Lecture 2: Relative symplectic structures and wild ramification

Tony Pantev

University of Pennsylvania

Moduli Spaces, Representation Theory, and Quantization June 23-27, 2019 RIMS

University of Pennsylvania

Outline

- joint with Dima Arinkin and Bertrand Toën
- Understand symplectic structures along the fibers of sheaves of derived stacks over a topological space.
- Apply to the geometry of the moduli of tame or wild local systems on a smooth variety over ℂ:
 - construct (shifted) Poisson structures;
 - describe their symplectic leaves.

Sheaves of derived stacks (i)

Problem: Define and construct symplectic structures on the stalks of a sheaf of derived stacks \mathscr{F} over a space *S*.

Note:

- For this to make sense the sections of the sheaf *F* will have to satisfy representability conditions.
- The non-degeneracy condition on a stalkwise symplectic form will have to involve some notion of duality for complexes of sheaves of C-vector spaces on S.

Covariant Verdier duality (i)

- X locally compact Hausdorff space;
- Sh(X) the ∞-category of complexes of sheaves of C-vector spaces on X;
- CoSh(X) the ∞-category of complexes of cosheaves of C-vector spaces on X;

Theorem: [Lurie] The Verdier duality functor

$$V : Sh(X) \longrightarrow CoSh(X)$$

 $E \longrightarrow (U \rightarrow \mathbb{H}^{\bullet}_{c}(U, E))$
is an equivalence of ∞ -categories

Covariant Verdier duality (ii)

Comments:

- The duality theorem holds for sheaves and cosheaves with values in any stable ∞ -category.
- $K_c^X := \mathbf{V}(\mathbb{C}_X)$ is the Verdier dualizing cosheaf on X.
- $K_X \cong (K_c^X)^{\vee}$ is the usual Verdier dualizing sheaf

Image: A math a math

Covariant Verdier duality (ii)

Comments:

- The duality theorem holds for sheaves and cosheaves with values in any stable ∞ -category.
- $K_c^X := \mathbf{V}(\mathbb{C}_X)$ is the Verdier dualizing cosheaf on X.
- $K_X \cong (K_c^X)^{\vee}$ is the usual Verdier dualizing sheaf

$$(-)^{\vee}$$
 : CoSh(X) \rightarrow Sh(X) is the pointwise \mathbb{C} -linear dual

University of Pennsylvania

Covariant Verdier duality (iii) Comments:

• For a continuous map $p: X \longrightarrow Y$ we have a push-foward/pull-back adjunctions on sheaves and cosheaves

 $p^*: \operatorname{Sh}(Y) \rightleftharpoons \operatorname{Sh}(X): p_*, \quad p_+: \operatorname{CoSh}(X) \rightleftharpoons \operatorname{CoSh}(Y): p^+.$

After conjugation by **V**, p_+ becomes $p_! : Sh(X) \longrightarrow Sh(Y)$ and p^+ becomes $p^! : Sh(Y) \longrightarrow Sh(X)$.

- When *p* is proper we have:
 - $-p_!\cong p_*$,
 - *p* defines a pullback on cohomology with compact supports which induces a map ocosheaves on *Y*:

$$\operatorname{cotr}: K_c^Y \to p_+ K_c^X.$$

Image: A matching of the second se

Sheaves of derived stacks (ii)

- X locally compact Hausdorff space;
- dSt(X) the ∞-category of sheaves of derived stacks over X.
- For a continuous map p : X → Y we again have the pull-back/push-forward adjunction

$$p^* : \mathbf{dSt}(Y) \rightleftharpoons \mathbf{dSt}(X) : p_*.$$

If $\mathscr{F} \in \mathbf{dSt}(X)$, then the value of \mathscr{F} on an open $U \subset X$ is itself a functor

$$\mathscr{F}_U$$
 : cdga $^{\leq 0}_{\mathbb{C}} \to SSets.$

Image: A math a math

Relative closed forms (i)

If $\mathscr{F} \in \mathbf{dSt}(X)$, then

$$\mathcal{A}_{X}^{p,cl}(\mathscr{F}): \quad \mathscr{U}(X) \longrightarrow \mathsf{Vect}_{\mathbb{C}}$$
$$U \longrightarrow \mathcal{A}^{p,cl}(\mathscr{F}_{U})$$

is a copresheaf of complexes of \mathbb{C} -vector spaces on X. Write $\underline{\mathcal{A}}_{X}^{p,cl}(\mathscr{F})$ for the associated cosheaf. It comes equipped with a canonical map

$$\underline{\mathcal{A}}_X^{p,cl}(\mathscr{F}) \to \mathcal{A}_X^{p,cl}(\mathscr{F})$$

University of Pennsylvania

Image: A match a ma

Relative Symplectic structures 2

Tony Pantev

Relative closed forms (ii)

Definition: The complex of global **relative** *n*-shifted closed *p*-forms on \mathscr{F} is the complex

 $\mathbb{A}_{X}^{p,cl}(\mathscr{F},n) := \mathbb{R}\underline{Hom}_{\mathsf{CoSh}(X)}\left(K_{c}^{X},\underline{\mathcal{A}}^{p,cl}(\mathscr{F}[n])\right).$

Variant: We can also consider forms with values in any complex of cosheaves $E \in CoSh(X)$ by taking instead

$$\mathbb{A}_{X}^{p,cl}(\mathscr{F})^{\mathsf{E}} := \mathbb{R}\underline{Hom}_{\mathsf{CoSh}(X)}\left(\mathsf{E},\underline{\mathcal{A}}^{p,cl}(\mathscr{F})\right).$$

University of Pennsylvania

Push-forward (i)

Suppose $p: X \to Y$ is a proper map of locally compact Hausdorff spaces. We have a canonical map of complexes of cosheaves

$$p_{+}\underline{\mathcal{A}}_{X}^{p,cl}(\mathscr{F}) \to \underline{\mathcal{A}}_{Y}^{p,cl}(p_{*}\mathscr{F})$$

and if $\omega \in \mathbb{A}_X^{p,cl}(\mathscr{F}, n)$, represented by a map of cosheaves

$$\omega: K_c^X \to \underline{\mathcal{A}}_X^{p,cl}(\mathscr{F})[n],$$

we get a well defined composition

Image: A math the second se

University of Pennsylvania

Relative Symplectic structures 2

Tony Pantev

Push-forward (ii)

Get a map of complexes of relative closed forms:

$$\mathbb{A}_{X}^{p,cl}(\mathscr{F},n) \xrightarrow{\operatorname{tr} \rho_{*}} \mathbb{A}_{Y}^{p,cl}(p_{*}\mathscr{F},n)$$

$$\omega \xrightarrow{} \operatorname{tr} \rho_{*}\omega.$$

Conclusion: A closed *n*-shifted 2-form ω on $\mathscr{F} \to X$ induces a closed *n*-shifted 2-form $\operatorname{tr} p_* \omega$ on $p_* \mathscr{F} \to Y$.

Image: A math a math

University of Pennsylvania

Problem: Understand non-degeneracy and show that tr*p*_{*} sends symplectic structures to symplectic structures.

Non-degeneracy (i)

For the non-degeneracy we need representability conditions on the stalks of $\mathscr{F} \in \mathbf{dSt}(X)$.

Definition: A sheaf of derived stacks $\mathscr{F} \in \mathbf{dSt}(X)$ is **locally formally representable** over X if for every open $U \subset X$ the derived stack \mathscr{F}_U/\mathbb{C} is an unpointed formal moduli problem, i.e. for each $z \in \mathscr{F}_U(\mathbb{C})$ the restriction of (\mathscr{F}_U, z) to augmented Artinian cdga/ \mathbb{C} is given by a dg Lie algebra $\mathscr{L}_{\mathscr{F}_U, z} \in \mathrm{dgLie}_{\mathbb{C}}$.

Non-degeneracy (ii)

Fix $U \subset X$ open and a closed point $z \in \mathscr{F}(\mathbb{C})$. The assignment

$$(V \subset U) \to \mathscr{L}_{\mathscr{F}_{V}, \mathsf{z}_{|V}}$$

is a presheaf of dg Lie algebras on U. Passing to foberwise duals we get a copresheaves of complexes on U:

$$(V \subset U) \to \mathscr{L}^{\vee}_{\mathscr{F}_V, \mathsf{Z}_{|V|}}$$

• • • • • • • • • •

University of Pennsylvania

Let $\mathscr{L}_{\mathscr{F},z} \in \mathrm{Sh}(U)$ and $\mathscr{L}_{\mathscr{F},z}^{\vee} \in \mathrm{CoSh}(U)$ denote the associated sheaf and cosheaf respectively.

Non-degeneracy (iii)

By formal representability \mathscr{F} has a relative cotanget complex which is naturally identified with $\mathscr{L}_{\mathscr{F},z}^{\vee}[-1] \Longrightarrow$ get a canonical map

$$\underline{\mathcal{A}}_{U}^{p,cl}(\mathscr{F})[n] \to \bigwedge_{\mathbb{C}}^{p} \mathscr{L}_{\mathscr{F},z}^{\vee}[n-p]$$

of cosheaves on U. Any $\omega \in \mathbb{A}_X^{p,cl}(\mathscr{F}, n)$ thus gives a map

$$K_{c}^{U} \to \underline{\mathcal{A}}_{U}^{2,cl}(\mathscr{F})[n] \to \bigwedge_{\mathbb{C}}^{2} \mathscr{L}_{\mathscr{F},z}^{\vee}[n-2].$$

Dualizing and composing with the natural map $\mathscr{L}_{\mathscr{F},z} \to \mathscr{L}_{\mathscr{F},z}^{\vee \vee}$ gives a map of sheaves on U:

$$\omega_z^{\flat}: \bigwedge^2 \mathscr{L}_{\mathscr{F},z}[2] \to K_U[n].$$

Tony Pantev Relative Symplectic structures 2 Image: A match a ma

Non-degeneracy (iv)

Definition: An *n*-shifted closed relative 2-form $\omega \in \mathbb{A}^{2,cl}_{X}(\mathscr{F}, n)$ is **non-degenerate** or **relative** *n* **shifted symplectic** if for every open $U \subset X$ and every $z \in \mathscr{F}_{U}(\mathbb{C})$ the map ω_{z}^{\flat} induces a quasi-isomorphism $\mathscr{L}_{\mathscr{F},z}[1] \xrightarrow{\sim} R\underline{Hom}(\mathscr{L}_{\mathscr{F},z}[1], K_{U}[n])$ in Sh(U).

University of Pennsylvania

Non-degeneracy (iv)

University of Pennsylvania

Push-forward (iii)

University of Pennsylvania

- I a finitely presentable ∞ -category;
- C any category with finite limits.

Notation:

■ *F*• - a diagram of shape I in *C*.

University of Pennsylvania

- I a finitely presentable ∞ -category;
- C any category with finite limits.

University of Pennsylvania

Relative Symplectic structures 2

Tony Pantev

- I a finitely presentable ∞ -category;
- C any category with finite limits.

Notation:

■ *F*• - a diagram of shape I in *C*. ■ I^{tw} - the category of twisted arrows in I. ■ $(t, s) : I^{tw} \to I \times I^{op}$ - the natural functor. $(t, s) : I^{tw} \to I^{tw} \to I^{tw} \to I^{tw}$ - the natural functor.

- I a finitely presentable ∞ -category;
- C any category with finite limits.

Notation:

F_• - a diagram of shape I in C.
 I^{tw} - the category of twisted arrows in I.
 (t, s) : I^{tw} → I × I^{op} - the natural functor.
 F_I = lim F_α.

University of Pennsylvania

Fix
$$E_{\bullet}$$
: $I \longrightarrow Vect_{\mathbb{C}}$, and \mathscr{F}_{\bullet} : $I \longrightarrow dSt_{\mathbb{C}}$.

Consider the functor

$$\mathcal{A}_{\mathbf{1}}^{p,cl}(\mathscr{F}_{\bullet})_{E_{\bullet}}: \quad \mathbf{I}^{tw} \longrightarrow \mathsf{Vect}_{\mathbb{C}}$$
$$\gamma \longrightarrow \mathcal{A}^{p,cl}(\mathscr{F}_{s(\gamma)}) \otimes E_{t(\gamma)},$$

and define the complex of closed *p*-forms on \mathscr{F}_{\bullet} with values in *E*_• as the complex

$$\mathbb{A}_{\mathbf{I}}^{p,cl}\left(\mathscr{F}_{\bullet}\right)_{E_{\bullet}} = \lim_{\gamma \in \mathbf{I}^{tw}} \mathcal{A}^{p,cl}(\mathscr{F}_{s(\gamma)}) \otimes E_{t(\gamma)}.$$

University of Pennsylvania

Relative Symplectic structures 2

Tony Pantev

The space of closed *p*-forms on \mathscr{F}_{\bullet} with values in E_{\bullet} is defined as

$$\mathbf{A}_{\mathbf{I}}^{p,cl}(\mathscr{F}_{\bullet})_{E_{\bullet}} = \left| \mathbf{DK} \left(\tau^{\leq 0} \mathbb{A}_{\mathbf{I}}^{p,cl} \left(\mathscr{F}_{\bullet} \right)_{E_{\bullet}} \right) \right|$$

and an E_{\bullet} -valued closed *p*-form on \mathscr{F}_{\bullet} is an element in $\pi_0 \mathbf{A}_{\mathbf{I}}^{p,cl}(\mathscr{F}_{\bullet})_{E_{\bullet}} = H^0(\mathbb{A}_{\mathbf{I}}^{p,cl}(\mathscr{F}_{\bullet})_{E_{\bullet}}).$

Note: The space of forms comes equipped with a natural **global sections morphism**

$$\Gamma: \mathbb{A}^{p,cl}_{\mathbf{I}}(\mathscr{F}_{\bullet})_{E_{\bullet}} \to \mathcal{A}^{p,cl}(\mathscr{F}_{\mathbf{I}}) \otimes E_{\mathbf{I}}.$$

Image: A match a ma

Tony Pantev

Cospecialization and gluing (i)

Suppose

- X nice topological space (e.g. a CW complex);
- $i: Z \hookrightarrow X$ closed subspace;
- $j: U \hookrightarrow X$ the complementary open

For any $F \in Sh(X, \mathscr{C})$ write $F_{|Z} = i^*F$ and $F_{|U} = j^*F$. Applying i^* to the unit of the adjunction $j^* \dashv j_*$ yields a **cospecialization map** in Sh (Z, \mathscr{C}) :

$$\operatorname{cosp}_{Z}: F_{|Z} \to i^{*} j_{*} \left(F_{|U} \right).$$

Image: A math a math

Cospecialization and gluing (ii)

The assignment $F \longrightarrow (F_{|U}, F_{|Z}, \operatorname{cosp}_Z)$ provides an equivalence of ∞ -categories:

$$\operatorname{Sh}(X, \mathscr{C}) \xrightarrow{\cong} \operatorname{lax}^{\operatorname{op}} \operatorname{lim} \left[\operatorname{Sh}(U, \mathscr{C}) \xrightarrow{\imath^* \jmath_*} \operatorname{Sh}(Z, \mathscr{C}) \right],$$

i.e. $\mathrm{Sh}(X, \mathscr{C})$ can be viewed as the lax^{op} limit of the functor $\imath^*\jmath_*$.

Key observation: Applying this gluing description to strata in a stratification leads to a combinatorial picture for closed forms and symplectic structures on constructible sheaves of stacks over a space.

Image: A math a math

Sheaves on a stratified space (i)

Suppose

- X is a nice stratified space (has a finite conical stratification).
- *I* is the finite poset labeling the strata of *X*.
- $X_{\alpha} \subset X$ is the stratum labeled by $\alpha \in I$. X_{α} will be viewed as a statified subspace with a single stratum.
- Sh^{str}(X) -sheaves of spaces which are constructible for the given stratification. By definition Sh^{str}(X_α) is the category of local systems of spaces over X_α.
- For every $\alpha \in I$, write $F_{\alpha} \in Sh^{str}(X_{\alpha})$ for the restriction of F to X_{α} .

Image: A match a ma

Sheaves on a stratified space (ii)

Construction: Fix $\alpha \in I$, $F \in Sh(X)$, and let

- Z ⊂ X be a closed subset such that the stratum X_α ⊂ Z is open.
- $U \subset X$ be the complementary open to Z.
- Define $\overset{\circ}{F}_{\alpha} := (\imath^* \jmath_* (F_{|U}))_{|X_{\alpha}}$, and let $\operatorname{cosp}_{\alpha} : F_{\alpha} \to \overset{\circ}{F}_{\alpha}$ be the restriction of cosp_Z to X_{α} .

Note:

- \check{F}_{α} and $cosp_{\alpha}$ depend only on α and not on Z.

Image: A match a ma

Sheaves on a stratified space (iii)

Note: As with gluing, nearby cycles, and integrated cospecializations make sense for constructible sheaves with values in any category C that admits finite limits.

Let **I** be the ∞ -category of exit paths for the stratification on X. Then

Under our assumptions I is finitely presentable.

•
$$\operatorname{Sh}^{\operatorname{str}}(X) = \operatorname{Fun}(I, \operatorname{SSets}).$$

For any category C with finite products we define

$$\operatorname{Sh}^{\operatorname{str}}(X, C) = \operatorname{Fun}(\mathbf{I}, C),$$

i.e. C-valued constructible sheaves on X are I-shaped diagrams in C.

Sheaves on a stratified space (iii)

Notation: Fix $F \in Sh^{str}(X, C)$. Then:

- Every x ∈ X gives an object ι(x) ∈ I. The value
 F(ι(x)) ∈ C is called the stalk of F at x and is denoted by F_x.
- $\Gamma(X, F) := \lim_{\sigma \in I} F_{\sigma} \in C$ is the global sections object of F. We have a natural evaluation map $ev_x : \Gamma(X, F) \to F_x$ for every $x \in X$.
- For $\alpha \in I$ the fundamental groupoid $\Pi_1(X_\alpha)$ of the stratum X_α embeds in I as the full subcategory $I_\alpha \subset I$ spanned by $\iota(x)$ for all $x \in X_\alpha$. We define the value of F on X_α as $F_\alpha := F_{|I_\alpha|} \in Sh^{str}(X_\alpha, C)$.

Image: A match a ma

Sheaves on a stratified space (iv)

Notation: Fix $\alpha \in I$, and $F \in Sh^{str}(X, C)$. Then consider:

$$\blacksquare \mathsf{I}_{\alpha}^{\geqslant} = \{ \mathsf{a}' \to \mathsf{a} \mid \mathsf{a}' \in \mathsf{I}, \mathsf{a} \in \mathsf{I}_{\alpha} \}$$

- $I_{\alpha}^{>} \subset I_{\alpha}^{\geq}$ the full subcategory consisting of all $a' \to a$ which are **not** isomorphisms.
- $\check{F}_{\alpha} \in Sh^{str}(X_{\alpha}, C)$ the right Kan extension of $F_{|\mathbf{I}_{\alpha}^{>}}$ along the natural functor $\mathbf{I}_{\alpha}^{>} \rightarrow \mathbf{I}_{\alpha}$.
- $cosp_{\alpha}: F_{\alpha} \to \check{F}_{\alpha}$ the map guaranteed by the universal property of the right Kan extension.

Terminology: \check{F}_{α} is the **sheaf of nearby cycles** of F at X_{α} , and $\cos p_{\alpha}$ is the (integrated) **cospecialization map**.

Sheaves on a stratified space (v)

Given a nice stratified space X with strata labeled by a poset I, and an exit path category I, and $E \in Sh^{str}(X, Vect_{\mathbb{C}}) = Fun(I, Vect_{\mathbb{C}}),$ $\mathscr{F} \in Sh^{str}(X, dSt_{\mathbb{C}}) = Fun(I, dSt_{\mathbb{C}}),$ we get

- a complex $\mathbb{A}_X^{p,cl}(\mathscr{F})_E := \mathbb{A}_{I}^{p,cl}(\mathscr{F}_{\bullet})_{E_{\bullet}}$ and a space $\mathbb{A}_X^{p,cl}(\mathscr{F})_E := \mathbb{A}_{I}^{p,cl}(\mathscr{F}_{\bullet})_{E_{\bullet}}$ of global closed *E*-valued *p*-forms on \mathscr{F} ;
- a natural global sections map of complexes

$$\Gamma: \mathbb{A}_X^{p,cl}(\mathscr{F})_E \to \mathcal{A}^{p,cl}(\Gamma(X,\mathscr{F})) \otimes \Gamma(X,E).$$

Image: A math a math

Tony Pantey

Sheaves on a stratified space (vi)

Let \mathscr{F} be a constructible sheaf of locally f.p. derived Artin stacks. For any point $z \in \Gamma(X, \mathscr{F})$ the relative tangent complex $\mathbb{T}_{\mathscr{F},z} \in \mathrm{Sh}^{\mathrm{str}}(X, \mathrm{Vect}_{\mathbb{C}})$ is a constructible complex of vector spaces on X.

Given a point $z \in \Gamma(X, \mathscr{F})$, any closed form $\omega \in \mathbf{A}_X^{p,cl}(\mathscr{F})_E$ defines a map of constructible complexes on X

$$\omega_z^\flat: \bigwedge^p \mathbb{T}_{\mathscr{F},z} \to E.$$

Definition: The induced map $\Gamma(\omega_z^{\flat})$ on global sections is the value of ω at z.

Sheaves on a stratified space (vi)

Note: All of this readily sheafifies:

• For reasonable open sets $U \subset X$ the assignment

$$U \longrightarrow \mathbb{A}_U^{p,cl}(\mathscr{F}_{|U})_{E_{|U}}$$

is a presheaf of complexes. Its sheafification $\underline{\mathcal{A}}_X^{p,cl}(\mathscr{F})_E$ is a sheaf of complexes on X equipped with a natural map

$$\Gamma: \Gamma(X, \underline{\mathcal{A}}_{X}^{p, cl}(\mathscr{F})_{E}) \to \mathcal{A}^{p, cl}(\Gamma(X, \mathscr{F})) \otimes \Gamma(X, E).$$

■ In terms of diagrams $\underline{\mathcal{A}}_{X}^{p,cl}(\mathscr{F})_{E} \in \mathrm{Sh}^{\mathrm{str}}(X, \mathrm{Vect}_{\mathbb{C}})$ is constructed as the right Kan extension of $\mathcal{A}_{1}^{p,cl} : \mathbf{I}^{tw} \to \mathrm{Vect}_{\mathbb{C}}$ along the functor $t : \mathbf{I}^{tw} \to \mathbf{I}$.

Non-degeneracy (v)

Setup:

- X nicely stratified space with equidimensional strata.
- *ℱ* ∈ Sh^{str}(X, dSt_C) is a constructible sheaf of locally f.p. derived Artin stacks (or just locally formally representable derived stacks).
- $E = K_X[n] \in Sh^{str}(X, Vect_{\mathbb{C}})$, where $n \in \mathbb{Z}$ and K_X is the Verdier's dualizing complex of X.

Note: The cosheaf notion of shifted closed forms and shifted symplectic forms has an equivalent reformulation in this setting.

Image: A math a math

University of Pennsylvania

Non-degeneracy (vi)

Definition:

(a) The complex and space of relative *n*-shifted closed *p*-forms on *ℱ* are defined to be

$$\mathbb{A}_{X}^{p,cl}(\mathscr{F},n) := \mathbb{A}_{X}^{p,cl}(\mathscr{F})_{\mathcal{K}_{X}[n]}, \\ \mathbf{A}_{X}^{p,cl}(\mathscr{F},n) := \mathbf{A}_{X}^{p,cl}(\mathscr{F})_{\mathcal{K}_{X}[n]}.$$

(b) A closed relative *n*-shifted 2-form ω ∈ A^{p,cl}_X(𝔅, n) is symplectic if for every U ⊂ X and any point z ∈ Γ(U, 𝔅), the map

$$\omega_z^{\flat}: \mathbb{T}_{\mathscr{F}_{|U,z}} \longrightarrow \mathbb{L}_{\mathscr{F}_{|U,z}} \otimes K_U[n]$$

University of Pennsylvania

is a quasi-isomorphism.

Tony Pantev

Relative Symplectic structures 2
Non-degeneracy and nearby cycles (i)

Let $\mathscr{F} \in \mathrm{Sh}^{\mathrm{str}}(X, \mathrm{dSt}_{\mathbb{C}})$, $E = K_X[n]$, $\alpha \in I$.

- 𝓕_α and 𝓕_α are local systems of derived stacks on X_α, i.e. are derived stacks equipped with an action of Π₁(X_α) = I_α.
- The fiber of $cosp_{\alpha}^{E} : E_{\alpha} \to \breve{E}_{\alpha}$ is equal to the !-restriction of $K_{X}[n]$ to X_{α} and so we have an exact triangle

(*)
$$E_{\alpha} \xrightarrow{\operatorname{cosp}_{\alpha}^{E}} \overset{\circ}{E}_{\alpha} \longrightarrow \mathbb{C}[n+1+\dim X_{\alpha}].$$

Note: When $\alpha \in I$ is maximal we have $\breve{E}_{\alpha} = 0$ and so $E_{\alpha} = \mathbb{C} [n + \dim X_{\alpha}].$

Non-degeneracy and nearby cycles (ii)

Let $\omega \in \mathbf{A}_{X}^{2,cl}(\mathscr{F}, n) = \mathbf{A}_{X}^{2,cl}(\mathscr{F})_{E}$ be a relative *n*-shifted closed 2-form on \mathscr{F} . Then ω induces

$$\begin{split} & \omega_{\alpha} \text{ a relative closed } E_{\alpha}\text{-valued 2-form on } \mathscr{F}_{\alpha}\text{, i.e.} \\ & \omega_{\alpha} \in \mathbf{A}_{X_{\alpha}}^{2,cl}(\mathscr{F}_{\alpha})_{E_{\alpha}}. \\ & \overset{\circ}{\omega}_{\alpha} \text{ a closed } \dot{E}_{\alpha}\text{-valued 2-form on } \overset{\circ}{\mathscr{F}}_{\alpha}\text{, i.e.} \\ & \overset{\circ}{\omega}_{\alpha} \in \mathbf{A}_{X_{\alpha}}^{2,cl}(\overset{\circ}{\mathscr{F}}_{\alpha})_{E_{\alpha}}^{\circ}. \end{split}$$

 $\overline{\omega}_{lpha}$ a closed (n+1)-shifted 2-form on $\check{\mathscr{F}}_{lpha}$, i.e.

$$\overline{\omega}_{\alpha} \in \mathbf{A}_{X_{\alpha}}^{2,cl}(\mathring{\mathscr{F}}_{\alpha}, n+1) = \mathbf{A}_{X_{\alpha}}^{2,cl}(\mathring{\mathscr{F}}_{\alpha})_{\mathbb{C}[n+1+\dim X_{\alpha}]}.$$

University of Pennsylvania

Non-degeneracy and nearby cycles (iii)

Note:

• $\overline{\omega}_{\alpha}$ is the pushout of $\mathring{\omega}_{\alpha}$ by the map

$$\overset{\circ}{E}_{\alpha} \to \mathbb{C}\left[n+1+\dim X_{\alpha}\right].$$

■ Viewing \mathscr{J}_{α} as a constant derived Artin stack equipped with a $\Pi_1(X_{\alpha})$ action, then we can view $\overline{\omega}_{\alpha}$ equivalently as an **absolute** $(n + 1 + \dim X_{\alpha})$ -shifted 2-form, i.e.

$$\overline{\omega}_{\alpha} \in \mathcal{A}^{2,cl}(\overset{\circ}{\mathscr{F}}_{\alpha}, n+1+\dim X_{\alpha}).$$

University of Pennsylvania

Relative Symplectic structures 2

Tony Pantev

Non-degeneracy and nearby cycles (iv)

Key observation: Consider the $\Pi_1(X_\alpha)$ -equivariant cospecialization map

$$\cos \mathfrak{p}_{\alpha}^{\mathscr{F}} : \mathscr{F}_{\alpha} \to \overset{\circ}{\mathscr{F}}_{\alpha}$$

of derived Artin stacks. The exact triangle

$$E_{\alpha} \xrightarrow{\operatorname{cosp}_{\alpha}^{\mathcal{E}}} \overset{\circ}{E}_{\alpha} \longrightarrow \mathbb{C}\left[n+1+\operatorname{dim} X_{\alpha}\right].$$

yields a natural path h_{α} between $\operatorname{cosp}_{\alpha}^{\mathscr{F}*}(\overline{\omega}_{\alpha})$ and 0 in the space $\mathbf{A}_{X_{\alpha}}^{2,cl}(\mathscr{F}_{\alpha}, n+1)$ or equivalently a path between $\operatorname{cosp}_{\alpha}^{\mathscr{F}*}(\overline{\omega}_{\alpha})$ and 0 in the space $\mathcal{A}^{2,cl}(\mathscr{F}_{\alpha}, n+1+\dim X_{\alpha})$.

Non-degeneracy and nearby cycles (v)

Theorem: [Arinkin-P-Toën] Suppose
 𝔅 ∈ Sh^{str}(X, dSt_C) - a constructible sheaf of derived Artin stacks, locally of f.p.;
 ω ∈ A^{2,cl}_X(𝔅, n) - a relative closed *n*-shifted 2-form on 𝔅.
 Then ω is symplectic if and only if for every α ∈ I the following two conditions hold:

 (a) ω_α is symplectic.
 (b) ω_α (𝔅) = (𝔅[∞]_α = 𝔅) is the provided and the pr

(b) $\operatorname{cosp}_{\alpha}^{\mathscr{F}} : (\mathscr{F}_{\alpha}, h_{\alpha}) \to (\check{\mathscr{F}}_{\alpha}, \overline{\omega}_{\alpha})$ is Lagrangian.

Claim: [Arinkin-P-Toën] Fix $\beta \in I$ and assume that (a) and (b) hold for all $\alpha > \beta$. Then $\overline{\omega}_{\beta}$ is a shifted symplectic form on $\mathring{\mathscr{F}}_{\beta}$.

Push-forwards (iv)

Pushing forward also makes sense in this setting. Suppose

• $f: X \to Y$ is a stratified map of nicely stratified spaces;

•
$$\mathscr{F} \in \mathsf{Sh}^{\mathsf{str}}(X, \mathsf{dSt}_{\mathbb{C}});$$

• $E \in \operatorname{Sh}^{\operatorname{str}}(X, \operatorname{Vect}_{\mathbb{C}});$

We have push-forwards

 $f_*\mathscr{F} \in \mathsf{Sh}^{\mathsf{str}}(Y, \mathsf{dSt}_{\mathbb{C}}) \text{ and } f_*E \in \mathsf{Sh}^{\mathsf{str}}(Y, \mathsf{Vect}_{\mathbb{C}})$

computed via the right Kan extensions along the functor between exit path categories induced from f. The pushforward of $\omega \in \mathbf{A}_X^{p,cl}(\mathscr{F})_E$ then is a closed relative form:

$$f_*\omega \in \mathbf{A}^{p,cl}_Y(f_*\mathscr{F})_{f_*E}.$$

University of Pennsylvania

Push-forwards (v)

Theorem: [Arinkin-P-Toën] Suppose that $f : X \to Y$ is proper and that $\omega \in \mathbf{A}_X^{2,cl}(\mathscr{F})_{\mathcal{K}_X[n]}$ is symplectic. Then the pushforward $\operatorname{tr} f_*\omega \in \mathbf{A}_Y^{2,cl}(f_*\mathscr{F})_{\mathcal{K}_Y[n]}$

is symplectic as well.

Remark:

- Here tr : $f_*K_X \rightarrow K_Y$ denotes the canonical trace map.
- Most of the standard constructions of shifted symplectic structures arise as special cases of the above theorem.

Deligne-Malgrange-Stokes sheaves (i)

Suppose X is a smooth surface underlying a quasi-projective complex algebraic curve and stratified with the following strata:

- a connected open stratum X_{in} ;
- a (not necessarily connected) open stratum X_{out} ;

• arcs
$$X_e$$
, $e \in E$;

• endpoints X_v , $v \in V$.

We require that the strata satisfy the following conditions:

- (1) exactly two arcs meet at each enpoint;
- (2) each arc separates X_{in} and X_{out} ;
- (3) X_{out} retracts onto its boundary.

Image: A math a math

Tony Pantev Relative Symplectic structures 2 University of Pennsylvania

Image: A math a math

Deligne-Malgrange-Stokes sheaves (iii)

Setup: Consider $\mathscr{F} \in Sh^{str}(X, dSt_{\mathbb{C}})$ - a constructible sheaf of stacks satisfying:

codim = 0 Locally on X_{in} and on X_{out} , \mathscr{F} is isomorphic to BG for some reductive G.

Tony Pantev Relative Symplectic structures 2 University of Pennsylvania

• • • • • • • • • •

Deligne-Malgrange-Stokes sheaves (iii)

Setup: Consider $\mathscr{F} \in Sh^{str}(X, dSt_{\mathbb{C}})$ - a constructible sheaf of stacks satisfying:

codim = 0 Locally on X_{in} and on X_{out} , \mathscr{F} is isomorphic to BG for some reductive G.

typically the groups will be different on different connected components of strata

University of Pennsylvania

Deligne-Malgrange-Stokes sheaves (iv)

$$X_{\text{in}} \leadsto X_e \nleftrightarrow X_{\text{out}}$$

leads to a cospecialization diagram of stacks:

We require that this diagram must be isomorphic to

$$BG \longleftarrow BP \longrightarrow BL$$
,

where G is a reductive group, $P \subset G$ is a parabolic subgroup, and $P \rightarrow L$ is the Levi quotient.

Image: A math a math

Deligne-Malgrange-Stokes sheaves (iv)

<u>codim = 2</u> In a neighborhood of a point $\{b\} = X_v, v \in V$, the specialization of strata

Deligne-Malgrange-Stokes sheaves (iv)

<u>codim = 2</u> In a neighborhood of a point $\{b\} = X_v, v \in V$, the specialization of strata leads to a diagram of stacks

Deligne-Malgrange-Stokes sheaves (v)

$$codim = 2$$
 We require that

where G is a reductive group, $P_1, P_2 \subset G$ are parabolic subgroups that admit a common Levi, and $P_{1,2} \rightarrow L$ are the Levi quotients.

Tony Pantev Relative Symplectic structures 2 University of Pennsylvania

• • • • • • • • • •

Deligne-Malgrange-Stokes sheaves (vii)

Theorem: [Arinkin-P-Toën] Let $\mathscr{F} \in Sh^{str}(X, dSt_{\mathbb{C}})$ be a DMS sheaf. Then

- (1) The restriction map $\mathbf{A}^{2,cl}(\mathscr{F})_{K_X} \to \mathbf{A}^{2,cl}(\mathscr{F}_{in})_{K_{X_{in}}}$, is a homotopy equivalence.
- (2) The extension ω of a form ω_{in} is non-degenerate if and only if ω_{in} is non-degenerate.

Deligne-Malgrange-Stokes sheaves (ix)

Remarks:

- 𝒴_{in} is a local system of stacks with fiber BG. Hence T_{𝒴_{in}} is a local system of complexes on X_{in} with fiber g[1].
- In particular $\begin{pmatrix} a & \Pi_1(X_{in}) \times G invariant \\ symmetric pairing <math>\kappa$ on $\mathfrak{g} \end{pmatrix}$
 - (symmetric pairing κ on \mathfrak{g}) $(\mathfrak{g} \quad K_{X_{in}}$ -valued relative symplectic form $\omega_{in} = \omega_{\kappa}$ on \mathscr{F}_{in} $(\mathfrak{g} \quad \mathcal{F}_{in})$
 - $\begin{pmatrix} a & K_X \text{-valued relative symplectic} \\ form & \omega \text{ on } \mathcal{F}. \end{pmatrix}$
- When *F*_{in} is constant, the form κ exists automatically since G is assumed to be reductive.

Deligne-Malgrange-Stokes sheaves (ix)

Suppose

• \mathfrak{X} is a smooth projective curve/ \mathbb{C} ;

$$X = \mathfrak{X} - \{\mathbf{x}_1, \ldots, \mathbf{x}_k\};$$

• $\mathscr{I} = \{\mathscr{I}_1, \ldots, \mathscr{I}_k\}, \ \mathscr{I}_i \text{ an irregular type at } x_i.$

Then:

- \mathscr{I} can be recorded equivalently in $\mathsf{DMS}_{G,\mathscr{I}} \in \mathsf{Sh}^{\mathsf{str}}(X, \mathsf{dSt}_{\mathbb{C}});$
- $\mathsf{DMS}_{{\cal G},\mathscr{I}}$ classifies Stokes data on $\mathfrak X$ of irregular type $\mathscr I$, in the sense that

$$Loc_{G}(X, \mathscr{I}) = \Gamma\left(\widehat{\mathfrak{X}}, \mathsf{DMS}_{G, \mathscr{I}|\widehat{\mathfrak{X}}}\right).$$

Here $\widehat{\mathfrak{X}} \subset X$ denotes the real oriented blow-up of \mathfrak{X} at the points x_i .

University of Pennsylvania

Tony Pantev

Relative Symplectic structures 2

Deligne-Malgrange-Stokes sheaves (x)

- The sheaf DMS_{G, I} tautologically satisfies the codim = 0, 1, 2 properties.
- Since the underlying *G*-local systems are untwisted $DMS_{G,\mathscr{I}}$ comes with a canonical relative symplectic form which depends only on a choice of a non-degenerate $\kappa \in (Sym^2 \mathfrak{g}^{\vee})^G$.

Because of this we introduce the following:

Definition: A **DMS** sheaf on X is a sheaf $\mathscr{F} \in Sh^{str}(X, dSt_{\mathbb{C}})$ that satisfies the codim = 0, 1, 2 properties and admits a relative K_X -valued symplectic structure.

Deligne-Malgrange-Stokes sheaves (xi)

Suppose

- \mathscr{F} is a DMS sheaf of stacks eulpped with a K_X -valued relative symplectic form ω .
- $f: X \rightarrow (0, 1]$ is the stratified map which collapses $X X_{out}$ to 1 and projects each cylinder component of X_{out} onto its ruling (0, 1).

Then f is a proper stratified map and

Pushforward theorem \implies tr $f_*\omega$ is a relative $K_{(0,1]}$ -valued symplectic structure on $f_*\mathscr{F} \in \mathrm{Sh}^{\mathrm{str}}(X, \mathrm{dSt}_{\mathbb{C}})$.

Image: A match a ma

Deligne-Malgrange-Stokes sheaves (xii)

Hence

Tony Pantev

- tr $f_*\omega$ defines a 1-shifted symplectic structure on $\Gamma(X_{out}, \mathscr{F}_{out}).$
- tr $f_*\omega$ defines a 0-shifted Lagrangian structure on the cospecialization map

$$\Gamma(X-X_{\mathrm{out}},\mathscr{F})\to \Gamma(X_{\mathrm{out}},\mathscr{F}_{\mathrm{out}}).$$

Relative Symplectic structures 2

University of Pennsylvania

Image: A math a math

Deligne-Malgrange-Stokes sheaves (xiii)

In the special case when $\mathscr{F} = \mathsf{DMS}_{G,\mathscr{I}}$ we get

$$Loc_{G}(X, \mathscr{I}) = \Gamma(X - X_{out}, \mathscr{F})$$
$$Loc_{\widetilde{L}}(\partial X) = \Gamma(X_{out}, \mathscr{F}_{out})$$

where \widetilde{L} is the local system of Levi subgroups on X_{out} for which $\mathscr{F}_{out} = B\widetilde{L}$.

Moreover in this setting the map

$$r_{\mathscr{I}}: Loc_{G}(X, \mathscr{I}) \to Loc_{\widetilde{L}}(\partial X)$$

Image: A math a math

University of Pennsylvania

assigns to each Stokes filtered local system its formal monodromy at $\infty.$

Deligne-Malgrange-Stokes sheaves (xiv)

Since \widetilde{L} is a locally constant sheaf we again have that fixing a flat section $\lambda \in \Gamma(\partial X, \widetilde{L})$ gives a Lagrangian map

$$\prod_{i=1}^{k} BG_{\lambda_{i}} \to \prod_{i=1}^{k} [G/G] = Loc_{\widetilde{L}}(\partial X).$$

The intersection

 $Loc_{G}(X, \mathscr{I}; \lambda)$

of this Lagrangian with the Lagrangian map $r_{\mathscr{I}}$ is the moduli of Stokes data of type \mathscr{I} having a fixed formal monodromy at ∞ and is therefore symplectic.

University of Pennsylvania

Constant sheaves (i)

Setup:

- X a topological space = a stratified space with a single stratum.
- $F \in dSt_{\mathbb{C}}$ a derived Artin stack, locally of finite presentation.
- $\mathscr{F} \in Sh^{str}(X, dSt_{\mathbb{C}})$ the constant sheaf on X with fiber F.
- ω ∈ A^{2,cl}(F, n) an (absolute) n-shifted symplectic form on F.

Image: A match a ma

Constant sheaves (ii)

Note:

- ω corresponds to a relative $\mathbb{C}_{X}[n]$ -valued closed 2-form $\omega_X \in \mathbf{A}_X^{2,cl}(\mathscr{F})_{\mathbb{C}[n]}$ on \mathscr{F} .
- If X is an oriented manifold of pure dimension d, then $K_X = \mathbb{C}_X[d]$ and so $\omega_X \in \mathbf{A}_X^{2,cl}(\mathscr{F})_{K_X[n-d]}$.

 $\begin{pmatrix} \omega \text{ is non-degenerate as} \\ \text{an } n\text{-shifted absolute} \\ \text{form on } F \end{pmatrix} \iff \begin{pmatrix} \omega_X \text{ is non-degenerate} \\ \text{as a } K_X[n-d]\text{-valued} \\ \text{relative form on } \mathscr{F} \end{pmatrix}$

Image: A match a ma

Pushforward theorem \implies tr ($\Gamma(\omega_X)$) is an (n-d)-shifted symplectic structure on $\Gamma(X, \mathscr{F}) = Map_{dSt_{C}}(X, F)$.

Constant sheaves (ii)

Note:

- ω corresponds to a relative $\mathbb{C}_X[n]$ -valued closed 2-form $\omega_X \in \mathbf{A}_X^{2,cl}(\mathscr{F})_{\mathbb{C}[n]}$ on \mathscr{F} .
- If X is an oriented manifold of pure dimension d, then $K_X = \mathbb{C}_X[d]$ and so $\omega_X \in \mathbf{A}_X^{2,cl}(\mathscr{F})_{K_X[n-d]}$.

 $\begin{pmatrix} \omega \text{ is non-degenerate as} \\ \text{an } n\text{-shifted absolute} \\ \text{form on } F \end{pmatrix} \iff \begin{pmatrix} \omega_X \text{ is non-degenerate} \\ \text{as a } K_X[n-d]\text{-valued} \\ \text{relative form on } \mathscr{F}. \end{pmatrix}$

Pushforward theorem \implies tr ($\Gamma(\omega_X)$) is an (n - d)-shifted symplectic structure on $\Gamma(X, \mathscr{F}) = Map_{dSt_{\mathbb{C}}}(X, F)$. This is the mapping stack theorem from [**PTVV**].

Lagrangian maps

Setup:

- X = (0, 1] is the half-open interval stratified by the strata $X_{in} = (0, 1)$ and $X_1 = \{1\}$, labeled by $I = \{in, 1\}$ with 1 < in.
- $\mathscr{F} \in Sh^{str}(X, dSt_{\mathbb{C}}) \Longrightarrow$ specified by $\mathscr{F}_1, \mathscr{F}_{in} \in dSt_{\mathbb{C}}$, and one cospecialization map $\mathscr{F}_1 \to \mathscr{F}_{in}$.

Note: $K_X = ($ extension by zero of $\mathbb{C}_{X_{in}}[1]$ from X_{in} to X). Thus a relative *n*-shifted symplectic structure on \mathscr{F} consists of:

- an (n + 1)-shifted symplectic structure on \mathscr{F}_{in} ;
- an *n*-shifted Lagrangian structure on $\mathscr{F}_1 \to \mathscr{F}_{in}$.

Lagrangian intersections

Setup:

- X = [0, 1] stratified by $X_{in} = (0, 1)$, $X_0 = \{0\}$, and $X_1 = \{1\}$, where $I = \{0, 1, in\}$ with 0 < in, 1 < in, while 0 and 1 are incomparable.
- $\mathscr{F} \in Sh^{str}(X, dSt_{\mathbb{C}}) \Longrightarrow$ specified by $\mathscr{F}_0, \mathscr{F}_1, \mathscr{F}_{in} \in dSt_{\mathbb{C}}$, and two cospecialization maps $\mathscr{F}_0 \to \mathscr{F}_{in}$ and $\mathscr{F}_1 \to \mathscr{F}_{in}$.

Note: $K_X = (\text{extension by zero of } \mathbb{C}_{X_{\text{in}}}[1] \text{ from } X_{\text{in}} \text{ to } X)$. A relative *n*-shifted symplectic structure on \mathscr{F} consists of:

- an (n + 1)-shifted symplectic structure on \mathscr{F}_{in} ;
- *n*-shifted Lagrangian structures on $\mathscr{F}_0 \to \mathscr{F}_{in}$ and $\mathscr{F}_1 \to \mathscr{F}_{in}$.

Image: A math the second se

Lagrangian intersections

Setup:

- X = [0,1] stratified by $X_{in} = (0,1)$, $X_0 = \{0\}$, $X_1 = \{1\}$.
- $\mathscr{F} \in Sh^{str}(X, dSt_{\mathbb{C}}) \Longrightarrow$ specified by $\mathscr{F}_0, \mathscr{F}_1, \mathscr{F}_{in} \in dSt_{\mathbb{C}}$, and two cospecialization maps $\mathscr{F}_0 \to \mathscr{F}_{in}$ and $\mathscr{F}_1 \to \mathscr{F}_{in}$.

A relative *n*-shifted symplectic structure ω on \mathscr{F} consists of:

- an (n + 1)-shifted symplectic structure on \mathscr{F}_{in} ;
- *n*-shifted Lagrangian structures on $\mathscr{F}_0 \to \mathscr{F}_{in}$ and $\mathscr{F}_1 \to \mathscr{F}_{in}$.

Pushforward theorem \implies tr $(\Gamma(\omega))$ is an *n*-shifted symplectic structure on $\Gamma(X, \mathscr{F}) = \mathscr{F}_0 \times^h_{\mathscr{F}_{in}} \mathscr{F}_1$.

Image: A match a ma

Lagrangian intersections

Setup:

- X = [0,1] stratified by $X_{in} = (0,1)$, $X_0 = \{0\}$, $X_1 = \{1\}$.
- $\mathscr{F} \in Sh^{str}(X, dSt_{\mathbb{C}}) \Longrightarrow$ specified by $\mathscr{F}_0, \mathscr{F}_1, \mathscr{F}_{in} \in dSt_{\mathbb{C}}$, and two cospecialization maps $\mathscr{F}_0 \to \mathscr{F}_{in}$ and $\mathscr{F}_1 \to \mathscr{F}_{in}$.

A relative *n*-shifted symplectic structure ω on \mathscr{F} consists of:

• an (n + 1)-shifted symplectic structure on \mathscr{F}_{in} ;

• *n*-shifted Lagrangian structures on $\mathscr{F}_0 \to \mathscr{F}_{in}$ and $\mathscr{F}_1 \to \mathscr{F}_{in}$.

Pushforward theorem \implies tr $(\Gamma(\omega))$ is an *n*-shifted symplectic structure on $\Gamma(X, \mathscr{F}) = \mathscr{F}_0 \times^h_{\mathscr{F}_{in}} \mathscr{F}_1$.

This is the Lagrangian intersection theorem from [PTVV].

Image: A math a math

Hamiltonian reduction (iii)

Setup:

- X = [0,1] with strata $X_{in} = (0,1)$, $X_0 = \{0\}$, $X_1 = \{1\}$.
- G a linear algebraic group/ℂ, and
 □ ⊂ g[∨] a coadjoint orbit.
- (M, ω) an algebraic symplectic manifold equipped with a Hamiltonian *G*-action.
- $\mu: M \to \mathfrak{g}^{\vee}$ a *G*-equivariant moment map.
- $\mathscr{F} \in Sh^{str}(X, dSt_{\mathbb{C}})$ given by

 $\mathscr{F}_0 = [\mathbb{O}/G], \quad \mathscr{F}_1 = [M/G], \quad \mathscr{F}_{\mathsf{in}} = [\mathfrak{g}^{\vee}/G] = T_{BG}^{\vee}[1]$

and maps $[\mathbb{O}/G] \hookrightarrow [\mathfrak{g}^{\vee}/G]$ and $\mu : [M/G] \to [\mathfrak{g}^{\vee}/G]$.

Image: A matching of the second se

Tony Pantey

Hamiltonian reduction (iv)

Note: The **Kirillov-Kostant-Souriau** form on \mathfrak{g}^{\vee} induces a relative 0-shifted symplectic structure ω on \mathscr{F} .

Pushforward theorem \implies tr ($\Gamma(\omega)$) is a 0-shifted symplectic structure on $\Gamma(X, \mathscr{F}) = [R\mu^{-1}(\mathbb{O})/G].$

University of Pennsylvania

< A > < 3

Hamiltonian reduction (iv)

Note: The **Kirillov-Kostant-Souriau** form on \mathfrak{g}^{\vee} induces a relative 0-shifted symplectic structure ω on \mathscr{F} .

Pushforward theorem \implies tr ($\Gamma(\omega)$) is a 0-shifted symplectic structure on $\Gamma(X, \mathscr{F}) = [R\mu^{-1}(\mathbb{O})/G].$

This is the Marsden-Weinstein Hamiltonian reduction theorem.

Image: A math a math

Quasi-Hamiltonian reduction (iii)

Setup:

- $X = S^2$ with strata $X_{in} = S^2 \{S, N\}$, $X_0 = \{S\}$, $X_1 = \{N\}$.
- G a complex reductive group, C ⊂ G a conjugacy class.
- (M, ω) an algebraic symplectic manifold equipped with a quasi-Hamiltonian *G*-action.
- $\mu: M \to G$ a *G*-equivariant group valued moment map.
- $\mathscr{F} \in Sh^{str}(X, dSt_{\mathbb{C}})$ given by

 $\mathscr{F}_0 = [\mathbf{C}/G], \quad \mathscr{F}_1 = [M/G], \quad \mathscr{F}_{in} = BG$

and maps $[\mathbf{C}/G] \hookrightarrow [G/G]$ and $\mu : [M/G] \to [G/G]$.

Quasi-Hamiltonian reduction (iv)

Note:

- $K_X = (\text{extension by zero of } \mathbb{C}_{X_{\text{in}}}[2] \text{ from } X_{\text{in}} \text{ to } X).$
- The standard 2-shifted symplectic form ω_κ on BG extends to a natural relative 0-shifted symplectic form ω_X ∈ A^{2,cl}_X(𝔅)_{K_X} on 𝔅.

Pushforward theorem \implies tr ($\Gamma(\omega_X)$) is a 0-shifted symplectic structure on $\Gamma(X, \mathscr{F}) = [R\mu^{-1}(\mathbf{C})/G].$

Quasi-Hamiltonian reduction (iv)

Note:

- $K_X = (\text{extension by zero of } \mathbb{C}_{X_{\text{in}}}[2] \text{ from } X_{\text{in}} \text{ to } X).$
- The standard 2-shifted symplectic form ω_κ on BG extends to a natural relative 0-shifted symplectic form ω_X ∈ A^{2,cl}_X(𝔅)_{K_X} on 𝔅.

Pushforward theorem \implies tr ($\Gamma(\omega_X)$) is a 0-shifted symplectic structure on $\Gamma(X, \mathscr{F}) = [R\mu^{-1}(\mathbf{C})/G].$

This is the Alexeev-Malkin-Meinrenken quasi-Hamiltonian reduction theorem.

Sheaves, cosheaves, and functors (i)

X - locally compact Hausdorff space;

 $\mathscr{U}(X)$ - the poset of opens in X;

 ${\mathscr C}$ - an $\infty\text{-category}$ which admits all small limits.

Definition: A \mathscr{C} -valued **sheaf** on X is a functor $F : \mathscr{U}(X)^{op} \to \mathscr{C}$ satisfying the **sheaf condition**: for every open cover $\{U_{\alpha}\}$ of an open set U the natural map

$$F(U) \longrightarrow \varprojlim_{V} F(V)$$

is an equivalence in \mathscr{C} . Here the limit is taken over all open subsets $V \subset U$ which are contained in one of the U_{α} .

Sheaves, cosheaves, and functors (ii)

- X locally compact Hausdorff space;
- $\mathscr{U}(X)$ the poset of opens in X;
- ${\mathscr C}$ an $\infty\text{-category}$ which admits all small colimits.

Definition: A \mathscr{C} -valued **cosheaf** on X is a functor $F : \mathscr{U}(X)^{op} \to \mathscr{C}$ satisfying the **cosheaf condition**: for every open cover $\{U_{\alpha}\}$ of an open set U the natural map

$$\operatorname{colim}_{V} F(V) \to F(U)$$

is an equivalence in \mathscr{C} . The colimit is taken over all opens $V \subset U$ which are contained in one of the U_{α} .

University of Pennsylvania

Tony Pantev Relative Symplectic structures 2

Representability conditions (i)

Let $\mathscr{F} \in \mathbf{dSt}(X)$ be a sheaf of derived stacks. We can consider \mathscr{F} as a functor

$$\mathscr{F}(-): \mathsf{cdga}_{\mathbb{C}} \longrightarrow \mathsf{St}(X)$$

from cdga to stacks (of homotopy types) over X.

Note: We can describe the condition that \mathscr{F} is **locally** formally representable over X in terms of the functor $\mathscr{F}(-)$.

Image: A match a ma

Representability conditions (ii)

 ${\mathscr F}$ is locally formally representable if and only if for any cartesian diagram of local Artinian cdga

$$\begin{array}{c} B' \to B \\ \downarrow \qquad \downarrow \\ A' \to A \end{array}$$

where $H^0(A') \to H^0(A)$ is surjective, the corresponding diagram

$$\begin{array}{ccc} \mathscr{F}(B') \to \mathscr{F}(B) \\ \downarrow & \downarrow \\ \mathscr{F}(A') \to \mathscr{F}(A) \end{array}$$

University of Pennsylvania

is cartesian in St(X).

Tony Pantev Relative Symplectic structures 2

Exit paths (i)

Setup:

• X be a stratified space with strata labeled by a poset I.

•
$$|\Delta^n| = \left\{ (t_0, \dots, t_n) \in [0, 1]^{\times n} \mid \sum_{i=0}^1 = 1 \right\}$$
 is the standard simplex.

Definition: The simplicial set of exit paths of X is the simplicial subset $\mathbf{I} \subset \operatorname{Sing}(X)$ consisting of those simplices $\sigma : |\Delta^n| \to X$ that satisfy the condition (*) $\begin{pmatrix} \text{There exists a chain of elements } \alpha_0 < \alpha_1 < \cdots < \alpha_n \in I \\ \text{so that for every point } (t_0, t_1, \dots, t_i, 0, \dots, 0) \in |\Delta^n| \\ \text{with } t \in 0$ we have that $\sigma(t_1, t_2, \dots, t_i, 0, \dots, 0) \in |\Delta^n| \\ \text{with } t \in 0$ we have that $\sigma(t_1, t_2, \dots, t_i, 0, \dots, 0) \in |\Delta^n| \\ \text{so that for every point } The transformation of tran$

with
$$t_i \neq 0$$
 we have that $\sigma(t_0, t_1, \ldots, t_i, 0, \ldots, 0) \in X_{\alpha_i}$.

Exit paths (ii)

Theorem: [Lurie]

- (a) If the stratification on X is conical, then I is an ∞ -category.
- (b) Let X be a paracompact topological space which is locally of a singular shape, and is equipped with a conical *I*-startification. Then the ∞-category of *I*-constructible sheaves of spaces on X is equivalent to the ∞-category Fun(I, SSets).

University of Pennsylvania

Tony Pantev Relative Symplectic structures 2