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Outline

Outline

joint with Dima Arinkin and Bertrand Toën

Understand symplectic structures along the fibers of
sheaves of derived stacks over a topological space.

Apply to the geometry of the moduli of tame or wild local
systems on a smooth variety over C:

construct (shifted) Poisson structures;
describe their symplectic leaves.
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Character varieties

Recall: unramified character varieties

‚ X - smooth projective curve/C,

‚ G - a complex reductive group,

‚ MG pX q - the coarse moduli space of representations
ρ : π1pX , xq Ñ G .

Classical story:

The smooth part M sm
G pX q of MG pX q admits an algebraic

symplectic structure;

There are explicit descriptions:

cohomological construction in deformation theory
Goldman, Karshon, Weinstein, . . . ;
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Character varieties

Recall: unramified character varieties

‚ X - smooth projective curve/C,

‚ G - a complex reductive group,

‚ MG pX q - the coarse moduli space of representations
ρ : π1pX , xq Ñ G .

Classical story:

The smooth part M sm
G pX q of MG pX q admits an algebraic

symplectic structure;

There are explicit descriptions:

cohomological construction in deformation theory
Goldman, Karshon, Weinstein, . . . ;

non-degeneracy = Poincaré duality
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Character varieties

Recall: unramified character varieties

‚ X - smooth projective curve/C,

‚ G - a complex reductive group,

‚ MG pX q - the coarse moduli space of representations
ρ : π1pX , xq Ñ G .

Classical story:

The smooth part M sm
G pX q of MG pX q admits an algebraic

symplectic structure;

There are explicit descriptions:

cohomological construction in deformation theory
Goldman, Karshon, Weinstein, . . . ;
quasi-Hamiltonian reduction construction
Alekseev-Malkin-Meinrenken;
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Character varieties

Recall: tame character varieties

‚ X - a smooth quasi-projective curve/C.

Classical story: Fock-Rosly, Goldman, Guruprasad-Rajan,

Guruprasad-Huebschmann-Jeffrey-Weinstein, . . .

M sm
G pX q has an algebraic Poisson structure;

The symplectic leaves in M sm
G pX q are the moduli spaces

of ρ with fixed monodromy at infinity.

There are cohomological and quasi-Hamiltonian
descriptions of symplectic leaves.
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Character varieties

Recall: tame character varieties

‚ X - a smooth quasi-projective curve/C.

Classical story: Fock-Rosly, Goldman, Guruprasad-Rajan,

Guruprasad-Huebschmann-Jeffrey-Weinstein, . . .

M sm
G pX q has an algebraic Poisson structure;

The symplectic leaves in M sm
G pX q are the moduli spaces

of ρ with fixed monodromy at infinity.

There are cohomological and quasi-Hamiltonian
descriptions of symplectic leaves.

non-degeneracy = Lefschetz duality
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Character varieties

Recall: tame character varieties

‚ X - a smooth quasi-projective curve/C.

Classical story: Fock-Rosly, Goldman, Guruprasad-Rajan,

Guruprasad-Huebschmann-Jeffrey-Weinstein, . . .

M sm
G pX q has an algebraic Poisson structure;

The symplectic leaves in M sm
G pX q are the moduli spaces

of ρ with fixed monodromy at infinity.

There are cohomological and quasi-Hamiltonian
descriptions of symplectic leaves.

Note: Symplectic leaves = tame character varieties.
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Character varieties

Recall: wild character varieties

‚ X is a smooth projective curve/C, X “ X ´ tx1, . . . , xku;

‚ I “ tI1, . . . ,Iku, Ii irregular type at x i ;

‚ MG pX ,I q - the moduli of representations of π1pX q
equipped with Stokes data of type I .

Classical story: Boalch, Boalch-Yamakawa

M sm
G pX ,I q has an algebraic Poisson structure;

The symplectic leaves in M sm
G pX ,I q are the moduli

spaces of ρ with fixed formal monodromy at infinity.

There is a quasi-Hamiltonian descriptions of symplectic
leaves.
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Character varieties

Goal

Remark:

The ramified setting is often better behaved. Generic
choices of local monodromies (in the tame case) or of
irregular types and formal monodromies (in the wild case)
ensure that M sm

G “ MG

The cohomological description and the linear reason for
non-degeneracy of the symplectic structure on the wild
character varieties is not immediately clear.
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Character varieties

Goal

Construct Poisson structures everywhere on MGpX q and
MG pX ,I q including the singular points.

Describe their symplectic leaves.

Find cohomological and quasi-Hamiltonian
descriptions of the symplectic form at the singular points.

Extend the whole story to higher dimensional smooth
varieties X .
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Character varieties

Setup

Natural approach: Resolve the singularities of MG in a
minimal way so that the Poisson and symplectic structures
extend to the resolution.

Lucky break: MGpX q and MG pX ,I q admit natural
resolutions which are again moduli spaces.

Note: These resolutions/refinements of MG are not schemes
but rather are derived algebraic stacks whicih are locally finitely
presentable and in particular have perfect tangent complexes.
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Character varieties

Refinements (i)

Unramified+tame cases
The moduli MGpX q can be refined to the derived stack

LocG pX q “ MapdStpX ,BG q

parametrizing G -local systems on X .

Key point:

Any non-degenerate κ P pSym2 g_qG corresponds to a
2-shifted symplectic structure ωκ on the Artin stack BG

ωκ induces 0-shifted symplectic or Poisson structures on
LocG pX q in the unramified or tame case respectively.
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Character varieties

Refinements (ii)

Wild case:
The moduli MGpX ,I q can be refined to the derived stack

LocG pX ,I q “ Γ
´

pX,DMSG ,I

¯

parametrizing Stokes filtered G -local systems of irregular
type I .
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Character varieties

Refinements (ii)

Wild case:
The moduli MGpX ,I q can be refined to the derived stack

LocG pX ,I q “ Γ
´

pX,DMSG ,I

¯

parametrizing Stokes filtered G -local systems of irregular
type I .

Note:
‚ DMSG ,I denotes the Deligne-Malgrange-Stokes sheaf of
Artin stacks on X classifying Stokes data of type I .
‚ pX denotes the real oriented blow up of X in the x i .
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Character varieties

Refinements (ii)

Wild case:
The moduli MGpX ,I q can be refined to the derived stack

LocG pX ,I q “ Γ
´

pX,DMSG ,I

¯

parametrizing Stokes filtered G -local systems of irregular
type I .

Key point: DMSG ,I is equipped with a natural 0-shifted
relative symplectic structure which induces a Poisson structure
on LocGpX ,I q.
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Stacks of local systems

Moduli of local systems (i)

X - finite CW complex;
G - an affine reductive group over C.

Main object of study: The derived moduli stack LocG pX q of
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Stacks of local systems

Moduli of local systems (i)

X - finite CW complex;
G - an affine reductive group over C.

Main object of study: The derived moduli stack LocG pX q of

G -local systems on X

locally constant principal
G -bundles on X
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Stacks of local systems

Moduli of local systems (i)

X - finite CW complex;
G - an affine reductive group over C.

Main object of study: The derived moduli stack LocG pX q of

G -local systems on X
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Stacks of local systems

Moduli of local systems (ii)

Properties:

LocG pX q is a derived Artin stack over C.

t0LocG pX q depends only on the fundamental group of X :

t0LocGpX q “ MG pX q “ rRG pπ1pX , xqq{G s

RG pπ1pX , xqq is the character scheme of X : the affine
C-scheme representing the functor

RG pπ1pX , xqq : commalgC // Sets,

A // Homgrp pπ1pX , xq,G pAqq .
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Stacks of local systems

Moduli of local systems (iii)

Properties:

MG pX q “ t0LocGpX q has a course moduli space which is
the affine GIT quotient MG pX q “ RGpX q{{G , and

MG pX qpCq “

ˆ
conjugacy classes of ρ : π1pX , xq Ñ G

with impρq-reductive

˙

In general the derived structure on LocG pX q depends
on the full homotopy type of X .
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Symplectic and Lagrangian structures

Shifted symplectic structures

Recall: [P-Toën-Vaquié-Vezzosi] ([PTVV])

If F is derived Artin locally f.p. over C we have a
complex of closed p-forms Ap,clpF q on F .

When F “ SpecA, then Ap,clpF q corresponds to the
module tot

ś
pF ppAqrpsq.

An n-cocycle ω in the complex A2,clpF q is a closed
n-shifted 2-form.

ω is an n-shifted symplectic structure if the
contraction ω5 : TF ÝÑ LF rns with the induced element
in HnpF ,

Ź2
Lq is a quasi-iso.
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Symplectic and Lagrangian structures

Structures on maps

Let f : F Ñ F 1 be a morphism in dStC, then

An pn ´ 1q-shifted isotropic structure on f is a pair
pω, hq, where ω is an n-shifted symplectic structure on F 1,
and h is a homotopy between f ˚pωq and 0 inside the
complex A2,clpF q.

An isotropic structure pω, hq is Lagrangian if the induced
morphism h5 : Tf rÑLF rn ´ 1s is a quasi-isomorphism.

Note: An pn ´ 1q-shifted Lagrangian structure p0, hq on
f : F Ñ SpecC is simply an pn ´ 1q-shifted symplectic
structure on F .
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Symplectic and Lagrangian structures

Shifted symplectic structures: examples (i)

Nondegeneracy: a duality between the stacky (positive
degrees) and the derived (negative degrees) parts of LX .

If G{C is reductive any non-degenerate κ P pSym2 g_qG

gives rise to a canonical 2-shifted symplectic form ωκ on
BG whose underlying 2-shifted 2-form is

CÑpLBG ^ LBG qr2s » pg_r´1s ^ g_r´1sqr2s “ Sym2 g_

given by κ.

The n-shifted cotangent bundle
T_X rns :“ SpecX pSympTX r´nsqq has a canonical
n-shifted symplectic form.
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Symplectic and Lagrangian structures

Shifted symplectic structures: examples (ii)

Theorem: [PTVV] Let pF , ωq be n-shifted symplectic and
let X be a derived stack equipped with an O-orientation of
dimension d . If MapdStpX , F q is a locally f.p. derived Artin
stack, then it carries a natural pn ´ dq-shifted symplectic
structure.

Remark:

0) Analogue of Alexandrov-Kontsevich-Schwarz-Zaboronsky
result in QFT.
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Symplectic and Lagrangian structures

Shifted symplectic structures: examples (ii)

Theorem: [PTVV] Let pF , ωq be n-shifted symplectic and
let X be a derived stack equipped with an O-orientation of
dimension d . If MapdStpX , F q is a locally f.p. derived Artin
stack, then it carries a natural pn ´ dq-shifted symplectic
structure.

Remark:

1) An d -dimensional compact Calabi-Yau X has an
O-orientation of dimension d (Serre duality).

2) A compact oriented topological d -manifold has an
O-orientation of dimension d (Poincaré duality).
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Symplectic and Lagrangian structures

Shifted symplectic structures: examples (iii)

Theorem: [PTVV] Let pF , ωq be an n-shifted symplectic
derived Artin stack, and Li Ñ F , i “ 1, 2 be maps of derived
stacks equipped with Lagrangian structures. Then the homo-
topy fiber product L1 ˆF L2 is canonically a pn ´ 1q-shifted
derived Artin stack.

Remark: Many standard constructions in symplectic geometry
are special cases of these two theorems.
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Symplectic and Lagrangian structures

Structures on LocGpX q (i)

pX , BX q - compact oriented topological manifold of dim “ d

G - a reductive algebraic group over C.

Theorem:

(a) [PTVV] If BX “ ∅, then the derived stack LocG pX q has a
p2 ´ dq-shifted symplectic structure which is canonical up to
a choice of a non-degenerate element in pSym2 g_qG

(b) [Calaque] The restriction map LocG pX q ÝÑ LocG pBX q
carries a canonical p2 ´ dq-shifted Lagrangian structure for
the 3 ´ d “ 2 ´ pd ´ 1q-shifted symplectic structure on the
target.
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Symplectic and Lagrangian structures

Structures on LocGpX q (ii)

Note: When X is a Riemann surface with boundary we
recover the symplectic structures on moduli of G -local systems
on X with prescribed monodromies at infinity.
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Symplectic and Lagrangian structures

Structures on LocGpX q (ii)

Example: Suppose pX , BX q is an oriented surface with
boundary. Then

BX is a disjoint union of oriented circles, and so
LocG pBX q »

ś
rG{G s.

The stack LocG pS1q “ rG{G s carries a canonical
1-shifted symplectic structure.

For any λ P G with centralizer Gλ, the inclusion of the
conjugacy class Cλ Ă G of λ gives a canonical Lagrangian
structure on the map BGλ » rCλ{G s ãÑ rG{G s.
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Symplectic and Lagrangian structures

Structures on LocGpX q (iii)

Assigning elements λi P G to each boundary component of X ,
we get two 0-shifted Lagrangian morphisms

ś
BGλi

((PP
PP

LocG pX q.
vv♠♠♠♠

♠

ś
rG{G s

By [PTVV] the fiber product of these two maps has a
canonical 0-shifted symplectic structure. This fiber product, is
the derived stack

LocG pX , tλiuq

of G -local systems on X whose local monodromies at infinity
belong to the conjugacy classes tCλi

u.
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Poisson structures

Shifted Poisson structures (i)

Recall: [Calaque-P-Toën-Vaquié-Vezzosi] ([CPTVV])

For F a derived Artin stack/C, can form the dg Lie
algebra of n-shifted polyvector fields
ΓpF , SymOpTF r´n ´ 1sqqrn ` 1s.

An n-shifted Poisson structure on F is a morphism in
the 8-category of graded dg-Lie algebras

p : Cr´1sp2q ÝÑ ΓpF , SymOpTF r´n ´ 1sqqrn ` 1s,

where Cr´1sp2q is the graded dg Lie algebra which is C
placed in homological degree 1 and grading degree 2,
equipped with the zero Lie bracket.
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Poisson structures

Shifted Poisson structures (ii)

Remark: [Melani-Safronov,Costello-Rozenblyum,Nuiten]
Shifted Poisson structures can always be described in terms of
shifted symplectic groupoids (Weinstein program).
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Poisson structures

Shifted Poisson structures (ii)

Theorem: [Costello-Rozenblyum] If F is a derived Artin
stack the space of n-shifted Poisson structure on F is weakly
equivalent to the space of equivalence classes of n-shifted
Lagrangian maps F Ñ F 1 to formal derived stacks F 1.

Note: rF Ñ F 1s „ rF Ñ F 2s if there exists an n-shifted

Lagrangian map F Ñ G and a commutative diagram F 1

F //

>>⑥⑥⑥⑥

  ❆
❆❆

❆ G

a
OO

b��
F 2

with a and b formally étale and compatible with the Lagrangian

structures.
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Poisson structures

Shifted Poisson structures (iii)

Example: For a compact oriented d -dimensional manifold X

with boundary BX , the restriction map

LocGpX q ÝÑ LocG pBX q

is Lagrangian [Calaque] and so can be viewed as a

p2 ´ dq-shifted Poisson structure on LocG pX q.
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Poisson structures

Symplectic leaves (i)

Classically a Poisson structure on a smooth variety induces a
foliation of the variety by symplectic leaves.

For an n-shifted Poisson structure on a derived stack F given
by a Lagrangian map f : F Ñ F 1, the symplectic leaves are the
appropriately interpreted fibers of f .

Definition: A generalized symplectic leaf of F is a
derived stack of the form F ˆF 1 Λ for any n-shifted Lagrangian
morphism Λ Ñ F 1

Note: By [PTVV] a generalized symplectic leaf carries a
canonical n-shifted symplectic structure.
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Poisson structures

Symplectic leaves (ii)

Example: X - a compact oriented surface with boundary.
The restriction map

LocGpX q ÝÑ LocGpBX q “
ź

rG{G s

carries a 0-shifted Lagrangian structure and thus corresponds
to a 0-shifted Poisson structure on LocGpX q.

LocG pX , tλiuq - the derived moduli stack of G -local systems
on X with fixed monodromies at infinity - is a generalized
symplectic leaf in LocG pX q.
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Structures on Betti spaces

Betti spaces - theorems (i)

The boundary of a topological space Y is the
pro-homotopy type BY :“ lim

KĂY
pY ´ K q P PropSSetsq.
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Structures on Betti spaces

Betti spaces - theorems (i)

The boundary of a topological space Y is the
pro-homotopy type BY :“ lim

KĂY
pY ´ K q P PropSSetsq.

taken in the 8-category SSets of homotopy
types and over the opposite category of com-
pact subsets K Ă Y
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Structures on Betti spaces

Betti spaces - theorems (i)

The boundary of a topological space Y is the
pro-homotopy type BY :“ lim

KĂY
pY ´ K q P PropSSetsq.

Note: The pro-object BY is in general not constant and can
be extremely complicated. However if X “ Z pCq for a smooth
n-dimensional complex algebraic variety Z , we have:

Proposition: The pro-object BX is equivalent to a constant
pro-object in SSets which has the homotopy type of a compact
oriented topological manifold of dimension 2n ´ 1.

Remark: BX has the homotopy type of the boundary of the
real oriented blowup of a good compactification of Z along its
normal crossing boundary.
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Structures on Betti spaces

Betti spaces - theorems (ii)

Suppose X “ Z pCq for a smooth n-dimensional complex
algebraic variety Z , then

Claim: The canonical map BX ÝÑ X induces a restriction
morphism of derived locally f.p. Artin stacks

r : LocG pX q ÝÑ LocG pBX q.

which is equipped with a canonical p2´2nq-shifted Lagrangian
structure with respect to the canonical shifted symplectic
structure on LocG pBX q.

In particular r can be viewed as a p2 ´ 2nq-shifted Poisson
structure on LocG pX q.
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Structures on Betti spaces

Symplectic leaves - smooth D (i)

Assume Z admits a smooth compactification Z Ă Z with
D “ Z ´ Z “

š
i Di a smooth divisor. Then

BX “„ (oriented circle bundle over D) classified by
elements αi Ă H2pDi ,Zq, αi “ c1pNDi {Zq.

Given λi P G with centralizer Gλi
, the group S1 acts on

BGλi (via λi) and naturally on rG{G s so that the
Lagrangian structure on the map BGλi Ñ rG{G s is
S1-equivariant.

Twisting by αi gives a 1-shifted Lagrangian morphism

(:i) αi
ĂBGλi

ÝÑ αi

ČrG{G s

of locally constant families of derived Artin stacks over Di .
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Structures on Betti spaces

Symplectic leaves - smooth D (ii)

Passing to global sections gives moduli stacks:

LocG pBiX q “ Map pBiX ,BG q “ Γ
´
Di , αi

ČrG{G s
¯
;

LocGλi ,αi
pDiq “ Γ

´
Di , αi

ĆBGλi

¯
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Structures on Betti spaces

Symplectic leaves - smooth D (ii)

Passing to global sections gives moduli stacks:

LocG pBiX q “ Map pBiX ,BG q “ Γ
´
Di , αi

ČrG{G s
¯
;

LocGλi ,αi
pDiq “ Γ

´
Di , αi

ĆBGλi

¯

G local systems on the
component BiX of BX
mapping tp Di
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Structures on Betti spaces

Symplectic leaves - smooth D (ii)

Passing to global sections gives moduli stacks:

LocG pBiX q “ Map pBiX ,BG q “ Γ
´
Di , αi

ČrG{G s
¯
;

LocGλi ,αi
pDiq “ Γ

´
Di , αi

ĆBGλi

¯

Gλi local systems on Di

twisted by αi
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Structures on Betti spaces

Symplectic leaves - smooth D (ii)

Passing to global sections gives moduli stacks:

LocG pBiX q “ Map pBiX ,BG q “ Γ
´
Di , αi

ČrG{G s
¯
;

LocGλi ,αi
pDiq “ Γ

´
Di , αi

ĆBGλi

¯

Since Di is a compact topological manifold endowed with a
canonical orientation the map (:i) induces a p3 ´ 2nq-shifted
Lagrangian morphism of derived Artin stacks

ri : LocGλi ,αi
pDiq ÝÑ LocGpBiX q.
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Structures on Betti spaces

Symplectic leaves - smooth D (iii)

Combining all ri we get a p3 ´ 2nq-shifted Lagrangian
morphism

r “
ź

i

ri :
ź

i

LocGλi ,αi
pDiq ÝÑ

ź

i

LocGpBiX q “ LocG pBX q.

By [PTVV] the fiber product of derived stacks

LocG pX , tλiuq :“

˜
ź

i

LocGλi ,αi
pDiq

¸
ą

LocG pBX q

LocG pX q

has a canonical p2 ´ 2nq-shifted symplectic structure.
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Structures on Betti spaces

Symplectic leaves - smooth D (iv)

By construction

LocG pX , tλiuq is the derived stack of G -local systems on
X whose local monodromy around Di is fixed to be in the
conjugacy class Cλi

of λi .

The natural map

LocGpX , tλiuq ÝÑ LocGpX q

realizes LocG pX , tλiuq as a generalized symplectic leaf

of the p2 ´ 2nq-shifted Poisson structure on LocGpX q.

Tony Pantev University of Pennsylvania

Relative Symplectic structures 1



Structures on Betti spaces

Symplectic leaves - two components (i)

Assume D “ Z ´ Z “ D1 Y D2 has two smooth irreducible
components meeting transversally at a smooth D12. Then

BX » B1X
ğ

B12X

B2X .

where BiX is an oriented circle bundle over Do
i “ Di ´ D12,

and B12X is an oriented S1 ˆ S1-bundle over D12.

Note: Each BiX has the homotopy type of an oriented
compact manifold of dimension 2n ´ 1 with boundary
canonically equivalent to B12X .
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Structures on Betti spaces

Symplectic leaves - two components (ii)

Theorem: [P-Töen]

(i) For a commuting pair of elements pλ1, λ2q P G ˆ G the map

LocG pB1X , λ1q
ą

LocG pB12Xq

LocG pB2X , λ2q ÝÑ LocG pBXq ˆ LocG pB12X , tλ1, λ2uq

comes equipped with a natural Lagrangian structure.

(ii) If moreover the pair pλ1, λ2q is strict then the derived
Artin stack

LocG pX , tλ1, λ2uq

comes equipped with a natural p2 ´ 2nq-shifted symplectic
structure which is a symplectic leaf of LocG pX q.
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Derived stacks of local systems

Derived moduli of local systems (i)

The derived stack of G local systems can be viewed as an
8-functor

LocG pX q : cdgaď0
C

// SSets

A // Map pSpX q,BG pAqq
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Derived stacks of local systems

Derived moduli of local systems (i)

The derived stack of G local systems can be viewed as an
8-functor

LocG pX q : cdgaď0
C

// SSets

A // Map pSpX q,BG pAqq

singular simplices
in X
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Derived stacks of local systems

Derived moduli of local systems (i)

The derived stack of G local systems can be viewed as an
8-functor

LocG pX q : cdgaď0
C

// SSets

A // Map pSpX q,BG pAqq

simplicial set of
A-points of BG
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Derived stacks of local systems

Derived moduli of local systems (i)

The derived stack of G local systems can be viewed as an
8-functor

LocG pX q : cdgaď0
C

// SSets

A // Map pSpX q,BG pAqq

Note: LocG pX q admits a nice quotient presentation.
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Derived stacks of local systems

Derived moduli of local systems (ii)

Choose Γ‚ - a free simplicial model of the loop group ΩxpX q
of loops based at x P X .
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Derived stacks of local systems

Derived moduli of local systems (ii)

Choose Γ‚ - a free simplicial model of the loop group ΩxpX q
of loops based at x P X .

Note: BΓ‚ is a simplicial free resolution of the pointed
homotopy type pX , xq.
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Derived stacks of local systems

Derived moduli of local systems (ii)

Choose Γ‚ - a free simplicial model of the loop group ΩxpX q
of loops based at x P X .

Then:

RG pΓ‚q is a cosimplicial affine C-scheme;

ΓpRG pΓ‚q,Oq is a commuttative simplicial C-algebra.

Passing to normalized chains gives a AG pX q P cdgaď0
C

which
up to quasi-isomorphism is independent of the choice of the
resolution Γ‚.
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Derived stacks of local systems

Derived moduli of local systems (iii)

The conjugation action of G on RpΓ‚q gives an action of G on
the cdga AG pX q and hence on the derived affine scheme
SpecAG pX q. The quotient stack

LocG pX q “ rSpecAG pX q{G s

is the derived stack of G -local systems on X .
Back
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Forms and closed forms

p-forms

A P cdgaC, X “ SpecpAq P dStC,
QA Ñ A a cofibrant (quasi-free) replacement. Then:

‘pě0

Źp

A LA “ ‘pě0Ω
p
QA - a fourth quadrant bicomplex with

vertical differential d : Ωp,i
QA Ñ Ωp,i`1

QA induced by dQA, and

horizontal differential dDR : Ωp,i
QA Ñ Ωp`1,i

QA given by the de
Rham differential.

Hodge filtration: F qpAq :“ ‘pąqΩ
p
QA: still a fourth

quadrant bicomplex.
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Forms and closed forms

(shifted) closed p-forms

Motivation: If X is a smooth scheme/C, then
Ωp,cl

X –
`
Ωěp

X rps, dDR

˘
. Use pΩěp

X rps, dDRq as a model for
closed p forms in general.

Definition:

complex of closed p-forms on X “ SpecA:
Ap,clpAq :“ tot

ś
pF ppAqqrps

complex of n-shifted closed p-forms on
X “ SpecA: Ap,clpA; nq :“ tot

ś
pF ppAqqrn ` ps

Hodge tower:
¨ ¨ ¨ Ñ Ap,clpAqr´ps Ñ Ap´1,clpAqr1 ´ ps Ñ ¨ ¨ ¨ Ñ A0,clpAq
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Forms and closed forms

(shifted) closed p-forms (ii)

Explicitly an n-shifted closed p-form ω on X “ SpecA is an
infinite collection

ω “ tωiuiě0 , ωi P Ωp`i ,n´i
A

satisfying
dDRωi “ ´dωi`1.

Note: The collection tωiuiě1 is the key closing ω.
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Forms and closed forms

p-forms and closed p-forms
Note:

The complex A0,clpAq of closed 0-forms on X “ SpecA
is exactly Illusie’s derived de Rham complex of A.

There is an underlying p-form map

Ap,clpA; nq Ñ
ľp

LA{krns

inducing

H0pAp,clpAqrnsq Ñ HnpX ,
ľp

LA{kq.

The homotopy fiber of the underlying p-form map can be
very complicated (complex of keys): being closed is not
a property but rather a list of coherent data.
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Forms and closed forms

Functoriality and gluing:

Globally we have:

the n-shifted p-forms 8-functor
App´; nq : cdgaC Ñ SSets : A ÞÑ |Ωp

QArns |, and

the n-shifted closed p-forms 8-functor
Ap,clp´; nq : cdgaC Ñ SSets : A ÞÑ |Ap,clpAqrns |.

Note: App´; nq and Ap,clp´; nq are derived stacks for the
étale topology. underlying p-form map (of derived stacks)

A
p,clp´; nq Ñ A

pp´; nq

Notation: | ´ | denotes MapC´dgModpC,´q “ DKτď0p´q i.e.
Dold-Kan applied to the ď 0-truncation.
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Forms and closed forms

global forms and closed forms (i)

Fix a derived Artin stack X (locally of finite presentation {C)

Definition:

AppX q :“ MapdStCpX ,App´qq - space of p-forms on
X ;

Ap,clpX q :“ MapdStCpX ,Ap,clp´qq - space of closed
p-forms on X ;

n-shifted versions : AppX ; nq :“ MapdStCpX ,App´; nqq
and Ap,clpX ; nq :“ MapdStCpX ,Ap,clp´; nqq

an n-shifted (respectively closed) p-form on X is an
element in π0A

ppX ; nq (respectively in π0A
p,clpX ; nq)
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Forms and closed forms

global forms and closed forms (ii)

Note:

1) If X is a smooth scheme there are no negatively shifted
forms.

2) When X “ SpecA then there are no positively shifted
forms.

3) For general X shifted forms may exist for any n P Z.
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Forms and closed forms

global forms and closed forms (ii)

underlying p-form map (of simplicial sets)

A
p,clpX ; nq Ñ A

ppX ; nq

not a monomorphism for general X , its homotopy fiber at
a given p-form ω0 is the space of keys of ω0.

If X is a smooth and proper scheme then this map is
indeed a mono (homotopy fiber is either empty or
contractible) ñ no new phenomena in this case.
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Forms and closed forms

global forms and closed forms (ii)

Theorem (PTVV): for X derived Artin, then forms satisfy
smooth descent:

A
ppX ; nq » Map

LqcohpX qpOX , p
ľp

LX qrnsq.

In particular: an n-shifted p-form on X is an element in
HnpX ,

Źp
LX q
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Forms and closed forms

global forms and closed forms (iii)
Remark: If A P cdga is quasi-free, and X “ SpecA, then

A
p,clpX ; nq “

ˇ̌
ˇ̌
ˇ
ź

iě0

`
Ωp`1

A rn ´ i s, d ` dDR

˘
ˇ̌
ˇ̌
ˇ

“
ˇ̌
totΠpF ppAqqrns

ˇ̌

“ |NC pAqppqrn ` ps|
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Forms and closed forms

global forms and closed forms (iii)
Remark: If A P cdga is quasi-free, and X “ SpecA, then

A
p,clpX ; nq “

ˇ̌
ˇ̌
ˇ
ź

iě0

`
Ωp`1

A rn ´ i s, d ` dDR

˘
ˇ̌
ˇ̌
ˇ

“
ˇ̌
totΠpF ppAqqrns

ˇ̌

“ |NC pAqppqrn ` ps|

negative cyclic com-
plex of weight p
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Forms and closed forms

global forms and closed forms (iii)
Remark: If A P cdga is quasi-free, and X “ SpecA, then

A
p,clpX ; nq “

ˇ̌
ˇ̌
ˇ
ź

iě0

`
Ωp`1

A rn ´ i s, d ` dDR

˘
ˇ̌
ˇ̌
ˇ

“
ˇ̌
totΠpF ppAqqrns

ˇ̌

“ |NC pAqppqrn ` ps|

Hence

π0A
p,clpX ; nq “ HC

n´p
´ pAqppq.

Back
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Special cases

Derived critical loci

If f P H0pY ,Oq is a function on a smooth variety Y , then its
derived critical locus RCritpf q is defined as the fiber product

RCritpf q //

��

Y

df
��

Y
0

// T_Y

and is thus canonically p´1q-shifted symplectic.

Variant: If f P HnpY ,Oq “ H0pY ,Ornsq is an n-shifted
function on a smooth variety Y , then its derived critical locus
RCritpf q is canonically pn ´ 1q-shifted symplectic
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Special cases

Hamiltonian reduction (i)

Note: If G is a linear algebraic group/C, then
rg_{G s “ T_

BG r1s and hence is 1-shifted symplectic.

Suppose

‚ pM , ωq - complex algebraic symplectic manifold;

‚ G ˆ M Ñ M - a Hamiltonian action of G ;

‚ µ : M Ñ g_ - a G -equivariant moment map.

Then ω corresponds to a 0-shifted Lagrangian structure on the
map µ : rM{G s Ñ rg_{G s.
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Special cases

Hamiltonian reduction (ii)

Similarly, given a coadjoint orbit O Ă g_, the
Kirillov-Kostant-Souriau symplectic structure ωO on O

corresponds to a 0-shifted Lagrangian structure on the
inclusion rO{G s ãÑ rg_{G s.

The derived Hamiltonian reduction rRµ´1pOq{G s is
defined to be the Lagrangian intersection

rRµ´1pOq{G s //

��

rM{G s

��
rO{G s // rg_{G s

and is therefore canonically 0-shifted symplectic.
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Special cases

Quasi-Hamiltonian reduction (i)

Note: If G is a reductive linear algebraic group/C, then
rG{G s “ MapdStpS

1,BG q and hence is 1-shifted symplectic.

Suppose

‚ pM , ωq - complex algebraic symplectic manifold;

‚ G ˆ M Ñ M - a quasi-Hamiltonian action of G ;

‚ µ : M Ñ G - a G -equivariant group valued moment map.

Then ω corresponds to a 0-shifted Lagrangian structure on the
map µ : rM{G s Ñ rG{G s.
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Special cases

Quasi-Hamiltonian reduction (ii)

Given a conjugacy class C Ă G , the inclusion rC{G s ãÑ rG{G s
carries a canonical 0-shifted Lagrangian structure.

The derived quasi-Hamiltonian reduction rRµ´1pCq{G s is
defined to be the Lagrangian intersection

rRµ´1pCq{G s //

��

rM{G s

��
rC{G s // rG{G s

and is therefore canonically 0-shifted symplectic.

Back
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Orientations and structures

Orientations and structures (i)

Key observation: Lagrangian structures on a map between
moduli of local systems exist always in the presence of relative
orientations.
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Orientations and structures

Orientations and structures (i)

f : Y Ñ X - a continuous map between finite CW complexes;
C ‚pY ,X q - the cone of the pull-back map f ˚C ‚pX q Ñ C ‚pY q
on singular cochains with coefficients in C.

An orientation of dimension d on f is a morphism of
complexes or : C ‚pY ,X q ÝÑ Cr1 ´ ds, which is
non-degenerate in the sense that the pairing

C ‚pX q b C ‚pX ,Y q ÝÑ Cr1 ´ ds

given by the composition of or with the cup product on C pX q
is non-degenerate on cohomology and induces a
quasi-isomorphism C ‚pY ,X q » C ‚pX q_r1 ´ ds.
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Orientations and structures

Orientations and structures (ii)

f : Y Ñ X - continuous map of CW complexes equipped with
a relative orientation of dimension d .
G - a reductive algebraic group over C.

Theorem: [Calaque,Brav-Dyckerhoff] The pullback map
on the derived stacks of local systems

f ˚ : LocG pX q ÝÑ LocG pY q

carries a p2´dq-shifted Lagrangian structure which is canonical
up to a choice of a non-degenerate element in Sym2pg_qG .

Back
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Poisson bivectors

Poisson bivectors

For a G -local system ρ P LocG pX q we have

TLocG pX q,ρ “ H‚pX , adpρqqr1s

the bivector p underlying the p2 ´ dq-shifted Poisson
structure on LocG pX q is given by

C

PD

))❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚

p // pH‚pX , adpρqqr1s b H‚pX , adpρqqr1sqrd ´ 2s

H‚pX , adpρqqr1s b H‚pX , BX ; adpρqqrd ´ 2s

OO

Back
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Obstructions

Obstructions - smooth D (i)

Caution: LocGλi ,αi
pDiq may be empty. Indeed:

LocGλi ,αi
pDiqpCq is the groupoid of G -local systems on

BiX whose local monodromy around Di is conjugate to λi .

A Gλi{ZpGλiq-local system on Di determines a class in
H2pDi ,ZpGλiqq, which is the obstruction to lifting it to a
Gλi -local system.

For LocGλi ,αi
pDiqpCq to be non-empty one needs to have

a Gλi{ZpGλiq-local system on Di whose obstruction class
matches with the image of αi under the map
H2pDi ,Zq Ñ H2pDi ,ZpGλiqq given by λi : Z Ñ ZpGλiq.
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Obstructions

Obstructions - smooth D (ii)

Example: If G{C is semisimple, and λi is a regular
semi-simple element, then Zi is a maximal torus in G and
hence the image of αi in H2pDi ,Ziq is zero. If λi is of infinte
order, this forces αi to be a torsion class in H2pDi ,Zq.

Back
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Obstructions

Obstructions - two components (i)

Definition: A pair of commuting elements pλ1, λ2q P G ˆ G

is called strict if the morphism

BGtλ1,λ2u ÝÑ rGλ1{Gλ1
s ˆrG˚G{G s rGλ2

{Gλ2
s

is Lagrangian (for its canonical isotropic structure).

Here G ˚ G Ă G ˆ G is the commuting variety, and Gtλ1,λ2u is
the centralizer of the pair pλ1, λ2q.

Note: Strictness is a group theoretic property.
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Obstructions

Obstructions - two components (ii)

Proposition: Let pλ1, λ2q be a commuting pair of elements
in G , and u :“ Id ´ adpλ1q and v :“ Id ´ adpλ2q be the
corresponding endormorphisms of g. Then the pair pλ1, λ2q is
strict if and only u is strict with respect to the kernel of v , i.e.
if and only if

Impv| kerpuqq “ Impv q X kerpuq.

Note: Stricness is symmetric by definition so equivalently
pλ1, λ2q is strict if and only if v is strict with respect to the
kernel of u.
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Obstructions

Obstructions - two components (iii)

Corollary:

If at least one of the λi is semi-simple then the pair
pλ1, λ2q is strict.

If pu, v q form a principal nilpotent pair [Ginzburg], then
the pair pλ1, λ2q is strict.

Caution: Strictness is a non-trivial condition: if λ is any
non-trivial unipotent element in G , then the pair pλ, λq is not
strict. In this case u is a non-zero nilpotent endomorphism of
g and thus kerpuq X Impuq ‰ 0, but Impu| kerpuqq “ 0q.

Back
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