Lecture 1: Shifted symplectic structures on moduli of local systems

Tony Pantev

University of Pennsylvania

Moduli Spaces, Representation Theory, and Quantization June 23-27, 2019 RIMS

University of Pennsylvania

< 4 →

Outline

- joint with Dima Arinkin and Bertrand Toën
- Understand symplectic structures along the fibers of sheaves of derived stacks over a topological space.
- Apply to the geometry of the moduli of tame or wild local systems on a smooth variety over ℂ:
 - construct (shifted) Poisson structures;
 - describe their symplectic leaves.

Recall: unramified character varieties

- X smooth projective curve/ \mathbb{C} ,
- *G* a complex reductive group,
- $M_G(X)$ the coarse moduli space of representations $\rho: \pi_1(X, x) \to G.$

Classical story:

- The smooth part Msm_G(X) of M_G(X) admits an algebraic symplectic structure;
- There are explicit descriptions:
 - **cohomological** construction in deformation theory Goldman, Karshon, Weinstein, ...;

Image: A matching of the second se

University of Pennsylvania

Recall: unramified character varieties

- X smooth projective curve/ \mathbb{C} ,
- *G* a complex reductive group,
- $M_G(X)$ the coarse moduli space of representations $\rho: \pi_1(X, x) \to G.$

Classical story:

- The smooth part Msm_G(X) of M_G(X) admits an algebraic symplectic structure;
- There are explicit descriptions:
 - cohomological construction in deformation theory Goldman, Karshon, Weinstein, ...;

$$\mathsf{non-degeneracy} = \mathsf{Poincar\acute{e}} \ \mathsf{duality}$$

Recall: unramified character varieties

- X smooth projective curve/ \mathbb{C} ,
- *G* a complex reductive group,
- $M_G(X)$ the coarse moduli space of representations $\rho: \pi_1(X, x) \to G.$

Classical story:

- The smooth part Msm_G(X) of M_G(X) admits an algebraic symplectic structure;
- There are explicit descriptions:
 - **cohomological** construction in deformation theory Goldman, Karshon, Weinstein, ...;
 - quasi-Hamiltonian reduction construction Alekseev-Malkin-Meinrenken;

Image: A match a ma

Recall: tame character varieties

• *X* - a smooth quasi-projective curve/ \mathbb{C} .

Classical story: Fock-Rosly, Goldman, Guruprasad-Rajan, Guruprasad-Huebschmann-Jeffrey-Weinstein, ...

- $M_G^{sm}(X)$ has an algebraic Poisson structure;
- The symplectic leaves in $M_G^{sm}(X)$ are the moduli spaces of ρ with fixed monodromy at infinity.
- There are cohomological and quasi-Hamiltonian descriptions of symplectic leaves.

Image: A match a ma

Recall: tame character varieties

• X - a smooth quasi-projective curve/ \mathbb{C} .

Classical story: Fock-Rosly, Goldman, Guruprasad-Rajan, Guruprasad-Huebschmann-Jeffrey-Weinstein, ...

- $M_G^{sm}(X)$ has an algebraic Poisson structure;
- The symplectic leaves in $M_G^{sm}(X)$ are the moduli spaces of ρ with fixed monodromy at infinity.
- There are cohomological and quasi-Hamiltonian descriptions of symplectic leaves.

Recall: tame character varieties

• *X* - a smooth quasi-projective curve/ \mathbb{C} .

Classical story: Fock-Rosly, Goldman, Guruprasad-Rajan, Guruprasad-Huebschmann-Jeffrey-Weinstein, ...

- $M_G^{sm}(X)$ has an algebraic Poisson structure;
- The symplectic leaves in $M_G^{sm}(X)$ are the moduli spaces of ρ with fixed monodromy at infinity.
- There are cohomological and quasi-Hamiltonian descriptions of symplectic leaves.

Note: Symplectic leaves = **tame character varieties**.

Image: A match a ma

Recall: wild character varieties

- \mathfrak{X} is a smooth projective curve/ \mathbb{C} , $X = \mathfrak{X} \{x_1, \dots, x_k\}$;
- $\mathscr{I} = {\mathscr{I}_1, \ldots, \mathscr{I}_k}, \ \mathscr{I}_i \text{ irregular type at } x_i;$
- $M_G(X, \mathscr{I})$ the moduli of representations of $\pi_1(X)$ equipped with Stokes data of type \mathscr{I} .

Classical story: Boalch, Boalch-Yamakawa

- $M_G^{sm}(X, \mathscr{I})$ has an algebraic Poisson structure;
- The symplectic leaves in Msm_G(X, *I*) are the moduli spaces of ρ with fixed formal monodromy at infinity.
- There is a quasi-Hamiltonian descriptions of symplectic leaves.

• • • • • • • • • • •

Goal

Remark:

- The ramified setting is often better behaved. Generic choices of local monodromies (in the tame case) or of irregular types and formal monodromies (in the wild case) ensure that M_Gsm = M_G
- The cohomological description and the linear reason for non-degeneracy of the symplectic structure on the wild character varieties is not immediately clear.

Goal

- Construct Poisson structures everywhere on $M_G(X)$ and $M_G(X, \mathscr{I})$ including the singular points.
- Describe their symplectic leaves.
- Find cohomological and quasi-Hamiltonian descriptions of the symplectic form at the singular points.
- Extend the whole story to higher dimensional smooth varieties *X*.

Image: A matrix

Setup

Natural approach: Resolve the singularities of M_G in a minimal way so that the Poisson and symplectic structures extend to the resolution.

Lucky break: $M_G(X)$ and $M_G(X, \mathscr{I})$ admit natural resolutions which are again moduli spaces.

Note: These resolutions/refinements of M_G are not schemes but rather are derived algebraic stacks which are locally finitely presentable and in particular have perfect tangent complexes.

Refinements (i)

Unramified+tame cases

The moduli $M_G(X)$ can be refined to the derived stack

$$Loc_{G}(X) = Map_{dSt}(X, BG)$$

parametrizing G-local systems on X.

Key point:

- Any non-degenerate $\kappa \in (\text{Sym}^2 \mathfrak{g}^{\vee})^G$ corresponds to a 2-shifted symplectic structure ω_{κ} on the Artin stack *BG*
- ω_{κ} induces 0-shifted symplectic or Poisson structures on $Loc_{G}(X)$ in the unramified or tame case respectively.

Refinements (ii)

Wild case:

The moduli $M_G(X, \mathscr{I})$ can be refined to the derived stack

$$Loc_{G}(X, \mathscr{I}) = \Gamma\left(\widehat{\mathfrak{X}}, \mathsf{DMS}_{G, \mathscr{I}}\right)$$

parametrizing Stokes filtered G-local systems of irregular type \mathscr{I} .

University of Pennsylvania

Image: A match a ma

Refinements (ii)

Wild case:

The moduli $M_G(X, \mathscr{I})$ can be refined to the derived stack

$$Loc_{G}(X, \mathscr{I}) = \Gamma\left(\widehat{\mathfrak{X}}, \mathsf{DMS}_{G, \mathscr{I}}\right)$$

parametrizing Stokes filtered G-local systems of irregular type \mathscr{I} .

Note:

• $\text{DMS}_{G,\mathscr{I}}$ denotes the Deligne-Malgrange-Stokes sheaf of Artin stacks on X classifying Stokes data of type \mathscr{I} .

• $\hat{\mathfrak{X}}$ denotes the real oriented blow up of \mathfrak{X} in the x_i .

Refinements (ii)

Wild case:

The moduli $M_G(X, \mathscr{I})$ can be refined to the derived stack

$$Loc_{G}(X, \mathscr{I}) = \Gamma\left(\widehat{\mathfrak{X}}, \mathsf{DMS}_{G, \mathscr{I}}\right)$$

parametrizing Stokes filtered G-local systems of irregular type \mathscr{I} .

Key point: DMS_{*G*, \mathscr{I}} is equipped with a natural 0-shifted relative symplectic structure which induces a Poisson structure on $Loc_G(X, \mathscr{I})$.

Image: A match a ma

Moduli of local systems (i)

- X finite CW complex;
- G an affine reductive group over \mathbb{C} .

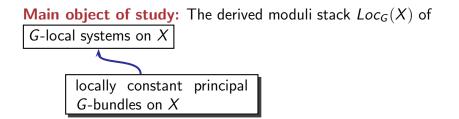
Main object of study: The derived moduli stack $Loc_G(X)$ of

Image: A math a math

University of Pennsylvania

Moduli of local systems (i)

- X finite CW complex;
- *G* an affine reductive group over \mathbb{C} .



University of Pennsylvania

Moduli of local systems (i)

- X finite CW complex;
- G an affine reductive group over \mathbb{C} .

Main object of study: The derived moduli stack $Loc_G(X)$ of *G*-local systems on *X*

< 4 → < 3

University of Pennsylvania

Moduli of local systems (ii)

Properties:

- $Loc_G(X)$ is a derived Artin stack over \mathbb{C} .
- $t_0Loc_G(X)$ depends only on the fundamental group of X:

$$t_0 Loc_G(X) = \mathcal{M}_G(X) = \left[\left. R_G(\pi_1(X, x)) \right/ G \right]$$

 $R_G(\pi_1(X, x))$ is the **character scheme** of *X*: the affine \mathbb{C} -scheme representing the functor

$$\begin{array}{rl} R_{G}(\pi_{1}(X,x)): & \operatorname{commalg}_{\mathbb{C}} & \longrightarrow \operatorname{Sets}, \\ & A & \longrightarrow \operatorname{Hom}_{\operatorname{grp}}\left(\pi_{1}(X,x), \, G(A)\right). \end{array}$$

Image: A math a math

Moduli of local systems (iii)

Properties:

• $\mathcal{M}_G(X) = t_0 Loc_G(X)$ has a course moduli space which is the affine GIT quotient $M_G(X) = R_G(X)/\!/G$, and

$$M_{G}(X)(\mathbb{C}) = \begin{pmatrix} \operatorname{conjugacy classes of} \rho : \pi_{1}(X, x) \to G \\ \operatorname{with} \operatorname{im}(\rho) \text{-reductive} \end{pmatrix}$$

Image: A math a math

University of Pennsylvania

In general the derived structure on Loc_G(X) depends on the full homotopy type of X.

Shifted symplectic structures

Recall: [P-Toën-Vaquié-Vezzosi] ([PTVV])

- If F is derived Artin locally f.p. over C we have a complex of closed p-forms A^{p,cl}(F) on F.
- When F = Spec A, then A^{p,cl}(F) corresponds to the module tot[∏](F^p(A)[p]).
- An *n*-cocycle ω in the complex A^{2,cl}(F) is a closed *n*-shifted 2-form.
- ω is an *n*-shifted symplectic structure if the contraction $\omega^{\flat} : \mathbb{T}_F \longrightarrow \mathbb{L}_F[n]$ with the induced element in $H^n(F, \bigwedge^2 \mathbb{L})$ is a quasi-iso.

Image: A match a ma

Structures on maps

- Let $f: F \to F'$ be a morphism in $\mathbf{dSt}_{\mathbb{C}}$, then
 - An (n-1)-shifted isotropic structure on f is a pair (ω, h), where ω is an n-shifted symplectic structure on F', and h is a homotopy between f*(ω) and 0 inside the complex A^{2,cl}(F).
 - An isotropic structure (ω, h) is Lagrangian if the induced morphism h^b : T_f → L_F[n − 1] is a quasi-isomorphism.

Note: An (n-1)-shifted Lagrangian structure (0, h) on $f : F \to \operatorname{Spec} \mathbb{C}$ is simply an (n-1)-shifted symplectic structure on F.

Image: A match a ma

Shifted symplectic structures: examples (i)

- Nondegeneracy: a duality between the **stacky** (positive degrees) and the **derived** (negative degrees) parts of L_X.
- If G/C is reductive any non-degenerate κ ∈ (Sym² g[∨])^G gives rise to a canonical 2-shifted symplectic form ω_κ on BG whose underlying 2-shifted 2-form is

$$\mathbb{C} {\rightarrow} (\mathbb{L}_{BG} \land \mathbb{L}_{BG})[2] \simeq (\mathfrak{g}^{\vee}[-1] \land \mathfrak{g}^{\vee}[-1])[2] = \mathsf{Sym}^2 \, \mathfrak{g}^{\vee}$$

Image: A math a math

University of Pennsylvania

given by κ .

■ The *n*-shifted cotangent bundle *T*[∨]*X*[*n*] := Spec_{*X*}(Sym(T_{*X*}[−*n*])) has a canonical *n*-shifted symplectic form.

Shifted symplectic structures: examples (ii)

Theorem: [PTVV] Let (F, ω) be *n*-shifted symplectic and let X be a derived stack equipped with an \mathcal{O} -orientation of dimension d. If $Map_{dSt}(X, F)$ is a locally f.p. derived Artin stack, then it carries a natural (n - d)-shifted symplectic structure.

Remark:

0) Analogue of Alexandrov-Kontsevich-Schwarz-Zaboronsky result in QFT.

Tony Pantev

Shifted symplectic structures: examples (ii)

Theorem: [PTVV] Let (F, ω) be *n*-shifted symplectic and let X be a derived stack equipped with an \mathcal{O} -orientation of dimension d. If $Map_{dSt}(X, F)$ is a locally f.p. derived Artin stack, then it carries a natural (n - d)-shifted symplectic structure.

Remark:

- 1) An *d*-dimensional compact Calabi-Yau *X* has an \mathcal{O} -orientation of dimension *d* (Serre duality).
- A compact oriented topological *d*-manifold has an *O*-orientation of dimension *d* (Poincaré duality).

Shifted symplectic structures: examples (iii)

Theorem: [PTVV] Let (F, ω) be an *n*-shifted symplectic derived Artin stack, and $L_i \rightarrow F$, i = 1, 2 be maps of derived stacks equipped with Lagrangian structures. Then the homotopy fiber product $L_1 \times_F L_2$ is canonically a (n - 1)-shifted derived Artin stack.

Remark: Many standard constructions in symplectic geometry are special cases of these two theorems.

Structures on $Loc_G(X)$ (i)

 $(X, \partial X)$ - compact oriented topological manifold of dim = d*G* - a reductive algebraic group over \mathbb{C} .

Theorem:

(a) **[PTVV]** If $\partial X = \emptyset$, then the derived stack $Loc_G(X)$ has a (2 - d)-shifted symplectic structure which is canonical up to a choice of a non-degenerate element in $(\text{Sym}^2 \mathfrak{g}^{\vee})^G$

(b) [Calaque] The restriction map Loc_G(X) → Loc_G(∂X) carries a canonical (2 − d)-shifted Lagrangian structure for the 3 − d = 2 − (d − 1)-shifted symplectic structure on the target.

Structures on $Loc_G(X)$ (ii)

Note: When X is a Riemann surface with boundary we recover the symplectic structures on moduli of G-local systems on X with prescribed monodromies at infinity.

< 1 > <

University of Pennsylvania

Structures on $Loc_G(X)$ (ii)

Example: Suppose $(X, \partial X)$ is an oriented surface with boundary. Then

- ∂X is a disjoint union of oriented circles, and so $Loc_{G}(\partial X) \simeq \prod [G/G].$
- The stack *Loc*_G(*S*¹) = [*G*/*G*] carries a canonical 1-shifted symplectic structure.
- For any λ ∈ G with centralizer G_λ, the inclusion of the conjugacy class C_λ ⊂ G of λ gives a canonical Lagrangian structure on the map BG_λ ≃ [C_λ/G] ↔ [G/G].

Image: A math a math

Structures on $Loc_G(X)$ (iii)

Assigning elements $\lambda_i \in G$ to each boundary component of X, we get two 0-shifted Lagrangian morphisms

By **[PTVV]** the fiber product of these two maps has a canonical 0-shifted symplectic structure. This fiber product, is the derived stack

$$Loc_G(X, \{\lambda_i\})$$

of *G*-local systems on *X* whose local monodromies at infinity belong to the conjugacy classes $\{C_{\lambda_i}\}$.

Shifted Poisson structures (i)

Recall: [Calaque-P-Toën-Vaquié-Vezzosi] ([CPTVV])

- For F a derived Artin stack/C, can form the dg Lie algebra of *n*-shifted polyvector fields Γ(F, Sym_O(T_F[−n−1]))[n+1].
- An *n*-shifted Poisson structure on *F* is a morphism in the ∞-category of graded dg-Lie algebras

$$p: \mathbb{C}[-1](2) \longrightarrow \Gamma(F, \mathsf{Sym}_{\mathcal{O}}(\mathbb{T}_{F}[-n-1]))[n+1],$$

where $\mathbb{C}[-1](2)$ is the graded dg Lie algebra which is \mathbb{C} placed in homological degree 1 and grading degree 2, equipped with the zero Lie bracket.

Image: A match a ma

Shifted Poisson structures (ii)

Remark: [Melani-Safronov,Costello-Rozenblyum,Nuiten] Shifted Poisson structures can always be described in terms of shifted symplectic groupoids (Weinstein program).

University of Pennsylvania

Shifted Poisson structures (ii)

Theorem: [Costello-Rozenblyum] If F is a derived Artin stack the space of *n*-shifted Poisson structure on F is weakly equivalent to the space of equivalence classes of *n*-shifted Lagrangian maps $F \rightarrow F'$ to formal derived stacks F'.

Note: $[F \to F'] \sim [F \to F'']$ if there exists an *n*-shifted Lagrangian map $F \to G$ and a commutative diagram $F' \longrightarrow G$ $F \to G$ $\downarrow b$ F''

with *a* and *b* formally étale and compatible with the Lagrangian structures.

Shifted Poisson structures (iii)

Example: For a compact oriented *d*-dimensional manifold *X* with boundary ∂X , the restriction map

$$Loc_G(X) \longrightarrow Loc_G(\partial X)$$

University of Pennsylvania

is Lagrangian **[Calaque]** and so can be viewed as a (2 - d)-shifted Poisson structure on $Loc_G(X)$.

Symplectic leaves (i)

Classically a Poisson structure on a smooth variety induces a foliation of the variety by symplectic leaves.

For an *n*-shifted Poisson structure on a derived stack F given by a Lagrangian map $f : F \to F'$, the symplectic leaves are the appropriately interpreted fibers of f.

Definition: A generalized symplectic leaf of F is a derived stack of the form $F \times_{F'} \Lambda$ for any *n*-shifted Lagrangian morphism $\Lambda \to F'$

Note: By **[PTVV]** a generalized symplectic leaf carries a canonical *n*-shifted symplectic structure.

Image: A math a math

Symplectic leaves (ii)

Example: *X* - a compact oriented surface with boundary. The restriction map

$$Loc_{G}(X) \longrightarrow Loc_{G}(\partial X) = \prod [G/G]$$

carries a 0-shifted Lagrangian structure and thus corresponds to a 0-shifted Poisson structure on $Loc_G(X)$.

 $Loc_G(X, \{\lambda_i\})$ - the derived moduli stack of *G*-local systems on *X* with fixed monodromies at infinity - is a generalized symplectic leaf in $Loc_G(X)$.

Image: A math a math

Betti spaces - theorems (i)

The **boundary of a topological space** *Y* is the pro-homotopy type $\partial Y := \lim_{K \subset Y} (Y - K) \in \text{Pro}(\text{SSets}).$

▲日▼▲□▼▲田▼▲田▼ 回 ろえの

University of Pennsylvania

Betti spaces - theorems (i)

The **boundary of a topological space** *Y* is the pro-homotopy type $\partial Y := \lim_{K \subseteq Y} (Y - K) \in \text{Pro}(\text{SSets}).$

taken in the ∞ -category SSets of homotopy types and over the opposite category of compact subsets $K \subset Y$

Betti spaces - theorems (i)

The **boundary of a topological space** *Y* is the pro-homotopy type $\partial Y := \lim_{K \subset Y} (Y - K) \in \text{Pro}(\text{SSets}).$

Note: The pro-object ∂Y is in general not constant and can be extremely complicated. However if $X = Z(\mathbb{C})$ for a smooth *n*-dimensional complex algebraic variety *Z*, we have:

Proposition: The pro-object ∂X is equivalent to a constant pro-object in SSets which has the homotopy type of a compact oriented topological manifold of dimension 2n - 1.

Remark: ∂X has the homotopy type of the boundary of the real oriented blowup of a good compactification of Z along its normal crossing boundary.

• • • • • • • • • •

Betti spaces - theorems (ii)

Suppose $X = Z(\mathbb{C})$ for a smooth *n*-dimensional complex algebraic variety *Z*, then

Claim: The canonical map $\partial X \longrightarrow X$ induces a restriction morphism of derived locally f.p. Artin stacks

$$r: Loc_G(X) \longrightarrow Loc_G(\partial X).$$

which is equipped with a canonical (2-2n)-shifted Lagrangian structure with respect to the canonical shifted symplectic structure on $Loc_G(\partial X)$.

In particular r can be viewed as a (2 - 2n)-shifted Poisson structure on $Loc_G(X)$.

Image: A matrix

Assume Z admits a smooth compactification $Z \subset \mathfrak{Z}$ with $D = \mathfrak{Z} - Z = \coprod_i D_i$ a smooth divisor. Then

- $\partial X = \sim$ (oriented circle bundle over *D*) classified by elements $\alpha_i \subset H^2(D_i, \mathbb{Z})$, $\alpha_i = c_1(N_{D_i/3})$.
- Given $\lambda_i \in G$ with centralizer G_{λ_i} , the group S^1 acts on $BG_{\lambda i}$ (via λ_i) and naturally on [G/G] so that the Lagrangian structure on the map $BG_{\lambda i} \rightarrow [G/G]$ is S^1 -equivariant.
- Twisting by α_i gives a 1-shifted Lagrangian morphism

$$(\dagger_i) \qquad \qquad \alpha_i \widetilde{BG}_{\lambda_i} \longrightarrow \alpha_i [\widetilde{G/G}]$$

of locally constant families of derived Artin stacks over D_i .

Passing to global sections gives moduli stacks:

$$Loc_{G}(\partial_{i}X) = Map(\partial_{i}X, BG) = \Gamma(D_{i}, \alpha_{i}\widetilde{[G/G]});$$

 $Loc_{G_{\lambda i},\alpha_{i}}(D_{i}) = \Gamma(D_{i}, \alpha_{i}\widetilde{BG_{\lambda i}})$

University of Pennsylvania

・ロト ・ 日 ト ・ 日 ト ・

Passing to global sections gives moduli stacks:

$$Loc_{G}(\partial_{i}X) = Map(\partial_{i}X, BG) = \Gamma\left(D_{i}, \alpha_{i}[\widetilde{G/G}]\right); \\ Loc_{G_{\lambda i},\alpha_{i}}(D_{i}) = \Gamma\left(D_{i}, \alpha_{i}\widetilde{BG_{\lambda i}}\right)$$

G local systems on the component $\partial_i X$ of ∂X mapping tp D_i

University of Pennsylvania

• • • • • • • • • •

Passing to global sections gives moduli stacks:

$$Loc_{G}(\partial_{i}X) = Map(\partial_{i}X, BG) = \Gamma(D_{i}, \alpha_{i}[\widetilde{G/G}]);$$

 $Loc_{G_{\lambda i},\alpha_{i}}(D_{i}) = \Gamma(D_{i}, \alpha_{i}\widetilde{BG_{\lambda i}})$
 $\overline{G_{\lambda i} \text{ local systems on } D_{i}}$
twisted by α_{i}

Tony Pantev Relative Symplectic structures 1 University of Pennsylvania

・ロト ・回ト ・回ト

Passing to global sections gives moduli stacks:

$$Loc_{G}(\partial_{i}X) = Map(\partial_{i}X, BG) = \Gamma(D_{i}, \alpha_{i}\widetilde{[G/G]});$$

 $Loc_{G_{\lambda i},\alpha_{i}}(D_{i}) = \Gamma(D_{i}, \alpha_{i}\widetilde{BG_{\lambda i}})$

Since D_i is a compact topological manifold endowed with a canonical orientation the map (\dagger_i) induces a (3 - 2n)-shifted Lagrangian morphism of derived Artin stacks

$$r_i: Loc_{G_{\lambda i},\alpha_i}(D_i) \longrightarrow Loc_G(\partial_i X).$$

Image: A match a ma

University of Pennsylvania

Combining all r_i we get a (3-2n)-shifted Lagrangian morphism

$$r = \prod_{i} r_{i} : \prod_{i} Loc_{G_{\lambda i},\alpha_{i}}(D_{i}) \longrightarrow \prod_{i} Loc_{G}(\partial_{i}X) = Loc_{G}(\partial X).$$

By [PTVV] the fiber product of derived stacks

$$Loc_{G}(X, \{\lambda_{i}\}) := \left(\prod_{i} Loc_{G_{\lambda i}, \alpha_{i}}(D_{i})\right) \underset{Loc_{G}(\partial X)}{\times} Loc_{G}(X)$$

Image: A math a math

University of Pennsylvania

has a canonical (2-2n)-shifted symplectic structure.

By construction

- Loc_G(X, {λ_i}) is the derived stack of G-local systems on X whose local monodromy around D_i is fixed to be in the conjugacy class C_{λi} of λ_i.
- The natural map

$$Loc_G(X, \{\lambda_i\}) \longrightarrow Loc_G(X)$$

realizes $Loc_G(X, \{\lambda_i\})$ as a generalized symplectic leaf of the (2 - 2n)-shifted Poisson structure on $Loc_G(X)$.

Tony Pantev Relative Symplectic structures 1 University of Pennsylvania

Image: A match a ma

Symplectic leaves - two components (i)

Assume $D = \Im - Z = D_1 \cup D_2$ has two smooth irreducible components meeting transversally at a smooth D_{12} . Then

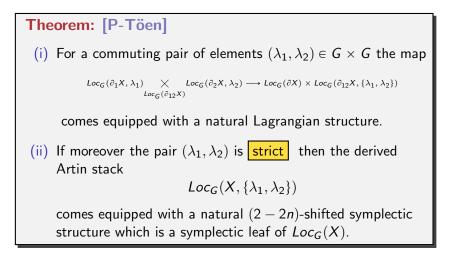
$$\partial X \simeq \partial_1 X \bigsqcup_{\partial_{12} X} \partial_2 X.$$

where $\partial_i X$ is an oriented circle bundle over $D_i^o = D_i - D_{12}$, and $\partial_{12} X$ is an oriented $S^1 \times S^1$ -bundle over D_{12} .

Note: Each $\partial_i X$ has the homotopy type of an oriented compact manifold of dimension 2n - 1 with boundary canonically equivalent to $\partial_{12}X$.

Image: A match a ma

Symplectic leaves - two components (ii)



Tony Pantev Relative Symplectic structures 1 University of Pennsylvania

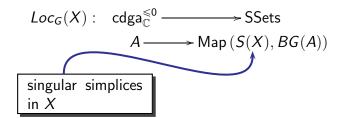
• • • • • • • • • •

The derived stack of ${\it G}$ local systems can be viewed as an $\infty\mathchar`-functor$

$$Loc_G(X) : \operatorname{cdga}_{\mathbb{C}}^{\leq 0} \longrightarrow \operatorname{SSets} A \longrightarrow \operatorname{Map} (S(X), BG(A))$$

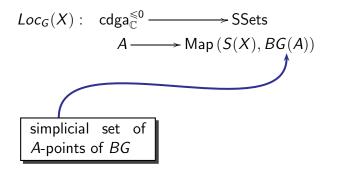
University of Pennsylvania

The derived stack of ${\it G}$ local systems can be viewed as an $\infty\mathchar`-functor$



University of Pennsylvania

The derived stack of ${\it G}$ local systems can be viewed as an $\infty\mathchar`-functor$



University of Pennsylvania

The derived stack of ${\it G}$ local systems can be viewed as an $\infty\mathchar`-functor$

$$Loc_G(X) : \operatorname{cdga}_{\mathbb{C}}^{\leq 0} \longrightarrow \operatorname{SSets} A \longrightarrow \operatorname{Map} (S(X), BG(A))$$

Image: A math a math

University of Pennsylvania

Note: $Loc_G(X)$ admits a nice quotient presentation.

Choose Γ_{\bullet} - a free simplicial model of the loop group $\Omega_x(X)$ of loops based at $x \in X$.

University of Pennsylvania

Choose Γ_{\bullet} - a free simplicial model of the loop group $\Omega_x(X)$ of loops based at $x \in X$.

Note: $B\Gamma_{\bullet}$ is a simplicial free resolution of the pointed homotopy type (X, x).

Image: A math a math

Choose Γ_{\bullet} - a free simplicial model of the loop group $\Omega_x(X)$ of loops based at $x \in X$.

Then:

- **R**_G(Γ_{\bullet}) is a cosimplicial affine \mathbb{C} -scheme;
- $\Gamma(R_G(\Gamma_{\bullet}), \mathcal{O})$ is a commuttative simplicial \mathbb{C} -algebra.

Passing to normalized chains gives a $\mathscr{A}_G(X) \in \operatorname{cdga}_{\mathbb{C}}^{\leq 0}$ which up to quasi-isomorphism is independent of the choice of the resolution Γ_{\bullet} .

Image: A match a ma

The conjugation action of G on $R(\Gamma_{\bullet})$ gives an action of G on the cdga $\mathscr{A}_{G}(X)$ and hence on the derived affine scheme **Spec** $\mathscr{A}_{G}(X)$. The quotient stack

$$Loc_G(X) = [\operatorname{Spec} \mathscr{A}_G(X) / G]$$

is the derived stack of *G*-local systems on *X*.

University of Pennsylvania

p-forms

 $A \in \operatorname{cdga}_{\mathbb{C}}, \quad X = \operatorname{Spec}(A) \in \operatorname{dSt}_{\mathbb{C}},$ $QA \to A$ a cofibrant (quasi-free) replacement. Then:

 $\bigoplus_{p \ge 0} \bigwedge_{A}^{p} \mathbb{L}_{A} = \bigoplus_{p \ge 0} \Omega_{QA}^{p} - \text{a fourth quadrant bicomplex with}$ vertical differential $d : \Omega_{QA}^{p,i} \to \Omega_{QA}^{p,i+1}$ induced by d_{QA} , and horizontal differential $d_{DR} : \Omega_{QA}^{p,i} \to \Omega_{QA}^{p+1,i}$ given by the de Rham differential.

Image: A math the second se

University of Pennsylvania

Hodge filtration: $F^q(A) := \bigoplus_{p>q} \Omega^p_{QA}$: still a fourth quadrant bicomplex.

(shifted) closed *p*-forms

Motivation: If X is a smooth scheme/ \mathbb{C} , then $\Omega_X^{p,cl} \cong (\Omega_X^{\geq p}[p], d_{DR})$. Use $(\Omega_X^{\geq p}[p], d_{DR})$ as a model for closed p forms in general.

Definition:

- complex of closed *p*-forms on X =Spec *A*: $\mathbf{A}^{p,cl}(A) := tot\Pi(F^p(A))[p]$
- complex of *n*-shifted closed *p*-forms on $X = \operatorname{Spec} A: \mathbf{A}^{p,cl}(A; n) := \operatorname{tot}^{\prod}(F^p(A))[n+p]$

Hodge tower:

$$\cdots \to \mathbf{A}^{p,cl}(A)[-p] \to \mathbf{A}^{p-1,cl}(A)[1-p] \to \cdots \to \mathbf{A}^{0,cl}(A)$$

Relative Symplectic structures 1

Tony Pantev

(shifted) closed *p*-forms (ii)

Explicitly an *n*-shifted closed *p*-form ω on $X = \operatorname{Spec} A$ is an infinite collection

$$\omega = \{\omega_i\}_{i \ge 0}, \qquad \omega_i \in \Omega_A^{p+i,n-i}$$

satisfying

$$d_{DR}\omega_i = -d\omega_{i+1}.$$

Image: A math a math

University of Pennsylvania

Note: The collection $\{\omega_i\}_{i\geq 1}$ is the key closing ω .

p-forms and closed *p*-forms

Note:

- The complex **A**^{0,cl}(A) of closed 0-forms on X = **Spec** A is exactly Illusie's derived de Rham complex of A.
- There is an underlying *p*-form map

$$\mathbf{A}^{p,cl}(A;n) \to \bigwedge^{p} \mathbb{L}_{A/k}[n]$$

inducing

$$H^0(\mathbf{A}^{p,cl}(A)[n]) \to H^n(X, \bigwedge^p \mathbb{L}_{A/k}).$$

The homotopy fiber of the underlying *p*-form map can be very complicated (complex of keys): being closed is not a property but rather a list of coherent data.

Functoriality and gluing:

Globally we have:

• the *n*-shifted *p*-forms ∞ -functor

 $\mathcal{A}^{p}(-; n) : \mathsf{cdga}_{\mathbb{C}} \to \mathsf{SSets} : A \mapsto | \, \Omega^{p}_{QA}[n] \, |, \text{ and}$

The *n*-shifted closed *p*-forms ∞ -functor

 $\mathcal{A}^{p,cl}(-;n):\mathsf{cdga}_{\mathbb{C}}\to\mathsf{SSets}:A\mapsto \mid \mathbf{A}^{p,cl}(A)[n]\mid.$

Note: $\mathcal{A}^{p}(-; n)$ and $\mathcal{A}^{p,cl}(-; n)$ are **derived stacks** for the étale topology. underlying *p*-form map (of derived stacks)

$$\mathcal{A}^{p,cl}(-;n) \to \mathcal{A}^{p}(-;n)$$

Notation: |-| denotes $Map_{\mathbb{C}-dgMod}(\mathbb{C}, -) = \mathbf{DK}\tau^{\leq 0}(-)$ i.e. Dold-Kan applied to the ≤ 0 -truncation.

Image: A match a ma

global forms and closed forms (i)

Fix a derived Artin stack X (locally of finite presentation $/\mathbb{C}$)

Definition: • $\mathcal{A}^{p}(X) := Map_{dSt_{c}}(X, \mathcal{A}^{p}(-))$ - space of *p*-forms on *X*: • $\mathcal{A}^{p,cl}(X) := Map_{dSt_c}(X, \mathcal{A}^{p,cl}(-))$ - space of closed p-forms on X; • *n*-shifted versions : $\mathcal{A}^{p}(X; n) := Map_{dSt_{\mathbb{C}}}(X, \mathcal{A}^{p}(-; n))$ and $\mathcal{A}^{p,cl}(X; n) := Map_{dSt_{\mathcal{C}}}(X, \mathcal{A}^{p,cl}(-; n))$ ■ an *n*-shifted (respectively closed) *p*-form on X is an element in $\pi_0 \mathcal{A}^p(X; n)$ (respectively in $\pi_0 \mathcal{A}^{p,cl}(X; n)$)

Image: A match a ma

global forms and closed forms (ii)

Note:

- 1) If X is a smooth scheme there are no negatively shifted forms.
- When X = Spec A then there are no positively shifted forms.
- 3) For general X shifted forms may exist for any $n \in \mathbb{Z}$.

Image: A math a math

global forms and closed forms (ii)

underlying p-form map (of simplicial sets)

$$\mathcal{A}^{p,cl}(X;n) \to \mathcal{A}^{p}(X;n)$$

- not a monomorphism for general X, its homotopy fiber at a given p-form ω₀ is the space of keys of ω₀.
- If X is a smooth and proper scheme then this map is indeed a mono (homotopy fiber is either empty or contractible) ⇒ no new phenomena in this case.

global forms and closed forms (ii)

Theorem (PTVV): for X derived Artin, then forms satisfy smooth descent:

$$\mathcal{A}^{p}(X; n) \simeq \operatorname{Map}_{\operatorname{L}_{\operatorname{qcoh}}(X)}(\mathcal{O}_{X}, (\bigwedge^{p} \mathbb{L}_{X})[n])$$

Image: A match a ma

University of Pennsylvania

In particular: an *n*-shifted *p*-form on X is an element in $H^n(X, \bigwedge^p \mathbb{L}_X)$

global forms and closed forms (iii)

Remark: If $A \in cdga$ is quasi-free, and $X = \operatorname{Spec} A$, then

$$\mathcal{A}^{p,cl}(X;n) = \left| \prod_{i \ge 0} \left(\Omega_A^{p+1}[n-i], d+d_{DR} \right) \right|$$
$$= \left| \operatorname{tot}^{\Pi}(F^p(A))[n] \right|$$
$$= \left| NC(A)(p)[n+p] \right|$$

University of Pennsylvania

Image: A match a ma

global forms and closed forms (iii)

Remark: If $A \in cdga$ is quasi-free, and $X = \operatorname{Spec} A$, then

$$\mathcal{A}^{p,cl}(X;n) = \left| \prod_{i \ge 0} \left(\Omega_A^{p+1}[n-i], d+d_{DR} \right) \right|$$
$$= \left| \operatorname{tot}^{\Pi}(F^p(A))[n] \right|$$
$$= \left| NC(A)(p)[n+p] \right|$$
negative cyclic complex of weight p

University of Pennsylvania

Image: A match a ma

global forms and closed forms (iii)

.

Remark: If $A \in cdga$ is quasi-free, and $X = \operatorname{Spec} A$, then

$$\mathcal{A}^{p,cl}(X;n) = \left| \prod_{i \ge 0} \left(\Omega_A^{p+1}[n-i], d+d_{DR} \right) \right|$$
$$= \left| \operatorname{tot}^{\Pi}(F^p(A))[n] \right|$$
$$= \left| NC(A)(p)[n+p] \right|$$

Hence

$$\pi_0\mathcal{A}^{p,cl}(X;n) = HC^{n-p}_{-}(A)(p).$$

University of Pennsylvania

.

Derived critical loci

If $f \in H^0(Y, \mathcal{O})$ is a function on a smooth variety Y, then its derived critical locus $\mathbb{R}Crit(f)$ is defined as the fiber product

and is thus canonically (-1)-shifted symplectic.

Variant: If $f \in H^n(Y, \mathcal{O}) = \mathbb{H}^0(Y, \mathcal{O}[n])$ is an *n*-shifted function on a smooth variety *Y*, then its derived critical locus $\mathbb{R}Crit(f)$ is canonically (n-1)-shifted symplectic

・ロト ・ 日 ・ ・ ヨ ・ ・

Hamiltonian reduction (i)

Note: If G is a linear algebraic group/ \mathbb{C} , then $[\mathfrak{g}^{\vee}/G] = \mathcal{T}_{BG}^{\vee}[1]$ and hence is 1-shifted symplectic.

Suppose

- (M, ω) complex algebraic symplectic manifold;
- $G \times M \rightarrow M$ a Hamiltonian action of G;
- $\mu: M \to \mathfrak{g}^{\vee}$ a *G*-equivariant moment map.

Then ω corresponds to a 0-shifted Lagrangian structure on the map $\mu : [M/G] \rightarrow [\mathfrak{g}^{\vee}/G].$

Image: A match a ma

Hamiltonian reduction (ii)

Similarly, given a coadjoint orbit $\mathbb{O} \subset \mathfrak{g}^{\vee}$, the **Kirillov-Kostant-Souriau** symplectic structure $\omega_{\mathbb{O}}$ on \mathbb{O} corresponds to a 0-shifted Lagrangian structure on the inclusion $[\mathbb{O}/G] \hookrightarrow [\mathfrak{g}^{\vee}/G]$.

The **derived Hamiltonian reduction** $[R\mu^{-1}(\mathbb{O})/G]$ is defined to be the Lagrangian intersection

and is therefore canonically 0-shifted symplectic.

Image: A matrix

Quasi-Hamiltonian reduction (i)

Note: If G is a reductive linear algebraic group/ \mathbb{C} , then $[G/G] = Map_{dSt}(S^1, BG)$ and hence is 1-shifted symplectic.

Suppose

- (M, ω) complex algebraic symplectic manifold;
- $G \times M \rightarrow M$ a quasi-Hamiltonian action of G;
- $\mu: M \to G$ a G-equivariant group valued moment map.

Then ω corresponds to a 0-shifted Lagrangian structure on the map $\mu : [M/G] \rightarrow [G/G]$.

Image: A math a math

Quasi-Hamiltonian reduction (ii)

Given a conjugacy class $\mathbf{C} \subset G$, the inclusion $[\mathbf{C}/G] \hookrightarrow [G/G]$ carries a canonical 0-shifted Lagrangian structure.

The derived quasi-Hamiltonian reduction $[R\mu^{-1}(\mathbf{C})/G]$ is defined to be the Lagrangian intersection

$$\begin{bmatrix} R\mu^{-1}(\mathbf{C})/G \end{bmatrix} \rightarrow \begin{bmatrix} M/G \end{bmatrix}$$
$$\downarrow \qquad \qquad \downarrow$$
$$\begin{bmatrix} \mathbf{C}/G \end{bmatrix} \longrightarrow \begin{bmatrix} G/G \end{bmatrix}$$

and is therefore canonically 0-shifted symplectic.

University of Pennsylvania

Orientations and structures (i)

Key observation: Lagrangian structures on a map between moduli of local systems exist always in the presence of relative orientations.

University of Pennsylvania

Orientations and structures (i)

 $f: Y \to X$ - a continuous map between finite CW complexes; $C^{\bullet}(Y, X)$ - the cone of the pull-back map $f^*C^{\bullet}(X) \to C^{\bullet}(Y)$ on singular cochains with coefficients in \mathbb{C} .

An orientation of dimension d on f is a morphism of complexes or : $C^{\bullet}(Y, X) \longrightarrow \mathbb{C}[1 - d]$, which is non-degenerate in the sense that the pairing

$$C^{\bullet}(X)\otimes C^{\bullet}(X,Y)\longrightarrow \mathbb{C}[1-d]$$

given by the composition of or with the cup product on C(X) is non-degenerate on cohomology and induces a quasi-isomorphism $C^{\bullet}(Y, X) \simeq C^{\bullet}(X)^{\vee}[1 - d]$.

• • • • • • • • • •

Orientations and structures (ii)

 $f: Y \rightarrow X$ - continuous map of CW complexes equipped with a relative orientation of dimension d.

G - a reductive algebraic group over \mathbb{C} .

Theorem: [Calaque,Brav-Dyckerhoff] The pullback map on the derived stacks of local systems

$$f^* : Loc_G(X) \longrightarrow Loc_G(Y)$$

carries a (2-d)-shifted Lagrangian structure which is canonical up to a choice of a non-degenerate element in Sym²(\mathfrak{g}^{\vee})^G.

Back

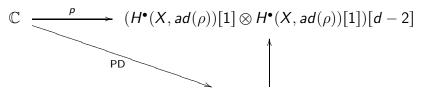
University of Pennsylvania

Poisson bivectors

For a G-local system $\rho \in Loc_G(X)$ we have

$$T_{Loc_G(X),\rho} = H^{\bullet}(X, ad(\rho))[1]$$

■ the bivector *p* underlying the (2 − *d*)-shifted Poisson structure on Loc_G(X) is given by



 $H^{\bullet}(X, \textit{ad}(\rho))[1] \otimes H^{\bullet}(X, \partial X; \textit{ad}(\rho))[d-2]$

University of Pennsylvania

Obstructions - smooth *D* (i)

Caution: $Loc_{G_{\lambda i},\alpha_i}(D_i)$ may be empty. Indeed:

- $Loc_{G_{\lambda i},\alpha_i}(D_i)(\mathbb{C})$ is the groupoid of *G*-local systems on $\partial_i X$ whose local monodromy around D_i is conjugate to λ_i .
- A $G_{\lambda i}/Z(G_{\lambda i})$ -local system on D_i determines a class in $H^2(D_i, Z(G_{\lambda i}))$, which is the obstruction to lifting it to a $G_{\lambda i}$ -local system.
- For $Loc_{G_{\lambda i},\alpha_i}(D_i)(\mathbb{C})$ to be non-empty one needs to have a $G_{\lambda i}/Z(G_{\lambda i})$ -local system on D_i whose obstruction class matches with the image of α_i under the map $H^2(D_i, \mathbb{Z}) \to H^2(D_i, Z(G_{\lambda i}))$ given by $\lambda_i : \mathbb{Z} \to Z(G_{\lambda i})$.

Image: A match a ma

Tony Pantev

Obstructions - smooth *D* (ii)

Example: If G/\mathbb{C} is semisimple, and λ_i is a regular semi-simple element, then Z_i is a maximal torus in G and hence the image of α_i in $H^2(D_i, Z_i)$ is zero. If λ_i is of infinite order, this forces α_i to be a torsion class in $H^2(D_i, \mathbb{Z})$.

University of Pennsylvania

Obstructions - two components (i)

Definition: A pair of commuting elements $(\lambda_1, \lambda_2) \in G \times G$ is called **strict** if the morphism

$$BG_{\{\lambda_1,\lambda_2\}} \longrightarrow \left[G_{\lambda 1}/G_{\lambda_1}\right] \times_{\left[G \ast G/G\right]} \left[G_{\lambda_2}/G_{\lambda_2}\right]$$

is Lagrangian (for its canonical isotropic structure).

Here $G * G \subset G \times G$ is the commuting variety, and $G_{\{\lambda_1,\lambda_2\}}$ is the centralizer of the pair (λ_1, λ_2) .

Note: Strictness is a group theoretic property.

Obstructions - two components (ii)

Proposition: Let (λ_1, λ_2) be a commuting pair of elements in *G*, and $u := \text{Id} - \text{ad}(\lambda_1)$ and $v := \text{Id} - \text{ad}(\lambda_2)$ be the corresponding endormorphisms of \mathfrak{g} . Then the pair (λ_1, λ_2) is strict if and only *u* is strict with respect to the kernel of *v*, i.e. if and only if

$$\mathsf{Im}(v_{|\ker(u)}) = \mathsf{Im}(v) \cap \ker(u).$$

University of Pennsylvania

Note: Stricness is symmetric by definition so equivalently (λ_1, λ_2) is strict if and only if v is strict with respect to the kernel of u.

Obstructions - two components (iii)

Corollary:

- If at least one of the λ_i is semi-simple then the pair (λ₁, λ₂) is strict.
- If (u, v) form a principal nilpotent pair [Ginzburg], then the pair (λ₁, λ₂) is strict.

Caution: Strictness is a non-trivial condition: if λ is any non-trivial unipotent element in G, then the pair (λ, λ) is not strict. In this case u is a non-zero nilpotent endomorphism of \mathfrak{g} and thus $\ker(u) \cap \operatorname{Im}(u) \neq 0$, but $\operatorname{Im}(u_{|\ker(u)}) = 0$).

University of Pennsylvania