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Outline

m joint with Dima Arinkin and Bertrand Toén
m Understand symplectic structures along the fibers of
sheaves of derived stacks over a topological space.

m Apply to the geometry of the moduli of tame or wild local
systems on a smooth variety over C:

o construct (shifted) Poisson structures;
o describe their symplectic leaves.
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Sheaves of derived stacks (i)

Problem: Define and construct symplectic structures on the
stalks of a sheaf of derived stacks .% over a space S.

m For this to make sense the sections of the sheaf .% will
have to satisfy representability conditions.

m The non-degeneracy condition on a stalkwise symplectic
form will have to involve some notion of duality for
complexes of sheaves of C-vector spaces on S.
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Covariant Verdier duality (i)

e X - locally compact Hausdorff space;

e Sh(X) - the co-category of complexes of sheaves of
C-vector spaces on X;

e CoSh(X) - the oo-category of complexes of cosheaves of
C-vector spaces on X;

Theorem: [Lurie] The Verdier duality functor

V: Sh(X)
E

CoSh(X)
(U —H(U, E))

is an equivalence of oco-categories
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Sheaves and cosheaves

Covariant Verdier duality (ii)

Comments:

e The duality theorem holds for | sheaves and cosheaves

values in any stable co-category.

with

e KX := V(Cx) is the Verdier dualizing cosheaf on X.

o Kx = (KCX)V is the usual Verdier dualizing sheaf
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Sheaves and cosheaves

Covariant Verdier duality (ii)

Comments:

e The duality theorem holds for | sheaves and cosheaves | with
values in any stable co-category.

e KX := V(Cx) is the Verdier dualizing cosheaf on X.

o Kx = (KCX)\A/ls\the usual Verdier dualizing sheaf

(=)¥ : CoSh(X) — Sh(X) is the
pointwise C-linear dual
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Covariant Verdier duality (iii)
Comments:

e For a continuous map p: X — Y we have a
push-foward /pull-back adjunctions on sheaves and cosheaves

p* :Sh(Y) 2 Sh(X) : ps, ps : CoSh(X) = CoSh(Y): p™.

After conjugation by V, p, becomes p; : Sh(X) — Sh(Y)
and p™ becomes p' : Sh(Y) — Sh(X).
e When p is proper we have:

- p! = p*:
— p defines a pullback on cohomology with compact
supports which induces a map ocosheaves on Y:

cotr : KY' — p, KX.
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Sheaves and cosheaves

Sheaves of derived stacks (ii)

e X - locally compact Hausdorff space;

o dSt(X) - the co-category of sheaves of derived stacks
over X.

e For a continuous map p: X — Y we again have the
pull-back/push-forward adjunction

p* :dSt(Y) 2 dSt(X) : p,.

If # e dSt(X), then the value of .% on an open U c X is
itself a functor

Fy : cdgas® — SSets.
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Relative closed forms (i)

If # € dSt(X), then

AYNFE) . w(X) Vect

U AP’CI(gu)

is a copresheaf of complexes of C-vector spaces on X. Write
AP () for the associated cosheaf. It comes equipped with a
canonical map

AZ(F) — AL (F)
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Relative closed forms (ii)

Definition: The complex of global relative n-shifted closed
p-forms on .% is the complex

AR(F,n) := RHomegsh(x) (KX, AP (F[n])) .

We can also consider forms with values in any
complex of cosheaves E € CoSh(X) by taking instead

ARF(F)F := RHome,snx) (E, APY(F)).
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Push-forward (i)

Suppose p : X — Y is a proper map of locally compact
Hausdorff spaces. We have a canonical map of complexes of
cosheaves

pr AL (F) — ALY (peF)

and if we Aff’(ﬂ, n), represented by a map of cosheaves
w: KX — ALY (F)[n),

we get a well defined composition

KCY cotr P+KCX P+w p+A§<’CI(ﬁ)[n]—>AF;/’CI(p*ﬁ)[n]

kR AP

trpxw
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Push-forward (ii)

Get a map of complexes of relative closed forms:

AR F  n) 25 AP (p, F ),

w trp.w.

A closed n-shifted 2- form w on % — X induces
a closed n-shifted 2-form trp,w on p,.% — Y.

Problem: Understand non-degeneracy and show that trp,
sends symplectic structures to symplectic structures.
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Non-degeneracy (i)

For the non-degeneracy we need representability conditions on
the stalks of .% e dSt(X).

Definition: A sheaf of derived stacks .# € dSt(X) is
locally formally representable over X if for every open
U < X the derived stack .#,/C is an unpointed formal
moduli problem, i.e. for each z € .%(C) the restriction of
(Zu, z) to augmented Artinian cdga/C is given by a dg Lie
algebra Zz, , € dgliec.
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Non-degeneracy (ii)

Fix U = X open and a closed point z € .#(C). The
assignment
(VcU) - %y,

is a presheaf of dg Lie algebras on U. Passing to foberwise
duals we get a copresheaves of complexes on U:

ZIV

(VcU) -2z,

ZIV

Let £z, € Sh(U) and .Z; , € CoSh(U) denote the
associated sheaf and cosheaf respectively.
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Sheaves and cosheaves

Non-degeneracy (iii

By formal representability .# has a relative cotanget complex
which is naturally identified with £ [-1] =—> get a
canonical map

AP’CI /\ gg 2N —
of cosheaves on U. Any w e AR“(.% n) thus gives a map

A2 ,cl /\ fyz

Dualizing and composing with the natural map Lz, — £33
gives a map of sheaves on U:

& N L2 — Kulnl.
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Sheaves and cosheaves

Non-degeneracy (iv)

Definition: An n-shifted closed relative 2-form
w e A%Y(Z,n) is non-degenerate or relative n-
shifted symplectic if for every open U < X and every
z € Zy(C) the map w’ induces a quasi-isomorphism

gﬂ,z[l]:’RM(gg,z[l]v KU[”])

in Sh(U).

Tony Pantev University of Pennsylvania

Relative Symplectic structures 2



Sheaves and cosheaves

Non-degeneracy (iv)

Definition: An n-shifted closed relative 2-form
w e A%Y(Z,n) is non-degenerate or relative n-
shifted symplectic if for every open U < X and every
z € Zy(C) the map w’ induces a quasi-isomorphism

gﬂ,z[l]:’RM(gg,z[l]v KU[”])

in Sh(UV).

14
P]I‘ﬂ];,z
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Push-forward (iii)

Theorem: [Arinkin-P-Toén] Let
p: X — Y be a continuous map of locally compact
Hausdorff spaces,

F € dSt(X) be a locally formally representable sheaf of
derived stacks over X, and

we A7 (F, n) be a relative closed n-shifted 2-form.
Then
m p..7 €dSt(Y) is locally formally representable;

m if w is non-degenerate, then trp,w is also non-degenerate.

Hence < (F,w)- n—shifted) — < (psZ , trpyw) - )

symplectic n-shifted symplectic
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Constructible sheaves

Closed forms on diagrams of stacks (i)
Fix

e | - a finitely presentable co-category;
e C - any category with finite limits.

Notation:
m F, - a diagram of shape | in C.
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Constructible sheaves

Closed forms on diagrams of stacks (i)
Fix

e | - a finitely presentable co-category;
e C - any category with finite limits.

Notation:
m F, - a diagram of shape | in C.

a functor F, : | — C,
Fo = {F,|acl}
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Constructible sheaves

Closed forms on diagrams of stacks (i)
Fix

e | - a finitely presentable co-category;
e C - any category with finite limits.

Notation:
m F, - a diagram of shape | in C.
m ™ - the category of twisted arrows in |.
m (t,5) : 1™ — 1 x I°° - the natdral functor.

ob(1™): maps x—y € mor(/);

u
X1 5 X2 X1 = X2
Homye [ y7  {72|: commutative diagrams - V2
1) yiy2
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Constructible sheaves

Closed forms on diagrams of stacks (i)
Fix

e | - a finitely presentable co-category;
e C - any category with finite limits.

Notation:
m F, - a diagram of shape | in C.
m ™ - the category of twisted arrows in |.

m (t,5) : 1™ — 1 x I°° - the natural functor.
m A =IlimF,.

ael
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Closed forms on diagrams of stacks (ii)
Fix E, : l——=Vectc, and %, : |——=dStc.
Consider the functor

AN T e 1™
Y —— AP (Fy) ® Ery,

Vectc

and define the complex of closed p-forms on .#, with
values in E, as the complex

Af@l (3‘\.)5. = lim -AP’CI(gZS(’y)) ® Et(y)-

,yeltw
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Closed forms on diagrams of stacks (iii)

The space of closed p-forms on %, with values in E, is
defined as

AP(F.)e = DK (8P (7))

and an E,-valued closed p-form on .7, is an element in
mAP (Fu)e, = HU(APY (F)g,).

Note: The space of forms comes equipped with a natural
global sections morphism

AP (Z)g, — APY(A) QB
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Cospecialization and gluing (i)
Suppose

m X - nice topological space (e.g. a CW complex);
m: Z — X - closed subspace;
m ): U — X - the complementary open

m ¢ -an oo-category with all small limits and colimits.
subspace.

For any F € Sh(X, %) write Fz =+*F and Fy = j*F.
Applying 2* to the unit of the adjunction j* — j, yields a
cospecialization map in Sh(Z,%):

cospy : Flz — 1%y, (F|U) .
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Cospecialization and gluing (ii)

The assignment F — (Fjy, Fjz,cosp;) provides an
equivalence of oco-categories:

Sh(X, %) > lax? lim lSh(U, %)Msr\(z,%)] ,

i.e. Sh(X, %) can be viewed as the lax°® limit of the functor
1" 4.

Applying this gluing description to strata
in a stratification leads to a combinatorial picture for closed
forms and symplectic structures on constructible sheaves of
stacks over a space.
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Sheaves on a stratified space (i)

Suppose

e X is a nice stratified space (has a finite conical
stratification).

| is the finite poset labeling the strata of X.

e X, c X is the stratum labeled by a € I. X, will be
viewed as a sratified subspace with a single stratum.

e Sh*"(X) -sheaves of spaces which are constructible for

the given stratification. By definition Sh*"(X,,) is the

category of local systems of spaces over X,.

e For every a € [, write F, € Sh*"(X,) for the restriction of
F to X,.
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Sheaves on a stratified space (ii)

Construction: Fix a € I, F € Sh(X), and let

e Z < X be a closed subset such that the stratum X,  Z
is open.

U < X be the complementary open to Z.

Define l%a = (Z*j* (FlU))\x .
the restriction of cosp, to X,.

and let cosp,, : F, — l%a be

l%a and cosp,, depend only on a and not on Z.

l%a is the sheaf of nearby (co) cycles of F along X, and
cosp,, is the integral of cospecialization maps over nearby
points.

Tony Pantev University of Pennsylvania

Relative Symplectic structures 2



Sheaves on a stratified space (iii)

As with gluing, nearby cycles, and integrated
cospecializations make sense for constructible sheaves with
values in any category C that admits finite limits.

Let | be the [ co-category of exit paths |for the stratification
on X. Then

m Under our assumptions | is finitely presentable.
m Sh*"(X) = Fun(l, SSets).

m For any category C with finite products we define

Sh*"(X, C) = Fun(l, C),

i.e. C-valued constructible sheaves on X are l-shaped
diagrams in C.

Tony Pantev University of Pennsylvania

Relative Symplectic structures 2



Sheaves on a stratified space (iii)

Notation: Fix F € Sh*"(X, C). Then:

m Every x € X gives an object ¢t(x) € . The value
F(¢(x)) € C is called the stalk of F at x and is denoted
by F..

m [(X,F) :=limye Fy € C is the global sections object of
F. We have a natural evaluation map
evy : [(X,F) — F, for every x € X.

m For a € | the fundamental groupoid IM;(X,,) of the
stratum X, embeds in | as the full subcategory I, < |
spanned by ¢(x) for all x € X,. We define the value of F
on X, as F, := F, € Sh*"(X,, C).
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Sheaves on a stratified space (iv)

Notation: Fix o € /, and F € Sh*"'(X, C). Then consider:

w2 ={d —a|ldelacl,}

m |7 < IZ - the full subcategory consisting of all & — a
which are not isomorphisms.

[ l%a € Sh*"(X,, C) - the right Kan extension of F> along
the natural functor IZ — 1,,.

m cosp, : Fn — l%a - the map guaranteed by the universal
property of the right Kan extension.

Terminology: l%a is the sheaf of nearby cycles of F at X,
and cosp,, is the (integrated) cospecialization map.
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Sheaves on a stratified space (v)

Given a nice stratified space X with strata labeled by a poset
I, and an exit path category I, and

E € Sh*""(X, Vectc) = Fun(l, Vectc),

F € Sh*"(X,dStc) = Fun(l,dStc), we get

m a complex AR (F)g == APY(.Z,)e, and a space
A% (F)g = AP9(Z,)E. of global closed E-valued
p-forms on .7;

m a natural global sections map of complexes

M ARY(F)e — AP (T(X, F)) ®T(X, E).
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Sheaves on a stratified space (vi)

Let .% be a constructible sheaf of locally f.p. derived Artin
stacks. For any point z € ['(X,.%) the relative tangent
complex T, € Sh*(X, Vectc) is a constructible complex of
vector spaces on X.

Given a point z € I(X,.%7), any closed form w e A% (% )¢
defines a map of constructible complexes on X

W : /P\’Jrg,z — E.

Definition: The induced map '(w’) on global sections is
the value of w at z.
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Sheaves on a stratified space (vi)
All of this readily sheafifies:
m For reasonable open sets U < X the assignment

U— AZ’CI(%U)EW

is a presheaf of complexes. Its sheafification Afgd(ﬁ)g is
a sheaf of complexes on X equipped with a natural map

M T(X, AYY(F)E) — APIT(X,.Z)) @T(X, E).

m In terms of diagrams A% (.F7)e € Sh*" (X, Vectce) is
constructed as the right Kan extension of
AP 1% Vecte along the functor t: 1% — 1.
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Non-degeneracy (v)

Setup:

m X - nicely stratified space with equidimensional strata.

m .7 € Sh™"(X,dStc) is a constructible sheaf of locally f.p.
derived Artin stacks (or just locally formally representable
derived stacks).

m E = Kx[n] € Sh*"(X, Vectc), where n € Z and Kx is the
Verdier's dualizing complex of X.

The cosheaf notion of shifted closed forms and shifted
symplectic forms has an equivalent reformulation in this
setting.
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Non-degeneracy (vi)

Definition:

(a) The complex and space of relative n-shifted closed
p-forms on .7 are defined to be

AZY(F, n) = AR (P )t
A ) = A (T ) kf-

(b) A closed relative n-shifted 2-form w € AR (.F n) is

symplectic if for every U < X and any point
zel(U,.#), the map

w): Tz, —Lg,:® Ky[n]

is a quasi-isomorphism.
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Constructible sheaves

Non-degeneracy and nearby cycles (i)

Let .7 € Sh*" (X, dStc), E = Kx[n], ae I.

m %, and ﬁa are local systems of derived stacks on X, i.e.
are derived stacks equipped with an action of
M (Xy) = la.

m The fiber of cospf : E, — Ea is equal to the !-restriction
of Kx[n] to X, and so we have an exact triangle

cospE ©

(%) E,—%E,——~C[n+1+dimX,].

When a € | is maximal we have %a = 0 and so
E, =C[n+dimX,].
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Constructible sheaves

Non-degeneracy and nearby cycles (ii)

Let we ALY (.7, n) = A7 (7)e be a relative n-shifted closed
2-form on .%. Then w induces

w, a relative closed E,-valued 2-form on .%,, i.e.
2,
Wa € ASS (? )E, -

Wa a closed E valued 2-form on ﬁa, i.e.
A2 cl(g )Ea

W, a cIosed (n + 1)-shifted 2-form on F, e

Wq € Aféjl(ﬁaa n-+ 1) = Afézl(ﬁa)c[n—kl—kdimXa]-
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Non-degeneracy and nearby cycles (iii)

Note:
m W, is the pushout of &, by the map
E,— Cln+1+dimX,].

m Viewing j‘a as a constant derived Artin stack equipped
with a My(X,) action, then we can view W, equivalently
as an absolute (n + 1 + dim X,,)-shifted 2-form, i.e.

To € A29(F0, n+1+dim X,).
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Non-degeneracy and nearby cycles (iv)

Key observation: Consider the (X, )-equivariant
cospecialization map

g o}
cosp,, : Fo — Fu

of derived Artin stacks.
The exact triangle

cospt ©

En P Ey——>Cln+1+dimX,].

yields a natural path h, between cosp*(w,) and 0 in the
space Ai’i’(ﬁa, n+ 1) or equivalently a path between
cosp” *(@,) and 0 in the space A>(F,, n+1+dim X,).
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Constructible sheaves

Non-degeneracy and nearby cycles (v)

Theorem: [Arinkin-P-Toén] Suppose

Z € Sh*(X,dStc) - a constructible sheaf of derived Artin
stacks, locally of f.p.;

we AZY(F n) - a relative closed n-shifted 2-form on .%.

Then w is symplectic if and only if for every « € [ the following
two conditions hold:

(a) @, is symplectic.
(b) cosp? : (Zu, hs) — (ﬁa,wa) is Lagrangian.

Claim: [Arinkin-P-Toén] Fix 5 € | and assume that
(a) and (b) hold for all a > 3. Then wg is a shifted sym-
plectic form on Z3.
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Constructible sheaves

Push-forwards (iv)
Pushing forward also makes sense in this setting. Suppose
m f: X — Y is a stratified map of nicely stratified spaces;
m . e Sh*"(X,dSte);
m E e Sh*" (X, Vectc);
We have push-forwards

f..7 € Sh*(Y dStc) and f.E € Sh*(Y, Vectc)

computed via the right Kan extensions along the functor
between exit path categories induced from f.

The pushforward of w € A% (% )¢ then is a closed relative
form:

fow e AV (£.F ) s,k
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Push-forwards (v)

Theorem: [Arinkin-P- Toén] Suppose that f : X — Y is
proper and that w € A ’d(f)KX[n] is symplectic. Then the
pushforward

tr fuw € ALY (F.F )iy [

is symplectic as well.

m Here tr : f,Kx — Ky denotes the canonical trace map.

m Most of the standard constructions of shifted symplectic
structures arise as |special cases | of the above theorem.
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Deligne-Malgrange-Stokes sheaves (i)

Suppose X is a smooth surface underlying a quasi-projective
complex algebraic curve and stratified with the following
strata:

m a connected open stratum Xj,;

m a (not necessarily connected) open stratum Xoy;
m arcs X,, e € E;
[

endpoints X, ve V.

We require that the strata satisfy the following conditions:

(1) exactly two arcs meet at each enpoint;
( ) each arc separates X, and Xou;

Xout retracts onto its boundary.
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DMS sheaves

Deligne-Malgrange-Stokes sheaves (ii)

X P
— o L
o, A

1 Il q‘
/)

Xi Xe

Figure: Stratified surface
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Deligne-Malgrange-Stokes sheaves (iii)

Setup: Consider .# € Sh®"(X,dStc) - a constructible sheaf of
stacks satisfying:

Locally on Xi, and on X,, -% is isomorphic to
BG for some reductive G.
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Deligne-Malgrange-Stokes sheaves (iii)

Setup: Consider .# € Sh®"(X,dStc) - a constructible sheaf of
stacks satisfying:

Locally on Xi, and on X,, -% is isomorphic to
BG for some reductive

typically the groups will be different on
different connected components of strata
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Deligne-Malgrange-Stokes sheaves (iv)

For each point x € X,, e € E the specialization

of strata
)<in ~> Xe =~~~ Xout

leads to a cospecialization diagram of stacks:
t%n -~ ﬁe - ﬁout .
We require that this diagram must be isomorphic to

BG~—BP——~BL,

where G is a reductive group, P < G is a parabolic subgroup,
and P — L is the Levi quotient.
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DMS sheaves

Deligne-Malgrange-Stokes sheaves (iv)

In a neighborhood of a point {b} = X,, ve V,

the specialization of strata

Xe,
N
AN
)<in W\>Xv =~ Xout

N

Xe,
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DMS sheaves

Deligne-Malgrange-Stokes sheaves (iv)

In a neighborhood of a point {b} = X,, ve V,

the specialization of strata leads to a diagram of stacks

Y

v

%%H

/ \out
N

9
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DMS sheaves

Deligne-Malgrange-Stokes sheaves (v)
We require that

Fe, BP, :
Fin Z, Fost - BG :—\B(Pl N P,) — BL
Fe, BP,

where G is a reductive group, Pi, P, € G are parabolic
subgroups that admit a common Levi, and P;, — L are the
Levi quotients.
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DMS sheaves

Deligne-Malgrange-Stokes sheaves (vi)

‘BJP]_ M PQ)

Y XY (0
o L0

X~ X

/A /r' q‘

BG BP
Figure: DMS sheaf

F

BL
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DMS sheaves

Deligne-Malgrange-Stokes sheaves (vii)

Theorem: [Arinkin-P-Toén] Let % € Sh*™'(X,dStc) be a
DMS sheaf. Then

(1) The restriction map A><(F)x, — A>9(Fin)k, , is a
homotopy equivalence.

(2) The extension w of a form wj, is non-degenerate if and
only if wi, is non-degenerate.
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Deligne-Malgrange-Stokes sheaves (ix)

Remarks:
m %, is a local system of stacks with fiber BG. Hence Tz,
is a local system of complexes on X, with fiber g[1].

m In particular (3 M;(X;,) x G-invariant
symmetric pairing K on g

a Kx, -valued relative symplectic
form wi, = w,, on %,

(a Kx-valued relative symplectic)

form w on .%.
m When .%;, is constant, the form k exists automatically

since G is assumed to be reductive.

Tony Pantev University of Pennsylvania

Relative Symplectic structures 2



DMS sheaves

Deligne-Malgrange-Stokes sheaves (ix)
Suppose
m X is a smooth projective curve/C;
B X =X —{x1,...,xk};
m I ={A,. .., I} Fan irregular type at x;.

Then:
e .7 can be recorded equivalently in DMS¢_» € Sh*"(X, dStc);

e DMS¢ s classifies Stokes data on X of irregular type .7, in
the sense that

Locg(X,.7) =T (X,DMS¢ )

Here X < X denotes the real oriented blow-up of X at the
points x;.
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Deligne-Malgrange-Stokes sheaves (x)

m The sheaf DMS¢ » tautologically satisfies the
codim = 0, 1,2 properties.

m Since the underlying G-local systems are untwisted
DMS¢ » comes with a canonical relative symplectic form
which depends only on a choice of a non-degenerate
K € (Sym? g¥)e.

Because of this we introduce the following:

Definition: A DMS sheaf on X is a sheaf # € Sh*""(X, dStc)
that satisfies the codim = 0, 1, 2 properties and admits a rela-
tive Kx-valued symplectic structure.
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Deligne-Malgrange-Stokes sheaves (xi)

Suppose
7 is a DMS sheaf of stacks euipped with a
Kx-valued relative symplectic form w.
f: X — (0,1] is the stratified map which collapses X — X,
to 1 and projects each cylinder component of X,
onto its ruling (0, 1).
Then f is a proper stratified map and

Pushforward theorem —> tr f,w is a relative Kig 1j-valued
symplectic structure on £,.# € Sh*"(X, dStc).
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DMS sheaves

Deligne-Malgrange-Stokes sheaves (xii)

Hence

m tr f,w defines a 1-shifted symplectic structure on
I_(Xouta gout)-

m tr f,w defines a 0-shifted Lagrangian structure on the
cospecialization map

r(X - Xout> g?) - r()<out> tgzout)-

Tony Pantev University of Pennsylvania
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Deligne-Malgrange-Stokes sheaves (xiii)
In the special case when .# = DMSg » we get

LOCG(X, j) = r(X - Xoutvg)
Loc;(0X) = T (Xout, Fout)

where L is the local system of Levi subgroups on X, for
which %, = BL.

Moreover in this setting the map
ry : Locg(X, ) — Locy(0X)

assigns to each Stokes filtered local system its formal
monodromy at 0.

Tony Pantev
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Deligne-Malgrange-Stokes sheaves (xiv)

Since L is a locally constant sheaf we again have that fixing a
flat section A € [(0X, L) gives a Lagrangian map

=

1~

BGy, — | [[6/G] = Loc(0X).

i=1 i=1

The intersection

Locg(X, . Z; )

of this Lagrangian with the Lagrangian map r is the moduli
of Stokes data of type .# having a fixed formal monodromy at
oo and is therefore symplectic.

Tony Pantev University of Pennsylvania
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Special cases 2.0

Constant sheaves (i)

Setup:

® X - a topological space = a stratified space with a single
stratum.

® [ c dStc - a derived Artin stack, locally of finite
presentation.

® 7 € Sh*(X,dStc) - the constant sheaf on X with fiber

F.
® we A>(F,n) - an (absolute) n-shifted symplectic form
on F.

Tony Pantev University of Pennsylvania
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Special cases 2.0

Constant sheaves (ii)

m w corresponds to a relative Cx[n]-valued closed 2-form
wx € AX(F)cpa on Z.

m If X is an oriented manifold of pure dimension d, then
Kx = Cx[d] and so wx € AZY(F)ky[n_a].

w is non-degenerate as wx Is non-degenerate
an n-shifted absolute | <= | asa Kx[n— d]-valued
form on F relative form on % .

Pushforward theorem —> tr (['(wx)) is an (n — d)-shifted
symplectic structure on I'(X,.#) = Mapqst. (X, F).

Tony Pantev
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Special cases 2.0

Constant sheaves (ii)

m w corresponds to a relative Cx[n]-valued closed 2-form
wx € AX(F)cpa on Z.

m If X is an oriented manifold of pure dimension d, then
Kx = Cx[d] and so wx € AZY(F)ky[n_a].

w is non-degenerate as wx is non-degenerate

an n-shifted absolute | <= | asa Kx[n— d]-valued
form on F relative form on 7.

Pushforward theorem —> tr (['(wx)) is an (n — d)-shifted

symplectic structure on I'(X,.#) = Mapqst. (X, F).
This is the mapping stack theorem from [PTVV].

Tony Pantev
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Lagrangian maps

Setup:

® X = (0, 1] is the half-open interval stratified by the strata
Xin = (0,1) and X; = {1}, labeled by / = {in, 1} with
1<in.

® 7 ¢ Sh™(X,dStc) =—> specified by .7;,.7;, € dStc,
and one cospecialization map .7, — .%;,..

Note: Kx = (extension by zero of Cx, [1] from X, to X).
Thus a relative n-shifted symplectic structure on .# consists
of:

e an (n + 1)-shifted symplectic structure on F,;

e an n-shifted Lagrangian structure on %7 — %;,.

Tony Pantev University of Pennsylvania
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Lagrangian intersections

Setup:
® X = [0, 1] stratified by X;, = (0,1), Xo = {0}, and
X1 = {1}, where | = {0,1,in} with 0 <in, 1 < in, while 0
and 1 are incomparable.
® 7 e Sh*"(X,dStc) => specified by .7y, .71, .7, € dStc,
and two cospecialization maps .%y — .7, and .%; — Z;,.

Note: Kx = (extension by zero of Cx, [1] from X, to X). A
relative n-shifted symplectic structure on .# consists of:

e an (n + 1)-shifted symplectic structure on F,;

e n-shifted Lagrangian structures on .%q — .%;, and
gzl - <7Ozin-

Tony Pantev University of Pennsylvania

Relative Symplectic structures 2



Lagrangian intersections

Setup:
® X = |0,1] stratified by X;, = (0,1), Xo = {0}, X; = {1}.
® 7 e Sh*"(X,dStc) => specified by .7y, .71, .7, € dStc,
and two cospecialization maps .%y — .%;, and .%; — Z,.

A relative n-shifted symplectic structure w on .# consists of:
e an (n + 1)-shifted symplectic structure on F,;
e n-shifted Lagrangian structures on %, — %, and
F1 — Fin.
Pushforward theorem —> tr('(w)) is an n-shifted
symplectic structure on ['(X, .#) = Fo x 7.
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Lagrangian intersections

Setup:
® X = |0,1] stratified by X;, = (0,1), Xo = {0}, X; = {1}.
® 7 e Sh*"(X,dStc) => specified by .7y, .71, .7, € dStc,
and two cospecialization maps .%y — .%;, and .%; — Z,.

A relative n-shifted symplectic structure w on .# consists of:
e an (n + 1)-shifted symplectic structure on F,;
e n-shifted Lagrangian structures on %, — %, and

tgzl - Jozin-

Pushforward theorem —> tr ([(w)) is an n-shifted

symplectic structure on ['(X, .#) = Fo x 7.

This is the Lagrangian intersection theorem from [PTVV].
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Hamiltonian reduction (iii)

Setup:
® X = [0,1] with strata Xj, = (0,1), Xo = {0}, X; = {1}.

® G - a linear algebraic group/C, and
O < g¥ - a coadjoint orbit.

® (M,w) - an algebraic symplectic manifold equipped with
a Hamiltonian G-action.

® ;1 : M — g¥ - a G-equivariant moment map.
® 7 ¢ Sh™(X,dStc) given by
Fo =10/G], F=[M/G], Fin=1[9"/GC] = Tgcl1]

and maps [0O/G| — [g¥/G] and p: [M/G]| — [g¥/G].
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Special cases 2.0

Hamiltonian reduction (iv)

Note: The Kirillov-Kostant-Souriau form on gV induces a
relative O-shifted symplectic structure w on ..

Pushforward theorem —> tr ([(w)) is a O-shifted
symplectic structure on (X, #) = [Ru"1(0)/G].
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Relative Symplectic structures 2



Hamiltonian reduction (iv)

Note: The Kirillov-Kostant-Souriau form on gV induces a
relative O-shifted symplectic structure w on ..

Pushforward theorem —> tr ([(w)) is a O-shifted
symplectic structure on (X, #) = [Ru"1(0)/G].

This is the Marsden-Weinstein Hamiltonian reduction
theorem.
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Quasi-Hamiltonian reduction (iii)

Setup:
® X = 5% with strata X, = 5> — {S, N}, X; = {S},
X1 = {N}.
® G - a complex reductive group, C < G - a conjugacy
class.

® (M,w) - an algebraic symplectic manifold equipped with
a quasi-Hamiltonian G-action.

® ;,: M — G - a G-equivariant group valued moment map.
® 7 ¢ Sh™'(X,dStc) given by

g:OZ[C/G]v g:lz[M/G] L%n:BG
and maps [C/G| — [G/G]| and pu: [M/G] — [G/G].

Tony Pantev University of Pennsylvania
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Special cases 2.0

Quasi-Hamiltonian reduction (iv)

Note:

m Kx = (extension by zero of Cx_[2] from X, to X).

m The standard 2-shifted symplectic form w,, on BG
extends to a natural relative O-shifted symplectic form

wx € Ai’d(g)KX on .%.

Pushforward theorem —> tr (['(wx)) is a O-shifted
symplectic structure on I'(X,.#) = [Ru"1(C)/G].

Back
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Quasi-Hamiltonian reduction (iv)

Note:

m Kx = (extension by zero of Cx_[2] from X, to X).

m The standard 2-shifted symplectic form w,, on BG
extends to a natural relative O-shifted symplectic form
wx € Ai’d(g)KX on .%.

Pushforward theorem —> tr (['(wx)) is a O-shifted
symplectic structure on I'(X,.#) = [Ru"1(C)/G].

This is the Alexeev-Malkin-Meinrenken quasi-Hamiltonian
reduction theorem.

Back
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Sheaves, cosheaves, and functors (i)
X - locally compact Hausdorff space;

U (X) - the poset of opens in X;
% - an oo-category which admits all small limits.

Definition: A %-valued sheaf on X is a functor
F : % (X)® — € satisfying the sheaf condition: for every
open cover {U,} of an open set U the natural map

F(U) — lim F(V)

is an equivalence in €. Here the limit is taken over all open
subsets V' < U which are contained in one of the U,,.

University of Pennsylvania
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Sheaves, cosheaves, and functors (ii)

X - locally compact Hausdorff space;
U (X) - the poset of opens in X;
% - an oo-category which admits all small colimits.

Definition: A %-valued cosheaf on X is a functor
F : % (X)°% — € satisfying the cosheaf condition: for every
open cover {U,} of an open set U the natural map

colim F(V) — F(U)

is an equivalence in 4. The colimit is taken over all opens

Back I
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Representability conditions (i)

Let .# € dSt(X) be a sheaf of derived stacks. We can
consider .# as a functor

F(—) : cdgac — St(X)
from cdga to stacks (of homotopy types) over X.

Note: We can describe the condition that .%# is locally
formally representable over X in terms of the functor .7 (—).

Tony Pantev University of Pennsylvania
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Sheaves of derived stacks

Representability conditions (ii)

Z is locally formally representable if and only if for any
cartesian diagram of local Artinian cdga

B'—=B

Lo

A —A
where H%(A’) — HO(A) is surjective, the corresponding
diagram

F (B — .Z(B)
FA)—F

is cartesian in St(X).

Back I
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Exit paths (i)
Setup:

m X be a stratified space with strata labeled by a poset /.

u ‘An‘ = {(toa"'7tn)e[071]xn 2}20:1} is the
standard simplex.

Definition: The simplicial set of exit paths of X is the
simplicial subset I < Sing(X) consisting of those simplices
o : |A"| — X that satisfy the condition

so that for every point (tp, t1,...,t,0,...,0) € |A"

There exists a chain of elements ag < a1 < -+ < ap €/
(*) ( )
with t; # 0 we have that o(tp, t1,...,t,0,...,0) € X,.
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Exit paths (ii)

Theorem: [Lurie]

(a) If the stratification on X is conical, then I is an
oo-category.

(b) Let X be a paracompact topological space which is locally
of a singular shape, and is equipped with a conical
[-startification. Then the oco-category of /-constructible
sheaves of spaces on X is equivalent to the co-category

Fun(l, SSets).

Back I
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