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Electromagnetic duality

Maxwell’s equations in vacuum (¢ = 1):

V-E = 0
vV-B = 0
OE
B = —
V x ot
oB
E = ——
V x ot
Duality of order 4: (E,B) — (—B,E)

The duality still holds if both electric and magnetic charges are included.



Phase space duality

Harmonic oscillator:

. k » 1 5
2 2m
Duality of order 4:

(x,p) = (p: —x)
(m, k) = (

x| =
3~
v

These are examples of S-duality.



T-duality: a toy example
Topological T-duality arose in the study of string theory compactifications.

Let V be a real n-dimensional vector space with basis { vk }x=1,...n.
Fix a volume form on V and V*.

The Fourier-Mukai transform is an isomorphism

FM: AV = AV, FM(¢)(v) = /¢(W)ezﬁz1 Wi A VK



Geometric formulation of F M

Let A C V be a lattice and A* C V* the dual lattice.
Define the torus T" = V//A and the dual torus T = Ve /N,

Note that m1(T") = A = Irrep(ﬁ) and 711(7'7’) =N =lIrrep(T").

In particular, 7" = Hom(x(T"), S'), so it parametrizes flat S'-bundles on
T".
T" x T" carries a universal S'-bundle P called the Poincaré line bundle:

Plroww = flat S'-bundle on T" associated to w

P|, . 7. = flat S'-bundle on Tn associated to v



Geometric formulation of F M

Now we have
HY(T",R) = A*V*,  HYT".R)=A"V
and
ch(P) = e=k=1 "k ¢ H*(T" x T",R)
The Fourier-Mukai transform is an isomorphism
FM: H(T"R) = H (T, R),  FM($) = bi(p"(¢) A ch(P))

T x T"



Topological T-duality

Idea: Replace T" by a family of tori.

Possibilities include:
- X=MxT"
- X — M a principal T"-bundle
- X — M an affine T"-bundle
- X a T"-space (non-free action)
- singular fibrations (e.g. the Hitchin fibration, CY manifolds)

We shall consider the case when X — M is a principal torus bundle.

It turns out that an additional structure is needed on X, namely a bundle
gerbe classified by its Dixmier-Douady class [H] € H*(X, Z).



Topological T-duality

Theorem (Bouwknegt—Evslin—Mathai (2004), Bunke-Schick (2005))

There exists a commutative diagram

(X xu X, p"H — p*H)

and

FM: ()7, dy) — (Q"(X)". d dz), .FM(w):/Tnef/\w

IS an /somorphlsm of the differential complexes, where p*H — p *H=dF and
= (p*6 A p*0) for connections 6 and 6 on X and X respectively.



Remarks

v

As a corollary, we have an isomorphism in twisted cohomology

H* (X, H) = H*~"(X, H)

v

This can be refined to an isomorphism in twisted K-theory,

K*(X,H) =~ K*~"(X, H)

v

For circle bundles, the T-dual is unique up to isomorphism.

v

For higher rank torus bundles, an additional condition on H is needed
and the T-dual is not unique.



Example: Lens spaces L,

Consider the action of Z, on S® = {(z1, 22) € C? | |z1> + |z2|> = 1} given by

2mi 2mi

er (z1,2) — (z1,e P 22)
The quotient L, = S*/Z, is an S'-bundle over S? with the Chern class
ci(lp) =pe H(S%,2) =7
Let H = g € H¥(Lp, Z) = Z, then the T-dual pair is (Lg, p).
In particular Ly = S% x S, so
(S%,0) <= (S° x S' 1)

Note that
K°(S* =K'(S*) =%
K(S? xS 1)=K'(§*x S', 1) =%
while
K xS)Y=K'(S*xSY=zaZ



Courant algebroids

A Courant algebroid on a smooth manifold X consists of a vector bundle
E — X equipped with

- abundle map p: E — TX called the anchor,

- a non-degenerate symmetric bilinear form (, ): E® E — R,

- an R-bilinear operation [, ]: T(E) ® [(E) — T'(E),

satisfying the following properties

- [av [bv C]] = [[a7 b]7 C] + [b7 [a7 C]]
- [a,b] +[b,a] = d(a,b)
- p(a)(b, C> = <[av b]7 C> + <b7 [av C]>

- [a, fb] = fla, b] + p(a)(f)b
- rla, b] = [p(a), p(b)]



Exact Courant algebroids

A Courant algebroid E is transitive if the anchor p is surjective.

E is exact if it fits into an exact sequence
0T X—-E—-TX—=0

Exact Courant algebroids are classified by their Severa class H € H3(X,R).

An isotropic splitting s: TX — E fixes an isomorphism

ExTXeTX
where ’
X+ Y +m) = z(0(X) +&(Y))
(X +& Y +nln=[X, Y]+ Lxn — ivd + ivixH
with

H(X, Y, Z) = ([s(X), s(Y)], s(2))-



Symmetries and generalised metric
Spin module Q°*(X): (X+&) w=ixw+EAw.
Abelian extension: Aut(E) = Diff(X) x Q2(X)
(X +e)=X+e+uxB

Extension class: c(X,Y)=dwxyH

A generalised Riemannian metric is a self-adjoint orthogonal bundle map
G € End(TX @ T*X) for which (Gv, v) is positive definite.

G? = Id determines an orthogonal decomposition
XoT'X=G G-
where G+ = {X+ B(X,- )+ 9(X,-) | X € TX}.



Simple reduction

Consider a Lie group K acting freely on X.

Suppose the action lifts to a Courant algebroid E on X.

The simple reduction E/K is a vector bundle on X /K, which inherits the
Courant algebroid structure on E.

E/K is not an exact Courant algebroid.



Buscher rules

Theorem (Cavalcanti-Gualtieri)

The map

o (TXDTX)/T" > (TX® T*X)/T"
X+& = p(X)+p (&) - F(X)

is an isomorphism of Courant algebroids.

The Buscher rules for (g, B) are given by

G = ¢(G)



Heterotic string theory

Conceived by the Princeton String Quartetin 1985.

Combines 26-dimensional bosonic left-moving strings with 10-dimensional
right-moving superstrings.

The theory includes a principal G-bundle P — X equipped with a connection.

The Green-Schwarz anomaly cancellation:

1 1
dH = §P1(TX) - §P1(P)



String structures
A spin structure on an oriented manifold X is a lift: BSpin(n)
/ l
X —— BSO(n)
A string structure on a spin manifold X is a lift: BString(n)
/ J’
X —— BSpin(n)

A string structure exists if and only if [$p1(S)] = 0.

Equivalently, a string structure is [H] € H*(P,Z), where P — X is the spin
structure, such that the restriction of [H] to any fiber of P is the generator of
H3(Spin(n),Z) = Z.

String classes H are intimately related to extended actions and certain
transitive Courant algebroids.



Heterotic Courant algebroids

Let G be a compact connected simple Lie group and P — X a principal
G-bundle.

The Atiyah algebroid A := TP/G — TX is a quadratic Lie algebroid,

(x,y) = _k(va)

where k denotes the Killing form on g.

A transitive Courant algebroid # is a heterotic Courant algebroid if
H/ T XA

is an isomorphism of quadratic Lie algebroids, where A is the Atiyah
algebroid of some principal G-bundle P.



Classification of heterotic Courant algebroids

The obstruction for the Atiyah algebroid of P to arise from a transitive
Courant algebroid # is the first Pontryagin class ps(P) € H*(X,R).

Theorem

Let P — X be a principal G-bundle and A a connection on P with curvature
F. Let H® be a 3-form on X satisfying

dH® + k(F, F) = 0.
Any heterotic Courant algebroid is isomorphic to one of the form
H=TX®grd T"X,

where

—_

<(X7 375)7(Y7 tv’r])> = §(X77+ ny) + <Sv t>

X +s+&Y+t+n, =[X, Y]+ Vxt—Vys—[s 1] - F(X,Y)
+ Lxn — iyd€ + iyixH°
+ 2(t,ixF) — 2(s, iyF) + 2(Vs, 1),



Extended action on Courant algebroids

Let E be an exact Courant algebroid on a G-manifold X and assume that the
action lifts G — Aut(E).

If the infinitesimal action g — Der(E) on E is by inner derivations, we could
consider a lift g — ['(E).

A trivially extended action is a map «: g — I'(E) such that
» « is a homomorphism of Courant algebras,
» poa =1, wherey: g — [(TX) denotes the infinitesimal G-action on X,

» the induced adjoint action of g on E integrates to a G-action on E.



Reduction by extended action

For an exact Courant algebroid £ = TX @ T*X with a G-invariant Severa
class H, the extended action

a:g—T(E), vey(v)+E(v)

corresponds to solutions to dg(H + &) = ¢, with the non-degenerate form
c(,-) = —(a(-), a()) € Q°(X, S?g")°.

Two extended actions &, ¢ are equivalent if there exists an equivariant
function f: M — g* such that ¢’ = ¢ + df

Changing the invariant splitting of E corresponds to
H +¢& =H+ ¢+ da(B)

where B € Q2(X)% is the invariant 2-form relating the splittings.

The reduced Courant algebroid on X/G is defined by Eeq = Im(a)*/G.



Heterotic Courant algebroids by reduction

Let o: P — X be a G-bundle equipped with a G-invariant closed 3-form H on
Pand E = TP & TP with the H-twisted Dorfman bracket.

Since g comes with a natural pairing, it is natural to consider ¢ = —k.

Proposition

Equivalence classes of solutions to dg(H + &) = —k are represented by pairs
(H°, A) satisfying
dH® + k(F,F) = 0.

The corresponding pair (H, &) is given by
H=0"(H°) + CS;(A), ¢=KA

Hence, every heterotic Courant algebroid is obtained from an exact Courant
algebroid via a trivially extended action.



Relation to string structures

The restriction of H = o*(H®) + CS3(A) to any fibre of P is given by
s = — k(e [, ]

where w € Q'(G, g) is the left Maurer-Cartan form.

A real string class is a class H € H*(P, R) such that the restriction of H to
any fibre of P coincides with ws. Imposing integrality, (P, H) defines a string
structure on X.

Let £A(P) and SC(P) denote the sets of equivalence classes of trivially
extended actions and string classes on P respectively. The map

(H,§) = [H]

is an isomorphism of H3(X, R)-torsors.



Heterotic T-duality

Consider a T"-bundle X — M equipped with a string structure (P, H).

We assume that the T"-action on X lifts to a T"-action on P by principal
bundle automorphisms, so we can view P as a principal 7" x G-bundle over
M. Then P, = P/T" is a principal G-bundle over M.

Choose H to be a T" x G-invariant representative for the string class.



Strategy

» Since P — Py is a principal T"-bundle, we can apply ordinary T-duality to
the pair (P, H) to obtain a dual pair (P, H).

» The existence of a T-dual imposes the usual constraints on H.

» However, there is no guaranty that the G-action on P, lifts to an action
on P commuting with the T"-action.

» The restriction of H to the G x T"-fibres of P — M defines a class in
H?(G, H'(T", Z)), which is the obstruction to P — P, being a pullback

under og: Pp — Mof a T"-bundle X — M.



T-duality commutes with reduction

Proposition
For commuting group actions, the simple reduction and reduction by
extended action commute.

Theorem

The T-duality isomorphism

¢: (TPe T*P)/T" = (TP T*P)/T"
exchanges extended actions (H, &) and (ﬁ, A), and we have the desired
isomorphism

/T2 (TP & T'P)/T Vg 2 (TP & TP/ T 2 /7"

The proof hinges on establishing the following identity,
H+&=H+¢+da6,0)

where A— A= —u(6,0).



Remarks

v

T-duality can be adapted to incorporate:
» String structures
> Trivially extended actions
» Heterotic Courant algebroids

v

Heterotic Buscher rules are recovered via generalised metrics.

v

The Pontryagin class 3p:(TX) can be included.

v

The heterotic Einstein equations are preserved under T-duality.

v

String structures allow for more flexibility in the possible changes in
topology under T-duality.



Examples

Proposition

Letc € H*(M,H'(T",z)) and & € H*(M, H'(T", Z)) be the Chern classes of
X — M and X — M. Then the following holds in H*(M, R):

(¢, 2) = p1(Po).

Ordinary T-duality corresponds to {(c, ¢) = 0.

» Higher dimensional Lens spaces.
» Homogeneous spaces G — G/H.



