. This is also the quantisatibthe reduced spad® = R?/Z?,
as can be seen either directly or by applying Atiyah—Singebirac operators. Although this
is the simplest example of Guillemin—Sternberg for noncactgroups and spaces, it is not a
trivial matter to find a suitable prequantisation in thisecas



Chapter 10

Dirac operators and the mapVr

In this chapter, we finish the proof of Theorem 6.5. We firstakean outline of this proof in
Section 10.1, and then state and prove the remaining tedhstep in Sections 10.2 and 10.3.

10.1 Outline of the proof

We use the notation and assumptions from Section 6.1 andrd@ine®.5. In particularG is a
Lie group,l” <G is a discrete normal subgroup, such tkat= G/I" is compact. Furthermore,
(M, w) is a proper Hamiltonia®G-manifold, on which™ acts freely. The assumption tHet/G
is compact is now equivalent to compactnesMgf.

The third and fourth ingredients mentioned at the beginointgpe introduction to Part Il
allow us to set up the following diagram:

3 | A% G
PreqG O M, w) — %L kSm) M ko(c(G)) (10.1)
|re %
PredK & M /T ayyr) =L ki (M) 2 ko(C* (K))
index(d,+0;)
Preq( (M /T) /K, awryx) I 7.

Here the following notation is used. P& M, w) is the set of allG-equivariant prequanti-
sations of(M, w). A necessary condition for Prég © M, w) to be nonempty is the require-
ment that the cohomology clags] € H2(M,R) be integral. Since we assuniiél, w) to be
equivariantly prequantisable, this condition must bes§atl. Similarly, PreK © M /T, wwr)

is defined given the&k-action onM /T induced by theG-action onM, and Pre¢(M /T)/
K, w(M//r)//K) is just the set of prequantisations of the symplectic ottifo

(MJT) K, wpmyryx) = (MG, iy ); (10.2)

this isomorphism follows from Theorem 2.25. Note that irstbaiseM /I = M /T, sincerl is
discrete.

134
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The mapﬂ andR& on the left hand (classical) side of (10.1) are given by thestroiction
(3.14) of a prequantisation on a symplectic reduction, tediby an equivariant prequantisation
on the original manifold. The quantum counterparts of thes@s on the right hand side of
(10.1) are defined by

R == (3r).: (10.3)
R = (k). (10.4)
Here(3r), : Ko(C*(G)) — Ko(C*(K)) is the map functorially induced by the mgp :C*(G) —

C*(G/I') given by
(2rf)(Fg) = Zf(vg),
ye

initially defined onf € C¢(G) and continuously extended to all ©f (G). This map was more
generally defined for any closed normal subgrdupf G in (7.1). Finally, the map&, + 9; |
are defined by taking thi€-homology class of the Dolbeault—Dirac operator couplea goven
prequantum line bundle, as explained in Corollary 4.36. sTime commutativity of the upper
part of diagram (10.1) is the equality

K1 [OLeosr + 0w r] = RE (Ui [0Lo + 0],
for any prequantum line bundlg’ — M. Commutativity of the lower part is the statement

indeX(ng(M/m//K + 5Ew(M/F)//K) = R& (N,G/r [5L“’/I' + 5|fw/r])-

It is easily shown that
fK o ZF = fG?

so that by functoriality oKg, one has

RRoRE=RZ. (10.5)

The classical version of (10.5) follows from (10.2). Usimg tclassical and quantum versions
of this equality, we see that the outer diagram in (10.1) isaétp

PreqG 0 M, @) — > Ko(C*(G)) (10.6)
|re |
PredMg, wg) Z.

HereQy is the quantisation map of Definition 6.1, so that commuitgtiof diagram (10.6) is
precisely Theorem 6.5.

We will prove commutativity of diagram (10.6) by showing thlae two inner diagrams in
(10.1) commute. Now the lower diagram commutes by the \glmfithe Guillemin—Sternberg
conjecture for compadf (Theorem 3.34), whereas the upper diagram decomposes as

PredG o M, @) — % %L ks(M) — i Ko(cH(G)) (10.7)
R v R
l 0.+;] l Hir l

PreqK O M/T, ay/r) == KK(M/I) —% Ko(C*(K)),
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whereVr is the map defined in Section 7.4, wikh=TI". The right hand inner diagram in (10.7)
commutes by the epimorphism case of naturality of the aslyermdép, Theorem 7.1. So it is
only left to prove that the left hand diagram in (10.7) comesutExplicitly, commutativity of
this diagram means that . . . .

Vr[0Le + 0]'w] = [de/r + dlf‘*’/r] . (10.8)
_ We will deduce this equality from Corollary 8.11. Indeedppwsition 10.1 states that if

OLw+ aLw is the Dolbeault—Dirac operator &, coupled td_%, then the operato(rc?Lw + 0Lw)
from Corollary 8.11 is precisely the Dolbeault-Dirac oggeran the quotienM /I" coupled to
the line bundld?/I". In Section 10.3 we prove this proposition, and hence (10.8)

10.2 The isomorphism

The main step in our proof of (10.8) is the following prop@sit We hope that the use of the
letterl” to denote a both discrete group and a space of sections witause any confusion.

Proposition 10.1. Consider the Dolbeault-Dirac operat(gf_w + 5@) on Q%*(M;L®), and the
induced operatofd.o +4;) on
e (M/r, (A»T*Me L) /),
as defined ir{8.9). There is an isomorphism
Z: Q% (M/TLY/T) =T (M/T, (A T"M®L®)/T)
that is isometric with respect to théinner product and intertwines the Dolbeault-Dirac op-

erator d,_w/r + aL‘*’/F onQ%*(M/I";L®/I) and the operato(de + d[‘w) :

Consequently induces a unitary isomorphism between the correspordirspaces, which
by Lemma 4.31 intertwines the bounded operators obtair@d & » r + dfw/r and (0Lw +

5ﬁ‘w)r using a normalising function with compactly supported keuransform. Hence (10.8)
follows, as
Vr ([0o+ 0[] ) = [(5|_w o) r] by Corollary 8.11
= [5|_w/r + 5[‘w/r] by Proposition 10.1.
The isomorphism o€*(M/I")-modules= in Proposition 10.1 is defined as follows. The
quotient mapp : M — M/T induces the vector bundle homomorphi$m: TM — T(M/T).
SinceT p is invariant with respect to the action 6fon TM, it descends to a vector bundle

homomorphism
(TP : (TM)/T — T(M/T).

Because the groupis discrete, this map is an isomorphism. This is the most mapbreason
why we assumé to be discrete. We denote the transpose of the isomorpiigi by

(T*p)" : T*(M/I) — (T*M)/T.
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This gives
ATP) AT (M/T) — A(T*M)/T, (10.9)
and sinceT pintertwines the almost complex structuresTod andT (M /"), we obtain

A (T*p)T : A T*M/T) — AP*(T*M) /T (10.10)

On the spaces of smooth sections of the vector bundles itigngthe isomorphisms (10.9)
and (10.10) induce isomorphisms@f (M /I")-modules
lP:Q*(M/F)—>F°°(M/F,(/\T*M)/F); (10.112)
WO QO%*(M/I) — ™ (M/T, (A®*T*M)/I). (10.12)

Now the isomorphisnz is defined as

=: Q% (M/I;L%/T) =

% @lroo(m/r L)

QO (M /) @ uyr) T(M /T, L9 T) =
r° (M/T, (A% T*M) /T) @ceqmr) T2 (M/T,L2/T)
=1 (M/T, (A T*M @ L®)/T).

It is isometric by definition of the measude” onM /T, defined in (8.1), and the metrics on the
vector bundles involved. An equivalent definition of the sww@dd is

/ f(ﬁ)dﬁ::/ f(m)dm,
M/ u
for f € C(M/T"), whereU C M is any fundamental domain of tHeaction. Here by a funda-
mental domain, we mean an open sul$et M such that” - U is dense irM, and that for all
yel andme U,

y-meU = y=e

It remains to prove that intertwines the operatoziw/r + 5fw/r and (5Lw + 5[%)) "

10.3 Proof of Proposition 10.1

The connections

Letpow: (M, L) —T*(M/I,L®/I") be the isomorphism @& (M)" = C*(M/I')-modules
from Proposition 8.6, witlE = L andH =T". Also consider the pullback* of differential
forms onM /T to invariant differential forms oM. It defines an isomorphism 6°(M /') =2 C*(M)" -
modules

p* i Q M/ — Q*(M)".

The prequantum connectidd’ on the prequantum line bundl&’ /I — M /I is defined by
the property thap*0d" = O (see Section 3.6). Explicitly, this definition can be expessby
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commutativity of the following diagram:

Q*(M; L®)" s Q*(M;L®)" (10.13)
Q*(M)" ®cequyr T (M, L9)" Q*(M)' ®cequyr (M, L9)"
PR | PR S | =

Q*(M/T) @cam/ry F*(M/T,LY/T) Q*(M/T) @c=mry F*(M/T,LY/T)

o o~

Q*(M/I;L®/T) al Q*(M/I;L9/T).
By definition of the almost complex structure ®M /I"), we have
p (Q%9(M/T)) = Q%4(M)"

for all . Therefore, commutativity of diagram (10.13) implies tlia¢ following diagram
commutes:

(9|_w

QO’*(M; Lw)r Q0*<M' Lw)r (1014)
IO*®LPL$T2 3 p*®wL(3T:
0|_w/r

QO*(M/I;L9/T) —= Q% (M/I;L®/T),

with 5|_w andng/r as in Definition 3.19.

The Dirac operators

By definition of the measurd& on M/TI", the metricg” on T(M/I') induced by the metric
g=w(—,J—)onTM, and the metri¢—, —)_» - onL®/T", induced by the metri¢—, —)_» on
L®, the isomorphism

p* @ gt 1 Q% (M/T;L9/T) — Q% (M; L%)"

is isometric with respect to the inner product@f*(M /I"; L®/I") defined by
(@oopen= [ o (@B 0wdo (10.15)

forall a,B € Q®*(M/I') ando, 1 € F*(M/I,L®/I"), and the inner product o@%*(M;L®)"
defined by

(05 Eot) = /U 9(Z, &) (m)(s,t)o(m) dm (10.16)

forall Z,& € Q% (M) ands,t € T®(M,L®)". (Recall that) ¢ M is a fundamental domain for
thel-action.)
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In the definition of the Dolbeault—Dirac operatqrw/r + (de/r) on M/I’, the formal
adjoint (aLw/r) is defined with respect to the inner product (10.15). If weaderthe metric
(—,—)Le onL® by H-* for the moment, then the formal adjoidt,, is defined by

| (@=H) (@n.6) (mdm= | (gH) (n.0.46) (m)dm
for all n,8 € Q%*(M;L®), 6 with compact support. But this is actually the same as thadbr

adjoint of d_» with respect to the inner product (10.16):

Lemma 10.2.Letl" be a discrete group, acting properly and freely on a manifdidequipped
with a I-invariant measure dm. Suppose/Mis compact. Let E-~ M be al -vector bundle,
equipped with & -invariant metric(—, —)g. Let

D:I'*(M,E) - T"(M,E)
be al -equivariant differential operator. Let
D*:°(M,E) — I'*(M,E)

be the operator such that for alltse (M, E), t with compact support,

/(D*st m)dm= /sDt

Let U C M be a fundamental domain for tHe-action. Then the restriction of Dto
°(M,E)" satisfies

/(D*st m)dm= / (s,Dt)e (10.17)
forall s,t € F*(M,E)".

Proof. We will show that for alls€ (M, E)", and allt in a dense subspacelo? (M, E)", the
equality (10.17) holds. Let be a section oE, with compact support ibJ. Define the sectioh
of E by extending the restriction|y I-invariantly toM. The space of all section®btained in
this way is dense i (M, E)" with respect to the topology induced by the inner product

(s.t) 1= /U(s,t)E(m)dm

usedin (10.17).
Then for allse F*(M,E)",

/U(D*s,t)E(m)dm (D*s, 7)e(m)dm

(s,D1)g(m)dm

I

(s Dt)g(m)dm
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We conclude thap* ® Lt[wl is an isometric isomorphism with respect to the inner pregiuc
used to define the adjoin®’, and (aLw/r)*. Hence the commutativity of diagram (10.14)
implies:

Corollary 10.3. The following diagram commutes:

5,_w+_

d*w
QO’*(M; Lw>r - v Qo’*(M; Lw)r
p*®llfL$T2 p*®LpL$T:

QY (M/I;LY/T) —= QP*(M/I;L®/T).
O r+0fwr

Remark 10.4. Corollary 10.3 shows that for free actions by discrete gsp@much stronger
statement than the Guillemin—-Sternberg—Landsman camgebblds. Indeed, by Remark 8.12
the Guillemin—Sternberg conjecture states that the otistniof the operatod» +g", to QO*(M; LT
is related to the operat@{ o r + d[‘w/r by the fact that their indices are equal (as operators on

smooth, not necessarily”z, sections). But these operators are in fact more strondgyed:
they are intertwined by an isometric isomorphism.

End of the proof of Proposition 10.1
The last step in the proof of Proposition 10.1 is a decomjuwsdf the isomorphism
p*:Q*(M/T) — Q*(M) .

Lemma 10.5. The following diagram commutes:

*

Q*(M/T) —

wl% /
r=(M/I,(AT*M)/T),

whereW is the isomorphisn(il0.11) and /xt+m is the isomorphism from Proposition 8.6.

Q*(M)r

1R )10

&
_'
<

The proof of this lemma is a short and straightforward coratoi.
Proof of Proposition 10.1Together with Lemma 10.5 and the definition of the operator

(OLo+0w) 1T (M/T, (AP T*M@L®)/T) = (M/T, (A>*T*MeL®)/T),

Corollary 10.3 implies that the following diagram commutes

QO (M; L®)" Ol QO (M; L®)"
wAO,*T*M®‘,U|_w\LE (5Lw+5[‘w)r =Y, 051y QY0
e (M/T, (AP T*Me L) /T) — T (M/T, (A»T*M@L®)/T)
z:qﬂr*@lT% _ _ E:W0=*®1T%

I +9o

QO*(M/I;L9/I).

Q% (M/I;L%/I)
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Indeed, the outside diagram commutes by Corollary 10.3 @&narha 10.5, and the upper square

commutes by definition o(de + dfw)r. Hence the lower square commutes as well, which is
Proposition 10.1. O



Chapter 11

Special case: abelian discrete groups

We now consider the situation of Theorem 6.5, with the addél assumption that =T
is an abelian discrete group. Then the Guillemin—Sternbengecture can be proved directly,
without using naturality of the assembly map (Theorem 7Th)s proof is based on Proposition
10.1, and the description of the assembly map in this speagd given by Baum, Connes and
Higson [8], Example 3.11 (which in turn is based on Luszti§]]5 We will first explain this
example in a little more detail than given in [8], and thenwlimw it implies Theorem 6.5 for
abelian discrete groups.

This chapter only serves to illustrate Theorem 6.5, anddkteaf this thesis does not depend
on it. We have therefore chosen to give less detailed argtemethis chapter than in the other
ones.

11.1 The assembly map for abelian discrete groups

The proof of the Guillemin—Sternberg conjecture for digerabelian groups is based on the
following result:

Proposition 11.1.Let M, E, D and D be as in Section 8.4. Suppose thatG is abelian and
discrete. Using the normalising functio®) = ﬁ we form the operator F=b(D), so that

we have the class
[LZ(M7E)7F7 TIM] S Kg(M>

Thert
R2 o ufy [L?(M,E),F] = indexD".
In view of Proposition 10.1, Proposition 11.1 implies ourik@&min—Sternberg conjecture
(i.e. Theorem 6.5) for discrete abelian groups.

Kernels of operators as vector bundles

Using Example 3.11 from [8], we can explicitly compute

[6,Fs] ==y [L2(M,E), F] € KKo(C,C*(I")). (11.1)

1Recall that we use indéX to denote the formal difference of the even and odd partseokéinnel ofD' .

142



11.1 THE ASSEMBLY MAP FOR ABELIAN DISCRETE GROUPS 143

Note that since the groupis discrete, its unitary dudl is compact. And becauseis abelian,
all irreducible unitary representations are of the form

Ug : T — U(),
for a € I". Fourier transform defines an isomorphi€{I") = Co(1"). Therefore,
KKo(C,C*(I")) = Ko(C*(T)) 2 Ko(Co(")) = K(F).

Becausd is compact, the image ¢, F»] in KO() is the difference of the isomorphism
classes of two vector bundles over These two vector bundles can be determined as follows.
For alla € 7, we define the Hilbert spac#y as the space of all measurable sectignsf E
(modulo equality almost everywhere), such that foryadi I',

y-Sa =Uq(y) *sa,

and such that the norm
Isallz = (Sa»Sa)a (11.2)

is finite, where the inner produ¢t, —) is defined by

(sarta)a = [ (sa(9(0)).ta(9(0))cde

M/

where¢ is any measurable section of the principal fibre buMle- M /I". The space’ is
isomorphic to the space tf-sections of the vector bundiy, where

Ea :=E/(y-e~Ug (y)e) = M/T.
Let s> be the dense subspace
HP = sy € H3NT™(M,E);Dsy € 4} C Hy. (11.3)
Because the operatbris IN-equivariant, it restricts to an unbounded operator
Dg : P — Hy
on . Itis essentially self-adjoint by [34], Corollary 10.2.&nd hence induces the bounded

operator
Da

——c
1+ D3%

The grading orkE induces a grading o with respect to whiclDy andF, are odd. The
operatord=, are elliptic pseudo-differential operators:

Fy = B(A). (11.4)

Lemma 11.2. Let D be an elliptic, first order differential operator on acter bundle E— M,
and suppose D defines an essentially self-adjoint operaidr®0M, E) with respect to some
measure on M and some metric on E. Then the operatos Fﬁ is an elliptic pseudo-

: . %
differential operator.
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Proof. It is sufficient to show thatl+ DZ)*% is a pseudo- differential operator. According to
[9], a bounded operatdk: L2(R") — L?(R") is a pseudo-differential operator &1 if and only
if all iterated commutators witk; (as a multiplication operator) anﬁrj are bounded operators.
This immediately yields the lemma fdi = R" (cf. [9], Theorem 4.2). To extend this result
to the manifold case, we recall that an operadarC”(M) — %’'(M) on a manifoldM is a
pseudo-differential operator when for each choice of siméwactionsf, g with support in a
single coordinate neighbourhoofdgis a pseudo-differential operator &*%. (Here one has to
admit nonconnected coordinate neighbourhoods.)

Now write (14 D2)_% as a Dunford integral (cf. [21], pp. 556-577), as follows:

(14+D?) 3 = % fa+2 -0tz
C

HereC is any contour around the spectruminfTo compute the commutators bf1 -+ D2)—%g
with x;j and 0%, one may take these inside the contour integral. Boundsdufesll iterated
commutators then easily follows, using the fact thandg have compact support.

The same argument, with the exponer replaced by}, shows that1+D?)? is a pseudo-

differential operator, and ellipticity ofl + Dz)—% follows. O

We were informed of the above proof by Elmar Schrohe. An iedeljent proof of this
lemma was suggested to us by John Roe, who mentioned th&t gasie at hand the functional
calculus for (pseudo-)differential operators developgd8] for compact manifolds may be ex-
tended to the noncompact case. A third proof may be consttuting heat kernel techniques,
as in the unpublished Diplomarbeit of Hanno Sahimann (Rafeech, private communication).

Consider the field of Hilbert spaces

(M) ger — T (11.5)

aef

In the next section, we will give this field the structure of@ntinuousfield of Hilbert spaces
by specifying its space of continuous sectidir(f, (%)aef)' Consider the subfields

kerDt) T

( g)aer ~ (116)

(kerDq) 4 — T
These are indeed well-defined subfields o), ¢ because kéd; = kerFg" by the elliptic
regularity theorem (here we use Lemma 11.2), and by the lfattthe operatom is
invertible.

Suppose that the fields (11.6) are vector bundles évér the topology on (11.5) that
we will define in Section 11.2. As in the proof thiKq(C,C()) = Ko(C(T")) (see the re-
mark below Theorem 5.12), the operafdrcan always be replaced by an operator for which
I ((kerDg) . -) are finitely generated projecti@)-modules, that is, for whictkerDy)

acl
are vector bundles, and that tketheory class

iy [LA(M,E),F] € KK(C,C(I"))

aef

is the same, whether we make this replacement or not.
Then:
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Proposition 11.3. The image of the clasé ?(M, E),F] € K[ (M) under the assembly may,
is

H [L2(M,E),F] = [ (kerD{) , ¢ | — | (kerDg) ¢ ] € KO(F).

Proposition 11.3 will be proved in the next two sections.

11.2 The Hilbert C*-module part of the assembly map

In this section we determine the Hilbe®t:(I') = Co(I")-module& in (11.1). The result is
Proposition 11.7.

A unitary isomorphism

Letda be the measure dn corresponding to the counting measurelovia the Fourier trans-
form. Consider the Hilbert space

@D
A= / Hyda.
r
That is,.7# consists of the measurable maps

S:fﬁ(%)
a sy,

aef

such thas, € 7% for all a, and
I8l = (591 1= [ lsul3da < e
Define the linear may : 77 — L2(M,E) by
(Vs)(m) ::/fsa(m)da.

Lemma 11.4. The map V is a unitary isomorphism, with inverse

(Vo) (m) = >V o(y mUal(y), (11.7)
ye

forall o € ¢(M,E) C L?(M,E).

Remark 11.5. It follows from unitarity ofV thatV sis indeed an_z-seption ofE for all s€ H.
Conversely, a direct computation shows that form#t L>(M,E), a € T andy € ', one has

y: (Vila)a - Ua(y){L(Vilo—)a’

so thatv 1o lies in 7.
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Sketch of proof of Lemma 11Bhe proof is based on the observations that fonadi [,

ZUa(V) = &(a), (11.8)
=

whered; € 2'() is the d-distribution at the trivial representatiorell”, and that for ally € T,

/f Ua(y)da = &ye, (11.9)

the Kronecker delta of and the identity element. Using these facts, one can easilfy\that
V is an isometry, and that (11.7) is indeed the inversé.of
O

The representatior,, of I' in 2 corresponding to the standard representation (3.4) of
in L2(M, E) via the isomorphisi¥ is given by

(e (V)9)q = Ua(¥) 'sa.

This follows directly from the definitions of the spagg&, and the mayv.

Fourier transform
By definition of the assembly map, the Hilb&t(I")-module&’ is the closure of the space
¢(M,E) in the norm
lol% == lly— (0,y- 0)izpmg)llc(r)-
TheC*(I')-module structure of’ is defined by

fro=3 f(y)y-o,
2

forall f € C¢(I') ando € I'¢(M,E). The isomorphisnv induces an isomorphism of the Hilbert
C*(I")-module& with the closures’,, of V=(I'¢(M,E)) C J in the norm

ISz, ==1Ily— (VS Y-V iz llc:r) = V= (5 TTe(V)S) s llcs(r).

by unitarity ofV. TheC*(I')-module structure o#’,» corresponding to the one efiviaV is
given by
f-s= Zf(v)njf(v)s, (11.10)
ye

forall f € I¢(F) andseV~1(I(M,E)).
Next, we use the isomorphis@y(I') = C*(I') defined by the Fourier transforigi — {,
where

by = [ 9(@)Va(y)da

forall g € Fc(f). Because of (11.8) and (11.9), the inverse Fourier transfegiven byf — f,

where forf € C¢(I"), one has
fla)= Zf(V>Ua(V>_1-

ye
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So via the Fourier transform, the Hilbe®t (I")-module &, corresponds to the Hilbert
Co(T")-moduleé’,, which is the closure of the spave(I'¢(M, E)) in the norm

i, = o~ pXE e (19 2Ua 07 o

acl

— sup > (s e (V)8) e Ua(y) Y| (11.11)
ye

Continuous sections

Using the following lemma, we will describe the Hilb&Zs(I")-module&,, as the space of
continuous sections of a continuous field of Hilbert spaces.

Lemma 11.6.For all s;t € V~1(I'¢(M,E)),
Z(S7 nﬁ”(V)t)r%"UG<y)il = (SCY,tCY)O!'
ye

Proof. Let ¢ be a measurable section of the principal fibre buhdile> M /I". Then by (11.8),

Z(S, T (V) #Ua(y) L =

ye

5 (- fe 60000 Us(n) 15(8(0))) ¢ d0raB)Uay) =
ye
Jy e (S2(B(0) 16(9(0))d0 = (S0 ta)a

O

We conclude from (11.11) and Lemma 11.6 tiat is the closure o/ ~1(I'¢(M,E)) in the
norm

Isl2, = suplsall?.
acl
Therefore, it makes sensedefinethe spacé (I, (#),.¢) of continuous sections of the field
of Hilbert spaceq ), as theCo(")-module &, (cf. [19, 77]). Then our construction
implies
Proposition 11.7. The Hilbert C(I')-module&’ is isomorphic to the Hilbert 611" )-module
r(r7(ﬁfa)aef)'

Let us verify explicitly that the representations @§(I") in & and inT (I, (%) 4t
are indeed intertwined by the isomorphism inducedvbgnd the Fourier transform: for all
f €Ce(IN and allse V~1(I'¢(M,E)), we have

(f-S)a Zf(v)(n%f(v)S)a by (11.10)
ye

=Y f(YUa(y) 'sq
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11.3 The operator part of the assembly map

Proposition 11.8. Consider the adjointable operatorgoﬁli = (Fa)aef on the Hilbert Qa(f)-
moduleé, =T (7, (#%) 47 ), given by
(Fz,8) == FaSa,

for all a € [ and se (7, () ,.¢). Here R is the operator(11.4) Then for all se
V~1(T¢(M,E)), we have
FVs=VF; s

Proof. The claim is that for all such, and allm & M,
FVs(m):[Fasa(m)da.
I

Let #° C 2 be the space & € # such thaVse I'*(M,E), andsq € #P forall a e
(see (11.3)).

Note that we hav®V s(m) = [+ Dsq(m)da for all s € 5#’° andm € M. Because of Lemma
4.31 this proves the proposition, sing€P is dense inz. O

_ Proof of Proposition 11.3.Sincel¢(M,E) is dense in& andV—(F¢(M,E)) is dense in
&, Propositions 11.7 and 11.8 imply that

My [L2(M,E),F] = & Fs]
= &, Féj{]
- [r(n(%)aelﬁ)’(':a)aef} € KKo(C,Co(I)).
The image of this class iKg(Co(I")) is the formal difference of projectivé(l")-modules
[ker((Fq )aer)] = [ker((Fa )qer)]- (11.12)

By compactness d¥l /I and the elliptic regularity theorem, the kerneld=gf andF, are equal

to the kernels oD/, andD, respectively. By the remark above Proposition 11.3, we may
suppose that the kernels bf; andD,, define vector bundles ovér. Then by Lemma 11.9
below, the class (11.12) equals

[r(f’ (keng)aelﬁ)] - [r(fv (kerDa)aef)]'
Under the isomorphisido(Co(I")) = KO(T"), the latter class corresponds to
[(kerDg) ,o¢] — [(kerDg) ,cr] € KO(F).

ael

O

Lemma 11.9. Let.7Z be a continuous field of Hilbert spaces over a topologicaksp4, and
let A be its space of continuous sections. L&t be a subset of#” such that for all xe X,
= 75N is alinear subspace of%. Set

A = {se A;s(x) € i forall x € X}

Let s: X — 7’ be a section. Then s is continuous in the subspace topologg’of .77 if
and only if se A'.
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Proof. Let s: X — # be a section. Thesis a continuous section of#” in the subspace
topology if and only ifsis a continuous section o ands(x) € 7% for all x. The topology on
¢ is defined in such a way thais continuous if and only i € A [19, 77]. O

11.4 Reduction

We will now describe the reduction m&3 : Ko(C*(I")) — Z, and prove Proposition 11.1.

Lemma 11.10.LetT be an abelian discrete group, and letf1} — [~ be the inclusion of the
trivial representation. The following diagram commutes:

Ko(CH(M)) X Ko(C)

:i lg

KO(F) ——~ K({1}).
That is,
R2([E]) = dimE; = rankE) € Z,
for all vector bundles E= .

The proof is a straightforward verification.

End of proof of Proposition 11.1From Lemma 11.10 and Proposition 11.3, we conclude
that
R0 ufy [L2(M,E),F] = [kerD{] — [kerD;] = indexD; € Z.

The Hilbert space; is isomorphic toL?(M/I',E/I"), and this isomorphism intertwine3;
andD". Hence Proposition 11.1 follows. O

11.5 Example: the action ofZ?" on R"

For some natural number let M be the manifoloM = T*R" = R?" =~ C". An element ofM
is denoted by(q, p) := (1, P1,---,0n, Pn), Whereqj,pj € R, or byq+ip =z:= (z,...,z),
wherezj = qj +ip; € C. We equipM with the standard symplectic form := Z?:ld pj Adq;,
asin (2.2).

Let I be the groud” = Z?" = Z" +iZ". The action of on M by addition is denoted by
a. Our aim is to find a prequantisation for this action and theesponding Dirac operator for
generah, and the quantisation of this action for= 1.

Prequantisation

LetL :=M x C — M be the trivial line bundle. Inspired by the constructionio&lbundles on
tori with a given Chern class (see e.g. [25], pp. 307-317)liftvehe action of on M to an
action ofl" onL (still calleda), by setting

ej ’ (Z7W) = (Z—l_eij);
iej - (zw) = (z-+iej,e 2 "iw).
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Hereze M,we C, and
g :=(0,...,0,1,0,...,0) ezZ",

the 1 being in thejth place. The corresponding representatio oh the space of smooth
sections oL is denoted byp:

(Pk+ilS) (2) = kit S(z—k—il),
for k,| € Z" andz € M. Define the metri¢—, —)_ onL by
(Zw),(zW)), =h(@wW,
whereze M, w,w € C, andh € C*(M) is defined by
h(q+|p) = eZHZj(pifp]Z)'

Let [I be the connection oh defined by
n
O:=d+2m  p;jdz+mdp;.
=1

Proposition 11.11.The triple(L, (—, —)., J) defines an equivariant prequantisation o, c).

The proof of this proposition is a set of tedious computatiddecause of the termv?_z?:l p;jdg;
in the expression for the connectionit has the right curvature form. The term@&my'_; p;dp
andrrd p; do not change the curvature, and have been added tolmhegaivariant. Atthe same
time, the latter two terms ensure that there lisiavariant metric (namely—, —). ) with respect
to which is Hermitian.

As we mentioned in Section 6.1, there is a procedure in [32ifttthe action of Z2" on
R2" to a projective action oh that leaves the connection (for exampl#).= d + 27 ¥ pjdq;
invariant. This projective action turns out to be an actwioa in this case, and preserves the
standard metric oh. We thus obtain prequantisation of this action that lookstraimpler than
the one given in this chapter. However, we found our formtddse more suitable to compute
the kernel of the associated Dirac operator.

The Dirac operator

In this section, we compute the Dolbeault-Dirac operé.’go% Ef onM, coupled ta.. We will
simplify our notation by denoting this operator Byn the rest of this chapter. To compute the
guantisation of the action we are considering, we need tpotethe kernels of

p* 1=B|qoevenm);
D_ ::D|Qo,odd(|v|).

This is not easy to do in general. But fo= 1, these kernels are computed in Section 11.6.
In our expression for the Dirac operator, we will use muithces

| =(ly,....lg) € {1,....n},



11.6 THE CASEn=1 151

whereq € {0,...,n} andly < --- <lg. We will write dZ = dz, A...Adz,. If | =0, we
setdZ := 1y, the constant function 1 oM. Note that{d?}m{lmn} is aC”(M)-basis of
Q% (M;L).

Givenl C {1,...,n} andj € {1,...,n}, we define

gjl = (_1)#{re{1,...,q};lr<j},

plus one if an even number bfis smaller tharj, and minus one if the number of sulghs odd.
From the definition of the Dolbeault—Dirac operator one ttieduces:

Proposition 11.12.For all | c {1,...,n} and all f € C*(M), we have

af . -
B(fdZ) = Zej. <—2a—zj+(m—4mp,-)f) dz\ti
IE
af im . (11.13)
+ £ <—_+—f) dzvii},
1<Jz<n, J 0z; 2
i

11.6 Thecasan=1

We now consider the case where- 1. ThatisM = C andl' = Z +iZ. We can then explicitly
compute the quantisation of the actiomodn M. This will allow us to illustrate the Guillemin—
Sternberg—Landsman conjecture by computing the four ceinaliagram (3.16).

If n=1, Proposition 11.12 reduces to

Corollary 11.13. The Dirac operator orC, coupled to L, is given by

Loty im N o 0f

That is to say, with respect to the’V)-basis{1y,dz} of Q%*(M;L), the Dirac operato}

has the matrix form
0 _
D = ( D+ DO ) 9

J im
+_ ¢
D=5zt
D — 29 Lin—ani
- 7oz P

where

In this case, the kernels Bf- andd~— can be determined explicitly:

Proposition 11.14.The kernel o)™ consists of the sections s of L given by

s(2) = &™¢(2),
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where¢ is a holomorphic function.
The kernel o~ is isomorphic to the space of smooth sections t of L given by

t(Z) _ ein2/2+7112|2—n22/2 w(z),
wherey is a holomorphic function.

The unitary dual of the groufi +iZ = Z? is the torusT?. Therefore, by Proposition 11.3,
the quantisation of the action @+ iZ on C is the class irKK (C,C*(Z?)) that corresponds to

the class
n B _
[(ke@("vm)(aﬁ)e'ﬂ‘z} [<ke@(a’m)(0’ﬁ)€?2]

in KO(T?). It will turn out that the kernels dﬁzra B) andD(‘Or 8) indeed define vector bundles
overT?. Let us compute these kernels.

Proposition 11.15.LetA, u € R. Define the sectiomyg € '(M, L) by

S)\H(Z) _ dAzg—Tp Z e—nkze—k()\+iu+2n)ezmkz.

kez
A o _
Seta :=¢€* andp := . Thenke@(}m =Csy -
Remark 11.16.For allA, u € R, we have

+ip+3m
SA\+omu = e/\ K S)

“’
S\ u+2m = SAp-

Hence the vector spades, , C (M, L) is invariant unded +— A +2mandu — p + 27 This

is in agreement with the fact thask, , is the kernel ot2§(+eiA e

Sketch of proof of Proposition 11.16et A, u € R, andse (M, L) =C%(C,C). Suppose
sis in the kernel Om(feﬂ,eiu)' Let ¢ be the holomorphic function from Proposition 11.14, and
write

¢(Z) - e—iAze—im/2¢(Z) _ Z akezmkz
kez
(note that for alz € C, one hasp(z+ 1) = ¢(2)). Then it follows from invariance af under the
action of the subgroui of I thatay, = e~ e kA+iH+2M 5 which gives the desired resulil

Proposition 11.17.The kernel oﬁb(‘a B) is trivial for all (a,B) € T2

Sketch of proofLet A, u € R and lettdze Q%1(M;L) = (M, L)dz Suppose thatdz c ker/

D(_em o)’ Let ¢ be the holomorphic function from Proposition 11.14, andeavri

lII(Z) - en(iz+i5/2—iAzw(Z) _ Z CkeZTTikZ_
KeZ

(note that for alz € C, one hag](z+ 1) = /(z)). Then it follows from invariance afdz under
the action of the subgrou@ of I thatcy, = €™ KA —IH=2m ¢y which implies thaty = 0. [

We conclude:
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Proposition 11.18. The quantisation of the action @ on C is the class in R(T?) defined by
the vector bundfe

(Csiu) (@ dHyer? T

By Lemma 11.10, we now find that the reduction of the quarntisaif the action ofZ? on
R? is the one-dimensional vector spaespo C *(M,L), where

_ ke i
SO,O(Z> _aTip Z e ik e 2nkekaz‘
keZ

As we saw in Section 11.1, it follows from Proposition 10.attthis is precisely the index of
the Dolbeault-Dirac operatoy ;2 + éf/zz on the torusT?, coupled to the line bundle/Z? via

the connection induced hy. Schematically, we therefore have

72 O R2— (CSip) (@1 guer (11.14)

T
Q

T2|—>C-So7o.

Note that it is a coincidence that the two-torus appearsetwichis diagram: in this example
M/T=T2=T.

Remark 11.19. The fact that the geometric quantisation of the tdFéss one-dimensional can
alternatively be deduced from the Atiyah—Singer index theofor Dirac operators. Indeed,
let o, /72 + 0[‘/22 be the Dirac operator on the torus, coupled to the quotieatbundlel /Z2.

Then by Atiyah—Singer, in the form stated for example in [@d]Jpage 117, one has
i Py % h 2
Q(TZ) = |ndex(d,_/Zz +(9L/Z2) - /JPZ ech(L/Z?)

:/ dpAdq
T2
=1,

the symplectic volume of the torus, i.e. the volume deteediby the Liouville measure.

2By Remark 11.186, this is indeed a well-defined vector bundle.
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Discrete series representations of
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In Part IV, we consider a cocompact Hamiltonian action ofraisample Lie groupG on a
symplectic manifold M, w), and prove Theorem 6.13. The strategy of this proof is to dedu
Theorem 6.13 from the (known) case of the action of a maximalgact subgroul < G on
the compact submanifold := ®~1(¢*) of M, with ® : M — g* the momentum map.

We will see in Chapter 12 that there are inverse construstion

H-Cros§: GOM ~ KON:=o 1)
H-ndg: KON ~ GOM:=GxgN.

These are called Hamiltonian cross-section and Hamiltoniduction, respectively. In Chapter
13, we define induction procedures for prequantisatiomsoal complex structures and Spin
structures, compatible with this Hamiltonian inductiongedure.

The central resultin Part IV is Theorem 14.5, which states‘tfuantisation commutes with
induction’. Roughly speaking, this is expressed by the rdiag

(M = G xk N, @) 2~ Qg (M, w) € Ko(CH(G))

H-Ind(KBI TD-lndﬁ
(N, V) ——X Qk(N,v) € R(K).

HereR(K) is the representation ring &f, Ko(C;(G)) is theK-theory of the reduce@*-algebra
of G, and D-Incﬁ is the Dirac induction map (6.10). In Chapter 14, we tie tHeeothapters
in Part IV together, by showing how Theorem 14.5 implies The06.13, and by sketching a
proof of Theorem 14.5. The details of this proof are filledrirGhapter 15.

Our proof Theorem 14.5 is based on naturality of the assemhly for the inclusion oK
into G (Theorem 9.1). In Chapter 15, we show that this naturaliyltds well-behaved with
respect to th&-homology classes of the Dirac operators we use, thus pyoMieorem 14.5.

Unless stated otherwise, we will use the notation and assonspof Chapter 6. A large
part of Part IV is about the relation between structures enntlanifoldsM andN. To avoid
confusion, we use a superscrigtor N to indicate if a given structure is defined bhor onN.

In this way, we will have the momentum ma@d' and®N, and the almost complex structures
M andJN, for example.



Chapter 12

Induction and cross-sections of
Hamiltonian group actions

In this chapter, we explain the Hamiltonian induction andrtonian cross-section construc-
tions mentioned in the introduction to Part IV. We will seeSaction 12.4 that they are each
other’s inverses. Our term ‘Hamiltonian induction’ is qudifferent from Guillemin and Stern-
berg’s term ‘symplectic induction’ introduced in [29], Sien 40.

Many results in this chapter are known for the case where &ire(@,K) is replaced by
(K, T). See for example [54, 63].

12.1 The tangent bundle to a fibred product

In our study of the manifold> xk N, we will use an explicit description of its tangent bundle,
which we will now explain.

For this section, leG be any Lie groupH < G any closed subgroup, ard a left H-
manifold. We consider the action bf on the producG x N defined by

h- (gv n) = (ghilv hn),

forallhe H, ge G andn € N. We denote the quotient of this action Byxy N, or by M.
Because the action &f on G x N is proper and free\ is a smooth manifold. We would like
to describe the tangent bundleNbexplicitly.

To this end, we endow the tangent bundlld = H x h with the group structure

(h,X)(W,X') := (hi,Ad(h)X’ 4 X),

for h,h € H andX, X’ € h. This is a special case of the semidirect product group tstreon
a producty x H, whereV is a representation spaceldf We consider the action of the group
THonTGx TN defined by

(h,X) : (g7Y7V) = (gh_17Ad(h>Y _Xanh(V) +xhn>7

forheH,Xeh, (gY)eGxg=TG neNandve T,N. Let TGx1y TN be the quotient
of this action. It is a vector bundle ovit, with projection magg, X, V| — [g,n] (notation as
above). We leG act onT G x1H T N by left multiplication on the first factor.

156
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Proposition 12.1. There is a G-equivariant isomorphism of vector bundles
W:TGxtHTN—=TM,

given by
W[g,Y,v] =Tp(g,Y,v),

with p: G x N — M the quotient map.

Proof. Let us first show tha¥ is well-defined. Lege G,Y € g,ve TaN, h€ H andX € § be
given. Lety be a curve ifN with y(0) = nandy/(0) = v. Define the curvé in G x N by

5(t) = (gh™texplt Ad(h)Y) exp(—tX),exptX) - h- y(t)).
Then
5'(0) = (gh 1, Ad(h)Y — X, Toh(V) + Xhn) € G x g x ThnN.
Now since for allt,
pod(t) = p(gh™texpt Ad(h)) exp(—tX),exptX) - h- y(t))
p(gexp(tY)h texp(—tX),exp(tX) -h-y(t))
p(gexp(tY), v(t)),

we have

Tp(gh ™, Ad(h)Y — X, Toh(V) + Xan) = d

gt Ped()

t=0

= Gt t:0|0(@Jex|0(tY>,v(t))

=Tp(g,Y,v).

SoW is indeed well-defined.

The mapW is a surjective vector bundle homomorphism becalipe TGx TN — TM
is. Because the bundl8aV andT G x1H TN have the same rank, the m#pis therefore an
isomorphism of vector bundles. O

Now suppose that there is an @dl)-invariant linear subspageC g such thatg = @ p
(such as in the cadé¢ = K we consider in the rest of Part IV). Then there is a possilvhpser
description ofT M, that we will also use later. Consider the actiontbon the productG x
TN x p given by

h-(g,v,Y) = (gh~*, Tah(v), Ad(h)Y),

and denote the quotient Iy xy (TN x p).

Lemma 12.2. The map
= TGXTHTN—>GXH (TNXp),

given by
E[ngvv] = [g,v-l— (Yh)n,Yp]
forallge G,Y € g,ne N and ve TN, is a well-defined, G-equivariant isomorphism of vector

bundles. Here yyand Y, are the components of Y iandp respectively, according to the
decompositiog = h @ p.
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Because of Proposition 12.1 and Lemma 12.2, we AaMe= G xy (TN x p) asG-vector
bundles!

Proof. We first show thak is well-defined. Indeed, forali € G, Y € g, n€ N andv € TN,
and for allh € H andX € b, we have

E[(h7x> : (ngv\/)] =
[gh, Tah(V) 4+ Xpn+ ((Ad(h)Y = X)p), . (Ad(h)Y = X),] =
[gh™1, Tah(v) + (Ad(h)(Yy)),,» Ad(N)Ys] € G x (TN x p). (12.1)

Here we have used the fact that the decomposigier) © p is Ad(H )-invariant. Furthermore,
we have

exp(tAd(h)Y,)hn
t=0

—! h tY]
atl exp(tyy)n

(Ad(N)(¥)) =

Hence (12.1) equals
[h (g,V+ (YU)WYP)] = [g,V+ (Y['))anp] = E[ng7V]7

which shows thak is well-defined.
Itis obvious thak is fibrewise linear. Let us prove that it is fibrewise injeetiwith notation
as above, suppose that
E[g7Y7V] = [g,V—|— (Yf])mYP] =0.

Thatis,Y € h andv = —(Yy)n. And therefore,
[9.Y,v] =[(e,—Y)-(9,0,0)] = [9,0,0],

and = is fibrewise injective. Hence, becausds a map between vector bundles of the same
rank, it is a fibrewise linear isomorphism.

Finally, the isomorphisnx is G-equivariant because on both sid€sacts by left multipli-
cation on the first factor. O

In Chapter 13, we will use the following version of Propasitil2.1 and Lemma 12.2.
Corollary 12.3. In the situation of Lemma 12.2, there is an isomorphism oe&er bundles
TM= (pg )y T(G/H)) @ (GxnTN),

where ;4 : M — G/H is the natural projection.
Proof. The claim follows from Proposition 12.1, Lemma 12.2, andftie that
T(G/H) =G xy p,

whereH acts onp via Ad. O

LA version of this fact is used without a proof in [6] on page 503
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12.2 Hamiltonian induction

We return to the standard situation in Part IV, whé&ré a semisimple group, atl < Gis a
maximal compact subgroup.

The symplectic manifold

Let (N, v) be a symplectic manifold on whidk acts in Hamiltonian fashion, with momentum
map®N : N — €£*. Suppose that the image @i lies in the sett}, defined in (6.19). As
in Section 12.1, we consider the fibred proditt= G xk N, equipped with the action db
induced by left multiplication on the first factor. As a cogsence of Proposition 12.1 and
Lemma 12.2, we have for alle N,

T[em}M =TyNDp.

We define a two-formw on M by requiring that it iSG-invariant, and that for alK,Y € p, n€ N
andv,w € TyN,

Wen (V4 X, WAY) 1= vy(v,w) — (®N(n), [X,Y]). (12.2)
Note that{X,Y] € ¢ for all X,Y € p, so the pairing in the second term is well-defined. We claim
thatw is a symplectic form. This is analogous to formula (7.4) fri@3].

Proposition 12.4. The formw is symplectic.

Proof. The formw is closed, because it is the curvature form of a connectioa lome bundle
overM. This will be proved in Section 13.1.

Next, we show thato is nondegenerate. Bg-invariance ofw, it is enough to prove this at
points of the forme,n], with n € N. Letv € T,N andX € p be given, such that for alt € TyN
andY € p, we have

Wen (V+X,W+Y) =0. (12.3)

Then in particular,
Wen (V+X,W) = Vn(V,W) =0

for all suchw, and hence = 0 by nondegeneracy of.
On the other hand, we have
0= Wen| (V+ X7Y)

forall Y € p, which equals
_<¢N<n)7 [X7Y]> = <adk<X)CDN<n),Y> = <X¢N(n)7Y>
Analogously, forZ € ¢ we have
<XCDN(n)7Z> = _<¢N(n)7 [X,Z]),

which also equals zero, sin¢¥,Z] € p and®N(n) € £* = p°. Therefore Xen,) = 0, which
by Lemma 6.11 implies thax = 0, since®N(N) c ¢, We conclude thatye y is indeed
nondegenerate. O
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The momentum map
Next, consider the mapM : M — g* given by
Mg, n] = Ad*(g)dN(n). (12.4)

This map is well-defined biK-equivariance oftN. Furthermore, it is obviousl@-equivariant,
and its image lies igZe

Proposition 12.5. The mapdM is a momentum map for the action of G on M.

Proof. We first prove the defining property of momentum maps,
dol = —Xyw (12.5)

for all X € g, at points of the forme, n|, with n € N. To this end, we compute the tangent map
T[Qn]db'\" in the following way. Letv € T,N andY < p be given. Lety be a curve irN such that
y(0) =nandy/(0) =v. Then

d
Ten®M(v+Y) = 2| oMexp(ty), y(t)]
t=0

d
~ dtl
_d N (y(t)) + d Ad* (exptY)dN(n)

dtli_o dtli_o
= ThdN(v) +ad' (Y)dN(n).

Ad* (exptY) @™ (y(t))

Now letX € g and letY,v be as before. Writ&X = X; + X, with X; € £ andX, € p. Then
<d[e,n} (D)I\ZI7V+Y> = <T[e,n]cDM (V+Y)7X>

(Ta®N(v), X) + (ad (Y)®" (n), X)

(Ta®N(v), Xe) + (@ (n), [X, Y]e). (12.6)

By the defining property obN, and becausgX, Y] = [X,, Y], the expression (12.6) equals
—Vn((xé)nav) + (‘DN(n), [Xp,Y]) = —(’-{e,n]((XOn‘i‘XpaV‘l‘Y)-

By Lemma 12.6 below, we haw§ey = (X¢)n + Xp, Which yields equality (12.5) at the point
(e n].

To prove (12.5) on all oM, we note that on both sides of this equation, pulling backglo
an elemeng € G amounts to replacinyd by Ad(g)X, as one can compute. Therefore, equality
(12.5) at points of the fornfe, n| implies the general case. O

In the proof of Proposition 12.5, we used:
Lemma 12.6. With notation as before, we have

Xen = (Xe)n+ X,
iNnThaIN®p = T[em]M.
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Proof. Using the isomorphismEM = TG xtk TN and TG x1k TN = G xk (TN x p) from
Proposition 12.1 and Lemma 12.2, we compute

X[eﬁ] = a [exth,n] S T[e,n}M
t=0
—[eX,0] €TGxtkTN
= [e7 X)J? (Xk)n]

U

Definition 12.7. The Hamiltonian inductionof the Hamiltonian action oK on (N, v) is the
Hamiltonian action of5 on (M, w):

H-IndZ(N, v, ®N) := (M, w, ®M).

Example 12.8.Let & € t* \ ncw be given, and consider the coadjoint ofbit=K - & C ¢*.
The Hamiltonian induction of the coadjoint action kfon N is the coadjoint action o& on
the coadjoint orbitM := G- £, including the natural symplectic forms and momentum maps.
Indeed, the map
G- E —G XK N

given byg- & — [g,&] is a symplectomorphism.

12.3 Hamiltonian cross-sections

We now turn to the inverse construction to Hamiltonian irtchrg namely theHamiltonian
cross-section In this case, we start with a Hamiltoni@manifold (M, w), with momentum
map®M. Such a cross-section will indeed be symplectic and carnamilionianK-action,
under the assumption that the imaged®f is contained ing{, A Hamiltonian cross-section
is a kind of double restriction: it is both a restriction toubgroup ofG and a restriction to a
submanifold oM.

Most of this section is based on the proof of the symplectissfsection theorem in Lerman
et al. [54].

As before, we identify* with the subspacg® of g*. The main result of this section is:

Proposition 12.9.1f ® (M) C g, then N:= ((DM)_l(E*) is a K-invariant symplectic subman-
ifold of M, and®N := tD'V'\N is a momentum map for the action of K on N.

We denote the restricted symplectic fotofy by v.

Definition 12.10. The Hamiltonian cross-sectioof the Hamiltonian action o6 on (M, w) is
the Hamiltonian action ok on (N, v):

H-Cros§ (M, w,®") := (N, v, o).
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In Proposition 12.15, we will see thit = G xk N, so thatM /G is compact if and only if
N is.

To prove Proposition 12.9, we have to show tRas a smooth submanifold dfl, and that
the restricted fornao|y is symplectic. Then the submanifditlis K-invariant byK-equivariance
of ®M and the fact thabN is a momentum map is easily verified. We begin with some peepar
tory lemmas, based on the proof of the symplectic crossesettteorem mentioned above.

For the remainder of this section, ketc M be given, and writ€ := ®M(m).

Lemma 12.11.The linear map
Y:Tm(G-m) — Te(G-§)

given by
P(Xm) = X¢

for X € g, is symplectic, in the sense that for all¥Xe g,
%(M7Ym> = _<E7 [X7Y]>

Proof. First note thatp is well-defined because by equivariancemt, we haveg, C gc-
Furthermore, by the properties ® we have

Wn(Xm, Ym) = _<dm¢>'\£|7Ym>
— (T ®™ (Yin), X)

(M (exp(tY)m), X)

(Ad* (exptY)®M(m), X)

— —(ad (V)€ X)
— —(&.[X,Y]).

Lemma 12.12.We have the following inclusions of subspaceg'of
92 C Tn®™ (TmM) C g,

Proof. The second inclusion is the easiest one to prove. Indeed,déef,M andX € g, be
given. Then by definition of momentum maps,

(Tm® (), X) = (dn®Y, V) = —w(Xm,V) =0,

sinceXmy = 0.
To prove the first inclusion, we consider the maps

2= (9/0)" 2 TE(G-&) L Te(G-&) L Tn(G-m) — TuM.

Ik T
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Here ‘# denotes the isomorphism induced by the standargmetic form onG- ¢ (see Ex-
ample 2.13).

Letn e gg be given, and choosec Trm(G- m) such that the images ofandn in T¢ (G- &)
under the maps above coincide. (Note that suglexists sincap is surjective.) We claim that
Tm®M(v) = . Indeed, writev = X, for anX € g. Then for allY < g,

<’77Y> = <'S7 [X7Y]> = _wm(xm,Ym)

by the definition of the map #, and by Lemma 12.11. By definitb®M, the latter expression
equals(Tm®M(v),Y), which proves the claim. O

Lemma 12.13.1f m € N C M, then the subspace
p-m:i={XmXe€p}CTyM
is symplectic.
Proof. Step 1we have
Te(G-§)=g-&=(t+p)-E=Te(K-&)+p-&.

Step 2:the subspacg- & C T (G- &) is symplectic.
Indeed, by Step 1 and Lemma 12.14 below, it is enough to piwapt & andT; (K- &) are
symplectically orthogonal. LeX € ¢ andY € p be given. Becausen € N, we haveé < ¢, and
also ad(X)& € ¢ = p0. Hence

(&, [X,Y]) = —(ad'(X)§,Y) = 0.

Step 3:the subspacg- mC T,M is symplectic.
Indeed, let a nonzerX € p be given. We are looking for ¥ € p such thatwm(Xm, Ym) # O.
Note that by Lemma 6.11, we have'#¥ )& = X # 0. So by Step 2, there is¥ac p for which
(&,[X,Y]) #0. Hence by Lemma 12.11,

@Whn(Xm, Ym) = —(&,[X,Y]) # 0.

In Step 2 of the proof of Lemma 12.13, we used

Lemma 12.14.Let (W, 0) be a symplectic vector space, and leMJ_ W be linear subspaces.
Suppose that W= U +V, and that U and V are symplectically orthogonal. Then U anar®
symplecticsubspaces.

Proof. We prove the claim foU. Letu € U \ {0} be given. Choose € W such thaio (u, w) #
0. SinceW =U +V, there aral € U andv € V such thawv = U +v. For suchJ/, we have

o(u,u) = o(u,w) #0.
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After these preparations, we are ready to prove Proposi@of.

Proof of Proposition 12.9.We first show thaN is smooth. This is true ifPM satisfies the
transversality condition that for allc N, with n := ®M(n), we have

Thg" = Tpt* + Tn®"(TM).

(See e.g. [35], Chapter 1, Theorem 3.3.) By Lemma 12.12, we in%:lc Th®M(T,M), and
by Lemma 6.11, we havg, Np = {0}. Now, using the fact that® +W° = (V nW)? for two
linear subspace$ andW of a vector space, we see that

Tt + T (TaM) D p%+g) = (PN gy)° = {0} =g".

This shows thaN is indeed smooth.

Next, we prove thatv|y is a symplectic form. It is closed becauseis, so it remains to
show that it is nondegenerate. lre€ N be given. By Lemma 12.14, it is enough to show that
T.M = T,N+p - n, and thafl,N andp - n are symplectically orthogonal.

We prove thalyM = T,N @ p - n, by first noting that

dimN = dimM —dimg* +dim¢* = dimM — dimp.
Becausgyn C gom ), andgem ) Np = {0} by Lemma 6.11, we have dipn= dim(p - n), and
dimT,M = dimT,N +dim(p - n).

It is therefore enough to prove th&N Np-n= {0}. To this end, letX € p be given, and
suppose, € TyN. That is, T,®M(X,) € £, which is to say that for al¥ < p,

wn(Xn, Yn) = —(Ta®M(Xn),Y) = 0.

By Lemma 12.13, it follows thaX, = 0, so that indeed,N Np -n= {0}.
Finally, we show that for alv € T,N andX € p, we havew, (v, Xn) = 0. Indeed, for suck
andX, we haveT,®M(v) € £* 2 p0, so

(v, Xn) = (ThdM(v), X) = 0.

12.4 Hamiltonian induction and taking Hamiltonian cross-
sections are mutually inverse
Let us prove the statement in the title of this section. Ode sf it (Proposition 12.15) will be

used in the proof of Theorem 6.13 in Section 14.3. We will rs® the other side (Proposition
12.16).
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Induction of a cross-section

First, we have

Proposition 12.15.Let (M, w,®") and (N, v, ®N) := H-Cros§ (M, w, ®) be as in Section
12.3. Consider the manifol := G xx N, with symplectic forné equal to the formeo in
(12.2) Define the ma®@M as the mapb in (12.4) Then the map

¢:M—M

given by
¢[g.n=g-n

is a well-defined, G-equivariant symplectomorphism, @hé™ = oM,
Put diﬁerently,H-IndEo H-Cros§ is the identity, modulo equivariant symplectomorphisms
that intertwine the momentum maps.

It follows from this proposition thavl /G = N /K, so thatM /G is compact if and only il
is compact.

Proof. The statement about the momentum maps follows f@equivariance ofpM.

The map¢ is well-defined by definition of the action & on G x N. It is obviouslyG-
equivariant. Furthermore, is smooth because the action@bnM is smooth (this was a tacit
assumption), and by definition of the smooth structure omtiaientG xk N.

To prove injectivity of¢, letg,g’ € G andn,n’ € N be given, and suppose ttgtn=¢ -’
BecausabM(N) C &, there arék, k' € K and&, &’ € t%. \ ncw such that

oM(n) =k-&;
oM(n) =K - &'

Then by equivariance obM, we havegk- & = gk’ - &’. Because’; \ ncw is a fundamental
domain for the coadjoint action @ on g%, we must havé = &', and

K~1g~1gke G C K.
Sok”:=g~!ge K. Hence
g/k//n: gn: g/_n/7
andk” -n=n". We conclude that
[g/7 n/] = [gl(/_]-? k” : n] = [g7 n]7

and¢ is injective.

To prove surjectivity ofg, let mc M be given. SincedM(m) < g, there areg € G and
& €t \ ncw such thattM(m) = g- €. Setn:=gIm. Then®M(n) =& € ¢*, sone N, and
#lg,nN=m.
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Next, we show that the inverse ¢fis smooth. We prove this using the inverse function
theorem: smoothness ¢f* follows from the fact that the tangent maj is invertible. Or,
equivalently, from the fact that the mag, defined by the following diagram, is invertible.

.
T(GxkN) 2~ TM

| /7)

TGXTKTN.

HereW is the isomorphism from Proposition 12.1. Explicitly, tham?c} is given by
TP[9.X, V| =T¢oTp(g.X.v)
=Ta(g,X,V),

forallge G, X € gandv € T)N, with a : G x N — M the action map. Ley be a curve irN
with y(0) = nandy(0) = v. Then we find that

d
Ta(g,X,v) = — exp(tX)g- y(t
(@.X.V)= o p(tX)g- y(t) (12.7)
Because the vector bundl@$ x 1k TN andTM have the same rank, it is enough to show

thatT ¢ is surjective. To this end, lebh € M andw € T,;M be given. Since is surjective, there
areg € G andn € N such tham = g- n. Furthermore, we have

Indeed, in our situation we even haVgM = T,N @ p - n (see the proof of Proposition 12.9).
Hence

ToM = Tag(ThM) = Tog(TaN + g - n).
Therefore, there arec T,N andX € g such that
W= Thg(V+Xn)
=Tog(v) + (Ad(@)X),
= To[g,Ad(g)X, V],
by (12.7). This shows that¢ is indeed surjective.

Finally, we prove thatp is a symplectomorphism. Lete N, vyw € T,N andX,Y € p be
given. We will show that

wn(Tem® (V+X), Tem® (W+Y)) = wn(v,w) — (@Y (n),[X,Y]).
By G-invariance of the symplectic formes and @, this implies tha is a symplectomorphism
on all of M.
Similarly to (12.7), we find thalje ;¢ (v+ X) = v+ X,. Therefore,
%(T[e,n]qb(v'i‘X)7T[e,n}¢(W+Y>) = Wh(V+Xn,W+Yy)
= h(V, W) + wh(Xn, Yn), (12.8)

sinceT,N andp - n are symplectically orthogonal (see the end of the proof opBsition 12.9).
Now applying Lemma 12.11 to the first term in (12.8) gives thsiced result. O
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Cross-section of an induction

Conversely to Proposition 12.15, we have:

Proposition 12.16.Let (N, v,®N) and (M, w,®™) := H-Ind(N, v, ®N) be as in Section 12.2.
SupposadN(N) C €. Then

(Nv V) = <(¢M)_1(E*)7 w|(¢M)*1(E*))7

and this isomorphism intertwines the momentum nepsind dM.
In other WordsH-Crosﬁ o H-Indﬁ is the identity, modulo equivariant symplectomorphisms
that intertwine the momentum maps.

Proof. We claim that
(@) 1) = {[en;ine N} =K. (12.9)

The mapn — [e,n| is a diffeomorphism fronN to N. It is clear that this diffeomorphism is
K-equivariant, and intertwines the momentum meép'sand®M,

To prove that(d)'\")*l({%*) =N, let[g,n] € M be given, and supposeM[g,n] = g- ®N(n) e
¢*. Becauseb™(N) C &, we have

g-®N(n) € (G-t NE* =L
So there aré, k' € K andé&, &’ € t \ ncw such that
oN(n) =k-&;
g- () =K-&"
Hencegk- & = K'-&’, and since’. \ ncw is a fundamental domain for the coadjoint actio@of

ongs. we havef’ = &. So
K~lgke Gg C K,

and hencey € K. We conclude thajg, n] = [e,g~1n], which proves (12.9) (the inclusidd ¢

(®M)~*(e*) follows from the definition ofpM).

For eachn € N, the natural isomorphism+— [e,0,v] from T,N to T[e,n}N intertwines the
respective symplectic forms, by definition of those forms. O



Chapter 13

Induction of prequantisations and
Spirt-structures

We extend the induction procedure of Chapter 12 to pregsatidhs and to Spfrstructures,
used to define quantisation. For prequantisations, it isiptiesto define restriction to a Hamil-
tonian cross-section in a suitable way. For our purposés,rnibt necessary to restrict Spin
structures.

13.1 Preguantisations

Since we are interested in quantising Hamiltonian actitetsys look at induction of prequan-
tum line bundles, and at restriction to Hamiltonian crosstiens.

Restriction to Hamiltonian cross-sections

The easy part is restriction. Indeed, &, w) be a HamiltonianG-manifold, let®M be a
momentum map witkbM (M) c g, and let(N, v, ®N) be the Hamiltonian cross-section of this
action. Now letL¥ — M be a prequantum line bundle, let, —)_» be aG-invariant Hermitian
metric onL%, and letd™ be aG-equivariant Hermitian connection &% with curvature 21 w.
Let ON be the connection ol := L%|y defined as the pullback @i along the inclusion map
N — M. Itis given by

DN (S‘N) = (DMS) |N,
for all sectionsse '**(L?). This is indeed a connection, with curvature
RDN = RDM‘N =2m C{)‘N =2mv.
Furthermore, it is Hermitian with respect to the restriotic-, —) v of (—,—)L». That is,
(LY, (—,—)Lv,0N) is a prequantisation of the action kfon N.
In the same way, we see that a Sparequantum line bundle oM, w), that is, a prequan-

tum line bundle or{M, 2w), restricts to a Spfprequantum line bundle aiN, 2v).
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Induction: an auxiliary connection [J

Now let us consider induction of prequantisations. As intidecl2.2, let(N,v) be a Hamil-
tonianK-manifold, with momentum magN. Let (M, w, ®V) be the Hamiltonian induction of
these data. LefL",(—,—).v,ON) be an equivariant prequantisation of the actiorKodn N.
As in the case of restriction, the following argument extedilectly to Spifi-prequantisations.
Consider the line bundle
LY :=GxkL¥ — M,

with the natural projection majg, ] — [g,n] forge G, ne N andl € L. Let(—,—)_» be the
G-invariant Hermitian metric oh® induced by(—, —)_v: forallg,d’ € G, ne N andl,l’ € LY,
set

([gvl]7 [g/7|/])|_w = (lvll)L"-

In the remainder of this section, we will construct a conigect™ onL®, such thaI(L‘*’, (—,—
Lo, D'V') is aG-equivariant prequantisation Of1, w). This is by definition the prequantisation
induced by(L", (—, —).v,ON).

To construct the connectidd™, we consider the line bundle

L:=GxLY—=GxN,

with the obvious projection maf,|) — (g,n), forallge G, | € Ly. ThenL® =L/K, whereK
acts onL by

k-(g.1) = (gk k1),
forke K, ge Gandl € LY. By Proposition 8.6, we therefore have a linear isomorphism

Yoo (LS —TeLe),

given by
YL(o)[g.n] = [a(g,n)]. (13.1)
We will constructdM as the connection induced byKaequivariant connectiofl on L. The
spacd “(L) of sections oL is isomorphic to the space
(L) :={s:GxN <, LY;s(g,n) € Ly forallge Gandne N.}

Indeed, the isomorphism is given by— @, wherea(g,n) = (g,s(g,n)). Forse T*(L),ge G
andn € N, we write

Sg(n) := (g, n) =: $(9).
(We will use the same notation wheis replaced by a function o@ x N.) Then for fixedg, sy
is a section of.V, and for fixedn, s" is a function

' G—Ly.
Letse T™(L), X € g, ve X(N),ge Gandn e N be given. We define

(Ovgxs) (9, n) := (Oflsg) (n) + X (") (@) + 271 BY (n)s(g, n). (13.2)
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Here we have writteX = X; + X, € €@ p. (The subscriptin X, in (13.2) is actually superfluous,
because we identify* with p°® C g*.) In the expressioiX(s"), we viewX as a left invariant
vector field onG, acting on the functios”. Note that all tangent vectors My, (G x N) are
of the formXg + vnh = (9, X,Vn) € TgG x TaN, and therefore the above formula determifes
uniquely. We claim thaf] is aK-equivariant connection dnwith the right curvature, so that it
induces a connectioi™ on L® with curvaturew.

Lemma 13.1. The formula(13.2)defines a connection on L.

Proof. The Leibniz rule ford follows from the fact that fof € C*(Gx N), X € g, ve X(N),
g€ Gandn e N, one has

(v+X)(f)(g,) = v(fg)(n) + X(f)(9).
Linearity overC®(G x N) in the vector fields follows from the fact that, with notatias

above,
(F(v+X) gm = (F™%) g+ (fgv) (n).

Locality is obvious. O

Properties of the connection]

Let (—, —)L be the Hermitian metric oh given by

(@D (d.1) = (1,1
forallg,g € Gandl,l’ € L}.
Lemma 13.2. The connection] is Hermitian with respect to this metric.
Proof. Letst e T°(L), X € g, ve X(N),ge G andn e N be given. Then
(Ovixs,t), (g,n) + (s,Ovyxt), (g,n) =
((BVsg) (), (g )) + (s(@:m), (Tu'tg) (M)
+(X(s")(9),t(g.n)_+ (s(a,n), X(t")(9)) .
+ (2mi %, (n)s(g,n),t(g,n)), + (s(g.n), 21 Y (n)t(g,n)), .

By sesquilinearity of —, —)|, the last two terms cancel. And sinc& is Hermitian, we are left
with

=

V((S7t)|-) (97 n) +X ((S7t>L) (97 n) = (V+ X) ((Sat)L) (97 n)7
which shows thaf] is indeed Hermitian. O

Next, we compute the curvature @f
Lemma 13.3. The curvature R of O is given by
RD(V+X7W+Y)(g7n) =2 (VI’\(V7W) - <¢N(n>7 [XvY]?>)7

forall X,Y € g, vwe X(N),ge G and ne N.
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Proof. We compute:

(DV+X|:|W+YS) (9,n) =
(0N Olsy) (M) + 00 (' — (Y$7)(g)) ()
+X(d — (Ohsy) (M) (g) + 27 & (n)(Xs)(g)
+ (XY $)(9) + 27 (V(PY )sy) (n)
+ 27 (Y O'sg) (n) + 271 (D, OlVsg) ()
— 4 (df O sg) (n) + 271 OF (n)Y(s")(9).

(13.3)

In this expression, the following terms are symmetrig A X andw+Y:
o 27 Ol (n)(X$")(g) + 271 DY (n)Y (") (g);
o 27 (& CW'sg) (n) + 271 (@, Chisg) (n):
o —4m(df ollsy)(n).

Furthermore, note that

I = (Y (@) = DV — &

it s(exp(—tY)g,n))(n)

t=0

d
T (Dysexp(ftY)g) (n)
t=0

—Y(g - (@) () @)

Therefore, the following term in (13.3) is also symmetrivi X andw+Y:

O (W (Y€) (@) (n) + X (¢ — (Olsy) (M) (9).

We conclude that in the commutatafy. x, Owy], most terms in (13.3) drop out, and we are
left with

(I0vsx; Owsv]s) (g,n) = ([0, O] sg) (n)+ (1X, Y1) (9)- (13.4)
On the other hand, note that as vector fields@®r N, the Lie bracketgX,v] and[Y,w]

vanish. Therefore,
V+X,w+Y] = [X,Y]+[v,w],

so that

(D[v+x,w+Y] 5) (g,n) = (D[X7Y]+[v,w] S) (g,n)
= (OfwSo) (M) + ([X,Y]8") (g) + 27 ®fy v, (n)s(g, n) (13.5)
Finally, taking the difference of (13.4) and (13.5), we aibta
(Ra(V+X,w+Y)s)(g,n) = (Ron (v, W)sg) (n) — 27 Dy 1, (g, n)
=27 (Vn(VmWn) - <¢N<n)7 [X7Y]E>)S(g7 n)'
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It remains to show that the connectighinduces the desired connectia! on L®. This
will follow from K-equivariance of].

Lemma 13.4. The connectiori] is K-equivariant in the sense that for all X g, ve X(N),
keK,sel*”(L), ge G and ne n, we have

k- (DV+xS) = Ukax)K-s.

Proof. By definition of the connectiofl, we have

(k- (Buixs)) (g.m) =
k- (@) () + k- (XS ™)(gK)) + @ (k- (s(glo k). (13.6)

We examine this expression term by term.
By K-equivariance oflN, the first term in (13.6) equals

k- (B sgi) (k) = (k- (B'sgi)) ()
= (DEVK'SQK) (n)
= (DEv(k‘s)g) (n)

The second term equals

K- (X(& ) (gk) = k- &

51| s(akexp(tX), k~In)

t=0

x4 s(gexp(t Ad(k)X)k,k~1n)
dt|,_o

— k- (Ad(K)X(s<™).

Furthermore, note that for ajle G andn € N, we have

(Ad(K)X) g, n(9:N) = % L (exp(t Ad(k)X)g,n)

_ (E
dt|,_o

= (T 1k (X 19),0)

= (k- (Xexn))(9.n).

kexp(tX)k1g, o)

Finally, by K-equivariance ofbN, the last term in (13.6) is

(@ (k~n), Xe)k- (s(gk k™)) = (®"(n), Ad(k)Xe) (k- s)(g, ).

Therefore,
(k (DVJrXS)) (g7n) = (Dk-X-i-k-Vk‘ S) (gv n)'



13.1 FREQUANTISATIONS 173

We now defineddV via the isomorphismy in (13.1). Note that by Proposition 12.1 and
Lemma 12.2, we have

I

X(M)2T?(GxkN,Gxk (TNxp))

~T°(GxN,Gx TNxp)K

CT®(GxN,(Gxg)xTN)K

= X(Gx N)K
We will write j : X(M) — X(G x N)K for this embedding map. Fav € X(M) ands < (L)X,
we define the connectidi™ by

Ow gL (s) := Y (Ojw)S)-

Becauses and j(w) areK-invariant, and] is K-equivariant, we indeed have; s € (LK,
the domain ofy. .

It now follows directly from the definitions and from Lemma3.1, 13.2 and 13.3 thai
is a Hermitian connection oo with curvaturew.

Induction and restriction

The induction and restriction procedures for line bundlesctibed above are each other’s in-
verses (modulo equivariant line bundle isomorphismshgaigh this does not include the con-
nections on the bundles in question:

Lemma 13.5. (i) Let N be a K-manifold, andy: EN — N a K-vector bundle. Then

(Gxk EN)|g = EN,
with N as in(12.9)

(i) Let M be a G-manifold, ® — M a G-vector bundle. Let N M be a K-invariant
submanifold, and denote the restriction df'Eo N by EY. Let¢ : G xx N — M be the map
$#[g,n] =gn. Then

¢*EM = G xk EN.
Proof. (i) Note that
9.V € G xk EN; [9,qV (v)] = [e,n] for ann € N}

eVl € GxkEYve EN}

(i) Note that
¢*EM = {([g,n],v);g€ G,ne N andv e EJ}.

The map([g,n],v) — [g,V] is the desired vector bundle isomorphism oBtek EN. O

For our purposes, it does not matter that this lemma saysngp#bout connections that
may be defined on the vector bundles in question, becausk-tiemology classes defined
by Dirac operators associated to such connections are lbpmatvariant. In our setting, the
vector bundle isomorphisms in the proof of Lemma 13.5 daintiee the metric§—, —) .~ and
(—,—)Lv on the respective line bundles.
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13.2 Spirf-structures

Because we want to compare the Dirac operator$loand N, we now look at induction of
Spirf-structures. As before, we consider a semisimple gi@upith maximal compact sub-
groupK, and aK-manifoldN. We form the fibred produdl := G xk N, and we will show how
aK-equivariant Spiftstructure orN induces a-equivariant Spiftstructure orM. It will turn
out that the operation of taking determinant line bundlésrtwines the induction process for
Spirf-structures in this section, and the induction process fequantum line bundles in the
previous one.

General constructions

The construction of induced Sﬁhst,ructures we will use, is based on the following two facts,
of which we were informed by Paldmile Paradan.

Lemma 13.6.For j = 1,2, let Ef — M be a real vector bundle over a manifold M. Suppose
E; and E; are equipped with metrics and orientations. LetP M be aSpirf-structure on E,
with determinant line bundlejl.— M. Then there is &pirf-structure P— M on the direct sum
E1 @ E, — M, with determinant line bundlejl® Lo.

Proof. Letr;j be the rank oEj, and writer := ry +r,. Consider the double covering map
1T: Spirf(r) — SO(r) x U(1),

given by[a, z — (A (a),z), whereac Spin(r), ze U(1), andA : Spin(r) — SO(r) is the standard
double covering. Consider the subgroups

H’:=S0(ry) x SO(rz) x U(1)
of SO(r) x U(1), andH := rr1(H’) of Spirf(r). Noting that
H' = (SQ(r1) x U(1)) xy() (SOr2) x U(1)),

we see that
H = Spirf(ry) xy(1) Spirf(rz).

Let Py xy1) P2 be the quotient oP; x P, by the U1)-action given by
2(p1, p2) = (P1z P2z V),
for ze U(1) andpj € P;. Define
P:= (PLxy(1) P2) xn Spirf(r).
Then we have naturally defined isomorphisms

P % spire(r) R" = (P1 xy(1) P2) XH (R G R"?)

= (P xspirf(ry) R™) @ (P2 X spirf(r,) R"?)
=2 E1pE,.
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The determinant line bundle &fis
del(P) = (P]_ XU(1) P2) xy C,

whereH acts onC via the determinant homomorphism. Note that, forlal= [hy,hy] €
Spirf(r1) xyy) Spirf(r2) = H, we have déh) = det(h;) det(hy). Using this equality, one can
check that the map

(P xua) P2) xH € = (P1 Xspirf(ry) C) ® (P2 X spirf(ry) C).
given by
[P1, P2,Z — [P1,Z @ [p2, 1],
defines an isomorphism d&) = det P;) ® det ). O
Lemma 13.7.Let G be a Lie group, acting on a smooth manifold N. LetH5 be a closed
subgroup, and consider the fibred productMG xy N. Let BY — N be an oriented H-vector
bundle of rank r, equipped with an H-invariant metric. Thas,in Section 13.1, we can form

the G-vector bundle
EM:=GxyEN - M.

If PN — N is an H-equivarianSpirf-structure on E, then® := G xy PN is a G-invariant
Spirf-structure on B, If LN — N is the determinant line bundle of\Pthen the determinant
line bundle of M is G x LN.

Proof. The first claim is a direct consequence of the fact that thermebfH and Spifi(r) on
PN commute. For the same reason, we have

del(PM) = (G XH PN) XSpirF(r) C
=G x (P" xspir(r) C)
:GXH LN.

An induced Spirf-structure

Let a K-equivariant SpifrstructurePN on N be given. To construct &-equivariant Spif
structure orM = G xk N, we recall that, by Corollary 12.3,

TM = (pgT(G/K)) @ (G xk TN), (13.7)

with pgx : M — G/K the natural projection. As in Section 6.2, we assume thahtreo-

morphism Ad K — SO(p) lifts to a homomorphisnd : K — Spin(p). ThenG/K carries the
natural Spin-structure
PC/K .= G xk Spin(p),

whereK acts on Spifp) via Ad.
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Lemma 13.8. The principalSpirf(p)-bundle
PS/K = G xk (N x Spirf(p)) — M
defines &Spirf-structure on Q/KT(G/K). Its determinant line bundle is trivial.

Proof. We have
G xk (N x Spirf(p)) xspirf(p) P = G xk (N x p)
= pg/k (G xkp)
= pe/k T(G/K).

Note that the determinant homomorphism is trivial on thegsabp Spirtp) < Spirf(p),
and thatAd(K) < Spin(p). Therefore, the action &€ on C, given by the composition

K 2%, Spin(p) — Spirf(p) 25 U(1),

is trivial. We conclude that
det(PS*) = G xk (NxC) 2 M x C,
as claimed. O

Using the decomposition (13.7) @fM, and the constructions from Lemmas 13.6 and 13.7,

we now obtain a SpfastructureP™ — M on M, from the Spiﬁ-structuresF’,\(,\’l/K — M and
PN — N. Explicitly,

PM := (G xk (N x Spirf(p))) xu1) (G xk PV) xn Spirf(dw).

By Lemmas 13.6 and 13.7, and by triviality of ajag/K), we see that the determinant line
bundle ofPM equals
det(PM) = G xk det(PV).

In particular, if the determinant line bundle BY is a Spiri-prequantum line bundle?’ — N,
then
det(P) = G xx L% =L? (13.8)

is the Spifi-prequantum line bundle avi constructed in Section 13.1.



Chapter 14

Quantisation commutes with induction

Our proof that quantisation commutes with reduction for isemple groups is a reduction to
the case of compact groups. This reduction is possible Becaifuthe ‘quantisation commutes
with inductiori result in this chapter (Theorem 14.5). Itis analogous tedrem 7.5 from [63].
After stating this result, we show how, together with thergisation commutes with reduction
result for the compact case, it implies Theorem 6.13. Ouofpttwat quantisation commutes
with induction is based on naturality of the assembly magHerinclusionK — G (Theorem
9.1). This proof is outlined in Section 14.4, with detailgagi in Chapter 15.

14.1 The setCSEHamP85) and CSEHamP )

We first restate the results of Chapters 12 and 13 in a way titlallew us to draw a ‘quanti-
sation commutes with induction’ diagram.

Definition 14.1. The set SEHam) of Hamiltonian G-actions with momentum map val-
ues in thestrongly elliptic set, with Spirf-prequantisations, consists of classes of sextuples
(M, @, ®M 2@ (— ) 20, 0M), where

e (M, w) is a symplectic manifold, equipped with a symple@iaction;
e ®M: M — g* is a momentum map for this action, a®d' (M) C gZg
e (L%, (—,—)20.0M) is aG-equivariant Spifrquantisation ofM, w).

Two classegM, w, M, L2%, (—, —) 20, M andM’, o/, &V, L2 (— —) 4, O] of such sex-
tuples are identified if there is an equivariant symplectgghism¢ : M — M’ such that/)*tb'\"/ =
OM, L2 =129 and¢*(—, —) 20 = (—, —)L20. We do not requirep to relate the connec-
tionsOM andOM' to each other. For the purpose of quantisation, it is enolbgtitrelates their
curvatures by *R-w = Rgw, which follows from the facts thap is a symplectomorphism, and
thatOM andOM’ are prequantum connections.

Analogously, SEHamX ) is the set of classgdl, v, ®N, L%V (—, ) 2v,ON], where(N, v)
is a HamiltonianK-manifold, with momentum ma@N, with image int%, and (L?", (-, -
)L2v, ON) is aK-equivariant Spifiprequantisation ofN, v). The equivalence relation between
these classes is the same as before.

177



178 (HAPTER 14. QUANTISATION COMMUTES WITH INDUCTION

Using this definition, we can summarise the results of Sestik®.2, 12.3, 12.4 and 13.1 as
follows:

Theorem 14.2.There are well-defined maps
H-Ind$ : SEHamRK) — SEHamRG)

and
H-Cros§ : SEHamRG) — SEHamRK),

given by
H-IndZ [N, v, N 12V (— =) 2, 0N = M, 00, &M 129 (— ), 20, O]
as in Sections 12.2 and 13.1, and
H-Crosg[M, w, ®M L2 (— —) 20, M) = [N, v, ®N L? (—, =) 20, ON]
as in Sections 12.3 and 13.1. They are each other’s inverses.

To state our ‘quantisation commutes with reduction’ resuét need slightly different sets
from SEHamPG) and SEHamK). For these sets we only have an induction map, and we do
not know if it is possible to define a suitable cross-secti@pm

Definition 14.3. The set CSEHamRS&) of cocompactHamiltonian G-actions on complete
manifolds, with momentum map values in titeongly elliptic set, with Spirf-prequantisations
and Spifi-structures, consists of classes of septufiésw, ®M, %%, (—, —) 20, M, PM), with
(M, e, @M L2@ (— ) 2,,0M) as in Definition 14.1M/G compact, an®PM a G-equivariant
Spirf-structure orM, such that

e M is complete in the Riemannian metric induced®;
e the determinant line bundle & is isomorphic td_®.

The equivalence relation is the same as in Definition 14.2rd@ s no need to incorporate
the Spift-structures into this equivalence relation, besides tinglition on the determinant line
bundles of these structures that is already present.

The set CSEHamR8) is defined analogously. In this case, the condition thaK is
compact is equivalent to compactnesNof

For these sets, we have the induction map
H-Indg : CSEHamP& ) — CSEHamPE&G), (14.1)
with
H-IndZ[N, v, ®N 12V (=, =) 2, 0N, PN] = M, 0, &M 129 (—, ) 20, OM PM],

as defined in Sections 12.2, 13.1 and 13.2.
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14.2 Quantisation commutes with induction

Consider an elemerM, w, ®M ?© (— —) 20, OM PM] € CSEHamP$G). Using a connec-
tion on the spinor bundle associated®, we can define the SgifDirac operato@k,lzw onM,
as in Section 3.4. In Definition 6.2, we defined the quantsatif the action ofc on (M, w) as

the image of th&k-homology class dﬁ,';,,zw under the analytic assembly map:

Q\/|(M,C{)) = “I\%[ k/lzw]'

as we noted before, this definition does not depend on theelwdiconnection on the spinor
bundle.

Definition 14.4. The quantisation map
QS : CSEHamP&G) — Ko(C;'(G))

is defined by
Q\(;jl [M,(U, cDM? L2w7 (_7 _)L2w7 DM7 PM] = Ula [ k/lzw:| :
Analogously, we have the quantisation map

QY : CSEHamP®&K) — Ko(C'K)

given by
Q\}§I[N7 V7¢N7L2v7 (_7_>L2V7 DN7 PN] = I’llr\l< [ Il:lzv}7

which corresponds tbi-indethzv € R(K) by Proposition 5.17.

Using the Dirac induction map (6.10) and the Hamiltoniaruictcbn map (14.1), we can
now state the following result:

Theorem 14.5(Quantisation commutes with inductionhe following diagram commutes:

CSEHamPEG) 2 Ko(CH(G)) (14.2)
H-IndET TD-Ind(K;
CSEHamP&K) — . R(K).

This is the central result of Part IV. We will outline its pfdn Section 14.4, and fill in the
details in Chapter 15.

14.3 Corollary: [Q,R] = 0 for semisimple groups

As announced, we derive Theorem 6.13 from Theorem 14.5 afdt¢hthat Spifrquantisation
commutes with reduction in the compact case (Theorem 3.38).
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Proof of Theorem 6.13.et G, K, (M, w), PM =, L?? =L, (—, —) 20 = (—, =)L andM = O
be as in Theorem 6.13. Set

(N,v,®N L2 (= =) 20, 0Y) := H-Cros§ (M, o, ®M 129 (—, —) 20, OM).

Let PN — N be aK-equivariant Spifrstructure orN, with determinant line bundle?”. Let
PM — M be the induced Spfrstructure orM, as described in Section 13.2. Since the determi-
nant line bundle oPM is L2%, by (13.8) and partii) of Lemma 13.5, we have the elements
[N,v,®N L% (- =) 20, 0N, PN] € CSEHamP&K);
M, 0, ®M 12 (= =) 20, M, PM] € CSEHamPEG).

By Proposition 12.15, we have
H-IndZ[N, v, ®N 12V (= =) 2, ON, PN = M, @, @M 129 (— ) 20, OM PM].

Now let 7# andA be as in Theorem 6.13. Then by Theorem 14.5, Proposition &nil7
Lemma 6.9, we have

Z 2w Z . 2v
RY opG By | = RE oD-IndZ(K-indexiy, )
= (—1)9ME/K [K-indexy V.-

Because Spfaguantisation commutes with reduction for the actioiKadn N (Theorem 3.38),
we have

. 2v
[K-index@y Vi _p] = Qv (Ny, @)

if —iA € ®N(N), and zero otherwise. Recall tHét= (CD'V')_l(E*), so that-iA € ®N(N) if and
only if —iA € ®M(M). Furthermore, note th&, c K forall v € %\ ncw, so thaG, =K, for
suchv. ThereforeN, = M, , which completes the proof. O

14.4 Outline of the proof

The most important ingredient of the proof of Theorem 14.Bhsorem 9.1, ‘naturality of the
assembly map for the inclusion &f into G'. The reason why this theorem helps us to prove
Theorem 14.5 is the fact that the map K-fﬁhthat appears in Theorem 9.1 relates the Dirac

2 2
operator§Jy, ’ and),';,,w to each other:

Proposition 14.6.The map(-lnd‘,f maps the K-homology class of the operzﬁzthzrV to the class
|_2w

of By -
Combining Theorem 9.1 and Proposition 14.6, we obtain afmbdheorem 14.5:
Proof of Theorem 14.9.et

x=[N,v,®N 1% (- —)2,0N, PN] € CSEHamP)
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be given, and write
M, 00, ®M 12 (=, =) 20, OM, PM] := H-IndZ (x).
Then by Proposition 14.6 and Theorem 9.1,
2w
QU (H-Ind@(x)) = 147 [Py
= G oK-IndgpK "]
= D-IndZ ol BY "]

= D-Indg (Q; (x)).

It remains to prove Proposition 14.6. This proof will be giva Chapter 15.
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Chapter 15

Dirac operators and the mapK-Indg

~| 2w
This chapter is devoted to the proof of Proposition 14.6. Wedsfine an operatd?k,I whose

K-homology class is the image of the clasﬁihzfv under the map K-In@. Then we prove some

w ~| 20
general facts about principal symbols, and finally we ussdliacts to show thajk,,2 and)k,I
define the same class ikrhomology, proving Proposition 14.6.

Throughout this chapter, we will consider a class
[N,v,®N L% (=, =) 2, 0N, PN] € CSEHamP&K),
and we will write

[M,(A),CDM, L2w7 (_7 _)L2w7 DM7PM] =
H-IndZ[N, v, ®N 12V (-, —) 2, 0N, PN] € CSEHamPEG).

15.1 Another Dirac operator onM

: : ~| 2@ . : : : :
Let us construct the differential operalj; mentioned in the introduction to this chapter. Just
like the Spirf-Dirac operatofbk,,z“’, it acts on sections of the spinor bundle

yM = PM XSpinc(dM)AdM — M, (151)

associated to the SgustructurePM defined in Section 13.2.

~| 20
In the definition of the operatﬁt,'{,, , we will use the following decomposition of the spinor
bundle.”M:

Lemma 15.1. We have a G-equivariant isomorphism of vector bundles over M
IM 2 ((Gx Dg,) RN /K,
where K acts orfG x Ay, ) X.7N by
k-((g,8) @sV) = (gk 1, Ad(k)3,) @ k- sV,
forkeK,ge G, g, € Ag, and &' € N,
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Proof. We have the following chain of isomorphisms:

IIZ

GXKP )) XH Adp®AdN

12

(R
(P X Spirf(dy) Adp) (G x PN X spirf (d) AdN) (15.2)
(Gx N xAg,)/K®(Gx.7N)/K

= ((Gx Ag,) ®IN) /K.

I

The first isomorphism in (15.2) is induced by tHeequivariant isomorphisig,, = Ag, ®
Dy, -
The second isomorphism is given by

(o< [0, PN, & @ 3] [Py <. &) @ [g, V], &),

v geG, pNePV, 5, €Ay anddy € Ag.

The third |somorph|sm is the obvious one, given the defin;c_tiofP,\ﬁ'/K and.#N.
Finally, the fourth isomorphism is a special case of the isgrhism

for all pG/K pC/

E/GoF /G~ (E®F)/G,

if H is a group acting freely on a manifoM, andE — M andF — M areG-vector bundles.
Explicitly, the isomorphism (15.2) is given by

[[9.n.al,[g, "], &, ® &n] — [(9,a8) ® [V, &n]]
forge G,ne N, ae Spirf(p), p" € P, §, € Ay, anddy € Aq,. O

Next, IetDQK be the operator defined on page 122, and consider the operator

Pox ©1+10DY :T2(GxN,(GxAq)KN) - T(GxN,(GxAg)KN),

which is odd with respect to the grading on the tensor pro@8ct Aq, ) X N induced by the

. 2 . . .
gradings or\g, and.#N. Because the operatcﬁ)('s_,,?K andDh ’ areK-equivariant, we obtain an

operator
~L2
= Pox®1+ 1®DN) (15.3)

on

(G xN,(GxAg,) KN == (M, ((GxAag)K.Nw) /K)
(M7‘§ﬂM>7

IIZ

by Proposition 8.6 and Lemma 15.1.
~| 2w
The importance of the operaibk,, lies in the following fact:

Y ~| 20
Lemma 15.2. The image of the clas{@k,z ] € K&(N) under the mag-Indg is the class dﬁk,'
in KE(M).
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Proof. By Theorem 10.8.7 from [34],the Kasparov produdBg ] x PL'] e KS*KK(G x
N) is the class of the operatg « @ 1+ 1®Dh2U on (G x Ag,) X N, It then follows from

~| 2w
Corollary 8.11 that the latter class is mapped to the cla3|§?,|of O

~ 20 n
Therefore, Proposition 14.6 follows if we can prove tﬁé; andEDk,,2 define the same
K-homology class. We prove this fact by showing that theingipal symbols are equal (see
Remark 4.34).

15.2 Principal symbols

This section contains some general facts about the prinsymabols of differential operators
that are constructed from other differential operators.esehfacts may be well-known and
straightforward to prove, but we have included them heredonpleteness’ sake.

Tensor products

First, letX andY be smooth manifolds, and |& — X andF — Y be vector bundles. Let
De:I”(E) — I'*(E) andDg : T'*(F) — '(F) be differential operators of the same order
d. Consider the exterior tensor proddeK F — X x Y, and letD := Dg ® 1+ 1® Dg be the
operator o *(EX F) given by

D(sXt) = DgsXt + sX Dgt,

forse '”(E) andt € F*(F).
As before, we denote the cotangent bundle projection of afoldiM by 5. The principal
symbols of the operatoBg, Dr andD are vector bundle homomorphisms
Ope : TE — TRE;
Ope : TxF — T4 F;
Op : Ty (ERF) — 78y (EXIF).

Let
0:my, v(EXF)— iyEXRTHF
be the isomorphism of vector bundles o¥er(X x Y) = T*X x T*Y given by
0((&.n), (e f))=(&,0)@(n,f),

forxe X,yeY,{ e TyX, n € TyY, ec Exandf € K. The first fact about principal symbols
that we will use is:

1This can also be seen in the unbounded pictutéotheory.
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Lemma 15.3. The following diagram commutes:

n;k(xY(EgF> % n;k(xY(E&F>

elg elg

o E X T F . E K.

—_—
Opg ®1+1®0p

Proof. Letg e C*(X),he C*(Y),se'(E) andt € '*(F) be given. Lefpx : X xY — X and
py : X xY — Y be the natural projections. Then we have the funcfipg+ pyh € C*(X xY).
Letx € X andy € Y be given. Seti :=dy ) (pxg+ pyh) € T&y)x x Y. Note that all elements
of this cotangent space can be written in this way (for ceffianctionsg andh). We compute:

Ob (U, S(X) @t(y)) =
(u,AIianA—l(je‘i’\(p;g+p¢h)D(eiA(p;g+p¢h)5®t)(Xay>) —
(“7,\|Enw)\id [(e“"9®e‘”‘h)(DE (€19s) Pt 4 195K D (e"‘ht)} (xy)) =
(1, 00¢ (4@, S(X)) D1 (y) +5(X) @ O (dyh,(y)).
In other words,
6 0 gp o 871((dg, (X)) @ (dyh,t(y))) = (0pe ® 1+ 1@ 0p; ) ((dkg, S(X)) @ (dyh,t(y))).
U

Pullbacks

Next, letX andY again be smooth manifolds, andd¢gtE — Y be a vector bundle. Ldt: X —Y
be a smooth map. (We will later apply this to the situatioa Gx N,Y =M, E = Mg 2%,
and f the quotient map.) LeDg be a differential operator oR, of orderd. Let Ds+g be a
differential operator on the pullback bundiéE with the property that for abe M (E),

Df*E(f*S> = f*(DES>.
Consider the vector bundle
f*(TY®SE) — X.
It consists of triplegx,&,e) € X x T*Y x E, with f(x) = (&) = q(e). Using this vector
bundle, we write down the diagram

ODE

mE mE (15.4)
f*(T*Y @ E) e f*(T*Y ® E)

| e

Dxg

& (f'E) ——— m(f"E),
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where for all(x,&,e) € f*(T*Y @ E),

ax,&,e):=(¢&,e)
b(x,&,e) = ((Txf)"€,x€)
Ope (X, €,€) := (X, 0p: (€, €)).

Lemma 15.4. Diagram(15.4)commutes.

Proof. The upper half of diagram (15.4) commutes by definition ofrtte op, .
To prove commutativity of the lower half, lete X, ¢ € C*(Y) andse I'(E) be given.
Then

0D ¢ (0(X A1 9.8(f(x)))) = e (TxF) i @, %, 8(F(x)))

OD e (dx(f*¢), (f*s)(x))
1

= (dy( I|m \ 5d (e 0D gd 0 175) (x))
— ((1"¢), lim 1d (f*(e"*Dee?s)(x))

— (dX I|m i(x, (e‘iA"’DEeMS)(f(X)))
= ((Tx ¢ XUDE(dfx¢ s(f(x))))

= b(0pe (X df X))))-

O

Rather than diagram (15.4), we would prefer a diagram witirectlvector bundle homo-
morphism fromrg E to 5 (f*E) in it. It is however impossible to define such a map in general.
The best we can do is to define it for each poisgt X separately: let

(boa ™ )x: WE[r; v — M (F°E)lmx

be the map
(boa )x(&,€) = ((Tf)*E,e).

Using this map, we obtain the following statement, whiclcisially equivalentto Lemma 15.4.

Corollary 15.5. For all x € X, the following diagram commutes:

E|T*
WEl v WElr v
l(boal)x l(boa )x
0Dy ‘T;X
15 (fE) [1yx ———— T5(F*E) |1

One last remark that we will use later, is that the mépsa 1)y are injective if Txf is
surjective. So iff is a submersion, alboa 1), are injective.
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~ LZOJ

15.3 The principal symbols of;DM andD},,

Let g\ andgV be the Riemannian metrics ot and M, respectively, induced by the Spin
structuresPN andPM. We use the same notation for the mgth: TM — T*M given byv —

g (v, —), and similarly forgN. The Dirac operatoﬁ,'\',lzw andz,';fv have principal symbols
G20 75 — oM
T2 75N — N,

given by the Clifford action (3.10):

G20 (£,8") = (& cm(i(@") (8))s"); (15.5)
a2 (n,8") = (n,crn(i(d") 7 (m))sY),

formeM, & cT:M, Me.sMandneN, n e TN, N e 7N,
~| 20
To determine the principal symboll@J(,I , we need the following basic fact:

Lemma 15.6. The principal symbol of the operatﬁhK on the trivial bundle G<Aq, — G is

given by
%G,K(g’é’ép) = (9757%0513*)59)7

forge G,§ € g and g, € Ag,. Herey- is the component of in p* = £0 according tog* =
p° @ €0, and we identifyp* with p, andp with R%, using a B-orthonormal basigX, ..., Xy, }
of p.

Proof. Letg € G, f € C*(G) andt € C*(G,Aq,) be given. Then
1, . .
O (dgf,T(0)) = (g, lim (7D (¢ 11)(9)

= (dgf, I|m 1 Mfch X;)X;(€*'1))(g))-

This expression equals

—)00

<dgf lim A Zcp X;) |)\Xj(f)T+Xj(T)))(g)> - <dgf,iZcp(Xj)<dgf,Telg(Xj)>r(g)>.
J
Hence for all§ € g*, §, € Ag,, we have

Gy (0.8.8) = (9.8.1F &((€.%))X)) )
J
= (0.£.6()3).

since{X;} is a basis op, orthonormal with respect to the Killing form. O
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We are now ready to prove thak,,zw andlj,'{,,zw have the same principal symbol, and hence
define the same class Krhomology. This will conclude the proof of Proposition 14which
was the remaining step in the proof of Theorem 14.5. As we safeiction 14.3, the latter
theorem implies Theorem 6.13, which is our second maintesul

Proposition 15.7. The following diagram commutes:

VB IVBZ (15.6)

o~ o~

(G x Ag,) R.N) /K) — M 15 (((G x g, ) BN /K)

p*(T*M & ((G x Ag,) IN) /K) == o - P (T*M & (G x Ag,) IN) /K)
b b
TGN (P (G x Ag, ) IMN) /K) —— 1, (P*((G % Ay, ) K.N) /K)
h|= o , h|
T (G x gy BN K (G g, ) RN
0= 0|
T D1H190 ) 2y
(G x Ag, ) RN — N (G x Ag,) RN,

Here the isomorphism h is induced by the general isomorplgsfg/H) = E, as defined
in (8.8). The fourth horizontal map from the top is just defined as taposition o

(a ; ®1+1®ELZV) oh, i.e. by commutativity of the second square from the bottom
G,K N

Proof. It follows from Lemma 15.3 that the bottom square of (15.6howutes. Note that

v ~ 20
Pox®1+10DY )p's=p @y 9

for all se I (((G x Ag,) ®.N) /K) (see the sketch of the proof of Proposition 8.6). We can
therefore apply Lemma 15.4 to see that the second and thirakesg) in (15.6) from the top
commute as well. We will first show that the outside of diagrd.6) commutes, and then
deduce commutativity of the top subdiagram.

Letge G,neN, n € TyN, & e p*, pN € PV, §, € A, anddy € Ag, be given. Then we
have the element

((g,n),[9.1.€1,[(9, %) @ [PN,&n]]) € p*(T*M & ((G x Ag,) K.#N) /K). (15.7)

Here we have used Proposition 12.1 and Lemma 12.2. Applhegnapa and the (inverse of
the) isomorphism in the upper left corner of (15.6) to theneént, we obtain

(19,0, (19 . espirep)). [0, PN, & @ On] )
e 153 (RS'X xu) (G xk PY) xh Ag, ©0g,) = T3.#M. (15.8)
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Hereegpirf(y) i the identity element of Spfip).
Let { € (R%W)" be the covector such thgte T*N corresponds tdp™, {] € PN x gpir(ay)
(R9N)". Thenaszw applied to (15.8) gives
M

([9,1, &1, (9.1, espire(p)] [0 PV Cppan (1€, 0) (S @A) ),

where we identify(]RO'Nyk ~ R using the standard Euclidean metric, aric p using the
Killing form. By definition of the Clifford moduleg\ (see e.qg. [22], page 13), this equals

([97 n, 6]7 Hgv n7eSpirf(p)]v [g, pN]7CP(i€)5P ® 6N + qﬁ' ®CRdN (IZ)adND

(This is the central step in the proof of Proposition 14.6.)
The image of the latter element under the mépso (bo a—l)(gvn) is

((9.8),(8,6(i8)&)) @ (n,[p", &) + ((,£).(9.8)) @ (1, [P", Cren (1)),

which by Lemma 15.6 equals the image under the map

(%GK®1+1®OQL2V) OeOhOb
' N

of (15.7). Therefore, the outside of diagram (15.6) commute

Now note that for al{g,n) € G x N, the compositio o ho (bo a*l)(gyn) is injective, because
pis a submersion (see the remark after Corollary 15.5). ®ut fogether with commutativity
of the outside of diagram (15.6), implies that the top paftléf6) commutes as well. O



Samenvatting in het Nederlands

Een van de nadelen van het promoveren in de wiskunde is dabjeaver je werk kan praten
met mensen die niet weten wat bijvoorbeelddéheorie van eeR*-algebra is (ze weteniet
wat ze missef). Aan de andere kant geeft dat je werk ook wel een soort nigstar charme
(toch...?). Inieder geval ga ik in deze samenvatting tooh@ren om iets over mijn onderzoek
te zeggen dat ook begrijpelijk is voor mensen die geen widkgestudeerd hebben. Ik ben er
al vier jaar over aan het nadenken hoe ik dat het beste karaklegam en uiteindelijk heb ik
besloten dat ik de titel van mijn proefschrift ga uitleggan ae hand van een voorbeeld.

De Nederlandse vertaling van de titel van mijn proefsclisiftkwantisati€ commuteert
met reductie voor cocompacte Hamiltonse groepsacties.tEéelijk cryptische zin voor de
meeste mensen. Het belangrijkste deel van die titel is msteestuk: “kwantisatie commuteert
met reductie”. Ik zal die woorden uitleggen aan de hand vanae#o op de snelweg, zoals in
Figuur 1.

100 km/u P
Y e S () S
j L
200 km

Figuur 1: Een auto op de snelweg

Kwantisatie

Eerst het woord ‘kwantisatie’. Dat betekent dat je van denade, klassieke beschrijving van
een situatie de kwantummechanische beschrijving ervakimaa

Wat betekent dat in het geval van de auto? De klassieke bgsatpvan de situatie is wat
we allemaal gewend zijn. Stel, je rijdt in een auto en je viga@f hoe laat je thuis zal zijn.
Als je dan (zoals in Figuur 1) weet dat je 200 km van huis bemtjeel00 km per uur rijdt,
dan weet je ook dat je over twee uur thuis bent. Je kan ngtuurlide tussentijd in de file

2Zie paragraaf 4.2.
3Dat schrijf je sinds 1996 inderdaad met ‘kw’.
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komen te staan, of haast krijgen en 150 km per uur gaan rijgeay dat zou het verhaal een
beetje verpesten. De twee dingen die je moet weten zijnadiss je bent(hoe ver van huis
bijvoorbeeld) erhoe hard je gaatDie twee stukjes informatie, plaats en snelheid, noemen we
de klassieke beschrijvifgyan de situatie.

De kwantummechanica is de natuurkunde van de erg kleineedin@aarbij gaat het er
volkomen anders aan toe dan je gewend bent. Het belangrigkstt in de kwantummechanica
is dat je niet meer zeker weemar iets precies is, maar dat je alleenldmsweet dat iets hier
of daar is. Als je een auto op de snelweg op een kwantummesgttenmanier beschrijft, dan
weet je niet meer of je 190, 200 of 210 km van huis bent, maeealtlekansdat je nog zo ver
moet rijden, zoals bijvoorbeeld in Figuur 2. In dit voorlek&hn de auto op drie plaatsen zijn,

kans = 25% kans = 50% kans = 25%

IE S e S0 e 401 ;f“¢\ﬂ

P
I —
L]

Figuur 2: Een kwantum-auto

maar het kunnen er net zo goed twee, zeven of zelfs oneindigiye.

Dat is natuurlijk onzin, in het echt weet je best waar je bét.gaat ook alleen maar op
voor auto’s die kleiner zijn dan zeg @00001 mm. Dus zelfs met een Nissan Micra of een
Smart merk je er niets van.

De snelheid van de auto mogen we nu vergeten. Als je de katedireP weet van de plaats
van een auto, dan blijk je via een wiskundig trfapk de kansverdeling van zijn snelheid te
kunnen bepalen, maar dat laten we nu even zitten.

Wat betekent het woord ‘kwantisatie’ nu? Dat betekent datgeklassieke beschrijving
neemt, de verzameling vatie mogelijkeplaatsen en snelheden van de auto (zoals in Figuur 1),
en die vervangt door de kwantummechanische beschrijvimgedzameling vaalle mogelijke
kansverdelingen van de plaats van de auto (zoals in Figuur 2)

4In dit proefschrift komt vaak de term ‘symplectische véit (‘symplectic manifold’ in het Engels, zie Def-
inition 2.1) voor. Dat is min of meer de verzameling van allegalijke plaatsen en snelheden van een auto, een
knikker of wat dan ook. Dat een symplectische variéteitsteléM, w) heet betekent trouwens niet ddtvoor de
plaats staat e voor de snelheid. Plaats en snelheid zitten allebei ilMlien w is iets dat je kan gebruiken om
te bepalen hoe die auto of die knikker verder gaat bewegen.

SAls ik het in dit proefschrift over een ‘Hilbertruimte’ (‘Hiert space’) heb, dan is dat min of meer de verza-
meling van alle mogelijke kansverdelingen van de plaatseeamauto, een knikker, of iets anders.

8de Fourier-transformatie

"Er zijn verschillende wiskundige definities van kwantisafZie Definitions 3.15, 3.17, 3.20, 3.30, 6.1 en 6.2.
Degene die ik gebruikt heb zijn de meest algemene, Defisitioh en 6.2.
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Reductie

Nu het woord ‘reductie’. Dat heeft alles te maken mginmetrie Een gezicht is bijvoorbeeld

(bijna) spiegelsymmetrisch, en een appel (bijna) rotatiesetrisch. In het voorbeeld van de
auto kijken we naar een ander soort symmetrie. Stel dat je@®mosaai, symmetrisch polder-
landschap rijdt, met precies om de 100 km een boom en eenzieiBiguur 3). Dat landschap

100 km 100 km etc.

Figuur 3: Een klassieke auto in een symmetrisch landschap

blijft hetzelfde als je het 100 km opschuift. Met andere vaor: 100 km verschuiven is een
symmetri@ van het landschap. Als alle bomen en huizen er hetzelfdenitenminste, maar
dat nemen we even aan.

Als je je nu niet afvraagt wanneer je Ipguw huis bent, maar wanneer je lgignhuis bent,
dan hoef je niet meer te weten waar je precies op de weg zit; ati@@n hoe ver je van het
dichtstbijzijnde huis bent. Het maakt dan niet uit of je 1@ kerderop zit, of 200 km, etc.

Nu maken we even een denkstap. We zijn allemaal wel eens asatdweweest, en dan
vraag je je soms af “Ben ik hier niet al eerder langs geredeat?Vraagt de automobilist in
Figuur 3 zich ook af. Hij weet niet of alle bomen en huizen ezbkde uitzien, of dat hij in
een rondje aan het rijden is, zoals in Figuur 4. Hij weet ndijlsuwel of hij naar links moet

Figuur 4: De reductie: een ronde weg

sturen of rechtdoor rijdt, maar op een ronde weg van 100 krk jadret verschil toch bijna niet.
Figuur 4 heet déklassieke) reductiean Figuur 3. Of, om preciezer te zijn, de verzameling van
alle mogelijkeplaatsen en snelheden van een auto op de ronde weg in Figsutedreductie

8De termen ‘groep’ (‘group’), ‘groepsactie’ (‘group actipwof zelfs ‘Hamiltonse groepsactie’ (‘Hamiltonian
group action’, Definition 2.6) in dit proefschrift slaanexthaal op zulke symmetrieén. In dit voorbeeld igydeep
de verzameling van alle gehele getaltea ..., —1,0,1,2,3, ..., en degroepsactias het verschuiven van de weg
overn maal 100 km. Deze groepsactie blijkt Hamiltons te zijn.
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van de verzameling vaalle mogelijkeplaatsen en snelheden van een auto op de symmetrische
weg in Figuur 3.

Als er iets symmetrisch aan de hand is, dan kun je vaak net ed gaar een kleinere
situatie kijken, zoals de weg in Figuur 4 kleiner is (nankelipO km lang) dan de weg in Figuur
3 (oneindig lang). Die kleinere situatie heet dan de redligtin de symmetrische situatie. Het
is vaak makkelijker om met de reductie te werken dan met deegituatie, hoewel dat niet
direct uit dit voorbeeld blijkt.

Commuteert kwantisatie met reductie?

Nu komt alles samen dat we tot zover gezien hebben. Dat kanegainformatie tegelijk zijn,
dus dit is even een moment om goed op te letten.

Zoals ik al zei is centrale thema van mijn proefschrift de“Kmwantisatie commuteert met
reductie”. Die betekent dat eerst de klassieke reductieeneen daarvan de kwantisatie, het-
zelfde oplevert als eerste de kwantisatie nemen, en dadevewantum-reductié?

De reductie van Figuur 3 is Figuur 4. De kwantisatie van dikiotie is de kwantummech-
anische versie van Figuur 4, die in Figuur 5 uitgebeeld iser Bedoel ik eigenlijk weer de

Omtrek: 100 km

kans = ... kans = ...

Figuur 5: De kwantisatie van de reductie

verzameling van alle mogelijke kansverdelingen van detphzan de auto op de ronde weg.
Dit willen we vergelijken met de (kwantum-)reductie van degktisatie van Figuur 3. Die
kwantisatie ziet eruit als Figuur 6.

kans = ... kans = ...
. @ ® @
T i T 2 I o OCJE
kans = ... \] [] [] \] []

Figuur 6: Een kwantum-auto in een symmetrisch landschap

9Zie Definition 2.17.

1°0p de voorkant van dit proefschrift staat de afkort{@R] = 0 van de zin “Kwantisatie commuteert met
reductie”. In die afkorting stad) voor kwantisatie (‘quantisation’R voor reductie, efiQ, R voor het ‘verschil’
tussen eerst de reductie nemen en dan de kwantisatie erdedstantisatie nemen en daarna de reductie. Dat
verschil is niet echt goed gedefinieerd, §QsR] = 0 is een symbolische afkorting, en niet een echte formule.
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Maar wat is daar de reductie van? Dat is een moeilijke vraggwilin ieder geval dat
die reductie hetzelfde is als Figuur 5, zodat kwantisatteerdaad met reductie commuteert.
Maar de standaardmantérom de reductie van Figuur 6 te definieren is om de verzameling
te nemen van alle kansverdelingen die niet veranderen aks yerschuift over 100 km. Een
voorbeeld van zo’'n kansverdeling staat in Figuur 7. Dat ladeeeen onzinnige kansverdeling.

kans = 60 % kans = 60 %

***** e o R O
kans = 10 % ] kans = 10 %] [

Figuur 7: De reductie van de kwantisatie?

Alle kansen samen zouden namelijk precies 1 moeten zijny madéguur 7 zijn alle kansen
samen gelijk aan
60%-+ 10%-+ 60%+ 10%+ 60%-+ 10%+ - - - ,

en daar komt niet 1 uit. (Er komt zelfs ‘oneindig’ uit, wat alamaal nergens op slaat.)

Dus commuteert kwantisatie nu met reductie? In dit voorbaadten we niet eens wat de
reductie van de kwantisatie is, dus we kunnen de vraag @bptmiet goed formuleren. .. Dat
probleem wordt veroorzaakt doordat de weg die we bekijkexrmig uitgestrekt is, waardoor
een goede kansverdeling nooit hetzelfde kan blijven aleme hOO km opschuift, zoals we net
zagen.

Compact en niet-compact

lets dat oneindig uitgestrekt is, zoals de weg in Figuur 3men we in de wiskundeiet-
compact Voorbeelden van andere niet-compacte dingen zijn lijakxkken en oneindig lange
cilinders. Wél compact zijn bijvoorbeeld cirkels (zoaks weg in Figuur 4), boloppervlakken
en oppervlakken van autobanden, want die zijn begréhsd.

In de jaren '80 en '90 is er een hoop (wiskundig) onderzoelagadhaar de vraag of kwan-
tisatie commuteert met reductie, maar alleen als alles eotmp. (En dan blijkt het antwoord
“Ja” te zijn.) Omdat je in het niet-compacte geval problerkejgt zoals ik hierboven uitlegde,
was daar nog nooit naar gekeken. Mijn promotor Klaas Landsheeft een manier gevon-
den om ook in niet-compacte situaties de vraag of kwanésamimmuteert met reductie op een
wiskundig precieze manier te stell&h.De afgelopen 4 jaar heb ik geprobeerd om die vraag
voor zo veel mogelijk situaties te beantwoorden. In de sisgadie ik bekeken heb, is het
antwoord weer “Jal?

117je (3.15).

121k wek hier misschien de indruk dat ‘compact’ hetzelfde ket# als ‘begrensd’, maar dat is niet helemaal
zo. Een begrensd lijnstuk waarvan de eindpunten niet meeidd#jvoorbeeld niet compact. Als de eindpunten
wel meedoen is zo'n lijnstuk wel compact. Het cruciale vkilse dat een continue functie op een lijnstoiet
eindpunten altijd een maximale en minimale waarde aanneemtijl dat niet zo is voor een lijnstukonder
eindpunten. Denk bijvoorbeeld aan de fundti&) = )—1( op het lijnstuk]0, 1], dat bestaat uit alle getallen die groter
zijn dan 0 en kleiner dan 1.

13Zje Conjecture 6.4. (‘Conjecture’ betekent ‘vermoeden’.)
147Zje Theorems 6.5 en 6.13. (‘Theorem’ betekent ‘stelling’.)
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Ik heb dus naar niet-compacte snelwegen gekeken, zoalgumiF3, maar alleen als ze zo
symmetrisch waren dat hun reductie compact was, zoals diertregrensde weg in Figuur 4.
Dat is de betekenis van het woord ‘cocompact’ in de titel vain proefschrift.

Tot slot moet ik bekennen dat het voorbeeld in deze samamyatiet in mijn proefschrift
past, omdat de reductie in Figuur 4 toch eigenlijk niet coohfg De oorzaak daarvan is dat
een auto op een ronde weg wel elke snelheid kan hebben did.jgit is nu niet alleen
een wiskundige utopie, maar meer een algemeen mannelijlearmi¢e ik niet wil beweren
dat vrouwen geen wiskunde kunnen doen, of niet hard zoudienwijden natuurlijk.) Het
snelheids-gedeelte van Figuur 4 is daardoor wel oneindggsirekt, oftewel niet compact.
In Section 11.6 bekijk ik een variant van dit voorbeeld wgahnkt ook niet uitmaakt of je
bijvoorbeeld 80 km per uur rijdt of 180, of 280, etc. Dat hadtits meer met de realiteit te
maken, maar dan commuteert kwantisatie wel mooi met regitrcti

Maar wat heb je daar nou aan?

Als iemand iets over wiskunde schrijft of vertelt, dan ralakneestal snel mijn interesse kwijt
als ik niet snapvaaromje naar de wiskunde zou willen kijken waar het over gaat. Daadt
vaak weinig aandacht aan besteed, omdat het meestal kaosilip leggen is. Dat geldt ook
voor mijn proefschrift, maar ik wil toch een paar redenenmee waarom je het interessant of
nuttig kan vinden dat kwantisatie commuteert met reductie.

Ten eerste is het een test voor de definities van kwantisatreductie. Als kwantisatie
niet commuteert met de reductie, dan is er (vind ik) iets mé$ de definitie van kwantisatie
en/of reductie. Mijn begeleider Klaas Landsman heeft dédmibedacht van kwantisatie en
(kwantum-)reductie, en het is dus een goed teken dat meefii@ttes kwantisatie en reductie
inderdaad met elkaar commuteren, in de gevallen die ik karkbkb.

Ten tweede is het vaak niet makkelijk om de kwantisatie tealspvan een klassieke re-
ductie. Maar als kwantisatie commuteert met reductie, damjé&, in plaats van die klassieke
reductie te kwantiseren, net zo goed de hele situatie kaenetn (wat makkelijker is), en daar-
van de reductie nemen (wat ook te doen moet zijn).

De derde reden is voor mij de belangrijkste. Die reden is #atahtisatie commuteert
met reductie” een verband aangeeft tussemnvidkundeachter de klassieke mechanica en de
wiskundeachter de kwantummechanica. En de stukjes wiskunde dietiknbeist vind zijn
de stukjes die een verband aangeven tussen dingen die oprbiet gezicht totaal verschillend
lijken.

De stellingen in dit proefschrift zijn zo abstract dat nakundigen er (nog...) niets aan
hebben. Maar ze geven wel een verband aan tussen de wislahtdede klassieke mechanica,
die symplectische meetkunbeet, en de wiskunde achter de kwantummechanicaegdresen-
tatietheorieheet, of in mijn gevaK-theorie Die vakgebieden lijken niets met elkaar te maken
te hebben, als je niet weet dat kwantisatie commuteert rdectee. Dat er wél een verband is
tussen die onderwerpen is niet alleen mooi, maar zorgt evookdat we ze allebei beter gaan
begrijpen. En daar houden wij van, van dingen begrijpen.

15Zje diagram (11.14).
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Notation

Topological spaces

For any topological space, and any (continuous) vector bundteoverX,

e C(X): the space of continuous functions Xn

C¢(X): the space of compactly supported continuous functions;on

(E) =T (M,E): the space of continuous sectiongf

(E) =T¢(M,E): the space of compactly supported continuous sectio&s of

EXF: if F — Y is another vector bundle, the exterior product vector beiogerX x Y;

L2(X), L2(X,E): if X is equipped with a measure, the Hilbert spack®functions onX
and the Hilbert space @f-sections of a Hermitian vector bundieoverX;

X*: the one-point compactification &, if X is locally compact;

pt: the one-point space.

Smooth manifolds

For any smooth manifolt¥, and any (smooth) vector bundieoverM,
e C”(M): the space of smooth functions tdh

° M): the space of compactly supported smooth functionion

C*(
Ce(
e *(E) =T"(M,E): the space of smooth sectionskf
s (E) =TZ(M,E): the space of compactly supported smooth sectios of
QX(M; E): the space of smooth sections/fT*M @ E — M;

e QPI(M;E): the space of smooth sections RFIT*M @ E — M, if M is equipped with
an almost complex structure;

e X(M): the space of smooth vector fields bh

e iy: contraction of differential forms by the vector field
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e R: the curvature of a connectiahon E;

e Op: the principal symbol of a (pseudo-)differential operdboon E.

Lie groups, Lie algebras and representations
e g, h: the Lie algebras of Lie grougs, H etc.;

¢ B: the Killing form on a Lie algebra;

e [V :W]: the multiplicity of a representatio in a (finite-dimensional) representativn

V, : the irreducible representation of a compact Lie group Wwighest weighiA € A,;

T'9: the regular elements of a torTisi.e. the sefexpX; X € t, (a, X) & 2mi Z for all rootsa };

XC: for X a set equipped with an action by a grdBpthe set of fixed points of the action;

Z: for X in the Lie algebra of a Lie group acting on a smooth manifdid,ltie deriva-
tive of differential forms, with respect t%;

VO: for V a subspace of a vector spatfe the annihilatof & € W*; &|y = 0}.
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