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Background / Motivation
@ Topological recursion ([Eynard-Orantin 07], [Chekhov-Eynard-Orantin 06]):

spectral curve —' topological recursion (TR) ‘«» Wen(zis. .. 2n), Fy

Outputs are analogue of correlators and free energy of matrix models.

@ ltis related to integrability.

TR
Example: > = 4(x — go)’(x +2q0) ~> Z(t;h) :=exp (Z h28—2Fg(z>)

(g0 = V-1/6) 2>0

Theorem ([Brézin-Kazakov 90], ..., [Eynard-Orantin 07])
TR partion function Z(¢;7) = r-function for the Painlevé | equation
(Py) : hzdz—q =6q" +1
I . dl‘z .
Namely, the following formal power series satisfies (Py):
d2
q(1:1) = =1 —5 10g Z(1;1) = go(1) + 2qa() + T qa() + - -

(c.f,, [I-Marchal-Saenz 18] for all six Painlevé equations.)




Background / Motivation (Cont.)

@ The previous solution is “perturbative” one (“0-parameter solution”).
@ General solution (“2-parameter solution”) is known in several expressions:
» [Takano 89], [Aoki et.al. 96], [Anicet et.al. 12],...
» [Gamayun-lorgov-Lisovyy 12] gave the Painlevé VI r-function (with 7z = 1):
Tog(tvp) = Y @ CO+ R TG By + k)
keZ

where B(t,v) = 4-point Virasoro conformal block with ¢ = 1,
= Nekrasov partition function with g, + &, = 0.

~ [Bonelli-Lisovyy-Maryoshi-Sciarappa-Tanzini 15] proposed a generalization of
GIL formula for irregular Painlevé equations via Argyres-Douglas theory.
@ Question: Can we construct such a 2-parameter solution from TR ?

([Eyanrd-Marifio 08], [Borot-Eynard 12]: “non-perturbative partition function”)



Main Results

Main Theorem ([l 19])
Let W,, and F, be the TR correlators / free energy of the spectral curve

y? = 4x> + 2tx + u(t,v) (V = 9§ydx : t-independent).
A

(i) The discrete Fourier transform of the TR partition function

7(t,v,p; h) = Z 2 koIt 7ty + ki, )

keZ

gives a 2-parameter family of formal 7-function for (Py).

(i) Another Fourier series

ez €0 Z(1 v 4 ki ) e (X, 1, v + ki3 T)
> ez €Xmkeln Z(t, Ty v + k)

47 2g—2+n Z(x) Z(x)
[w+(x,z,v;h):exp[z()n, f e | WenGarse sz
gn ’

Lyi('x7 ts vap; h) =

gives a solution of the isomonodromy system associated with (7).




Isomondomy System associated with Painlevé |

@ Fact (c.f., [Okamoto 80, Jimbo-Miwa-Ueno 81, Jimbo-Miwa 81]):
(Py) & compatibility condition ([L, M] = 0) of the system of linear PDEs

82

(L) : LY:= [hz—z——(h——p) (@x> +2tx + 2H)|¥ = 0
x> x-—gq
i)

"o 2 q)( )]

dq
where = h— and H:=2% -24° -1
pe= dt 2 7-4

(D) : MY

(Remark: The previous spectral curve is a “naive” classical limit of (L;).)

@ Stokes multipliers for LY = 0 around x = oo is independent of r.

~» Stokes data are first integrals of (Py). (Integrability of Painlevé equations).

@ Assuming a “Borel summability conjecture” etc., we will give a conjectural
answer to the direct Monodromy problem (i.e., computation of Stokes data)
via the exact WKB method (or spectral networks).
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Topological Recursion



Spectral Curve
Definition
A spectral curve is a triplet (Z, x, y), where
@ X : compact Riemann surface with a prescribed A and B cycles in H{(Z; Z).
@ x,y: meromorphic functions on X.
such that dx and dy never vanish simultaneously.

@ Example 1 (Airy curve) :
=P, x@=7 y2) =z 0*—x=0)
@ Example 2 (Elliptic curve) :
T=C/A, @) =p@. yY)=9'@. ’=4 —gr-g)

where A = Zw, + Zwp and

1 1 1
9(2) = p(z;wa, wp) 1= = + ( o _2)
w;\m] (z-w? w
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Eynard-Orantin Correlators
Definition [Eynard-Orantin 07] ([Chekhov-Eynard-Orantin 06])
To a given spectral curve (Z, x, y), define

{(Wen(z1,. .., 2n)lez00>1 : @ sequence of meromorphic multi-differentials on X

by the following recursion relation (called topological recursion):
Wo.1(2) := y(2)dx(z), Woya(z1,22) = Bergman bi-differential

Wenn1Go 215 nzn) = ) Rm&@mﬂmﬁwmzm”qm+
=a

a : ramification point

Z We 14015 21) Wey 1415 (Z, le))~

g1+ey = juh={l,..., n},
except for (g; =0 & I; = 0)

dZIdZZ

@ Wys(z1,20) = (for = = P"), and (p(zl —2)+ n—A)dzldzg (for elliptic curve).
(z1 — 22)? WA

@ Ramification points are zeros of dx (we assume that they are simple).
@ Zis the local conjugation of z near a ramification point.

1 W=z
@ Ki(20,2) = 7————— W, ,w) is the “recursion kernel”.
@2 = 300 @ d@ o TR



Diagrammatic Expression of Topological Recursion

“Won(z1,...,2:) < genus g Riemann surface with » marked points”

20 Z1 %2

Wene1(20,215 - -5 2n)

‘[J “Degeneration” of L
Riemann surfaces

Ki(z0, DWoo1p42(2,Z, 21, - - -+ Zn) Ki(z0, DWy, 141112 21, )W 14161 (3 21,)
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Free Energy and Partition Function

Definition [Eynard-Orantin 07] ([Chekhov-Eynard-Orantin 06])
@ For g > 2, define g-th free energy F, of the spectral curve by

%

Fo= 5o D, Res0QW,E (d)(z) = f y(z)dx(z))
a : ramification points

(Fp and F; are also defined but in a different manner.)

@ Free energy F and partition function Z of the spectral curve are defined by

F := Z hzg_ng, Z = exp(F) = exp (Z hzg—ng]
g=0

g=0
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Properties [Eynard-Orantin 07]
Wen(z1,...,2,) - holomorphic (as a differential of each z;) on X\ R.
Wenl e szinee 3250 ) = Wonlo 2o 52 )

W, is normalized along A-cycles Ay, ..., Agys):
95 Wen(zi,...,22) =0 except for (g,n) = (0,1)
Z|€A/'

W, satisfies differentiation formulas (with respect to moduli parameters).
For example, the differentiation with respect to

I .
= o 95 Wor@ (= 1L.....g(%)
Tl Aj
is given by

0
(3_ Wg,n(z(xl)a o 2(xn)) = § Wg,n+1 (z(x1), . -5 2(x0), 2(X041))
Vij Xn+1€B;

0
2 F -
av; ¢ é;eB, Wei @
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TR and Various Geometric Invariants

@ Airy curve (P!, x(2) = 22,y(z) = 2)
~» Gromov-Witten invariants for point:

(2d - l)”
22g o ( 'p ey J 1_[ dzi
d >0 g»x l

@ Landau-Ginzburg mirror of P! (C*, x(z) = z + 27", (z) = log2)
~> Gromov-Witten invariants for P'.
[Norbury-Scott 14], [Dunin-Barkowski et.al 13], [Fang et.al 16].

WAl
Wen' @1see o) =

@ Bouchard-Klemm-Marifo-Pasquetti conjecture on open Gromov-Witten
invariants for toric CY3. [Bouchard et.al 08], [Eynard-Orantin 13]

@ KdV 7-function [Kontsevich 92], [Eynard-Orantin 07],

@ Painlevé r-functions (corresponding to “perturbative solution”)
[Borot-Eynard 09, I-Saenz 15, I-Marchal-Saenz 17].
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Topological Recursion and WKB : Quantum Curve

Plx@) =y =2 : Airycurve (° = x)
1 : dzidz
Wi (@) = ¥@dx(2) = 253dzr, Wy3' (21, 20) = ﬁ
) dz1dzydz dz
Airy 16203 A1ry 1
W3 (z1,22,23) = ——555—» @)=~ ’
03
2333 6]

Theorem [Gukov-Sutkowski 12, Zhou 12, ...]
The formal series

h2g 2+n 7(x) 7/ "
U(x;h) = eXP[ f f WgAr1y(Zl»~~~7Zn)

g>0 n>1

is a WKB formal solution of the Airy equation

2
(hzj—z — x) Y(x;h) =0

(Precisely speaking, we need to regularize the term corresponding to
(g,n) = (0,2) since Wy1(z1,z2) has singularity along z; = z».)
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Main Result :

2-parameter 7-function
of Painleve |



A Family of Genus 1 Spectral Curves
Consider a family of elliptic curves

y2 =4x° + 21x + u(t,v)
(with a prescribed A-cycle and B-cycle such that Im(wg/w,) > 0) satisfying

1
V= ydx is independent of 1.
2ri

@ The condition requires
u_ o\ g 4
ot Wy v wy
@ Regard this as a spectral curve
L=C/A, x(@)=9p@), y2)=¢'@
by the Weierstrass p-function. ~» W,,(z1,...,2,) and F, by TR.

Lemma (cf. [Eynard-Orantin 07])

OFQ 1 (3F0 é d (')ZFO i wp
— =—u, — =Qydx, — =2ni—
ot 2% oy 512 o

(i.e., Fy = Seiberg-Witten prepotential.)
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Key Facts (Quantum Curve and Formal Monodromy)

Key Lemma 1
The WKB-type formal series

(ih)Zg—2+n Z(x) Z(x)
Yt vih) = exp( > f o | W a2)
d 0 0

g>0,n>1

satisfies
AL PR +2hzﬁF(1 ) ||We(x, 1, vi) =0
Fp h o X X o LV Y.o(x,t,v;h) =
(Remark: The above PDE is a quantization of y> = 4x3 + 2tx + u(t, v).)

Key Lemma 2
Formal monodoromy (term-wise analytic continuation) along A and B-cycle:

Sy (x 1, v ) along A-cycle

VB LI 20 7y x s )

+(X LYV N l B- [
Zavh) Yi(x,t,v £ h;h) along B-cycle

Here Z(t, v; ) = exp(F(t, v; h)) = exp (Zgz() I8 F (1, v)) is the TR partition function.

16/25




Proof of Key Lemma 2
Using the differentiation formulas for W, , and F,, we have

Term-wise analytic continuation of y.(x, t, v; i) along the B-cycle

(ih)zg*zﬂ’ Z(x)+wp Z(x)+wp
= exp Z —'f f Wen(@ls--o52,)
n: 0 0

£20,n>1

(ih)zg*zﬂ’ n Z(X) 7(x) , ,
:exp Z T 24 § é‘f Wg,’l(zl""’zn)

£>0,n>1

= exp

(+h)2g 2+0+0 Hh 2(x) 2(x)
1 Wg,cz @55 2)

1. a0
01520 S ahGl o
{1 +0>1

_ CONNA 2g-2
g

(=1

(ih)[] af] (+h)2g 246 z(x) z(x) , ,
X exp Z Wer o on2))
0

4! ovh

020 20,6,
_Z(t,v 1y h)

2l Yai(x, t,v £ 0 h).



Main Theorem
The formal monodromy relations for . imply that the Fourier series

P, .(x,1,v,p;h) = Z kI 7t v + khy B) o (x, t, v + ki T)
keZ
has -independent (and diagonal) formal monodromy:
i eI (x,t,v,p;B) along A-cycle
Yo(x,t,v,p30) '
TNy (x,1,v,p;h) along B-cycle

Theorem ([1 19])

The formal series

Siez RN Z(t, v + ki ) o (x, t, v + ki )
ZkEZ C’zmkp/h Z(t, VvV + kh, h)

Y.(x,t,v,0;h) =

is a formal solution of the isomonodoromy system (L;) and (D;) associated with
(Pr). Here H, g, p in the isomonodromy system are given by

dH d
_pda

d ,
— 2% 2nikp/h . - _ —
H =1~ log E e Z,y+khy|, q=-h—-, p=h—.

keZ




Main Theorem (cont)

Theorem ([I 19])
The formal series

o, (t, v, pi 1) = Z koI 71 4 iz 1)

kezZ

is a 2-parameter formal -function for (Py).

Remark : This is the non-perturbative partition function of [Eynard-Marifio 08]
and [Borot-Eynard 12]. They observed that the above Fourier series can be
expressed as a formal power series of 1 whose coefficients are described by
#-functions (and their derivatives) :

10°F OF
T = Z0) |0 1) + | - 0@ T) + ——0 (2 1)+
6 O0v? ov =t _op
o wp
L 1 1 0F,
h — 2rikz+mik’T d £ = é dx = .
where 6(z,7) Ze and ¢(1) T By X i Oy

keZ
~» This recovers the Boutroux’s elliptic asymptotic ([Boutroux 1913]).
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Direct Monodromy Problem
(Exact WKB Approach)



Stokes Graph and Borel Summability Conjecture

Define the Stokes graph by Im [ 4x3 + 2tx + u(t,v)dx =0 (i =1,2,3).

(Remark : Stokes graph = spectral network defined by (4x3 + 2tx + u(t, v)) dx®?)

Conjecture
The WKB solution ¢ (x, t, v; i) of the PDE
0? 0 0
20 512200 3 2Y . SBY —
I/ pP 2h Y 4x” + 2tx + 2h 6tF(t, v h))] Ya(x,t,v;h) =0

constructed in Key Lemma 1 is Borel summable as 7i-formal power series on
each complement of Stokes graph (if there is no saddle connection).




¥ =

Stokes Multipliers of (L;) Around x = oo

D Dy [] (1)] for £ =0, +2,
Se
(S St P [(l) slf] for ¢ = 1,

s¢ = Stokes multiplier of ()

Borel sum on the region ¢

Suez &M 71,y + ki) -y 1,y + ki)
Srez X0 Z(1,v + kit; )

4
v =

(We also assume the convergence of the Fourier series.)
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Computation of s,
@ Voros connection formula (path-lifting rule):
Single-valuedness of Borel sum around branch points
= YD) =y vim) + 3D (v h)

where ¢ _ is the formal analytic continuation of i, along a “detoured” path.

Tz

@ Deforming the detoured path, we have
~ L Z(t,v —h;h)
©)
) t’ 5 h =l — Y-, t, - h; h
Y (x, t v h) = 2 y-(x,t,v )
@ Taking the discrete Fourier transform, we have

PO =90 4D e, sy =i
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List of Stokes multipliers

Sy = l'(e—Zm'p/h _ e2m’(v—p)/h)’

sy = i(_L)me'(vfm/ﬁ + e*lm‘v/h)’

sy = iellriv/h’

s; = l'(efﬁrriv/fl _ e*ZﬂII(VﬁD)/ﬁ + e*ZIrip/h)’
s, =i,

@ Observation 1: All s, is independent of 7.
@ Observation 2: They satisfies the consistency condition
(i.e., defining equation of wild character variety or A,-cluster algebra):

LoV (1 sm) (U Oy (1 sy (1 0\ (o i) L, st =0 (spas = 50
s 1o 1/ls 1Jlo 1), 1)l of " Se-1SgF1See2 =1 (Sea5 = St
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Problems and Questions

@ Generalization to other Painlevé equations ?
> Higher order: [Gavrylenko-lorgov-Lisovyy 18], [Marchal-Orantin 19],...
» g-analogues: [Bershtein-Shchechkin 16], [Bonelli-Grassi-Tanzini 17],...

@ Justification of computation of Stokes data ?
(Borel summability and resurgence, non-linear Stokes phenomenon.)

@ Closed and combinatorial expression of the 7-function ?
(In terms of Barnes G-function ?)

@ Relation to irregular conformal blocks ? (c.f., [Nagoya 15-18],...)

@ Relation to Nakajima-Yoshioka Blow-up equation ?
(c.f., [Bershtein-Shchechkin 15-19], ...)

For Painlevé | : %*D; 7p, - p, + 2t Tp - 7p, = 0

@ New proof of the Nekrasov conjecture ([Nekrasov-Okounkov] etc.) ?

@ Relation to cluster algebras, Bridgeland stability, wall-crossing formulas,....?
(c.f., [Chekhov-Mazzocco-Rubtsov 15], ...)

Thank you for your attention !
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