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PREFACE TO THE SECOND EDITION

The second edition of this book continues the study of Lorentzian geometry,
the mathematical theory used in general relativity. Chapters 3 through 12 con-
tain material, slightly revised in some cases, which was discussed in Chapters 2
through 11 of the first edition. Much new material has been added to Chapters
7 and 11, and new Chapters 13 and 14 have been written reflecting the more
complete and detailed understanding that has been gained in the intervening
years on many of the topics treated in the first edition. Inspired by an example
of P. Williams (1984), additional material on the instability of both geodesic
completeness and geodesic incompleteness for general space-times has been
provided in Section 7.1. Section 7.4 has been added giving sufficient condi-
tions on a space-time to guarantee the stability of geodesic completeness for
metrics in a neighborhood of a given complete metric. New material has also
been added to Section 11.3 on the topic of geodesic connectibility. Appendixes
A, B, and C of the first edition have now been expanded into Chapter 2,
which also contains new material on the generic condition as well as Section
2:3, which gives a proof that the null cone determines the metric up to a con-
formal factor in any semi-Riemannian manifold which is neither positive nor
negative definite. Also, a deeper treatment of the behavior of the sectional
curvature function in a neighborhood of a degenerate two-plane is given in
Chapter 2.

In the concluding Chapter 11 of the first edition, which is now Chapter 12,
we showed how the Lorentzian distance function and causally disconnecting
sets could be used to obtain the Hawking-Penrose Singularity Theorem con-
cerning geodesic incompleteness of the space-time manifold. Around 1980,

S. T. Yau suggested that the concept of “curvature rigidity,” well known for

ii
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the differential geometry of complete Riemannian manifolds since the publica-
tion of Cheeger and Ebin (1975), might be applied to the seemingly unrelated
topic of singularity theorems in space-time differential geometry. (Earlier, Ge-
roch (1970b) had suggested that spatially closed space-times should fail to be
timelike geodesically incomplete only under special circumstances.) As a step
toward this conjectured rigidity of geodesic incompleteness, the Lorentzian
analogue of the Cheeger—-Gromoll Splitting Theorem for complete Riemann-
ian manifolds of nonnegative Ricci curvature needed to be obtained. This
was accomplished in a series of research papers published between 1984 and
1990. Aspects of the proof of the Lorentzian Splitting Theorem are discussed
in the new Chapter 14. Another new chapter in the second edition, Chapter
13, draws upon investigations of Ehrlich and Emch (1992a,b,c, 1993) and is
devoted to a study of the geodesic behavior and causal structure of a class
of geodesically complete Ricci flat space-times, the gravitational plane waves,
which were introduced into general relativity as astrophysical models. These
space—times provide interesting and nontrivial examples of astigmatic conju-
gacy [cf. Penrose (1965a)] and of the nonspacelike cut locus, a concept dis-
cussed in Chapter 8 of the first edition.

As for the first edition, this book is written using the notations and meth-
ods of modern differential geometry. Thus the basic prerequisites remain a
working knowledge of general topology and differential geometry. This book
should be accessible to advanced graduate students in either mathematics or

mathematical physics.

The list of works to which we are indebted for the two editions is quite
extensive. In particular, we would like to single out the following five im-
portant sources: The Large Scale Structure of Space-time by S. W. Hawk-
ing and G. F. R. Ellis; Techniques of Differential Topology in Relativity by
R. Penrose; Riemannsche Geometrie im Grossen by D. Gromoll, W. Klin-
genberg, and W. Meyer; the 1977 Diplomarbeit at Bonn University, Ezistenz
und Bedeutung von konjugierten Werten in der Raum-Zeit, by G. Bolts; and
Semi-Riemannian Geometry by B. O’Neill.

In the time from the late 1970’s when we wrote the first edition to the
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present, it has been interesting to observe the enormous expansion in the
journal literature on space-time differential geometry. This is reflected in the
substantial growth of the list of references for the second edition. However,
this wealth of new material has precluded our treating many interesting new
developments in space-time geometry since 1980 which are less closely tied in
with the overall viewpoint and selection of topics originally discussed in the
first edition.

The authors would like to thank all those who have provided encouraging
comments about the first edition and urged us to issue a second edition after
the first edition had gone out of print, especially Gregory Galloway, Steven
Harris, Andrzej Krélak, Philip Parker, and Susan Scott. We thank Gerard
Emch for insisting that the second edition be undertaken, and the first two
authors thank Stephen Summers and Maria Allegra for independently sug-
gesting that a third author be added to the team to share the duties of the
completion of this revision. It is also a pleasure to thank Maria Allegra and
Christine McCafferty at Marcel Dekker, Inc., for working with us to see the
second edition into print. We are also indebted to Lia Petracovici for much

helpful proofreading and to Todd Hammond for valuable technical advice con-
cerning AAS-TEX.

John K. Beem
Paul E. Ehrlich
Kevin L. Easley






PREFACE TO THE FIRST EDITION

This book is about Lorentzian geometry, the mathematical theory used in
general relativity, treated from the viewpoint of global differential geometry.
Our goal is to help bridge the gap between modern differential geometry and
the mathematical physics of general relativity by giving an invariant treat-
ment of global Lorentzian geometry. The growing importance in physics of
this approach is clearly illustrated by the recent Hawking—Penrose singularity
theorems described in the text of Hawking and Ellis (1973).

The Lorentzian distance function is used as a unifying concept in our book.
Furthermore, we frequently compare and contrast the results and techniques
of Lorentzian geometry to those of Riemannian geometry to alert the reader
to the basic differences between these two geometries.

This book has been written especially for the mathematician who has a
basic acquaintance with Riemannian geometry and wishes to learn Lorentzian
geometry. Accordingly, this book is written using the notation and methods
of modern differential geometry. For readers less familiar with this notation,
we have included Appendix A which gives the local coordinate representations
for the symbols used.

The basic prerequisites for this book are a working knowledge of general
topology and differential geometry. Thus this book should be accessible to
advanced graduate students in either mathematics or mathematical physics.

In writing this monograph, both authors profited greatly from the oppor-
tunity to lecture on part of this material during the spring semester, 1978, at
the University of Missouri-Columbia. The second author also gave a series of
lectures on this material in Ernst Ruh’s seminar in differential geometry at

Bonn University during the summer semester, 1978, and would like to thank
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Professor Ruh for giving him the opportunity to speak on this material. We
would like to thank C. Ahlbrandt, D. Carlson, and M. Jacobs for several help-
ful conversations on Section 2.4 and the calculus of variations. We would like
to thank M. Engman, S. Harris, K. Nomizu, T. Powell, D. Retzloff, and H. Wu
for helpful comments on our preliminary version of this monograph. We also
thank S. Harris for contributing Appendix D to this monograph and J.-H. Es-
chenburg for calling our attention to the Diplomarbeit of Bélts (1977). To
anyone who has read either of the excellent books of Gromoll, Klingenberg,
and Meyer (1975) on Riemannian manifolds or of Hawking and Ellis (1973)
on general relativity, our debt to these authors in writing this work will be
obvious. It is also a pleasure for both authors to thank the Research Council
of the University of Missouri-Columbia and for the second author to thank
the Sonderforschungsbereich Theoretische Mathematik 40 of the Mathematics
Department, Bonn University, and to acknowledge an NSF Grant MCS77-
18723(02) held at the Institute for Advanced Study, Princeton, New Jersey,
for partial financial support while we were working on this monograph. Fi-
nally it is a pleasure to thank Diane Coffman, DeAnna Williamson, and Debra
Retzloff for the patient and cheerful typing of the manuscript.

John K. Beem
Paul E. Ehrlich
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CHAPTER 1

INTRODUCTION: RIEMANNIAN
THEMES IN LORENTZIAN GEOMETRY

In the 1970’s, progress on causality theory, singularity theory, and black
holes in general relativity, described in the influential text of Hawking and
Ellis (1973), resulted in a resurgence of interest in global Lorentzian geometry.
Indeed, a better understanding of global Lorentzian geometry was required for
the development of singularity theory. For example, it was necessary to know
that causally related points in globally hyperbolic subsets of space-times could
be joined by a nonspacelike geodesic segment maximizing the Lorentzian arc
length among all nonspacelike curves joining the two given points. In addi-
tion, much work done in the 1970’s on foliating asymptotically flat Lorentzian
manifolds by families of maximal hypersurfaces has been motivated by general
relativity [cf. Choquet-Bruhat, Fischer, and Marsden (1979) for a partial list
of references].

All of these results naturally suggested that a systematic study of global
Lorentzian geometry should be made. The development of “modern” global
Riemannian geometry as described in any of the standard texts [cf. Bishop
and Crittenden (1964), Gromoll, Klingenberg, and Meyer (1975), Helgason
(1978), Hicks (1965)] supported the idea that a comprehensive treatment of
global Lorentzian geometry should be grounded in three fundamental topics:
geodesic and metric completeness, the Lorentzian distance function, and a
Morse index theory valid for nonspacelike geodesic segments in an arbitrary
Lorentzian manifold.

Geodesic completeness, or more accurately geodesic incompleteness, played
a crucial role in the development of singularity theory in general relativity and
has been thoroughly explored within this framework. However, the Lorentzian

distance function had not been as well investigated, although it had been of

1
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some use in the study of singularities [cf. Hawking (1967), Hawking and Ellis
(1973), Tipler (1977a), Beem and Ehrlich (1979a)]. Some of the properties of
the Lorentzian distance function needed in general relativity had been briefly
described in Hawking and Ellis (1973, pp. 215-217). Further results relat-
ing Lorentzian distance to causality and the global behavior of nonspacelike
geodesics had been given in Beem and Ehrlich (1979b). Hence, as part of the
first edition, a systematic study of the Lorentzian distance function was made.

Uhlenbeck (1975), Everson and Talbot (1976), and Woodhouse (1976) had
studied Morse index theory for globally hyperbolic space-times, and we had
sketched [cf. Beem and Ehrlich (1979c,d)] a Morse index theory for nonspace-
like geodesics in arbitrary space-times. But no complete treatment of this
theory for arbitrary space-times had been published prior to the first edition
of the current book.

The Lorentzian distance function has many similarities with the Riemann-
ian distance function but also many differences. Since the Lorentzian distance
function is still less well known, we now review the main properties of the Rie-
mannian distance function and then compare and contrast the corresponding
results for the Lorentzian distance function.

For the rest of this portion of the introduction, we will let (IV, go) denote a
Riemannian manifold and (M, g) denote a Lorentzian manifold, respectively.

Thus N is a smooth paracompact manifold equipped with a positive definite
inner product go| » : IpN xT,N — R on each tangent space TpN. In addition,
if X and Y are arbitrary smooth vector fields on N, the function N — R given
by p — go(X(p), Y (p)) is required to be a smooth function. The Riemannian

structure go : TN X TN — R then defines the Riemannian distance function
do: N x N — [0,00)

as follows. Let Q, 4 denote the set of piecewise smooth curves in N from p

to g. Given a curve ¢ € p with ¢ : [0,1] — N, there is a finite partition

0=t <ty <-- <ty =1such that c| [t;,ti4+1] is smooth for each ¢. The

Riemannian arc length of ¢ with respect to go is defined as

k-1 tit1
L@ =3 [ V@, e@)d
=1 t:
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The Riemannian distance do(p, q) between p and q is then defined to be
do(p,q) = inf{Lo(c): c € Qpq} > 0.

For any Riemannian metric go for N, the function dp : N x N — [0,00) has

the following properties:

(1) do(p,q) = do(q,p) for all p,ge N.
(2) do(p,q) < do(p, )+ do(r,q) for all p,q,m € N.
(3) do(p,g) =0if and only if p = q.

More surprisingly,

(4) do: N x N — [0,00) is continuous, and the family of metric balls

B(p,e) = {g € N :do(p,q) < €}

for all p € N and € > 0 forms a basis for the given manifold topology.

Thus the metric topology and the given manifold topology coincide. Further-
more, by a result of Whitehead (1932), given any p € N, there exists an R > 0
such that for any € with 0 < € < R, the metric ball B(p,¢) is geodesically
convex. Thus for any € with 0 < € < R, the set B(p, ¢) is diffeomorphic to the
n-disk, n = dim(N), and the set {g € N : do(p,q) = €} is diffeomorphic to
Sr-1,

Removing the origin from R? equipped with the usual Euclidean metric and
setting p = (~1,0), ¢ = (1,0), one calculates that do(p,q) = 2 but finds no
curve ¢ € §p, 4 with Lo(c) = do(p, ¢) and also no smooth geodesic from p to
q. Thus the following questions arise naturally. Given a manifold N, find

conditions on a Riemannian metric go for N such that

(1) All geodesics in N may be extended to be defined on all of R.
(2) The pair (IV, dp) is a complete metric space in the sense that all Cauchy
sequences converge.
(3) Given any two points p,q € N, there is a smooth geodesic segment
¢ € Qpq with Lo(c) = do(p, g)-
A distance realizing geodesic segment as in (3) is called a minimal geodesic

segment. The word minimal is used here since the definition of Riemannian
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distance implies that Lo(y) > do(p,q) for all v € Q, 4. More generally, one
may define an arbitrary piecewise smooth curve v € Q,, to be minimal if
Lo(y) = do(p,q)- Using the variation theory of the arc length functional, it
may be shown that if v € €, ; is minimal, then  may be reparametrized to a
smooth geodesic segment.

The question of finding criteria on go such that (1), (2), or (3) holds was
resolved by H. Hopf and W. Rinow in their famous paper (1931). In modern

terminology the Hopf-Rinow Theorem asserts the following.

Theorem (Hopf-Rinow). For any Riemannian manifold (N, go) the fol-

lowing are equivalent:

(1) Metric completeness: (N,dp) is a complete metric space.

(2) Geodesic completeness: For any v € TN, the geodesic c(t) in N with
¢/(0) = v is defined for all positive and negative real numbers t € R.

(3) For some p € N, the exponential map exp, is defined on the entire
tangent space T,N to N at p.

(4) Finite compactness: Every subset K of N that is dg bounded (i.e.,
sup{do(p,q) : p,q € K} < 00) has compact closure.

Furthermore, if any one of (1) through (4) holds, then

(5) Minimal geodesic connectibility: Given any p,q € N, there exists a
smooth geodesic segment ¢ from p to ¢ with Lo(c) = do(p, q)-

A Riemannian manifold (N, go) is said to be complete provided any one (and
hence all) of conditions (1) through (4) is satisfied. It should be stressed that
the Hopf-Rinow Theorem guarantees the equivalence of metric and geodesic
completeness and also that all Riemannian metrics for a compact smooth
manifold are complete. Unfortunately, none of these statements is valid for
arbitrary Lorentzian manifolds.

A remaining question for noncompact but paracompact manifolds is the
existence of complete Riemannian metrics. This was settled by Nomizu and
Ozeki’s (1961) proof that given any Riemannian metric go for IV, there is a
complete Riemannian metric for N globally conformal to go. Since any para-

compact connected smooth manifold NV admits a Riemannian metric by a par-
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tition of unity argument, it follows that IV also admits a complete Riemannian

metric.

We now turn our attention to the Lorentzian manifold (M, g). A Lorentzian
metric g for the smooth paracompact manifold M is the assignment of a nonde-
generate bilinear form g, : T,M xT, M — R with diagonal form (-, +,--- ,+)
to each tangent space. It is well known that if M is compact and x(M) # 0,
then M admits no Lorentzian metric. On the other hand, any noncompact
manifold admits a Lorentzian metric. Geroch (1968a) and Marathe (1972)
have also shown that a smooth Hausdorff manifold which admits a Lorentzian

metric is paracompact.

Nonzero tangent vectors are classified as timelike, spacelike, nonspacelike,
or null according to whether g(v,v) < 0, > 0, < 0, or = 0, respectively.
[Some authors use the convention (+,—,---,—) for the Lorentzian metric,
and hence all of the inequality signs in the above definition are reversed for
them.] A Lorentzian manifold (M, g) is said to be time oriented if M admits
a continuous, nowhere vanishing, timelike vector field X. This vector field is
used to separate the nonspacelike vectors at each point into two classes called
future directed and past directed. A space-time is then a Lorentzian manifold
(M, g) together with a choice of time orientation. We will usually work with

space-times below.

In order to define the Lorentzian distance function and discuss its properties,
we need to introduce some concepts from elementary causality theory. It is
standard to write p < q if there is a future directed piecewise smooth timelike
curve in M from p to ¢, and p < q if p = ¢ or if there is a future directed
piecewise smooth nonspacelike curve in M from p to g. The chronological past
and future of p are then given respectively by I~ (p) = {g € M : ¢ < p} and
It(p) = {¢g € M : p < q}. The causal past and future of p are defined as
J-(p)={geM:q<p}and J*(p) ={g€ M :p< g} Thesets I~ (p) and
I*(p) are always open in any space-time, but the sets J~(p) and J*(p) are

neither open nor closed in general (cf. Figure 1.1).

The causal structure of the space—time (M, g) may be defined as the collec-

tion of past and future sets at all points of M together with their properties.
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remove this
closed set

FIGURE 1.1. The chronological (respectively, causal) future of a
point consists of all points which can be reached from that point
by future directed timelike (respectively, nonspacelike) curves. In
this example, the causal future J*(r) of r is the closure of the
chronological future I+ (r) of r. However, the set J*(g) is not the
closure of I (q). In particular, the point w is in the closure of I*(q)
but is not in J*(g).

It may be shown that two strongly causal Lorentzian metrics g; and go for
M determine the same past and future sets at all points if and only if the
two metrics are globally conformal [i.e., g1 = {2g2 for some smooth function
Q: M — (0,00)]. Letting C(M, g) denote the set of Lorentzian metrics glob-
ally conformal to g, it follows that properties suitably defined using the past
and future sets hold simultaneously either for all metrics in C(M, g) or for no

metric in C(M,g). Thus all of the basic properties of elementary causality
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theory depend only on the conformal class C(M,g) and not on the choice of
Lorentzian metric representing C(M, g).

Perhaps the two most elementary properties to require of the conformal
structure C(M, g) are either that (M, g) be chronological or that (M, g) be
causal. A space-time (M, g) is said to be chronological if p ¢ It (p) for all
p € M. This means that (M,g) contains no closed timelike curves. The
space-time (M, g) is said to be causal if there is no pair of distinct points
p,q € M with p < q < p. This is equivalent to requiring that (M, g) contain
no closed nonspacelike curves.

Already at this stage, a basic difference emerges between Lorentzian and
Riemannian geometry. On physical grounds, the space-times of general rela-
tivity are usually assumed to be chronological. But it is easy to show that if
M is compact, (M, g) contains a closed timelike curve. Thus the space-times
usually considered in general relativity are assumed to be noncompact.

In general relativity each point of a Lorentzian manifold corresponds to an
event. Thus the existence of a closed timelike curve raises the possibility that
a person might traverse some path and meet himself at an earlier age. More
generally, closed nonspacelike curves generate paradoxes involving causality
and are thus said to “violate causality.” Even if a space-time has no closed
nonspacelike curves, it may contain a point p such that there are future di-
rected nonspacelike curves leaving arbitrarily small neighborhoods of p and
then returning. This behavior is said to be a violation of strong causality at
p. Space-times with no such violation are strongly causal.

The strongly causal space-times form an important subclass of the causal
space-times. For this class of space-times the Alexandrov topology with basis
{I*(p)NI~(q):p,q € M} for M and the given manifold topology are related
as follows [cf. Kronheimer and Penrose (1967), Penrose (1972)].

Theorem. The following are equivalent:

(1) (M,g) is strongly causal.
(2) The Alexandrov topology induced on M agrees with the given manifold

topology.
(3) The Alexandrov topology is Hausdorff.



8 1 INTRODUCTION

) A @

P

FIGURE 1.2. Sets of the form It (p)NI~(q) with arbitrary p,q € M
form a basis of the Alexandrov topology. This topology is always
at least as coarse as the original topology on M. The Alexandrov
topology agrees with the original topology if and only if (M,g) is

strongly causal.

We are ready at last to define the Lorentzian distance function
d=d(g): M x M — [0,c0]

of an arbitrary space-time. If ¢ : [0,1] — M is a piecewise smooth nonspacelike
curve differentiable except at 0 = t; < 9 < --- < tx = 1, then the length
L(c) = Ly(c) of ¢ is given by the formula

k=1t
Lo =3 / V@@, ) dt.
i=1 vt

If p < gq, there are timelike curves from p to g (very close to piecewise null
curves) of arbitrarily small length. Hence the infimum of Lorentzian arc length

of all piecewise smooth curves joining any two chronologically related points



RIEMANNIAN THEMES IN LORENTZIAN GEOMETRY 9

p <K ¢ is zero. On the other hand, if p < ¢ and p and ¢ lie in a geodesically
convex neighborhood U, the future directed timelike geodesic segment in U
from p to g has the largest Lorentzian arc length among all nonspacelike curves
in U from p to q. Thus the following definition for d(p, q) is natural: fixing
a point p € M, set d(p,q) = 0 if ¢ ¢ J*(p), and otherwise calculate d(p, q)
for ¢ € J*(p) as the supremum of Lorentzian arc length of all future directed
nonspacelike curves from p to q. Thus if ¢ € J*(p) and v is any future
directed nonspacelike curve from p to g, we have L(y) < d(p, ¢). Hence unlike
the Riemannian distance function, the Lorentzian distance function is not
a priori finite-valued. Indeed, a so-called totally vicious space-time may be
characterized in terms of its Lorentzian distance function by the property that
d(p,q) = oo for all p,q € M. Also, if (M, g) is nonchronological and p € I+ (p),
it follows that d(p,p) = oo.

The Reissner—Nordstrom space-times, physically important examples of ex-
act solutions to the Einstein equations in general relativity, also contain pairs

of chronologically related distinct points p < ¢ with d(p, ¢) = oo.

By definition of Lorentzian distance, d(p,q) = 0 whenever ¢ € M — J*(p).
We have even seen that d(p, p) = oo is possible. Thus for arbitrary Lorentzian
manifolds there is no analogue for property (3) of the Riemannian distance
function. Also, the Lorentzian distance function tends from its definition to
be a nonsymmetric distance. In particular, for any space-time it may be shown
that if 0 < d(p, ¢) < oo, then d(g,p) = 0. But the Lorentzian distance function
does possess a useful analogue for property (2) of the Riemannian distance
function. Namely, d(p,q) > d(p,r) + d(r,q) for all p,q,r € M withp < r < q.
The reversal of inequality sign is to be expected since nonspacelike geodesics

in a Lorentzian manifold locally maximize rather than minimize arc length.

Since d(p,q) > 0 if and only if ¢ € I'*(p), and d(q,p) > 0 if and only if
g € I~ (p), the distance function determines the chronology of (M,g). On
the other hand, conformally changing the metric changes distance but not the
chronology, so that the chronology does not determine the distance function.
Clearly, the distance function does not determine the sets J*(p) or J~(p) since
d(p,q) = 0 not only for ¢ € J*(p) — I (p) but also for ¢ € M — J*(p).
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P

FIGURE 1.3. If 7 is in the causal future of p and ¢ is in the causal
future of 7, then the distance function satisfies the reverse triangle
inequality d(p, ¢) > d(p, ) +d(r, q). The reverse triangle inequality
will not be valid in general for some point 7’ which is not causally

between p and gq.

Property (4) of the Riemannian distance function is the continuity of this
function for all Riemannian metrics. For space-times, on the other hand, the
Lorentzian distance function may fail to be upper semicontinuous. Indeed, the
continuity of d : M x M — [0, o0] has the following consequence for the causal
structure of (M, g) [cf. Theorem 4.24]. If (M,g) is a distinguishing space—
time and d is continuous, then (M, g) is causally continuous (cf. Chapter 3 for
definitions of these concepts). Hence it is necessary to accept the lack of con-
tinuity and lack of finiteness of the Lorentzian distance function for arbitrary
space-times. The Lorentzian distance function is at least lower semicontinu-
ous where it is finite. This may be combined with the upper semicontinuity
in the C° topology of the Lorentzian arc length functional for strongly causal
space—times to construct distance realizing nonspacelike geodesics in certain

classes of space-times (cf. Sections 8.1 and 8.2).



RIEMANNIAN THEMES IN LORENTZIAN GEOMETRY 11

With these remarks in mind, it is natural to ask if some class of space-times
for which the Lorentzian distance function is finite-valued and/or continuous
may be found. The globally hyperbolic space-times turn out to be such a
class. Here a space-time (M, g) is said to be globally hyperbolic if it is strongly
causal and satisfies the condition that J*(p)NJ~(q) is compact for all p,q € M.
It has been most useful in proving singularity theorems in general relativity
to know that if (M,g) is globally hyperbolic, then its Lorentzian distance
function is finite-valued and continuous. Oddly enough, the finiteness of the
distance function, rather than its continuity, characterizes globally hyperbolic
space—times in the following sense (cf. Theorem 4.30). We say that a space—
time (M, g) satisfies the finite distance condition provided that d(g)(p, q) < co
for all p,g € M. It may then be shown that the strongly causal Lorentzian
manifold (M, g) is globally hyperbolic if and only if (M, ¢') satisfies the finite
distance condition for all ¢’ € C(M, g).

Motivated by the definition of minimal curve in Riemannian geometry, we

make the following definition for space-times.

Definition. (Mazimal Curve) A future directed nonspacelike curve vy

from p to q is said to be mazimal if L(y) = d(p, q)-

It may be shown (cf. Theorem 4.13), just as for minimal curves in Rie-
mannian spaces, that if v is a maximal curve from p to g, then v may be
reparametrized to a nonspacelike geodesic segment. This result may be used
to construct geodesics in strongly causal space-times as limit curves of appro-
priate sequences of “almost maximal” nonspacelike curves (cf. Sections 8.1,
8.2).

In view of (5) of the Hopf-Rinow Theorem for Riemannian manifolds, it
is reasonable to look for a class of space-times satisfying the property that if
p < g, there is a maximal geodesic segment from p to ¢. Using the compactness
of J*(p) N J~(q), one can show that globally hyperbolic space-times always
contain maximal geodesics joining any two causally related points.

We are finally led to consider what can be said about Lorentzian analogues
for the rest of the Hopf-Rinow Theorem. Here, however, every conceivable
thing goes wrong. Thus much of the difficulty in Lorentzian geometry from
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the viewpoint of global Riemannian geometry or its richness from the viewpoint
of singularity theory in general relativity stems from the lack of a sufficiently
strong analogue of the Hopf-Rinow Theorem.

We now give a basic definition which corresponds to (2) of the Hopf-Rinow

Theorem.

Definition. (Timelike, Null, and Spacelike Geodesic Completeness) A
space-time (M, g) is said to be timelike (respectively, null, spacelike, non-
spacelike) complete if all timelike (respectively, null, spacelike, nonspacelike)

geodesics may be defined for all values —oo < t < oo of an affine parameter ¢.

A space-time which is nonspacelike incomplete thus has a timelike or null
geodesic which cannot be defined for all values of an affine parameter. Such
space-times are said to be singular in the theory of general relativity.

It is first important to note that global hyperbolicity does not imply any
of these forms of geodesic completeness. This may be seen by fixing points
p and q in Minkowski space with p < ¢ and equipping M = I*(p) N I~(q)
with the Lorentzian metric it inherits as an open subset of Minkowski space.
This space-time M is globally hyperbolic. Since geodesics in M are just the
restriction of geodesics in Minkowski space to M, it follows that every geodesic
in M is incomplete.

It was once hoped that timelike completeness might imply null complete-
ness, etc. However, a series of examples has been given by Kundt, Geroch,
and Beem of globally hyperbolic space-times for which timelike geodesic com-
pleteness, null geodesic completeness, and spacelike geodesic completeness are
all logically inequivalent. Thus, there are globally hyperbolic space-times that
are spacelike and timelike complete but null incomplete.

Metric completeness and geodesic completeness [(1) iff (2) of the Hopf-
Rinow Theorem| are unrelated for arbitrary Lorentzian manifolds. There are
also Lorentzian metrics which are timelike geodesically complete but also con-
tain points p and ¢ with p <« ¢ such that no timelike geodesic from p to ¢
exists (cf. Figure 6.1).

On the brighter side, there is some relationship between (1) and (4) of the
Hopf-Rinow Theorem for globally hyperbolic space-times. Since d(p,q) = 0
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if ¢ ¢ J*(p), convergence of arbitrary sequences in (M, g) with respect to
the Lorentzian distance function does not make sense. But timelike Cauchy
completeness may be defined (cf. Section 6.3). It can be shown for globally
hyperbolic space-times that timelike Cauchy completeness and a type of finite
compactness are equivalent.

In addition, results analogous to the Nomizu-Ozeki Theorem mentioned
above for Riemannian metrics have been obtained. For instance, given any
strongly causal space-time (M, g), there is a conformal factor Q : M — (0, 00)
such that the space-time (M, Qg) is timelike and null geodesically complete
(cf. Theorem 6.5). It is still unknown, however, whether this result can be
strengthened to include spacelike geodesic completeness as well.

It should now be clear that while there are certain similarities between
the Lorentzian and the Riemannian distance functions, especially for globally
hyperbolic space-times, there are also striking differences. In spite of these
differences, the Lorentzian distance function has many uses similar to those of
the Riemannian distance function.

In Chapter 8 the Lorentzian distance function is used in constructing max-
imal nonspacelike geodesics. These maximal geodesics play a key role in the
proof of singularity theorems (cf. Chapter 12). In Chapter 9 the Lorentzian
distance function is used to define and study the Lorentzian cut locus.

‘In Chapter 10 a Morse index theory is developed for both timelike and null
geodesics. A number of global results for Lorentzian manifolds are obtained
in Chapter 11 using the index theory and the Lorentzian distance function.
Also, results are presented concerning the relationship of geodesic connectibil-
ity to geodesic pseudoconvexity and geodesic disprisonment. In Chapter 13 a
nontrivial example is given of the cut locus structure and certain associated
achronal boundaries for the class of gravitational plane wave space-times from
general relativity. Finally, Chapter 14 treats the concept of rigidity of geo-
desic incompleteness and the Lorentzian Splitting Theorem for space-times
satisfying the timelike convergence condition which also contain a complete
Lorentzian distance-realizing timelike geodesic line. In this setting, the almost

maximal curves of Chapter 8 again play a role [cf. Galloway and Horta (1995)].






CHAPTER 2

CONNECTIONS AND CURVATURE

Let (M, g) be an n-dimensional manifold M with a semi-Riemannian met-
ric g of arbitrary signature (—,---,—,+,--- ,+). Then there exists a unique
connection V on M which is both compatible with the metric tensor g and
torsion free. This connection, which is called the Levi-Civita connection of
(M, g), satisfies the same formal relations whether or not (M, g) is positive
definite. Thus geodesics, curvature, Ricci curvature, scalar curvature, and sec-
tional curvature may all be defined for semi-Riemannian manifolds using the
same formulas as for positive definite Riemannian manifolds. The only diffi-
culty which arises is that the sectional curvature is not defined for degenerate
sections of the tangent space when (M, g) is not of constant curvature. In fact,
the sectional curvature is only bounded near all degenerate sections at a point
in the case of constant sectional curvature [see Kulkarni (1979)]. This generic
“blow up” of the sectional curvature at degenerate sections corresponds to a
generic unboundedness of tidal accelerations [cf. Beem and Parker (1990)] for
objects moving arbitrarily close to the speed of light.

In the first section of this chapter there is an introduction to connections,
and in the second section semi-Riemannian manifolds are discussed. Riemann-
ian manifolds are positive definite semi-Riemannian manifolds and thus have
metrics of signature (+,+,---,+). Consequently, the metric induced on the
tangent space of a Riemannian manifold is Euclidean. The types of semi-
Riemannian manifolds of primary interest in this book are Lorentzian mani-
folds. These manifolds have metric tensors of signature (—,+,--- ,+). Thus,
the tangent spaces of a Lorentzian manifold have induced Minkowskian met-
rics. The tangent vectors at p € M of length zero form the null cone at p. For

semi-Riemannian manifolds which are neither positive nor negative definite, a

15
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null cone is an (n — 1)-dimensional surface in the tangent space. In the third
section of this chapter we show that null cones determine the metric up to a
conformal factor for metrics which are not definite. In the fourth section we
consider sectional curvature. This curvature is related to tidal accelerations
using the Jacobi equation. The Jacobi equation analyzes the relative behavior
of “nearby” geodesics and will be of fundamental importance in later chap-
ters. We introduce the generic condition in the fifth section. This condition
corresponds to a tidal acceleration assumption. The Einstein equations are
introduced in the last section. These are partial differential equations relating
the metric tensor and its first two derivatives to the energy-momentum ten-
sor T. The Einstein equations thus link geometry in terms of the metric and
curvature to physics in terms of the distribution of mass and energy.

The manifold M will always be smooth, paracompact, and Hausdorff. The
tangent bundle will be denoted by T'M, and the tangent space at p € M will
be denoted by T, M. If (U, z) is an arbitrary chart for M, then (z!,z2,...,z")
will denote local coordinates on M and 8/0z!,8/8x2,...,8/0z™ will denote
the natural basis for the tangent space.

2.1 Connections

Let X(M) denote the set of all smooth vector fields defined on M, and let
F(M) denote the ring of all smooth real-valued functions on M. A connection
is a function

V:X(M) x (M) - X(M)

with the properties that

(2.1) Vy(X+Y)=VyX +VyY,
(2.2) VfV+hW(X) = fVVX + hVwX, and
(2.3) Vv(fX)=fVv X+ V()X

for all f,h € F(M) and all X,Y, VW € X(M).
The vector Vxp)Y = V XYlp at the point p € M depends only on the
connection V, the value X (p) = X, of X at p, and the values of Y along any
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smooth curve which passes through p and has tangent X(p) at p [cf. Hicks
(1965, p. 57)]. To see this, let Ey, Fo,..., E, be smooth vector fields defined
near p which form a basis of the tangent space at each point in a neighborhood
of p. Then X (p) =Y X*(p)Ei(p) and Y =Y Y*E;. Hence

VxY|, = Vx) (Z Y%E)

i=1
n

=Y V'@VxmBi+ Y XE)(V)E®)

=1 i=1
n

S X @)Y (0)VE B+ Y X(0)(Y))E:(p).

ij=1 i=1

It follows that X*(p), Y*(p), and X (p)(Y*) determine VxY|, completely if
the Vg, ;) E:’s are known.

Given the connection V on M and a curve v : [a,b] — M, we may define
parallel translation of vector fields along . Here a vector field Y along v is a
smooth mapping Y : [a,b] — T'M such that Y (t) € T.,y)M for each t € [a,b].
For to € [a,b] we may locally extend Y to a smooth vector field defined on a
neighborhood of 7(¢9). Then we may consider the vector field V.,/(;)Y along
~. The preceding arguments show that this vector field along v is independent
of the local extension, and consequently V.Y (=Y"’) is well defined. A vector
field Y along v which satisfies V.,/Y (¢) = 0 for all ¢ € [a, b] is said to move by
parallel translation along v. A geodesic c: (a,b) — M is a smooth curve of M
such that the tangent vector ¢’ moves by parallel translation along c. In other

words, c is a geodesic if
(2.4) Vecd =0.  (geodesic equation)

A pregeodesic is a smooth curve ¢ which may be reparametrized to be a geo-
desic. Any parameter for which ¢ is a geodesic is called an affine parameter.
If s and t are two affine parameters for the same pregeodesic, then s = at + b
for some constants a,b € R. A pregeodesic is said to be complete if for some
affine parametrization (hence for all affine parametrizations) the domain of the

parametrization is all of R. The equation V¢’ = 0 may be expressed as a
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system of linear differential equations. To this end, we let (U, (z!,2?,...,2™))
be local coordinates on M and let 8/8zt,8/8x?,...,0/dz™ denote the natuml

basis with respect to these coordinates. The connection coefficients l"’c of V

with respect to (z!,22,...,2") are defined by
(2.5) Vo/6zi 9 Y r* 9 (connection coefficients)
' 8/02* \ @i ) ~ = ok’

Using these coefficients we may write equation (2.4) as the system

J
(2.6) a dt:; + Z fj (Z d;t =0. (geodesic equations in coordinates)

The connection coefficients (Christoffel symbols of the second kind) may
also be used to give a local representation of the action of V. If the vector

fields X and Y have local representations as

n ; 6 n ; 6
X=2;X ()5~  and Y=Z;Y (2) 5

then VxY has a local representation

(2.7) VxY = Z ZXJ Z r X’Y’) aak

3,j=1

The vector field VxY is said to be the covariant derivative of Y with respect
to X. A semicolon is used to denote covariant differentiation with respect to a
natural basis vector. If X = 8/8z7, then the components of VxY = Vo8ziY
are denoted by Y*.; where
k . aYk - l-\k Y‘L
= 6.’1?J Z
The Lie bracket of the ordered pair of vector fields X and Y is a vector field

[X,Y] which acts on a smooth function f by [X,Y](f) = X(Y(f)) -Y(X(f)).
If X =Y X*z)0/0z* and Y = Y Y?*(x)d/0z", then

oY’y ,0X7\ 8
(X, Y] = Z (X’ - —Yi—— ) ——.  (Lie bracket)
55 oz o0z ) Ox?
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The torsion tensor T of V is the function T : (M) x X(M) — X(M) given
by

(2.8) T(X,Y)=VxY - VyX - [X,Y]. (torsion tensor)

The mapping T is said to be f-bilinear since it is linear in both arguments
and also satisfies T(fX,Y) = T(X, fY) = fT(X,Y) for smooth functions f.
The value T(X,Y)|, depends only on the connection V and the values X (p)
and Y (p). Consequently, T' determines a bilinear map T,M x T,M — T, M
at each point p € M. Using the skew symmetry ([X,Y] = —[Y, X]) of the Lie
bracket, it is easily seen that T(X,Y) = —T(Y, X), and hence T is also skew.
Since [0/8z%,8/8z7] = 0 for all 1 < 4,5 < n, it follows that

(29) T (o) - 5 (% -T5) 5.

k=1
Consequently,
Z T*;dz' ® i®d:t:’
i,j.k=1
where

Tk, = Pfj - l"f, (torsion components)

Clearly, the torsion tensor provides a measure of the nonsymmetry of the
connection coefficients. Hence, T = 0 if and only if these coefficients are
symmetric in their subscripts. A connection V with T = 0 is said to be
torsion free or symmetric.

The curvature R of V is a function which assigns to each pair X,Y € X(M)
the f-linear map R(X,Y) : (M) — X(M) given by

(2.10) R(X,Y)Z =VxVyZ -VyVxZ — V[X’y]Z. (curvature)

Curvature provides a measure of the noncommutativity of Vx and Vy. It
should be noted that some authors define the curvature as the negative of the
above definition. Consequently, they differ in sign for some of the definitions

of curvature quantities given below. The curvature R represents a tensor field.
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Hence, the map (X,Y, Z) — R(X,Y)Z from ¥(M) x X(M) xX(M) to X(M) is
f-trilinear, and the vector R(X,Y)Z|, depends only on X (p), Y (p), Z(p), and
V. If z,y,2z € T,M, one may extend these vectors to corresponding smooth
vector fields X,Y, Z and define R(z,y)z = R(X,Y)Z|,.

If w € T, M is a cotangent vector at p and z,y, z € T, M are tangent vectors

at p, then one defines
(211) R(w,z,y,2) = (w, R(X,Y)Z) = w(R(X,Y)Z)

for X, Y, and Z smooth vector fields extending z, y, and z, respectively. The
curvature tensor R is a (1, 3) tensor field which is given in local coordinates
by

® d7? @ dz* @ dz™

n . P
(2.12) R= Z R km B

4,5,k m=1
where the curvature components Rijkm are given by

A S . | i
(2-13) R'jpm = &BkJ - 672 + Z(anj ka = Tkilma)-
a=1
Notice that R(X,Y)Z = -R(Y,X)Z, R(w,X,Y,Z) = -R(w,Y, X, Z), and
Rijkm = —R'jmk. Furthermore, if X = Y X'9/0z', Y = > Y'9/0z*, Z =
3. Z'9/0zt, and w = Y w;dz’, then

n
(2.14) RX,Y)Z= ) Rijkmzkaym%
i,J,k,m=1 z
and
(2.15) Rw,X,Y,2)= Y RjymwiZ XY™
1,7,k,m=1

Consequently, one has R(dz*,8/0z*,8/0z™,8/02%) = R jkm.

2.2 Semi-Riemannian Manifolds

A semi-Riemannian metric g for a manifold M is a smooth symmetric tensor

field of type (0,2) on M which assigns to each point p € M a nondegenerate
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inner product g|p : T,M x T,M — R of signature (—,--- ,—,+,---,+). Here
nondegenerate means that for each nontrivial vector v € T, M there is some
w € T, M such that g,(v, w) # 0. If g has components g;; in local coordinates,
then the nondegeneracy assumption is equivalent to the condition that the
determinant of the matrix (g;;) be nonzero.

Although we consider only smooth metrics, some authors have studied dis-
tributional semi-Riemannian metrics [cf. Parker (1979), Taub (1980)]. Also,
a number of authors have studied semi-Riemannian metrics for which degen-
eracy is allowed [cf. Bejancu and Duggal (1991), Katsuno (1980), Kossowski
(1987, 1989)].

In local coordinates (U, (z!, z
by

2 ...,z™)) on M, the metric g is represented

n
91U =" gj(z)de‘@da?  (metric tensor)
4,j=1

with
9ij = Gji (symmetric) and det(gi;) # 0. (nondegenerate)

If g has s negative eigenvalues and 7 = n — s positive eigenvalues, then the
signature of g will be denoted by (s,r). For each fixed p € M, there exist lo-
cal coordinates (U, (z!,x?,...,z")) such that g, = g| T, M can be represented
as the diagonal matrix diag{—,---,—,+,---,+}. For each semi-Riemannian
manifold (M, g) there is an associated semi-Riemannian manifold (M, —g) ob-
tained by replacing g with —g. Aside from some minor changes in sign, there is
no essential difference between (M, g) and (M, —g). Thus, results for spaces of
signature (s,7) may always be translated into corresponding results for spaces
of signature (r, s) by appropriate sign changes and inequality reversals.

Two vectors in T, M are orthogonal if their inner product with respect to
gp is zero. Note that when g has eigenvalues with different signs, there will
be some nontrivial vectors which are orthogonal to themselves (i.e., satisfy
g(v,v) = 0). These are known as null vectors. A given vector is said to be a
unit vector if it has inner product with itself equal to either +1 or —1. Thus,

an orthonormal basis {e1,ez,...,en} of T,M satisfies |g(e;, e;)| = &¢;.
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Given a semi-Riemannian manifold (M, g), there is a unique connection V
on M such that
(2.16) Z(g(X,Y)) =g(VzX,Y)+g(X,VzY) (metric compatible)
and
(2.17) (X,Y]=VxY -VyX (torsion free)

for all X,Y, Z € X(M). This connection V is called the Levi-Civita connection
of (M, g). As indicated above, (2.16) is the condition that the connection V
be compatible with the metric g, and (2.17) is the condition that V be torsion
free. Setting Z = ¢’ in (2.16), one finds that parallel translation of vector fields
along any smooth curve ¢ of M preserves inner products. For semi-Riemannian

manifolds, the connection coefficients are given by

(2.18) I‘fj = %z g%k (% - % + %) (connection coefficients)
a=1

where g% represents the (2, 0) tensor defined by
(2.19) Zgi“gaj =6 for1<4,5<n.
a=1

The local representations g/ and g;; may be used to raise and lower indices.
For example, if the upper index of the curvature tensor is lowered, one obtains
the components of the Riemann—Christoffel tensor which is also known as the

covariant curvature tensor.

n
(2.20) Rijkm = Z 9ai R jkm (covariant curvature components)

a=1

Alternatively, one may define the Riemann—Christoffel tensor R as the (0, 4)

tensor such that

(2.21) RW,Z,X,Y) = g(W,R(X,Y)Z).
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Some standard curvature identities satisfied by the components of this tensor
are Rijkm = Rikmij = —Rjikm = —Rijmk and Rijkm + Rikmj + Rimjk = 0.
The trace of the curvature tensor is the Ricci curvature, a symmetric (0,2)
tensor. For each p € M, the Ricci curvature may be interpreted as a symmetric
bilinear map Ricp : T,M x T,M — R. To evaluate Ric(v,w), let e1,e2,...,€,

be an orthonormal basis for T, M. Then
n
(2.22) Ric(v,w) = ) _ g(es, e:) g(R(es, w)v, ;)
i=1

or equivalently,

(2.23) Ric(v, w) = Zg ei, e:) R(es, v, €5, w).
i=1

One may express v and w in the natural basis as v = Y v'9/0z* and w =
S w'd/0z* and then write

(2.24) Ric(v,w) = Z R;jviw?
4,j=1
where
n
(2.25) R = Z R%4;. (Ricci curvature components)
a=1

If one uses the Finstein summation convention of summing over repeated
indices, then equations (2.24) and (2.25) become Ric(v,w) = R;;v'w’ and
R;j = R%i,j, respectively. The Ricci tensor is the (1,1) tensor field which
corresponds to the Ricci curvature. The components of the Ricci tensor may
be obtained by raising one index of the Ricci curvature. Either index may be

raised since the Ricci curvature is symmetric. Thus,
. n . n .
(2.26) R'; = Z 9% Rqj = Z 9% Rjq. (Ricci tensor components)

The trace of the Ricci curvature is the scalar curvature 7. Historically, this

function has been denoted by the much used symbol R. Accordingly,

n
(2.27) T=R= Z R?,. (scalar curvature)
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Thus if ey, €2, ..., en is an orthonormal basis of T,M, one has
(2.28) T=R=)g(ei e:)Ric(e;,e:).
i=1

The gradient and Hessian are defined for semi-Riemannian manifolds just
as for Riemannian manifolds. If f : M — R is a smooth function, then df is
a (0,1) tensor field (i.e., one-form) on M, and grad f is the (1,0) tensor field
(i-e., vector field) which corresponds to df. Thus,

(2.29) Y(f) =df(Y) = g(grad f,Y) (gradient)

for an arbitrary vector field Y. In local coordinates (U, (z!,2?,...,z")), the
vector field grad f is represented by

n
(2.30) grad f = z g" g—zf;% (gradient using coordinates)
1,7=1

The Hessian H is defined to be the second covariant differential of f:
Hf =vV(Vf). (Hessian)

For a given f € §(M), the Hessian H is a symmetric (0,2) tensor field which
is related to the gradient of f through the formula

HY(X,Y) = g(Vx(grad f),Y)

for arbitrary vector fields X and Y. The Laplacian Af = div (grad f) is now
defined to be the divergence of the gradient of f.
A tangent vector v € T, M is classified as timelike, nonspacelike, null, or

spacelike if g(v,v) is negative, nonpositive, zero, or positive, respectively:

g(v,v) <0, (timelike)

g(v,v) <0, (nonspacelike or causal)
g(v,v) =0, (null or lightlike)
g(v,v) > 0. (spacelike)
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A Riemannian manifold (M, g) is a semi-Riemannian manifold of signature
(0,n) [i.e., (+,---,+)]. Thus, on each tangent space T, M of a Riemannian
manifold the metric g, is positive definite. Consequently, the metric induced
on each tangent space is Euclidean, and all (nontrivial) vectors for Riemannian

manifolds are spacelike.

A Lorentzian manifold is a semi-Riemannian manifold (M, g) of signature
(1,n — 1) [ie, (-, +,...,+)]. At each point p € M the induced metric on
the tangent space is Minkowskian. Each point of a Lorentzian manifold has
timelike, null, and spacelike tangent vectors. A smooth curve is said to be
timelike, null, or spacelike if its tangent vectors are always timelike, null, or

spacelike, respectively.

A timelike curve in a Lorentzian manifold corresponds to the path of an
observer moving at less than the speed of light. Null curves correspond to
moving at the speed of light, and spacelike curves correspond to the geometric
equivalent of moving faster than light. Although relativity predicts that physical
particles cannot move faster than light, spacelike curves are of clear geometric

interest.

A vector field X on M is timelike if g(X,X) < 0 at all points of M. A
Lorentzian manifold with a given timelike vector field X is said to be time
oriented by X. A space-time is a time oriented Lorentzian manifold. Not all
Lorentzian manifolds may be time oriented, but a Lorentzian manifold which
is not time orientable always admits a two-fold cover which is time orientable
(cf. Chapter 3).

2.3 Null Cones and Semi-Riemannian Metrics

One of the folk theorems of general relativity asserts that the space-time
metric is determined up to a conformal factor by the set of null vectors. In
this section we examine more generally to what extent the null vectors of a
nondefinite nondegenerate inner product on a vector space determine the given
inner product and obtain as a consequence in Theorem 2.3 an elementary proof
of this folk theorem for space-times [cf. Ehrlich (1991)].
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Lemma 2.1. Let V be a real n-dimensional vector space, n > 2, and let
g and h be two nondefinite nondegenerate inner products on V of arbitrary

signature. Suppose that g and h satisfy the condition that for any v € V,
(2.31) g(v,v) =0 iff h(v,v)=0.

Then

(1) either g and h or g and —h have the same signature, and
(2) there exists A # 0 such that

(2.32) h(v,w) = Ag(v, w)

for allv,w e V.

Furthermore, if g has signature (s,r) with r # s, then A > 0 if g and h have

the same signature and A < 0 if g and —h have the same signature.

Proof. First consider the case that r = s = 1. Let {e;1, ez} be an arbitrary
g-orthonormal basis for V' such that g(e;,e;) = —1 and g(ez,e2) = +1. Then
7M1 = e1 + ez and 72 = e; — ez are both g-null vectors. Hence, setting h;; =

h(ei,e;), we obtain the system of equations

0= h(nh 771) = hll + h22 + 2h12,
0= h(772» 772) = hll + h22 - 2h12,

from which we conclude h;; = —hge and hip = 0. Since g(ej,e;) # 0, we
also have hij, hop # 0. Thus if we set A = —h;;, then h = Ag with A > 0 if
h(e1,e1) <0 and A <0 if h(ej,e;) > 0.

Multiplying g by —1 if necessary, we consider the case that g has signature
(r,s) withr > 1 and s > 2. Let {e1,...,€r,€r41,---,€n} be any g-orthonormal
basis for V with {ej,...,e;} g-unit timelike and {e,+1,...,€en} g-unit space-
like. Again by (2.31), we have hj; = h(e;j,e;) #0forall j. Fix any 5,k > r+1
with j # k. Then we have a one-parameter family of g-null vectors

(2.33) v(0) = ey + cos(f) - e + sin(6) - e
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for any 6 € R. In view of (2.31), we obtain

(2.34) 0 = h(v(6),v(8))
= hll + COS2(0) . hjj + sin2(0) - hkk
+ 2cos(6) - h1j + 2sin(f) - hix + sin(26) - hj.

Taking 6 = 0 and 6 = 7 respectively in (2.34) yields

0=hy1 + hjj + 2h1j,
and 0=hy + hjj - 2h1j,

from which we conclude h;; = 0 and hj; = —hq; for all j > r 4+ 1. With this

information, equation (2.34) reduces to the equation
0 = hy1 — (cos? 8 +sin @) - hyy +sin(20) - hjx
or simply
0= sin(20) - hjk.

Hence, hjxy =0forall j,k>r+1, j #Ek.

We now have for r = 1 that hpg = 0if p # ¢, and hy; = —hgs = —h33 =

- = —hp,. Hence if A = —hy; > 0, then g and h both have signature
(=,+,---,+), whereas if A = —hj; < 0, then h has signature (+,—,---,—).
In either case, h = A\g with A = —hy; as required.

If r > 2, we have a little more work left. First, consideration of the one-

parameter family
w(f) = cos(f) - ej +sin(f) - ex + en

with j,k < r and j # k yields hjx = hjn =0 and hy; = hoo = -+ = hpr =
—hnn. It remains to show that ki, = 0 and hpq = 0 if p < r < q. But for this

we need simply consider the one-parameter null family
z(0) = cos(f) - e1 +sin(h) - ep + g,
since the equation 0 = h(z(f), z(#)) reduces to

0 = sin(26) - hyp + 2sin(f) - hpq
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in view of our above results. Thus we have obtained hy;; = hgy = --- =
her = —hri1741 = -+ = —hnp and hj = 0 if j # k, from which the desired

conclusion follows as above. O
As a corollary, we obtain

Corollary 2.2. Let V be a real n-dimensional vector space, n > 3, and
assume V is equipped with inner products g and h, both of Lorentzian signa-
ture (—,+,--- ,+). Suppose g and h determine the same null vectors. Then

h = Ag for some constant A > 0.

With this last result applied to each tangent space, we obtain the desired

result.

Theorem 2.3. Let M be a smooth manifold of dimension n > 3 with
metrics g and h, both of Lorentzian signature (—,+,--- ,+). Suppose for any
v € TM that g(v,v) = 0 iff h(v,v) = 0. Then there exists a smooth function
Q: M — (0,00) such that h = Qg.

A somewhat more general class of objects than globally conformally re-
lated metrics has been considered in differential geometry and general rel-
ativity, namely, conformal transformations. Here a global diffeomorphism
F : (M,g) — (N,h) between two semi-Riemannian manifolds (M, g) and
(N, h) is said to be a global conformal transformation if there exists a smooth
function Q : M — (0, 00) such that

(2.35) h(Fw, Faw) = Q(p) 9(v, w)

for all v,w € T,M and p € M. In the Riemannian case, such maps would be
angle preserving. Evidently, condition (2.35) implies that (M, g) and (N,h)
have the same signature.

Conversely, given two semi-Riemannian manifolds (M, g) and (N, h), we

may apply Lemma 2.1 to g and F*h in order to obtain that the condition
(2.36) glv,v) =0 ff A(Fw,Fv)=0 foralveTM

serves to ensure that F is a global conformal transformation of (M, g) onto
either (NV,R) or (N,—h). Especially for space-times, one has the following

well-known extension of Theorem 2.3.
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Corollary 2.4. Let (M, g) and (N,h) be smooth manifolds of dimension
n > 3 having Lorentzian signature (—,+,--- ,+). Suppose that f : M — N is
a diffeomorphism which satisfies condition (2.36). Then f is a global conformal
transformation of (M, g) onto (N, h).

One could paraphrase this last result as follows: a diffeomorphism of space-
times which preserves null vectors is a conformal transformation. Hence Corol-

lary 2.4 is a differentiable version of a much deeper a priori topological result
of Hawking, King, and McCarthy (1976).

2.4 Sectional Curvature

Let (M, g) be a semi-Riemannian manifold. A two-dimensional linear sub-
space E of T,M is called a plane section. The plane section E is said to be
nondegenerate if for each nontrivial vector v € E there is some vector v € E
with g(u,v) # 0. This is equivalent to the requirement that g, | E be a nonde-
generate inner product on E. If v and w form a basis of the plane section E,
then g(v,v)g(w,w) — [g(v,w)]? is a nonzero quantity if and only if E is non-
degenerate. This quantity represents the square of the semi-Euclidean area of
the parallelogram determined by v and w. The plane FE is said to be timelike
if the signature of g, | E is (1,1), i.e., (—,+). It is spacelike if the signature is
(0,2), i.e., (+,4).

For Lorentzian manifolds, degenerate planes are called either null or lightlike
and always have signature (0,+). A null plane in T, M is a plane tangent to
the null cone in T, M. Thus, in the Lorentzian case a degenerate plane contains
exactly one generator of the null cone.

Using the square of the semi-Euclidean area of the parallelogram determined
by the basis vectors {v, w}, one has the following classification for plane sec-

tions of Lorentzian manifolds:

g(v,v)g(w, w) — [g(v, w)]? <0, (timelike plane)
g(v,v)g(w, w) — [g(v,w)]2 =0, (degenerate plane)
g(v,v)g(w, w) — [g(v,w)]? > 0. (spacelike plane)

The sectional curvature of the nondegenerate plane section E with basis
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v,w} where v = ¥ v:9/0z* and w = ¥ w*3/dz* is then given b
g Yy

_ 9(R(w,v)v, w)
Ko B) = ) g(w,0) - o, w)P
_ ﬁ(w, v, W, V)
~ 9(v,v)g(w, w) — [g(v, w)]?
_ 3 Rijemwiviwky™

3 9i vt gemwkw™ — [3 gijviwd]?’

(sectional curvature)

For positive definite manifolds the Ricci curvature evaluated at a unit vector
is sometimes thought of as more or less an average sectional curvature weighted
by a factor of (n—1). More precisely, let w be a unit vector at p in the Riemann-
ian manifold (M, g), extend to an orthonormal basis {e1, €2, ..., en-1,€n = w},
and let E; = span{e;,w} for 1 <i < n— 1. Equations (2.22) and (2.37) yield

n—1 n—1
Ric(w,w) = Zg(R(ei,w)w, e;) = Z K(p, E;).
=1 =1

It is instructive to contrast the above with the Ricci curvature evaluated at
a unit timelike vector in a Lorentzian manifold. In this case the interpretation
is in terms of the negative of the timelike sectional curvature. For let u be a
unit timelike vector at a point p of the Lorentzian manifold (M, g). Extend to
an orthonormal basis {e1,e2,...,en—1,6n = u} and let E; = span{e;,u} for
1 <7< n—1. Equations (2.22) and (2.37) yield

n—1 n-—1
Ric(u,u) = Z g(R(es, w)u, e;) = — Z K(p, E;).

Thus, if u is a timelike vector with Ric(u,u) > 0, then in some sense the
“average” sectional curvature for planes in the pencil of u is negative.

For Riemannian manifolds one has a number important “pinching” theo-
rems [cf. Cheeger and Ebin (1975)]. However, similar results fail for Lorentzian
manifolds. In particular, if the sectional curvatures of timelike planes are
bounded both above and below, and if dim(M) > 3, then (M, g) has constant
curvature [cf. Harris (1982a), Dajczer and Nomizu (1980a)]. Nevertheless, fam-

ilies of Lorentzian manifolds conformal to ones of constant curvature may be



2.4 SECTIONAL CURVATURE 31

constructed which have all timelike sectional curvatures bounded in one direc-
tion [cf. Harris (1979)]. However, if dim(M) > 3 and if the sectional curvatures
of all nondegenerate planes are bounded either from above or from below, then
the sectional curvature is constant [cf. Kulkarni (1979)]. Sectional curvature
has been further investigated by Dajczer and Nomizu (1980b), Nomizu (1983),
Beem and Parker (1984), and Cordero and Parker (1995a,c).

A semi-Riemannian manifold (M, g) which has the same sectional curvature
on all (nondegenerate) sections is said to have constant curvature. If (M, g) has
constant curvature ¢, then R(X,Y)Z = c[g(Y,2)X — g(X, Z)Y] [cf. Graves
and Nomizu (1978)]. Thorpe (1969) showed that the sectional curvature can
only be continuously extended to degenerate planes in the case of constant
curvature. Spaces of constant sectional curvature have been investigated in
connection with the space form problem [cf. Wolf (1961, 1974)].

The curvature tensor, Ricci curvature, scalar curvature, and sectional cur-
vature may all be calculated in local coordinates using the metric tensor com-
ponents and the first two partial derivatives of these components. Thus, the
metric tensor determines the curvatures. In contrast, curvature does not nec-
essarily determine the metric. Nevertheless, for most Lorentzian manifolds
the metric will be determined either completely or up to a constant conformal
factor given sufficient information concerning curvature in local coordinates
[cf. Hall (1983, 1984), Hall and Kay (1988), Ihrig (1975), Quevedo (1992)].

Conjugate points along geodesics may be defined using Jacobi fields. These
objects are studied in Chapter 10 in connection with the development of the
Morse index theory for timelike and null geodesics. If ¢ : (a,b) —» M is a
geodesic, then the smooth vector field J : (a,b) — T M along c is a Jacobi field

if it satisfies the Jacobi equation,
(2.38) J"+ R(J, ) =0, (Jacobi equation)

where J”’ = Vo (VJ). In an intuitive sense, one thinks of a Jacobi field
as representing the relative displacement of “nearby” geodesics [cf. Hawking
and Ellis (1973), Hicks (1965), or Misner, Thorne and Wheeler (1973)]. In
particular, let ¢ be a unit speed timelike geodesic. Then c represents the path

of a “freely falling” particle moving at less than the speed of light. Taking J
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as a Jacobi field which is orthogonal to the tangent vector ¢/, one interprets J
as a vector from the original particle to another particle moving on a nearby
timelike geodesic, and one interprets J” as the relative (or tidal) acceleration of
the second particle as measured by the first. If g(J, J) # 0, then the definition
of sectional curvature together with g(c’,¢') = —1 and g(J,c') = 0 yield
_9(R(J, &), J) _ g(=R(J, )¢, J)

At points where J does not vanish, the vector J/+/g(J, J) is a unit vector in
the direction of J. Using J” = —R(J, ')/, one finds that the radial component

K(d,J)

of the tidal acceleration is given by
9(J",J) _ g(=R({J,c)c, J)
V9(J,J) v9(J,J)

_ (9(=R(J, ), J)
- (45 ") Ve

= K(c, J)Vg(J,J)

= K(,J)|JI.

(2.39)

This equation shows that for “close” particles the radial component of the tidal
acceleration varies directly with the separation distance |J| and with the sec-
tional curvature K(c',J) of the plane containing both ¢’ and J. Thus, using
our sign conventions, a timelike plane with positive sectional curvature cor-
responds to freely falling particles accelerating away from each other, and
negative sectional curvature of a timelike plane corresponds to particles accel-
erating toward each other. Since Ric(c’,¢’) > 0 corresponds to the timelike
planes containing ¢’ having negative average sectional curvature, it follows that
Ric(c,¢’) > 0 corresponds to average attractive (i.e., focusing) tidal forces. It
should be kept in mind that some authors use different sign conventions and
may have sectional curvature equal to the negative of ours.

For a constant value of |J| the maximum tidal acceleration will be radial
[cf. Beem and Parker (1990, p. 820)]. Thus at any fized value to, an observer
traversing the timelike geodesic ¢ will have zero tidal accelerations if and only

if all planes E containing c'(to) have zero sectional curvature.
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2.5 The Generic Condition

The sectional curvature can be used to study the generic condition, which
will be of importance in the singularity theorems to be considered in Chap-
ter 12. If W = Y ©_, We9/0z® is a tangent vector, then the values W@
are the contravariant components. Using the metric g one has values W, =
> 9asW?® which are the covariant components. Thus, >p_; W, dz® is the
cotangent vector corresponding to the original W. The generic condition is
said to be satisfied for a vector W at p € M if

(2.40) Z WchW[aRb]cd[ve] #0. (generic condition)
c,d=1

If condition (2.40) fails to hold (i.e., if 37 ;_; WeWeW o Rpjcqie Wy = 0), then

W will be called nongeneric.

The generic condition is said to hold for a geodesic c : (a,b) — M if at some
point c(to) the tangent vector to the geodesic is generic, i.e., one has (2.40)
satisfied with W = c/(to). Notice from continuity that if (2.40) holds for some
W = c'(to), then it will hold for W = ¢/(t) whenever t is sufficiently close to
to-

We will show in Proposition 2.6 that for a vector W which is nonnull (i.e.,
g(W,W) # 0), the nongeneric condition is equivalent to requiring that all
plane sections containing W have zero sectional curvature. For null vectors,

the nongeneric condition is slightly more complicated.

Lemma 2.5. Let R,p.q represent the components of the curvature tensor
with respect to an orthonormal basis {vi,vs,...,vn} of T,M. The vector
W = v, satisfles the generic condition (2.40) iff there exist b and e with
1<b,e <n—1 such that Rppne # 0.

Proof. The components of W are given by W! = ... = W"™1 = W} =
-=W,_1 =0, W =1, and W,, = +1 or —1. Consequently,
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n
1
Z WchW[aRb]cd[ve] = Z (Wa Rbnne Wf - Wb Ranne Wf
C,d:l

- Wa. Rbnnf We + Wb Rannf We)
(2.41) = i (6na Rbnne 5nf - 5nb Ranne 6nf

— 8" a Ronng 6™e + 6™ Ronns 5"’e) .

It is easily seen that this expression is nonzero if and only if Rpynne 7# 0 for
some b,e with 1 <be<n-1. O

Proposition 2.6. If W € T,M is a nonnull vector, then W fails to be
generic (i.e., is nongeneric) iff for each nondegenerate plane section E contain-

ing W the sectional curvature K (p, E) vanishes.

Proof. We may assume without loss of generality that W is a unit vector.
Set W = v,, and extend to an orthonormal basis {v1, v, ...,vn} of T,M. Let
Rapeq represent the components of the curvature tensor with respect to this
basis.

From Lemma 2.5, if W fails to satisfy the generic condition, then Rpnne = 0
for all 1 < b,e < n — 1. This and the skew symmetry of Rgpeq in both the
first pair of indices and the second pair of indices yield Rpnne = 0 for all
1< b,e <n. Hence Rppne = — Rpnne = 0 for all such b and e. It follows that
2 bt RaseaWUPWEU® =
> hee1 RnbncUPU® = 0. From (2.37), we conclude that if E is the plane
spanned by {W,U}, and if F is nondegenerate, then K(p, E) = 0.

Conversely, assume all nondegenerate planes containing W have zero sec-

if U is another tangent vector at p, one has >

tional curvature. Then (2.37) easily shows that all terms of the form Rpnnp
must be zero. Assume b # e. Notice that E = span{vs, vy + 2ve} cannot
be degenerate. Using (2.37) we obtain R(vn, Vs, n,v) = R(Un, Ve, Un, Ve) =
R(vn, Up + 2Ve, Un, Up + 20¢) = 0. The multilinearity of R and standard curva-
ture identities then yield 0 = ﬁ(vn, Vb + 2Ve, Un, Up + 20e) = 4 ﬁ(vn, Vb, Un, Ve )-
This shows R,pne = 0 and hence Rppne = 0. Using Lemma 2.5, it follows that

W fails to satisfy the generic condition as desired. O
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Proposition 2.6 implies that the only way for a timelike geodesic ¢ to fail to
satisfy the generic condition is for the corresponding observer to fail to ever
experience any tidal accelerations.

In Chapter 12 we will make use of an alternative formulation of the generic
condition using the curvature tensor. Let ¢ be a unit speed timelike geo-
desic, p = c(to), and W = ¢/(to). The set of vectors orthogonal to W is an
(n — 1)-dimensional linear subspace W+ = V+(c(t)) lying in T,M, and the
metric induced on this linear subspace is positive definite. Thus V1 (c(to)) is
a spacelike hyperplane in T,M. If y € T,M, then g(VV, R(y, W)W) = 0 which
implies that R(y, W)W lies in V1 (c(¢p)). It follows that the curvature tensor
R induces a linear map from V+(c(to)) to V*(c(to)):

(2.42) R(- , W)W|,, : VE(c(to)) = V*(c(to))-

Since g|V+(c(to)) is positive definite, this curvature map is nontrivial if and
only if there are vectors y1,y2 € V1 (c(to)) with g(y2, R(y1, W)W) # 0. The

next result shows this map is nontrivial if and only if W is generic.

Proposition 2.7. If W = ¢/(to) is a timelike vector in the Lorentzian

manifold (M, g), then the following three conditions are equivalent:

(1) The timelike vector W is generic.
(2) At least one plane containing W has nonzero sectional curvature.
(3) R(-,W)W is not the trivial map.

Proof. Clearly, Proposition 2.6 shows the first two conditions are equiva-
lent. Let Rgpcq represent the components of the covariant curvature tensor with
respect to an orthonormal basis {v1,v2,...vn—1,vn = W} of T,M. If W sat-
isfies the generic condition, then Lemma 2.5 implies that —Rpnen = Rpnne # 0
for some 1 < b,e < n — 1. Consequently, g(vy, R(Ve,vn)vn) # 0 which shows
R(ve, vn)vn is a nontrivial vector. Thus, when W is generic the map R(-, W)W
is not the trivial map.

Conversely, assume that R(-, W)W is not trivial. Let y;,y2 be vectors in
W+ = span{vy,va,...,Vn—1} wWith g(y2, R(y1,vn)vn) # 0. This last inequality
together with the multilinearity of R(W, Z, X,Y) = g(W, R(X,Y)Z) yield b
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and e with 1 < b,e < n—1 such that Rpnne # 0. Thus, Lemma 2.5 shows that

W is generic as desired. O

The next proposition shows that a sufficient condition for the nonnull vector
W to be generic is that Ric(W, W) # 0.

Proposition 2.8. If W € T, M is a nonnull vector with Ric(W, W) # 0,

then W is generic.

Proof. We may assume without loss of generality that W is a unit vector

and extend to an orthonormal basis {v1, vz, ..., Un-1,vn = W} of T,M. Then,
Ric(W, W) = Ric(vn,vn)

= " g(vi, v:) g(R(vs, v ) v, v3)
=1

n—1

= Z g('vi, 'Ui) Rinin
=1

which shows that Ric(W, W) # 0 implies Rinin 7# 0 for some 1 < i <n—1.
The result now follows from Lemma 2.5. O

In particular, this last proposition shows that if ¢ : (a,b) — M is a timelike
geodesic with Ric(c’, ¢’) > 0 for some t = tp, then ¢ is generic.

In order to investigate the generic condition for (nontrivial) null vectors,
we first define a pseudo-orthonormal basis [cf. Hawking and Ellis (1973)]. Let
{v1,v2,...,9n—2} be n — 2 unit spacelike vectors in T,M that are mutually
orthogonal, and let W, N be two null vectors which satisfy g(W,N) = —1
and which are both orthogonal to the first n — 2 vectors. Then a pseudo-
orthonormal basis of T, M is formed by {vi,ve,...,vn—2, N, W}. In this basis

the metric tensor at p has the form
gi;=06;; and  gino1=gin=0 for1<ij<n-2

with Gnn-1=—1 and gnn = gn-1n-1 =0.

It is not difficult to show that any nontrivial null vector W can be extended

to a pseudo-orthonormal basis. One first takes any timelike plane E containing
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W and finds an orthonormal basis {e,—1,e,} of E with W = (en,—1 +€n)/V?2,
en—1 spacelike, and e, timelike. Then one extends to an orthonormal basis
{e1,€2,...,e,} and sets v; = e; for 1 < i < n — 2. Finally, one assigns
Vno1=N = (—en_1 +€,)/V2, and v, = W.

The next lemma provides the null version of Lemma 2.5 using a pseudo-
orthonormal basis. In the lemma below, the values of b and e only go to n — 2

as opposed to n — 1 in Lemma 2.5.

Lemma 2.9. Let R,p.q represent the components of the curvature tensor
with respect to a pseudo-orthonormal basis {v1,...,vn-2,Un-1 = N,v, = W}
of T,M. The null vector W = v, satisfies the generic condition (2.40) iff there
exist b and e with 1 < b,e < n — 2 such that Rppne # 0.

Proof. The components of W are given by Wl = ... = Wn~1 = W; =
o =Wpo=W, =0, W* =1, and W,,_; = —1. Consequently,

> WWWieRpjeaeWy) =
c,d=1

(Wa. Rbnne Wf - Wb Ranne Wf

N

- Wa Rbnnf We + Wb Rannf We)

(6n_1a Rbnne 6n_1f - 5n_lb Ranne 6n_1f

NI

- 6n_1a Rbnnf 6n_le + 5n-lb Rannf 5n_1e)-

It is easily seen that this expression is zero for all a,b,e, f whenever one or
more of a, b, e, f equal n. If it is nonzero for some a, b, e, f, then exactly one of
a, b must be n — 1, and also exactly one of e, f must be n — 1. It follows that
> dm1 WWW o Ryjcae W) # 0 iff Rpnne # 0 for some 1 <b,e<n—2. O

If n = 2, then Lemma 2.9 shows all null vectors fail to be generic since there

are no values of b and e with 1 < b,e <n — 2.
Corollary 2.10. Ifdim(M) = 2, then all null vectors are nongeneric.

If W is a nontrivial null vector in T, M, then the orthogonal space W+ =
N(W) = {v e T,M|g(W,v) = 0} is an (n — 1)-dimensional linear subspace
of the tangent space and contains the null vector W. The set N(W) is a

hyperplane which is tangent to the null cone at p along one generator. The
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signature of g| N(W) is degenerate of order one and positive of order n — 2.
Notice that g(W, R(v, W)W) = 0 implies that R(v, W)W lies in N(W).

The one-dimensional linear subspace determined by W will be denoted by
[W]. Let G(W) = N(W)/[W] be the (n — 2)-dimensional quotient space and
m : N(W) — G(W) be the natural projection map. Since R(W,W) = 0 and
the multilinearity of the curvature tensor yield R(v 4+ aW, W)W = R(v, W)W
for all v, each element of a given coset of G(W) is mapped to the same element
of N(W) by R(-,W)W. It follows that one has a linear map

(2.43) R(-, W)W : G(W) — G(W)

defined by R (3, W)W = m (R(v, W)W) where v is any vector in 7~!(7). The
degenerate metric g| N(W) projects to a positive definite metric g on G(W)
since vy, v2 € N(W) must satisfy g(vy + aW, vy + bW) = g(v1,v2) for all real
a,b. Thus,

(2.44) 9(v1,72) = g(v1,v2) (quotient metric on G(W))

where 7; = 7(v1) and Ty = 7(vg).

The next result is the null version of Proposition 2.7. We do not give a
statement corresponding to condition (2) of Proposition 2.7. In general, a null
vector may lie in planes with nonzero sectional curvature and yet fail to be

generic.

Proposition 2.11. Let (M, g) be a Lorentzian manifold, and let W € T,M

be a nontrivial null vector. Then the following two conditions are equivalent:

(1) The null vector W is generic.
(2) R(-,W)W is not the trivial map.

Proof. Let Rgpcq represent the components of the covariant curvature tensor
with respect to a pseudo-orthonormal basis {v1,...,Un-2,Vn-1,Un = W} of
T,M, N(W) =W+, and G(W) = N(W)/[W] as above. Notice that N(W) =
span{vy, vo, ..., Un-2, W}

Assuming W is generic, Lemma 2.9 yields b and e with Rpypne # 0 for 1 <
b,e < n—2. Consequently, g (m(vs), R(m(ve), W)W ) = g(vs, R(ve, W)W) =
Rinen = —Rbnne # 0 which shows that R(-, W)W is not trivial.
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Conversely, assume R(-, W)W is not the trivial map. Since g is positive
definite, there must exist @ and v in G(W) with g(u, R(T, W)W) # 0.
Choose u € 77 1(%) and v € 7 1(7). Then multilinearity, the fact that
g(u, R@,W)W) = g(u, R(v, W)W) # 0, and R(W,W)W = 0 together im-
ply there must be b and e, 1 < b,e < n — 2, such that g(vs, R(ve, W)W) # 0.
Hence, Rpnen = —Rbnne # 0, and W is generic by Lemma 2.9. O

The next proposition shows that Ric(W, W) # 0 is a sufficient condition for
a vector W to be generic. This was already proven for timelike and spacelike

vectors in Proposition 2.8.

Proposition 2.12. Let (M, g) be a Lorentzian manifold, and let W € T,M
be a tangent vector. If Ric(W, W) # 0, then W is generic.

Proof. We may assume without loss of generality that W is a null vector
because of Proposition 2.8. It is always possible to construct both an orthonor-

mal basis {ei, ea,...,en} and a pseudo-orthonormal basis
{v1,.-,Un-2,Vn-1 = N,v, = W}
withv; = e; for 1 <i<n-—2,
N = (—en-14€)/V2, W =(en1+en)/V2,

and e, timelike. Let Rapcq be the components of the Riemann-Christoffel
curvature tensor with respect to the pseudo-orthonormal basis and Rgpeq be

the components with respect to the orthonormal basis. Then,

n

> gles,e:) g(R(es, W)W, e;) = %[Q(R(en—lyen-l +en)(en-1+€n),€n-1)

i=n-—1

- g(R(em én-1+ en)(en-l + en)7 en)]

[9(R(en-1,€n)en,n_1)

N —

- g(R(eny en—l)en—ly en)]

= (ﬁn—lnn—ln—ﬁnn—lnn-l) =0.

N =
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Hence,

Ric(W, W) = Zn: g(ei,e:) g(R(es, W)W, e;)
=1

n—2

= E g(e,-, ei) g(R(ei) W)W/) ei)

i=1

n—-2
=" 9(vi,v:) g(R(vi, vn)vn, v:)
i=1

n—2
= Z 9(vi,v;) Rinin,
=1
which shows that Ric(W, W) # 0 implies R;nin # 0 for some 1 < i < n — 2.

The result now follows from Lemma 2.9. O
The next corollary follows from Corollary 2.10 and Proposition 2.12.

Corollary 2.13. Let (M,g) be a Lorentzian manifold with dim(M) = 2.
If W is null, then Ric(W,W) = 0.

The generic condition holds generically in each tangent space of any point
where there is some component of the curvature tensor not equal to zero. More
precisely, one can establish the following result [cf. Beem and Harris (1993a,
p. 950)].

Proposition 2.14. Let (M, g) be a Lorentzian manifold of dimension four
and let p € M. If T,M has five nonnull and nongeneric vectors with four
of them linearly independent and with the fifth not in any plane determined
by any two of the original four, then the curvature tensor vanishes at p. In
particular, if any component of the curvature tensor fails to be zero at p, then

one cannot find five nonnull nongeneric vectors at p in general position.

The situation for nongeneric null vectors is somewhat different. Having all
null vectors nongeneric does not necessarily imply zero curvature at a point.
For dimension three and higher, all null vectors at a point will be nongeneric
if and only if there is constant sectional curvature at the point. In dimension

four, one can have a “cubic” of nongeneric null vectors at a point and yet fail
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to have constant sectional curvature at that point. Using a cubic definition
for “generically situated” [cf. Beem and Harris (1993b, pp. 969-972)], one may
establish the following result.

Proposition 2.15. Let (M, g) be a Lorentzian manifold of dimension four,
and let p € M. If T,M has 11 null nongeneric vectors generically situated,
then all sectional curvatures at p are equal. In particular, if (M, g) does not
have constant sectional curvature at p, then the generic null directions at p

form an open dense subset of the two-sphere of all null directions at p.

This last proposition yields that “generically” a given null direction at a
point p satisfies the generic condition.

Assume that (M, g) is a four-dimensional Lorentzian manifold, and recall
that the Jacobi equation is J” + R(J,¢’)¢’ = 0. Let ¢ be a unit speed timelike
vector, and assume {F, Ey, E3, F4} is an orthonormal basis along ¢ which
moves by parallel translation along ¢ and satisfies B4 = ¢/(t). If J = Z;.i:l J'E.

is a Jacobi field, the Jacobi equation can then be written as
d2 J’
- z Ri4ps J*
=- Z Ri4rqJ* (Jacobi equation)

using R'sqq = 0. Since {E1, Es, E3, E4} is an orthonormal basis with ¢/(t) =
E,, the vectors {E1, E2, E3} are unit spacelike vectors, and the Jacobi equation

becomes
dzJ * . .
—_— = Z Riara JE. (using an orthonormal basis)

We now illustrate the unboundedness of tidal accelerations for observers
with velocity vectors close to the direction of a null vector W which sat-
isfies the generic condition [cf. Beem and Parker (1990)]. To this end, as-
sume that (U, z1,z2,z3,z4) are local coordinates near c(tp) = p. Assume
also that the natural basis for the z;-coordinates at p is the orthonormal

set {E1, B3, E3, E4}. Denote the components of the curvature tensor for this
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basis by Rgped- Regard 6 as temporarily fixed, and define new coordinates
(y1,Y2,¥3,ya) near p by y1 = z1, y2 = T2, y3 = z3cosh(d) — z4sinh(f), and
y4 = —z3sinh(0) + z4 cosh(h). Let the natural basis at p for the y-coordinates
be denoted by {E1, E2, E3, E4}, and let the curvature tensor components at p
with respect to this basis be denoted by Rascq. The new basis {E1, E2, E3, E4}
is also orthonormal, and if one lets § — +o0, the direction of E4 converges to
the null direction determined by W = E3 + E4. This change of coordinates
corresponds in T,M to what is called a “pure boost.” The new curvature

components Rapcq are related to the original components Rapcq by

Oz° Ozb 8z¢ 9z

Rijkm = E Robed 6y 3y3 6yk 6y

a,b,c,d=1

Using =1 = y1, T2 = Y2, 3 = y3 cosh(f) + ys sinh(f), and z4 = y3sinh(f) +
y4 cosh(6), one finds

(2.45) R334 = Raaza,
(2.46) R3424 = cosh(8) Ragz4 + sinh(8) R3qa3,
(2.47) R3414 = cosh(#) R3414 + sinh(0) Raq13,
(2.48) Raazs = cosh?(0) Ragaq + 2 cosh(6) sinh(6) Raga3
+ sinh®(6) Raszs,
(2.49) Ra414 = cosh?(8) Raq14 + cosh(6) sinh(6) Roa13
+ cosh(6) sinh(6) Roa14 + sinh?(8) Raa13,
(2.50) Ri414 = cosh®(8) R1a14 + 2 cosh(f) sinh(0) Ria13
+ sinh?(8) Ry313.

An observer traversing the timelike geodesic which has tangent vector Ey4
at p has a rest space at p given by Fi' = span{E;, Es, E3}. To investigate
tidal accelerations for this observer, one may consider the Jacobi equation
d2J/dt? = — 33 _ RisksJ* using vectors in this rest space of the form J =
Z;Ll J*E; with |J| = 1. Notice that the tidal accelerations will be bounded

as §# — +oo if and only if the components Riskq are bounded for large 6, and
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this will hold if and only if the following equations hold:

(2.51) R3424 + R3a23 = 0,
(2.52) R3414 + R3413 = 0,
(2.53) Rag24 + 2R2423 + Raso3 = 0,
(2.54) Ra414 + Ro413 + Ra314 + R2313 = 0,
(2.55) Ri414 + 2R1413 + Ra313 = 0.

The vector W is nongeneric if and only if (2.53), (2.54), and (2.55) all hold,
and it is nondestructive if (2.51)-(2.55) all hold [cf. Beem and Parker (1990),
Beem and Harris (1993a,b)]. Tidal forces and radiation for a falling body in
Schwarzschild space-time have been studied by Mashhoon (1977). Also, tidal
impulses have been investigated by Mashhoon and McClune (1993). Further
results on nondestructive directions have been obtained by Hall and Hossack
(1993).

Remark 2.16. In order to get a physical interpretation of (2.51)—(2.55),
consider a “freely falling” steel ball with center having velocity vector F4 at
p. Assume the ball has rest mass mg and radius = a. Tidal accelerations for
points on the surface of the ball will correspond to |J| = a. Recall that the

formula for the special relativistic increase in mass (or energy) is given by

(2.56) m=—T0 mgy = mg cosh(h),

1-(2)°

where v =1/ W = cosh(#), v is the speed measured with respect to
the original rest frame, and c is the speed of light. Of course, v — ¢ corresponds
to & — +o00. In other words, the classical special relativistic magnification
factor of mass is v = cosh(f). If one of (2.53), (2.54), or (2.55) fails to hold,
then W = E3 + E, is generic, and the increase in tidal accelerations for large 6
is approximately proportional to 2 which is the square of the increase in the
mass. For particles approaching the speed of light in a direction corresponding
to a generic null direction, eventually the increase in tidal accelerations will
become a bigger difficulty than the increase in mass. If (2.53)-(2.55) all hold,
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but at least one of (2.51) or (2.52) fails to hold, then the increase in tidal
accelerations for large 8 is approximately proportional to . In this case, the

null direction corresponding to W is (tidally) destructive but is not generic.

2.6 The Einstein Equations

In this section we give a brief description of the Einstein equations. A
heuristic derivation of these equations may be found in Frankel (1979, Chap-
ter 3). Since these equations apply to manifolds of dimension four, we restrict
our attention in this section to this dimension. The Einstein equations re-
late purely geometric quantities to the energy-momentum tensor 7', which is a
physical quantity. They may thus be used to state energy conditions in terms
of T. In the case of a perfect fluid, the energy-momentum tensor also takes
a simple form. This is important in general relativity because the matter of
the universe is assumed to behave like a perfect fluid in the standard cosmo-
logical models. The physical motivation for studying Lorentzian manifolds is
the assumption that a gravitational field may be effectively modeled by some
Lorentzian metric g defined on a suitable four-dimensional manifold M. Since
every manifold which admits a Lorentzian metric clearly admits uncountably
many such metrics, it is necessary to decide both which manifold and which
Lorentzian metric on that manifold should be used to model a given grav-
itational problem. The Einstein equations relate the metric tensor g, Ricci
curvature Ric, and scalar curvature 7 (= R) to the energy-momentum tensor
T. The tensor T is to be determined from physical considerations dealing with
the distribution of matter and energy [cf. Hawking and Ellis (1973, Chapter
3), Misner, Thorne, and Wheeler (1973, Chapter 5)]. The Einstein equations

may be written invariantly as
1
(2.57) Ric —ER g+Ag=_8rT (Einstein equations)

where A is a constant known as the cosmological constant. The constant factor

of 87 is present for scaling purposes. In local coordinates, one has

(2.58) R;j — %Rgij + Agi; = 87Ty (PEinstein equations in coordinates)
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where 1 < 4,j < 4. The Ricci curvature and scalar curvature involve the first
and second partial derivatives of the components g;; of the metric g but do not
involve any higher derivatives. Hence, the Einstein equations represent (non-
linear) partial differential equations in the metric and its first two derivatives.
These sixteen equations reduce to ten because all of the tensors in equation
(2.58) are symmetric. There is a further reduction to six equations [cf. Misner,
Thorne, and Wheeler (1973, p. 409)] using the curvature identity

4

> (Rii - %Rgij + Agij) =0

j=1 iJ

which yields four conservation laws given by
4
ZT’J . =0. (conservation laws)
j=1

Here, “; j” denotes covariant differentiation in the 27 direction (i.e., V/54)-
The Einstein equations do not determine the metric on M without sufficient
boundary conditions. For example, let M = {(t,7)|t € R and r > 2m} x S2.
Then M is topologically R x S2. Let A = 0 and T = 0, and set dQ? =
df? + sin?(0)d¢®. Then M with this A and T admits both the flat metric
ds? = —dt? + dr? + r2d0? as well as the Schwarzschild metric

2
(259) ds*=-— (1 - 277”) dt® + (l—dr%—) +r?dQ®  (Schwarzschild)

T
as solutions to the Einstein equations. Each of these metrics is asymptotically
flat, and each is Ricci flat (i.e., Ric = 0). However, the Schwarzschild metric
has a nonzero curvature tensor, and hence the two metrics cannot be isometric.
Nevertheless, a counting argument shows that, in general, one expects the Ein-
stein equations to determine the metric up to diffeomorphism [cf. Hawking and
Ellis (1973, p. 74)]. First, notice that the metric tensor g has 16 components
which, by symmetry, reduce to ten independent components. Furthermore,
four of these ten components can be accounted for by the dimension of M

which allows four degrees of freedom. Thus the metric tensor is thought of
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as having six independent components after symmetry and diffeomorphism
freedom are taken into account. Consequently, the Einstein equations yield
six independent equations to determine six essential components of the metric
tensor.

More rigorous approaches to the problem of existence and uniqueness of
solutions to the Einstein equations using Cauchy surfaces with initial data may
be found in a number of articles and books such as Chrusciel (1991), Hawking
and Ellis (1973, Chapter 7), Marsden, Ebin, and Fischer (1972, pp. 233-264),
and Choquet-Bruhat and Geroch (1969).

The Einstein equations may be used to relate the timelike convergence con-
dition (Ric(v,v) > 0 for all timelike, and hence also all null vectors v) to the
energy-momentum tensor. In order to evaluate the scalar curvature R in terms
of T at p € M, let {e1,e2,...,en} be an orthonormal basis of T,M, and use
equation (2.57) to obtain

4 4
Zg(ei, €;) [Ric(ei, e;) — %Rg (essei) + A gles, ei)] =8r zg(ei, e:) T (e e:).

i=1 =1

Using the fact that the scalar curvature R is the trace of the Ricci curvature,

this last equation becomes
R — 2R+ 4A = 8mw tr(T).
Hence,
(2.60) R = —8ntr(T) + 4A.
The Einstein equations become
Ric —%(—871’ tr(T) + 4A)g + Ag = 8 T.
Thus,

(2.61) Ric = 87 (T _u@ o A ) .

2 8w
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This last equation shows that the condition Ric(v,v) > 0 is equivalent to
the inequality T'(v,v) > [tr(T)/2 — A/8] g(v,v). If follows that when A = 0
and dim(M) = 4, the condition

Ric(v,v) >0

is equivalent to the condition

T(v,v) > @g(v,v)

[cf. Hawking and Ellis (1973, p. 95)]. Note that (2.60) and (2.61) show that if
A =0, then T = 0 (i.e., vacuum) is equivalent to Ric = 0 (i.e., Ricci flat).

The Einstein equations are fundamental in the construction of cosmological
models. Consider a fluid which moves through space. This motion generates
timelike flow lines in space-time. Let v be the unit speed timelike vector field
which is everywhere tangent to the flow lines of the fluid. The fluid is said to be
a perfect fluid if it has an energy density p, pressure p, and energy-momentum

tensor T such that
(2.62) T=(p+p)w®®w+pyg, (perfect fluid)

which is
Ti; = (p+ p)viv; + p gij

in local coordinates. Here w = 3" v;dz® is the one-form corresponding to the
vector field v = Y v*9/dz*. 1t follows from the above form of T that a perfect
fluid is an isotropic fluid which is free of shear and viscosity. Let (M,g)
be a manifold for which T has the above perfect fluid form. If the vectors
{e1, ez, €3, e4} form an orthonormal basis for T, M, then the trace of T may be

calculated as follows:

4
(2.63) tr(T) = Y gles, e:) T(ei, )

=1

=—(p+p)+4p
=3p—u.
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Using equation (2.61), it follows that the timelike convergence condition for a

perfect fluid is equivalent to

T(w,w) > (3]9—2_-“ - 8%) 9(w, w)

for all timelike (and null) w. For Lorentzian manifolds, it is easy to verify
that the inner product of a timelike vector and another timelike (or nontrivial
null) vector is nonzero. Thus, we may assume without loss of generality that
g(v,w) # 0. Using equation (2.62) we obtain

(4 Plaw ) +palwu) 2 (272 - 2 glw,w)

which simplifies to
—u A
(2.64) et oo o) 2 (252 - 1) atww),

Since g(w,w) < 0 and g(v,w) # 0, equation (2.64) shows that a negative
cosmological constant has the effect of making the timelike convergence condi-
tion more plausible and that a positive cosmological constant has the opposite
effect. Einstein originally introduced the cosmological constant because the
Einstein equations with A = 0 predict a universe which is either expanding
or contracting, and in the early part of this century it was believed that the
universe was essentially static. After the discovery that the universe was ex-
panding, the original motivation for the cosmological constant was removed;
however, removing A from the theory has been more difficult. While astro-
nomical experiments have failed to detect a A different from zero, one may
always argue that A is so small that the experiments have not been sufficiently
sensitive.

Discussions of the experimental evidence for general relativity may be found
in a number of books such as Misner, Thorne, and Wheeler (1973) and Will
(1981).



CHAPTER 3

LORENTZIAN MANIFOLDS AND CAUSALITY

Sections 3.1 and 3.2 give a brief review of elementary causality theory basic
to this monograph as well as to general relativity. Then Section 3.3 describes an
important relationship between the limit curve topology and the C° topology
for sequences of nonspacelike curves in strongly causal space-times. Namely,
if v: [a,b] = M is a future directed nonspacelike limit curve of a sequence
{7vn} of future directed nonspacelike curves, then a subsequence converges to -y
in the CP topology. This result is useful for constructing maximal geodesics in
strongly causal space-times using the Lorentzian distance function (cf. Chapter
8 and Chapter 12, Section 4).

In Section 3.4 we study the causal structure of two-dimensional Lorentzian
manifolds. In particular, we show that if (M, g) is a space-time homeomorphic
to R2, then (M, g) is stably causal.

Section 3.5 gives a brief discussion of the theory of Lorentzian submani-
folds and the second fundamental form needed for our discussion of singularity
theory in Chapter 12.

An important splitting theorem of Geroch (1970a) guarantees that a glob-
ally hyperbolic space-time may be written as a topological (although not nec-
essarily metric) product R x S where S is a Cauchy hypersurface. This result
suggests that product space-times of the form (R x M, —dt? & g) with (M, g)
a Riemannian manifold should be studied. While this class of space-times in-
cludes Minkowski space and the Einstein static universe, it fails to include the
physically important exterior Schwarzschild and Robertson-Walker solutions
to Einstein’s equations.

In Sections 3.6 and 3.7 we study a more general class of product space-times,

the so-called warped products, which are space-times M; X y My with metrics

49
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of the form g; @ fg2. This class of metrics, studied for Riemannian manifolds
by Bishop and O’Neill (1969) and later for semi-Riemannian manifolds by
O’Neill (1983), includes products, the exterior Schwarzschild space-times, and
Robertson-Walker space-times. The following result, which may be regarded
as a “metric converse” to Geroch’s splitting theorem, is typical of the results
of Section 3.6. Let (R x M, —dt? @ g) be a Lorentzian product manifold with

(M, g) an arbitrary Riemannian manifold. Then the following are equivalent:

(1) (M, g) is a complete Riemannian manifold.
(2) (R x M,—dt? @ g) is globally hyperbolic.
(3) (R x M,—dt? @ g) is geodesically complete.

3.1 Lorentzian Manifolds and Convex Normal Neighborhoods

Let M be a smooth connected paracompact Hausdorff manifold, and let
T M denote the tangent bundle of M with 7 : TM — M the usual bundle map
taking each tangent vector to its base point. Recall that a Lorentzian metric g
for M is a smooth symmetric tensor field of type (0, 2) on M such that for each
p € M, the tensor g|p : TpM x T,M — R is a nondegenerate inner product
of signature (1,n — 1) [ie., (—, +,---,+)]. All noncompact manifolds admit
Lorentzian metrics. However, a compact manifold admits a Lorentzian metric
if and only if its Euler characteristic vanishes [cf. Steenrod (1951, p. 207)].
The space of all Lorentzian metrics for M will be denoted by Lor(M).

A continuous vector field X on M is timelike if g(X(p), X (p)) < 0 for all
points p € M. In general, a Lorentzian manifold does not necessarily have
globally defined timelike vector fields. If (M, g) does admit a timelike vector
field X € X(M), then (M, g) is said to be time oriented by X. The timelike
vector field X divides all nonspacelike tangent vectors into two separate classes,
called future and past directed. A nonspacelike tangent vector v € Tp, M is
said to be future [respectively, past] directed if g(X (p),v) < O [respectively,
g9(X(p),v) > 0]. A Lorentzian manifold (M, g) is said to be time orientable
if (M, g) admits a time orientation by some timelike vector field X. In this
case, (M,g) admits two distinct time orientations defined by X and —X,

respectively. A time oriented Lorentzian manifold is called a space-time.
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More precisely, we have the following definition.

Definition 3.1. (Space-time) A space-time (M, g) is a connected C*°
Hausdorff manifold of dimension two or greater which has a countable basis,

a Lorentzian metric g of signature (—,+,--- ,+), and a time orientation.

We now show how to construct a time oriented two-sheeted Lorentzian
covering manifold 7 : (]Tf ,g) — (M,g) for any Lorentzian manifold (M, g)
which is not time orientable.

To this end, first let (M, g) be an arbitrary Lorentzian manifold. Fix a
base point po € M. Give a time orientation to Tp, M by choosing a timelike
tangent vector vg € Tp, M and defining a nonspacelike w € T, M to be future
[respectively, past] directed if g(vo, w) < 0 [respectively, g(vo, w) > 0]. Now let
g be any point of M. Piecewise smooth curves v : [0,1] — M with v(0) = po
and (1) = ¢ may be divided into two equivalence classes as follows. Given
7,72 : [0,1] = M with y1(0) = 12(0) = po and 11(1) = 12(1) = ¢, let Vi
(respectively, V) be the unique parallel field along 1 (respectively, v2) with
V1(0) = V»(0) = vo. We say that 1 and -y, are equivalent if g(V1 (1), V(1)) < 0.
If v; and v, are homotopic curves from pg to g, then v, and -y, are equivalent.
But equivalent curves are not necessarily homotopic.

Given v : [0,1] — M with y(0) = po, let [y] denote the equivalence class
of v. Let M consist of all such equivalence classes of piecewise smooth curves
~v:[0,1] = M with v(0) = po. Define 7 : M — M by =([y]) = v(1). If (M, g)
is time orientable, then M = M. Otherwise, w : M — M is a two-sheeted
covering [cf. Markus (1955, p. 412)].

Suppose now that the Lorentzian manifold (M, g) is not time orientable. It
is standard from covering space theory to give the set Ma topology and dif-
ferentiable structure such that m : M — M is a two-sheeted covering manifold.
Define a Lorentzian metric § for M by § = n*g, ie., 9(v,w) = g(mev, mow).
Then the map = : M — M is a local isometry.

In order to show that (M,g) is time orientable, it is useful to establish a
preliminary lemma. Fix a base point pgp € m~1(po) for M. Let 3 € T,;OM be

the unique timelike tangent vector in T,;OM with 7,7 = vp.
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Lemma 3.2. Let § € M be arbitrary and let 3,5, : [0,1] — M be two
piecewise smooth curves with 7,(0) = 72(0) = po and 71(1) = F2(1) = q. If
Vi, Vs are the parallel vector fields along 5, and 7o, respectively, with 171(0) =
V2(0) = %o, then §(Va(1), V(1)) < 0.

Proof. Let v; = mo7; and 7 = mo7,. Since 7 : (M,ﬁ) — (M,g) is
a local isometry, the vector fields V; = m.(V;) and Vp = m,(V3) are parallel
fields along v, and -y, respectively, with V;(0) = V,(0) = 7.0y = vo. Also,
g (1), V(D)) = g(m.Ta(1), m. o (1)) =GP (1), To(1)).

Suppose now that §(V;(1), Va(1)) £ 0. Since V4(1) and Vi(1) are timelike
tangent vectors, it follows that §(V;(1), Va(1)) > 0. Thus g(Vi(1), Va(1)) > 0
at ¢ = m(g). By definition of the equivalence relation on piecewise smooth
curves from pg to g, we have [y1] # [y2]. From the construction of M, we know
that 41(1) = [y1] and F2(1) = [y2]. Thus F1(1) # F2(1), in contradiction. O

Theorem 3.3. Suppose that (M, g) is not time orientable. Then the two-
sheeted Lorentzian covering manifold (M,§) of (M,g) constructed above is

time orientable and hence is a space-time.

Proof. Let pp and Up be as above. Given any ¢ € JT/f, let o:[0,1] — M be
a smooth curve with o(0) = Po, o(1) = §. Let V be the unique parallel vector
field along o with V(0) = %. Set F*(g) = {timelike w € Tq~J\7: V()W) <
0}. By Lemma 3.2, the definition of F*(g) is independent of the choice of
o. Hence § — F*(q) consistently assigns a future cone to each tangent space
Tqﬁ , g€ M .

Now let h be an auxiliary positive definite Riemannian metric for M. We
may define a continuous nowhere zero timelike vector field X on M by choosing
X (@) to be the vector in F*(g) which is the unique h-unit vector in F*(gq)
having a negative eigenvalue of g with respect to h. That is, we may find a
continuous function A : M — (—o0,0) and a continuous timelike vector field
X on M satisfying X(§) € F*(7), h(X(@),X(@)) = 1, and §(X(@),v) =
@)X (@),v) forall v € ;M and Ge M. O

Implicit in the proof of Theorem 3.3 is an alternative definition for the time

orientability of a Lorentzian manifold (M, g). Namely, (M, g) is time orientable
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if, fixing any base point pp € M and timelike tangent vector vo € Tp, M, the
following condition is satisfied for all ¢ € M. Let 71,72 : [0,1] — M be any
two smooth curves from p to g. If V; is the unique parallel vector field along
v; with V;(0) = vp for ¢ = 1,2, then g(V1(1), Va(1)) < 0. This condition means
that parallel translation of the future cone determined by vp at pp to any
other point g of M is independent of the choice of path from p to q. Hence
a consistent choice of future timelike vectors for each tangent space may be
made by parallel translation from pg.

Recall that a smooth curve in (M, g) is said to be timelike (respectively,
nonspacelike, null, spacelike) if its tangent vector is always timelike (respec-
tively, nonspacelike, null, spacelike). As in the Riemannian case, a geodesic
c¢:(a,b) - M is a smooth curve whose tangent vector moves by parallel dis-
placement, i.e., Vo c'(t) = 0 for all ¢ € (a,b). The tangent vector field ¢’(t) of

a geodesic c satisfies g(c'(t), ¢'(t)) = constant for all ¢ € (a, b) since

% [9(c'(8), /()] = ¢ (B)[g(c'(2), ' (1))] = 29(Verd'(£), €' (2)) = 0.

Consequently, a geodesic which is timelike (respectively, null, spacelike) for
some value of its parameter is timelike (respectively, null, spacelike) for all
values of its parameter.

The ezponential map exp, : TpM — M is defined for Lorentzian manifolds
just as for Riemannian manifolds. Given v € T, M, let ¢,(t) denote the unique
geodesic in M with ¢,(0) = p and ¢,’(0) = v. Then the exponential exp,,(v)
of v is given by exp,(v) = c,(1) provided ¢,(1) is defined.

Let vy, ve,...,v, be any basis for the tangent space T, M. For sufficiently

small (z1,z2,...,zn) € R?, the map
T1v1 + Tove + - + TnUn — €XPy(T101 + Tov2 + - + TnUn)

is a diffeomorphism of a neighborhood of the origin of T, M onto a neigh-
borhood U(p) of p in M. Thus, assigning coordinates (z1,22,...,Zn) to the
point exp,(z1v1 + T2v2 +- - - + Znvn) in U(p) defines a coordinate chart for M
called normal coordinates based at p for U(p). The set U(p) is said to be a

(simple) convez neighborhood of p if any two points in U(p) can be joined by
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a unique geodesic segment of (M, g) lying entirely in U(p). Whitehead (1932)
has shown that any semi-Riemannian (hence Lorentzian) manifold has convex
neighborhoods about each point [cf. Hicks (1965, pp. 133-136)]. In fact, it may
even be assumed that for each ¢ € U(p), there are normal coordinates based
at g containing U(p). We call such a neighborhood U(p) a conver normal
neighborhood [cf. Hawking and Ellis (1973, p. 34)].

The next proposition is essential to the study of the local behavior of causal-
ity. A proof is given in Hawking and Ellis (1973, pp. 103-105). It is important
to carefully note the phrase “contained in U” in the statement of this result.

Proposition 3.4. Let U be a convex normal neighborhood of q. Then
the points of U which can be reached by timelike (respectively, nonspacelike)
curves contained in U are those of the form exp,(v), v € TyM, such that

g(v,v) < 0 (respectively, g(v,v) <0).

3.2 Causality Theory of Space—times

In a space-time (M, g) a (nowhere vanishing) nonspacelike vector field along
a curve cannot continuously change from being future directed to being past
directed. It follows that a smooth timelike, null, or nonspacelike curve in
(M, g) is either always future directed or always past directed.

We will use the standard notation p < q if there is a smooth future directed
timelike curve from p to ¢, and p < q if either p = q or there is a smooth future
directed nonspacelike curve from p to q. Furthermore, p < ¢ will mean p < ¢
and p # q.

A continuous curve v : (a,b) — M is said to be a future directed non-
spacelike curve if for each tg € (a,b) there is an € > 0 and a convex normal
neighborhood U(v(to)) of v(to) with y(to—¢, to+€) C U(7(to)) such that given
any ty, to with tg —e < t1 < t2 < tg +¢, there is a smooth future directed non-
spacelike curve in (U(v(to)), g1 U(7(to))) from ~(t1) to (t2). It is necessary
to use the convex normal neighborhood U(v(t0)) in this definition for the fol-
lowing reason. There exist space-times for which p <« ¢ for all (p,q) € M x M.
But in these space—times, any continuous curve <y satisfies both v(t1) < v(t2)

and y(t2) < ¥(t1) for all ¢; and 2 in the domain of +.
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For a given p € M, the chronological future I'*(p), chronological past I~ (p),
causal future J¥(p), and causal past J~(p) of p are defined as follows:

ITp)={geM : p<gq}, (chronological future)
I"(p)={qe M : qg<p}, (chronological past)
Jt(p)={qeM : p<yq}, (causal future)
J7(p)={qeM : ¢<p} (causal past)

For general subsets S C M, the sets It(S), I"(S), J*(S), and J~(S) are
defined analogously: for example, I*(S) = {g € M | s < ¢ for some s € S}.

The relations < and < are clearly transitive. Moreover,
pKLq and ¢g<r implies p<Kr,

and
p<q and ¢<«r implies pKLr

[cf. Penrose (1972, p. 14)]. If there is a future directed timelike curve from p
to g, there is a neighborhood U of ¢ such that any point of U can be reached

by a future directed timelike curve. Consequently, it follows that

Lemma 3.5. If p is any point of the space-time (M,g), then I'*(p) and
I~ (p) are open sets of M.

An example has been given in Chapter 1, Figure 1.1, to show that the sets
J*(p) and J~ (p) are neither open nor closed in general.

Two especially important classes of subsets of a space-time are future sets
and past sets. In this section we will restrict our attention to open future and

past sets, which may be defined as follows.

Definition 3.6. (Future and Past Sets) The (open) subset F' (respec-
tively, P) of the space-time (M, g) is said to be a future (respectively, past)
set if F' = I't(F) (respectively, P = I~ (P)).

These sets will be used in studying the causality of the gravitational plane

wave space-times in Chapter 13. Future and past sets have often proven useful
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in causality proofs [cf. Hawking and Sachs (1974), Dieckmann (1987)]. Rather
complete discussions of this topic may be found in Penrose (1972, Section 3)
and in Hawking and Ellis (1973).

The simplest examples are formed by taking F = IT(S) or P = I~(S),
where S is an arbitrary subset of M. (Indeed, these sets may also be defined
in this manner.) They also share the following property with the chronological

past and future sets I~ (p) and I (p) of an arbitrary point p in M:

z in F and z < y implies y in F} (future set)
z in P and y < z implies y in P. (past set).

The next two results give simple characterizations of the closures and bound-

aries of sets which are either future or past.

Proposition 3.7.

(1) If F is a future set, then F = {z € M : I'*(z) C F}.
(2) If P is a past set, then P = {x € M : I (z) C P}.

Proof. As usual, it suffices to establish (1). First, suppose I (z) C F. We
may take {g,} C I*(z) with lim,e0gn = z. Since {g,} C F, this yields
z € F. Conversely, let z € F be given. Select any z € I*(z). Then z € I~ (2)
which is open, and since z € F, there exists y € I~ (z)NF. But theny € F and
y < z implies z € F since F is a future set. Thus I*(z) C F as required. O

Corollary 3.8. Let F' (respectively, P) be a future (respectively, past) set.
Then

(1) 8(F)={zreM:z ¢ F and I'*(z) C F}, and

(2) 8(P)={zeM:z¢ P and I (z) C P}.

In the particular cases where F = It (p) or P = I~ (p), the following useful

characterizations of

I-(p)=J-(p) and I*(p)=J*(p)
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are obtained for arbitrary space-times:

I+(p) = {z e M : I'*(z) C I (p)}, (closure)
Fp={zeM: I (z)CI" (@}
B(I*(p)) = {z € Mz ¢ I*(p) and I*(z) CI*(p)},  (boundary)
and (I (p))={zeM:z¢I (p)and I (z) CI (p)}.

Past and future sets have played an important role in singularity theory
in general relativity as treated in Penrose (1972) or Hawking and Ellis (1973)
via the allied concept of achronal boundaries. A subset B of M is said to be
an achronal boundary if B = 9(F) for some future set F. (Of course, it is
necessary to prove that 8(F) is achronal, i.e., that no two points of 8(F) may
be joined by a future timelike curve, for this definition to make sense.) In

particular, for any p in M the set
o(I*(p)) = 8(J*(p))

is a simple example of an achronal boundary. Achronal boundaries have the

following important regularity properties.

Theorem 3.9. The (nonempty) boundary O(F') of a future set is a closed
achronal (Lipschitz) topological hypersurface.

Discussions of this result are given in Penrose (1972, pp. 21-23) and in
Hawking and Ellis (1973, p. 187) from the viewpoint of applications in sin-
gularity theory. A rather complete treatment of a number of mathematical
aspects may be found in O’Neill (1983, pp. 413-415).

It may happen that p € I (p). If so, there is a closed timelike curve through
p, and the space-time is said to have a causality violation. For example, on
the cylinder M = S' x R with the Lorentzian metric ds?> = —df? + dt?, the
circles t = constant are closed timelike curves. In this space-time, It (p) = M
for all p € M. A number of causality conditions have been defined in general
relativity in recent years because of the problems associated with examples of

causality violations.
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Space-times which do not contain any closed timelike curves [i.e., p ¢ I (p)
for all p € M] are said to be chronological. A space-time with no closed
nonspacelike curves is said to be causal. Equivalently, a causal space-time
contains no pair of distinct points p and g with p < ¢ < p. The cylinder M =
S! x R with the Lorentzian metric ds? = df dt is an example of a chronological
space—time that fails to be causal. The only closed nonspacelike curves in this
example are the circles t = constant, which with proper parametrization are
null geodesics.

The chronological condition is the weakest causality condition which will be
introduced. The next proposition guarantees that no compact space-time is

either causal or chronological.

Proposition 3.10. Any compact space-time (M, g) contains a closed time-

like curve and thus fails to be chronological.

Proof. Since the sets of the form I+ (p) are open, it may be seen that {I*(p) :
p € M} forms an open cover of M. By compactness, we may extract a finite
subcover {I*(p1), I (p2),-..,I*(pk)}. Now p1 € It (p;(1)) for some (1) with
1 <4(1) < k. Similarly, p;1y € I (py(2)) for some index i(2) with 1 < i(2) < k.
Continuing inductively, we obtain an infinite sequence - - - <« py3) < pi2) K
Pi1) < p1- Since k is finite, there are only a finite number of distinct p;(j)’s.
Thus there are repetitions on the list, and from the transitivity of <, it follows
that pin) € I'*(pi(n)) for some index pi(ny. Thus (M,g) contains a closed
timelike curve through p;(ny. O

Tipler (1979) has proved that certain classes of compact space-times contain
closed timelike geodesics, not just closed timelike curves. Since the proof
uses the Lorentzian distance function as a tool, discussion of Tipler’s result is
postponed until Section 4.1, Theorem 4.15.

A space-time is said to be distinguishing if for all points p and ¢ in M,
either I*t(p) = I*(q) or I~ (p) = I~ (q) implies p = g. In a distinguishing
space-time, distinct points have distinct chronological futures and chronolog-
ical pasts. Thus, points are distinguished both by their chronological futures

and pasts.
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A distinguishing space-time is said to be causally continuous if the set-
valued functions I* and I~ are outer continuous. Since I™ and I~ are always
inner continuous [cf. Hawking and Sachs (1974, p. 291)], the causally con-
tinuous space-times are those distinguishing space-times for which both the
chronological future and past of a point vary continuously with the point.
Here It is said to be inner continuous at p € M if for each compact set
K C I*(p), there exists a neighborhood U(p) of p such that K C I*(q) for
each ¢ € U(p). The set-valued function I* is outer continuous at p € M if
for each compact set K C M — I+(p), there exists some neighborhood U(p)
of p such that K C M — I*+(q) for each g € U(p). Inner and outer continuity
of I~ may be defined dually. An example of a space-time for which I~ fails
to be outer continuous is given in Figure 3.1. The concept of causal continu-
ity was introduced by Hawking and Sachs (1974). For these space-times the
causal structure may be extended to the causal boundary [cf. Budic and Sachs
(1974)]. Furthermore, a metrizable topology may be defined on the causal
completion of a causally continuous space-time [cf. Beem (1977)].

An open set U in a space-time is said to be causally convez if no nonspace-
like curve intersects U in a disconnected set. Given p € M, the space-time
(M, g) is said to be strongly causal at p if p has arbitrarily small causally con-
vex neighborhoods. Thus, p has arbitrarily small neighborhoods such that no
nonspacelike curve that leaves one of these neighborhoods ever returns. The
space-time (M, g) is strongly causal if it is strongly causal at every point. It
may be shown that the set of points of an arbitrary space-time (M, g) at which
(M, g) is strongly causal is an open subset of M [cf. Penrose (1972, p. 30)]. It
is not hard to show that strongly causal space-times are distinguishing.

Strongly causal space-times may be characterized in terms of the Alexan-
drov topology for M. The Alezandrov topology on an arbitrary space-time
(M, g) is the topology given M by taking as a basis all sets of the form
I*(p)NI~(q) with p,q € M (cf. Figure 1.2). The given manifold topology on
M is always at least as fine as the Alexandrov topology since I*(p) N I~ (q)
is an open set in the given topology by Lemma 3.5. The following result has
been obtained by Kronheimer and Penrose [cf. Penrose (1972, p. 34)].
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FIGURE 3.1. A space-time which is not causally continuous is
shown. The map p — I~ (p) fails to be outer continuous at the
point q. The compact set K is contained in M — I‘—(q), yet each
neighborhood U(q) of ¢ contains some point 7 such that K is not

contained in M — I—(r).

Proposition 3.11. The Alexandrov topology for (M, g) agrees with the
given manifold topology iff (M, g) is strongly causal.

Proof. Assume first that (M, g) is strongly causal. Then each p € M has
some convex normal neighborhood U(p) such that no nonspacelike curve in-
tersects U(p) more than once. The set U(p) is a convex normal neighborhood
of each of its points, and hence Proposition 3.4 implies that for each g € U(p),
the chronological future (respectively, past) of ¢ in (U(p), gly(,)) consists of
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all points which can be reached by geodesic segments in U of the form exp,(tv)
for 0 < t < 1, where v is a future (respectively, past) directed timelike vector at
g. This demonstrates that the Alexandrov topology on (U(p), g| U(P)) agrees
with the given manifold topology on U(p). Using the fact that no nonspacelike
curve of (M, g) intersects U(p) more than once, it follows that the Alexandrov
topology agrees with the given manifold topology.

Now assume that strong causality fails to hold at p € M. Then there is a
convex normal neighborhood V(p) of p such that if W(p) is any neighborhood
of p with W(p) C V(p), a nonspacelike curve starts in W (p), leaves V(p),
and returns to W(p). It follows that all neighborhoods of p in the Alexandrov
topology contain points outside of V(p). Thus, the Alexandrov topology differs
from the given manifold topology. O

In order to study causality breakdowns and geodesic incompleteness in gen-
eral relativity, it is helpful to formulate the concept of ineztendibility for non-
spacelike curves. This may be done as follows. Let v : [a,b) — M be a curve
in M. The point p € M is said to be the endpoint of v corresponding to t = b
if

lim ~(t) = p.
Jim y(t) =p

If v : [a,b) » M is a future (respectively, past) directed nonspacelike curve
with endpoint p corresponding to t = b, the point p is called a future (re-
spectively, past) endpoint of v. A nonspacelike curve is said to be future
ineztendible (or future endless) if it has no future endpoint. Dually, a past

ineztendible nonspacelike curve is one that has no past endpoint.

Convention 3.12. A nonspacelike curve v : (a,b) — M is said to be

ineztendible (or endless) if it is both future and past inextendible.

Causal space-times exist that contain inextendible nonspacelike curves hav-
ing compact closure. An example given by Carter is displayed in Figure 3.2
[cf. Hawking and Ellis (1973, p. 195)]. An inextendible nonspacelike curve
which has compact closure and hence is contained in a compact set is said to
be imprisoned. Thus, Carter’s example shows that imprisonment can occur in

causal space-times.



62 3 LORENTZIAN MANIFOLDS AND CAUSALITY
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FIGURE 3.2. A causal space-time (M, g) is shown which has im-
prisoned nonspacelike curves that are inextendible. Let a be an
irrational number, and let M = R x S! x S = {(¢,y,2) € R3 :
(t,y,2) ~ (t,y,2z+1) and (t,y,2) ~ (t,y+1,2z+a)}. The Lorentzian
metric is given by ds? = (cosht — 1)%(dy® — dt?) — dt dy + d2>.

Let v : [a,b) — M be a future directed nonspacelike curve. Then « is said
to be future imprisoned in the compact set K if there is some ¢ty < b such
that v(t) € K for all ¢ < t < b. The curve v is said to be partially future
imprisoned in the compact set K if there exists an infinite sequence t, T b
with v(t,) € K for each n.

If (M, g) is strongly causal and K is a compact subset of M, then K may
be covered with a finite number of convex normal neighborhoods {U;} such
that no nonspacelike curve which leaves some U; ever returns to that U;. This

observation leads to the following result.
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Proposition 3.13. If (M, g) is strongly causal, then no inextendible non-
spacelike curve can be partially future (or past) imprisoned in any compact

set.

We now discuss another important class of space-times in general relativity,
stably causal space-times. For this purpose as well as for later use, it is helpful
to define the fine C” topologies on Lor(M).

Recall that Lor(M) denotes the space of all Lorentzian metrics on M. The
fine C” topologies on Lor(M) may be defined by using a fixed countable cov-
ering B = {B;} of M by coordinate neighborhoods with the property that the
closure of each B; lies in a coordinate chart of M and such that each compact
subset of M intersects only finitely many of the B;’s. This last requirement
is the condition that the covering be locally finite. Let § : M — (0,00) be
a continuous function. Then g;,g2 € Lor(M) are said to be § : M — (0,00)
close in the C™ topology, written |g; — ga|- < §, if for each p € M all of the
corresponding coefficients and derivatives up to order r of the two metric ten-
sors g1 and g, are §(p) close at p when calculated in the fixed coordinates of
all B; € B which contain p. The sets {g1 € Lor(M) : |g1 — g2|» < &}, with
g2 € Lor(M) arbitrary and 6 : M — (0,00) an arbitrary continuous function,
form a basis for the fine C™ topology on Lor(M). This topology may be shown

to be independent of the choice of coordinate cover B.

The CT topologies for » = 0,1, 2 may be given the following interpretations.

Remark 3.14. (1) Two Lorentzian metrics for M which are close in the
fine C° topology have light cones which are close.
(2) Two Lorentzian metrics for M which are close in the fine C?! topology have
geodesic systems which are close (cf. Section 7.2).
(3) Two Lorentzian metrics for M which are close in the fine C? topology have

curvature tensors which are close.

A space-time (M, g) is said to be stably causal if there is a fine C° neighbor-
hood U(g) of g in Lor(M) such that each g, € U(g) is causal. Thus a stably

causal space-time remains causal under small C° perturbations.
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Stably causal space-times may be characterized in terms of a partial or-
dering < for Lor(M) defined using light cones to compare Lorentzian metrics.
Explicitly, if A is a subset of M, one defines g; <4 g2 if for each p € A and
v € T,M with v # 0, g1(v,v) < 0 implies go(v,v) < 0. One also defines
g1 <4 g2 if for each p € A and v € T,M with v # 0, g1(v,v) < 0 implies
g2(v,v) < 0. We will write g; < g2 (respectively, g1 < g2) for g1 <pr g2 (re-
spectively, g1 <a g2)- Thus g; < g2 means that at every point of M the light
cone of g; is smaller than the light cone of gq, or g2 has wider light cones than
g1- It may be shown that (M, g) is stably causal if and only if there exists
some causal g; € Lor(M) with g < g;.

A C° function f : M — R is a global time function if f is strictly increasing
along each future directed nonspacelike curve. A space-time (M, g) admits
a global time function if and only if it is stably causal [cf. Hawking (1968),
Seifert (1977)]. However, there is generally no natural choice of a time function

for a stably causal space-time.

Let f : M — R be a smooth function such that the gradient Vf is always
timelike. If v : (a,b) — M is a future directed nonspacelike curve with nonvan-
ishing tangent vector +'(t), then g( Vf(v(t)), v'(t) ) = v/ (t)(f) must either be
always positive or always negative. Thus f must be either strictly increasing
or strictly decreasing along 7. It follows that f must be strictly increasing or
decreasing along all future directed nonspacelike curves. Hence f or —f is a
smooth global time function for M. Furthermore, V f must be orthogonal to
each of the level surfaces f~1(c) = {p € M : f(p) = c}, c € R, of f. These
level surfaces are hypersurfaces orthogonal to a timelike vector field and are
spacelike, i.e., g restricted to each of these hypersurfaces is a positive definite
metric. Since the gradient of f is nonvanishing and df is an exact 1-form, it
follows that M is foliated by the level surfaces {f~!(c) : ¢ € R}. Each non-
spacelike curve v of M can intersect a given level surface at most once since f

must be strictly increasing or decreasing along +.

One of the most important causality conditions which we will discuss in
this section is global hyperbolicity. Globally hyperbolic space-times have the

important property, frequently invoked during specific geodesic constructions,
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that any pair of causally related points may be joined by a nonspacelike geo-

desic segment of maximal length.

Definition 3.15. (Globally Hyperbolic) A strongly causal space-time
(M, g) is said to be globally hyperbolic if for each pair of points p,q € M,
the set J*(p) N J~(q) is compact.

A distinguishing space-time (M, g) is causally simple if J*(p) and J~(p)
are closed subsets of M for all p € M. It then follows that

Proposition 3.16. A globally hyperbolic space-time is causally simple.

Proof. Suppose q € J*(p) — J*(p) for some p € M. Choose any r € I*(q).
Since I~ (r) is open and g € J*(p), it may be seen that r € I'*(p) by taking
a subsequence {¢,} C J*(p) with ¢, — ¢ and using the fact that p < ¢, and
¢n < 7 imply p < 7. Consequently, ¢ € J*(p) N J—(r)— (J*(p)NJ~(r)). But

this is impossible since J*(p) N J~(r) is compact hence closed. O

Globally hyperbolic space-times may be characterized using Cauchy sur-
faces. A Cauchy surface S is a subset of M which every inextendible non-
spacelike curve intersects exactly once. (Some authors only require that every
inextendible timelike curve intersect S exactly once.) It may be shown that
a space-time is globally hyperbolic if and only if it admits a Cauchy surface
[cf. Hawking and Ellis (1973, pp. 211-212)]. Furthermore, Geroch (1970a) has
established the following important structure theorem for globally hyperbolic
space-times [cf. Sachs and Wu (1977b, p. 1155)].

Theorem 3.17. If (M, g) is a globally hyperbolic space-time of dimension-
n, then M is homeomorphic to R x S where S is an (n — 1)-dimensional

topological submanifold of M, and for each t, {t} x S is a Cauchy surface.

The proof of this theorem uses a function f : M — R given by f(p) =
m(J*(p))/m(J~(p)) where m is a measure on M with m(M) = 1. The level
sets of f may be seen to be Cauchy surfaces as desired, but f is not necessarily
smooth.

A time function f : M — R will be said to be a Cauchy time function if
each level set f~1(c), c € R, is a Cauchy surface for M. In studying globally
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hyperbolic space-times, it is helpful to use Cauchy time functions rather than
arbitrary time functions.

In a complete Riemannian manifold, any two points may be joined by a
geodesic of minimal length. Avez (1963) and Seifert (1967) have obtained a

Lorentzian analogue of this result for globally hyperbolic space-times.

Theorem 3.18. Let (M,g) be globally hyperbolic and p < q. Then there
is a nonspacelike geodesic from p to ¢ whose length is greater than or equal to

that of any other future directed nonspacelike curve from p to q.

It should be emphasized that the geodesic in Theorem 3.18 is not necessarily
unique. This result will also be discussed from the viewpoint of the Lorentzian
distance function in Section 6.1.

It is natural to consider how continuity properties of a given candidate for
a time function on a given space-time are influenced by the causal structure
of the space-time. We have just indicated how Geroch (1970a) used past and
future volume functions to obtain the globally hyperbolic topological splitting
theorem (Theorem 3.17) and how stably causal space-times may be character-
ized in terms of the existence of a (continuous) global time function [cf. Hawk-
ing (1968), Seifert (1977), Hawking and Sachs (1974)]. It is often stated that
an auxiliary “additive measure H on M which assigns positive volume H[U] to
each open set U and assigns finite volume H[M] to M ...” may be employed
in this context. For such a measure, it has been asserted that a distinguishing
space-time (M, g) is reflecting (cf. Definition 3.20), hence causally continuous,
if and only if the past and future volume functions ¢~ and t* associated to
any such measure H on M are continuous global time functions.

J. Dieckmann (1987, 1988) has noted that the above assertion fails to be
valid unless certain further regularity properties are imposed on the measure
H. In particular, one needs to restrict attention to measures that are not
positive on the boundaries of chronological futures and pasts (cf. Definition
3.19). The need for this restriction is best understood by means of an example.
Let (M, g) be four-dimensional Minkowski space-time, and let m be any Borel
measure for M with m(M) finite and with m(8(I*(p))) = m(8(I~(p))) = 0

for all p in M. Such a measure may be constructed using a partition of unity
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and local volume forms as follows [cf. Hawking and Ellis (1973, p. 199), Geroch
(1970a, p. 446), Dieckmann (1988, p. 860)]. Let w be the usual volume form
for all of M, and let {p,} be a partition of unity subordinate to a covering

{U,} with each U, being a simple region and with

/ w<1.
Un

Then let m be the Borel measure associated (by integration) to the 4-form
Z 27 " pp - w.
n

It is easily seen that m(8(I*(p))) = m(8(I~(p))) = O for any p in M.
Now define a measure H for M as follows. Put 0 = (0,0,0,0) and
HU) = { m(U) ?f 0¢U,
m(U)+1 if 0eU.

Then even though (M, g) is certainly causally continuous, the past volume
function t~(p) = H[I~ (p)] fails to be continuous at 0. The difficulty is that H
assigns measure one to the point 0. Thus, H assigns positive measure to light
cones containing this point.

This counterexample led Dieckmann (1987, 1988) to investigate more pre-
cisely, for a subclass of probability measures for a given space-time, how the
past and future volume functions are related to space-time causality. We will
summarize certain of these results. We begin with an arbitrary space-time
(M, g) and, following Dieckmann, abstract the crucial properties of the Borel

measure m whose construction was sketched above.

Definition 3.19. (Admissible Measure) A Borel measure m on (M, g) is
said to be admissible provided that

(3.1) m(U) > 0 for all nonempty open sets U,
(3.2) m(M) < +oo0, and
(3.3) m(8(I*(p))) =m(8(I~(p))) =0 forallp in M.

Clearly, the above measure H fails to satisfy condition (3.3) and thus fails

to be admissible.
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The past (respectively, future) volume functions (associated to the measure

m) are given respectively by

(34) t~(p) = m(I~(p))
and
(35) t*(p) = -m(I*(p))

for all p in M.
The crucial importance of property (3.3) is that it implies

(3:6) m (I-)) = m(I~ ()
and
(3.7) m (7)) = m(I* ()

for all pin M.

If the given space-time happens to be totally vicious, so that I~ (p) =
It (p) = M for all p in M, then ¢t~ and t* take on the constant values m(M)
and —m(M), respectively. More generally, in the presence of certain causality
violations the past and future volume functions are only weakly increasing
along future causal curves and may also fail to be continuous. Hence the
volume functions do not, in general, define generalized time functions in the
sense of Definition 3.23 below without imposing some causality conditions on
the space-time in question.

For convenience, we will employ the notational convention used in O’Neill
(1983) that p < g if there exists a (nontrivial) future directed nonspacelike
curve from p to q¢. Thus, p < ¢ if p < ¢ and p # ¢. The usual transitivity
relationships (i.e., r € p, p < ¢, and ¢ < s together imply r < ¢ and p < s)
yield that the volume functions ¢~ and t* are (not necessarily continuous)

“semi-time functions” in the sense that for any p,q in M

(3.8) p<gq implies t7(p)<t7(g) and t*(p) <t*(q).
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It is also interesting that the usual continuity properties of a measure imply
that ¢t~ (respectively, t*) is lower semicontinuous (respectively, upper semi-
continuous).

We now introduce a causality condition important in Hawking and Sachs
(1974) and in Dieckmann (1987, 1988).

Definition 3.20. (Reflecting) A space-time (M, g) is said to be past
reflecting (respectively, future reflecting) at ¢ in M if for all p in M

(3.9) I*(p) 2 I*(q) implies I~ (p) €I (9),
respectively,
(3.10) I"(p) 21 (q) implies I*(p)CI*(q)

and is said to be reflecting at q if it satisfies both conditions. The space-time

is said to be reflecting if it is reflecting at all points.

It is well known that for space-times which fail to be reflecting, the past and
future volume functions may fail to be continuous [cf. Figure 1.2 in Hawking
and Sachs (1974, p. 289)]. Even more strikingly, Dieckmann obtained the
following more precise relationship between continuity and reflexivity. In this

result, properties (3.6) and (3.7) for the admissible measure are crucial.

Proposition 3.21. Let (M, g) be a (not necessarily distinguishing) space—
time, and let t~ and t* be the past and future volume functions associated to
an admissible Borel measure. Then

(1) ¢~ is continuous at ¢ iff (M, g) is past reflecting at ¢, and
(2) t* is continuous at q iff (M, g) is future reflecting at q.

Moreover, from his proof of a version of Proposition 3.21, Dieckmann is able
to conclude that the set of points at which the volume function ¢~ (respectively,
t*) fails to be continuous is a union of null geodesics without past (respectively,
future) endpoints. Especially, a space-time may not fail to be reflecting at
isolated points, as had already been noted in Vyas and Akolia (1986).

Thus, reflexivity settles the question of the continuity of the volume func-

tions independent of choice of admissible measure. The “time function” aspect
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of being strictly increasing along future directed nonspacelike curves employs
the following lemma [cf. Dieckmann (1987, p. 47)].

Lemma 3.22. Let (M, g) be an arbitrary (not necessarily distinguishing)
space—time, and let t~ be the past volume function associated to an admissible

Borel measure. Suppose that p,q in M satisfy p < g and I~ (p) # I~ (q). Then
(3.11) t(p) <t (9)-

Lemma 3.22 has the immediate consequence that (M, g) is chronological if
and only if some past (or future) volume function is strictly increasing along
all future timelike curves. More importantly, with Lemma 3.22 in hand the
following proposition may now be obtained with the help of future set tech-
niques. For clarity, let us first make precise the notion of “generalized time

function” as employed in the present context.

Definition 3.23. (Generalized Time Function) A (not necessarily con-
tinuous) function ¢ : (M, g) — R is said to be a generalized time function if,

for all p,q in M,
(3.12) p < q implies t(p) < t(g)-

Thus ¢t is strictly increasing along all future nonspacelike curves but is not

required to be continuous.

Proposition 3.24. Let t~ (respectively, t*) be the past (respectively, fu-
ture) volume function on (M, g) associated to an admissible Borel measure.
Then

(1) (M,g) is past distinguishing iff t~ is a generalized time function; and
(2) (M, g) is future distinguishing iff t* is a generalized time function.

Now it has been established that “causal continuity” (i.e., (M, g) is distin-
guishing and I+ and I~ are outer continuous) is equivalent to “reflecting” and
“distinguishing” [cf. Hawking and Sachs (1974, p. 292)]. Hence, Propositions
3.21 and 3.24 imply the following characterization of causal continuity in terms

of volume functions.
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Theorem 3.25. The following are equivalent:

(1) The space-time (M, g) is causally continuous.
(2) For any (and hence all) admissible Borel measures, the associated vol-

ume functions ¢t~ and t* are both continuous time functions.

The condition of “causal continuity” implies the “stable causality” condi-
tion but not conversely. Stable causality has the characterization that (M, g)
admits some continuous global time function (which will not, in general, be a
volume function associated to some admissible Borel measure).

We now state the characterization of global hyperbolicity in terms of volume

functions [implicit in Geroch (1970a)] which is given in Dieckmann (1987).

Theorem 3.26. Let t~ (respectively, t+) be the past (respectively, future)
volume functions associated to an admissible Borel measure m for the space-
time (M, g). Definet: (M, g) — R by

(3.13) t(p) =Iln (—i;gi)

for p in M. Then the following are equivalent:

(1) The space-time (M, g) is globally hyperbolic.

(2) The past and future volume functions t~, t* are continuous time
functions, and for any inextendible future directed nonspacelike curve
v : (a,b) — (M, g) we have lim,_ t*(y(u)) = limy—a t~(y(u)) = 0.

(3) The function t given by (3.13) is a continuous time function, and for
any inextendible future directed nonspacelike curve v, range(toy) = R.

(4) For all a in R, the set t~1({a}) is a Cauchy surface.

The next proposition gives sufficient conditions for a space-time to be causal

in terms of the volume functions [cf. Dieckmann (1987)].

Proposition 3.27. Let t be a past or future volume function associated to
an admissible Borel measure for the given space-time (M, g). Suppose further
that

(1) p < q implies t(p) < t(q) for all p,q in M (which implies chronology),

and
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(2) for each complete null geodesic 3 : R — (M, g), there exist uj,up in R
such that t(8(u1)) < #(B(u2)).
Then (M, g) is causal.

In Vyas and Joshi (1983), a discussion is given of how causal functions sim-
ilar to (3.5) may be related to the ideal boundary points and singularities of
a space-time. An interesting list of 71 assertions on causality to be proved
or disproved (together with answers) has been given in Geroch and Horowitz
(1979, pp. 289-293). We now give a diagram (Figure 3.3) indicating the rela-
tions between the causality conditions discussed above [cf. Hawking and Sachs
(1974, p. 295), Carter (1971a)].

3.3 Limit Curves and the C° Topology on Curves

Two different forms of convergence for a sequence of nonspacelike curves
{v»} have been useful in Lorentzian geometry and general relativity [cf. Pen-
rose (1972), Hawking and Ellis (1973)]. The first type of convergence uses
the concept of a limit curve of a sequence of curves, while the second type
uses the C° topology on curves. For arbitrary space-times, neither of these
types of convergence is stronger than the other. However, we will show that
for strongly causal space-times, these two forms of convergence are closely
related. This relationship will be useful in constructing maximal geodesics in

strongly causal space-times (cf. Sections 8.1 and 8.2).

Definition 3.28. (Limit Curve) A curve -y is a limit curve of the sequence
{~n} if there is a subsequence {ym} such that for all p in the image of -, each
neighborhood of p intersects all but a finite number of curves of the subsequence

{¥m}. The subsequence {vm} is said to distinguish the limit curve ~.

In general, a sequence of curves {v,} may have no limit curves or may
have many limit curves. This is true even if the curves {v,} are nonspace-
like. Furthermore, even in causal space-times a limit curve of a sequence of
nonspacelike limit curves is not necessarily nonspacelike. For example, the
curve y(u) = (0,0,u) in Carter’s example (cf. Figure 3.2) is not nonspacelike

although it is a limit curve of any sequence {7, } of inextendible null geodesics
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| globally hyperbolic |

|

| causally simple I

}

I causally continuous I

i

[ stably causal I

\

I strongly causal |

i

r distinguishing I

}

| causal ]

v

l chronological I

FIGURE 3.3. This diagram illustrates the strengths of the causal-
ity conditions used in this book. Global hyperbolicity is the most

restrictive causality assumption that we will use.

contained in the set ¢ = 0. Recently, the phrase “cluster curve” has been sug-
gested as a more mathematically precise term for the convergence in Definition
3.28.

In contrast, we have the following result for strongly causal space-times.

Lemma 3.29. Let (M, g) be a strongly causal space-time. If v is a limit

curve of the sequence {v,} of nonspacelike curves, then -y is nonspacelike.
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Proof. Cover v by a locally finite collection {Ux} of convex normal neigh-
borhoods such that for each k, no nonspacelike curve which leaves Uy ever
returns. Since the causal relation < is transitive, it suffices to show that
~ N Uy is nonspacelike for each k.

Let {~vm} be a subsequence of {v,} which distinguishes v. Given any pair of
points p, g € ¥ N Uk, we may find sequences {p,} and {gm} With pm, gm € Tm
for each m and p,, — p, ¢gm — ¢. The points p,, and ¢, are causally related in
Uy for all sufficiently large m by construction of Uy and the assumption that
each v, is nonspacelike. Taking limits, it follows that p and ¢ are causally
related in Ug. Since this holds for each pair p,q € v N Uy, it follows that the

curve v N Uy is nonspacelike. [

The concept of a limit curve is closely related to the HausdorfI closed limit.
Let {A.} be an arbitrary sequence of subsets (not necessarily curves) of M.
The Hausdorff upper and lower limits of {A,} are defined respectively by
[cf. Busemann (1955, p. 10)]

limsup{A,} = {p € M : each neighborhood of p

intersects infinitely many of the sets A,}
and

liminf{A,} = {p € M : each neighborhood of p

intersects all but a finite number of the sets A4, }.

The Hausdorff upper and lower limits always exist, although they may be
empty, and are always closed subsets of M. There is the obvious containment
liminf{A4,} C limsup{A,}. If these two limits are equal, then the Haus-
dorff closed limit of {A,}, denoted by lim{A,}, is defined to be lim{A,} =
liminf{A,} = limsup{A4,}.

A limit curve of the sequence of curves {v,} is contained in the Hausdorff
upper limit limsup{y,}. Further, a curve v is a limit curve of the sequence
{¥n} if and only if v C liminf{v,,} for some subsequence {vm} of {vn}.

We now turn to the proof (Proposition 3.31) of the existence of nonspacelike
limit curves for sequences {v,} of nonspacelike curves having points of accu-

mulation. This result, an essential tool of causality theory in general relativity,
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is a consequence of Arzela’s Theorem (Theorem 3.30), which may be invoked
since nonspacelike curves satisfy a local Lipschitz condition.

Let U be a convex normal neighborhood of (M, g) with compact closure U
contained in a chart (V, z) having local coordinates z = (z1,. .., Z») such that
f =z : U — R has a timelike gradient Vf on U. Then f is a time function
on U, and whenever c is in the image of f, the level set f~1(c) is a spacelike
hypersurface in U. For sufficiently small U there is some constant Ky > 0 such

that g < go on U where gp is the flat metric on U given by

n
g0 =—Kodz:® +)_ dz;?.
=2
Furthermore, each nonspacelike curve v in U joining p,q € U with f(p) <
f(q) can be reparametrized so that -y is given in local coordinates by () =
(¢, z2(2),...,za(t)) for all ¢ with f(p) < ¢ < f(g). Since v is nonspacelike for
go as well as g, v satisfies a Lipschitz condition of the form

(3.14) lv(t1) = v(t2)ll2 < Kilts — ta]

where K; = (Ko+1)'/2. Here, for p,q € U, we use the given local coordinates
to define

n

lp—qllz = | > _[z:(p) — z:(q))?,

i=1
and the constant K; depends on g, U, and the choice of local coordinate
chart (V,z). This Lipschitz condition implies that ~ is differentiable almost
everywhere and that |z;| < K; along y for all i = 1,2,...,n.

Now let the space-time (M, g) be given an auxiliary complete Riemannian
metric A with distance function do. By the Hopf-Rinow Theorem, the closed
balls {g € M : do(p, g) < v} are compact for all fixedpe M and 0 < 7 < o0. If
the nonspacelike curve (¢) in U is parametrized as v(t) = (¢, z2(¢),. ..,z (1))
as above, then the length Lo(7 | [t1,22]) of v from ¢; to to with respect to h is
given by

ta
Lottt = [ [yt
1 i,j



76 3 LORENTZIAN MANIFOLDS AND CAUSALITY

where h;; are the components of h with respect to the local coordinates
Z1,..-,Zn. Since |z;'| < Kj, the length Lo(vy|[t1,%2]) satisfies

(3.15) Lo(y|[t1, ta]) < n HY2 K1 |t — o]

where H is the supremum of |h;;| on the compact set U for 1 < 4,5 < n. Thus,
any nonspacelike curve from the level set f~1(¢;) to the level set f~1(t2) which
lies in U has length bounded by n H/2 K |t; — t3|. Furthermore, covering
(M, g) by alocally finite cover of sets with the properties of U and (V, z) above,
it follows that any nonspacelike curve of (M, g) defined on a compact interval of
R must have finite length with respect to h. Thus every nonspacelike curve of
(M, g) may be given a parametrization which is an arc length parametrization
with respect to h. Also, an inextendible curve v which has an arc length
parametrization with respect to h must be defined on all of R because dg is
complete (cf. Lemma 3.65).

We now state a version of Arzela’s Theorem which may be established using
standard techniques [cf. Munkres (1975, Section 7.5)].

Theorem 3.30. Let X be a locally compact Hausdorff space with a count-
able basis, and let (M, h) be a complete Riemannian manifold with distance
function do. Assume that the sequence {fn} of functions f, : X — M is
equicontinuous and that for each zo € X the set |J,,{fn(z0)} is bounded with
respect to dop. Then there exist a continuous function f : X — M and a sub-
sequence of {f,} which converges to f uniformly on each compact subset of
X.

Using Arzela’s Theorem, we may now obtain the next proposition, given in
Hawking and Ellis (1973, p. 185), which guarantees the existence of limit curves

for a sequence {v,} of nonspacelike curves having points of accumulation.

Proposition 3.31. Let {v,} be a sequence of (future) inextendible non-
spacelike curves in (M, g). If p is an accumulation point of the sequence {v,},
then there is a nonspacelike limit curve -y of the sequence {y,} such that p €

and v is (future) inextendible.

Proof. We will give the proof only for inextendible curves since the proof

for future inextendible curves is similar.
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Let h be an auxiliary complete Riemannian metric for M with distance
function dp as above, and give each v, an arc length parametrization with
respect to h. Then the domain of each 7, is R as each curve is assumed to
be inextendible. Shifting parametrizations if necessary, we may then choose
a subsequence {vm} of {v»} such that v,,(0) — p as m — oo since p is an
accumulation point of the sequence 7y,. Using the fact that each +,, has an

arc length parametrization with respect to h, we obtain

(3.16) dO(’Ym(tl), 'Ym(t2)) < |t — o

for each m and t;,t2 € R. Thus the curves {v,,} form an equicontinu-
ous family. Furthermore, since v,(0) — p, there exists an N such that
do(ym(0),p) < 1 whenever m > N. This implies that for each fixed ¢y € R,
the curve vm | [—to,%0] of the subsequence lies in the compact set {g € M :
do(p,q) < to + 1} whenever m > N. Hence the family {v,} satisfies the hy-
potheses of Theorem 3.30, and we thus obtain a (continuous) curve v : R — M
and a subsequence {vx} of the subsequence {vm} such that {y;} converges to
~ uniformly on each compact subset of R. Clearly, 7¢(0) — p = v(0). The
convergence of {yx} to v also yields the inequality do(v(¢1),v(t2)) < [t1 — to|
for all ¢1,t5 € R. It remains to show that v is nonspacelike and inextendible.

To show that - is nonspacelike, fix ¢; € R and let U be a convex normal
neighborhood of (M,g) containing ~(¢;). Choose § > 0 such that the set
{g € M : do(v(t1),q) < 6} is contained in U. If t; < t5 < t; + 6, then (3.16)
and the uniform convergence on compact subsets yields that for all large k, the
set yk[t1,t2] lies in U. Using vk(t1) — v(t1), vk(t2) — v(t2), 1e(t1) <v v« (t2)
for all large k, and the fact that U is a convex normal neighborhood, we obtain
that v(¢1) <y v(t2). Thus «| [t1,t2] is a future directed nonspacelike curve
in U [cf. Hawking and Ellis (1973, Proposition 4.5.1)]. It follows that v is a
future directed nonspacelike curve in (M, g).

It remains to show that - is inextendible. We will give the proof only of the
future inextendibility since the past inextendibility may be proven similarly.
To this end, assume that - is not future inextendible. Then v(t) — g0 € M
as t — oo. Let U’ be a convex normal neighborhood of go such that U’ is a

compact set contained in a chart (V, z) of M with local coordinates (z1, ..., Z»)
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such that f = z; : U’ — R is a time function for U’. An inequality of the
form of (3.15) shows that if | [t;,00) C U’, then no nonspacelike curve in U’
from the level set f~(f(v(#1))) to the level set f~(f(qo)) can have arc length
with respect to h greater than some number §' > 0. On the other hand, for
sufficiently large k we must have v [t; +1,¢1 + 6 +2] C f~1([f(v(¢1)), f(20)])-
Since the length Lo(vk[t1 + 1,81 + 6" +2]) = & + 1 for all k, this yields a

contradiction. [

Even if all of the inextendible nonspacelike curves of the sequence {v,}
are parametrized by arc length with respect to a complete Riemannian met-
ric h, the limit curve  obtained in the proof of Proposition 3.31 need not
be parametrized by arc length. This is a consequence of the fact that the
Riemannian length functional, while lower semicontinuous, is not upper semi-
continuous in the topology of uniform convergence on compact subsets. Even
though the curve ~ constructed in the proof of Proposition 3.31 need not be
parametrized by arc length, the curve « will still be defined on all of R pro-
vided each 7, is inextendible. Furthermore, if (M, g) is strongly causal, the
Hopf-Rinow Theorem and Proposition 3.13 imply that do(v(0),~(¢)) — oo as
|t| — oo. Here, dp denotes the complete Riemannian distance function in-
duced on M by h as above. An alternative treatment of the technicalities of
Proposition 3.31, closer in spirit to that given in Hawking and Ellis, may be
found in O’Neill (1983, p. 404) in the section on “quasi-limits.”

In the globally hyperbolic case, a stronger version of Proposition 3.31 may
be obtained.

Corollary 3.32. Let (M, g) be globally hyperbolic. Suppose that {p,} and
{gn} are sequences in M converging to p and q in M respectively, with p < g,
p # q, and p, < qn for each n. Let v, be a future directed nonspacelike curve
from p, to g, for each n. Then there exists a future directed nonspacelike

limit curve ~y of the sequence {v,} which joins p to q.

Proof. Let h be an auxiliary complete Riemannian metric on M with length
functional Lg. Choose a finite cover of the compact set J*(p) N J~(q) by con-
vex normal neighborhoods Uy, Us, ..., U, each of which has compact closure

and such that no nonspacelike curve which leaves any U; ever returns to that
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U;. As in the proof of Proposition 3.31, there exists a number N; for each i such
that each nonspacelike curve v : [a,b] — U; has length less than NV; with re-
spect to h [cf. equation (3.15)]. Thusif U = U U---UUg and N = Ny+-- -+ N,
every nonspacelike curve v : [a,b] — U must satisfy Lo(vy) < N.

Extend each given nonspacelike curve «y, to a future inextendible nonspace-
like curve, also denoted by ~y,. We may assume that each v, : [0,00) — M has
been parametrized by arc length with respect to h [cf. equation (3.15)]. Thus
if U = Uy U---UUx and Proposition 3.31 is applied to {v,} with accumulation
point p of {v»(0) = pn}, then there exist a future inextendible nonspacelike
limit curve v : [0,00) — M with 4(0) = p and a subsequence {yn} of {v»}
such that ~,, — ~ uniformly on compact subsets of [0, 00). Using ym(tm) = qm
for 0 < t,, < N and ¢, — g, we conclude that v passes through ¢ for some
parameter value 7 which satisfies 0 < 7 < N. It follows that | [0,7] is a

nonspacelike limit curve of {vp, | [0, %]} which joins p to ¢. O
We now consider convergence in the C° topology [cf. Penrose (1972, p. 49)].

Definition 3.33. (Convergence of Curves in C° Topology) Let v and
all curves of the sequence {v,} be defined on the closed interval [a,b]. The
sequence {7} is said to converge to v in the C° topology on curves if y,(a) —
v(a), v (b) — ~(b), and given any open set V containing -, there is an integer
N such that v, CV for alln > N.

Any space-time contains a sequence {y,} that has a limit curve v, yet {v.}
does not converge to «y in the C° topology. For, let o, 8 : [0,1] — M be any
two future directed timelike curves with «([0,1]) N 3([0,1]) = 0. Set

_{a if n=2m,
=18 if n=2m-1

Then {~,} does not converge to either & or 3 in the C° topology. However, the
subsequence {y2,} (respectively, {y2n—1}) of {vn} converges to o (respectively,
B) in the C° topology. A space-time which is not strongly causal may also
contain a sequence {7, } of nonspacelike curves which has a nonspacelike limit

curve -, yet no subsequence {7} of {y»} converges to ~y in the C° topology on
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FIGURE 3.4. A causal space-time (M,g), in which a sequence
{7n} of nonspacelike curves may have a limit curve v yet fail to
have a subsequence which converges to v in the C° topology on

curves, may be formed from a subset of Minkowski space as shown.

curves. This is illustrated in Figure 3.4 [cf. Hawking and Ellis (1973, p. 193)
for a discussion of the causal properties of this example].

Conversely, a sequence of nonspacelike curves {-y,} may converge in the C°
topology to some nonspacelike curve 7y but fail to have -y as a limit curve. This
may be seen on the cylinder M = S x R with the Lorentzian metric ds? =
dfdt. Let v, be the segment on the generator § = 0 given by ~,(t) = (0,t)

for 0 < ¢t <1 and for all n. If v is the piecewise smooth nonspacelike curve
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obtained by going around the circle on the null geodesic ¢ = 0 and then up
the generator # = 0 from ¢ = 0 to ¢ = 1, then {v,} converges to y in the C°
topology, but 7 is not a limit curve of {v,} (cf. Figure 3.5).

In strongly causal space-times, however, these two types of convergence are
almost equivalent for sequences of nonspacelike curves [cf. Beem and Ehrlich

(1979a, p. 164)]. A more precise statement is given by the following result.

Proposition 3.34. Let (M, g) be a strongly causal space-time. Suppose
that {yn} is a sequence of nonspacelike curves defined on [a,b] such that
Yn(a) — p and v, (b) — ¢. A nonspacelike curve v : [a,b] — M with y(a) =p
and «y(b) = q is a limit curve of {v,} iff there is a subsequence {vm} of {y.}

which converges to v in the C° topology on curves.

Proof. (=) We may assume without loss of generality that v and {v,} are
all future directed curves. Let V' be any open set with v+ C V. Cover the
compact image of v with convex normal neighborhoods Wy, Wa, ..., W) such
that each W; C V and no nonspacelike curve which leaves W, ever returns to
W;. There exists a subdivision a = ¢ < t; < --- < t; = b of [a,b] such that
for all 0 < i < j — 1, each pair v(¢;), v(ti+1) lies in some Wj,. Here h = h(2)
and 1 < h(i) < k for all i. Let {y.,} be a subsequence that distinguishes
~ as a limit curve. For each m, let p(0,m) = vm(a) and p(j,m) = Ym(b).
Furthermore, for each fixed ¢ with 0 < 7 < j, choose p(i,m) € ~,, such that
{p(%, m)} converges to y(t;). Since y(t;+1) lies in the causal future of (¢;) and
M is strongly causal, the point p(i + 1, m) lies in the causal future of p(i,m)
for all m larger than some N;. Also, there is some N» such that p(z,m) and
p(i+1,m) lie in W,(;) for all0 < i < j—1and m > Np. Let N = max{Ny, No}.
The portion of v, joining p(i,m) to p(i 4+ 1,m) must lie entirely in W,y for
m > N because no nonspacelike curve can leave Wj and return. It follows
that v, CWiU---UWj, CV for all m > N as required.

(<) Let {7} be a subsequence of {,} converging to ~ in the C° topology on
curves. Define A = {t¢ € [a,b] : each point of | [a,t0] is a limit point of the
given subsequence }. We wish to show that A = [a,b]. Clearly, vm(a) — v(a)
implies a € A. If 7 = sup{to : to € A}, then for each a < t < 7 the point

~(t) is a limit point of the subsequence {v,,}. To show 7 € A we assume
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FIGURE 3.5. In chronological space-times, a sequence of non-
spacelike curves {,} may converge to the nonspacelike curve vy in
the C° topology on curves, and yet v may fail to be a limit curve
of any subsequence {vm} of {v,}. The curves v, are segments on
the line 8 = 0 from t = 0 to ¢ = 1. The curve 7y goes around the

cylinder once, then traverses vy.

7 > a and let {#x} be a sequence with tx — 7~. Each neighborhood U(y(7))
of v(7) is also a neighborhood of ~(¢x) for sufficiently large ¥ and hence must
intersect all but a finite number of curves of the subsequence {v,,}. Thus v(7)
is a limit point of {7, }, and A must be a closed subinterval of [a,b]. Assume
that 7 < b. Using the strong causality of (M, g), we may find a convex normal
neighborhood V of v(7) such that no nonspacelike curve of (M, g) which leaves
V ever returns. Letting V be sufficiently small we may assume that (V, gl,,) is
globally hyperbolic and that f : V' — R is a Cauchy time function for (V, g|,,)
with f(V) = R and f(y(7)) = 0. We may also assume ~y(b) ¢ V. Then each

inextendible nonspacelike curve of (M, g) which has a nonempty intersection
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with V must intersect each Cauchy surface f~!(s) exactly once. Fix s with
0 < 5 < 00, and define z(s) = v N f~1(s). This intersection exists because
~(7) € V and v(b) ¢ V. Since y(7) and ~(b) are limit points of {v.,}, the
curves ,, must have a nonempty intersection with f~1(s) for all sufficiently
large m. Set Zm(s) = vm N f71(s) for all such m. In order to verify that
zm(s) — z(s), we observe that for each neighborhood W of « the points
Z;m(s) must lie in W N f~1(s) for all large m (cf. Figure 3.6). This shows
that each z(s) is a limit point of the subsequence {ymn}. Consequently, the
set A contains numbers greater than 7, in contradiction to the definition of

7. We conclude A = [a,b] which shows + is a limit curve of the subsequence
{vm}. O

Let v : [a,b] — (M, g) be a nonspacelike curve in a strongly causal space—
time (M, g). Choose a compact subset K of M such that v C Int(K). Let the
nonspacelike curves which are contained in K be given the C° topology. It
is known [cf. Penrose (1972, p. 54)] that the Lorentzian arc length functional
L(~) [cf. Chapter 4, equation (4.1)] is upper semicontinuous with respect to
the C° topology on curves [cf. Busemann (1967, p. 10)]. This is the analogue
of the well-known result that the Riemannian arc length functional is lower

semicontinuous.

Remark 3.35. Let (M, g) be strongly causal, and let v be a given non-
spacelike curve in (M, g). If the sequence {v,} of nonspacelike curves converges

to =y in the C° topology on curves, then

L(7) > limsup L(y,).

3.4 Two-Dimensional Space—times

In this section we consider the topological and causal structures of two-
dimensional Lorentzian manifolds. Using the pair of null vector fields generated
by the tangent vectors to the two null geodesics passing through each point
of M, we show that the universal covering manifold of any two-dimensional
Lorentzian manifold is homeomorphic to R2. We then show that any two-

dimensional Lorentzian manifold homeomorphic to R? is stably causal. In
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FIGURE 3.6. In the proof of Proposition 3.34 the globally hyper-
bolic neighborhood V of y(7) has a Cauchy time function f : V — R
with f(v(7)) = 0. For all large m the curves ~,, must intersect
the Cauchy surface f~!(s) at a single point z.,(s). If W is any
neighborhood of v, then z,,(s) € W N f~1(s) for all large m. We
may choose W such that W N f~1(s) is as small a neighborhood of
z(s) = yN f~1(s) in f~I(s) as we wish. Thus z,,(s) — z(s), and

z(s) must be a limit curve of the subsequence {y}-

particular, every simply connected two-dimensional Lorentzian manifold is
causal. Thus no Lorentzian metric for R? has any closed nonspacelike curves.
It should also be noted that two- (but not higher) dimensional Lorentzian man-

ifolds have the property that (M, —g) is also Lorentzian. This is sometimes
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useful in obtaining results about all geodesics in (M, g) from results valid in
higher dimensions only for nonspacelike geodesics.

Let (M, g) be an arbitrary two-dimensional Lorentzian manifold, and fix a
point p € M. Choose a convex normal neighborhood U(p) based at p, and
consider the following method of assigning local coordinates to points in U(p)
sufficiently close to p. Let the two null geodesics v; and 2 through p be
given parametrizations y; : (—e€1,€1) — U(p) and 72 : (—€2,€2) — U(p) with
71(0) = 72(0) = p. For each point ¢ € U(p) sufficiently close to p, the two null
geodesics through ¢ will intersect v; and 9 in U(p) at unique points v, (fo)
and v2(sp) respectively. Assign coordinates (to, so) to ¢. In these coordinates
the null geodesics near p are contained in sets of the form ¢ = ¢g or s = s¢.
We have established

Lemma 3.36. Let (M, g) be a two-dimensional Lorentzian manifold. Then
each p € M has local coordinates z = (z1, z2) with z(p) = 0 such that each null
geodesic in this neighborhood is contained in a set of the form x; = constant

or ro = constant.

Suppose X is a future directed timelike vector field on M. Then at each p €
M, there are two uniquely defined future directed null vectors ni,no € T, M
such that X (p) = n1 +no. Clearly, a sufficiently small neighborhood U(p) of p
may be found such that n; and ny may be extended to continuous null vector
fields X1, X» defined on U(p) with X(q) = X1(q) + X2(q) for all ¢ € U(p). If

M is simply connected, we now show X; and X5 can be extended to all of M.

Proposition 3.37. Let (M, g) be a simply connected Lorentzian manifold
of dimension two. Then two smooth nonvanishing null vector fields X, and
X5 may be defined on M such that X; and X» are linearly independent at
each point of M.

Proof. Since M is simply connected, (M,g) is time orientable. Thus we
may choose a smooth future directed timelike vector field X on M.

Fix a base point pg € M, and let X(po) = n1 + no as above. Given any
other point ¢ € M, let v : [0,1] — M be a curve from pg to g. There is exactly

one way to define continuous null vector fields X; and X» along « such that
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X;1(0) = n1, X2(0) = ng, and X(y(t)) = Xi1(t) + Xo(t) for all ¢t € [0,1]. If
1 : [0,1] — M is any other curve from pg to g, then v and 7 are homotopic since
M is assumed to be simply connected. Hence if Y; and Y> were null vector
fields along 7 with Y7(0) = n; and Y2(0) = ng, we would have Y;(1) = X;(1)
and Y5(1) = X2(1) by standard homotopy arguments. Thus this construction
produces a pair of continuous vector fields X; and Xs on M which are linearly

independent at each point. O

Corollary 3.38. Let (M, g) be any two-dimensional Lorentzian manifold.
Then the universal Lorentzian covering manifold (1\7 ,g) of (M, g) is homeo-

morphic to R?.

Proof. Since Mis simply connected and two-dimensional, M is homeomor-
phic to R? or S2. But since the Euler characteristic of S is nonzero, S? does

not admit any nowhere zero continuous vector fields. O

Recall that an integral curve for a smooth vector field X on M is a smooth
curve v such that v'(t) = X(v(¢)) for all ¢ in the domain of v [cf. Kobayashi
and Nomizu (1963, p. 12)]. The following result is well known [cf. Hartman
(1964, p. 156)].

Proposition 3.39. Let X be a smooth nonvanishing vector field on R?,
and let 7y : (a,b) — R? be a maximal integral curve of X. Then ~y(t) does not

remain in any compact subset of R? ast — at (ort — b™).

Now assume that (M, g) is a Lorentzian manifold homeomorphic to R2.
Let X7, X2 be the null vector fields on M given by Proposition 3.37. Clearly,
each null geodesic of (M, g) may be reparametrized to an integral curve of
X1 or X5. Equivalently, the integral curves of X; and X5 are said to be null
pregeodesics. Suppose 7 : (a,b) — M is an inextendible null geodesic which
may be reparametrized to an integral curve of X;. If y(¢;) = v(¢2) for some
t1 # to, then since both v/(¢;) and /(¢2) are scalar multiples of X (y(¢1)), it
follows from geodesic uniqueness that -y is a smooth closed geodesic. However,
this is impossible by Proposition 3.39. Thus Proposition 3.39 has the following

corollary.
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Corollary 3.40. If (M,g) is a Lorentzian manifold homeomorphic to R?,
then (M, g) contains no closed null geodesics. Moreover, every inextendible

null geodesic v : (a,b) — M is injective and hence contains no loops.

A family F of inextendible null geodesics is said to cover a manifold M
stmply if each point p € M lies on exactly one null geodesic of F. Suppose
(M, g) is a Lorentzian manifold homeomorphic to R2. Then the integral curves
of the null vector field X; (respectively, X5) given in Proposition 3.37 may be
reparametrized to define a family Fy (respectively, F») of geodesics on M. Each
family F; covers M since X;(p) # 0 for ¢ = 1, 2 and all p € M. Furthermore,
since exactly one integral curve of X; passes through any p € M, each family
F; covers M simply. Consequently, Proposition 3.37 implies [cf. Beem and
Woo (1969, p. 51)]

Proposition 3.41. Let (M, g) be a Lorentzian manifold homeomorphic to
R2. Then the inextendible null geodesics of (M, g) may be partitioned into

two families Fy and F» such that each of these families covers M simply.

Let v : (a,b) = M be an inextendible timelike curve, and let ¢ : (o, 8) —
M be an inextendible null geodesic. Obviously, in arbitrary two-dimensional
Lorentzian manifolds, v and ¢ may intersect more than once. However, if M
is homeomorphic to R?, v and c intersect in at most one point [cf. Beem and
Woo (1969, p. 52), Smith (1960b)].

Proposition 3.42. Let (M, g) be a Lorentzian manifold homeomorphic to

R2. Then each timelike curve intersects a given null geodesic at most once.

Proof. Let ¢p be an inextendible future directed null geodesic in M, which
we may assume belongs to the family F; defined by the null vector field X; as
above. Suppose that o is a future directed timelike curve in M which intersects
co twice (possibly at the same point). We may then find a,b € R witha < b
such that o(a), o(b) lie on ¢y and o(t) ¢ ¢o for a < ¢t < b. Since o is timelike, o
is locally one-to-one. Hence if o | [a,b] is not one-to-one, o contains at worst
closed timelike loops. Using one of these loops, it is possible to find «, 8 € R
with a < o < 8 < b and a second null geodesic ¢; € F; such that o [e, 8] is

one-to-one, o(c) and o(B) lie on ¢1, and o(t) ¢ ¢; fora <t < B.
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FIGURE 3.7. In a Lorentzian manifold homeomorphic to R?, the
timelike curve v is assumed to cross the null geodesic ¢o at (a)
and «(b). The null geodesic c; enters W at y(t;) and first leaves at
~(t}) where t] > t;.

We will show below that if v : [a,b] — M is an injective future directed
timelike curve, there is no ¢ € F such that y(a) and (b) lie on ¢ but v(¢) ¢
c for a < t < b. If the original timelike curve o| [a,b] is injective, this
argument applied to o| [a,b] yields the desired contradiction. If o | [a,b] is
not injective but intersects ¢ at o(a) and o(b), then this argument applied to

c1 and o [o, (] yields the desired contradiction.
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Thus the theorem will be established if we show that it is impossible to find
an injective future directed timelike curve v : [a,b] — M with y(a) and y(b)
on cg and y(t) ¢ ¢o for a < t < b. Traversing v from 7y(a) to v(b) and then the
portion of ¢g from ~(b) to y(a) yields a closed Jordan curve which encloses a set
W with W compact (cf. Figure 3.7). Let U be a convex normal neighborhood
based on 7(a). Choose t; with a < t; < b and v(t1) € U. Let ¢; be the null
geodesic in F] passing through ~(¢;1). Since ¢; may be reparametrized to be
an integral curve of X; and c¢; enters W at (t1), it follows by Proposition
3.39 that c; leaves W at some point y(¢}) with t] > t;. As co intersects v at
~(b), we must have tj < b. In particular, [t1,t}] C (a,b). Hence we have found
a closed interval [t;,#}] C (a,b) such that ([t;,t;]) C W and + intersects the
null geodesic ¢; € Fy at y(t1) and y(¢}) (cf. Figure 3.7).

We may now form a second closed Jordan curve by traversing -« from ¢; to
t} followed by the portion of ¢; from (t}) to ¥(¢t1). Repeating the argument
of the preceding paragraph, we obtain a closed interval [ta,t5] C (¢1,%}) such
that the timelike curve «y| [t2,t5] intersects a null geodesic ¢ in the family
Fy at (t2) and «(¢5) and such that y(¢2) is contained in a convex normal
neighborhood of ¥(¢1). Inductively, we can construct a nested sequence of
intervals [tx41,t541] € (tk,ty) such that y(tx41) lies in a convex normal neigh-
borhood of (tx) and | [tk41,t;,,] intersects a null geodesic ck1 € F1 at
Y(tk+1) and y(t;, ). Moreover, the intervals [t,t;] may be chosen such that
Nieq[te, ti) = {to} for some to € (a,b). We thus have constructed two se-
quences tx T to and t;, | ¢o such that the timelike curve ~y intersects a null
geodesic in F; at both y(¢x) and 7(t}) for each k > 1. But this is impossible
by Proposition 3.4. Hence the geodesic v : [a,b] — M intersects ¢y at most

once.

Theorem 3.43. Let (M, g) be a Lorentzian manifold homeomorphic to R?.

Then (M, g) is stably causal.

Proof. Recall that g € Lor(M) is stably causal if there is a fine C° neigh-
borhood U of g in Lor(M) such that all metrics in U are causal. Since strongly
causal implies causal, it will thus follow that all metrics in Lor(M) are stably

causal if all metrics in Lor(M) are strongly causal. Thus to prove the theorem,
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it is enough to show that if g is any Lorentzian metric for M, then (M, g) is
strongly causal.

Thus suppose that g is a Lorentzian metric for M such that (M, g) is not
strongly causal. Then there is some p € M such that strong causality fails at
p. Let (U, z) be a chart about p, guaranteed by Lemma 3.36, such that the
null geodesics in U lie on the sets £; = constant and z2 = constant. Since
strong causality fails at p, there are arbitrarily small neighborhoods V of p
with V C U and timelike curves which begin at p, leave V', and then return to
V. By Proposition 3.42, there are no closed timelike curves through p. Thus
if v is a future directed timelike curve with v(0) = p which leaves V' and then
returns, we have «(¢) # p for all ¢ > 0. Since the null geodesics in U through p
are given by z; = 0 and by z2 = 0 in the local coordinates z = (z1, z2) for U,
it follows that v may be deformed to intersect one of the null geodesics through
p upon returning to V' (cf. Figure 3.8). Hence + intersects a null geodesic in

Fy or F; twice, contradicting Proposition 3.42. O

Corollary 3.44. No Lorentzian metric for R? contains any closed non-

spacelike curves.

A different proof of the result that any simply connected Lorentzian two-
manifold is strongly causal may be found in O’Neill (1983). For n > 3,
Lorentzian metrics which are not chronological and hence not strongly causal
may be constructed on R™.

For every two-dimensional Lorentzian manifold (M, g), there is an associ-
ated Lorentzian manifold (M, —g). The timelike curves of (M, —g) are the
spacelike curves of (M, g) and vice versa. Using M = R? and applying Corol-
lary 3.44 to (M, —g) we obtain

Corollary 3.45. No Lorentzian metric for R? contains any closed spacelike

curves.

If (M, g) is two-dimensional and both (M, g) and (M, —g) are stably causal,
then using techniques given in Beem (1976a), one may show there is some
smooth conformal factor Q : M — (0,00) such that the manifold (M, Qg) is
geodesically complete. This yields the following corollary.
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4~ null geodesic

<2_ null geodesic

FIGURE 3.8. (M,g) is a two-dimensional space-time such that
strong causality fails at p. There is a future directed timelike curve
~ which starts at p, later returns close to p, and crosses one of the

null geodesics through p.

Corollary 3.46. Let (M,g) be a Lorentzian manifold homeomorphic to
R2. Then there is a smooth conformal factor Q : M — (0,00) such that
(M, Qg) is geodesically complete.

There are examples of two-dimensional space-times such that no global con-
formal change makes them nonspacelike geodesically complete (cf. Section 6.2).
Thus, Corollary 3.46 cannot be extended to all two-dimensional space-times
by covering space arguments. The recent monograph by Weinstein (1993)
contains many further interesting results on Lorentzian surfaces inspired in
part by Kulkarni’s (1985) study of the conformal boundary for such a surface
[cf. Smyth and Weinstein (1994)].
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3.5 The Second Fundamental Form

Let N be a smooth submanifold of the Lorentzian manifold (M,g). If
i: N — M denotes the inclusion map, then we may regard T, N as being a
subspace of T, M by identifying 4., (Tp,N) with T,N. Let go = i*g denote the
pullback of the Lorentzian metric g for M to a symmetric tensor field on N.
Under the identification of T, N and i.,(T,N), we may also identify go at p
and g| TpN x TpN for all p € N. This identification will be used throughout

this section.

Definition 3.47. (Nondegenerate Submanifold) The submanifold N of
(M, g) is said to be nondegenerate if for each p € N and nonzero v € T, N,
there exists some w € TN with g(v, w) # 0. If, in addition, g| Tp,N x TpN is
positive definite for each p € N, then N is said to be a spacelike submanifold.
If g| T,N x TpN is a Lorentzian metric for each p € N, then N is said to be

a timelike submanifold.

For the rest of this section, we will suppose that N is a nondegenerate
submanifold. Thus for each p € N, there is a well-defined subspace T;—N of
T, M given by

TN = {v e T,M: g(v,w) =0 for all w € T,N}

which has the property that T;-NNT,N = {0}. Consequently, there is a well-
defined orthogonal projection map P : T,M — T,N. The connection V on
(M, g) may be projected to a connection V° on N by defining V4Y = P(VxY)
for vector fields X, Y tangent to N. It is easily verified that V° is the unique

torsion free connection on (N, go) satisfying
X (90(Y, 2)) = 90(V%Y, Z) + go(Y, V% 2)

for all vector fields X, Y, Z on N. The second fundamental form, which mea-
sures the difference between V and V°, may be defined just as for Riemannian
submanifolds [cf. Hermann (1968, p. 319), Bélts (1977, p. 25, pp. 51-52)].

Definition 3.48. (Second Fundamental Form) Let N be a nondegener-
ate submanifold of (M,g). Given n € T;-N , define the second fundamental
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form Sy : T,N x T,N — R in the direction n as follows. Given z,y € TN,
extend to local vector fields X, Y tangent to N, and put

Sa(@,9) = 9 (VxY¥1,,n) = g (VxYl, - V&Y],.n).
Define the second fundamental form S : TN x T,N x T,N — R by
S(n,z,y) = Sn(z,y)-

Given n € T;'N , the second fundamental form operator L, : T,N — T,N is
defined by g(Ln(z),y) = Sn(z,y) for all z,y € T,N.

It may be checked that this definition of S,(z,y) is independent of the
choice of extensions X, Y for z, y € T,N and also that S, : T,N x T,N — R
is a symmetric bilinear map. Furthermore, S : T;"N x T,N x T,N — R is
trilinear for each p € N.

Lemma 3.49. Let N be a nondegenerate submanifold of (M,g). The
second fundamental form S =0 on N iff VxY = VY for all vector fields X
and Y tangent to N.

Proof. Obviously, Definition 3.48 implies that if VxY = V%Y for all vector
fields tangent to N, then S = 0.

Now suppose S = 0. Let p € N be an arbitrary point. We then have
9(VxY],— VXY| ,n)=0forallne T;-N and vector fields X, Y tangent to
N. Since g| T,N x T,N is nondegenerate, g| T;-N x T;-N is also nondegen-
erate. Thus VxY|, and VY|  have the same projection onto T,-N. Since
T,M =T,N @ T; N, we have VxY|, = VY| , as required. O

The second fundamental form may be used to characterize totally geodesic
nondegenerate submanifolds of (M, g). A submanifold N of (M, g) is said to be
geodesic at p € N if each geodesic v of (M, g) with v(0) = p and v'(0) € T,N
is contained in N in some neighborhood of p. The submanifold NV is said to be
totally geodesic if it is geodesic at each of its points. The following proposition
is the Lorentzian analogue of a well-known Riemannian result [cf. Hermann
(1968, p. 338), Cheeger and Ebin (1975, p. 23)].
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Proposition 3.50. Let N be a nondegenerate submanifold of (M, g). Then
N is totally geodesic iff the second fundamental form S satisfies S =0 on N.

Proof. Given that S = 0 on N, Lemma 3.49 implies that VxY = V%Y
for all vector fields X, Y tangent to N. Let ¢ : (—¢,€) — M be a geodesic in
(M, g) with ¢/(0) = v € T,N for some p € N. Also let v : (—6,6) — N be
the geodesic in (N, go) with 7/(0) = v. Since Vv’ = V3,7/ = 0, the curve v
is also a geodesic in (M,g). Set n = min{e, 6}. From the uniqueness of the
geodesic in (M, g) with the given initial direction v, we have ¢(t) = v(t) for all
t € (-n,7n). Hence v| (-n,n) C N as required.

Conversely, suppose N is totally geodesic in (M, g). Let p € N be arbitrary.
Given n € TyN and z € T,N, let ¢ : J — N be the geodesic (in both M
and N) with ¢/(0) = z. Extend ¢/(¢) to a vector field X tangent to N near p.
We then have S(n,z,z) = g(VxX|,,n) = g(Voc'(0),n) = g(0,n) = 0. By
polarization, it follows that S(n,z,y) =0 for all z,y € T,N. Hence S =0 on
N. O

As will be seen in Chapter 12, the second fundamental form plays an im-

portant role in singularity theory in general relativity.

3.6 Warped Products

If (M, g) and (H, h) are two Riemannian manifolds, there is a natural prod-
uct metric go defined on the product manifold M x H such that (M x H, go) is
again a Riemannian manifold. Bishop and O’Neill (1969) studied a larger class
of Riemannian manifolds, including products, which they called warped prod-
ucts. If (M, g) and (H, h) are two Riemannian manifolds and f : M — (0, o)
is any smooth function, the product manifold M x H equipped with the met-
ric g ® fh is said to be a warped product and f : M — (0,00) is called the
warping function. Following Bishop and O’Neill, we will denote the Riemann-
ian manifold (M x H,g@® fh) by M xs H. Bishop and O’Neill (1969, p. 23)
showed that M x ¢ H is a complete Riemannian manifold if and only if both
(M, g) and (H,h) are complete Riemannian manifolds. Utilizing this result,
they were able to construct a wide variety of complete Riemannian manifolds

of everywhere negative sectional curvature using warped products.
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In this section, we will use warped product metrics to construct Lorentzian
manifolds and will then study the causal structure and completeness proper-
ties of this class of Lorentzian manifolds. The theory for Lorentzian mani-
folds differs from the Riemannian theory somewhat, since the product of two
Lorentzian manifolds (M, g) and (H,h) has signature (—,—,+,--- ,+) and
hence is not Lorentzian. Nevertheless, warped product Lorentzian metrics
may be constructed from products of Lorentzian and Riemannian manifolds.
In particular, this product construction may be used to produce examples of
bi-invariant Lorentzian metrics for Lie groups (cf. Section 5.5). A treatment of
warped products of semi-Riemannian (not necessarily Lorentzian) manifolds,
including a calculation of their Riemannian and Ricci curvature tensors, is
given in O’Neill (1983).

Throughout this section, we willlet 7 : M x H - M andn: M x H —
H denote the projection maps given by w(m,h) = m and n(m,h) = h for
(m,h) € M x H.

Definition 3.51. (Lorentzian Warped Product) Let (M,g) be an n-
dimensional manifold (n > 1) with a signature of (—,+,--- ,+), and let (H,h)
be a Riemannian manifold. Let f: M — (0,00) be a smooth function. The
Lorentzian warped product M x; H is the manifold M = M x H equipped
with the Lorentzian metric g defined for v,w € T3 M by

9(v,w) = g(muv, mew) + f(n(P)) - h(nuv, Nuw).

Definition 3.52. (Lorentzian Product) A warped product M x ; H with
f =1 is said to be a Lorentzian product and will be denoted by M x H.

Remark 3.53. One may also obtain Lorentzian manifolds by considering
warped products H x y M, where (H, h) is a Riemannian manifold, (M, g) is a
Lorentzian manifold, and f : H — (0,00) is a smooth function. The universal
covering manifold of anti-de Sitter space (cf. Section 5.3) is an example of a
space-time important in general relativity which may be written as a warped
product of the form H x; M with H Riemannian and M Lorentzian but not
as a warped product of the form M x y H of Definition 3.51. We will only treat
warped products of the form M x; H in this section.
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We begin our study of the causal properties of warped products with the

following lemma.

Lemma 3.54. The warped product M x ¢ H of (M, g) and (H,h) may be
time oriented iff either (M, g) is time oriented (if dim M > 2) or (M,g) is a

one-dimensional manifold with a negative definite metric.

Proof. Suppose that M xjy H is time orientable. If dimM = 1, then
(M, g) has a negative definite metric by Definition 3.51. Now consider the
case dim M > 2. Since M x; H is time orientable, there exists a continuous
timelike vector field X for M x ;s H. Since f > 0 and h is positive definite, we
then have g(m. X, m.X) < g(X, X) < 0. Thus the vector field 7, X provides a
time orientation for (M, g).

Conversely, suppose first that dim M > 2 and (M, g) is time oriented by the
timelike vector field V. Then V may be lifted to a timelike vector field V on
M x H which satisfies 7,V = V and 7.V = 0. Explicitly, fixing p = (m,b) €

M x H, there is a natural isomorphism
Tp(MxsH)=T3(M x H) =2 T,,M x T,H.

Thus we may define V' at 7 by setting V(p) = (V(m),0,) using this isomor-
phism to identify T (M x H) and Trn M x Ty H. It is immediate from Definition
3.51 that g(V,V) = g(V, V) < 0. Hence V time orients M x ; H as required.

Now consider the case dim M = 1. It is then known that M is diffeomorphic
to S? or R. In either case, let T be a smooth vector field on M with g(T,T) =
—1. Defining T(p) = (T(w(P)),0n5)) as above, we have n,T = 0, so that T
time orients M. Note also in the case that M = S! the integral curves of T in

M are closed timelike curves. Thus M is not chronological. O

Lemma 3.55. Let (H,h) be an arbitrary Riemannian manifold, and let
M = (a,b) with —00 < a < b < +oo be given the negative definite metric —dt?.
For any smooth function f : M — (0, 00), the warped product (M x¢ H,g) is
stably causal.

Proof. The projection map m : M x H — M C R serves as a time func-
tion. O
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From the hierarchy of causality conditions given in Figure 3.3, we then

obtain

Corollary 3.56. Let (H,h) be an arbitrary Riemannian manifold, and let
M = (a,b) with —oo < a < b < +0o be given the negative definite metric —dt?.
For any smooth function f : M — (0, 00), the warped product (M x¢ H,g) is

chronological, causal, distinguishing, and strongly causal.

In the proof of Lemma 3.54 above, we have seen that if M = S!, then the
warped product (S xs H,g) fails to be chronological and hence fails to be
causal, distinguishing, or strongly causal.

We now list some elementary properties of warped products that follow
directly from Definition 3.51. A homothetic map F : (M1,g1) — (M2, g2) is a
diffeomorphism such that F*(g2) = cg; for some constant c. We remark that
some authors only require homothetic maps to be smooth and not necessarily

one-to-one.

Remark 3.57. Let M x; H be a Lorentzian warped product.

(1) For each b € H, the restriction 7r|n_1(b) :n71(b) — M is an isometry
of n~1(b) onto M.

(2) For each m € M, the restriction 7| ()
thetic map of m~!(m) with homothetic factor 1/f(m).

(3) If ve T(M x H), then g(m.v, mv) < g(v,v). Thus m, : Tp(M x H) —

Tr(p)M maps nonspacelike vectors to nonspacelike vectors, and = maps

n~1(m) — H is a homo-

nonspacelike curves of M x; H to nonspacelike curves of M.

(4) Since |g(m.v, muv)| > |g(v,v)| if v € T(M x H) is nonspacelike, the
map 7 is length nondecreasing on nonspacelike curves (cf. Section 4.1,
formula (4.1) for the definition of Lorentzian arc length).

(5) For each (m,b) € M x H, the submanifolds 7~!(m) and n~1(b) of
M x; H are nondegenerate in the sense of Definition 3.47.

(6) If ¢ : H — H is an isometry, then the map ® =1 x¢: M xs H —
M xy H given by ®(m,b) = (m, ¢(b)) is an isometry of M x¢ H.

(7) If¢: M — M is an isometry of M such that f oy = f, then the map
U=9yx1:MxsH— MxyH given by ¥(m,b) = (¢(m),b) is an
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isometry of M xy H. Thus if X is a Killing vector field on M (i.e.,
Lxg = 0) with X(f) = 0, then the natural lift X of X to M x; H
given by X (p) = (X (n(p)), On(p)) is a Killing vector field on M x5 H.

Lemma 3.58. Let M x; H be a Lorentzian warped product. Then for
each b € H, the leaf n~1(b) is totally geodesic.

Proof. Since the map 7 : M x5y H — M is length nondecreasing on non-
spacelike curves and since nonspacelike geodesics are locally length maximiz-
ing, it follows that any nonspacelike geodesic of n~1(b) (in the metric induced
by the inclusion n71(b) € M xs H) is a geodesic in the ambient manifold
M x ¢ H. Thus the second fundamental form vanishes on all nonspacelike vec-
tors in T(n~1(b)). Since any tangent vector in T'(n~!(b)) may be written as a
linear combination of nonspacelike vectors in T'(n~1(b)), it follows that the sec-
ond fundamental form vanishes identically. Hence, n~1(b) is totally geodesic
by Proposition 3.50. O

In view of Corollary 3.56, we may now restrict our attention to studying
the fundamental causal properties of time oriented Lorentzian warped products
(M x¢ H,g) with dim M > 2.

Lemma 3.59. Let p = (p1,p2) and q = (q1,92) be two points in M x ¢ H
with p < ¢ (respectively, p < q) in (M xy H,g). Then p; < ¢ (respectively,
p<q)in(M,g).

Proof. If v is a future directed timelike (respectively, nonspacelike) curve
in M x¢ H from p to g, then 7 oy is a future directed timelike (respectively,

nonspacelike) curve in M from p; to ¢;. O

While 7 : M x s H — M takes nonspacelike curves to nonspacelike curves,
7 does not preserve null curves. Indeed, it follows from Definition 3.51 that if
~ is any smooth null curve with n.v(t) # 0 for all ¢, then g(m.vy(¢), mxv(¢)) <0
for all ¢.

For points p and q in the same leaf n~1(b) of M x s H, Lemma 3.59 may be

strengthened as follows.
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FIGURE 3.9. Let (m,b) be a point of the warped product M x s H.
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Then the projection map  restricted to () is an isometry onto
M, and the projection map 7 restricted to 7 ~!(m) is a homothetic

map onto H.

Lemma 3.60. If p = (p1,b) and ¢ = (q1,b) are points in the same leaf
n~1(b) of M x s H, then p < q (respectively, p < q) in (M xs H,g) iff p1 < 1
(respectively, p1 < g1) in (M, g).

Proof. By Lemma 3.59, it only remains to show that if p; < g1 (respectively,
p1 < ¢1) in (M, g), then p < ¢ (respectively, p < ¢) in (M x5 H,g). But if
71 : [0,1] — M is a future directed timelike (respectively, nonspacelike) curve
in M from p; to ¢, then v(¢) = (71(¢),b), 0 < ¢t < 1, is a future directed
timelike (respectively, nonspacelike) curve in M x ¢ H from p to ¢. O
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Lemma 3.60 implies that each leaf n=1(b), b € H, has the same chronology
and causality as (M,g). In particular, Lemmas 3.59 and 3.60 imply that
(M x¢ H,g) has a closed timelike (respectively, nonspacelike) curve iff (M, g)

has a closed timelike (respectively, nonspacelike) curve. Hence

Proposition 3.61. Let (M, g) be a space-time, and let (H,h) be a Rie-
mannian manifold. Then the Lorentzian warped product (M xy¢ H,g) is
chronological (respectively, causal) iff (M,g) is chronological (respectively,

causal).
A similar result holds for strong causality.

Proposition 3.62. Let (M,g) be a space-time, and let (H,h) be a Rie-
mannian manifold. Then the Lorentzian warped product (M xf H,g) is

strongly causal iff (M, g) is strongly causal.

Proof. We first show that if the space-time (M, g) is not strongly causal at
p1, then (M x s H,g) is not strongly causal at p = (p1,b) for any b € H. Since
(M, g) is not strongly causal at p;, there is an open neighborhood U; of p; in
M and a sequence {7 : [0,1] — M} of future directed nonspacelike curves
with 7, (0) — p1 and k(1) — p1 as k — oo, but v, (1/2) ¢ Uy for all k. Define
ok : [0,1] = M x H by ok(t) = (7k(t),b). Let Vi be any open neighborhood
of bin H, and set U = Uy x V4 in M x H. Then U is an open neighborhood of
p=(p1,b) in M xs H, and {04} is a sequence of nonspacelike future directed
curves in M x ¢ H with 04(0) — p and ox(1) — p as k — oo, but 0(1/2) ¢ U
for all k. Thus (M xy H,g) is not strongly causal at p.

Conversely, suppose that strong causality fails at the point p = (p1,q1) of
(M xf7 H,g). Let (z1,..., ;) be local coordinates on M near p; such that g
has the form diag(—1,+1,...,+1) at p;, and let (zi41,...,Zn) be local coor-
dinates on H near g; such that fh has the form diag(+1,...,+1) at ¢;. Then
(z1,.--,%i, Tit1,- - -, Tn) are local coordinates for M x s H near p. Further-
more, F; = z; and F» = z; o« are (locally defined) time functions for M
near p; and for M xy H near p, respectively. The failure of strong causal-
ity at p implies the existence of a sequence 7 : [0,1] — M xs H of future

directed nonspacelike curves with ,(0) — p and vx(1) — p as k — oo, but



3.6 WARPED PRODUCTS 101

F3(v£(1/2)) > € > 0 for all k£ and some parametrization of ;. Choose a
neighborhood W of p; in M such that W is covered by the local coordinates
(z1,---,z;) above and such that sup{Fi(r) : 7 € W} < ¢/2. The curves
7 o 7, are then future directed nonspacelike curves in M with 7 o v, (0) — py,
movk(l) — p1, and oy, (1/2) ¢ W. Hence W and {m o~} show that strong
causality fails at p; in (M, g) as required. O

In Proposition 3.64 we prove the equivalence of stable causality for (M, g)
and (M xy H,g) for dimM > 2. From this proposition and the last two
propositions, it follows that the basic causal properties of (M x; H,g) are
determined by those of (M, g).

Remark 3.63. If g < g; on M, then there is a smooth conformal factor
Q: M — (0,00) such that Qg;(v,v) < g(v,v) for all nontrivial vectors which

are nonspacelike with respect to g.

Proposition 3.64. Let (M, g) be a space-time and (H,h) a Riemannian
manifold. Then the Lorentzian warped product (M x ¢ H,q) is stably causal
iff (M, g) is stably causal.

Proof. In this proof we will use the identification Tp,(M x H) = T, M x T, H
for all p = (p1,b) € M x H.

Assuming that (M x; H,g) is stably causal, there exists g; € Lor(M x H)
such that § < g; and g; is causal. If b is a fixed point of H, then we may
assume without loss of generality that g, |, (v) 18 nondegenerate since g, -1 )
is nondegenerate. Setting g1 = 7/,-1(;) and using |, . ;) to identify n=1(b)
with M, we obtain a metric gy € Lor(M) such that |, _,, is an isometry
of (n7%(b),g1) onto (M,g;). Notice that since (M x H,g;) is causal, the
space-time (n~!(b),g1) is causal, and hence (M, g;) is also causal. To show
g < g1 on M, we choose a nonzero vector vy € T, M such that g(vy,v;) < 0.
If 0, denotes the zero vector in TpH, then g(v,v) = g(vi,v1) < 0, where
v = (v1,00) € Tp, M x Ty H. Since g < g;, we obtain g, (v,v) = g1(v1,v1) < 0.
Hence g < g1, and (M, g) is stably causal.

Conversely, we now assume that (M, g) is stably causal. Let g; € Lor(M)

be a causal metric with g < g;. By Remark 3.63 we may also assume that
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g1(v1,v1) < g(v1,v1) for all vectors v; # 0 which are nonspacelike with respect
to g. Since Proposition 3.61 implies that §; = g1 ® fh is a causal metric on
M x H, it suffices to show that § < g;. To this end, let v = (v;,v2) be a
nontrivial vector of Tp,(M x H) which is nonspacelike with respect to g. Then
since g(v,v) = g(v1,v1) + f(7(v)) - h(ve,v2) < 0 and f(7w(v)) - h(v2,v2) > 0
with vy # 0, the nontriviality of v implies that v; # 0 and g(v1,v1) < 0. Thus
91(v,v) = g1(v1,v1) + f(w(v)) - R(v2,v2) < g(v1,v1) + f(m(v)) - h(v2,v2) <0
which shows that § < g; and establishes the proposition. O

Geroch’s Splitting Theorem (cf. Theorem 3.17) guarantees that any globally
hyperbolic space-time may be written as a topological product R x S where
S is a Cauchy hypersurface. Geroch’s result suggests investigating conditions
on (M,g) and (H,h) which imply that the warped product (M xs H,g) is
globally hyperbolic. These conditions are given for dim M = 1 and dim M > 2
in Theorems 3.66 and 3.68, respectively. In order to prove these results, it is
first necessary to show that a curve in a complete Riemannian manifold which

is inextendible in one direction must have infinite length.

Lemma 3.65. Let (H,h) be a complete Riemannian manifold, and let
v:[0,1) — H be a curve of finite length in (H,h). Then there exists a point
p € H such that y(t) - past— 1".

Proof. Let dp denote the Riemannian distance function induced on H by
the Riemannian metric h. Let L = Lo(v) be the Riemannian arc length of -,
and set K = {q € H : do(7(0),q) < L}. The Hopf-Rinow Theorem [cf. Hicks
(1965, pp. 163-164)] implies that K is compact. Fix a sequence {¢,} in [0, 1)
with ¢, — 1. Since d(v(0),7v(¢)) < L(v]| [0,t]) < L for t € [0,1), we have
7[0,1) € K. Thus by the compactness of K, the sequence {y(t»)} has a limit
point p € K. If lim;_,;- ¥(t) # p, there would then exist an € > 0 such that
leaves the ball {m € M : d(p,m) < €} infinitely often. But this would imply
that v has infinite length, in contradiction. O

The following theorem may be obtained from the combination of Corollary
3.56 and Lemma 3.65. The proof, which is similar to that of Theorem 3.68,

will be omitted.
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Theorem 3.66. Let (H,h) be a Riemannian manifold, and let M = (a, b)
with —co < a < b < 400 be given the negative definite metric —dt2. Then
the Lorentzian warped product (M x¢ H,g) is globally hyperbolic iff (H, k)

is complete.

Theorem 3.66 may be regarded as a “metric converse” to Geroch’s splitting
theorem. If f = 1 is assumed, so that the warped product (M xf H,g) is
simply a metric product (M x H, g @ h), Theorem 3.66 may be strengthened
to include geodesic completeness (cf. Definition 6.2 for the definition of geodesic

completeness).

Theorem 3.67. Suppose that (H,h) is a Riemannian manifold and that
R x H is given the product Lorentzian metric —dt?> @ h. Then the following

are equivalent:

(1) (H,h) is geodesically complete.
(2) (R x H,—dt? @ h) is geodesically complete.
(3) (R x H,—dt?> @ h) is globally hyperbolic.

Proof. We know that (1) iff (3) from Theorem 3.66. Thus it remains to
show (1) iff (2). But this is a consequence of the fact that all geodesics of
R x H are either (up to parametrization) of the form (At, c(t)), (Ao, c(t)), or
(At, ho), where A, Ag € R are constants, hg € H, and ¢: J — H is a unit speed
geodesic in H. O

Suppose that a space-time (M, g) of dimension n > 3 satisfies the timelike
convergence condition (i.e., has everywhere nonnegative nonspacelike Ricci
curvatures) and satisfies the generic condition (i.e., each inextendible non-
spacelike geodesic contains a point where the tangent vector W satisfies the
equation Y7 ;_; WeW W g Ryjcae Wy # 0 [cf. Chapter 2]). Then if (M, g) has
a compact Cauchy surface, the space-time (M, g) is geodesically incomplete.
Thus Theorem 3.66 may not be strengthened for arbitrary warped products
to include geodesic completeness. The “big bang” Robertson-Walker cosmo-
logical models (cf. Section 5.4) are examples of globally hyperbolic warped

products which are not geodesically complete.
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In contrast, let (R x H,—dt? @ h) be a product space-time of the form
considered in Theorem 3.67. Fix any bp € H. Then «(t) = (¢, bo) is a timelike
geodesic with R(v'(t),v) = 0 for all v € Ty(;)(R x H) for each t € R. Thus
(R x H,—dt? @ h) fails to satisfy the generic condition.

If dimM =1 and M is homeomorphic to R, we have just given necessary
and sufficient conditions for the warped product M x ¢ H to be globally hyper-
bolic. If M = S, we remarked above that (M x ¢ H,g) is nonchronological no
matter which Riemannian metric h is chosen for H. Thus no warped product
space-time (S! x s H,7) is globally hyperbolic.

We now consider the case dim M > 2.

Theorem 3.68. Let (M, g) be a space-time, and let (H,h) be a Riemann-
ian manifold. Then the Lorentzian warped product (M x; H,g) is globally
hyperbolic iff both of the following conditions are satisfied:

(1) (M, g) is globally hyperbolic.
(2) (H,h) is a complete Riemannian manifold.

Proof. (=) Suppose first that (M xy H,g) is globally hyperbolic. Fixing
b € H, we may identify (M, g) with the closed submanifold n~1(b) = M x {b}
since the projection map 7 : n~1(b) — M is an isometry. Lemma 3.60 implies
that under this identification, the set J*(p1) N J~(q1) in M corresponds to
n~1(b) N J+((p1,b)) N J~((g1,b)) in (M x ¢ H) for any p; and ¢; in M. Since
n~1(b) is closed and (M x s H,§) is globally hyperbolic, n=1(b) N J*((p1,b)) N
J~((q1,b)) is compact in (M xs H). Hence J*(p1) N J~(q1) is compact in
M. Because (M xj H,g) is globally hyperbolic, it is also strongly causal.
Thus (M, g) is strongly causal by Proposition 3.62. Hence (M, g) is globally
hyperbolic as required.

Now we show that (M x; H,g) globally hyperbolic implies that (H,h) is
a complete Riemannian manifold. We will suppose that (H, h) is incomplete
and derive a contradiction to the global hyperbolicity of (M x¢ H,g). For
this purpose, fix any pair of points p; and ¢; in M with p; < ¢, and let
7 : [0,L] — M be a unit speed future directed timelike curve in M from
p1 to q1. Set o = sup{f(71(t)) : t € [0,L]} where f : M — (0,00) is the
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FIGURE 3.10. In the proof of Theorem 3.68, the curve c : [0, 8) —
H is a geodesic which is not extendible to ¢ = § < oo. The curves
F(t) = (11(t),c(t)) and F(t) = (71(L — t),c(¢)) are inextendible
nonspacelike curves in (M x ¢ H,g) and hence do not have compact

closure.

given warping function. Since 71([0, L]) is a compact subset of M, we have
0<a<oo.

Assuming that (H, h) is not complete, the Hopf-Rinow Theorem ensures the
existence of a geodesic ¢ : [0,3) — H with h(c'(t),c/(t)) = 1/a which is not
extendible to t = 8 < oco. By changing c(0) and reparametrizing c if necessary,
we may suppose that 0 < 8 < L/2. Define a future directed nonspacelike curve
¥ :[0,8) — M x H and a past directed nonspacelike curve 7 : [0,3) — M x H
by F(¢) = (71(¢),c(t)) and F(¢) = (y1(L — t),c(t)), respectively. For each t
with 0 < t < 8, we have 71(t) < v1(L —¢) in (M, g) since t < L —t. Hence
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by Lemma 3.60, we have (71(t),c(t)) < (71(L —t),c(t)) in M xy H. Thus
(p1,¢(1)) < F(t) < ¥(t) < (q1,¢(0)) for all 0 < ¢ < B (cf. Figure 3.10). It
follows that ¥([0,8)) is contained in J*((p1,¢(0))) N J~((g1,¢(0))). Since
¢ =1 o7 does not have compact closure in H, the curve 7:[0,8) - M x; H
does not have compact closure in J*((p1,¢(0))) N J~((q1,¢(0))). But since
(M xz H,g) is globally hyperbolic, the set J*((p1,¢(0))) N J~((g1,¢(0))) is
compact, in contradiction.

(«=) Suppose now that (M, g) is globally hyperbolic. Assuming that the
warped product (M xf H,g) is not globally hyperbolic, we must show that
(H,h) is not complete. Since (M, g) is strongly causal, (M x; H,g) is also
strongly causal by Proposition 3.62. Hence since (M x; H,g) is not globally
hyperbolic, there exist distinct points (p1,51) and (p2,b2) in M x; H such
that J*((p1,b1))NJ~((p2,b2)) is noncompact. There is then a future directed
nonspacelike curve v : [0,1) — J*((p1,b1)) N J~((p2, b2)) which is future inex-
tendible in (M x; H,g). Let v(t) = (u1(t),ua(t)), where uq : [0,1) - M
and uy : [0,1) — H. Then u; : [0,1) — M is a future directed non-
spacelike curve contained in J*(p;) N J~(p2). Since (M,g) is globally hy-
perbolic, J*(p1) N J~(p2) is compact. Hence if we set ag = inf{f(m) : m €
JH(p1)NJ ™ (p2)}, then ap > 0. Also since (M, g) is strongly causal, no future
directed, future inextendible, nonspacelike curve may be future imprisoned in
the compact set J*(p1) N J~(p2) (cf. Proposition 3.13). Hence there exists a
point 7 € J*(p1) N J~(p2) with lim,_,;- u1(¢) = 7. We may then extend u,
to a continuous curve u; : [0,1] — M by setting u;(1) = r. Since the curve
v = (u1,u2) was inextendible to ¢ = 1, it follows that us(t) cannot converge
to any point of H as ¢ — 1~. By Lemma 3.65, either (H, h) is incomplete or
up has infinite length. As u; : [0,1] — M is a nonspacelike curve defined on a
compact interval, u; has finite length in (M, g). Since f(ui(t)) > agp > 0 for
all t € [0,1] and

g(v'(1),7' (1) = g(ua'(£), w1 (£)) + f(wa(t)) - h(u2' (), u2' (1)) <0,

it follows that us has finite length in (H,h). Thus (H,h) is incomplete as
required. O
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Cauchy surfaces may be constructed for globally hyperbolic Lorentzian

warped products as follows.

Theorem 3.69. Let (H,h) be a complete Riemannian manifold. Let
(M xs H,g) be the Lorentzian warped product of (M, g) and (H, h).

(1) If M = (a,b) with —00 < a < b < +o00 is given the metric —dt?, then
{p1} x H is a Cauchy surface of (M x; H,g) for each p € M.

(2) If (M,g) is globally hyperbolic with Cauchy surface S, then S; x H
is a Cauchy surface of (M x¢ H,7).

Proof. Since the proofs of (1) and (2) are similar, we shall only give the proof
of (2). In this case, S; x H is an achronal subset of (M x; H,g). To show
S1 X H is a Cauchy surface, we must show that every inextendible nonspacelike
curve in M x ¢ H meets S; x H. Now given (p1,p2) € (M x H) — (S1 x H),
either every future directed, future inextendible, nonspacelike curve in (M, g)
beginning at p; meets S or every past directed, past inextendible, nonspacelike
curve starting at p; meets S;. Since the two cases are similar, we will suppose
the former holds and then show that every future directed, future inextendible,
nonspacelike curve v : [0,1) — M x; H with v(0) = (p1,p2) meets S1 x H.

Thus suppose that v : [0,1) — M x; H is a future directed, future inex-
tendible, nonspacelike curve with v(0) = (p1, p2) which does not meet S; x H.
Decompose ¥(t) = (u1(t),uz2(t)) with u; : [0,1) — M and up : [0,1) — H.
Since S; is a Cauchy surface for (M, g) and (M,g) is globally hyperbolic,
the set J*(p1) N J~(S1) is compact [cf. Beem and Ehrlich (1979a, p. 163)].
As in the proof of Theorem 3.68, the strong causality of (M, g) implies that
there exists a point r € J*(p1) N J=(S1) with lim;_,;- u1(¢) = r. Since
J*(p1) N J~(S1) is compact, the warping function f : M — (0,00) achieves a
minimum ag > 0 on J*(p1) N J~(S1). As in the proof of Theorem 3.68, this
then implies that ug : [0,1) — H has finite length. Since (H, k) is complete,
by Lemma 3.65 there exists a point b € H with lim,_,;- ua(¢t) = b. Setting
~(1) = (r,b), we have then extended 7 to a nonspacelike future directed curve
v :[0,1] - M x; H, contradicting the inextendibility of v. Hence v must

meet S; X H as required. 0O
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We now consider the nonspacelike geodesic completeness of the class of
Lorentzian warped products of the form M = (a,b) x; H with § = —dt*> @
fh. Here a space-time is said to be null (respectively, timelike) geodesically
incomplete if some future directed null (respectively, timelike) geodesic cannot
be extended to be defined for arbitrary negative and positive values of an affine
parameter (cf. Definitions 6.2 and 6.3). Since we are using the metric —dt?
on (a,b), the curve c(t) = (¢,yo) with yo € H fixed is a unit speed timelike
geodesic in (M, g) no matter which warping function is chosen. Consequently,
if @ > —o00 or b < 400, then (M,g) is timelike geodesically incomplete for
all possible warping functions f. Moreover, if a and b are both finite and if v
is any timelike geodesic in M = (a,b) x H, then L(y) < b—a < co. Thus
if @ and b are finite, all timelike geodesics are past and future incomplete.
Nonetheless, if the warping function f is chosen suitably, (M,g) may be null
geodesically complete even if a and b are both finite. This will be clear from
the proof of Theorem 3.70 below.

If M = R x; H with § = —dt?> ® fh, then any timelike geodesic of the
form c(t) = (¢,yo) is past and future timelike complete. However, warped
product space-times M = R x ¢ H may be constructed for which all nonspace-
like geodesics except for those of the form ¢ — (t,yo) are future incomplete.
One such example may be given as follows. Busemann and Beem (1966) stud-
ied the space-time M = {(z,y) € R? : y > 0} with the Lorentzian metric
ds? = y=%(dz? — dy?). Busemann and Beem (1966, p. 245) noted that all
timelike geodesics except for those of the form t — (¢,y0) are future incom-
plete. Setting t = Iny, this space-time is transformed into the Lorentzian
warped product R x s R with g = —dt? @ fdt?, where f(t) = e~%. Since the
map F: (M,ds?) —» (Rx;R,g) given by F(z,y) = (z,1ny) is a global isome-
try, all timelike geodesics of (R x s R, g ) except for those of the form ¢ — (¢, o)
are future incomplete. It will also follow from Theorem 3.70 below that all
null geodesics are future incomplete. Similarly, if (R™, h) denotes R™ with the
usual Euclidean metric h = dz12 + dzo? + - - - + dz,,2, then (R x; R",g) with
g=—dt?® fh and f(t) = e~ % is a space-time with all nonspacelike geodesics
future incomplete except for those of the form t — (¢, yo).
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In order to study geodesic completeness, it is necessary to determine the
Levi-Civita connection for a Lorentzian warped product metric. For this pur-
pose, we will consider the general warped product (M x¢ H,g & fh) where
f: M — (0,00), (H, h) is Riemannian, and (M, g) is equipped with a metric of
signature (—, +,--- ,+). Let V! denote the Levi-Civita connection for (M, g)
and V2 denote the Levi-Civita connection for (H,h). Given vector fields
X1,Y; on M and X5,Y, on H, we may lift them to M x H and obtain the vec-
tor fields X = (X1,0)+ (0, X2) = (X1,X2) and Y = (¥1,0) + (0, Y2) = (Y1, Y2)
on M x H. Recall that the connection V for (M x; H,g @ fh) is related to
the metric g = g ® fh by the Koszul formula

29(VxY,2)=X3g(Y,Z2)+ Y 3(X,Z) - Z§(X,Y)
+9(1X, Y], 2) - 9([X, 2], Y) - g([Y; 2], X)

[cf. Cheeger and Ebin (1975, p. 2)]. Using this formula and setting ¢ = In f,

we obtain the following formula for V for X and Y as above:
— 1
(3.17) VxY = Vi, Y1+ V%, Yo+ 5 [X1(¢)Y2 + Y1(4) X2 — G(X2, Y2) grad ¢] .

Here grad ¢ denotes the gradient of the function ¢ on (M,g), and we
are identifying the vector V}“YIIP € T,M with the vector (V} Y1,0,) €
Tp,g)(M x H), etc.

We are now ready to obtain the following criterion for null geodesic incom-
pleteness of Lorentzian warped products M = (a,b) x; H [cf. Beem, Ehrlich,
and Powell (1982)]. Throughout the rest of this section, let wy denote an

interior point of (a,b).

Theorem 3.70. Let M = (a,b) x5 H be a Lorentzian warped product
with Lorentzian metric g = —dt*> @ fh where —o00 < a < b < 400, (H,h) is
an arbitrary Riemannian manifold, and f : (a,b) — (0,00). Set S(t) = \/f(¢).
Then if lim;_q+ [;° S(s)ds [respectively, lim, 5 f:o S (s)ds] is finite, every

future directed null geodesic in (M, g) is past [respectively, future] incomplete.

Proof. Let vo be an arbitrary future directed null geodesic in (M,g). We

may reparametrize vo to be of the form ~(¢) = (¢,c(t)), where v is a smooth
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null pregeodesic. Accordingly, there exists a smooth function g(¢) such that
Evi / ! a !
Vo |, = 900 (6) = 9(t) 5;| +9()(2)
t

[cf. Hawking and Ellis (1973, p. 33)]. However, since v'(t) = 8/0t|,+¢(t) and
3(+',v') = —1+7(c,c') =0, we obtain using formula (3.17) that

Vyl, =V at\ + Vac|, + F(9)(t) — 33(c(t), () grad ¢
'@ ') o

= VCIC, t)+ ——=
T O 27 B,
Equating terms with a 8/0t component, we obtain the formula
[
3.18 t) = .
(3.18) o) = 5703

Thus V7|, = (1/2)[In f®))'+'(t) = (In S(¢)]' ¥ (t). If we define p : (a,b) — R
by
p(t) = S(s) ds,

then p/(¢t) = S(t) > 0 so that p~! exists. Moreover, from the classical theory
of projective transformations we know that the curve v;(t) = vy o p~1(t) =
(p~1(t),c o p~1(¢)) is a null geodesic [cf. Spivak (1970, pp. 6-35 fI.)]. Let

A=l B=1li :
Jm p(t)  and Jim ()

Since p is monotone increasing, we have that p : (a,b) — (A, B) is a bijection.
Hence p~! : (4, B) — (a,b) and thus 41 = yop~!: (A4, B) — M. Therefore if
A is finite, v, is past incomplete, and if B is finite, 7; is future incomplete as

required. 0O

It is immediate from Theorem 3.70 that if a and b are finite and the warp-
ing function f : (a,b) — (0,00) is bounded, then (M,g) is past and future
null geodesically incomplete. Thus, assuming that a and b are finite, one-
parameter families (M,g(s)) = (M, —dt? ® f(s)h) of past and future null
geodesically incomplete space-times may easily be constructed. Choosing the

one-parameter family of functions f(s) : (a,b) — (0,00) suitably, the curve
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s — g(s) = —dt? @ f(s)h of metrics will not be a continuous curve in Lor( M )
in the fine C™ topologies. Thus the space-times ( M,g(0)) and (M, g(s)) may
be far apart in Lor( M) for s # 0.

Notice that if the Riemannian manifold (H,h) is geodesically incomplete,
then M = (a, b) x s H may be null geodesically incomplete even if both integrals
in Theorem 3.70 diverge. On the other hand, if the completeness of (H, h) is
assumed, the following necessary and sufficient condition for the null geodesic
incompleteness of M = (a,b) X f H may be obtained from the proof of Theorem
3.70.

Remark 3.71. Let M = (a,b) x s H be a Lorentzian warped product with
Lorentzian metric g = —dt?> @ fh, where (H,h) is a complete Riemannian
manifold and —c0 < a < b < +oo. Let S(t) = /f(t) as above. Then
(M,g) is past (respectively, future) null geodestically incomplete if and only if

wo

lim+ S(s) ds is finite (respectively, 11111,1 S(s) ds is finite).
t—a t t—b— wo

In Powell (1982), a more comprehensive study is made of nonspacelike ge-
odesic completeness of Lorentzian warped products, beginning with the ob-
servation that a geodesic in M x; H projects to a pregeodesic in (H, h) and
continuing with the observation that if 5 and B are unit speed geodesics in
(H,h) and (v,7) is a pregeodesic of M x ¢ H, then (v, B) is also a pregeodesic
of M x s H. Then Powell shows that if the Lorentzian warped product M x s H
is timelike (respectively, null or spacelike) geodesically complete, then (H,h)
is Riemannian complete and further (M, g) is timelike (respectively, null or
spacelike) complete.

A second aspect of Powell (1982) is the study of timelike geodesic com-
pleteness for warped products of the form M = (a,b) x ¢ H with metrics
g = —dt?@® fh, corresponding to Theorem 3.70 and Remark 3.71 above for null
completeness. As remarked above, the completeness of the timelike geodesics
of the form ¥(¢) = (¢,yo0) for some yo € H, which Powell terms “stationary,”
is entirely dependent on whether a = —oo or a is finite, and/or b = 400 or b
is finite. Also, if a and b are both finite, then all timelike geodesics are both
past and future incomplete independent of choice of warping function. How-
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ever, for a suitable warping function, even if a = —oco and b = +o0, it can
be arranged for all non-stationary timelike geodesics to be incomplete. More
precisely, Powell shows that if (H, h) is complete and wo € (a,b), then all fu-
ture directed non-stationary timelike geodesics are future (respectively, past)

complete if and only if

/“: (%) : dt = +o0, respectively, /awo (1__{%>% dt = +o0.

From this result and our above results on null completeness, relationships may
be derived between null and timelike completeness for this class of warped
products. (In general, these types of geodesic completeness are logically inde-
pendent (cf. Theorem 6.4). In particular, null completeness of R x; H does
not imply timelike completeness.) However, if the warping function f for
M =R x; H is bounded from above and (H, k) is Riemannian complete, then
the timelike and null completeness are equivalent.

In singularity theory in general relativity, conditions on the curvature ten-
sor of (M,g) which are discussed in Chapters 2 and 12, called the generic
condition and the timelike convergence condition, are considered. These two
conditions guarantee that if a nonspacelike geodesic v may be extended to
be defined for all positive and negative values of an affine parameter and
dimM > 3, then v contains a pair of conjugate points. Hence these cur-
vature conditions may be combined with geometric or physical assumptions,
such as (M,g) is causally disconnected or (M,g) contains a closed trapped
set, to show that (M, ) is nonspacelike geodesically incomplete (cf. Section
12.4). Since (M,g) satisfies the generic condition and strong energy condi-
tion if all nonspacelike Ricci curvatures are positive, it is thus of interest to
consider conditions on the warping function f of a Lorentzian warped product
which guarantee that (M,g) has everywhere positive nonspacelike Ricci cur-
vatures. The assumption dim M > 3 made in singularity theory is necessary
for null conjugate points to exist since no null geodesic in any two-dimensional
Lorentzian manifold contains a pair of conjugate points.

We now give the formulas for the curvature tensor R and Ricci curvature

tensor Ric for the warped product space-time (M x ¢ H,g) where g = g ® fh.
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As above, let V! [respectively, V2] denote the covariant derivative of (M, g)
[respectively, (H,h)]. Also let ¢ = Inf and recall that grad ¢ denotes the
gradient of ¢ on (M,g). As before, we will decompose tangent vectors z in
T5(M x H) as = (z1,22). Let R! [respectively, R%] denote the curvature
tensor of (M, g) [respectively, (H,h)]. Given tangent vectors z1,y1 € TpM,
define the Hessian tensors Hy and hy by

(3.19) Hy(z1) = V,, grad ¢
and
(3.20) ho(z1,y1) = g(VL, grad ¢,y1).

We will also write || grad ¢||? = g(grad ¢, grad ¢). Using the sign convention
R(X,Y)Z = VxVyZ -VyVxZ— V[x'y]Z

for the curvature tensor and substituting from formula (3.17), one obtains the

formula

R(z,y)z = R'(z1,31)21 + R (22, 92)22 + % [ho (1, 21)y2
— he(y1, 21)z2 + glz2, y2) Ho (y1) — G(y2, 22) Hy(z1)]
(3.21) + 1 {[m1(0)21(8) +3(@2,22) | rad 01 32
— [y1(8)21(9) + J(y2, 22)ll grad 6% (p)] 22
+ [y1(9)3(z2, 22) — 21(6)F(y2, 22) grad ¢(p)}

where z,y,2 € T(p,q) (M x H).

Suppose now that dimM = m and dimH = n. To calculate the Ricci
curvature at p = (p,q) € M x H, let {e1,ez,...,em} be a basis for T,M
with g(e1,e1) = —1, g(ej,e;) = 1for 2 < j < m, and g(e;,e;) = 0 if 7 # 3.
Also, let {€m+1,.-.,€n+m} be a g-orthonormal basis for T,H. Then for any
z,y € T3 (M x H), we have

n+m

R,iC(.’E, y) =-7 (R(ehx)yv 61) + Z g(R(eJ'"T):% 6]’).
=2
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The d’Alembertian ¢ of ¢ may also be calculated as

m
O¢(p) = —ha(er,e1) + > holej, €5)-
=2
Using (3.21), it then follows that
Ric(z,y) = Ric! (z1,91) + Ric2($2, y2)
d1

(3.22) —g(z2,92) [l Oo¢(p) +

d1m H

H erad ¢(p)112]

hg(z1,91) — I1(¢)y1(¢)

where z = (z1,41), ¥ = (¥1,¥2) € T(p,q)(M x H), and Ric! and Ric? denote
the Ricci curvature tensors of (M, g) and (H, h), respectively.

We now restrict to the case M = (a,b) x ¢ H with warped product metric
g = —dt? ® fh. In this case, Oé(t) = —¢”(¢) and | grad ¢(¢)||2 = —[¢'(¢))%.
Thus we obtain from (3.22) for 7 = (0,v) € T(; 4)((a,b) x H) that

d1m H

(3.23) Ric(7,7) = Ric*(v,v) + g(v,v) {%d)"(t) + [@'(2) ]2}

If z = 0/0t|, + v € T(1,4)((a,b) x H) with v € T, H, we obtain

(3.24) Ric(z,z) = Ric%(v, v) + (v, v) {1¢"(t) + 8B dlmH [ (t)]2}

+f{- dlqub"(t) B wop).

Both bracketed terms in formulas (3.23) and (3.24) will be positive provided
that

(3.25) —[¢'@®))*dim H < 2¢"(t) < —[¢/(t)]?

for all t € (a,b). Thus if Ric?(v,v) > 0 for all v € TH and condition (3.25)
holds, the space-time (M, g) will have everywhere positive Ricci curvatures.
A globally hyperbolic family of such space-times is provided by warped prod-
ucts M = (0,00) xs H, where (H,h) is a complete Riemannian manifold of
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nonnegative Ricci curvature and g = —dt? @ fh with f(t) = " for a fixed
constant 7 € R satisfying (2/dim H) < r < 2. If (H, k) is taken to be R? with
the usual Euclidean metric and r = 4/3, we recover the Einstein—de Sitter
universe of cosmology theory [cf. Hawking and Ellis (1973, p. 138), Sachs and
Wu (1977a, Proposition 6.2.7 fI.)].

We may also obtain the following condition on ¢ = In f for positive non-

spacelike Ricci curvature if the Ricci tensor of (H, k) is bounded from below.

Proposition 3.72. Let M = (a,b) x; H withn=dim H > 2,3 = —dt*®
fh, and ¢ = In f. Suppose that there exists some constant A € R such that
Ric%(v,v) > Ah(v,v) for all v € TH. Then if

(3.26) 26" (t) < min {~(¢'(1)%, 4(n — 1) Ae 00}

for all t € (a,b), the Lorentzian warped product (M,g) has everywhere posi-

tive nonspacelike Ricci curvature.

Proof. It suffices to show that Ric(z,z) > 0 for all nonspacelike tangent
vectors z of the form z = /0t +v € T(M x H), v € TH. Since g(z,z) <0
and g(8/0t,8/8t) = —1, we have 3 = g(v,v) < 1. Hence 0 < 3 < 1. Then
h(v,v) = Be~%, and we obtain from (3.24) that

]

(3.27) Ric(z,z) > Be %A+ [5 - g] " + %(ﬁ - 1)(¢)%

Thus Ric(z,z) > 0 provided ¢” < G(8) for all 8 € [0, 1], where

4Be”?X —n(1 - B)(¢)*

2(n—-p) '
Calculating G”(8), one finds that G'(83) does not change sign in [0,1]. Thus
G(B) obtains its minimum on [0,1] for 8 = 0 or 8 = 1. Hence Ric(z,z) > 0
provided that ¢” < min{G(0), G(8)}, which yields inequality (3.26). O

G(B) =

We now consider the scalar curvature of warped product manifolds of the
form M = R x; H, § = —dt? ® fh. We will let n = dim H below. Given
(t,p) € M, choose e; € T,H for 1 < j < n such that if &; = (0,e;) € T(t,p)M,
then {8/8t = (8/0t,0,),€1,...,&,} forms a g-orthonormal basis for TepM.
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Hence {\/ fer, .-/ f (t)en} forms an h-orthonormal basis for T, H. Thus
if 7: M — R and 75 : H — R denote the scalar curvature functions of ( M,3)
and (H, h) respectively, we have

T(t,p) = —Ric (% , %) + ZRic(Ej,Ej)
j=1

and

a(p) = f(t) > Ric*(e;, €;).

Jj=1
Now formulas (3.23) and (3.24) above simplify to

(3.28) Ric (5. 37) = ~54'(0) - FH P
and
(3.29) Ric(Z;, &) = Ric%(e;,¢5) + 56"(6) + 316/(6)”

for 1 < j < n. Consequently, we obtain the formula

() = F7() + 1 () + 72+ SO

Recalling that ¢(¢) = In f(t), this may be rewritten as

" ’ 2
w9 o= ol 18]

where dim H = n as above. In particular, in the case that n = 3 as in general

relativity, we obtain the simpler formula

_ 1 fr(®)
(3.31) T(t,p) = —f(—t)TH(p) +3 R

Example 3.73. With the formulas of this section in hand, we are now

ready to give an example of a 1-parameter family g, of nonisometric Einstein
metrics for R**! such that for A = 0, (R*+1, go) is Minkowski space-time of
dimension n + 1. Let (R™, h) be Euclidean n-space with the usual Euclidean
metric h = dz;2 +dz2? + - - - +dz,2, and put My = R**! = R x; R™ with the
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Lorentzian metric g, = —dt? @ e*th, i.e., f(t) = e**. By Theorem 3.70, for all
X > 0 the space-time (R™*!,3,) is future null geodesically complete but past
null geodesically incomplete, and for all A < 0, the space-time (R™*!,3,) is
past null geodesically complete but future null geodesically incomplete. Using
formulas (3.28), (3.29), and (3.30), we obtain

o mA?
(3.32) Ric(g,) = 4 9
and
1 2 2
(3.33) Tg, = —(n° +n)A°

> 4

Thus if A # 0, (M>,3,) is an Einstein space-time with constant positive scalar

curvature.

Example 3.74. Let M) = (0,00) x; R®, where g, = —dt? ® fh with
f(t) = X, XA > 0, and h the usual Euclidean metric on R3. It is then immediate
from formula (3.31) that 7(g») = 0 for all A > 0. Since ¢(¢) = In(A¢), it may
be checked using formulas (3.28) and (3.29) that ( My, ) is neither Ricci flat
nor Einstein for any A > 0. Also we have for any A > 0 that

. (8 9 3.,
Ric (g y a) = Zt
for all £ > 0. It follows that the space-times ( My, g, ) are “inextendible across”

{0} x R3 (cf. Section 6.5). Also, (M, 3,) is future null geodesically complete
by Theorem 3.70.

3.7 Semi-Riemannian Local Warped Product Splittings

In each of the exact solutions to Einstein’s equations which are presented
as warped product manifolds, the warped product decomposition emerges as a
natural mathematical expression of assumed physical symmetries. Moreover,
formulas for warped product curvatures (cf. Proposition 3.76) indicate that any
semi-Riemannian manifold (M, g) must possess certain measures of symmetry
and flatness in order to be (locally or globally) isometric to a warped product
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B x ¢ F. In this section we identify geometric conditions on a semi-Riemannian
manifold (M, g) which are necessary and sufficient to ensure that (M,g) is
locally isometric to a warped product B xjy F. We shall call such a local
isometry a “local warped product splitting.”

There are a number of different “splitting” or decomposition theorems
throughout differential geometry. For example, the splitting theorem of Geroch
(1970a), Theorem 3.17 in this chapter, demonstrates that a globally hyperbolic
space—time may be written as a particular type of topological product but not
necessarily as a metric product. By contrast, a well-known result of de Rham
[cf. Kobayashi-Nomizu (1963, p. 187)] asserts that a complete simply con-
nected Riemannian manifold which has a reducible holonomy representation
is isometric to a Riemannian product. Along very different lines, Chapter 14
provides the following Lorentzian analogue of the Cheeger—-Gromoll Splitting
Theorem: if (M, g) is a space-time of dimension n > 3 which (1) is globally
hyperbolic or timelike geodesically complete, (2) satisfies the timelike con-
vergence condition, and (3) contains a complete timelike line, then (M, g) is
isometric to a product (R x V, —dt? @ h), where (V, h) is a complete Riemann-
ian manifold. Since a product manifold is trivially a warped product, either
of these last two results clearly provides sufficient conditions to ensure that a
manifold is globally isometric to a warped product. However, the examples
(S x sH,g) of non-globally hyperbolic warped product space-times discussed
in Section 3.6 indicate that causal assumptions such as global hyperbolicity
are not necessary for the existence of a global warped product splitting.

The global splitting question typically involves rather delicate topological
considerations; our focus in this section will be on the simpler local warped
product splitting question: given a semi-Riemannian manifold (M, g) and a
point p € M, what conditions are necessary and sufficient for the existence of
an open neighborhood U of p such that the submanifold (U, g|u) is isometric
to a warped product B x sF 7 The following assumption will be needed.

Convention 3.75. It will be assumed throughout the remainder of this
section that the neighborhood U/ mentioned above is a connected, simply con-

nected, open set.
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The geometry of a warped product B x¢ F' is expressed through the ge-
ometries of the base (B, gp) and fiber (F,gr) and various derivatives and
integrals of the warping function f € §F(B). We will consider warped products
M = B xy F where both (B, gg) and (F, gr) may be semi-Riemannian man-
ifolds (thus generalizing the Lorentzian warped products of Definition 3.51).
The symbols 7 : M — B and ¢ : M — F denote the standard projections.
As in portions of Section 3.6, we will find it convenient to consider the square
root S of the warping function f. Throughout this section, we will adhere to
the convention that S(b) = \/f(b) for b € B where M = B x; F denotes a

warped product with metric tensor
g=gB+ fgr=gB+5%gr.

The function S will be called the root warping function.

As defined in Section 3.6, the lift of f € F(B) to a function f € S(M) is
defined by the formula f = f ox. The lifted function will simply be denoted
by f as well, when no ambiguity results. A vector field V € X(B) is lifted to
M by defining V € (M) in such a manner that at each (p,q) € M, V(p,q)
is the unique vector in the tangent space T(; )M such that both dr(V)=V
and da(f}) = 0. Similar definitions apply for lifts from F' to M. We shall
also denote lifted vector fields without the tildes, and we write V € £(F) to
denote a vector field on M lifted from F. More generally, vectors tangent to
leaves B X q are called horizontal while those tangent to fibers p x F are called
vertical. Lifts of covariant tensors on B and F' are now defined in the obvious
way through the use of the pullbacks 7* and o*.

Let D denote the Levi—Civita connection on M, and use V to denote the
Levi-Civita connections on both B and F. The curvature tensors on B x s F' =
M may be characterized through their actions on lifted horizontal and vertical
vector fields. In the following proposition, the symbols ZR and ¥ R denote the
lifts to M of the Riemannian curvature tensors on B and F, respectively. The
symbol HS will be used to denote f{?, the lift to M of the Hessian of S. Note
that in general ’I:.FS’(X , Y)=H § (X,Y) only for horizontal vector fields X, Y.

For notational simplicity, the bracket notation { , ) will be occasionally used
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to denote the metric g on M; the metrics on B and F will always be denoted
by gp and gF.

Some basic curvature formulas for warped product manifolds are now given
in Proposition 3.76 for ease of reference. The standard reference for this ma-
terial is O’Neill (1983).

Proposition 3.76. Let the semi-Riemannian warped product M = Bx ¢ F’
have Riemannian curvature tensor R, Ricci curvature Ric, and root warping
function S = \/f. Assume X,Y,Z € £(B) and U,V,W ¢ £(F).

(1) If h € F(B), then the gradient of the lift hom of h to M = B x5 F is
the lift to M of the gradient of h on B, i.e., grad (TL) = g/r;d/h.

(2) DxY € L(B) is the lift of VxY on B, i.e, DzV = (VxY).

(3) DxV =DvX = (£2)V.

(4) Ric(X,Y) =BRic(X,Y) - (£) H5(X,Y) whered = dim F.

(5) Ric(V,X)=0.

(6) Ric(V, W) = FRic(V, W) — (V,W)S"
where S* = &5 4 (d — 1){&2d%€r2d9) g — dim F, and AS is the

Laplacian of the root warping function S on B.

Consider first the local warped product splitting question in dimension two.
Assume a semi-Riemannian surface (M, g) is a warped product so that in the
appropriate local coordinates (y!,y?) adapted to B and F, the metric is given
by

(3.34) g =eady’ ®dy' + e2[S(y"))2dy® ® dy?

where ¢; = +1,i = 1,2. It is immediate that 8/8y? is a local Killing field (recall
the elementary fact that a coordinate vector field 8/8z* is Killing if and only
if %,{- = 0 for all i,j). Each (8/8y"')-integral curve is a geodesic of M (more
generally, each leaf B x ¢ of a warped product is a totally geodesic submanifold).
Thus 8/8y? restricted to -y is a Jacobi field for each such coordinate geodesic 7,
and of course, (9/8y!,8/8y?) = 0 along ~. Further, direct calculation shows
that 8/8y! is irrotational—that is, curl(8/8y') = 0, where the curl of a vector
field is the skew-symmetric (0,2) tensor defined through the formula

(3.35) [curl X](Y, Z) = (Dy X, Z) — (Y, DzX)
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for all vector fields X, Y, and Z. The unit vector field (8/8y?) does not have

vanishing curl, in general. These observations lead to the following result.

Lemma 3.77. Given a two-dimensional semi-Riemannian manifold (M, g)
and a point p € M, p has a neighborhood U such that (U, g |u) is isometric to
a warped product if and only if there exists a non-vanishing Killing field on

an open neighborhood of p.

Proof. The local existence of a nonvanishing Killing field about any point
of a two-dimensional semi-Riemannian warped product was noted above.

Conversely, suppose there exists a neighborhood U about p € M having a
nonvanishing Killing field V. If the Killing field is null, then it is well known
that (U, g |u) is isometric to (a portion of) Minkowski two-space R? and hence
is (trivially) a warped product.

If the Killing field V' is not null, then we may complete the classical con-
struction of local geodesic (or Fermi) coordinates (z!, z2) [cf. do Carmo (1976)]
such that V = 8/0z2 on U and z! measures g-arc length along the geodesics
orthogonal to the integral curves of V. In these coordinates the metric assumes
the form

ds® = €1 dz! @ dz! + €3 F(z!, 2%)d2® ® dz?

where €; = +1, i = 1,2. Since V = §/8z? is Killing, we must have %’; =0,
yielding
ds? = €; dz! ® da! + €3 F(z1)dz? ® dx?

and leading to the desired local warped product representation. O

In generalizing the preceding result to higher dimensions, the existence of a
Killing field V' must be supplemented by an integrability condition which allows
the construction of leaves B x ¢ orthogonal to V. This integrability condition
holds trivially in dimension two but need not hold in higher dimensions where,
in general, a Killing field need not be irrotational. It is also necessary to
include the additional assumption that the Killing field be nonnull.

Recall that a space-time (M, g) is called static if there exists on M a nowhere
zero timelike Killing field X such that the distribution of (n—1)-planes orthog-

onal to X is integrable. The following result parallels the formal construction



122 3 LORENTZIAN MANIFOLDS AND CAUSALITY

of static space-times as presented in a number of texts on general relativity

[cf. Sachs and Wu (1977a)].

Lemma 3.78. Let (M,g) be an n-dimensional semi-Riemannian manifold
with n > 3, and let m € M be any point. There exists a local isometry of a
neighborhood U of m with a warped product B xs F' having dim F = 1 and
dim B = (n — 1) if and only if

(1) There exists a nonnull non-vanishing Killing field V on a neighborhood
of m such that

(2) the unit vector field U = "—“f" satisfies [curl U)(X,Y) =0 forall X,Y L

U on this neighborhood of m.

Proof. Assume M is locally isometric to a warped product B x ¢F with
dim F = 1. The point m may then be uniquely written as m = (b,q) with
be B and g € F. Let B x g and p X F denote the leaf and fiber through m,
respectively. In local coordinates adapted to the submanifolds B x g and p x F’

such that gr = €,dz™ ® dz™ (i.e., ™ is arc length on F'), we have
g=7"gp + €,5%dz™ ® dz™, S € §(B),

where €, = sign(gr(8/0z™,0/9z™)). Now, §/0z™ is a nonnull non-vanishing
Killing field on the domain U of the chart. Furthermore, £(8/0z™) is a unit
magnitude vector field, and for coordinate vector fields 8/8z¢, 8/0z’ orthog-
onal to 8/0z™,1<¢,7 <n-—1,

(LN (2. 8N _/p.. (L) &
U 5 Bzn 8zi’ Bzl ) /92 \ 5 5zn ) 9zi
10\ 8
- <D8/8=" (§a_> a—>
=0,

where formula (3) of Proposition 3.76 was used to evaluate the covariant deriva-
tives. It follows that for any horizontal vector fields X = S 5! X?(8/8z") and
Y = 3.0 Y¥(8/8z%) orthogonal to U, [curl (152)] (X,Y) = 0 even if the

fields are not lifts from B, i.e., even if some coefficient functions X* and Y’
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are functions of =™ as well as z!,z2,...,z*"!. Thus, conditions (1) and (2)
are clearly necessary.

For sufficiency, assume a nonnull non-vanishing Killing field V' exists on an
open neighborhood U C M of the point m. At each p € U choose (V,)+ C T,U,
giving an (n — 1)-dimensional distribution D on U. Condition (2) ensures
that D is involutive; applying Frobenius’ Theorem, we may integrate this
distribution to provide, through each point of U, a local integral (n — 1)-
submanifold of M having D as its tangent space. Denote by B the integral
(n — 1)-submanifold through the distinguished point m having D(m) as its
tangent space. Denote by F' the unique integral curve for U passing through
m.

Clearly, U may be thought of as a topological product B x F' by shrinking
U if necessary. We must show the induced metric g |U can be expressed as a
warped product of appropriate metrics on B and F. Let ¢ = (z!,22,...,z")
be adapted coordinates about m, so that B = {(z',z2,...,z"%)|z" = 0},
U = 8/08z™, and m has coordinates (0,0, ...,0). We shrink U if necessary so
that dom (§) = U.

A point in U may be uniquely specified as an ordered pair (p, ¢) with p €
B and ¢ € F. For each fixed p € B, |V |l = |g(V|(p,q),V[(p,q))|% has
constant value as g varies over F' since V' = 9/90z™ is Killing. Thus, we may

unambiguously define a positive function S € F(B) by

(p,q))

which is independent of g for each fixed p. We define a metric gg on B by

S®) =19V lip.g)s V lpa))| 2

(o] @
—gaa:"

’ dz™
1
= |gnn(pa Q)l 2,

1
2

(p.9)

restriction of the metric on M: gg = g|p. The metric on F is defined as
gF = €ndz™ ® dz™, where €, = signg(V, V).

Now 9/8z™ 1 8/8x* fori=1,2,...,(n—1) by construction. Furthermore,
the coordinate patch & provides us with natural projections 7 and o from

U into B and F, respectively: = : (z',22%,...,2") — (z!,22,...,2""1,0),
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and o : (z!,22,...,2") — (0,0,...,0,z"). For arbitrary X,Y € X(U) with
coordinate basis expansions X = Y X*(8/8z%), Y = Y. Y*(8/0z"), we have

9(X,Y)=g Zn: X'(0/oz"), Zn: Y9(8/027)
i=1

i=1
n—1 ) ) n—1 ) )

=g| > X'8/9%),) Yi(8/82%) | +g(X"0/0z",Y"0/0z™)
i=1 j=1

= g(mM X, TY) + gnn XY™
= gp(m X, 1Y) + [S(0))%9r(0.X,0.Y). O

The “dimensional dual” of the preceding result asks for conditions necessary
and sufficient to ensure that (M, g) is locally isometric to a warped product
B x; F with dim B = 1. One answer to this question involves a construction
which bears strong similarities to the formal development of the Robertson-
Walker cosmological models [cf. O’Neill (1983)]. Recall that a signal feature
of Robertson-Walker space-time is the presence of a proper time synchroniz-
able geodesic observer field U. Since the observer field U is irrotational, the
infinitesimal rest spaces of U may be integrated to provide local rest spaces.
Through a construction quite similar to that of the preceding lemma, it is pos-
sible to verify the following [cf. Easley (1991)]: given an n-dimensional (n > 3)
semi-Riemannian manifold and point p € M, the point p has a neighborhood
U C M such that (U, g|u) is isometric to a warped product B x; F with
dim B =1 and dim F = (n — 1) if and only if (1) there exists an irrotational
unit vector field U (either spacelike or timelike) on a neighborhood of p such
that (2) the flow ¥ induced by U acts as a positive homothety on the local
(n — 1)-dimensional submanifolds which are everywhere orthogonal to U near
p. Condition (2) is of course equivalent to a number of different geometric
conditions expressible in terms of curvature and the connection.

The local splitting problem in the context of Ricci flat (M, g) has an ex-
tremely restricted class of solutions. We consider first the only case in dimen-
sion four which will not be subsumed under more general results, namely, the

case when M is locally isometric to a warped product with base and fiber each
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of dimension two. The following computational lemma is a necessary prelim-
inary step. In the following result, the symbols ¥ K and ZK will be used to
denote the sectional curvatures of F and B, respectively. Since these objects
are functions on the surfaces F' and B, they may be unambiguously lifted to
M as well.

Proposition 3.79. Let M = B xy F' be a 4-dimensional semi-Riemannian
warped product with dim B = dim F = 2 and root warping function S = /F.

For M to be Ricci flat, it is necessary and sufficient that

(1) F have constant sectional curvature FK,
(2) %52) = SAS + gp(grad S,gradS) = FK on B, where FK is the
constant value from (1) and A denotes the Laplacian on B, and
(3) Dx(gradS) = (Bfgs) X for all X € L(B).
Further, if M is Ricci flat, then
(4) 4 =PK onB,

and the sectional curvatures and root warping function are related as follows:

(5) BK-83=2Cyn on B, where Cy is a constant, and
(6) FK = BK 5%+ gp(grad S,grad S) on B.

Proof. Using Proposition 3.76, we see that M is Ricci flat if and only if

(3.36) BRic(X,Y) - 2HS(X,Y) =0 and
(3.37) FRic(V,W) —(V,W)S* =0

for all X,Y € £(B) and V,W € £(F), where S = 45 4 (eadSgradS) 4 A
denotes the Laplacian on B.

On the semi-Riemannian surface B we have
BRic= 2K - g3,

with the analogous formula holding on the surface F' (here the symbol & Ric
denotes the Ricci tensor on B and not its lift to M). Projecting equations
(3.36) and (3.37) onto B and F respectively, we see that M is Ricci flat if and
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only if the following two conditions hold:

(3.38) BK .gp(X,Y)=2HS(X,Y), and
(3.39) FK . gpr(V,W) = S%gp(V,W)S*
for all X,Y € X(B) and V,W € X(F). Equation (3.39) must hold as we

project from each fiber p x F' into F'. Since S is constant on fibers we see that
equation (3.39) will hold if and only if

FR = constant, and

f25* = SAS + gp(grad S,grad S) = on B.

Rewriting the Hessian as H%(X,Y) = gg(Vx(grad S),Y), equation (3.38)

is equivalent to
98(PK - X — ZVx(gradS),Y) =0  for all X,Y € X(B)
which in turn holds if and only if
Vx(gradS) = (PFK-$) X  for all X € X(B).

That conditions (1), (2) and (3) are necessary and sufficient for M to be Ricci
flat now follows. Proposition 3.76—(2) is used to obtain the lifted form of
condition (3).

From condition (3) it follows that for a local orthonormal frame field Eg, E
on B with ¢; = gg(E;, E;),

1

1
div(grad S) = Z&‘QB(VE.- (grad S), E;) Ze, ( )gB(EI,E)

1=0 1=0

Thus the Laplacian of S is given by
(3.40) AS=PK.S onB.
By combining (3.40) with condition (2), we see that

(3.41) FK =BKS? 1 gp(grad S, grad S)
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where F K denotes the constant value of the sectional curvature of F. Differ-

entiating both sides of equation (3.41) produces

0=S%*(XPK)+BK25XS +29p(Vx(grad S),grad S)
=S*(XBK)+PK25XS+S-BK(XS)
=S*(X5K)+3-BKS(XS).

Thus,
3- BK(XS))

XBK)=- ( 5 for all X € X(B)

yielding

B
X(S®-BK) = 352(XS)PK — §3 (%(XS)) o,
and this holds for all lifts X € £(B). It follows that S3-BK is constant on B

(and hence its lift is constant on M). O

It is now possible to characterize all (2 x 2) Ricci flat warped products

M = B x; F with base B of constant curvature.

Corollary 3.80. If M = B x; F' is a four-dimensional Ricci flat warped
product with base B a surface of constant curvature, then M is simply a
product manifold B x G where B and G are flat two-manifolds. Thus the

metric on M is semi-Euclidean.

Proof. Assume B has constant curvature. Proposition 3.79-(5) shows that
the root warping function S, and hence also the warping function f, must be
constant on B, and thus M may be viewed as a product manifold. Equations
(2) and (4) of Proposition 3.79 now imply that F' and B are flat. O

The following result deals with (2 x 2) warped products B x s F' where the

curvature BK is not constant.

Proposition 3.81. Let M = B xy F be a Ricci flat semi-Riemannian
warped product with dim B = dim F' = 2, and assume that the sectional cur-

vature BK of the base B is not constant. If grad S is nonnull and (grad S)|, # 0
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at a given point p € B, then there exist local coordinates (t,r) on a neighbor-
hood U C B of p such that the following conditions hold on U.

(1) The metric on B has coordinate expression ds? = E(r)dt? + G(r)dr?,
where G(r) = (FK - Q—C;M-)_l, E(r) = £G™1, Cy is a constant, and
FK is the constant value of the sectional curvature on F.

(2) The root warping function has the form S(t,r) =r.

(3) The sectional curvature on B is given by BK(r,t) = %}‘-’l

The sign of E in condition (1) depends upon the signature of B.

Proof. Assume grad S is nonnull and (grad S)|, # 0. By continuity, we may
find a neighborhood U of p on which the gradient of S is non-vanishing. Let
co = S7Yk)NU, k € RT, denote a single level curve of S in U. Consider
geodesics intersecting co orthogonally; these geodesics are also integral curves
of grad S, and the orthogonal trajectories of these geodesics are level sets of
S. Applying the classical geodesic coordinate construction, we introduce local
coordinates (v,u) such that the geodesics are the v = constant curves and the
orthogonal trajectories are the u = constant curves. In these coordinates the

metric assumes the form
ds? = H(u,v)dv? 4+ F(u)du?.
Rescale coordinates, introducing r = r(u) and ¢ = t(v) such that
r(u) = S(u) and Dgs5(8/0t) = 0.

Thus, r merely traces the values of the warping function S, and ¢ is an affine
coordinate along the geodesics. It should be noted that this will imply r > 0.

In (¢,7) coordinates we have metric tensor components
ds® = E(r,t)dt? + G(r)dr?
with the root warping function given simply by

Sit,ry=r.
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Furthermore, since

;.08 8
grad § = Z Jaa:’ oz3’

the gradient of S is given in (r,t) coordinates by

1 0
gradS = mg

Equation (5) of Proposition 3.79 now shows that the curvature on the surface

B is a function solely of r and is given by

Kr.t) = SR

Now gp(grad S,grad S) = &, so formula (6) of Proposition 3.79 yields

Fg=BKg. S%L

G(r)
R NG G(r)
_ 2Cm 1

- T Gr

We have determined the metric coefficient G:
-1
G(r) = (FK - —20M>
r
It remains to determine the form of the metric coefficient E(t,r). We first
show that F is a function only of the variable r and then derive the function
E(r).
Note that
Ds;5:(8/8t) = 0 =T}, (0/0t) +I'%, (8/0r),

so that in particular I'}; = 0. However, since (t,r) are orthogonal coordinates,
we have

1
E-G-T} =3E.-G.

It follows that E; = 0 and F is a function solely of r.
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Now using Proposition 3.79 with grad S = G%r) %, we obtain

1 0\ (5, S)0 .
Ds; 5t (m E) = ( K- 5) % O equivalently
1 C
=Dy/5:(0/0r) = M 2 5
C

G giving

G

Da/at(a/a’l‘) at .

However, in the orthogonal (t,r) coordinate system, we have

E.8 G0

Dgs/51(0/0r) = 2E5  2Car
_E0
T 2Eat

It follows that
EE = G(r) , and thus
din|B) _ , (r,_20u\"" (2Cu .
ar K — - 2 , giving

0

With the substitution y = FK — Q—CTM, this becomes

In|E| = i/d?y, giving
In|E| =+£Inly| +¢, or finally
2CM>

r

E=ia~<FK—

where a = e° is positive. In orthogonal coordinates with e = /|E| and
= /|G|, the curvature is given by the classical formula

=g o ($), 4= (5) ]

Since E and G are functions of 7 only, this reduces to the following simple

formula. We are ignoring the case-by-case analysis of the signs involving the
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absolute values since the end result will show such considerations to be unnec-

essary.
by 1 [ daCK— 290 (20)
= 7& €p (FK _ gjzf_)-%
e
T T
_ :I:QGT\/ECM.
T

Since BK = %}‘, we see that a = 1, and the sign in this final term is deter-
mined by the signature of B and the sign of G(r). We have therefore shown
that

E(r)=+ (FK 20’”) =+G(r)".. O

Observe that 9 is a local nonvanishing Killing field on/ in the above lemma,
which is valid for spaces of arbitrary signature. Let us now fix the signature of
all spaces under consideration to the Lorentzian signature (—, +, +, +). Corol-
lary 3.80 and Proposition 3.81 now have the following import: a Ricci flat
(2 x 2) warped product M is completely specified (locally) by the choice of
base (B, gg) and the constants ¥ K and Cjy in Proposition 3.79. Since we are
working locally, we may assume the fiber F' of constant sectional curvature ¥ K
is a subset of

(1) the sphere S%(p) if FK = ;,
(2) Euclidean space R? if K =0, or
(3) hyperbolic space H?(p) if FK = — 2.

Theorem 3.82. Assume (M, g) is a Ricci flat four-manifold of Lorentzian
signature (—, +,+,+), and let p € M be any point of M. The point p has a
neighborhood U such that (U, g |u) is isometric to a (2x2) warped product with
both parameters (Cir, P K) positive and nonconstant sectional curvature B K

on B if and only if M is Iocalljé isometric to an open subset of Schwarzschild
M

(FK)?
Proof. Assume M admits such a local warped product structure. Since we

space—time with mass My =

are working locally, we may assume the fiber F' is the 2-sphere of radius \/+—K
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Let do? denote the canonical metric on the unit 2-sphere. Proposition 3.81

implies the metric may be expressed on I/ in the form
1
ds? = —E(r)dt? + E(r)"ldr? + T2Wd02

with E(r) = (FK — 2Gu).
Upon making the change of variables © = —Z= and v = tVF K, the metric

VFK
becomes
2Cn/(FK)% 2Cu/(FK)%
ds® = — 1—% dv® + 1—# du? + u?do?,

thus demonstrating the first claim. The converse is now clear. 0O

This result should be contrasted with Birkhoff’s Theorem [cf. Hawking and
Ellis (1973, p. 372)] on spherically symmetric solutions to Einstein’s vacuum

field equations, which also offers an alternate proof of Theorem 3.82.

Theorem (Birkhoff). Any C? solution of Einstein’s empty space equa-
tions which is spherically symmetric in an open set V is locally equivalent to

part of the maximally extended Schwarzschild solution in V.

The typical construction of Schwarzschild space-time [cf. O’'Neill (1983)]
follows the proof of Birkhoff’s theorem. A number of strong physical assump-
tions, not the least of which is spherical symmetry, lead one inevitably to
Schwarzschild space-time as the unique model. What we have shown is that
a Ricci flat space-time which possesses enough symmetry to be expressed lo-
cally as a (2 x 2) warped product must have spherical, planar, or hyperbolic
symmetry. In the first case we obtain the conclusion to Birkhoff’s Theorem:
M is locally isometric to a portion of Schwarzschild space-time.

The following result may be established by an argument similar to the one

employed in the proof of Proposition 3.79 [cf. Easley (1991)].

Theorem 3.83. Let M = B X F' be a semi-Riemannian warped product
with dimB =1 and dim F' = n > 2. For M to be Ricci flat, it is necessary

and sufficient that the following two conditions hold.

(1) The root warping function S satisfies (grad S, grad S) = Cp, a constant.
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(2) (F,gr) is an Einstein manifold with ¥ Ric = 2(grad S, grad S)gr =
Co - gF.

This result indicates that a Ricci flat manifold (M, g) can admit only one
of a restricted class of local warped product splittings at p € M if we require
dim B = 1. If dim F' = 2, for example, it follows that F' is a surface of constant
curvature FK since F Ric = FKgp in this case. If we also assume FK = 0,
we have § = \/f = constant, and the warped product is merely a standard
product manifold with a semi-Euclidean metric.

If dim F' = 3, it follows that the Einstein manifold (F,gr) has constant
curvature [cf. Petrov (1969, p. 77) |. If (F, gr) is Riemannian, we may consider
F a subset of

(1) the sphere S3(r) if FK = %,
(2) Euclidean space R? if K =0, or
(3) hyperbolic space H3(r) if FK = — %,
with analogous restrictions holding if g is indefinite. An exact solution to

Einstein’s equations which uses F' = S? is the spatially homogeneous Taub-
NUT model [cf. Hawking and Ellis (1973, p. 170)].






CHAPTER 4

LORENTZIAN DISTANCE

With the basic properties of Riemannian metrics in mind (cf. Chapter 1), it
is the aim of this chapter to study the corresponding properties of Lorentzian
distance and to show how the Lorentzian distance is related to the causal
structure of the given space-time. We also show that Lorentzian distance
preserving maps of a strongly causal space-time onto itself are diffeomorphisms
which preserve the metric tensor.

While there are many similarities between the Riemannian and Lorentzian
distance functions, many basic differences will also be apparent from this chap-
ter. Nonetheless, a duality between “minimal” for Riemannian manifolds and
“maximal” for Lorentzian manifolds will be noticed in this and subsequent

chapters.

4.1 Basic Concepts and Definitions

Let (M, g) be a Lorentzian manifold of dimension n > 2. Given p,q € M
with p < g, let ;4 denote the path space of all future directed nonspacelike
curves v : [0,1] — M with v(0) = p and (1) = ¢. The Lorentzian arc length
functional L = Ly : Q,,4 — R is then defined as follows [cf. Hawking and Ellis
(1973, p. 105)]. Given a piecewise smooth curve vy € £, 4, choose a partition
0=ty <t <-- <tp-1 <t, =1suchthat v| (¢;,t;+1) is smooth for each
i=0,1,...,n— 1. Then define

n—1 At
(4.1) L) =Ly =3 / VI @7 @) dt.
i=0 v t=t:i

It may be checked as in elementary differential geometry [cf. O’Neill (1966,
pp. 51-52)] that this definition of Lorentzian arc length is independent of

135
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FIGURE 4.1. The timelike curve v from p to ¢ is approximated
by a sequence of curves {,} with v, — v in the C° topology but
L(vs) — 0.

the parametrization of . Since an arbitrary nonspacelike curve satisfies a
local Lipschitz condition, it is differentiable almost everywhere. Hence the
Lorentzian arc length L(vy) of v may still be defined using (4.1). Alternative
but equivalent definitions of L(-y) for arbitrary nonnull nonspacelike curves
may be given by approximating v by C?! timelike curves [cf. Hawking and Ellis
(1973, p. 214)] or by approximating v by sequences of broken nonspacelike
geodesics [cf. Penrose (1972, p. 53)]. The Lorentzian arc length of an arbitrary
null curve may be set equal to zero.

Now fix p,q € M with p < q. If v is any timelike curve from p to g, then
L(y) > 0. On the other hand, v may be approximated by a sequence {y,}
of piecewise smooth “almost null” curves v, : [0,1] — M with v,(0) = p and
Yn(1) = ¢ such that 7y, — - in the C° topology, but L(7,) — 0 (cf. Figure 4.1).

This construction shows, moreover, that given any p,q € M with p < ¢, there
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are curves v € o with arbitrarily small Lorentzian arc length. Hence, the
infimum of Lorentzian arc lengths of all piecewise smooth curves joining any
two chronologically related points p < ¢ is always zero. However, if p and q lie
in a geodesically convex neighborhood U, the future directed timelike geodesic
segment in U from p to g has the largest Lorentzian arc length among all
nonspacelike curves in U from p to g. Thus it is natural to make the following
definition of the Lorentzian distance function d = d(g) : M x M — RU {co}
of (M, g).

Definition 4.1. (Lorentzian Distance Function) Given a point p in M,
if g ¢ J*(p), set d(p,q) =0. If g € J*(p), set d(p,q) =sup{Ly(y) : v € Upq}-

From the definition, it is immediate that
(4.2) d(p,q) >0 ifand onlyif ¢e€ It (p).

Thus the Lorentzian distance function determines the chronological past and
future of any point. However, the Lorentzian distance function in general fails
to determine the causal past and future sets of p since d(p,q) = 0 does not
imply q € J*(p) — I'*(p). But at least if ¢ € J*(p) — I (p), then d(p, q) = 0.

We emphasize that the Lorentzian distance d(p, q¢) need not be finite. One
way that the condition d(p, ¢) = oo may occur is that timelike curves from p
to ¢ may attain arbitrarily large arc lengths by approaching certain boundary
points of the space-time. In Figure 4.2, two points with d(p,q) = oo are
shown in a Reissner-Nordstrom space-time with €2 = m? [cf. Hawking and
Ellis (1973, p. 160)].

A second way Lorentzian distance may become infinite is through causality
violations. Recall that a space-time is said to be vicious at the point p € M
if I*(p) NI~ (p) = M and totally vicious if I*(p) NI~ (p) = M for all p € M.

Lemma 4.2. Let (M,g) be an arbitrary space-time.

(1) Ifp € I'*(p), then d(p, p) = co. Thus for each p € M, either d(p,p) =0
or d(p,p) = co.

(2) (M, g) is totally vicious iff d(p, q) = oo for all p,q € M.

(3) If (M, g) is vicious at p, then (M, g) is totally vicious.
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Proof. (1) Suppose p € I(p). Then we may find a closed timelike curve

v : [0,1] - M with 4(0) = (1) = p. Since 7 is timelike, L(y) > 0. If
On € Qpp is the timelike curve obtained by traversing v exactly n times, then
L(op) = nL(y) — oo as n — co. Thus d(p, p) = oo.
(2) Suppose (M, g) is totally vicious. Fix p,q € M, and let n > 0 be any
positive integer. Since p € I (p), we may find v; € Q,, with L(y1) > n by
part (1). Since ¢ € I*(p), there is a timelike curve v, from p to g. Then
v =71 %72 € Qpq is a timelike curve with length L(y) = L(y1) + L(y2) > n.
Hence d(p, q) = oo.

Conversely, suppose d(p,q) = oo for all p,q € M. Fixing r € M, we have

d(r,p) > 0 and d(p,r) > O for all p € M. Thus by (4.2), it follows that
It(rynI=(r) =M.
(3) Inspired by Lemma 4.2-(2), T. Ikawa and H. Nakagawa (1988) proved
(3) using the Lorentzian distance function. Subsequently, B. Wegner (1989)
noted that the following elementary argument yields the desired result. Let
g€ M = I*(p)NI~(p). Then q € I'*(p) so I~ (p) C I (q) by the transitivity of
<. Similarly, g € I~ (p) implies I'*(p) C I*(q). Hence, M = I*(p) NI~ (p) C
I*(9gnI=(g). O

By Definition 4.1, if I*(p) # M then there are points ¢ € M with d(p,q) =0
but p # g. Hence unlike the Riemannian distance function, the Lorentzian
distance function usually fails to be nondegenerate. Indeed, we have seen that
d(p,p) > 0 is possible. But if (M, g) is chronological, then d(p,p) = 0 for all
p € M. Also, the Lorentzian distance function tends to be nonsymmetric.

More precisely, the following may be shown for arbitrary space-times.

Remark 4.3. If p # q and d(p, q) and d(g,p) are both finite, then either
d(p,q) = 0 or d(q,p) = 0. Equivalently, if d(p,q) > 0 and d(g,p) > 0, then

d(p, q) = d(g,p) = oo.

Proof. If d(p,q) > 0 and d(g,p) > 0, we may find future directed timelike
curves 7; from p to g and 7, from g to p, respectively. Define a sequence {vy,}
by n =11 * (Y2 *71)" € Qpg. As n — 00, L(yn) — oo, whence d(p, q) is
infinite. Similarly, d(g,p) = 0. O
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FIGURE 4.2. A Reissner-Nordstrom space-time with e2 = m? is
shown. By taking timelike curves v from p to ¢ close to J* and
J~, we can make L(v) arbitrarily large. Thus d(p,q) = oo, which
means an accelerated observer may take arbitrarily large amounts

of time in going from p to gq.

A further consequence of Definition 4.1 is that if v : [0,00) — (M, g) is any
future directed, future complete, timelike geodesic in an arbitrary space—time
(M, g), then lim;— oo d(7(0),7(t)) > limi—oo L(7v|[0,t]) = co. By contrast,
complete Riemannian manifolds (N, go) may contain (nonclosed) geodesics
o : [0,00) — (N,go) for which sup{do(c(0),o(t)) : ¢ > 0} is finite. Fur-
ther assumptions are needed for Riemannian manifolds to guarantee that
lim; 00 d(0(0),0(t)) = oo for all geodesics o : [0,00) — (N, go) [cf. Cheeger
and Ebin (1975, pp. 53 and 151)].
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While the Lorentzian distance function fails to be symmetric and nondegen-

erate, at least a reverse triangle inequality holds (cf. Figure 1.3). Explicitly,
(4.3) If p<r<g, thend(p,q) > d(p,7) +d(r,q).

We now discuss some properties of the Lorentzian distance that make it a
useful tool in general relativity and Lorentzian geometry. First, the Lorentzian
distance function is lower semicontinuous where it is finite [cf. Hawking and
Ellis (1973, p. 215)].

Lemma 4.4. For Lorentzian distance d, if d(p,q) < oo, pn — p, and
gn — q, then d(p,q) < liminfd(p,,¢.). Also, if d(p,q) = oo, pn — p, and

Gn — q, then lim,_, o d(pn, ¢n) = 0.

Proof. First consider the case d(p,q) < oo. If d(p,q) = 0, there is nothing
to prove. If d(p,q) > 0, then ¢ € I (p) and the lower semicontinuity follows
from the following fact. Given any € > 0, a timelike curve v of length L >
d(p,q) — €/2 from p to q and sufficiently small neighborhoods U; of p and U,
of ¢ may be found such that v may be deformed to give a timelike curve of
length L' > d(p, q) — € from any point r of U; to any point s of Us.

Suppose now that d(p,q) = oo but liminfd(p,,¢.) = R < oo. Since
d(p,q) = oo there exists a timelike curve v from p to ¢ of length L(y) >
R + 2. This implies that there exist neighborhoods U; and Us of p and ¢,
respectively, such that v can be deformed to give a timelike curve of length
L' > R+ 1 from any point r of U; to any point s of Us. This contradicts
liminfd(pn,¢.) = R. O

In general, the Lorentzian distance function fails to be upper semicontinu-
ous. We give an example of a space-time (M, g) containing an infinite sequence
{pn} with p, — p and a point ¢ € I (p) such that d(pn,q) = oo for all large
n but d(p, q) < oo (cf. Figure 4.3).

For globally hyperbolic space-times, on the other hand, the Lorentzian
distance function is finite and continuous just like the Riemannian distance

function.

Lemma 4.5. For a globally hyperbolic space-time (M, g), the Lorentzian

distance function d is finite and continuous on M x M.
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FIGURE 4.3. Let M be {(z,y): 0 <y <2}—{(z,1): -1 <z <1}
with the identification (z,0) ~ (z,2) and the flat Lorentzian metric
ds? = dz? —dy?. Let p = (0,0), ¢ = (0,1/2), and p,, — p as shown.
Then p, € I (p,) and hence d(pn, pn) = oo for all n. For large n
we have ¢ € I*(p,) and thus d(pn,q) = co. On the other hand,
d(p,q) = 1/2 which yields d(p,q) < liminfd(pn,¢q). This space-
time is not causal. However, the distance function may also fail to

be upper semicontinuous in causal space-times (cf. Figure 4.6).

Proof. To prove the finiteness of d, cover the compact set J*(p) N J~(q)
with a finite number of convex normal neighborhoods By, Bs, . .., Bn, such that
no nonspacelike curve which leaves any B; ever returns and such that every
nonspacelike curve in each B; has length at most one. Since any nonspacelike
curve vy from p to g can enter each B; no more than once, L(y) < m. Hence
d(p,q) <m.

If d failed to be upper semicontinuous at (p,q) € M x M, we could find
a § > 0 and sequences {p,} and {g,} converging to p and ¢ respectively,
such that d(pn,qn) > d(p,q) + 26 for all n. By definition of d(pn,¢n), we
may then find a future directed nonspacelike curve <y, from p, to ¢, with
L(vs) > d(p,q) + 6 for each n. By Corollary 3.32, the sequence {7,} has a
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nonspacelike limit curve v from p to ¢. By Proposition 3.34, a subsequence
{¥m} of {1} converges to 7 in the C° topology. Hence L(7) > d(p,q) + 6 by
Remark 3.35. But this contradicts the definition of Lorentzian distance. Thus

d is upper semicontinuous at (p,q). O

We now define the following distance condition [cf. Beem and Ehrlich (1977,
Condition 4)).

Definition 4.6. (Finite Distance Condition) The space-time (M, g) sat-
isfies the finite distance condition if d(g)(p,q) < oo for all p,q € M.

Lemma 4.5 then has the following corollary.

Corollary 4.7. If (M, g) is globally hyperbolic, then (M, g) satisfies the

finite distance condition and d(g) : M x M — R is continuous.

If (M, g) is globally hyperbolic, all metrics in the conformal class C(M, g)
are globally hyperbolic. Hence all metrics in C(M, g) satisfy the finite distance
condition. We will examine the converse of this statement in Section 4.3,
Theorem 4.30.

Since the given topology of a smooth manifold coincides with the metric
topology induced by any Riemannian metric, it is natural to consider the sets
{m € I'*(p) : d(p, m) < €} for a Lorentzian manifold. However, as Minkowski
space shows, these sets do not form a basis for the given manifold topology
(cf. Figure 4.4). Indeed, this same example shows that no matter how small
€ > 0 is chosen, the sets {m € J*(p) : d(p,m) < €} may fail to be compact
and fail to be geodesically convex as well as failing to be diffeomorphic to the
closed n-disk.

The sphere of radius ¢ for the point p € M is given by K(p,e) = {g€ M :
d(p,q) = €}. This set need not be compact. However, the reverse triangle
inequality and (4.2) imply that K(p,¢) is achronal for all finite ¢ > 0 and all
pE M.

In arbitrary space-times, neither the future inner ball

B*(p,e) = {qg € I'"(p):d(p,q) < €}
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P

FIGURE 4.4. The set Bt(p,e) = {q € I*(p) : d(p,q) < €}
in Minkowski space-time does not have compact closure, is not
geodesically convex, and does not contain p. Furthermore, sets
of the form B*(p,€) do not form a basis for the manifold topol-
ogy. But in general, if (M, g) is a distinguishing space-time with
a continuous Lorentzian distance function, then a subbasis for the
manifold topology is given by sets of the form B (p, ¢) and B~ (p, ¢)
[cf. Proposition 4.31]. Hence these sets do form a subbasis for the

given topology of Minkowski space-time.

nor the past inner ball

B~ (p,e) ={q €I (p):d(g,p) < ¢}

need be open. On the other hand, when the distance functiond : M x M —
R U {co} is continuous, these inner balls must be open. In Section 4.3 we will
show that for distinguishing space-times with continuous distance functions,

the past and future inner balls form a subbasis for the manifold topology.
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A different subbasis for the topology of any strongly causal space-time
(M, g) with a possibly discontinuous distance function d = d(g9) : M x M —
RU{oo} may be obtained by using the outer balls Ot (p, €) and O~ (p, €) rather
than the inner balls.

Definition 4.8. (Outer Balls O%(p,€), O~ (p,e)) The outer ball O (p, €)
[respectively, O~ (p, €)] of I (p) [respectively, I~ (p)] is given by

O*(p,€) = {ge€ M :d(p,q) > €},

respectively,
O~ (p,e) ={g€ M :d(q,p) > €}

(cf. Figure 4.5).

Since the Lorentzian distance function is lower semicontinuous where it is
finite, the outer balls O (p, €) and O~ (p, €) are open in arbitrary space-times.
The reverse triangle inequality implies that these sets also have the property
that if m,n € OV (p,¢) [respectively, m,n € O~ (p,¢)] and m < n, then any
future directed nonspacelike curve from m to n lies in O™ (p, €) [respectively,

O~ (p, €)]. Moreover, we have

Theorem 4.9. Let (M, g) be strongly causal. Then the collection
{0*(p,e)) N0 (g,€2) : p,a € M, e1,€2 > 0}

forms a basis for the given manifold topology.

Proof. Let m € M be given, and let U be any open neighborhood containing
m. We may find a local causality neighborhood U; with m € Uy C U, i.e.,
no nonspacelike curve which leaves U; ever returns. Choose p1,p2 € Uy with
p1 € m <K pg such that It (p;)NI~(p2) C U;. By the chronology assumptions
on p; and p2, we have d(p;,m) > 0 and d(m,p2) > 0. Choose constants €1, €2
with 0 < €1 < d(p;,m) and 0 < ez < d(m,p2). Then m € Ot (p1,e1) N
O~ (p2, €2). Since OF(p1,€1) C I (p1) and O~ (p2, €2) C I~ (p2), we also have
Ot (p1,€1) NO~(p2,e2) C It (p1) NI~ (pg) CU; C U as required. O
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S Ot

FIGURE 4.5. The outer balls O*(p,e) = {g € M : d(p,q) > €}
and O~ (p,€) = {g € M : d(q,p) > €} are open in arbitrary space—
times. Furthermore, O*(p,¢) and O~ (p,€) are always subsets of
I'*(p) and I~(p), respectively. If (M,gq) is strongly causal, the
outer balls Ot (p,€) and O~ (p,€) with p € M and € > 0 arbitrary

form a subbasis for the manifold topology.

For complete Riemannian manifolds, any two points may be joined by a
minimal (distance-realizing) geodesic segment. We now examine the dual of
this property for space-times.

In Hawking and Ellis (1973, p. 110), a timelike geodesic 7y from p to g is said
to be maximal if the index form of «y is negative semidefinite. This definition
implies that if the geodesic -y is not maximal, there exist variations of v which
yield curves from p to ¢ “close” to -y having longer Lorentzian arc length than
~. If v is maximal in this sense, however, no small variation of v keeping p

and ¢ fixed will produce timelike curves o from p to ¢ with L{c) > L(v).
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Nonetheless, there may still exist a timelike geodesic o7 in M from p to ¢
(“far” from v) with d(p,q) = L(o1) > L(y). Thus maximality as defined
by Hawking and Ellis does not imply “maximality in the large.” To study
“maximality in the large,” we adopt, in analogy to the concept of minimality
in Riemannian geometry, a definition of maximality valid for all curves in the
path space Q, , [cf. Beem and Ehrlich (1977, Definition 1)]. The motivation
for our definition is Theorem 4.13 below [cf. Beem and Ehrlich (1979a, p. 166)]
and its applications, particularly the construction of geodesics as limit curves
of sequences of “almost maximal” curves in Chapter 8 and the definition of

the Lorentzian cut locus in Chapter 9.

Definition 4.10. (Mazimal Curve) Letp,q€ M withp < ¢, p # q. The
curve 7y € Q, 4 is said to be mazimal if L(y) = d(p, g).

An immediate consequence of the reverse triangle inequality (4.3) is

Remark 4.11. If v : [0,1] — M in Qp 4 is maximal, then for all s,t with
0 < s < t<1, wehave d(v(s),7(t)) = L(v|[s, t])-

The following result, stated somewhat differently in Penrose (1972, Propo-
sition 7.2), is the analogue of the principle in Riemannian geometry that “lo-
cally” geodesics minimize arc length [cf. Bishop and Crittenden (1964, p. 149,
Theorem 2)].

Proposition 4.12. Let U be a convex normal neighborhood centered at
point p € M. For q € J*(p), let pq denote the unique nonspacelike geodesic
¢:[0,1] = U in U with ¢(0) = p and ¢(1) = ¢q. If~y is any future directed
nonspacelike curve in U from p to q with L(v) = d(p, q), then v coincides with

Pq up to parametrization.

Proof. For g € I'*(p) and d(p, q) > 0, Penrose (1972, p. 53) shows, using a
synchronous coordinate system, that if v is any causal trip in U from p to ¢
other than pq, then L(v) < L(Pqg) = d(p, q¢)- This may be obtained equivalently
using the Gauss Lemma (cf. Corollary 10.19 of Section 10.1). Hence the result
is established if d(p, q) > 0.

Suppose now that d(p, ¢) = 0, and let -y be any nonspacelike curve in U from
pto g. Then L(y) <d(p,q) =0. Thus 7v: [0,1] — M is a null curve. Suppose
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that 7(¢t) ¢ Int(pq). Let y; be the unique null geodesic in U from p to ~(t),
and let 2 be the unique null geodesic in U from ~v(t) to g. By Proposition
2.19 of Penrose (1972, p. 15), 1 * 2 is either a smooth null geodesic or p K ¢.
Since d(p,q) =0, p < q is impossible. Hence 7 * 72 is a smooth null geodesic

which, by convexity of U, must coincide with g up to parametrization. O
Proposition 4.12 has the following important consequence.

Theorem 4.13. If v € Q,, satisfies L(y) = d(p,q), then v may be

reparametrized to be a smooth geodesic.

Proof. Fix any point (t) on 7. We may find § > 0 such that a con-
vex neighborhood centered at y(t + 6) contains ¥([t — é,¢ + 6]). By Remark
4.11 the curve 7| [t — 6,¢ + 6] is maximal. Thus Proposition 4.12 implies that
7| [t = 6, + 6] may be reparametrized to be a smooth geodesic. As t was

arbitrary, the theorem now follows. O

As an illustration of the use of Definition 4.10 and Theorem 4.13, we give a
simple proof of a basic result in elementary causality theory [cf. Penrose (1972,

Proposition 2.20)] that is usually obtained by different methods.

Corollary 4.14. Ifp < g but it is not the case that p < g, then there is a

maximal null geodesic from p to gq.

Proof. The causality assumptions on p and ¢ imply that d(p,q) = 0. Now
let v be a future directed nonspacelike curve from p to q. By definition of
Lorentzian distance, d(p,q) > L(y) > 0. Thus L(y) = d(p,q) = 0 and ~ is
maximal. By Theorem 4.13, v may be reparametrized to a smooth geodesic
¢:[0,1] - M from p to g. Since L(c) < d(p,q) = 0, the geodesic ¢ must be a

null geodesic. O

Note in Corollary 4.14 that since the null geodesic is maximal, it cannot
contain any null conjugate points to p prior to g [cf. O’Neill (1983, p. 404)]. A
sometime useful special case of Corollary 4.14 occurs when p = q is assumed.
In this case, one may deduce that if the space-time (M, g) is chronological
but not causal, then there exists a smooth null geodesic 8 : [0,1] — (M, g)
with 8(0) = B(1) and #'(1) = A\3'(0) for some A > 0. (If 5'(1) and B'(0)
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were not proportional, then 8 could be deformed near $5(0) to be future time-
like, contradicting the condition d(m,m) = 0 for all m in M, since (M, g) is
chronological [cf. Proposition 2.19 of Penrose (1972, p. 15)]. Even more dra-
matically, a closed timelike curve could be produced to violate chronology [cf.
Proposition 10.46 of O’Neill (1983, pp. 294-295)].)

As a second application of the elementary properties of the distance func-
tion, we give a proof of the existence of a smooth closed timelike geodesic
on any compact space-time having a regular cover with a compact Cauchy
surface. Using infinite-dimensional Morse theory, it may be shown [cf. Klin-
genberg (1978)] that any compact Riemannian manifold admits at least one
smooth closed geodesic. However, the method of proof relies crucially on the
positive definiteness of the metric and thus is not applicable to Lorentzian
manifolds. Nonetheless, one may obtain the following theorem of Tipler by

direct methods [cf. Tipler (1979) for a stronger result].

Theorem 4.15. Let (M, g) be a compact space-time with a regular cov-
ering space which is globally hyperbolic and has a compact Cauchy surface.

Then (M, g) contains a closed timelike geodesic.

Proof. Since M is compact, there exists a closed, future directed, timelike
curve v : [0,1] — M. Set p = v(0) = y(1). Let 7 : M — M denote the given
covering manifold, and let 5 : [0, 1] — M be a lift of v, i.e., moF(t) = ~(¢) for all
t € [0,1]. Then 7 is a future directed timelike curve in M. Put p1 = 7(0) and
p2 = J(1). Then the global hyperbolicity of M implies p; and py are distinct
points which cannot lie on any common Cauchy surface. Since 7 : MM
is regular, there must be a deck transformation 1 : MM taking p; to po
[cf. Wolf (1974, pp. 35-38, 60)]. Choose a compact Cauchy surface S; of M
containing p;, and define Sz = 9(S;). Since (M ,g) is globally hyperbolic, the
distance functiond = d(g) : MxM — RuU{co} is finite-valued and continuous.
Thus we may define a continuous function f : S; — R by f(s) = d(s,¥(s)).
Since f(p1) > 0, we have A = sup{d(s,¥(s)) : s € S1} > 0. Moreover, since
S is compact, A < oo and there exists an r, € S; with d(r1,9(r1)) = A. Let
c:[0,1] — M be a timelike geodesic segment with ¢(0) = r1, ¢(1) = ¥(r1),
and L(¢) = d(r1,9%(r1)) = A. This geodesic exists since (]\7,5) is globally
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hyperbolic. Because g = 7*g, it follows that ¢ = 70¢€: [0,1] — M is a timelike
geodesic. Since ¢(0) = ry and ¢(1) = ¥(r1), we also have ¢(0) = ¢(1). If ¢
were not smooth at ¢(0), we could deform c to a timelike curve ¢ : [0,1] — M
with Ly(c) > L(c), o(0) = o(1) € 7(S1), which lifts to a curve & : [0,1] — M
with 5(0) € S; and (1) = %(c(0)) € S2. But then L3 (7) = Ly(o) > Ly(c) =
L3 (¢) = A, in contradiction. O

More recently, G. Galloway (1984b) has obtained, by elementary geometric
arguments, the existence of a closed timelike geodesic from any stable nontrivial
free homotopy class of closed timelike curves on an arbitrary compact space-
time. Galloway’s approach is based on geodesic convexity methods which were
earlier used to obtain a result, basic to the development of global Riemannian
geometry during the early part of this century, given first by J. Hadamard for
surfaces and then by E. Cartan for general Riemannian manifolds of higher
dimension. Their result concerns the existence, within any nontrivial free ho-
motopy class of curves on a compact Riemannian manifold, of a shortest curve
in the given homotopy class, which must then be a nontrivial smooth closed
geodesic. From a directly geometric viewpoint, certain basic ideas involved in

the existence of this geodesic are the following.

Let Ly > 0 denote the infimum of all lengths of curves in this homotopy
class. Choose a minimizing sequence {cx} with lim L(cx) = Lo in the given free
homotopy class. By compactness and convexity radius arguments, one covers
the given manifold by a finite number of geodesically convex neighborhoods
(each having compact closure in a larger geodesically convex neighborhood).
Using these neighborhoods in succession, each ¢, may be approximated by
a piecewise smooth geodesic, or equivalently, may be viewed as an N-tuple
of successive points p;(k),p2(k),...,pn(k), where a uniform bound needs to
be given for the number N of points required. Since a geodesic segment in
a convex neighborhood is the shortest curve between any two of its points,
this approximation procedure produces a shorter curve than cg, but one which
is also still homotopic to ck, and hence is in the given free homotopy class.
By compactness, a diagonalizing argument gives points p1,p2,...,pn which

are limits of a subsequence of all of the above sequences. Joining p; to p;+1
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successively produces a piecewise smooth geodesic ¢ in the given free homotopy
class which realizes the minimal length Lg. Now the geodesic ¢ must in fact be
smooth at the p;’s, or an even shorter closed curve in the free homotopy class
could be produced by the usual “rounding off the corners” procedure. Since
Lo > 0, this closed geodesic ¢ must be nontrivial, i.e., not a “point curve.” A
detailed discussion of the steps involved in the above argument may be found
in Spivak (1979, p. 358).

Now in carrying these ideas over to the space-time setting, it is clear that
“minimal geodesic segment” should be replaced by “maximal timelike geodesic
segment.” Technical difficulties arise, however, since the set of unit timelike
tangent vectors based at a given point is not a compact set. Hence, problems
can arise with timelike tangent vectors tending toward a null direction when
trying to do subsequence arguments. Equivalently, in the above context, it is
necessary to prevent timelike geodesic segments joining p;(k) to p;41(k) from
converging to a null geodesic segment from p; to p;+1 when the diagonalization
procedure is carried out. Indeed, Galloway (1986b) gives an example of a
compact space-time which contains no closed timelike geodesics but which
contains a closed null geodesic.

In view of these difficulties, Galloway (1984b) considers timelike free ho-
motopy classes which are “stable” for a given compact space-time (M, go).
Here a given free timelike homotopy class € for (M, go) is said to be stable if
there exists a “wider” Lorentzian metric g for M, i.e., go < ¢ in the sense of
the discussion following Remark 3.14, such that if L, denotes the Lorentzian
arc length for (M, g), then the given timelike homotopy class € satisfies the

condition

sup Lg(c) < +o0.
cec

Galloway (1984b) shows that this concept of stability gives the control needed
to force convergence arguments to be successful and hence obtains the theorem
that for any compact Lorentzian manifold, each stable free timelike homotopy
class contains a longest closed timelike curve which is of necessity a closed
timelike geodesic. Galloway also shows how his result may be used to recover

Tipler’s Theorem 4.15 given above and gives a criterion for a free homotopy
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class of closed timelike curves to be stable. Finally, we note that in Galloway
(1986Db) it is shown by covering space arguments that every compact two-
dimensional Lorentzian manifold contains a closed timelike or null geodesic.
Here one uses dimension two in the essential way that a closed timelike curve for
(M, g) corresponds to a closed spacelike curve (hence a spacelike hypersurface)
for (M, —g), which is also a Lorentzian manifold since dim(M) = 2. Thus,
certain techniques in general relativity involving spacelike hypersurfaces may

be applied to the existence problem.

4.2 Distance Preserving and Homothetic Maps

Myers and Steenrod (1939) and Palais (1957) have shown that if f is a dis-
tance preserving map of a Riemannian manifold (N, g;) onto a Riemannian
manifold (Ns, g2), then f is a diffeomorphism which preserves the metric ten-
sors, i.e., f*go = g1. In particular, every distance preserving map of (Ny, g;)
onto itself is a smooth isometry. In this section we give similar results for
Lorentzian manifolds following Beem (1978a).

Recall that a diffeomorphism f : (Mj,g1) — (Ma,go) of the Lorentzian
manifold (M, g1) onto the Lorentzian manifold (Ma, g2) is said to be homo-
thetic if there exists a constant ¢ > 0 such that go(f.v, few) = cg1(v,w) for
all v,w € T,M; and all p € M;. In particular, if ¢ = 1, then f is a (smooth)
isometry. The group of homothetic transformations is important in general
relativity since it has been shown to be the group of transformations which
preserves the causal structure for a large class of space-times [cf. Zeeman
(1964, 1967), Gobel (1976)].

We will let d; denote the Lorentzian distance function of (M, g1) and ds
denote the Lorentzian distance function of (M, g2) below. The distance ana-

logue of a smooth homothetic map is defined as follows.

Definition 4.16. (Distance Homothety) A map f: (M, g1) — (Mo, g2)
is said to be distance homothetic if there exists a constant ¢ > 0 such that
d2(f(p), f(q)) = cdi(p,q) for all p,q € M. If ¢ = 1, then f is said to be

distance preserving.
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It is important to note that for arbitrary Lorentzian manifolds, distance
preserving maps are not necessarily continuous. For if (M, g) is a totally
vicious space-time, we have seen that d(p, q) = oo for all p,q € M [cf. Lemma
4.2-(2)]. Hence any set theoretic bijection f : M — M is distance preserving

but need not be continuous.

Theorem 4.17. Let (Mi,g1) be a strongly causal space-time, and let
(Ma2,g2) be an arbitrary space-time. If f : (Mi,g1) — (Ma,g2) is a dis-
tance homothetic map (not assumed to be continuous) of M, onto My, then f
is a smooth homothetic map. That is, f is a diffeomorphism, and there exists
a constant ¢ > 0 such that f*g2 = cg;. In particular, every map of a strongly
causal space-time (M, g) onto itself which preserves Lorentzian distance is an

isometry.

Corollary 4.18. If (M, g) is a strongly causal space-time, then the space of
distance homothetic maps of (M, g) equipped with the compact-open topology

is a Lie group.

Proof of Corollary 4.18. Since (M, g) is strongly causal, this group coincides
by Theorem 4.17 with the space of smooth homothetic maps of M onto itself

which preserve the time orientation. But this second group is a Lie group. O
The proof of Theorem 4.17 will be broken up into a series of lemmas.

Lemma 4.19. Let (My,g;) and (Mo, g2) be space-times, and consider a
map f : (My,91) — (Ma, g2) which is onto but not necessarily continuous. If

f is distance homothetic, then

(1) px q iff f(p) < f(q), and
(2) fIt(P)NI~(g) =I*(f(p)) NI~ (f(q)) -

Proof. First (1) holds since do2(f(p), f(q)) = cd1(p,q), and p <K ¢ [respec-

tively, f(p) < f(q)] iff di(p, g) > O [respectively, d2(f(p), f(g)) > 0]. Since (1)
implies p < r < ¢ iff f(p) < f(r) < f(gq), statement (2) follows. O

The importance of (2) stems from the fact that if (M, g) is strongly causal,
the sets {I*(p)NI~(q) : p,q € M} form a basis for the topology of M. Recall
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that a map f : M; — M is said to be open if f maps each open set in M; to
an open set in Ms.

Lemma 4.20. Let (My,g1) be strongly causal and let (M2, g2) be an ar-
bitrary space-time. If f is a (not necessarily continuous) distance homothetic

map of (My, g1) onto (Ma, g2), then f is open and one-to-one.

Proof. The openness of f is immediate from part (2) of Lemma 4.19. It
remains to show that f is one-to-one. Assume there are distinct points p and
g of My with f(p) = f(q)- Let U(p) be an open neighborhood of p with
g ¢ U(p) and such that no nonspacelike curve intersects U(p) more than once.
Choose 71,72 € U(p) withr; < p < 9. Clearly, g ¢ I (r)NI~ (r2). It follows
from Lemma 4.19 that f(r;) < f(p) = f(g) < f(r2) implies 1} < q¢ < 7.
This yields ¢ € It (r;) NI~ (r2) which is a contradiction. O

Applying Lemma 4.20 to f and f~! we obtain

Proposition 4.21. Let (M, g1) be strongly causal, and let (M5, g2) be an
arbitrary space-time. Let f be a (not necessarily continuous) map of M; onto
M,. If f is distance homothetic, then f is a homeomorphism and (Ma, g2) is
strongly causal.

Proof. The relation f~! is a function since f is one-to-one by Lemma 4.20.
Furthermore, f~! is continuous since Lemma 4.20 shows f is an open map.

In order to complete the proof it is sufficient to show My is strongly causal
since Lemma 4.20 will then imply f~! is an open map, whence f is continuous.
Given p' € M, let p = f~1(p'). If ' < p' < ¢', then Lemma 4.19 applied to
the distance homothetic map f~! yields f~1(r') < p < f~!(¢'). Let U'(p') be
an open neighborhood of p’. Choose V'(p") C U’(p’) with the closure of V'(p')
a compact set contained in an open convex normal neighborhood W'(p’) of p'.
We may assume that (W'(p'), g2 |y (p,)) is globally hyperbolic. Let {r},} and
{q.,} be sequences in V'(p') such that r,, — p', ¢, = p', and 7, < p’ < ¢,
for all n. Assume the strong causality of M> fails at p’. This means that for
each n, the set I*T(r},) N I~(g,) cannot be contained in the convex normal
neighborhood W'(p') because otherwise the sets I (r},) N I~ (qg},) would give
arbitrarily small neighborhoods of p’ which each nonspacelike curve intersects
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at most once. Choose a sequence of points {z],} contained in the boundary
of V'(p') with 2], € It(rl)) N I~(qg,) for each n. The sequence {z,} has an
accumulation point z because the closure of V’(p’) is compact. Furthermore,
f7Hzn) € I (rp)NI(gn)) = IH(f71(rn))NI~ (£~ (gr))- The continuity
of f~! implies that f~!(r,) — p and f~!(q},) — p. The strong causality of
M, yields that the sets IT(f~1(r,)) NI~ (f~1(¢,)) are approaching the point
p. Thus, f~!(z,) — p which means f~!(z) = p = f~1(p’). This contradicts
the one-to-one property of f~!. Consequently, M> must be strongly causal,

and the proposition is established. O

Consider the strongly causal space-time M. Given p € M, let U(p) be
a convex normal neighborhood of p. The set U(p) may be chosen so small
that whenever ¢, € U(p) with ¢ < r, the distance d(g, ) is the length of the
unique geodesic segment a(q,r) from ¢ to 7 which lies in U(p). Furthermore,
U(p) may be chosen such that if ¢,2z,7 € U(p) with ¢ <« 2z <« r, then the
reverse triangle inequality d(q, ) > d(g, z) +d(z, ) is valid with strict equality
if and only if z is on the geodesic segment from g to 7 in U(p). Thus, timelike
geodesics in a strongly causal space-time are characterized by the space-time
distance function, and it follows that distance homothetic maps take timelike

geodesics to timelike geodesics.

Lemma 4.22. If f is a distance homothetic map defined on a strongly

causal space-time, then f maps null geodesics to null geodesics.

Proof. Let U(p) be a convex normal neighborhood of p as in the above
paragraph, chosen sufficiently small such that f(U(p)) lies in a convex nor-
mal neighborhood of f(p). Let a(g,r) be a null geodesic in U(p). Choose
¢ — q and 7, — 7 with ¢, < 7, for all n. Proposition 4.21 then im-
plies that f(¢gn.) — f(q) and f(rn) — f(r). The map f takes the time-
like geodesic a(gn,T») with endpoints g, and r, to the timelike geodesic
a(f(gn), f(rn)). Since the geodesics a(gn,m,) converge to a(g,7) and the
geodesics a(f(gn), f(rn)) converge to a(f(q), f(r)), it follows that f maps
a(g,7) to a(f(g), f(r)). O



4.2 DISTANCE PRESERVING AND HOMOTHETIC MAPS 155

"Proof of Theorem 4.17. The fact that f is a diffeomorphism follows from
a result proved by Hawking, King, and McCarthy (1976) which states that a
homeomorphism which maps null geodesics to null geodesics must be a diffeo-
morphism. Since M; and M> are strongly causal, for each p € M; there exists
a convex normal neighborhood U; (p) such that for ¢ € U;(p) with p < g, the
lengths of the timelike geodesics a(p, ¢) joining p to ¢ and a(f(p), f(q)) join-

ing f(p) to f(q) are given by di(p, q) and d2(f(p), f(q)), respectively. Using
d2(f(p), f(q)) = cdi(p, g), it follows that f maps g; onto the tensor c~2go. O

It is well known that if a complete Riemannian manifold is not locally flat,
then it admits no homothetic maps that are not isometries [cf. Kobayashi and
Nomizu (1963, p. 242, Lemma 2)]. An essential step in the proof consists of
showing for arbitrary complete Riemannian manifolds that any homothetic
map which is not an isometry has a unique fixed point. This may be done
by using the triangle inequality for the Riemannian distance function and the

metric completeness of any geodesically complete Riemannian manifold.

In view of Theorem 4.17 above, it is then of interest to consider the analo-
gous question of the existence of nonisometric homothetic maps of a Lorentzian
manifold [cf. Beem (1978b)]. In what follows, we will use the standard ter-
minology of proper homothetic map for a homothetic map which is not an

isometry.

We first note that R? with the Lorentzian metric ds? = dzdy provides an
example of a globally hyperbolic geodesically complete space-time that admits
a fixed-point free, proper homothetic map. For fixing any 8 # 0 and choosing
any ¢ > 0, the map f(z,y) = (¢ + fB,cy) is a fixed-point free homothetic
map with homothetic constant ¢. Thus the existence of a fixed point for a
proper homothetic map must be assumed for geodesically complete Lorentzian

manifolds unlike the Riemannian case.

Now suppose f is a proper homothetic map of a space-time (M, g) such
that f(p) = p for some p € M. Then f., : T,M — T,M has at least one
nonspacelike eigenvector [cf. Beem (1978b, p. 319, Lemma 3)]. This eigenvec-

tor may be null, however. For example, composing the Lorentzian “boost”
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isometry F of (R?,ds? = dz? — dy?),
F(z,y) = (zcosht + ysinht, zsinht + ycosh t)

with t > 0 fixed, and a dilation T'(z,y) = (cz, cy) with ¢ > 0 and ¢ # 1 yields a
proper homothetic map f of Minkowski space-time fixing the origin such that
f(0.0; has null vectors for eigenvectors.

But if f., : T,M — T, M is a proper homothetic map which has a timelike
eigenvector with eigenvalue A < 1, it may be shown that (M, g) is Minkowski
space-time [cf. Beem (1978b, p. 319, Proposition 4)]. Also, if f is 2 homothetic
map with a fixed point p such that all eigenvalues of f,, are real and all have
absolute value less than one, then (M, g) is Minkowski space-time [cf. Beem
(1978b, p. 316, Theorem 1)].

We now give an example of a nonflat space-time admitting a global homo-
thetic flow. Let M = R3 with the metric ¢ = ds?> = e**dzdy + dz2. Thus
if

v=a2+b—6—+c—6— w=¢‘z£+52
drx 8y 8z’ 8z Oy 0Oz

are tangent vectors at (z,y, z), we have

olow) = 2E L
It may then be checked that while (M, g) is not flat, the map ¢; : (R3,ds?) —
(R3, ds?) given by
¢t (1:) Y, Z) = (etxv C_Sty, e_tz)

is a proper homothety with g(¢:. v, ¢:.w) = e~ #g(v, w) for each fixed nonzero
t.

We now show, however, that this space-time is null geodesically incomplete.
Let X = 8/0z, Y = 8/0y, and Z = 8/9z. Then all inner products vanish
except for g(X,Y) = e**/2 and g(Z, Z) = 1; furthermore, [X,Y] = [X, Z] = 0.

Hence using the Koszul formula

29(VyV,W) =Ug(V,W) +Vg(U,W) - Wg(U,V)
+g([U, VLW) _g([U, W],V) - g([V, W]7U)7
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we obtain the following formulas for the Levi-Civita connection of (R3, ds?):
VxX = 2X, VyY =VzZ =0,

VxY = —%e”Z, VxZ = g-x, and VyZ= g}f.

Thus the only nonzero.Christoffel symbols are I'}; = z, '}, = I'3; = —Ze?,
and 'l =T}, =T%; =T%, = Z. Hence if v(t) = ((t), y(t), 2(t)) is a geodesic,
the usual system of second order differential equations

dz; dz; _
dt2 ZF Y =0

for -y reduces to the following system:

2"+ 2(z')? + zz'2 = 0,
yl/ + :rylzl — 0’

Tz
2" — Tmz’y' =0.

It may finally be checked that the curve v : (—=1,00) — (R3,ds?) defined by
~(t) = (In(1 + ¢t), 0, 1) satisfies this system of differential equations and hence
is the unique null geodesic in (R3,ds?) with 4'(0) = 8/0z] ©0,1)- Thus this

space—-time is null geodesically incomplete.

4.3 The Lorentzian Distance Function and Causality

In this section we study the relationship between the continuity and finite-
ness of the Lorentzian distance function d = d(g) : M x M — R U {oo} for
(M, g) and the causal structure of (M, g). The most elementary properties,
extending Lemma 4.2 above, are summarized in the following lemma. Re-
call that Lor(M) denotes the space of all Lorentzian metrics for M. The C°
topology on Lor(M) was defined in Section 3.2.

Lemma 4.23.

(1) d(p,q) > 0 iff g € I*(p).
(2) The space-time (M, g) is totally vicious iff d(p, q) = oo for allp,q € M.
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(3) The space—time (M, g) is chronological iff d is identically zero on the
diagonal A(M) = {(p,p) :pE M} of M x M.

(4) The space-time (M, g) is future [respectively, past] distinguishing iff
for each pair of distinct p,q € M, there is some x € M such that
exactly one of d(p,z) and d(q,z) [respectively, d(z,p) and d(z,q)] is
zero.

(5) The space-time (M, g) is stably causal iff there exists a neighborhood
U of g in the fine C° topology on Lor(M) such that d(g')(p, p) = 0 for
allg €U andpe M.

Proof. Similar to Lemma 4.2 and Remark 4.3. O

Recall that the Lorentzian distance function in general fails to be upper
semicontinuous. Thus the continuity of d(g) should have implications for the
causal structure of (M,g). An example is the following result first stated in
Beem and Ehrlich (1977, p. 1130). Here d is regarded as being continuous at
(p,q) € M x M with d(p,q) = oo because d(pn,qn) — oo for all sequences
pn — p and ¢, — ¢ (cf. Lemma 4.4).

Theorem 4.24. Let (M,g) be a distinguishing space-time. If d = d(g) :

M x M — RU {oo} is continuous, then (M, g) is causally continuous.

Proof. We need only show that It and I~ are outer continuous. Assume
I is not outer continuous. There is then some compact set K C M — I+(p)
and some sequence p, — p such that K ﬂm # P for all n. Let ¢, €
K NT+(p,) and let {gn} be a subsequence of {g,} such that {g,} converges
to some point g of the compact set K. Then ¢» — ¢ and ¢, € I_*'m
imply there must be a sequence {g/,} converging to g such that ¢/, € I (pn)
for each m. Since M — I"'—(m is an open neighborhood of ¢, there is some
r € M — I*(p) with ¢ < r. For sufficiently large m we then have ¢/, < r
and hence pm < ¢, < 7. Thus d(pm,T) = d(Pm,q,) + d(gl,,7). Using the
lower semicontinuity of distance and the causality relation ¢ <« r, we obtain
0 < d(q,7) < liminfd(q,,,7). Consequently, d(pm,r) > d(g,7)/2 > 0 for
all sufficiently large m. However, since r ¢ I*(p), we have d(p,7) = 0, and

hence d(p, ) # limd(pm, 7). Thus if d is continuous, I is outer continuous.



43 LORENTZIAN DISTANCE FUNCTION AND CAUSALITY 159

FIGURE 4.6. Let (M,g) denote Minkowski space-time with the
point 7 deleted. Choose p,q € M such that in Minkowski space—
time the point r is on the boundary of I*(p) N I~ (g) as shown.
Let {gn} be a sequence of points approaching ¢ with ¢ < g, for
each n. There is a smooth conformal factor 2 : M — (0, 00) such
that Q@ =1 on I'*(p) N I~(q) and yet d(Qg)(p, gn) > 2d(g)(p, q) for
each n. The function Q will be unbounded near the deleted point
r. Since d(g)(p, ¢) = d(Qg)(p, ¢) < liminf d(Qg)(p, ¢»), the causally
continuous space-time (M, Qg) has a Lorentzian distance function

which is discontinuous at (p,q) € M x M.

A similar argument shows that I~ is outer continuous. Thus continuity of d

implies that (M, g) is causally continuous. O
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The following example shows that the converse of Theorem 4.24 is false. Let
(M, g) denote Minkowski space-time with a single point removed. The space—
time (M, Qg) will be causally continuous for any smooth conformal factor
Q: M — (0,00). However, 2 may be chosen such that d = d(Qg) is not
continuous (cf. Figure 4.6).

We now turn to a characterization of strongly causal space-times in terms
of the Lorentzian distance function. The definition of convex normal neigh-

borhood was given in Section 3.1. Given any space-time (M, g), we have

Definition 4.25. (Local Distance Function) A local distance function
(D,U) on (M, g) is a convex normal neighborhood U together with the distance
function D : U x U — R induced on U by the space-time (U, g|;)-

More explicitly, given p,q € U, then D(p,q) = 0 if there is no future di-
rected timelike geodesic segment in U from p to g. Otherwise, D(p, q) is the
Lorentzian arc length of the unique future directed timelike geodesic segment
in U from p to q.

We will let I*(p,U) (respectively, J*(p,U)) denote the chronological (re-
spectively, causal) future of p with respect to the space-time (U, g|;).

Lemma 4.26. Let (M,g) be a space-time, and let U be a convex normal
neighborhood of (M, g). Assume that D : U x U — R is the distance function
for (U, g|y;)- Then D is a continuous function on U x U and D is differentiable
onU* ={(p,q) eUxU:qeI*(p,U)}

Proof. Given p,q € U with ¢ € J*(p,U), let cpq : [0,1] — U denote the
unique nonspacelike geodesic segment with cpq(0) = p and cpe(l) = g. We
then have D(p, 4) = [~9(cjq(0), cig(0))]* and D(p, @)? = [~g(c1q(0), cpa(0)))-
From the differentiable dependence of geodesics on endpoints in convex neigh-
borhoods, it is immediate that D is continuous on U x U and that D is differ-
entiable on U*. (O

Minkowski space-time shows that D fails to be differentiable across the null
cones and thus fails to be smooth on all of U x U. It is not hard to see that the
local distance function (D, U) uniquely determines the Lorentzian metric g on

U. Consequently if {Uy} is a covering of M by convex normal neighborhoods
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with associated local distance functions {(Dq, Uqa)}, then {(Dq, Us)} uniquely
determines g on M.

We now characterize strongly causal space-times in terms of local distance
functions [cf. Beem and Ehrlich (1979¢c, Theorem 3.4)].

Theorem 4.27. A space-time (M, g) is strongly causal if and only if each
point r € M has a convex normal neighborhood U such that the local distance
function (D, U) agrees on U xU with the distance functiond = d(g) : MxM —
R U {o0}.

Proof. If (M, g) is strongly causal and r € M, then there is some convex nor-
mal neighborhood U of r such that no nonspacelike curve which leaves U ever
returns. The local distance function for U then agrees with d = d(g) | (U x U).

Conversely, assume that strong causality breaks down at some point r € M.
Let U be a convex normal neighborhood of r such that D(p,q) = d(p,q)
for all p,g € U. There exists a neighborhood W C U of r such that any
future directed nonspacelike curve v : (0,1] — U with (1) € W and v past
inextendible in U contains some point not in J* (W, U). Since strong causality
fails to hold at r, there is a future directed timelike curve v, : [0,1] — M with
" = v1(0) € W, v1(1/2) ¢ U, and 71(1) € W. By construction of W, there
is some point p € y1 NU with p ¢ J*(r',U). Hence D(r',p) = 0. However,
d(r',p) > 0 since d(r',p) is at least as large as the length of v; from 7’ to
p. Thus D(r',p) # d(r',p). Taking the contrapositive then establishes the

theorem. O

Corollary 4.28. If (M, g) is strongly causal, then d is continuous on some
neighborhood of A(M) = {(p,p) : p € M} in M x M. Also, given any
point m € M, there exists a convex normal neighborhood U of m such that
d| (U x U) is finite-valued.

We now give a characterization of globally hyperbolic space-times among
all strongly causal space-times using the Lorentzian distance function. For
this purpose, it is first necessary to show that the usual definition of globally
hyperbolic may be weakened.
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Lemma 4.29. Let (M, g) be a strongly causal space-time. If J*(p)NJ~(q)
has compact closure for all p,q € M, then (M, g) is globally hyperbolic.

Proof. 1t is only necessary to show J*(p)NJ~(q) is always closed. Assume
r e (J*(p)NJ=(g)) — (J*(p) N J~(q)). Choose a sequence {r,} of points
in J*(p) N J~(g) with r, — r. For each n let v, : [0,1) — M be a future
directed, future inextendible, nonspacelike curve with p = 7,(0) and 7, € vy,
q € vn. By Proposition 3.31, there is some future directed, future inextendible,
nonspacelike limit curve v : [0,1) — M of the sequence {v,}. Furthermore,
p = ¥(0). The limit curve v cannot be future imprisoned in any compact subset
of M because (M, g) is strongly causal (cf. Proposition 3.13). Consequently,
there is some point z on v with z ¢ J+(p) N J—(q). The definition of limit
curve yields a subsequence {ym} of {y.} and points z,, € vm with z,, — z.
Since z ¢ J*+(p) N J—(q), we have z,, ¢ J*(p) N J~(g) for all large m. Using
Ym C Jt(p), it follows that z., ¢ J~(q) for large m. Hence q lies between p
and z., on v, for large m. Let v[p,z] (respectively, ym[p, Tm]) denote the
portion of v (respectively, v.,) from p to = (respectively, z,). By Proposition
3.34 we may assume, by taking a subsequence of {ym[p,zm]} if necessary,
that {¥m[p, Tm]} converges to v[p,z] in the C° topology on curves. Hence
g € Ym[Dp, zm] for large m implies ¢ € v[p,z]. Also rm — r and rm < ¢ which
yield r € v[p, ¢]. Thus r € J*(p) N J~(gq), in contradiction. O

Recall from Definition 4.6 above that a space-time (M, g) is said to satisfy
the finite distance condition if and only if d(g)(p, ¢) < oo for all p,q € M. This
condition may be used to characterize globally hyperbolic space-times among

strongly causal space-times [cf. Beem and Ehrlich (1979b, Theorem 3.5)].

Theorem 4.30. The strongly causal space-time (M, g) is globally hyper-
bolic iff (M, ¢') satisfles the finite distance condition for all ¢’ € C(M, g).

Proof. It has already been remarked that if (M, g) is globally hyperbolic,
then all metrics in C(M, g) satisfy the finite distance condition (cf. Corollary
4.7).

Conversely, assume that (M, g) is not globally hyperbolic. Lemma 4.29
implies that there exist p,g € M such that J*(p) N J~(g) does not have
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compact closure. Let h be an auxiliary geodesically complete positive definite
metric on M, and let dp : M x M — R be the Riemannian distance function
induced on M by h. The Hopf-Rinow Theorem implies that all subsets of M
which are bounded with respect to dg have compact closure. Thus J*(p) N
J~(q) is not bounded. Hence, for each n we may choose p, € J*(p) N J~(q)
such that do(p,pn) > n. Choose p’ and ¢’ with p’ < p < ¢ < ¢’. We wish to
show there exists a conformal factor Q such that d(Qg)(p’,¢’') = 0. For each
n > 1, choose v, to be a future directed timelike curve from p’ to p, such that
Yn[1/2,3/4] C {re M :n—1<dy(p,7) <n}. Foreachn >1,letQ,: M — R
be a smooth function such that Q,(z) =1ifz ¢ {r: n—1 < do(p,7) < n} and
such that the length of v,[1/2,3/4] is greater than n for the metric ,g. Let
Q =TI,, Q. This infinite product is well defined on M since for each z € M
at most one of the factors 2, is not unity. Then d(Qg)(p’,pn) > n for each
n > 1. Hence d(Q9)(p’,q") = o0 as d(Qg)(p',¢') = d(Q9)(p', ) +d(Q9)(Pn, ¢')
for eachn. O

We now turn to the proof that for distinguishing space-times with continu-
ous distance functions, the future and past inner balls form a subbasis for the

given manifold topology. Recall that
Bt (p,e) ={qe I"(p):d(p,q) <€} ={ge M:0<d(p,q) < ¢},

and

B~ (p,e) ={qe I (p):d(g,p) <e} ={g€ M:0<d(q,p) < e}

Thus defining f; : M — R for i = 1,2 by fi(q) = d(p,q) and f2(q) = d(q,p),
we have Bt (p,¢) = f;1((0,¢)) and B~ (p,€) = f5*((0,¢)). Hence if (M, g) has
a continuous distance function, the inner balls B* (p,¢) and B~ (p, €) of M are

open in the manifold topology.

Proposition 4.31. Let (M, g) be a distinguishing space-time with a con-

tinuous distance function. Then the collection
{B+(p7€1) nB_(q’ €2) 'p,g € M1 €1,€2 > 0}

forms a basis for the given manifold topology of M.
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Proof. The above arguments show that sets of the form B* (p, ¢;)NB~(q, €2)
are open in the manifold topology. Thus given an arbitrary point r € M
and an arbitrary open neighborhood U(r) of r in the manifold topology, it is
sufficient to show that there exist p,q € M and €1,e2 > 0 with r € B*(p,€1) N
B~(g,e2) CU(r).

Theorem 4.24 yields that (M,g) is causally continuous and hence also
strongly causal. Thus we may choose a convex normal neighborhood V' of
7 with V' C U(r) such that no nonspacelike curve which leaves V ever returns
and such that d : V x V — R U {oo} is finite-valued (cf. Corollary 4.28). Fix
p,gq €V withp < r < ¢ Thenr € I*T(p)NI~(g) C V since no nonspace-
like curve from p to g can leave V' and return. Letting €; = d(p,7) + 1 and

€2 = d(r,q) + 1, we obtain
r€ B*(p,e1) N B (g,62) CIT(p)NI(q) CV CU(r)

which establishes the proposition. O

We conclude this section with a characterization of totally geodesic timelike
submanifolds in terms of the Lorentzian distance function. An analogous result
holds for submanifolds of (not necessarily complete) Riemannian manifolds
[cf. Gromoll, Klingenberg, and Meyer (1975, p. 159)].

Let (M,g) denote an arbitrary strongly causal space-time. Suppose that
i: N — M is a smooth submanifold and set g = ¢*g. Recall that (IV,g) is said
to be a timelike submanifold of (M, g) if §|, : T,N x T,N — R is a Lorentzian
metric for each p € N. As usual, we will identify N and #(N). Let L, L
and d, d denote the arc length functionals and Lorentzian distance functions
of (N,g) and (M, g), respectively. Then if v is a smooth curve in (N,g), we
have L(y) = L(v). Note also that if ¢ € I*(p, N), then p < ¢ in (M, g), and
if g€ J*(p,N), then p < ¢ in (M, g). Thus it follows immediately from the
definitions of d and d that

(4.4) d(m,n) < d(m,n) for all m,n € N.

With this remark in hand, we are ready to prove the following result.
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Proposition 4.32. Let (N,g) be a totally geodesic timelike submanifold
of the strongly causal space-time (M, g). Then given any p € N, there exists
a neighborhood V of p in N such that d| (V x V) =d| (V x V).

Proof. First, let W be a convex neighborhood of p in (M, g) such that every
pair of points m,n € W are joined by a unique geodesic of (M, g) lying in W
and if m < n, then this geodesic is maximal in (M, g). We may then choose
a smaller neighborhood Vj of p in M with Vo C W such that if V =1V N N,
then V is contained in a convex normal neighborhood U of p in N with U
contained in W.

Suppose first that m,n € V and n € J*(m, N). Since V C U, there exists
a nonspacelike geodesic v of (N,g) in U from m to n. Also, as N is totally
geodesic, v is a nonspacelike geodesic in (M, g). Because v is contained in U
and U C W, v is maximal in (M, g). We thus have d(m,n) > L(y) = L(y) =
d(m,n). In view of (4.4), we obtain d(m,n) = d(m,n) as required.

It remains to consider the case that m,n € V and n ¢ J*(m,N). Thus
d(m,n) = 0 by definition. Suppose that d(m,n) > 0. Then there exists a
timelike geodesic y; of (M, g) in W from m to n. On the other hand, since
m,n € U, there exists a geodesic 2 of (N,g) from m to n lying in U which
must be spacelike since n ¢ J*(m, N). Since (NV,g) is totally geodesic, 72 is
also a spacelike geodesic of (M, g) from m to n which lies in U C W. Thus we
have distinct geodesics v; and 7, in W from m to n, in contradiction. Hence

d(m,n) = 0 = d(m,n) as required. O
We now prove the converse of Proposition 4.32.

Proposition 4.33. Let (N,g) be a timelike submanifold of the strongly
causal space-time (M, g). Suppose that for all p € N there exists a neighbor-
hood V of p in N such that d| (V x V) = d| (V x V). Then (N,3) is totally
geodesic in (M, g).

Proof. Tt suffices to fix any p € N and show that the second fundamental
form S, vanishes at p (cf. Definition 3.48). Since any tangent vector in T, N
may be written as a sum of nonspacelike tangent vectors, it is enough to

show that S,(v,w) = 0 for all nonspacelike tangent vectors in T,N. Also, as
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Sp(—v,w) = =S, (v,w), it suffices to show that S,(v,w) = 0 for all future
directed nonspacelike tangent vectors in T, N.

Thus let v € T,N be a future directed nonspacelike tangent vector. Let
~ denote the unique geodesic in (N,g) with 4/(0) = v. Also let V be a
neighborhood of p in N on which the distance functions d and d coincide.
Choose t > 0 such that if m = «(t), then m € V and d(p,m) = L(|[0,t]) is
finite. We then obtain

d(p, m) 2 L(7| [Ovt]) = Z(7 | [Ovt]) = C_l(p1 m)

But since m € V we have d(p,m) = d(p,m), whence L(v|[0,t]) = d(p,m).
Hence | [0,t] is a geodesic in (M, g) by Theorem 4.13. Thus we have shown
that if v € TpN is any future directed tangent vector, the geodesic in (M, g)
with initial direction v is also a geodesic in (IV, ) near p. Therefore S,,(v,v) =
0 for all future directed nonspacelike tangent vectors. Since the sum of two
nonparallel future directed nonspacelike tangent vectors is future timelike, it
follows by polarization that S,(v,w) = 0 for all future directed nonspacelike

tangent vectors v,w € T, N, as required. [

Combining Propositions 4.32 and 4.33 yields the following characterization
of totally geodesic timelike submanifolds of strongly causal space-times in

terms of the Lorentzian distance function.

Theorem 4.34. Let (M, g) be a strongly causal space-time of dimension
n > 2, and suppose that (N,i*g) is a smooth timelike submanifold of (M, g),
i.e., § = i*g is a Lorentzian metric for N. Then (N,g) is totally geodesic
iff given any p € N, there exists a neighborhood V of p in N such that the
Lorentzian distance functions d of (N,g) and d of (M, g) agreeonV x V.

4.4 Maximal Geodesic Segments and Local Causality

We have seen in this chapter that certain causality conditions placed on a
space-time are related to pleasant local or global behavior of the Lorentzian
distance function. For instance, we saw that if (M, g) is globally hyperbolic,
then all metrics conformal to g for M are not only continuous but also satisfy

the finite distance condition as well. Further, the finite distance condition for
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all métrics conformal to a given strongly causal metric for a space-time forces
the conformal class of space-times to be globally hyperbolic. If a space-time
is strongly causal, then we noted that for any given p in M there exists a
neighborhood U of p in which the local distance function of (U, g|v/) coincides
with the global Lorentzian distance function on U x U. Hence the Lorentzian
distance function is forced to be finite-valued on U x U.

For the purposes of this section, it will be convenient to reformulate Defi-

nition 4.10 slightly as follows.

Definition 4.35. (Mazimal Segment) A future directed nonspacelike
curve ¢ : [a,b] — (M,g) is said to be a mazimal segment provided that
L(c) = d(c(a),c(b)) and hence L(c|[s,t]) = d(c(s),c(t)) for all s, t with
a<s<t<b.

Evidently, the Lorentzian distance function restricted to the image of a
maximal segment must be finite-valued and continuous. In the terminology
of Definition 4.35, the previous Proposition 4.12 may be rephrased as follows.
Suppose that (M, g) is strongly causal. Given p in M, let U be a local causality
neighborhood of p, i.e., a causally convex neighborhood about p which is also
a geodesically convex normal neighborhood. Then any nonspacelike geodesic
segment lying in U is a maximal segment in the space-time (M, g).

In Chapter 14 the Lorentzian Splitting Theorem for timelike geodesically
complete (but not necessarily globally hyperbolic) space-times is studied.
Since global hyperbolicity is not assumed and hence the global continuity
and finite-valuedness of the space-time distance function may not be taken
for granted, it is necessary to make a careful study of the space-time distance
function and asymptotic geodesics in a neighborhood of a given timelike line.
What emerged in a series of papers, as summarized in the introduction to
Chapter 14 which will not be repeated here, is that the existence of a global
maximal timelike geodesic has important implications for the distance function
and the Busemann function of the timelike line in a neighborhood of the given
line [cf. Eschenburg (1988), Galloway (1989a), Newman (1990), Galloway and
Horta (1995)]. Especially, Newman (1990) made a thorough study of the geo-

desic geometry in the case that timelike geodesic completeness, but not global
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hyperbolicity, is assumed. In this section we give certain elementary prelim-
inaries which will be germane to Chapter 14 but which fit into the spirit of
this chapter. It is interesting that the reverse triangle inequality plays an im-
portant role, hence this material is decidedly non-Riemannian. Also the lower
semicontinuity of the Lorentzian distance function for an arbitrary space-time

(cf. Lemma 4.4) is useful here.

Note as an immediate first example that if a space-time (M, g) contains
a single maximal segment, then (M, g) cannot be totally vicious, since the
Lorentzian distance function is finite-valued on the particular segment while
totally vicious space-times satisfy d(p,q) = +oo for all p, ¢ in M. Newman
(1990) noted the more interesting consequence that the existence of a maximal
timelike segment ¢ : [a,b] — (M, g) implies that strong causality holds at all
points of ¢((a,b)). Since strong causality is an open condition [cf. Penrose
(1972, p. 30)], this thus yields an open neighborhood U of ¢((a, b)) for which
strong causality at ¢ is valid for all ¢ in U. Hence, not only does the existence
of a local causality neighborhood in a strongly causal space-time guarantee
the local existence of maximal segments, but a kind of converse holds: the
existence of a maximal timelike segment implies that some local region of
(M, g) containing all interior points of the given maximal timelike segment

must be strongly causal.

For our use in Chapter 14, these basic consequences of the existence of
maximal segments will be treated in the present section. We begin with a

maximal null segment.

Lemma 4.36. Let c: [0,1] — (M, g) be a maximal null geodesic segment,
and let I(c) denote the domain of ¢ extended to be a future inextendible null

geodesic emanating from c¢(0). Then

(1) Forany s, t with0 < s<t<1andre€ J*(c(s)) NJ (c(t)), we have

(45) d(C(S),’I") = d(r’ C(t)) =0,

hence r lies on c¢(I(c));
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(2) For any p, g in J*(c(s)) N J~(c(t)) with p < g, we have d(p,q) = 0;
and
(3) Chronology holds at all points of J*(c(0)) N J~(c(1)).

Proof. (1) By assumption, ¢(s) < 7 < ¢(t) and d(c(s), ¢(t)) = 0, so that the
2>

T
reverse triangle inequality d(c(s), c(t)) > d(c(s), ) +d(r, c(t)) implies equation
(4.5). Further, since ¢(s) < r < ¢(2) is assumed, there exist future causal curves
c1 from ¢(s) to 7 and ¢g from r to ¢(t) which by (4.5) must both be maximal
null geodesic segments. Since ¢(s) and ¢(t) are not chronologically related,
the concatenation of ¢; and ¢, must constitute a single null geodesic by basic
causality theory [cf. Penrose (1972, Proposition 2.19)], whence r € c¢(I(c)).

(2) This is immediate from the reverse triangle inequality applied to

e(s) Kp<g<e().

(3) Condition (3) now follows since if chronology fails to hold, then d(p,p) is
infinite which contradicts (2) applied with ¢ =p. O

We should caution that I(c) is not necessarily equal to [0, +00) (cf. Lemma
7.4). In the case of a maximal timelike segment, the reverse triangle inequality
yields the finiteness of Lorentzian distance from points in some neighborhood
of the segment despite the possible general lack of finiteness of distance for
chronologically related points (cf. Figure 4.2).

Similar arguments to those used in Lemma 4.36 yield the following finiteness

of the distance function in the causal hull of any causal maximal segment.

Lemma 4.37. Let ¢: [0,1] — (M, g) be a causal maximal segment. Then
(1) Given any p, q in J*(c(0)) N J~(c(1)) with p < g, the distance d(p, q)
is finite.
(2) Chronology holds at all points of J*(c(0)) N J~(c(1)).

Having dealt with chronology, let us now consider the stronger requirement
of causality. The cylinder M = S! x R with metric ds? = df dt contains closed
null geodesics ¢ : [0, +00) — M which satisfy d(c(0),c(t)) = 0 for all ¢ > 0.
Hence, the existence of a maximal null geodesic does not imply more than

local chronology.
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Lemma 4.38. Letc: [0,1] — (M, g) be a maximal timelike segment. Then
causality holds at all points of ¢([0, 1]).

Proof. Suppose that c; is a closed nonspacelike curve beginning and ending
at c(t1) with t; > 0. Since chronology holds at c(¢1) by Lemma 4.37, ¢; must
be a maximal null segment (cf. Corollary 4.14). Consider the composite causal
curve v = (c|[0,%1]) * ¢1 from ¢(0) to c¢(¢1). Since 7 is a causal curve from
c(0) to c(t1) which is a timelike followed by a null geodesic, first variation
“rounding the corner” arguments produce a causal curve 7, from ¢(0) to c(¢;)
which is longer than v, hence longer than c¢| [0,¢1] [cf. O'Neill (1983, p. 294)].
But this contradicts the maximality of c¢|[0,¢].

If t; = 0, apply the same type of argument to the composition of the closed
null geodesic ¢; followed by ¢|[0,1]. O

Now we turn to a result with a somewhat more difficult proof first given
in Newman (1990, p. 166) and an alternate proof suggested in Galloway and
Horta (1995). In the course of the proof, it will be helpful to employ a charac-
terization of the failure of strong causality given by Kronheimer and Penrose
[cf. Penrose (1972, p. 31)].

Lemma 4.39. Let p € (M,g). Then strong causality fails at p if and only
if there exists a point q € J~(p) with q # p (which may be chosen arbitrarily
closely to p) such that ¢ < p and q < y together imply z < y for all z, y in
(M, g).

Proposition 4.40 [Newman (1990)]. Let ¢ : [0,a] — (M, g) be a max-
imal timelike geodesic segment. Then for any ty with 0 < to < a, strong

causality holds at p = c(to).

Proof. For convenience, we will assume that c is parametrized by unit speed
and also, given p = ¢(to), take ¢ € J~(p) in Lemma 4.39 sufficiently close to p
that ¢ € I (c(0)). Now assume that strong causality fails to hold at p.

We first need to establish that d(q,p) = 0, whence ¢ is the initial point
of a maximal null segment from q to p. Suppose that d(q,p) > 0. Choose a
sequence {yn} C I'*(g) with y, — ¢ and a sequence {t,} with 0 < t, < to
and t, — to. Put z, = c(t.), whence {z,} C I (p) and z, — p. By the
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lower semicontinuity of distance at (g,p), we have d(y,,z,) > 0 for some n
sufficiently large. Hence y, < z,. On the other hand, by Lemma 4.39 we
also have z, < yn. Thus z, < z,, which contradicts Lemma 4.37-(2). Thus
d(g,p) = 0 and the geodesic A from g to p is a maximal null segment.

We now show how a timelike curve from ¢(0) to c(a) of length greater than
a may be constructed, contradicting the maximality of the timelike segment c.
Consider first the concatenation 3 = A*c| [to, a] which is a future causal curve
from ¢ to ¢(a). Since (3 consists of a null followed by a timelike geodesic and
L(B) = L(c| [to,a]) = a — to, rounding the corner at p produces a causal curve
from q to c(a) of length greater than L(8) = a — to. (Take a convex normal
neighborhood V' centered at p, and join a point close to p on the null geodesic
A to c(to + 6), for é sufficiently small, by a timelike geodesic segment lying in
V.) Hence, there exists a constant € > 0 such that d(g,c(a)) > (a — to) + 4e.
By Lemma 4.4, we may find a neighborhood U C I+ (¢(0)) of ¢q such that

(4.6) d(q',c(a)) > a—to+ 3¢

for every ¢ in U. Choose n sufficiently large that y, € U and also that
z, = c(t,) satisfies L(c|[0,%,]) = d(c(0),c(tn)) = tn > to — e. Fixing this n,
let c; be a future timelike curve from z, to y, guaranteed by Lemma 4.39.
Also given yn, in view of inequality (4.6) we may find a causal curve ¢y from
Yn to c(a) with L(c2) > a — to + 2e. Now let v = ¢| [0, ¢,] * ¢1 * ¢, which is a
future causal curve from ¢(0) to c¢(a). On the other hand, we have the length

estimate

L(v) = L(c| [0, 2a]) + L(c2)
> (to —€) + (a — to + 2€)

=a-+e€.

But this inequality contradicts the maximality of the timelike segment c.

Hence, strong causality must hold at c¢(¢p). O






CHAPTER 5

EXAMPLES OF SPACE-TIMES

In this chapter we present a variety of examples of space-times. Some
of these space-times are important for physical as well as mathematical rea-
sons. In particular, Minkowski space-time, Schwarzschild space-times, Kerr
space-times, and Robertson-Walker space-times all have significant physical
interpretations.

Minkowski space-time is simultaneously the geometry of special relativ-
ity and the geometry induced on each fixed tangent space of an arbitrary
Lorentzian manifold. Thus Minkowskian geometry plays the same role for
Lorentzian manifolds that Euclidean geometry plays for Riemannian mani-
folds. Minkowski space-time is sometimes called flat space-time. But more
generally, any Lorentzian manifold on which the curvature tensor is identically
zero is flat.

The Schwarzschild space-times represent the spherically symmetric, empty
space-times outside nonrotating, spherically symmetric bodies. Since suns
and planets are assumed to be slowly rotating and approximately spherically
symmetric, the Schwarzschild space-times may be used to model the gravita-
tional fields outside of these bodies. These space-times may also be used to
model the gravitational fields outside of dead (i.e., nonrotating) black holes.
The usual coordinates for the Schwarzschild solution outside a massive body
are (t,r,0,¢), where ¢ represents a kind of time and r represents a kind of
radius [cf. Sachs and Wu (1977a, Chapter 7)]. This metric has a special radius
r = 2m associated with it. Points with r = 2m correspond to the surface of a
black hole. It was once thought that the metric was singular at r = 2m, but
it is now known that the usual form of the Schwarzschild metric with r > 2m

may be analytically extended to points with 0 < » < 2m. In fact, there is a

173



174 5 EXAMPLES OF SPACE-TIMES

maximal analytic extension of Schwarzschild space-time [cf. Kruskal (1960)]
which contains an alternative universe lying on the “other side” of the black
hole.

The gravitational fields outside of rotating black holes apparently corre-
spond to the Kerr space-times [cf. Hawking and Ellis (1973, pp. 161, 331),
Carter (1971b), O’Neill (1995)]. These space-times represent stationary, ax-
isymmetric metrics outside of rotating objects. The Kerr and Schwarzschild
space—times are asymptotically flat and correspond to universes which are
empty, apart from one massive body. Thus while these metrics may be rea-
sonable models near a given single massive body, they cannot be used as large
scale models for a universe with many massive bodies.

The usual “big bang” cosmological models are based on the Robertson-
Walker space-times. These space-times are foliated by a special set of space-
like hypersurfaces such that each hypersurface corresponds to an instant of
time. The isometry group I(M) of a Robertson-Walker space-time (M, g)
acts transitively on these hypersurfaces of constant time. Thus Robertson-
Walker universes are spatially homogeneous. Furthermore, they are spatially
isotropic in the sense that for each p € M, the subgroup of I(M) fixing p is
transitive on the directions at p which are tangential to the hypersurface of
constant time through p. In our discussion of Robertson-Walker space-times,
we will use Lorentzian warped products Mg xs H, as described in Section
3.6. The cosmological assumptions made about Robertson-Walker universes
imply that (H,h) is an isotropic Riemannian manifold. Hence the classifica-
tion of two-point homogeneous Riemannian manifolds yields a classification
of all Robertson—-Walker space-times. We also show how the results of Sec-
tion 3.6 may be specialized to construct Lie groups with bi-invariant globally

hyperbolic Lorentzian metrics.

5.1 Minkowski Space—time

Minkowski space-time is the manifold M = R™ together with the metric

ds? = —dz,% + Z dz;2.
1=2
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FIGURE 5.1. Let (M, g) be Minkowski space-time. The null cone
at p has a future nappe and a past nappe. The future [respectively,
past] nappe is also the horismos E*(p) [respectively, E~(p)] of p.
The chronological future It (p) is an open convex set bounded by
E*(p). In more general space-times, I*(p) may fail to be convex

but is always open.

This space-time is time oriented by the vector field 8/0z;. It is also glob-
ally hyperbolic and hence satisfies all of the causality conditions discussed in
Section 3.2.

The geodesics of Minkowski space-time are just the straight lines of the
underlying Euclidean space R™. The affine parametrizations of these geodesics
in Minkowski space are even proportional to the usual Euclidean arc length
parametrizations in R™. The null geodesics through a given point p in Minkow-
ski space form an elliptic cone with vertex p. The future directed null geodesics
starting at p thus form one nappe of the null cone of p. This nappe forms the
boundary in R™ of an open convex set which is exactly the chronological future

I'*(p) of p. In Minkowski space, the causal future J¥(p) of p is the closure of
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FIGURE 5.2. The unit sphere K(p,1) corresponding to p is half of

a hyperboloid of two sheets. It is not compact, and p does not lie
in the convex open set bounded by K(p,1).

I*(p). The future horismos E*(p) = J*(p) — I (p) is the nappe of the null
cone of p corresponding to the future (cf. Figure 5.1).

Minkowski space-time is a Lorentzian product (i.e., a warped product in
the sense of Definition 3.51 with f = 1). If R is given the negative definite
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FIGURE 5.3. Two-dimensional Minkowski space-time with one

point ¢ removed is shown. The future horismos E*(p) of p is an
“L” shaped figure consisting of a half-closed line and a half-open
line segment. The causal future J*(p) is the union of I*(p) and
E+(p). Notice that J*(p) is not a closed set nor is J*(p) equal to
the closure of It (p).

metric —dt? and R™~! is given the usual Euclidean metric go, then (R® =
R x R*~1, —dt2 @ go) is the n-dimensional Minkowski space-time.

Consider two points p = (p1,P2,--.,Pn) and ¢ = (q1,¢2,- - -, ¢n) in Minkow-
ski space-time. The chronological relation p <« ¢ holds whenever p; < ¢q; and
(P —q1)% > (p2 —q2)2 + -+ (Pn — gn)? in R. If p < g, then the distance
from p to ¢ is given by

1

d(p,q) = |(pr — @1)* = D (pi — @:)*
=2

The “unit sphere” in Minkowski space-time centered at p is then K(p,1) =
{q € M :d(p,q) = 1}. However, this set is actually one sheet of a hyperboloid
of two sheets (cf. Figure 5.2).
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i+

!

FIGURE 5.4. Minkowski space-time is conformal to the open set
enclosed by the two null cones indicated. The vertices it and i~ cor-
respond to timelike infinity. All future directed timelike geodesics
go from i~ to i*. The sets J* and J~ represent future and past
null infinity. Topologically, 3* and J~ are each R x S*~2. The
intersection of the two null cones is a set which is identified to a

single point i®. The point i° is called spacelike infinity.

If we remove a point from Minkowski space-time, then it is no longer
causally simple and hence no longer globally hyperbolic (cf. Figure 5.3).

It is possible to conformally map all of Minkowski space-time onto a small
open set about the origin. This is illustrated in Figure 5.4 [cf. Penrose (1968,
p. 178), Hawking and Ellis (1973, p. 123)).
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i+

FIGURE 5.5. The Penrose diagram for Minkowski space-time is

shown.

Minkowski space-time and many other important space-times may be rep-
resented by Penrose diagrams. A Penrose diagram is a two-dimensional rep-
resentation of a spherically symmetric space-time. The radial null geodesics
are represented by null geodesics at +45°. Dotted lines represent the origin
(r = 0) of polar coordinates. Points corresponding to smooth boundary points
(cf. Section 12.5) which are not singularities are represented by single lines.
Double lines represent irremovable singularities (Figure 5.5; cf. Figure 4.2 of a

Reissner-Nordstrom space-time with €2 = m? for an example).

5.2 Schwarzschild and Kerr Space—times

In this section we describe the four-dimensional Schwarzschild and Kerr
solutions to the Einstein equations. Let R* be given coordinates (¢,,6, ¢),

where (r,0,¢) are the usual spherical coordinates on R3. Given a positive
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constant m, the exterior Schwarzschild space-time is defined on the subset
r > 2m of R%, a subset which is topologically R? x S2. The Schwarzschild

metric for the region r > 2m is given in (¢,7,0, ¢) coordinates by the formula
9 -1
ds? = — (1 - _r_m> dt? + <1 - 27m) dr? + r2(d6? + sin® 0d¢?).

Each element of the rotation group SO(3) for R? induces a motion of the
Schwarzschild solution. Given 1 € SO(3), a motion ¥ of Schwarzschild space—
time may be defined by setting ¥(t,r,8,¢) = (t,%(r,0,¢)). Thus at a fixed
instant ¢ in time, the exterior Schwarzschild space-time is spherically symmet-
ric. The metric for this space—time is also invariant under the time translation
t — t + a. The coordinate vector field 8/0t is a timelike Killing vector field
which is a gradient, and the metric is said to be static. This space-time is
also Ricci flat (i.e., Ric = 0). Using the Einstein equations (cf. Chapter 2),
it follows that the energy-momentum tensor for the exterior Schwarzschild
space—time vanishes. Thus this space-time is empty.

The exterior Schwarzschild space-time may be regarded as a Lorentzian
warped product (cf. Section 3.6). For let M = {(¢,r) € R? : r > 2m} be given

the Lorentzian metric

-1
g=— (1 - —2"‘) dt? + (1 - —Qm) ar?,
T T

and let H = S? be given the usual Riemannian metric h of constant sectional
curvature one induced by the inclusion S2 — R3. Define f : M — R by
f(t,r) = r%. Then (M x; H,g) is the exterior Schwarzschild space-time,
where g = g ® fh.

Physically, the exterior Schwarzschild solution represents the gravitational
field outside of a nonrotating spherically symmetric massive object. Compar-
ison with the Newtonian theory [cf. Einstein (1916, p. 819), Pathria (1974,
p. 217)] shows that m can be identified with the gravitational mass of the
massive body. The solution is not valid in the interior of the body.

The above form of the exterior Schwarzschild metric appears to have a

singularity at » = 2m. However, this is not a true singularity; the exterior
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Schwarzschild solution may be analytically continued across the surface given
by the equation r = 2m.

Kruskal (1960) investigated the maximal analytic extension of Schwarzschild
space—time. Suppressing 6 and ¢, the following two-dimensional representation
of this maximal extension may be given (cf. Figure 5.6).

The gravitational field outside of a rotating black hole will not correspond
to the Schwarzschild solution. The generally accepted solutions of the Einstein
equations for rotating black holes are Kerr solutions. In Boyer and Lindquist
coordinates (t,7,6,¢) the Kerr metrics are given by [cf. Hawking and Ellis
(1973, p. 161), O’Neill (1995)]

2
ds? = p? (%;— + d92) + (r? + a?) sin® 0d¢? — dt?

2mr

T2

(asin® 8d¢ — dt)?

where p? = r2 + a2 cos? 6 and A = r2 — 2mr + a®. The constant m represents
the mass, and the constant ma represents the angular momentum of the black
hole [cf. Boyer and Price (1965), Boyer and Lindquist (1967)]. Tomimatsu
and Sato (1973) have given a series of exact solutions which include the Kerr

solutions as special cases.

5.3 Spaces of Constant Curvature

It is known that two Lorentzian manifolds of the same dimension which have
constant sectional curvature K are locally isometric [cf. Wolf (1974, p. 69)].
Thus any Lorentzian manifold of constant sectional curvature zero is locally
isometric to Minkowski space-time. In this section we will consider Lorentzian
model spaces which have constant nonzero sectional curvature.

We first define R? to be the standard semi-Euclidean space of signature
(-y...y—,+,...,+), where there are s negative eigenvalues and n — s positive

eigenvalues. Hence the semi-Euclidean metric on RY is given by

ds? = — idxf + i dz;.
i=1

i=s+1
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FIGURE 5.6. The Kruskal diagram for the maximal analytic ex-
tension of the exterior Schwarzschild space-time is shown. The ex-
tended space-time is the connected nonconvex region I[UITUT UII'
bounded by the hyperbola corresponding to » = 0. The points of
this hyperbola are the true singularities of this space-time. The
lines at +45° separate the space-time into four regions. Region
I corresponds to the exterior Schwarzschild solution. Region II is
the “interior” of a nonrotating black hole. Region I’ is isometric to
region I and corresponds to an alternative universe on the “other
side” of the black hole. There is no nonspacelike curve from region

I to region I'.
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In particular, R} is n-dimensional Minkowski space-time. We also define for
T > 0 [cf. Wolf (1974, Section 5.2)]

St ={zeRM: -z’ + 2%+ 422, =17}
and
H={z e R3™: —z: — 22 + 2% + - + 22, = —r?).

Topologically, ST is R! x S~ and H} is S x R*~! [cf. Wolf (1974, p. 68)].
The semi-Euclidean metric on RT*! (respectively, R3*!) induces a Lorentzian
metric of constant sectional curvature K = r~2 (respectively, K = —r~2) on
ST (respectively, H}*). The space-time ST is a Lorentzian analogue of the
usual Riemannian spherical space of radius r and has positive curvature r~2.
The universal covering manifold I?I{‘ of H] is topologically R™ and is thus
a Lorentzian analogue of the usual Riemannian hyperbolic space of negative

curvature —r~2.

Definition 5.1. (de Sitter and anti-de Sitter Space-times) Let ST and
HT be defined as above. Then ST is called de Sitter space-time, and the

universal covering H} of HY is called (universal) anti-de Sitter space-time.

Remark 5.2.

(1) SP is simply connected for n > 2 and 7, (S?) = Z.

(2) ST is globally hyperbolic and geodesically complete.

(3) HY is nonchronological since v(t) = (rcost,rsint,0,...,0) is a closed
timelike curve. Also H ', while strongly causal, is not globally hyper-

bolic.

The de Sitter space-time represented in Figure 5.7 may be covered by global
coordinates (t,x,0,¢) with —co < t < 00, 0 < x < 7, 0 < 0 < 7, and
0 < ¢ < 27. Here t is the coordinate on R and (x, 8, ¢) represent coordinates
on S3 [cf. Hawking and Ellis (1973, pp. 125, 136)]. In these coordinates, the
metric for de Sitter space-time of constant positive sectional curvature 1/r2 is

given by

ds® = —dt® + r? cosh? (;) [dx? + sin® x (dF® + sin® 9d¢?)] .
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FIGURE 5.7. The n-dimensional de Sitter space-time with positive
constant sectional curvature r~2 is the set —z12+ 292+ - ‘+:c,12+1 =
2 in Minkowski space-time R}*'. The geodesics of SP lie on the

intersection of S with the planes through the origin of RT*!.

This may be reinterpreted as a Lorentzian warped product metric (cf. Section
3.6) as follows. Let f : R — (0,00) be given by f(t) = r2cosh®(¢/r), and
let S3 be given the usual complete Riemannian metric of constant sectional
curvature one. Then the de Sitter space-time described in local coordinates
as above is the warped product (R x S3, —dt? @ fh).

Universal anti-de Sitter space-time of curvature K = —1 may be given

coordinates (¢',r,8, ¢) for which the metric has the form
ds? = — cosh?(r)(dt')? + dr? + sinh?(r) (d§? + sin® 6 d¢?)

[cf. Hawking and Ellis (1973, pp. 131, 136)]. Regarding —(dt')? as a nega-
tive definite metric on R and dr? + sinh?(r)(d6? + sin® 6 d¢?) as the complete
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Riemannian metric h of constant negative sectional curvature —1 on the hy-
perbolic three-space H = R3, this space-time may be represented as a warped
product of the form (R x s H, — fdt>@h), where the warping function is defined

on the Riemannian factor H (cf. Remark 3.53).

5.4 Robertson—Walker Space—times

In this section we discuss Robertson—-Walker space-times in the framework
of Lorentzian warped products. These space-times include the Einstein static
universe and the big bang cosmological models of general relativity. In order
to give a precise definition of a Robertson-Walker space-time, it is necessary
to first recall some concepts from the theory of two-point homogeneous Rie-
mannian manifolds and isotropic Riemannian manifolds.

Let (H, h) be a Riemannian manifold. Denote by I(H) the isometry group
of (H,h) and by do : H x H — R the Riemannian distance function of (H, h).

Definition 5.3. (Homogeneous and Two-Point Homogeneous Manifolds)
The Riemannian manifold (H, k) is said to be homogeneous if I(H) acts tran-
sitively on H, i.e., given any p,q € H, there is an isometry ¢ € I(H) with
¢(p) = q. Further, (H,h) is said to be two-point homogeneous if given any
P1,q1,P2,q2 € H with do(p1,q1) = do(p2, g2), there is an isometry ¢ € I(H)
with ¢(p1) = p2 and ¢(q1) = go.

Since it is possible to choose p; = g; for i = 1,2, a two-point homogeneous
Riemannian manifold is also homogeneous. Two-point homogeneous spaces
were first studied by Busemann (1942) in the more general setting of locally
compact metric spaces. Wang (1951, 1952) and Tits (1955) classified two-point
homogeneous Riemannian manifolds.

Notice that in Definition 5.3 it is not required that (H,h) be a complete
Riemannian manifold. Nonetheless, homogeneous Riemannian manifolds have

the important basic property of always being complete.

Lemma 5.4. If(H,h) is a homogeneous Riemannian manifold, then (H, h)

is complete.
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Proof. By the Hopf-Rinow Theorem, it suffices to show that (H,h) is
geodesically complete. Thus suppose that ¢ : [a,1) — H is a unit speed
geodesic which is not extendible to ¢ = 1. Choosing any p € H, we may find
a constant a > 0 such that any unit speed geodesic starting at p has length
I > a. Set § = min{a/2, (1-a)/2} > 0. Since isometries preserve geodesics, it
follows from the homogeneity of (H, k) that any unit speed geodesic starting
at ¢(1 — 6) may be extended to a geodesic of length I > 26. In particular,
¢ may be extended to a geodesic ¢ : [a,1 + §) — H, in contradiction to the
inextendibility of ctot =1. O

Remark 5.5. It is important to note that the conclusion of Lemma 5.4 is
false in general for homogeneous Lorentzian manifolds [cf. Wolf (1974, p. 95),
Marsden (1973)].

We now recall the concept of an isotropic Riemannian manifold. Given
p € (H,h), the isotropy group I,(H) of (H,h) at p is the closed subgroup
I,(H) = {¢ € I(H) : ¢(p) = p} of I(H) consisting of all isometries of (H, h)
which fix p. Given any ¢ € I,(H), the differential ¢., maps T,H onto T,H
since ¢(p) = p. As h($.v, $.v) = h(v,v) for any v € T, H, the differential ¢,
also maps the unit sphere S,H = {v € T,M : h(v,v) = 1} in T, H onto itself.

Definition 5.6. (Isotropic Riemannian Manifold) A Riemannian man-
ifold (H, h) is said to be isotropic at p if I,(H) acts transitively on the unit
sphere S, H of T, H, i.e., given any v,w € SpH, there is an isometry ¢ € I,(H)
with ¢.v = w. The Riemannian manifold (H, h) is said to be isotropic if it is

isotropic at every point.

We now show that the class of isotropic Riemannian manifolds coincides
with the class of two-point homogeneous Riemannian manifolds [cf. Wolf (1974,
p- 289)].

Proposition 5.7. A Riemannian manifold (H, h) is isotropic iff it is two-

point homogeneous.

Proof. Recall that dp denotes the Riemannian distance function of (H, h).
First suppose that (H,h) is isotropic. Then for each p € H and each inex-
tendible geodesic ¢ : (a,b) — H with ¢(0) = p, there is an isometry ¢ € I,(H)
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with ¢.c’(0) = —c'(0). Hence by geodesic uniqueness, ¢(c(t)) = c(—t) for
all t € (a,b). This implies that the length of ¢| (a,0] equals the length of
¢| [0,b). Since p may be taken to be any point of the geodesic c, it follows
that a = —oo and b = +oco. Thus (H, k) is geodesically complete. Hence by
the Hopf-Rinow Theorem, given any two points p1,p2 € H, there is a geodesic
segment co of minimal length do(p1,p2) from p; to ps. Let p be the midpoint
of cg. As (H, h) is isotropic, there is an isometry ¢ € I,(H) which reverses cg.
It follows that ¢(p1) = p2. Hence (H, k) is homogeneous. It remains to show
that if p1,q1,p2,q2 € H with do(p1,q1) = do(p2,¢2) > 0 are given, we may
find an isometry ¢ € I(H) with ¢(p1) = p2 and ¢(q1) = g2. Choose minimal
unit speed geodesics ¢; from p; to g1 and cp from py to go. Since (H,h) is
homogeneous, we may first find an isometry ¢ € I(H) with ¥(p1) = p2. Then
as (H, h) is isotropic, we may find n € I, (H) with 7.((% 0 ¢1)'(0)) = ¢2’(0).
It follows that ¢ = n o is the required isometry.

Now suppose that (H, k) is two-point homogeneous. Fix any p € M, and
let U be a convex normal neighborhood based at p. Choose a > 0 such that
exp,(v) € U for all v € T, H with h(v,v) < o. Now let v,w € T, H be any pair
of nonzero tangent vectors with h(v,v) = h(w,w) < /2. Set q1 = exp, v and
g2 = exp, w. Then ¢1,¢2 € U and d(p,q1) = Vh(v,v) = /h(w,w) = d(p, g2)-
Since (H,h) is two-point homogeneous, there is thus an isometry ¢ € I(H)
with ¢(p) = p and ¢(¢q1) = g2. It follows that ¢.v = w. The linearity of
N, : TpH — TpH for any 7 € I,(H) then implies that I,(H) acts transitively
on SpH. Thus (H, h) is isotropic at p. As the same argument clearly holds for

all p € H, it follows that (H, k) is isotropic as required. O

Corollary 5.8. Any isotropic Riemannian manifold is homogeneous and

complete.

Remark 5.9. (1) The two-point homogeneous Riemannian manifolds are
well known [cf. Wolf (1974, pp. 290-296)]. In particular, the odd-dimensional
two-point homogeneous (hence isotropic) Riemannian manifolds are just the
odd-dimensional Euclidean, hyperbolic, spherical, and elliptic spaces [cf. Wang
(1951, p. 473)].

(2) Astronomical observations indicate that the spatial universe is approxi-
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mately spherically symmetric about the earth. This suggests that the spatial
universe should be modeled as a three-dimensional isotropic Riemannian mani-
fold. Hence the possibilities are limited to the Euclidean, hyperbolic, spherical,
and elliptic spaces. However, if one only assumes local isotropy, there are more
possibilities [cf. Misner, Thorne, and Wheeler (1973, pp. 713-725)].

(3) Any three-dimensional isotropic Riemannian manifold (H, h) has constant
sectional curvature, and also dim I(H) = 6 [cf. Walker (1944)].

We are now ready to define Robertson—-Walker space-times using Lorentzian

warped products and isotropic Riemannian manifolds.

Definition 5.10. (Robertson-Walker Space-time) A Robertson-Walker
space-time (M, g) is any Lorentzian manifold which can be written in the form
of a Lorentzian warped product (Mp x5 H,g) with Mg = (a,b), —o0 < a <
b < 400, given the negative definite metric —dt?, with (H,k) an isotropic

Riemannian manifold, and with warping function f : My — (0, 00).

In the notation of Section 3.6, we thus have g = —dt? @ fh and My x fH
is also topologically the product My x H. Letting do? denote the Riemannian
metric h for H and defining S(t) = /f(t), the Lorentzian metric g for Mo x s H

may be rewritten in the more familiar form
ds? = —dt® + §%(t)do?.

The map 7 : My x5 H — R given by 7 (¢,z) = t is a smooth time function
on My x5 H so that the Lorentzian manifold My x;s H, of Definition 5.10
actually is a (stably causal) space-time. Also each level surface m~!(c) of the
map 7 : My xy H — My C R is an isotropic Riemannian manifold which is
homothetic to (H, k). Furthermore, the isometry group I(H) of (H, h) may be
identified with a subgroup I(H) of I(Mp x ¢ H) as follows. Given ¢ € I(H),
define ¢ € I(H) by ¢(r,h) = (r,$(h)) for all (r,h) € Mo x H. With this
definition, I(H) restricted to the level surfaces 7=1(c) of 7 acts transitively on
each level surface.

Since all isotropic Riemannian manifolds are complete, Theorem 3.66 im-

plies that all Robertson-Walker space-times are globally hyperbolic. From
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Theorem 3.69 we also know that every level surface 771(c) = {c} x H is a
Cauchy surface for My x ¢ H.
Next to Minkowski space R® = R x R*~! itself, the Einstein static universe

is the simplest example of a Robertson-Walker space-time.

Example 5.11. (Einstein Static Universe) Let My = R with the neg-
ative definite metric —dt?, and let H = S™~! with the standard spherical
Riemannian metric. If f : R — (0,00) is the trivial warping function f =1,
then the product Lorentzian manifold M = My x H = My x5 H is the n-
dimensional Einstein static universe. If n = 2, then M is the cylinder R x S?
with flat metric —dt? + d6%. If n > 3, then this metric for M = R x S™1 is

not flat since S™~! has constant positive sectional curvature K = 1.

For the rest of this section we restrict our attention to four-dimensional
Robertson-Walker space-times. By Remark 5.9, these are warped products
My x¢ H, where (H, h) is Euclidean, hyperbolic, spherical, or elliptic of di-
mension three. In the first two cases, H is topologically R3. In the third case
H = S, and in the last case H is the real projective three-space RP3. We
thus have the following

Corollary 5.12. All four-dimensional Robertson—Walker space-times are
topologically either R%, R x S3, or R x RP3.

Also by Remark 5.9, the sectional curvature K of (H, h) is constant. If K is
nonzero, the metric may be rescaled to be of the form ds? = —dt? + S?(t)do?
on M so that K is either identically +1 or —1. This is the form of the metric
usually studied in general relativity.

In physics, cosmological models are built from four-dimensional Robertson—
Walker space-times assumed to be filled with a perfect fluid. The Einstein
equations (cf. Chapter 2) are then used to find the form of the above warping
function S2(t). Among the models this technique yields are the big bang
cosmological models [cf. Hawking and Ellis (1973, pp. 134-138)]. These models
depend on the energy density p and pressure p of the perfect fluid as well as
the value of the cosmological constant A in the Einstein equations. In the big

bang cosmological models, the inextendible nonspacelike geodesics are all past
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incomplete. The stability of this incompleteness under metric perturbations
will be considered in Section 7.3. Astronomical observations of clusters of
galaxies indicate that distant clusters of galaxies are receding from us. This
expansion of the universe suggests the existence of a “big bang” in the past and
also suggests that the universe is a warped product with a nontrivial warping
function rather than simply a Lorentzian product. Observations of blackbody
radiation support these ideas [cf. Hawking and Ellis (1973, Chapter 10)].

5.5 Bi-Invariant Lorentzian Metrics on Lie Groups

The purpose of this section is to show how Theorems 3.67 and 3.68 of
Section 3.6 may be used to construct a large class of Lie groups admitting
globally hyperbolic, bi-invariant Lorentzian metrics.

We first summarize some basic facts from the elementary theory of Lie
groups. Details may be found in a lucid exposition by Milnor (1963, Part IV)
or at a more advanced level in Helgason (1978, Chapter 2). A Lie group is a
group G which is also an analytic manifold such that the mapping (g,h) —
gh~! from G x G — G is analytic. This multiplication induces left and right
translation maps Ly, R, for each g € G, given respectively by Ly(h) = gh
and Rgy(h) = hg. A Riemannian or Lorentzian metric ( , ) for G is then said
to be left invariant (respectively, right invariant) if (Lg v, Ly, w) = (v, w)
(respectively, (Rg,v, Rg,w) = (v,w)) for all g € G and v,w € TG. A metric
which is both left and right invariant is said to be bi-invariant. By an averaging
procedure involving the Haar integral, any compact Lie group may be given
a bi-invariant metric [cf. Milnor (1963, p. 112)]. In fact, the Haar integral
may be used to produce a bi-invariant Riemannian metric for G from any left
invariant Riemannian metric for G. Any Lie group may be equipped with a
left invariant Riemannian (or Lorentzian) metric by starting with a positive
definite inner product (respectively, inner product of signature n —2) ( , )|,
on the tangent space T.G to G at the identity element e € G, then defining
(s Mg :TeG xTyG — R by

(5.1) (w, )], = (Lg-,0, Lgms,w)], -
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Thus any compact Lie group is furnished with a large supply of bi-invariant
Riemannian metrics.

On the other hand, while (5.1) equips any Lie group with left-invariant
Lorentzian metrics, the standard Haar integral averaging procedure used for
Riemannian metrics fails to preserve signature (—,+,--- ,+), so it cannot be
used to convert left-invariant Lorentzian metrics into bi-invariant Lorentzian
metrics.

But we will see shortly that a large class of bi-invariant Lorentzian metrics
may be constructed for noncompact Lie groups of the form R x G, where G is
any Lie group admitting a bi-invariant Riemannian metric.

Before giving the construction, we need to discuss product Lie groups briefly.
Let G and H be two Lie groups. The product manifold G x H is then turned
into a Lie group by defining the multiplication by

(5.2) (91, 1) X (g2, h2) = (9192, h1h2).

It is immediate from (5.2) that if 0 = (g, h) € G x H, then the translation maps
Ly, Ry : G x H— G x H are given by L, = (Lg, Ln), and Ry = (R, Ry),
i.e., Lo(91,h1) = (Lgg1, Lrh1), etc. Recall that T,(G x H) = T,G x TrH.
It is straighforward to check that for any ¢ € G x H and any tangent vector
&= (v,w) € T,(G x H) 2 T,G x TpH, one has

(5:3) Lo = (Lg.v, Ln.w)
and
(5.4) Ro.§ = (Rg.v, Rp w).

Now if ( , ); is a Lorentzian metric for G and { , )2 is a Riemannian
metric for H, the product metric (( , )) = (, )1 ®(, )2 is a Lorentzian
metric for G x H. Explicitly, recalling Definition 3.51, we have for tangent

vectors &, = (v1,w;1) and & = (v2, ws) in T, (G X H) the formula

((61,&2)) = (v1,v2)1 + (w1, wa)2.

It is then immediate from (5.3) and (5.4) that if ( , ); is a bi-invariant
Lorentzian metric for G and ( , )2 is a bi-invariant Riemannian metric for

H | then ({( , )) is a bi-invariant Lorentzian metric for G x H. To summarize,
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Proposition 5.13. Let (G,( , )1) be a Lie group equipped with a bi-
invariant Lorentzian metric, and let (H,( , )2) be a Lie group equipped with
a bi-invariant Riemannian metric. Then the product metric ({ , ))=( , )10
(', )2 Is a bi-invariant Lorentzian metric for the product Lie group G x H.
Hence (G x H,{{ , ))) is a Lorentzian symmetric space and, in particular, is

geodesically complete.

Proof. 1t is only necessary to prove the last statement which is a standard
fact in Lie group theory. Recall that we must show that for each ¢ € G x H,
there exists an isometry I, : G x H — G x H which fixes ¢ and reverses the
geodesics through o. That is, if 7y is a geodesic in G x H with v(0) = o, we
must show that I,(y(t)) = y(—t) for all t. This is equivalent to showing that
I,. : T,(G x H) - T,(G x H) is the map I, (£) = —¢ and also implies that
2= 1d.

We will follow the proof given in Milnor (1963, pp. 109, 112). First, if we
denote the identity element of Gx H by e and defineamap I, : GXH — GxH
by I.(0) = 071, then I, : T.(G x H) — T.(G x H) is given by I, (v) = —v.
Thus I, : T.(G x H) — T.(G x H) is an isometry of T.(G x H). To see that
I.. is an isometry of any other tangent space T,(G x H) — T,-1(G x H) and

hence that I, : G x H — G x H is an isometry, we simply note that
Io = Ryl Ls-1.

Since ({ , )) is bi-invariant, all left and right translation maps are isometries.
Then as
L

_1|
e 0. lo

I,

P = Ra‘—lleIe_

and I._|, is an isometry of T.(G x H), it follows that I, : To(G x H) —
T,-1(G x H) is also an isometry. The map I. : G x H — G X H is thus the
required geodesic symmetry at e.

We define the geodesic symmetry I, for any ¢ € G by setting I, =
R,I.R,-:. Since R, and R,-1 are isometries by the bi-invariance of ({ , ))
and we have just shown that I, is an isometry, it follows that I, : G x H —

G x H is an isometry, and obviously I, (o) = o since I,(h) = ch~lo. Finally,
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for any £ € T,(G x H) we have

I,.£ = Ry, (L. (R,:€))
=R, (—Ra__lg) since R, 1€ € To(G x H)
= —Ro.R,:¢
= —(RsRs-1), &= —¢.

Thus I, reverses geodesics at o as required. We have therefore shown that
G x H is a symmetric space.

It may be shown that any symmetric space is geodesically complete as
follows. Let -y be a geodesic in M, and set p = v(0). Supposing that ¢ = v(A)
is defined, one may derive the formula [cf. Milnor (1963, p. 109)]

I I,(v(t)) = v(t +24)

provided that () and (¢t + 2A) are defined.

Thus if 7 is defined originally on an interval v : [0,A] — G x H, v may be
extended to a geodesic ¥ : [0,2A] — G x H by choosing ¢ = v(A/2) and putting
¥(t) = I Ip(v(t — X)) for t € [A,2A]. It is then clear that v may be defined on
(—o00,00). Thus (G x H,{{ , ))) is geodesically complete. O

Now Proposition 5.13 has the apparent defect that the existence of Lie
groups (G,{ , )1) equipped with bi-invariant Lorentzian metrics is assumed.
It will now be shown how such Lie groups may be constructed by taking
products of the form (R x G,—dt? @ ( , )) where (G,{ , )) is a Lie group
equipped with a Riemannian bi-invariant metric.

The Lie group structure on (R, —dt?) we will use is that induced by the
usual addition of real numbers. Accordingly, we will write (a,b) — a + b for
the Lie group “multiplication” despite our use of the product notation above
for the group operation. Here R is the analytic manifold determined by the
chart t : R — R, t(r) = r. Let 8/t denote the corresponding coordinate vector
field on R. The left and right translation maps L,, R, : R — R are given by
L,(r) = a+r and R,(r) = r+a. It is easy to check that if v = X 8/8¢|,. € T, R,
then L, v and R, v in To4,(R) are given by L, v = R,,v = A 8/8t|,, .. Hence
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—dt?(Lqa,v, Lo, v) = —dt?*(R,.v, Ra,v) = —X? = —dt*(v,v) so that —dt? is left
and right invariant.

Let (G,{ , )) be a Lie group with a bi-invariant Riemannian metric. By
the proof given in Proposition 5.13, G is a complete symmetric space. Also
using (5.3) and (5.4), it is easily seen that the metric ({( , )) = —dt?® ( , )
is a bi-invariant Lorentzian metric for R x G. (Here, if & = (A 8/68%|,.,v1)
and & = (A2 8/0t|.,v2) with vi,v2 € T,G, the inner product ((£;,&2)) =
—X1Ag + (v1,v2).) Since (G,{ , )) is a complete Riemannian manifold, the
product (R x G,{{ , ))) is globally hyperbolic by Theorem 3.67. We have

obtained

Theorem 5.14. Let (R, —dt?) be given the usual additive group structure
and let (G,{ , )) be any Lie group equipped with a bi-invariant Riemannian
metric. Then the product metric {( , )) = —dt? ® ( , ) is a bi-invariant
Lorentzian metric for the product Lie group R x G. Thus (R x G,{(( , ))) is
a geodesically complete, globally hyperbolic space-time.

Much research inspired by E. Cartan’s work was done on Lie groups, ho-
mogeneous spaces, and symmetric spaces equipped with indefinite metrics be-
fore causality theory had assumed such a prominent role in general relativ-
ity. Thus most of this work was carried out not for Lorentzian metrics in
particular but rather for general semi-Riemannian metrics of arbitrary sig-
nature. Rather than attempting to give an exhaustive list of references, we
refer the reader to the bibliography in Wolf’s (1974) text. Much of this re-
search has been concerned with the problem of classifying all geodesically
complete semi-Riemannian manifolds of constant curvature (the “space-form
problem”). Two papers dealing with semi-Riemannian Lie theory have been
written by Kulkarni (1978) and Nomizu (1979). Nomizu’s paper deals specifi-
cally with Lorentzian metrics, considering the existence of constant curvature
left-invariant Lorentzian metrics on a certain class of noncommutative Lie
groups.

A more general treatment of the class of Lie groups which admit left invari-
ant Lorentzian metrics of constant sectional curvature was then given in Barnet

(1989). Also more recently, research in the Lie theory of semigroups, as re-
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ported in Hilgert, Hofmann, and Lawson (1989) or Lawson (1989), has sparked
renewed interest in the causality and differential geometry of Lorentzian Lie
groups on the part of the semigroup community. A representative research
paper where causality and Lie semigroups are considered is Levichev and
Levicheva (1992). Additional results for left invariant Lorentzian metrics on

Lie groups of dimension three have recently been obtained by Cordero and
Parker (1995b).






CHAPTER 6

COMPLETENESS AND EXTENDIBILITY

We mentioned in Chapter 1 that the Hopf~-Rinow Theorem guarantees the
equivalence of geodesic and metric completeness for arbitrary Riemannian
manifolds. Further, either of these conditions implies the existence of min-
imal geodesics. That is, given any two points p,q € M, there is a geodesic
from p to g whose arc length realizes the metric distance from p to ¢. If M
is compact, it also follows from the Hopf-Rinow Theorem that all Riemann-
ian metrics for M are complete. In the noncompact case, Nomizu and Ozeki
(1961) established that every noncompact smooth manifold admits a complete
Riemannian metric. Extending their proof, Morrow (1970) showed that the
complete Riemannian metrics for M are dense in the compact-open topology
in the space of all Riemannian metrics for M [cf. Fegan and Millman (1978)].

In the first three sections of this chapter we compare and contrast these
results with the theory of geodesic and metric completeness for arbitrary
Lorentzian manifolds. In Section 6.1 a standard example is given to show
that geodesic completeness does not imply the existence of maximal geodesic
segments joining causally related points. Then we recall that the class of
globally hyperbolic space-times possesses this useful property. In Section 6.2
we consider forms of completeness such as nonspacelike geodesic completeness,
bounded acceleration completeness (b. a. completeness), and bundle complete-
ness (b-completeness) that have been studied in singularity theory in general
relativity [cf. Clarke and Schmidt (1977), Ellis and Schmidt (1977)]. We also
state a corollary to Theorem 8 of Beem (1976a, p. 184) establishing the exis-
tence of nonspacelike complete metrics for all distinguishing space-times. In
Section 6.3 we discuss Lorentzian metric completeness and the finite compact-

ness condition.

197
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In the last three sections of this chapter we discuss extensions and local ex-
tensions of space-times. Since extendibility is related to geodesic completeness,
extendibility plays an important role in singularity theory in general relativity
[cf. Clarke (1973, 1975, 1976), Hawking and Ellis (1973), Ellis and Schmidt
(1977)]. In particular, one usually wants to avoid investigating space-times
which are proper subsets of larger space-times since such proper subsets are
always geodesically incomplete.

A space-time (M’,g') is said to be an extension of a given space-time
(M, g) if (M,g) may be isometrically embedded as a proper open subset of
(M’,g"). A space-time which has no extension is either said to be inextendible
[cf. Hawking and Ellis (1973)] or mazimal [cf. Sachs and Wu (1977a, p. 29)].

A local extension is an extension of a certain type of subset of a given
space-time. In general, local inextendibility (i.e., the nonexistence of local
extensions) implies global inextendibility. Since questions of extendibility nat-
urally relate to the boundary of space-time, in Section 6.4 we briefly describe
the Schmidt b-boundary and the Geroch-Kronheimer—Penrose causal bound-
ary. In Section 6.5 two types of local extensions are defined and studied. If
a Lorentzian manifold has no local extensions of either of these two types,
it is shown to be inextendible. We also give a local extension of Minkowski
space-time which shows that while b-completeness forces a space-time to be
(globally) inextendible, b-completeness does not prevent a space-time from
having local extensions.

In Section 6.6 local extensions are related to curvature singularities. For
example, if (M, g) is an analytic space-time such that each timelike geodesic
v :[0,a) — M which is inextendible to t = a is either complete (in the sense
that @ = o) or else corresponds to a curvature singularity, then (M, g) has
no analytic local b-boundary extensions. Also, the a-boundary of Scott and

Szekeres (1994) and its role in classifying singularities is discussed.

6.1 Existence of Maximal Geodesic Segments

The purpose of this section is twofold. First, we recall that for arbitrary

Lorentzian manifolds, geodesic completeness does not imply the existence of
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FIGURE 6.1. The universal cover M = {(z,t) : —-7/2 < z <
m/2} of two-dimensional anti-de Sitter space is shown. The metric
is given by ds?® = sec?z (—dt?> + dz?). The points p and g are
chronologically related in M, yet no maximal timelike geodesic in
M joins p to g since all future directed timelike geodesics emanating

from p are focused at r.

maximal geodesic segments joining causally related pairs of points. Second,
we discuss the important and useful fact that distance realizing geodesics do
exist for the class of globally hyperbolic space-times.

The universal covering manifold (M, g) of two-dimensional anti-de Sitter
space provides an example that geodesic completeness does not imply that
every pair p,q € M with p < g may be joined by a timelike geodesic v with
L(vy) = d(p, q) (cf. Figure 6.1). Recall that if v is any future directed timelike
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curve from p to ¢ with L(y) = d(p,q), then v may be reparametrized to a
timelike geodesic (cf. Theorem 4.13). Thus this same example shows that
geodesically complete space-times exist which contain points p < g such that
L(y) < d(p,q) for all v € Qp 4.

The space-time (M, g) may be represented by the strip M = {(z,t) € R? :
—m/2 < z < w/2} in R? with the Lorentzian metric ds? = sec? z (—dt? + dz?)
[cf. Penrose (1972, p. 7)]. The points p and g in Figure 6.1 satisfy p < ¢, yet
all future timelike geodesics emanating from p are focused again at the future
timelike conjugate point 7. Thus there is no timelike geodesic in M from p to
q. Hence there is no maximal timelike geodesic or maximal timelike curve from
p to g. Even more strikingly, it should be noted that an open set U C I*(p)
of points of the type of ¢ as in Figure 6.1 may be found with the property
that none of the points of U are connected to p by any geodesic whatsoever,
despite the geodesic completeness of this space-time.

We now consider which space-times do have the property that every pair
of points p,q € M with ¢ € J*(p) may be joined by a distance realizing
geodesic. If M = R2—{(0, 0)} with the Lorentzian metric ds?® = dz?—dy?, then
p = (0,—1) and g = (0,1) are points in M with d(p,q) = 2 > 0 which cannot
be joined by a maximal timelike geodesic. [The desired geodesic would have
to be the curve v(t) = (0,%), —1 < ¢t < 1, which passes through the deleted
point (0,0).] On the other hand, this space-time is chronological, strongly
causal, and stably causal. Thus it is reasonable to restrict our attention to the
class of globally hyperbolic space-times. For these space-times, Avez (1963)
and Seifert (1967) have shown that given any p,q € M with p < ¢, there is a
geodesic from p to ¢ which maximizes arc length among all nonspacelike future
directed curves from p to g (cf. Theorem 3.18). In the language of Definition
4.10, this may be stated as follows.

Theorem 6.1. Let (M, g) be globally hyperbolic. Then given any p,q € M
with ¢ € J*(p), there is a maximal geodesic segment v € 4, i.e., a future

directed nonspacelike geodesic «y from p to q¢ with L(vy) = d(p, q).

We sketch Seifert’s (1967, Theorem 1) proof of this result [cf. Penrose (1972,
Chapter 6)]. Since (M,g) is globally hyperbolic, it may be shown that if
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p < ¢, the nonspacelike path space Q, 4 is compact. On the other hand, since
(M, g) is strongly causal, the arc-length functional L : Q,4 — R is upper
semicontinuous in the C° topology (cf. Section 3.3). Thus there exists a curve
Yo € Qp,q With L(yo) = sup{L(7y) : v € Qp q}. It follows from the variational
theory of arc length that if v is not a reparametrization of a smooth geodesic,
a curve ¢ € Q4 with L(o) > L(y) may be constructed, in contradiction.
Alternatively, if L(yo) = sup{L(y) : v € Qp 4}, then L(v) = d(p,q) by the
definition of Lorentzian distance. Hence Theorem 4.13 implies that -y is, up
to reparametrization, a smooth geodesic.

In the case that p < ¢, the maximal curve yp may also be constructed using
the results of Section 3.3. Let h : M — R be a globally hyperbolic time function
for (M, g). Choose to with h(p) < to < h(g). Then K = J*(p)NJ~(q)Nh~ (to)
is compact, and any nonspacelike curve from p to g intersects K. By definition

of Lorentzian distance, we may find a curve v, € Q, , with

(6.1) d(p,q) > Liva) > d(p,0) -

for each positive integer n. Let r, € v,NK. Since K is compact, a subsequence
{rn(j)} converges to r € K. By Corollary 3.32, there is a nonspacelike limit
curve -y of the sequence {v,(;)} passing through r and joining p to ¢. Since
(M, g) is strongly causal, a subsequence of {7,(;} converges to 7o in the C°
topology by Proposition 3.34. Using Remark 3.35 and condition (6.1), we
obtain L(vyo) > d(p,q). Hence by the definition of distance, L(v) = d(p, q),
and 7o may be reparametrized to a smooth geodesic by Theorem 4.13. If p < ¢
and d(p, q) = 0, we already know that there is a maximal null geodesic segment
from p to g by Corollary 4.14.

In connection with Theorem 6.1, it should be noted that global hyperbolicity
is not a necessary condition for the existence of maximal geodesic segments
joining all pairs of causally related points. For let M = {(z,y) € R? : 0 <
z < 10, 0 < y < 10} be equipped with the Lorentzian metric it inherits as an
open subset of Minkowski space. Since the geodesics in M are just Euclidean
straight line segments, it is readily seen that maximal geodesics exist joining

any pair of causally related points. However, if p = (1,1) and ¢ = (1,9), then
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J*(p) N J~(q) is noncompact. Hence this space-time, while strongly causal,
fails to be globally hyperbolic.

6.2 Geodesic Completeness

We showed in Theorem 4.9 that for space-times which are strongly causal,
the Lorentzian distance function may be used to construct a subbasis for the
given manifold topology. Nonetheless, the sets {¢ € M : d(p,q) < R} fail
to form a basis for the given manifold topology. Thus geodesic completeness
rather than metric completeness of space-times has usually been considered
in general relativity.

Let (M, g) be an arbitrary Lorentzian manifold.

Definition 6.2. (Complete Geodesic) A geodesic c in (M, g) with affine
parameter ¢ is said to be complete if the geodesic can be extended to be
defined for —co < t < oo. A past and future inextendible geodesic is said
to be incomplete if it cannot be extended to arbitrarily large positive and
negative values of an affine parameter. Future or past incomplete geodesics

may be defined similarly.

An affine parameter ¢ for the curve c is a parametrization such that ¢(¢) sat-
isfies the geodesic differential equation V. ¢'(t) = 0 for all ¢ [cf. Kobayashi and
Nomizu (1963, p. 138)]. It is necessary to use the concept of an affine param-
eter since null geodesics, which have zero arc length, cannot be parametrized
by arc length. If s and ¢ are two affine parameters for c, it follows from the
geodesic differential equations that there exist constants a, 3 € R such that
s(t) = at+p for all t in the domain of c¢. Hence completeness or incompleteness
as defined in Definition 6.2 is independent of the choice of affine parameter. In
particular, if ¢ is an inextendible timelike geodesic parametrized by arc length
(i-e., g(c'(t),c(t)) = —1 for all ¢ in the domain of c), then ¢ is incomplete if
L(c) < oo. Even if L(c) = oo, it may happen that c is incomplete. This occurs,
for example, when the domain of ¢ is of the form (a, o), where a > —o0.

Certain exact solutions to the Einstein equations in general relativity, like
the extended Schwarzschild solution, contain nonspacelike geodesics which be-

come incomplete upon running into black holes. Even though the existence of
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incomplete, inextendible, nonspacelike geodesics does not force a space—time
to contain a black hole, these examples suggest that nonspacelike geodesic
incompleteness might be used as a first order test for “singular space-times”
[cf. Hawking and Ellis (1973, Chapter 8), Clarke and Schmidt (1977), Ellis
and Schmidt (1977)]. Thus it is standard to make the following definitions in
general relativity. Recall that a geodesic is said to be inextendible if it is both

past and future inextendible.

Definition 6.3. (Geodesically Complete) A space-time (M, g) is said
to be timelike (respectively, null, nonspacelike, spacelike) geodesically com-
plete if all timelike (respectively, null, nonspacelike, spacelike) inextendible
geodesics are complete. The space-time (M, g) is said to be geodesically com-
plete if all inextendible geodesics are complete. Also, (M, g) is said to be time-
like (respectively, null, nonspacelike, spacelike) geodesically incomplete if some
timelike (respectively, null, nonspacelike, spacelike) geodesic is incomplete. A
nonspacelike incomplete space-time is said to be a geodesically singular space-

time.

It was once hoped that timelike geodesic completeness might imply null ge-
odesic completeness, etc. However, Kundt (1963) gave an example of a space-
time that is timelike and null geodesically complete but not spacelike complete.
Then Geroch (1968b, p. 531) gave an example of a space-time conformal to
Minkowski two-space and thus globally hyperbolic which is timelike incomplete
but null and spacelike complete. Also Geroch remarked that modifications of
Kundt’s and his examples gave space-times that were (1) incomplete in any
two ways but complete in the third way, (2) spacelike incomplete but null and
timelike complete, and (3) timelike incomplete but spacelike and null complete.
Then Beem (1976¢) gave an example of a globally hyperbolic space-time that
was null incomplete but spacelike and timelike complete. These results may

be summarized as follows.

Theorem 6.4. Timelike geodesic completeness, null geodesic complete-

ness, and spacelike geodesic completeness are all logically inequivalent.



204 6 COMPLETENESS AND EXTENDIBILITY

At

FIGURE 6.2. Shown is Geroch’s example of a space-time glob-
ally conformal to Minkowski two-space, which is null and spacelike
geodesically complete but timelike geodesically incomplete. Here
the positive ¢ axis may be parametrized to be an incomplete time-

like geodesic since ¢(0,t) — 0 like t™% as t — oo.

In order to illustrate the constructions used in the proof of Theorem 6.4,
we now describe Geroch’s example of a space-time which is null and spacelike
complete but timelike incomplete. Let (R?, g;) be Minkowski two-space with

global coordinates (z,t) and the usual Lorentzian metric g; = ds® = dz? — dt2.
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Conformally change the metric g; to a new metric g = ¢g; for R?, where
¢ : R? — (0,00) is a smooth function with the following properties (cf. Figure
6.2):

(1) ¢(z,t) =1lifx < -lorz>1;

(2) ¢(z,t) = ¢(—=z,t) for all (z,t) € R?; and

(3) On the t axis, ¢(0,t) goes to zero like t =% as t — co.

Since g is conformal to g;, the space-time (R?, g) is globally hyperbolic, and
null geodesics still have as images straight lines making angles of 45° with the
positive or negative = axis. By property (2), the reflection F(z,t) = (—xz,t)
is an isometry of (R?,g). Since the fixed point set of an isometry is totally
geodesic, the ¢ axis may be parametrized as a timelike geodesic. By condition
(3), this geodesic is incomplete as t — co. Thus (R?, g) is timelike incomplete.
But every null or spacelike geodesic which enters the region -1 < z <1
eventually leaves and then remains outside this region. Thus condition (1)
implies that (R?, g) is null and spacelike complete.

We now consider the converse problem of constructing geodesically complete
Lorentzian metrics for paracompact smooth manifolds. In order to preserve
the causal structure of the given space-time, we restrict our attention to global
conformal changes rather than arbitrary metric deformations.

For Riemannian metrics, Nomizu and Ozeki (1961) showed that an arbitrary
metric can be made complete by a global conformal change. On the other hand,
space—times exist with the property that no global conformal factor will make
these space-times nonspacelike geodesically complete. A two-dimensional ex-
ample with this property has been given by Misner (1967). In this example
there are inextendible null geodesics which are future incomplete and future
trapped in a compact set [cf. Hawking and Ellis (1973, pp. 171-172)]. Any
conformal change of this example will leave these null geodesics pointwise fixed
and future incomplete. Thus one may not establish an analogue of the Nomizu
and Ozeki result for arbitrary space-times.

However, the existence of nonspacelike complete Lorentzian metrics has
been shown for space-times satisfying certain causality conditions. Seifert
(1971, p. 258) has shown that if (M, g) is stably causal, then M is conformal
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to a space-time with all future directed (or all past directed) nonspacelike
geodesics complete. Also Clarke (1971) has shown that a strongly causal space—
time may be made null geodesically complete by a conformal factor. Beem
(1976a) studied space-times with the property that for each compact subset
K of M, no future inextendible nonspacelike curve is future imprisoned in
K. (Recall that the nonspacelike curve 7 is said to be future imprisoned in
K if there exists tg € R such that y(t) € K for all ¢t > to.) If (M,g) is
a causal space-time satisfying this condition, then there exists a conformal
factor Q : M — (0,00) such that (M, Qg) is null and timelike geodesically
complete [Beem (1976a, p. 184, Theorem 8)]. This imprisonment condition is
satisfied if (M, g) is stably causal, strongly causal, or distinguishing. Hence

we may state the following result.

Theorem 6.5. If (M, g) is distinguishing, strongly causal, stably causal,
or globally hyperbolic, then there exists a smooth conformal factor  : M —
(0, 00) such that the space—time (M, Qg) is timelike and null geodesically com-
plete.

It is an open question as to whether Theorem 6.5 can be strengthened to
include spacelike geodesic completeness as well (cf. Corollary 3.46 for space-
times homeomorphic to R?).

Suppose that a space-time is defined to be nonsingular if it is geodesically
complete. Then “no regions have been deleted from the space-time manifold”
of a nonsingular space-time [Geroch (1968b, Property 1)]. But Geroch (1968b,
Property 2) suggested a second condition that nonsingular space-times should
satisfy, namely, “observers who follow ‘reasonable’ (in some sense) world lines
should have an infinite total proper time.” Here a “world line” is a timelike
curve in (M, g). Then Geroch (1968b, pp. 534-540) constructed a geodesi-
cally complete space-time which contains a smooth timelike curve of bounded
acceleration but having finite length. Thus this example fails to satisfy Ge-
roch’s Property 2 even though all timelike geodesics have infinite length by the
geodesic completeness.

Accordingly, in addition to geodesically incomplete space-times, further

kinds of singular space-times have been studied in general relativity. In the rest
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of this section, we will discuss two of these additional types of completeness,
b.a. completeness (bounded acceleration completeness) and b-completeness
(bundle completeness).

The concept of b.a. completeness stems from the preceding example of Ge-
roch. For the purpose of stating Definition 6.6, we recall than any C? time-
like curve may be reparametrized to a C? timelike curve v : J — M with
g(v'(t),7'(t)) =—-1forallt € J.

Definition 6.6. (Bounded Acceleration) A C? timelike curve y: J — M
with g(v'(t),7'(t)) = —1 for all t € J is said to have bounded acceleration if
there exists a constant B > 0 such that |g(V,'(t),V,+/(t))| < B for all
tedJ.

Here V is the unique torsion free connection for M defined by the metric g
[cf. Section 2.2, equations (2.16) and (2.17)]. In particular, if v is a geodesic,
then v has zero and hence bounded acceleration. The requirement that v be

C? makes it possible to calculate V...

Definition 6.7. (b.a. complete space-time) A space-time (M, g) is said
to be b.a. complete if all future (respectively, past) directed, future (respec-
tively, past) inextendible, unit speed, C? timelike curves with bounded acceler-
ation have infinite length. If there exists a future (or past) directed, future (or
past) inextendible, unit speed, C? timelike curve with bounded acceleration

but finite length, then (M, g) is said to be b.a. incomplete.

Geroch’s example (1968b, pp. 534-540) shows that geodesic completeness
does not imply b.a. completeness. Furthermore, Beem (1976c, p. 509) has given
an example to show that even for globally hyperbolic space-times, geodesic
completeness does not imply b.a. completeness. Trivially, b.a. completeness
implies timelike geodesic completeness. On the other hand, the example of
Geroch given in Figure 6.2 may be modified by changing the sign of the met-
ric tensor to show that b.a. completeness does not imply spacelike geodesic
completeness.

A stronger form of completeness, b-completeness, does imply geodesic com-

pleteness and hence overcomes this last objection to b.a. completeness. The
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concept of b-completeness, which was first studied for Lorentzian manifolds by
Schmidt (1971), is intuitively defined as follows [cf. Hawking and Ellis (1973,
p. 259)]. First, the concept of an affine parameter is extended from geodesics
to all C! curves. Then a space-time is said to be b-complete if every C! curve
of finite length in such a parameter has an endpoint.

We now give a brief discussion of b-completeness. First, it is necessary to
discuss the concept of a generalized affine parameter for any C! curve vy : J —
M. Recall that a smooth vector field V along v is asmoothmap V : J - TM
such that V(t) € T.,;)M for all t € J. Such a smooth vector field V' along
v is said to be a parallel field along v if V satisfies the differential equation
V., V(t) =0 for all t € J (cf. Chapter 2).

A generalized affine parameter u = u(v, E1, Eo, . . ., E,) may be constructed
for v : J — M as follows. Choosing any to € J, let {e1,ez,...,e,} be any
basis for T (;,)M. Let E; be the unique parallel field along v with E;(to) = e;
for 1 < i < n. Then {Ei(t), E2(t),..., En(t)} forms a basis for T, M for
each t € J. We may thus write v/(t) = >, V(t)Ei(t) with V' : J —» R
for 1 < i < n. Then the generalized affine parameter u = u(y, E1, ..., En) is

ult) = /

The assumption that v is C! is necessary in order to obtain the vector fields
{E1, Ea,...,E,} by parallel translation. It may be checked that ~ has finite
arc length in the generalized affine parameter u = u(v, Ei,...,En) if and

given by

[Vi(s)®ds, ted
1

i=

only if v has finite arc length in any other generalized affine parameter p =
(7, E1, ..., En) calculated from any other basis {E;}7.; for TM|, obtained
by parallel translation along <y [cf. Hawking and Ellis (1973, p. 259)]. Hence
the concept of finite arc length with respect to a generalized affine parameter
is independent of the particular choice of generalized affine parameter. It thus

makes sense to make the following definition.

Definition 6.8. (b-complete space-time) The space-time (M, g) is said
to be b-complete if every C! curve of finite arc length as measured by a gen-

eralized affine parameter has an endpoint in M.
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Suppose v : J — M is any smooth geodesic. Taking E;(t) = 4'(¢) in the
above construction, for any choice of FEa,...,E, we have generalized affine
parameter p(v, E1, Bo, ..., E,)(t) = t. Hence b-completeness implies geodesic
completeness. It is also known that b-completeness implies b.a. completeness.
Geroch’s example (cf. Figure 6.2) with the sign of the metric tensor changed
shows that there are globally hyperbolic space-times which are b.a. complete

but not b-complete. Thus b.a. completeness does not imply b-completeness.

6.3 Metric Completeness

The Hopf-Rinow Theorem for Riemannian manifolds (N, go) implies that

the following are equivalent:

(1) N with the Riemannian distance function dg : N x N — [0,00) is a
complete metric space, i.e., all Cauchy sequences converge.

(2) (N,dp) is finitely compact, i.e., all do-bounded sets have compact clo-
sure.

(3) (IV, go) is geodesically complete.

Here a set K in a Riemannian manifold (N, go) is said to be bounded if
sup{do(p,q) : P,g € K} < oo. By the triangle inequality, this is equiva-
lent to the condition that K be contained inside a closed metric ball of finite
radius.

In Section 6.2 we considered the geodesic completeness of Lorentzian man-
ifolds. In this section we shall consider Lorentzian analogues of conditions (1)
and (2) above. From the very definition of Lorentzian distance [i.e., d(p,q) = 0
if ¢ ¢ J*(p)], it is clear that attention should be restricted to timelike Cauchy
sequences.

Busemann (1967) studied general Hausdorff spaces having a partial order-
ing with properties similar to those of the chronological partial ordering p < ¢
of a space-time. Also, Busemann supposed that these spaces, which he called
timelike spaces, were equipped with a function which behaves just like the
Lorentzian distance function of a chronological space-time restricted to the set
{(p,q) € M x M : p < g}. For this class of nondifferentiable spaces, Busemann

observed that the length of continuous curves could be defined and, moreover,



210 6 COMPLETENESS AND EXTENDIBILITY

FIGURE 6.3. Shown is a sequence {z,} in Minkowski two-space
(R2,ds? = dz?—dy?) with z,, > p for all n, d(p, z,,) — 0 as n — oo,

but such that {z,} has no point of accumulation.

the length functional is upper semicontinuous in a topology of uniform con-
vergence [cf. Busemann (1967, p. 10)]. Busemann’s aim in studying timelike
spaces was to develop a geometric theory for indefinite metrics analogous to
the theory of metric G-spaces [cf. Busemann (1955)]. In particular, Busemann
studied finite compactness and metric completeness for timelike spaces in the
spirit of (1) and (2) of the Hopf-Rinow Theorem.

Beem (1976b) observed that Busemann’s definitions of finite compactness
and metric completeness for timelike G-spaces may be adapted to causal space—
times. First, timelike Cauchy completeness may be defined for causal space—

times as follows.
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Definition 6.9. (Timelike Cauchy Complete) The causal space-time
(M, g) is said to be timelike Cauchy complete if any sequence {z,} of points
with , € Tnym forn,m =1,2,3,... and d(zn, Tntm) < B, [or else Zpym <
Zn, and d(Zpnim, Tn) < By] for all m > 0, where B, — 0 as n — oo, is a con-

vergent sequence.

For Riemannian manifolds, finite compactness may be defined by requiring
that all closed metric balls be compact. On the other hand, we have noted
above (cf. Figure 4.4) that the subsets {q € J*(p) : d(p, q) < €} of a space—time
are generally noncompact. Thus the Riemannian definition must be modified.

One possibility is the following [cf. Busemann (1967, p. 22)].

Definition 6.10. (Finitely Compact) The causal space-time (M, g) is
said to be finitely compact if for each fixed constant B > 0 and each sequence
of points {z,} with either p < ¢ < z, and d(p, z,) < Bforalln,orz, < ¢<p

and d(zn,p) < B for all n, there is a point of accumulation of {z,} in M.

It may be seen that without requiring p < ¢ < z,, (or z,, < ¢ < p) for some
g € M in Definition 6.10, Minkowski space-time fails to be finitely compact
(cf. Figure 6.3).

For globally hyperbolic space-times, a characterization of finite compactness
more reminiscent of condition (2) above for Riemannian manifolds may be

given.

Lemma 6.11. Let (M, g) be globally hyperbolic. Then (M, g) is finitely
compact iff for each real constant B > 0, theset {z € M : p < ¢ < z, d(p,z) <
B} is compact for any p,q € M withq € I*(p) and theset {ze M :z < ¢ <
p, d(z,p) < B} is compact for any p,q € M with p € I'*(q).

Proof. This now follows easily because the sets J1(q) are closed and the Lor-

entzian distance function is continuous since (M, g) is globally hyperbolic. O

Minkowski space-time is both timelike Cauchy complete and finitely com-
pact. More generally, it may be shown that these concepts are equivalent for
all globally hyperbolic space-times [cf. Beem (1976b, pp. 343-344)].
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Theorem 6.12. If (M, g) is globally hyperbolic, then (M, g) is finitely com-
pact iff (M, g) is timelike Cauchy complete. Also, if (M, g) is globally hyper-
bolic and nonspacelike geodesically complete, then (M, g) is finitely compact

and timelike Cauchy complete.

Remark 6.13. Even for the class of globally hyperbolic space-times, finite
compactness, or equivalently, timelike Cauchy completeness, does not imply
timelike geodesic completeness. Indeed, Geroch’s example given in Figure 6.2
is a timelike geodesically incomplete, globally hyperbolic space-time which is

finitely compact.

At times, it is important to consider the completeness of a submanifold as
well as that of the given manifold. Conditions which are sufficient to guarantee
the completeness of submanifolds of Lorentzian manifolds are, in general, more
complicated than corresponding conditions for submanifolds of Riemannian
manifolds [cf. Beem and Ehrlich (1985a,b), Harris (1987, 1988a,b, 1994)]. If
(H,h) is a complete Riemannian manifold and F : M — H is an embedding
of M with F(M) a closed subset of H, then M is a complete Riemannian
manifold using the induced metric. The converse of this result is false. For
example, let the curve c : (0, +0o) — R? be given by c(t) = (¢,sin(1/t)). This
curve has an image which is a complete submanifold of the usual Euclidean
plane, but this image clearly fails to be a closed subset of R2.

Unlike the Riemannian case, closed embedded submanifolds of Lorentzian
manifolds need not be complete. To see this, it suffices to take a curve in
the Minkowski plane which is asymptotic to a null line quickly enough in at

least one direction along the curve. For example, the following map [cf. Harris

(19884))]
F(z) = (x, /Izl[l -3 dt)
0

is an embedding of R! as an incomplete closed spacelike submanifold of the
(z,y) plane with the usual Minkowski metric n = dz?—dy?. Harris (1988a) has
studied the completeness of embedded and immersed spacelike hypersurfaces of
Minkowski space. Among other things, he has shown that if such an immersed

hypersurface in (n + 1)-dimensional Minkowski space (i.e., L™*!) is complete,
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then its image must be a closed achronal subset which is diffeomorphic to
R™ and it must be embedded as a graph of a function defined on a spacelike
hyperplane. A more detailed resume of Harris’s work on spacelike completeness
together with additional references is given in Harris (1993, 1994).

Separate investigations had earlier been conducted in the case of constant
mean curvature spacelike hypersurfaces S of L™*! which are closed subsets of
L™+! in the Euclidean topology. For this class of space-times, Cheng and Yau
(1976) showed that the condition of constant mean curvature Hp implies that
S is complete in the induced Riemannian metric. (A complete treatment of the
issue of the achronality en route to the proof of completeness is given in Harris
(1988a, pp. 112, 118). Also, Harris (1988a, p. 118) showed that the hypothesis
of bounded principal curvatures may be substituted for constant mean curva-
ture.) Further, Cheng and Yau (1976) showed that constant mean curvature
Hy implies that the length of the second fundamental form is bounded by
n|Hp| and also that S has nonpositive Ricci curvature. In particular, in the
case of a maximal (i.e., Hy = 0) spacelike hypersurface, this estimate shows
that the second fundamental form is trivial. Hence these results of Cheng and
Yau (1976) combine with earlier work of Calabi (1968) for n = 3 to yield the
result that the only maximal spacelike hypersurface which is a closed subset
of Minkowski space is a linear hyperplane. Nishikawa (1984) investigated the
more general case of a locally symmetric target manifold satisfying the timelike
convergence condition and a condition that the sectional curvature of all non-
degenerate two-planes spanned by a pair of spacelike vectors be nonnegative.
Nishikawa showed that a complete maximal spacelike hypersurface in such a

target space-time would be totally geodesic.

In the case of nonzero constant mean curvature, Goddard (1977b) car-
ried out perturbation calculations for hyperboloids in Minkowski space (and
also for appropriate submanifolds of de Sitter space-time) which suggested
that perhaps all entire, constant mean curvature, spacelike hypersurfaces of
Minkowski space should be hyperboloids. This issue was thoroughly inves-
tigated by Treibergs (1982), who took the starting point that in the case of

positive mean curvature, an entire spacelike hypersurface could be realized as
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the graph of a convez function. Now for an entire convex function f whose

graph is a spacelike hypersurface, Treibergs (1982, p. 51) defines the projective

boundary values of f at infinity, Vy, as
Vi(z) = lim

r—+oco T

Treibergs defines two entire, constant mean curvature, spacelike hypersurfaces
to be equivalent if they have the same projective boundary values at infinity.
Treibergs then proves that the set of such equivalence classes coincides with
convex homogeneous functions whose gradient has norm one whenever defined.
Treibergs further shows that constant mean curvature spacelike hypersurfaces
with given projective boundary data at infinity are highly nonunique, because
arbitrary finite perturbations of the given light cone (at infinity) may be made
producing different f(z), hence different spacelike hypersurfaces, each strongly
asymptotic to its own perturbed light cone, yet all having the same projective
boundary behavior V(z) at infinity. Thus the geometry for entire, constant
(but nonzero) mean curvature, spacelike hypersurfaces turns out to be more

complicated than the maximal (Hp = 0) case.

6.4 Ideal Boundaries

In this section we give brief descriptions of the b-boundary and the causal
boundary for a space-time. Further details may be found in Hawking and Ellis
(1973, Sections 6.8 and 8.3) or Dodson (1978).

The b-boundary of a space-time (M,g) will be denoted by 8,M. This
boundary is formed by defining a certain positive definite metric on the bundle
of linear frames L(M) over M, taking the Cauchy completion of L(M), and
then using the newly formed ideal points of L(M) to obtain ideal points of
M. The b-boundary is particularly useful in telling whether or not some
points have been removed from the space-time. Somewhat unfortunately, the
b-boundary often consists of just a single point [cf. Bosshard (1976), Johnson
(1977)]. This boundary is not invariant under conformal changes and also
is not directly related to the causal structure of (M,g). A discussion of the
merits and demerits of the b-boundary and geodesic incompleteness may be
found in the review article of Tipler, Clarke, and Ellis (1980).
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Recall that a curve v : [0,a) — M is said to be b-incomplete if it has
finite generalized affine parameter (cf. Section 6.2). Any curve v: [0,a) —» M
which is both b-incomplete and inextendible to ¢ = a defines a point of 8, M
corresponding to y(a). In Minkowski space-time, generalized affine parameter
values along a curve can be made to correspond to Euclidean arc length. Thus
Minkowski space-time has an empty b-boundary, and each b-incomplete curve

in Minkowski space-time has an endpoint in the space-time.

The causal boundary of a space-time (M, g) will be denoted by .M. This
boundary is constructed using the causal structure of the space-time. Thus it
is invariant under conformal changes. We will only be interested in considering

this boundary for strongly causal space-times.

The causal boundary is formed using indecomposable past (respectively, fu-
ture) sets which do not correspond to the past (respectively, future) of any
point of M. A past (respectively, future) set A is a subset of M such that
I=(A) C A (respectively, IT(A) C A). The open past (respectively, future)
sets are characterized by I~ (A) = A (respectively, I7(A) = A). An indecom-
posable past set (IP) is an open past set that cannot be written as a union
of two proper subsets both of which are open past sets. An indecomposable
future set (IF) is defined dually.

A terminal indecomposable past set (TIP) is a subset A of M such that

(1) A is an indecomposable past set, and

(2) A is not the chronological past of any point p € M.

A terminal indecomposable future set (TIF) is defined dually. The causal
boundary 8.M is formed using TIP’s and TIF’s after making certain identifica-
tions which will be described below [cf. Hawking and Ellis (1973, pp. 218-221)].
These identifications allow the topology of M to be extended to M* = MU§. M
in such a way that the causal completion of M is Hausdorff, provided that
(M, g) satisfies certain more restrictive causality conditions such as stable

causality.

The use of TIP’s and TIF’s to represent ideal points of the causal boundary
of (M, g) is illustrated in Figure 6.4.
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q
FIGURE 6.4. The ideal point p in .M is represented by the termi-
nal indecomposable past set A, and the ideal point g is represented
by the terminal indecomposable future set B. The point T is repre-

sented by both the set C, which is a TIP, and the set D, which is a
TIF.

We now show that a TIP may be represented as the chronological past of a
future inextendible timelike curve. This result is due to Geroch, Kronheimer,
and Penrose (1972, p. 551).

Proposition 6.14. A subset W of the strongly causal space-time (M, g) is
a TIP iff there exists a future directed and future inextendible timelike curve
v such that W = I~ (y).

Proof. Assume there is a future inextendible timelike curve v with W =
I~ (7). Using the strong causality of (M, g), it follows that if W is an IP, then
W is a TIP. To show W is an IP, assume that W = U; U Uz for nonempty
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open past sets U; and Uz such that neither is a subset of the other. Choose
ry € Uy — Uz and ro € Uy — Uy. There must exist points r, € v such that
r; € I7(r}) for i = 1,2 because Uy UU; = I~ (v). However, whichever Uj;
contains the futuremost of r{ and r5 must then contain all four of ry,re, 7},
and r5. This contradicts either the definition of r; or of rs.

On the other hand, assume that W is a TIP. If p is any point of W, then
W = [WNI*(p)]U[W—I%(p)] and thus W = I~ (WNI*(p))UI~ (W —I*(p))
since W is a past set. Since W is an IP, either W = I~ (W N I*(p)) or
W = I~ (W — I'(p)). Consequently, as p ¢ I~ (W — I*(p)), we have W =
I=(W N 1I*(p)). Thus, given any g # p in W, there must be some point r in
W which is in the chronological future of both p and ¢. Inductively, for each
finite subset of W, there exists some point of W in the chronological future
of each point of the subset. Now choose a sequence of points {p,} which
forms a countable dense subset of W. We will define a second sequence {g,}
inductively. Let go be a point of W in the chronological future of pg. If g; for
i=1,2,...,k — 1 has been defined, then choose gx to be a point of W in the
chronological future of px and of g; for i =1,2,...,k—1.

Finally let v be any future directed timelike curve which begins at go and
connects each g; to the next g;4+1. Clearly, each p, lies in I~ (y) and I~ () C
W. Using the openness of W and the denseness of the sequence {p, }, it follows
that W = I~ () as required. O

In space-times which are not strongly causal, there may exist future directed
and future inextendible timelike curves v such that I~ (v) is the chronological
past of some point [i.e., I~ () is not a TIP]. Consider, for example, the cylinder
R! x S! with the flat metric ds®> = dt df and the usual time orientation with
the future corresponding to increasing ¢. The lower half of the cylinder W =
{(t,0) : t < 0} is an IP which can be represented as I~ (v) for a future directed
and future inextendible timelike curve y. However, W is not a TIP since W
can be represented as the chronological past of any point on the circle t = 0.
By restricting our attention to strongly causal space-times, the IP’s which are
not TIP’s are in one-to-one correspondence with the points of M. The dual
statement holds for IF’s which are not TIF’s.
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We now define M (respectively, M) to be the collection of all IP’s (respec-
tively, IF’s). Furthermore, let M* = M U M/ ~, where for each p € M
the element I~ (p) of M is identified with the element I*(p) of M. The map
It : M — M* given by p — I*(p) then identifies M with a subset of M?".
Using this identification, the set M* corresponds to M together with all TIP’s
and TIF’s.

In order to define a topology on M!, first define for any A € M the sets
Aint and Aext by

A ={VeM:VNA#0}

and
A ={V e M:V =1 (W) implies I* (W) € A}.

Similar definitions of B'™* and B®* are made for any B € M. A subbasis
for a topology on M* is then given by all sets of the form A, Aext Bint,
and B®**. The sets A'™ and B'™ are analogues of sets of the form I*(p) and
I~ (p), respectively. The sets A*** and B*** are analogues of M — I+(p) and
M — I‘_(m, respectively.

Now in Geroch, Kronheimer, and Penrose (1972), it is proposed to obtain
a Hausdorff space M* = M U .M from M*, with the topology given as
above, by identifying the smallest number of points of M* necessary to obtain
a Hausdorff space M*. Equivalently, it is proposed that M* = M U .M
should be taken to be the quotient M*/Ry, where R}, is the intersection of all
equivalence relations R on M* such that M*/R is Hausdorff.

Unfortunately, Szabados (1988) and Rube (1988, 1990) independently ob-
served that the assumption of strong causality for the given space-time (M, g)
was not sufficient to ensure that the minimal equivalence relation R exists,
and hence the Geroch-Penrose-Kronheimer choice of topology may not be
used to induce a Hausdorff causal completion M* for a general strongly causal
space-time. Szabados points out two difficulties that may arise for general
strongly causal space-times if the topology given via {A'"t, A<t Bint Bext}
is chosen. First, inner points corresponding to the embedding of M into M#
via the map IT and pre-boundary points are in general only T}-separated, but

not Ty-separated, with this choice of topology. Second, an example is given to
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show, for a nonspacelike curve v with endpoint g in M, that the induced curve
I* o~ does not necessarily have a unique endpoint in M. Both Rube (1988)
and Szabados (1988) suggest stronger causality conditions on the underlying
space—time (M, g) which will ensure that the equivalence relation R, proposed
as above will exist, and hence this construction will produce a Hausdorff causal
boundary 8.M for M identified with its image in M* under the mapping I+.
The simplest such condition to impose is that (M, g) be stably causal.

6.5 Local Extensions

In this section, extendibility and inextendibility of Lorentzian manifolds are
defined. Also, two types of local extendibility are discussed. Most of the results
of this section hold for Lorentzian manifolds which are not time orientable as

well as for space-times.

Definition 6.15. (Eztension) An extension of a Lorentzian manifold
(M, g) is a Lorentzian manifold (M’,g') together with an isometry f : M —
M’ which maps M onto a proper open subset of M’'. An analytic extension
of (M,g) is an extension f : (M,g) — (M’,g’) such that both Lorentzian
manifolds are analytic and the map f : M — M’ is analytic. If (M, g) has no

extensions, it is said to be ineztendible.

Suppose that the Lorentzian manifold (M, g) has an extension f : (M, g) —
(M’,g’). Since M’ is connected and f(M) is assumed to be open in M’, it
follows that

O(f(M)) = F(M) — f(M) #0,

where f(M) denotes the closure of f(M) in M’. Because 8(f(M)) # 0 and
the isometry f : M — M’ maps geodesics in M into geodesics in M’ lying
in f(M), it is easily seen that (M, g) cannot be timelike, null, or spacelike
geodesically complete. Recalling that b-completeness and b.a. completeness
both imply timelike geodesic completeness (cf. Section 6.2), we thus have the

following criteria for Lorentzian manifolds to be inextendible.
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Proposition 6.16. A Lorentzian manifold (M, g) is inextendible if it is

complete in any of the following ways:

(1) b-complete;

(2) b.a. complete;

(3) timelike geodesically complete;
(4) null geodesically complete; or
(5) spacelike geodesically complete.

We now define two types of local extensions [cf. Clarke (1973, p. 207), Beem
(1980), Hawking and Ellis (1973, p. 59)].

Definition 6.17. (Local Extension) Let (M, g) be a Lorentzian manifold.
(1) Suppose 7 : [0,a) — M is a b-incomplete curve which is not extendible to
t =ain M. A local b-boundary eztension about <y is an open neighborhood
U C M of v and an extension (U, g’) of (U, g|;;) such that the image of + in
U’ is C° extendible beyond t = a.

(2) A local extension of (M,g) is a connected open subset U of M having
noncompact closure in M and an extension (U’, g') of (U, g|;) such that the

image of U has compact closure in U’.

Remark 6.18. This definition of local extension differs from the corre-
sponding definition of local extension in Hawking and Ellis (1973, p. 59) in
that U is required to be connected in Definition 6.17-(2) but not in Hawking
and Ellis (cf. Figures 6.5 and 6.6).

We now investigate the relationships between these two types of local exten-
sions. An arbitrary space-time may contain a b-incomplete curve v : [0,a) —
M which is not extendible to t = a, yet ¥[0,a) has compact closure in M.
However, Schmidt has shown that such space-times contain compactly im-
prisoned inextendible null geodesics [cf. Schmidt (1973), Hawking and Ellis
(1973, p. 280)]. On the other hand, if (M,g) contains no imprisoned non-
spacelike curves, and (M, g) has a local b-boundary extension about v, we

now show this same extension yields a local extension.
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FIGURE 6.5. Let v : [0,a) — M be a b-incomplete curve which
is not extendible to t = a in the space-time (M, g). Assume that
there is an isometry f : (U, gluv) — (U’, g’) which takes v to a curve
f o« having an endpoint p in U’. Then f o~y may be continu-
ously extended beyond t = a. Thus (M, g) has a local b-boundary

extension about 7.

Lemma 6.19. If (M, g) is a space-time with no imprisoned nonspacelike
curves and if (M, g) has a local b-boundary extension about <y, then (M, g)

has a local extension.

Proof. Suppose that f : (U, g|;) — (U’,¢’) is a local b-boundary extension
about . Then fo~:[0,a) — U’ is extendible, and f o~(t) converges to some
pe U’ ast — a. Let W’ be an open neighborhood of p in U’ with compact
closure in U’. Choose tg € [0,a) such that fo~y(t) € W' for all typ < t < a.
Set Vi = f~1(W'), and let V be the component of V; in U which contains
the noncompact set -y | [to,a). Since U is open in M, the set V' is a connected
open set in M with noncompact closure in M. Also f(V') has compact closure
in U’ since f(V) C W'. Thus fl|y, : (V, gly,) — (U, ¢’) is a local extension of
(M,g). O
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FIGURE 6.6. Let U be a connected open subset of M having non-
compact closure in M. A local extension is defined to be an isom-
etry f: (U,glu) — (U, g') such that f(U) has compact closure in
U’. Minkowski space-time shows that even real analytic b-complete
space-times may admit analytic local extensions (cf. Example 6.21).
Thus a space-time may admit local extensions but not admit local

b-boundary extensions.

We now show that both types of local inextendibility imply global inex-
tendibility.

Proposition 6.20. If the Lorentzian manifold (M, g) has no local exten-
sions of either of the two types in Definition 6.17, then (M, g) is inextendible.

Proof. Suppose (M, g) has an extension F : (M,g) — (M',g'). Let p €
8(F(M)), and choose a geodesic o : [0,1] — (M',¢') with ¢(0) € F(M)
and o(1) = p. Since F(M) is open in M’ and p ¢ F(M), there exists some
to € (0,1] such that o(t) € F(M) for all 0 < t < tg but o(to) ¢ F(M). Then

the curve v = F~! oa|[0 to) [0,t0) — M is b-incomplete, inextendible to
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t = tp in M, and has noncompact closure in M. Taking U = M, U’ = M’, and
f = F in (1) of Definition 6.17, it follows that (M, g) has a local b-boundary
extension about . Taking W to be any open subset about » with compact
closure in M’, U’ = M’, and U to be the component of FF~}(W) containing v,
we obtain a local extension F|; : (U, gly) — (M',¢'). O

The next example shows that Minkowski space-time has local extensions.
Since Minkowski space-time is b-complete, this example shows that even
though b-completeness is an obstruction to global extensions, it is not an
obstruction to local extensions (cf. Proposition 6.16). This example is unusual
in that it does not correspond to a local extension of M over a point of either
the b-boundary 8, M or the causal boundary .M. It is a local extension of a
set which extends to i° (cf. Figure 5.4).

Example 6.21. Let (M = R", g) be n-dimensional Minkowski space-time
and let M’ = R x T™7!, where 7"~ ! = {(62,63,...,60,) : 0 < 6; < 1} is the
(n — 1)-dimensional torus (using the usual identifications). We may define a
Lorentzian metric g’ for M’ by ¢’ = (ds')? = —dt? + d6% + - - - + d,2. Then
(M, g) is the universal Lorentzian covering space of (M’, ¢') with covering map
f:(M,g) — (M',g') given by

f(z1,...,zn) = (z1,22(mod 1), z3(mod 1),...,z,(mod 1)).
Fix 8 > 0 and consider the curve 7 : [1,00) — M given by
v(s) = (s7P,s,0,...,0).

Then fo-~y:[1l,00) = M’ is a spiral which is asymptotic to the circle t = 5 =
-+- =6, =0in M'. Let U be an open tubular neighborhood about v in M
such that U is contained in some open set {(z1,...,z,) € R* : 0 < 73 < a} for
some fixed & > 1 and such that f|, : U — M’ is a homeomorphism onto its
image (cf. Figure 6.7). Intuitively, the set U must be chosen to be thinner as
s — oo in order to satisfy the requirement z; > 0 for (z1,...,2z,) € U. While
U does not have compact closure in Minkowski space-time, f(U) does have

compact closure in M’ since f(U) is contained in the compact set [0, a] x 7"~ 1.
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FIGURE 6.7. Minkowski space-time has analytic local extensions.
Let M = R™ be given the usual Minkowskian metric g, and let 77!

be the (n — 1)-dimensional torus with the usual positive definite

flat metric h. Let M’ = R x T™! be given the Lorentzian product

metric ¢’ = —dt? @ h. Then (M, g) is the universal covering space

of (M',¢'), and the quotient map f: M — M’ is locally isometric.

Choose U to be an open set in M about v(s) = (s73,s,...,0),

v :[1,00) — M, such that f|U is one-to-one and f(U) has compact

closure in M’. Then fly : (U,gu) — (M',¢') is an analytic local

extension of Minkowski space, but this extension is not across points

of .M and not across points of 9, M.
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Thus f: (U, gly) — (M’,g') is an analytic local extension of Minkowski space—
time. Notice that if v; : [0,a) — U is any curve with noncompact closure in
M, then f o~; cannot be extended to t = a in M.

6.6 Singularities

Let OM denote an ideal boundary of M (i.e., @M represents either 9, M
or :M). A point ¢ € OM is said to be a regular boundary point of M if
there exists a global extension (M, ¢') of (M, g) such that ¢ may be naturally
identified with a point of M'. A regular boundary point may thus be regarded

as being a removable singularity of M.

Let v : [0,a) — M be an inextendible curve such that vy(a) corresponds
to an ideal point of M. The curve v is said to define a curvature singularity
[cf. Ellis and Schmidt (1977, p. 916)] if some component of Rgpcae,,...,e; 1S N0t
CP on [0, a] when measured in a parallelly propagated orthonormal basis along
~. A curvature singularity is an obstruction to a local b-boundary extension
about « because if there is a local b-boundary extension about +, then the
curvature tensor and all of its derivatives measured in a parallelly propagated
orthonormal basis must be continuous and hence converge to well-defined limits
ast — a~. A related but somewhat different notion is that of strong curvature
singularity which may be defined using expansion § along null geodesics. The
notion of strong curvature singularity has been useful in connection with cosmic
censorship [cf. Krélak (1992), Krélak and Rudnicki (1993)].

A b-boundary point ¢ € 9yM which is neither a regular boundary point
nor a curvature singularity is called a quasi-reqular singularity. Clarke (1973,
p. 208) has proven that if v : [0,a) — M is an inextendible b-complete
curve which correspoads to a quasi-regular singularity, then there is a local
b-boundary extension about . This shows that curvature singularities are

the only real obstructions to local b-boundary extensions.

In general, it can be quite difficult to decide if a given space-time has local
extensions of some type. However, for analytical local b-boundary extensions

of analytic space-times, the situation is somewhat simpler (cf. Theorem 6.23).
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For the proof of Theorem 6.23, it is useful to prove the following proposi-
tion about real analytic space-times and local isometries. Recall that a local
isometry F': M — M’ is a map such that for each p € M, there exists an open
neighborhood U(p) of p on which F' is an isometry. Thus local isometries are

local diffeomorphisms but need not be globally one-to-one.

Proposition 6.22. Let (M, g) and (M, g:1) be real analytic space-times
of the same dimension and suppose that F : M — M is a real analytic map.
If M contains an open set U such that F|, : U — M, is an isometry, then F

is a local isometry.

Proof. Let W = {m € M : F,u # 0 for all v # 0 in T,, M}, which is an
open subset of M by the inverse function theorem. Since F|;; is an isometry,
U is contained in W. Fix any p € U, and let V be the path connected
component of W containing p. We will establish the proposition by showing
first that F|;, is a local isometry and second that V = M.

Let ¢ be any point of V. Choose a curve 7 : [0,1] — V with v(0) = p and
(1) = q. By the usual compactness arguments, we may cover [0, 1] with a
finite chain of coordinate charts (U1, ¢1), (U2, ¢2),- - -, (Uk, ¢x) such that each
U; is simply connected, F|,, : U; — M, is an analytic diffeomorphism, p €
Uy CUNV, q€ U, and U;NU; 41 # B foreach i with1 <i < k—1. Since U; C
UNV, we have g = (F|y,)*g1 onUs. Thus g = (F|y, )*g1 on UiNUs. Since UiN
U, is an open subset of Us and F' is a real analytic diffeomorphism of U; onto its
image, it follows that g = (F[y;,)*g1 on Uz. Continuing inductively, we obtain
g = (Fly,)*g1 on Ux, whence F is an isometry in the open neighborhood U
of g. Thus F|, : V — M is a local isometry.

It remains to show that V = M. Suppose V # M. Choose any point
71 € M —V. Let 11 : [0,1] — M be a smooth curve with y(0) = p and
(1) = r1. There is a smallest ¢g € [0, 1] such that r = y(tg) € M — V. Then
F restricted to the neighborhood V of 41[0,%) is a local isometry. It suffices
to show that 7 € V to obtain the desired contradiction. Since r € M — V,
there exists a tangent vector z # 0 in T,M with F,z = 0. Let X be the
unique parallel field along v with X (t9) = z. Then F, o X is a parallel field

along F oy : [0,t9) — M since F is a local isometry in a neighborhood of
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71 : [0,t0) — M. But since F is smooth, F,z = F,X(t) = lim, .- F.X(t).
Because F, o X is a parallel vector field for all ¢t with 0 < t < g, it follows
that limt_,t(T F,X(t) # 0. Hence F,z # 0. Thus F is nonsingular at the point

r, whence r € V in contradiction. O

‘We are now ready to turn to the proof of Theorem 6.23 on local b-boundary

extensions of real analytic space-times.

Theorem 6.23. Suppose (M, g) is an analytic space—time with no impris-
oned nonspacelike curves, which has an analytic local b-boundary extension
about v : [0,a) — M. Then there are timelike, null, and spacelike geodesics
of finite affine parameter which are inextendible in one direction and which do

not correspond to curvature singularities.
The proof of Theorem 6.23 will involve two lemmas.

Lemma 6.24. Suppose (M, g) is an analytic space-time with no impris-
oned nonspacelike curves, which has an analytic local b-boundary extension

about 7y : [0,a) — M. Then (M, g) has an incomplete geodesic.

Proof. Let f : (U, g|y) — (U',¢') be an analytic extension about y. We
may assume U contains the image of . Also, f o~ is extendible in U’. Thus
fox(t) > pe U ast — a~. Let W be a neighborhood of p such that
W' is a convex normal neighborhood of each of its points. Then exp;! :
W' — T.U’' is a diffeomorphism for each fixed z € W’. Assume tg is chosen
with fox(t) € W’ for all tg < t < a. Set ¢ = ¥(to) and 7 = f(g). Then
H = exp,o f,jq1 oexp,! : W' — M is analytic and is at least defined near r.
The map H takes geodesics starting at r to geodesics starting at g, and H
preserves lengths along these geodesics. In fact, H agrees with f~! near r.
The map H need not be one-to-one since exp, is not necessarily one-to-one.
Because the domain of exp, is a union of line segments starting at the origin
of T;M, the domain V' of H must be some subset of W’ which is a union of
geodesic segments starting at . Hence the set V' fails to be all of W’ only
when exp, : T;M — M is defined on a proper subset of TqM which does not
include all of the image f, ! o exp,; }(W'). Thus if we show V' # W', there is

some incomplete, inextendible geodesic starting at ¢. But the analytic maps
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H and f~! must agree on the component of f(U) NV’ which contains 7. This
implies V' # W'. Otherwise, H and f~! would agree on f(U)NW’ and hence
on a neighborhood of f o~[to,a). This yields Ho foy = for g <t < a and

implies « is extendible in M across the point H(p), in contradiction. 0O
We will continue with the same notation in the next lemma.
Lemma 6.25. The map H : V' — M is a local isometry.

Proof. The space-time (M, g) is analytic, (U’, ¢') is analytic, and H is an-
alytic. Furthermore, H agrees with the isometry f~! near r, and H is defined
on an arcwise connected set V’. Thus Proposition 6.22 implies H is a local

isometry. 0O
We are now ready to complete the

Proof of Theorem 6.23. There are three cases to consider corresponding
to incomplete timelike, null, and spacelike geodesics. We only give the proof
for the timelike case. Let U, U’, f, etc., be as in Lemmas 6.24 and 6.25.
Assume without loss of generality that there is some point z € W' such that
in a chronological ordering on W', we have z <« p and z < f o ~(t) for all
to <t < a (cf. Figure 6.8).

If z ¢ V', let a be the geodesic segment in W’ from r to z. Then H takes
a NV’ to an inextendible, incomplete, timelike geodesic starting at ¢g. Lemma
6.25 implies that this geodesic does not correspond to a curvature singularity.

If £ € V', let y = H(z) and define H' = exp,oH,_oexp;!: W — M.
The map H' is defined on some subset V" of W’. 1t is a local isometry for the
same reasons that H is a local isometry, and H' agrees with both H and f~!
near 7. The set V" cannot contain all of f o+ for v on tp < t < a since this
would yield an endpoint H'(p) of v in M. Using z <« fo~(t) for ¢ < t < a,
we conclude that there is an inextendible incomplete timelike geodesic starting

at y in M which does not correspond to a curvature singularity. O

Remark 6.26. There are examples of C* space-times which are both

geodesically complete and locally b-extendible [cf. Beem (1976c, p. 506)].
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FIGURE 6.8. In the proof of Theorem 6.23, the map f : (U, g|v) —
(U’, ¢") is an isometry which is an analytic local b-boundary exten-
sion about 4. The point p € U’ is the endpoint of fo~ in U’. In
this figure, f(g) = r, and all points of f oy between r and p are in
the chronological future of z.

Hence the analyticity in the hypothesis of Theorem 6.23 cannot be replaced

by a C* assumption.

Corollary 6.27. Let (M, g) be an analytic space-time with no imprisoned
nonspacelike curves such that each timelike geodesic v : [0,a) — M which is
inextendible to t = a is either complete (i.e., a = o0) in the indicated direction
or else corresponds to a curvature singularity. Then (M, g) has no analytic

Iocal b-boundary extensions.

Extensive work has been done on classifying singularities by various differ-
ent methodologies. Indeed, the monograph by Clarke (1993) may be consulted
to obtain much more detailed information than that which is provided in this
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chapter. Our treatment here will be limited to a discussion of the “abstract
boundary” §,(M) and its application to the classification of singularities as
given in Scott and Szekeres (1994) and Fama and Scott (1994). (In Clarke
(1993), a somewhat different “A-boundary” obtained by taking the closures of
an atlas of normal coordinate charts is discussed.) To form the a-boundary,
equivalence classes of boundary points of a given smooth manifold under all
possible open embeddings are considered. The a-boundary thus has no depen-
dence on any choice of affine connection or semi-Riemannian metric. When
the manifold is further endowed with an extra structure, like an affine con-
nection or a semi-Riemannian metric, then abstract boundary points may be
classified as regular boundary points, points at infinity, unapproachable points,
or singularities, with the classification having some dependence upon a par-
ticular curve family C selected, which is associated to the added structure for
M. The abstract boundary also has the feature that if a closed region is re-
moved from a singularity-free semi-Riemannian manifold, then the resulting
semi-Riemannian manifold is still singularity-free since only regular boundary

points are introduced by the excision of the closed set.

We will begin by discussing the construction of the a-boundary for a given
smooth manifold M of dimension n. Since no metric is yet involved, we will
adopt the terminology of Scott and Szekeres (1994) and define an enveloped
manifold (M, My, f1) to be a pair of (connected) smooth manifolds M, M; of
the same dimension together with a smooth embedding f; : M — M;. Since
both manifolds have the same dimension, f;(M) is an open submanifold of
M. (A very special type of envelopment would then be provided by a global

extension of a given space—time [cf. Definition 6.15].)

Definition 6.28. (Boundary Point, Boundary Set) A boundary point p
of an enveloped manifold (M, My, f1) is a point p € My — fi1(M) such that
every open neighborhood U of p in M; has non-empty intersection with fi (M),
i.e., p belongs to the topological boundary 8(f1(M)) = fi(M) — fi(M). A
boundary set B contained in Mj — fi(M) is any set of boundary points for the
enveloped manifold (M, M1, f;). We will use the notation (M, My, f1, B) for

an enveloped manifold with distinguished boundary set B.
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The set of enveloped manifolds and resulting boundary sets is much too
large an object to use to form a useful boundary. Thus the following relation

is introduced between enveloped manifolds and boundary sets.

Definition 6.29. (Covering Boundary Sets) Let (M, M, f1,B;) and
(M, Ma, f2, B2) be two envelopments for M with boundary sets B; and B,
respectively. Then the boundary set B is said to cover the boundary set By
if for every open neighborhood U; of By in M;, there exists an open neighbor-
hood Us; of Bs in My such that

(6.2) fro f51 (Ua N fo(M)) C Uy

This requirement may be conveniently checked in terms of sequences as

follows.

Proposition 6.30. The boundary set B, covers the boundary set Bo iff
for every sequence {px} in M such that the sequence { f2(px)} has a limit point
in Bs, the sequence {fi(px)} is required to have a limit point in Bj.

Since the requirement (6.2) is to some degree only a topological restriction,
examples may be given of different envelopments of M = R™ — {(0)} for which
one envelopment produces the boundary set B; = {(0)} consisting of precisely
one point, but a second envelopment produces the boundary set By = S™~1,
and even more remarkably, B; covers By and Bs covers B;. Thus a single
point which is the boundary set of a given envelopment may cover infinite sets

of points which are contained in a boundary set for a second envelopment.

Definition 6.31. (Egquivalent Boundary Sets) Let (M, M, fi,B1) and
(M, M2, fa, B2) be two enveloped manifolds with boundary sets B; and Ba,
respectively. Then B is said to be equivalent to Bs iff By covers By and Bo

covers Bj.

Denote this equivalence relation on the class of boundary sets for M by
B; ~ By. An abstract boundary set [B] is then an equivalence class of bound-
ary sets. In Fama and Scott (1994), topological properties of boundary set
equivalence are studied. It is noted that if a boundary set B of a given envel-

opment is compact, then all boundary sets B’ of all other envelopments which
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are equivalent to B must also be compact. In particular, all boundary sets
B equivalent to a single boundary point [p] are compact. However, closed-
ness, connectedness, and simple connectedness of boundary sets are unfortu-
nately not invariant under boundary set equivalence. Fama and Scott (1994)
give a detailed discussion of “topological neighborhood properties,” including
the connected neighborhood property and the simply connected neighborhood
property, which are preserved by boundary set equivalence.

With all of these preliminaries settled, we may now define the a-boundary
as in Scott and Szekeres (1994).

Definition 6.32. (The a-boundary 8,(M)) Ifpisaboundary point of an
enveloped manifold (M, M, f1), then the equivalence class [p] of the boundary
set {p} under the equivalence relation ~ of Definition 6.31 is called an abstract
boundary point of M. The set 8,(M) of all such abstract boundary points for
all envelopments of the given manifold M is called the abstract boundary or

the a-boundary.

More symbolically, one has that

8. (M) ={[p]:pisin fi(M) — f1(M) for some envelopment (M, M, f1)}.

In the beginning of this section, the concept of regular boundary point was
defined for space-times in terms of global extensions. A similar definition is
given in Scott and Szekeres (1994) for general semi-Riemannian manifolds.
Now let (M, g) be a semi-Riemannian manifold with a metric tensor g of class
Ck. Let (M, g, My, f1) be an envelopment of M. The induced metric tensor
(fT1)" g on f1(M) will be denoted by g when there is no risk of ambiguity.

Definition 6.33. (C'-Extension of (M,g)) A Cl-estension (1 <1< k)
of a C* semi-Riemannian manifold (M, g) is an envelopment of (M, g) by a C*

semi-Riemannian manifold (M1, ¢1), f1 : M — My, such that
g1l fi(M) =g.
This will be denoted by (M, g, M1, g1, f1)-

With this definition in hand, the concept of a C'-regular boundary point

may be formulated independent of any choice of curve family for (M, g).
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Definition 6.34. (C'-Regular Boundary Point) A boundary point p
of an envelopment (M, g, My, g1, f1) is C'-regular for g if there exists a C!
semi-Riemannian manifold (Ma, g2) such that fi(M) U {p} C My C M; and
(M, g, My, go, f1) is a C'-extension of (M, g).

Further analysis of the boundary points as “singular boundary points” or
“points at infinity” is possible only if a certain family of curves C with the
bounded parameter property has been specified, and indeed it is natural that
this classification should depend on the choice of the particular curve family
selected. Thus we assume that the smooth manifold M is furnished with a
family C of parametrized curves satisfying the bounded parameter property.
Here a parametrized curve will be taken to mean a C! map v : [a,b) — M
with @ < b < +00 and with v/(¢) # 0 for all ¢ in [a, b).

Definition 6.35. (Bounded Parameter Property) A family C of param-
etrized curves in M is said to satisfy the bounded parameter property if the

members of C satisfy the following:

(1) Through any point p of M passes at least one curve v of the family C;

(2) If v is a curve in C, then so is every subcurve of v; and

(3) For any pair of curves ; and «2 in C which are obtained from each
other by a monotone increasing C! change of parameter, either the
parameter on both curves is bounded, or it is unbounded on both

curves.

Examples of suitable families of curves C in our context include: (1) the
family of all geodesics with affine parameter in a manifold M with affine
connection; (2) all C! curves parametrized by “generalized affine parameter”
(cf. Definition 6.8) in an affine manifold; and (3) all future timelike geodesics
parametrized by arc length in a space-time.

As an alternative to Proposition 6.30, boundary sets may be studied using

parametrized curves.
Definition 6.36. (Limit Point, Endpoint of Curve) Let v : [a,b) - M
be a parametrized curve. Then

(1) A point p in M is a limit point of the curve v : [a,b) — M if there
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exists an increasing sequence ¢; — b such that v(¢;) — p.
(2) A point p in M is an endpoint of the curve v if v(t) - past — b™.

(For Hausdorff manifolds, curve endpoints are unique.)

Definition 6.37. (Approaching a Boundary Set) Let «v: [a,b) — M be
a parametrized curve and (M, M1, f1, B) a boundary set in an envelopment of
M.

(1) The parametrized curve « : [a,b) — M approaches the boundary set B
if the curve f; o+ has a limit point lying in B.

(2) The parametrized curve v : [a,b) — M has its endpoint in B if the
curve f oy : [a,b) — M; has its endpoint in B.

The analogue of Proposition 6.30 above in this setting is then

Proposition 6.38. If a boundary set B; covers a boundary set By, then

every curve v : [a,b) — M which approaches By also approaches Bj.

Now we restrict our attention to a semi-Riemannian manifold (M, g) for
which a family C of curves for M with the bounded parameter property has

been selected, and we use the notation (M, g,C) to denote this selection.

Definition 6.39. (Approachable Boundary Point, C-Boundary Point) If
(M, My, f1) is an envelopment of (M, g,C), then a boundary point p of this
envelopment is approachable, or a C-boundary point, if p is a limit point of
some curve v : [a,b) — M of the family C. Boundary points which are not

C-boundary points will be called unapproachable.
As a result of Proposition 6.38, this definition passes to the a-boundary:

Definition 6.40. (Approachable a-Boundary Point, Abstract C-Boundary
Point)  An abstract boundary point [p] is an abstract C-boundary point, or
approachable, if p is a C-boundary point. Similarly, an abstract boundary point

[p] is unapproachable if p is not a C-boundary point.

With the family C specified, the points at infinity for (M, g,C) may now be
detected by determining whether they may be reached along any curve in C

at a finite value of the given parameter.
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Definition 6.41. (C!-Point at Infinity for (M,g,C)) Given (M,g,C), a
boundary point p of an envelopment (M, g,C, M1, f1) is said to be a C*-point
at infinity for C if

(1) pis not a C'-regular boundary point (recall Definition 6.34),
(2) pis a C-boundary point, and

(3) no curve in C approaches p with bounded parameter.

Since the family C is assumed to satisfy the bounded parameter property,
the concept of a point at infinity is independent of the choice of parametrization
for the curves from C which approach p. Condition (3) says more explicitly
that for no interval [a,b) with b finite is there a curve v : [a,b) — (M, g) in

the family C and an increasing sequence of real numbers ¢; — b such that

fi(y(t:)) »past; — b

A tricky aspect of a point p at infinity for (M, g,C) is that it is possible
that p is covered by a boundary set B of another embedding consisting only of
regular or unapproachable boundary points. In this case, Scott and Szekeres
(1994, p. 238) term the point p at infinity for (M, g,C) a removable point at
infinity. If no such covering by a boundary set of another embedding exists,
then p is termed an essential point at infinity. It may be shown that the
concept of being an essential point at infinity passes to the abstract boundary,
i.e., these points cannot be transformed away by a change of coordinates. Thus
an abstract boundary point [p] is termed an abstract point at infinity if it has
a representative in some envelopment which is an essential point at infinity
for that envelopment. Essential points at infinity may cover regular boundary
points of another embedding. Hence, the following final dichotomy is used for
essential points at infinity: an essential boundary point at infinity which covers
a regular boundary point is termed a mized point at infinity. Otherwise, p is
termed a pure point at infinity.

So far the two categories of regular points and points at infinity have been
defined. The final category to be treated is that of singular boundary points.
Here a more subtle viewpoint is taken than that of Definition 6.3 above in

which “geodesic singularity” is defined. According to this previous definition,
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if one takes, for example, two points p and g in Minkowski space with p < ¢
and puts M = I'*(p) N I*(q) with the induced metric from the inclusion of M
in Minkowski space, then M is a singular space-time. Indeed, every geodesic
of (M,g) is incomplete. Yet the given space-time has a global embedding
in Minkowski space such that after this enlargement, every geodesic becomes
complete. Thus this example should perhaps not really be regarded as a sin-

gular space-time, Definition 6.3 notwithstanding.

Definition 6.42. (C'-Singular Point) A boundary point p of an envel-
opment (M, g,C, My, f1) is said to be C'-singular if
(1) pis not a Cl-regular boundary point,
(2) pis a C-boundary point, and
(3) there exists a curve in the family C which approaches p with bounded

parameter.

Thus a singular boundary point for the envelopment is a C-boundary point
which is not C'-regular and is not a point at infinity. Again, in this case,
a finer subclassification is made. If p is covered by a non-singular boundary
set of a second envelopment, then p is termed a removable singularity. If
not, then p is an essential singularity, and a further classification is made as
follows: if p covers some regular boundary points or points at infinity of another
embedding, then p is commonly called a mized or directional singularity. If
no such covering behavior is exhibited, then p is said to be a pure singularity.
Then an abstract boundary point [p] in 8,(M) may be termed an abstract
singularity if it has a representative which is an essential singularity.

We conclude this section with considerations akin to the more simple con-
cepts of Section 6.2 and “geodesic singularity” of Definition 6.3. First, the
notion of geodesic completeness for a space-time may be extended to that of

C-completeness for the manifold M with distinguished curve family C.

Definition 6.43. (C-Completeness) Given a manifold M with a curve
family C satisfying the bounded parameter property, M is said to be C-complete
if every curve 7 : [a,b) — M in C with bounded parameter, i.e., b < +o0, has

an endpoint in M.
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Definition 6.44. (C'-Singularity) A semi-Riemannian manifold (M, g)
with a distinguished class C of curves satisfying the bounded parameter prop-
erty has a Cl-singularity if there exists an envelopment of M having an es-
sential C!-singularity p, i.e., p is a C'-singular point for some envelopment
of (M,g,C) which is not covered by a C'-non-singular boundary set B of
any other envelopment for (M, g,C). Conversely, (M,g,C) is said to be C!-
singularity free if it has no C'-singularities, i.e., for every envelopment of M,
the boundary points are either C!-nonsingular (C'-regular boundary points,
Cl-points at infinity, or unapproachable boundary points), or C'-removable

singularities.

According to Scott and Szekeres (1994), any theory of singularities ought

to pass over the following hurdle.

Theorem 6.45. Every compact semi-Riemannian manifold (M, g,C), with
any family of curves C satisfying the bounded parameter property, is singularity
free.

Proof. A compact manifold M has no non-trivial envelopments (M, M1, f1),
for M, is required to be connected yet would contain f;(M) as a compact
open subset. Thus fi(M) would be both open and closed in M;, whence
My = f1(M). Since M has no envelopments, 9,(M) is empty and hence can

contain no singular points. O

Theorem 6.46. If (M, g) is a semi-Riemannian manifold which is C-com-
plete for a curve family C satisfying the bounded parameter property, then
(M, g,C) is singularity-free.

Proof. Suppose that (M, g,C) contains a singularity. Then there exists an
envelopment (M, g,C, My, f1) which has a C-boundary point p € M7 — f1(M).
Hence, there exists a curve « : [a,b) — M in C which has p as a limit point
and also b < +oco. Now by the assumed C-completeness, v has an endpoint
g in M. But endpoints are unique limit points of curves so that of necessity
p = fi(q), which is impossible since p ¢ fi(M). O

In Section 6.5, Proposition 6.16, it was noted that various types of complete-

ness such as b-completeness, b.a. completeness, timelike geodesic complete-
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ness, null geodesic completeness, and spacelike geodesic completeness preclude
global extendibility. In the present context, the analogous statement is the fol-

lowing.

Theorem 6.47. If the semi-Riemannian manifold (M, g) is geodesically

complete, then (M, g) has no regular boundary points.

Complete discussions of all of these boundary points classifications together
with extensive examples, including Taub-NUT space-time as simplified by
Misner (1967) and the Curzon space-time, may be found in Scott and Szekeres
(1994) and Fama and Scott (1994).



CHAPTER 7

STABILITY OF COMPLETENESS AND INCOMPLETENESS

In proving singularity theorems in general relativity, it is important to use
hypotheses that hold not just for the given “background” Lorentzian metric g
for M but in addition for all metrics g; for M sufficiently close to g. Not only
does the imprecision of astronomical measurements mean that the Lorentzian
metric of the universe cannot be determined exactly, but also cosmological
assumptions like the spatial homogeneity of the universe hold only approxi-
mately. Nevertheless, if an incompleteness theorem can be obtained for the
idealized model (M, g) using hypotheses valid for all metrics ¢g; for M in an
open neighborhood of g, then all space-times (M, g;) with g; sufficiently close
to g will also be incomplete. Hence if the model is believed to be sufficiently
accurate, conclusions valid for the model are also valid for the actual universe.

Recall that Lor(M) denotes the space of all Lorentzian metrics for a given
manifold M and that Con(M) denotes the quotient space formed by identifying
all pointwise globally conformal metrics g3 = CQgo for M, where Q : M —
(0,00) is smooth. Let 7 : Lor(M) — Con(M) denote the natural projection
map which assigns to each Lorentzian metric g for M the set 7(g) = § of
all Lorentzian metrics for M pointwise globally conformal to g. Given § €
Con(M), set C(M, g) = 771(§) C Lor(M). It is customary in general relativity
to say that a curvature or causality condition for a space-time (M, g) is C”
stable in Lor(M) [respectively, Con(M)], if the validity of the condition for
(M, g) implies the validity of the condition for all g; in a C"-open neighborhood
of g in Lor(M) [respectively, Con(M)]. More generally, a stable condition for
a set of metrics is one which holds on an open subset of such metrics.

After the singularity theorems described in Chapter 8 of Hawking and Ellis
(1973) were obtained, it was of interest to study the C” stability of conditions

239
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such as the existence of closed trapped surfaces, positive nonspacelike Ricci
curvature, and geodesic completeness, which played such a key role in these
singularity theorems. Geroch (1970a) established the stability of global hy-
perbolicity in the interval topology on Con(M). Then Lerner (1973) made a
thorough study of the stability in Lor(M) and Con(M) of causality and cur-
vature conditions useful in general relativity. In particular, Lerner noted that
the interval and quotient topologies for Con(M) coincide. Hence Geroch’s sta-
bility result for global hyperbolicity holds for Con(M) in the quotient topology
and thus automatically holds in Lor(M). In Section 7.1 we define the fine C”
topologies and the interval topology for Con(M). We then review stability
properties of Lor(M) and Con(M) which were established by Geroch (1970a)
and Lerner (1973). We give examples of Williams (1984) to show that both ge-
odesic completeness and geodesic incompleteness may fail to be stable. These
two properties are C° stable for definite spaces, but for all signatures (s,)
with s > 1 and r > 1 one may construct examples for which these properties
are unstable.

In Section 7.2, using the “Euclidean norm”

2n %
1€ —nll2= <Z (Z:(6) - 5:‘(77)]2)
=1

induced on (T M|, ,Z) by a coordinate chart (U, z) for M and standard esti-
mates from the theory of systems of ordinary differential equations in R", we
obtain estimates for the behavior of geodesics in (U, ) under C! metric pertur-
bations. In Section 7.3 we apply these estimates to coordinate charts adapted
to the product structure M = (a,b) x s H of a Robertson-Walker space-time
(cf. Definition 5.10) to study the stability of geodesic incompleteness for such
space-times. We show (Theorem 7.19) that if ((a,b) x ¢ H, g) is a Robertson—
Walker space-time with a > —oo, then there is a fine C° neighborhood U (g)
of g in Lor(M) such that all timelike geodesics of each space-time (M, g1) are
past incomplete for all g; € U(g). If we assume b < oo as well, we may obtain
(Theorem 7.20) both future and past incompleteness of all timelike geodesics
for all g; € U(g). A similar result (Theorem 7.23) may be established for null

geodesic incompleteness using the C! topology on Lor(M). Combining these
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results yields the C? stability of past nonspacelike geodesic incompleteness for
Robertson—-Walker space-times.

In the last section of this chapter we consider space-times which need not
have any symmetry properties. We show (Theorem 7.30) that nonimprison-
ment is a sufficient condition for the C stability of geodesic incompleteness
[cf. Beem (1994)]. Sufficient conditions for the stability of geodesic complete-
ness involve pseudoconvexity as well as nonimprisonment. Here a space is
said to have a pseudoconvex class of geodesics if for each compact subset K
there is a larger compact subset H such that any geodesic segment of the
class with endpoints in K lies entirely in H. Nonimprisonment and pseu-
doconvezity of nonspacelike geodesics taken together are sufficient for the C!
stability of nonspacelike geodesic completeness. This result (Theorem 7.35) im-
plies that nonspacelike geodesic completeness is stable for globally hyperbolic
space—times.

At the end of Section 3.6 we discuss the relationship between the choice
of warping function f : (a,b) — (0,00) and the nonspacelike geodesic incom-

pleteness of a given Lorentzian warped product space-time (a,b) x5 H.

7.1 Stable Properties of Lor(M) and Con(M)

An equivalence relation C' may be placed on the space Lor(M) of Lorentzian
metrics for M by defining ¢1,92 € Lor(M) to be equivalent if there exists
a smooth conformal factor @ : M — (0,00) such that g3 = Qg2. As in
Chapter 1, we will denote the equivalence class of g in Lor(M) by C(M, g). The
quotient space Lor(M)/C of equivalence classes will be denoted by Con(M).
There is then a natural projection map 7 : Lor(M) — Con(M) given by
7(9) =C(M, g).

The fine C° topology (cf. Section 3.2) on Lor(M) induces a quotient topology
on Con(M) as usual. A subset A of Con(M) is defined to be open in this
topology if the inverse image 7~ (A) is open in the fine C° topology on Lor(M).

Con(M) may also be given the interval topology [cf. Geroch (1970a, p. 447)].
Recall from our discussion of stable causality in Section 3.2 that a partial

ordering may be defined on Lor(M) by defining g1 < g2 if g1(v,v) < 0 implies
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go(v,v) <0 for all v # 0 in TM. It may then be checked that g;, g2 € Lor(M)
satisfy g1 < go if and only if g} < g4 for all g1 € C(M, g1) and g5, € C(M, g2).
Thus the partial ordering < for Lor(M) projects to a partial ordering on
Con(M) which will also be denoted by <. A subbasis for the interval topology
on Con(M) is then given by all sets of the form

{C(M,g) € Con(M):C(M,g1) <C(M,g) <C(M,g2)}

where g; and g2 are arbitrary Lorentzian metrics for M with g; < go. The
quotient and interval topologies agree on Con(M) [cf. Lerner (1973, p. 23)].
Thus intuitively, two conformal classes C(M,g1) and C(M, g2) are close in
either of these topologies on Con(M) if and only if at all points p of M the
metrics g; and go have light cones which are close in T, M.

A property defined on Lor(M) which holds on a C"-open subset of Lor(M)
is said to be C” stable. Also, a property defined on Lor(M) which is invariant
under the conformal relation C is said to be conformally stable if it holds
for an open set of equivalence classes in the quotient (or interval) topology on
Con(M). The continuity of the projection map 7 : Lor(M) — Con(M) implies
that any conformally stable property defined on Lor(M) is also C° stable on
Lor(M). Furthermore, since the fine C” topology is strictly finer than the fine
C* topology on Lor(M) for r > s, any conformally stable property defined on
Lor(M) is also C” stable for all r > 0.

Example 7.1. (Stable Causality) Stable causality is conformally stable
and hence also C” stable for all 7 > 0. Indeed, a metric g € Lor(M) may be
defined to be stably causal if the property of causality is C° stable in Lor(M)
at g.

A second example of a conformally stable property is furnished by a result

of Geroch (1970a, p. 448).

Theorem 7.2. Global hyperbolicity is conformally stable and hence C"
stable in Lor(M) for all r > 0.

It may also be shown that if S is a smooth Cauchy surface for (M, g), there
exists a C° neighborhood U of ¢ in Lor(M) such that if g; € U, then S is a
Cauchy hypersurface for (M, g1) [cf. Geroch (1970a, p. 448)].
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The Ricci curvature involves the first two partials of the metric tensor but
no higher derivatives. Using this fact, Lerner (1973) established the following

result.

Proposition 7.3. If (M, g) is a Lorentzian manifold such that g(v,v) <0
and v # 0 in TM imply Ric(g)(v,v) > 0, then there is a fine C? neighborhood
U(g) of g in Lor(M) such that for all g; € U(g), the relations g;(v,v) < 0 and
v # 0 in TM imply Ric(g1)(v,v) > 0.

It is well known that compact positive definite Riemannian manifolds are
always complete. In contrast, compact space-times need not be complete
[cf. Fierz and Jost (1965)]. Examples of Williams (1984) show that both
geodesic completeness and geodesic incompleteness are, in general, unstable
properties for space-times. In fact, the examples show that both of these
properties may fail to be stable for compact space-times as well as non-compact
space-times. These instabilities are related to questions involving sprays and
the Levi-Civita map [cf. Del Riego and Dodson (1988)].

An inextendible closed geodesic c is one which repeatedly retraces the same
image. For spacelike and timelike geodesics this implies the geodesic is com-
plete since these geodesics have constant nonzero speed and thus increase in
affine parameter by the same amount for each circuit of the image. However,
there are closed null geodesics which are inextendible and incomplete. This
incompleteness results from the fact that the tangent vector to a null geodesic
may fail to return to itself each time the geodesic traverses one circuit of the
image. For closed null geodesics, the tangent vector may return to a scalar
multiple of itself where the multiple is different from one. In this case, the
closed geodesic fails to be a periodic map and the domain is an open subset
of R which is bounded either above or below. More precisely, we have the

following result.

Lemma 7.4. Let (M,g) be a semi-Riemannian manifold with an inex-
tendible null geodesic 3 : (a,b) — M satisfying (0) = B(1) and §'(0) =
AB'(0). If X =1, then B is complete. If 0 < A < 1, then 8 is incomplete with
a > —o0 and b = +oo. If 1 < A, then B is incomplete with a = —oo and
b < 4o00.
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Proof. If X = 1, then B3[0,1] is a closed geodesic which is periodic (i.e.,
B(t + 1) = B(t) for all t), and clearly the domain of 3 is all of R.

If 1 < ), then the speed of 3 increases by a factor of A each time around the
image in the positive direction. In particular, if 7(s) = 8()s), then y(A7!) =
B(1) = B(0) = ~(0) and 7'(0) = AB3'(0) = B'(1). Thus y(t) = B(1 +t), and
the first circuit of y (i.e., 0 < ¢t < A~1) corresponds to the second circuit of 3
(i.e., 1 <t <1+ A71). Thus a countably infinite number of circuits of 3 in

the positive direction starting with ¢t = 0 increase the affine parameter of 3 by

> 1
Z’\_n‘_‘ 1- -1

n=0

It follows that the domain of 8 has a finite upper bound, and one finds
b= (1-X"1)"! < 4oco. Of course, traversing the geodesic 8 in the negative
direction starting at ¢ = 0 changes the affine parameter by Y .- ; A" = oo,
which yields a = —oc.

If 0 < A < 1, then similar arguments show a > —o0 and b = +oc0. O

We will now consider two examples of Williams (1984). These examples
are for metrics of the form dzdy + f(z)dy? on the torus. Let S! x S! =
M = {(z,y)|0 < z < 2w, 0 < y < 27} with the usual identifications. Let
f : R! = R! be a periodic function with period 2. One may then easily

calculate the Christoffel symbols for the metric g = dz dy + f(z)dy?.

Example 7.5. (Instability of Geodesic Completeness) Let g = dzdy +
f(z)dy®. If f is identically zero, one has a flat metric ¢ = dzdy on the
torus M which is geodesically complete. In particular, the closed null geo-
desic corresponding to z = 0 is complete. On the other hand, using f,(z) =
(1/n)sin(z) one may directly calculate that the closed null geodesic z = 0 of
gn = dzdy + fn(z)dy? is not complete [cf. Williams (1984)]. This incomplete-
ness results from the fact that the tangent vector to this null geodesic of g,
fails to return to itself each time the geodesic traverses the circle corresponding
to z = 0. Each time around the circle, the tangent vector returns to a scalar
multiple of itself where the multiple is different from one. Lemma 7.4 yields

that this null geodesic is incomplete for each g,. Since each C™ neighborhood
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of the original flat metric g has metrics g, for large n, it follows that geodesic

completeness is not stable at the Lorentzian metric g.

This last example may be generalized [cf. Beem and Ehrlich (1987, p. 328)].
If (M, g) is a geodesically complete semi-Riemannian manifold which contains
a closed null geodesic, then each C”™ neighborhood of g contains incomplete
metrics. On the other hand, it has recently been shown that any Lorentzian
metric on a compact manifold which has zero curvature, i.e., R = 0, is geodesi-
cally complete [cf. Carriere (1989), Yurtsever (1992)]. Hence no deformation
of the flat metric ¢ = drdy on the torus through flat metrics can produce

geodesic incompleteness, as in Example 7.5.

Example 7.6. (Instability of Geodesic Incompleteness) Williams modi-
fied his previous example somewhat to demonstrate the instability of geodesic
incompleteness. Using f(z) = 1 — cosz and z¢ with 0 < zg < 2w, one may
show that the null geodesic starting at (zo,yo) with dy/dz # 0 at zo will
be incomplete for the metric ¢ = drdy + f(z)dy?. Williams shows this by
solving for z = z(t) and then obtaining an integral formula for y = y(z)
involving integrating the reciprocal of f(z). However, he also finds that
using fn(z) = 1 — cosz + (1/n) one obtains geodesically complete metrics

gn = dzdy + fn(z)dy? which are arbitrarily close to the incomplete metric g.

Examples 7.5 and 7.6 both involve two-dimensional Lorentzian manifolds.
However, the examples may be slightly modified to give examples which show
geodesic completeness and incompleteness are not necessarily stable for any
metric signature (s,r) with both s and r positive.

If (M1, g1) and (Ms, g2) are semi-Riemannian manifolds, the product mani-
fold M7 x M, may be given the usual product metric § = g1 ® go, and with this
metric the geodesics of the product are of the form (v1(t),v2(t)) where each
factor ~y;(t) is either a geodesic of (M, g;) or else is a constant map. Clearly,
the product M; x M, is geodesically complete if and only if each (M;, g;) is
geodesically complete.

The semi-Euclidean space of signature (s, ) is the product manifold M; x

M, where M7 = R® with g1 = }°;_, —dz;% and My = R" with g, = Y ._, dz;2.

=
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By taking the first manifold (M, g;) to be the manifold (M, g) of Exam-
ple 7.5 (respectively, Example 7.6) and taking the second manifold (Ms, g2)
to be the semi-Euclidean space of signature (r — 1,s — 1), one may obtain
an example M; x M, which shows that geodesic completeness (respectively,
incompleteness) may fail to be stable for signature (s,r) whenever neither s
nor r is zero.

The situation for positive definite (i.e., s = 0) and negative definite (i.e.,
7 = 0) signatures is quite different. For these signatures, both geodesic com-
pleteness and geodesic incompleteness are C° stable. For example, if (M, g) is
positive definite, then the set U(g) consisting of all positive definite metrics h
on M with

1 < h(v,v)

4 " g(v,v)
for all nontrivial vectors v is a C%-open subset of the collection Riem(M) of

all Riemannian metrics on M. Clearly, U(g) contains the metric g. If h is a
fixed metric in U(g), then any given curve has an h-length L, and a g-length
L, with

1

5L < Ln <2L,.

This inequality shows that either g and h are both complete or else both are
incomplete. It follows that geodesic completeness and geodesic incompleteness
are C© stable for positive definite spaces. The same reasoning applies in the

negative definite case, and consequently one obtains the following result.

Proposition 7.7. Let (M, g) be either a positive definite or negative def-
inite semi-Riemannian manifold. If (M,g) is geodesically complete, then for
each r > 0 there is a C™ neighborhood U(g) with each g; € U(g) complete. If
(M, g) is geodesically incomplete, then for each r > 0 there is a C™ neighbor-
hood U(g) with each g1 € U(g) incomplete.

We summarize this last result and the examples of Williams in the following

remark.

Remark 7.8. Geodesic completeness and geodesic incompleteness are sta-
ble properties in the Whitney C° topology for both positive definite and nega-

tive definite semi-Riemannian manifolds. For all other metric signatures (s, ),
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there are examples to show that both geodesic completeness and geodesic in-

completeness may fail to be stable for the Whitney C* topologies for k > 0.

In this chapter the manifold M is always fixed. However, one-parameter
families (M), g») of manifolds and Lorentzian metrics have been considered in
general relativity [cf. Geroch (1969)].

7.2 The C! Topology and Geodesic Systems

If (M, g) is an arbitrary Lorentzian manifold, then metrics in Lor(M) which
are close to g in the fine C* topology have geodesic systems which are close to
the geodesic system of g. The purpose of this section is to give a more analytic
formulation of this concept, which is needed for our investigation of the C*
stability of null geodesic incompleteness for Robertson-Walker space—times in
Section 7.3.

We begin by recalling a well-known estimate from the theory of ordinary
differential equations [cf. Birkhoff and Rota (1969, p. 155)]. We will al-
ways use ||z||2 to denote the Euclidean norm [} -, ziz]l/Z of the point = =

(z1,22,.-.,Tm) € R™.

Proposition 7.9. Suppose that f = (f1,..., fm) and h = (hy,..., hy) are
continuous functions defined on a common domain D C R x R™, and suppose

that f satisfies the Lipschitz condition

1f(s:2) = f(s,T)ll2 < Lllz — Zl2

for all (s,z),(s,Z) € D.
Let z(s) = (z1(8),- - -, Zm(s)) and y(s) = (y1(s),--.,ym(s)) be solutions for
0 < s < b of the differential equations

dx dy

— = f(s,z) and = h(s,y),

ds

respectively. Then if || f(s,z) — h(s,z)||2 < € for all (s,z) € D with 0 < s < b,
the following inequality holds for all 0 < s < b:

z(s) — y(s)ll2 < ||z(0) — y(0)||2 - €¥* + %(eLs —1).
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Now let M be a smooth manifold, and let (U, z) be any coordinate chart

for M. We may obtain an associated coordinate chart
z= (-’171,.'1:2, ey Tn, Tn4l,y--- ’x2’n)

for TM|, as follows. Let 8/0z,...,0/0z, be the basis vector fields defined
on U by the local coordinates z = (z1,...,Z,). Given v € T,M for q €
U, we may write v = 3/, a; z2-| . Then Z(v) is defined to be Z(v) =
(z1(q),z2(q), - - -,Zn(q),a1,0a2,...,a,). These coordinate charts may then be
used to define Euclidean coordinate distances on U and TM|,;. Explicitly,
given p,q € U and v,w € TM|, set

W=

lp — qll2 = (Z [z:(p) — xi<q>]2>

i=1

and

2n 3
llv —wll2 = (Z [zi(v) — -’Ei(w)]?) )
i=1

respectively. Also if » > 0 is given, we will use the notation ||g; — g2/~ v < 6 for
91,92 € Lor(M) and a positive constant § > 0 to mean that calculating with
the local coordinates (U, z), all the corresponding entries of the two metric
tensors and all their corresponding partial derivatives up to order r are é-close
at each point of U.

We will denote the Christoffel symbols of the second kind for g;,g2 €
Lor(M) by T%,(g1) and T, (g2), respectively. Then for a = 1,2, the geodesic

equations in the coordinate chart (U, z) for (M, g,) are given by

dz;
(7.1) d_-; = Titn,
d.’l?i ;
d:n == }k(ga)l‘j+n$k+n

for 1 < 4,7,k < n, where we employ the Einstein summation convention

throughout this chapter.
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We will use the notation exp,[g.] for the exponential map at ¢ € (M, ga),
a =12 If v € TM|y, then s — exp,[ga](sv) is the solution of (7.1) in U
with initial conditions (g,v) for (M,g,). In order to apply Proposition 7.9
to these exponential maps, we identify TM|,, with a subset of R?" using the
coordinate chart (T'M|;,Z) and define f(s,X) = f(X) and h(s, X) = h(X)
by

fi(X) = hi(X) = Titn,
firn(X) = —T5(91)Zj4n Tkt

and  hipn(X) = —T5(92)Tj4nThsn

for 1 <4,5,k<nand X = (z1,...,z2,) € R®.

Lemma 7.10. Let (U,z) be a local coordinate chart for the n-manifold
M. Let (p,v) € TM|y, and assume that c;(s) = exp,[g1](sv) lies in U for all
0 < s < b. Given € > 0, there exists a constant § > 0 such that ||v — w|z < §
and ||g1 —g2|l1,u < 6 imply that ca(s) = expy[ go](sw) liesin U for all0 < s < b,

and moreover,

I(zj 0 c1)(s) — (z; 0 c2)(s)] <€
and

(zj 0 c1)'(s) = (zj 0 c2)'(s) < e
forall1<j<nand0<s<b.

Proof. Let f(X) and h(X) be defined as above. Then X (s) = (c1(s),c1'(s))
and Y (s) = (ca(s),c2’(s)) are solutions to the differential equations dX/ds =
f(X) and dY/ds = h(Y"), respectively. Choose Dg to be an open set in T M|,
about the image of the curve X (s) such that Dg is compact. Then there exists
a constant L such that f satisfies a Lipschitz condition || f(X) — f(X )|z <
L||X — X||2 on Dy.

We may make the term [|X(0) — Y(0)||2 in the estimate of Proposition
7.9 as small as required by making ||v — w||2 small. Furthermore, since the
Christoffel symbols depend only on the coefficients of the metric tensor and

on their first partial derivatives, we may make || f(X) — h(X)||2 as small as we
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wish on Dy by requiring that ||g; — g2|/1,u be small. Hence for a sufficiently
small § > 0, Proposition 7.9 may be applied to guarantee that ca(s) € U for all
0 < s < b and also to yield the estimate || X (s) — Y (s)|l2 < eforall 0 < s < b.
Consequently, |z;(s) —yi(s)] <eforalll1 <i<2nand 0 < s <b. In view of
(7.1), this establishes the desired inequalities. O

The following slightly more technical lemma, which is needed in Section
7.3, follows directly from Lemma 7.10 by using the triangle inequality and the
continuity of the geodesic solution X (s) = (ci(s),c1'(s))-

Lemma 7.11. Let (U,z) be a local coordinate chart on the n-manifold
M. Suppose that c;(v) = exp,[gi|(sv) lies in U for all 0 < s < b. Let
€ > 0 and s; with 0 < s; < b be given. Then there exists a constant § > 0
such that if |lv — w2 < 6, ||g1 — g2]li,u < 6, and |sg — s1| < 6, the geodesic

ca(s) = expy[go](sw) lies in U for all 0 < s < b, and moreover,

(7.2) I(zj 0c1)(s1) — (zj 0 c2)(s0)| <€
and
(7.3) (z; 0 c1)'(s1) = (x5 © c2) (s0)] < €

foralll <j<n.
Furthermore, if (z1 0 c1)'(s1) # 0, then the constant § > 0 may be chosen

such that

(z1 0 c2)'(50)

toes (z10c1)(51)

<l+e.

7.3  Stability of Geodesic Incompleteness for Robertson—Walker

Space—times

In this section we investigate the stability in the space of Lorentzian metrics
of the nonspacelike geodesic incompleteness of Robertson-Walker space—times
M = (a,b) x5 H (cf. Definition 5.10). It turns out, however, that the proof of
the CY stability of timelike geodesic incompleteness uses only the homogeneity

of the Riemannian factor (H, k) and not the isotropy of (H,h). Accordingly,
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we will formulate the results in the first portion of this section for the larger
class of Lorentzian warped products M = (a,b) Xy H with —c0 < a < b < +00
and (H,h) a homogeneous Riemannian manifold. We will let z; = t denote

the usual coordinate on (a,b) throughout this section.

In order to study the geodesic incompleteness of such space-times under
metric perturbations, it is helpful to use coordinates adapted to the product
structure. Fix p = (¢1,h1) € (a,b) X H. Since the submanifold {¢t;} x H
of M is spacelike, the Lorentzian metric g for M restricts to a positive defi-
nite inner product on the tangent space to this submanifold at p. Identifying
{t1} x H and H, we may use an orthonormal basis for the tangent space to
{t1} x H at p to define Riemannian normal coordinates za,...,z, for H in a
neighborhood V' of h;. Then (z1,zs,...,Z,) defines a coordinate system for
M on (a,b) x V. By construction, g has the form diag{-1,+1,...,+1} at p
in these coordinates. Because the submanifold {¢;} x H is not necessarily to-
tally geodesic if f is nonconstant, these coordinates are not necessarily normal
coordinates. Nonetheless, the coordinates (z1, z2,...,Zn) are well adapted to

the product structure since the level sets z;(t) = A are just {A} x V.

We will say that coordinates (z1,...,z,) constructed as above are adapted
at p € M and call such coordinates adapted coordinates. It will also be useful

to define adapted normal neighborhoods.

Definition 7.12. (Adapted Normal Neighborhood) An arbitrary con-
vex normal neighborhood U of (M,g) with compact closure U is said to
be an adapted normal neighborhood if U is covered by adapted coordinates
(z1,%2,...,zn) which are adapted at some point of U such that the following
hold:

(1) At every point of U, the components g;; of the metric tensor g ex-
pressed in the given coordinates (z1, z2, ..., z,) differ from the matrix
diag{—-1,+1,...,+1} by at most 1/2.

(2) The metric g satisfies g <y m1, where 7; is the Minkowskian metric
ds? = —2dz,% + dzo? + - - - + dz,? for U (see the definition of stably
causal in Section 3.2 for the notation g <y 71).
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Thus on the neighborhood U of Definition 7.12 the Lorentzian metric g may

be expressed as
g | U= —de‘12 + d:L‘22 4t dx,n2 + kijd.'tid.'tj

where the functions k;j : U — R satisfy |k;;] <1/2forall1 <i,j <n.

For use in the sequel, we need to establish the existence of countable chains
{Ux} of adapted normal neighborhoods covering future directed, past inex-
tendible, timelike geodesics of the form c(tf) = (¢,yo0). Since in Definition
7.14 and in Lemma 7.15 it is possible that a = —oo, we adopt the following

convention throughout this section.

Convention 7.13. Let wg denote any fixed interior point of the interval
(a,b).

Now we make the following definition.

Definition 7.14. (Admissible Chain) Let M = (a,b) x s H denote a Lor-
entzian warped product with metric § = —dt? @ fh. Fix any yo € H and let
c: (a,wp] — (M, q) be the future directed, past inextendible, timelike geodesic
given by c(t) = (t,y0). A countable covering {Ux}32; of c by open sets and
a strictly monotone decreasing sequence {tx}3>; with ¢; = wp and tx — at
as k — oo is said to be an admissible chain for ¢ : (a,wp] — (M,g) if the

following two conditions hold:

(1) Each Uk is an adapted normal neighborhood containing c(tx) = (x, yo)
which is adapted at some point of c.

(2) For each k, every future directed and past inextendible nonspacelike
curve o(t) = (t,02(t)) with o(tx) = (¢, yo) remains in Uy for all ¢ with
tey1 <t < ke

Any future directed nonspacelike curve ¢ in (M,g) may be given a par-
ametrization of the form o(t) = (¢,01(¢)). Thus condition (2) applies to all
future directed nonspacelike curves issuing from (tk,y0). We now show that

admissible chains exist.

Lemma 7.15. Let M = (a,b) x5 H with a > —oc0 and § = —dt*> & fh

be a Lorentzian warped product. For any yo € H, the timelike geodesic
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¢ : (a,wo] — (M,g) given by c(t) = (t,yo) has a covering by an admissible
chain.

Proof. We will say that {Ux}, {tx} is an admissible chain for c| (8,wo], 8 >
a, if {Ux}, {tx} satisfy the properties of Definition 7.14 except that ¢, — 6%
as k — oo instead of tx — at as k — oco. Set

7 =inf{f € [a,wp] : there is an admissible chain

{Uk}, {tx} for c| (8',wp] for all & > 6}.

We must show that 7 = a.

By taking an adapted normal neighborhood centered at c(wp), it is easily
seen that 7 < wp. Suppose that 7 > a. Let U be any adapted normal neigh-
borhood adapted at the point (7,y0) € M. Choose r > 7 such that all future
directed nonspacelike curves o(t) = (¢, 01(t)) originating at (r,yo) lie in U for
all T —e <t < r, where € > 0. There exists an admissible chain {U,}, {t,} for
¢((r + 7)/2, wo] With t., < r for some m. Define Uy, = Upmy; = U. Extending
the finite chain {Ul,Ug,...,Um_l,ﬁm,UmH}, {t1,t2,- - tm—1,tm, T — €} tO

an infinite admissible chain yields the required contradiction. O

We now show that the subset of Uy, for which property (2) of Definition 7.14
holds may be extended from the point (¢, yo) to a neighborhood {#x} x Vi (yo)
in {tx} x H. The notation ||g — g1]lo,u, < 6 has been introduced in Section
7.2.

Lemma 7.16. Let {Uy}, {tx} be an admissible chain for the timelike ge-
odesic c(t) = (t,yo), ¢ : (a,wp] — (M,g). For each k, there is a neigh-
borhood Vi (yo) of yo in H such that any future directed nonspacelike curve
o(t) = (t,01(t)) with o(ty) € {tx} X Vi(yo) remains in Uy for all t with
ter1 < t < tx. Furthermore, Vi(yo) and § > 0 may be chosen such that
if g1 € Lor(M) and |lg — g1llou. < 6, then the following two conditions
are satisfied. If v(t) = (t,~1(t)) is any nonspacelike curve of (M, g;) with
v(te) € {te} x Vi(yo), then

(1) « remains in Uy for tiy1 <t < tx; and

(2) The g1-length of ~y| [tey1,tx] is at most v/6n(tx — tes1)-
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Proof. First recall that 7 : M = (a,b) x H — R given by 7 (¢,h) = t serves
as a global time function for M. In particular, the vector field Vr satisfies
g(Vm,Vr) <0 at all points of M. Define g € Lor(M) by

9(z,y) = g(z,y) — g(z, V) - g(y, V).

It follows that g < g on M so that Uy = {§2 € Con(M) : g2 < 7(g)} is an
open neighborhood of C(M, g) in Con(M). Let U; = 77}(Us). Then U is
a C%open neighborhood of g in Lor(M) such that if g; € Uy, the projection
map 7 : M — R is a global time function for (M, g;). Hence the hypersurfaces
{t} x H,t € (a,b), remain spacelike in (M, g1). Thus any nonspacelike curve
v of (M,g1), g1 € U1, may be parametrized as v(t) = (¢,71(¢)). Thus the
lemma will apply to any nonspacelike curve of (M, g;) originating at any point
of {tx} x Vi(yo) provided g1 € Us is sufficiently close to g on Uk.

Let (z1, - .., Z,) denote the given adapted coordinate system for the adapted
normal neighborhood Uy. In view of condition (2) of Definition 7.12, we may
find é; > 0 such that |lg — g1llo,v, < 61 implies g1 < 72 on Uy, where 7 is
the Lorentzian metric on Uy given in the adapted local coordinates by 7y =
—3dzi2 +dzo? + - - + dz, 2. Secondly, since C%-close metrics have close light
cones, it follows by a compactness argument that there exist a neighborhood
Vi(yo) of yo in H and a constant 62 > 0 such that if g; € Lor(M) satisfies
llg—gillou. < 62 and v(t) = (¢,71(t)) is any future directed nonspacelike curve
of (M, g1) with v(t) € {te} x Vk(yo), then (t) € Uy for i1 <t < 2.

It remains to establish the length estimate (2). Set § = min{é1, 62,1/2}.
Suppose that g’ € Lor(M) satisfies ||g’ —gllo,u,. < 6, and let y(t) = (¢,71(t)) be
any nonspacelike curve of (M, g') with y(tx) € {tx} xVik(y0), v : [tk+1,tx] — M.
Let L(vy) denote the length of v in (M, g¢'). Thus

tr
Liy) = / S gL, (v(8)) - (8) (1) .

%
From Definition 7.12 and the choice of the §’s, we have |g;;| < (1+1/2)+1/2 =
2 and |v;/(t)| < V3 for all 1 < i,j < n. Thus, as required,

L(y) < /tk \/2n2(V3)2 dt = V6n (tk — try1). O

tret1
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Assuming now that the Riemannian factor (H, h) of the Lorentzian warped
product is homogeneous, we may extend Lemma 7.16 from Uy to [tx+1, k) X H.

We will use the notation |g; — glo < 6, as defined in Section 3.2.

Lemma 7.17. Let (M,g) be a Lorentzian warped product with (H,h)
homogeneous, and let {Ux}, {tx} be an admissible chain for c(t) = (t,yo),
c: (e,wp] — M. For each k, there is a continuous function 6y : [te+1, tk] X H —
(0, 00) such that if g; € Lor(M) and |g — g1|o < 0k on [tk+1,tk] X H, then any
nonspacelike curve v(t) = (t,71(¢)), v : [tk+1,tk] — (M, g1), joining any point
of {tx41} x H to any point of {tx} x H, has length at most v6n(tx — te+1)-

Proof. Fix any £ > 0. Let § > 0 be the constant given by Lemma 7.16
such that if g; € Lor(M) satisfies ||g1 — gllo,u. < 6, then any nonspacelike
curve ¥(t) = (¢t,71(¢)) in (M, g1) with v(tk) € {tx} X Vi(yo) remains in Uy for
trr1 < t < ti and has length at most v/6n (tx — tks1). Also let (z1,...,2,)
denote the given adapted coordinates for Uy.

We may find isometries {¢;}2; in I(H) such that if y; = ¢:(yo) and
Vie(y:) = ¢:(Vi(yo)), then the sets {Vi(y;)}2, together with Vi(yo) form a
locally finite covering of H. Let ®; : M — M be the isometry given by
®;(t,h) = (¢, ¢:(R)), and set U; = ®;(Ux) for each i. Then the sets {U;}
cover [txy1,tk] X H and (z1,z2 0 <I>i_1, ey Tp O 'I’[l) form adapted local co-
ordinates for U; for each i. Since everything is constructed with isometries,
the constant § > 0 that works in Lemma 7.16 for Uy and c(t) = (¢, yo) works
equally well for each U; and ®; o ¢, provided that the adapted coordinates
(z1,220®7%,...,z, 0 &) are used for Us. If we let 8k : [tes1, te] X H — M
be any continuous function such that ||g; — gllo < 6k on [tk+1,tx] X H implies
that [lg1 — glly 5, < 6 for each i, then the lemma is immediate from Lemma
7.16 O

We are now ready to prove the C° stability of timelike geodesic incomplete-
ness for Lorentzian warped products M = (a,b) xf H with a > —oo and (H, h)

homogeneous.

Theorem 7.18. Let (M, g) be a warped product space-time of the form
M = (a,b) x; H with a > —00, g = —dt> & fh, and (H, k) a homogeneous
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Riemannian manifold. Then there exists a fine C° neighborhood U(g) of g
in Lor(M) of globally hyperbolic metrics such that all timelike geodesics of
(M, g1) are past incomplete for each g1 € U(g).

Proof. Fix any yo € M and let ¢ : (a,wg] — M be the past inextendible
future directed geodesic given by c(t) = (¢,v0). Let {Uk}, {¢x} be an admissible
chain for ¢, guaranteed by Lemma 7.15. Also choose 6, : [tk+1,tk] X H — (0,00)
for each t; according to Lemma 7.17. Let § : M — (0,00) be a continuous
function such that 6(g) < 8x(q) for all ¢ € [tk+1,tk] X H and each k > 0.
Set Vi(g) = {g1 € Lor(M) : |g1 — glo < 6}. Since global hyperbolicity is a
CP-open condition, we may also assume that all metrics in V;(g) are globally
hyperbolic.

By the first paragraph of the proof of Lemma 7.16, we may choose a C°
neighborhood V2(g) of g in Lor(M) such that for all g; € Va(g), each hyper-
surface {t} x H, t € (a,b), is spacelike in (M, g1). Then every nonspacelike
curve v : (a, 8) — (M, g1) may be parametrized in the form ~(¢) = (¢, 71(2))-
Hence Lemma 7.16 may be applied to all inextendible nonspacelike geodesics
in (M, g1) with g1 € Va(g).

Now U(g) = V1(g)NVa(g) is a fine C° neighborhood of g in the C° topology.
Let g1 € U(g), and let v : (o, B) — (M, g1) be any future directed inextendible
timelike geodesic. We may assume that {¢;} x H is a Cauchy surface for
(M, g1) by the arguments of Geroch (1970a, p. 448), and hence there exists an
so € (a, B) such that y(sg) € {t1} x H. In passing from {te+1} x H to {tx} x H,
the g; length of y is at most v/6n (tx — tx41), applying Lemma 7.17 for each
k. Summing up these estimates, it follows that the g; length of v| (e, so] is at
most v/6n (t; — a). Since 7| (a, so] is a past inextendible timelike geodesic of

finite g; length, it follows that «y is past incomplete in (M, g;). O

Lerner raised the following question (1973, p. 35) about the Robertson—
Walker big bang models (M, g): under small C? perturbations of the metric,
does each nonspacelike geodesic remain incomplete? Since the Riemannian
factor (H,h) of a Robertson-Walker space-time is homogeneous, we obtain
the following corollary to Theorem 7.18 which settles affirmatively for timelike
geodesics the question raised by Lerner (1973, p. 35).
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Theorem 7.19. Let (M, g) be a Robertson-Walker space-time of the form
M = (a,b) x ¢ H witha > —oc. Then there exists a fine C° neighborhood U (g)
of g in Lor(M) of globally hyperbolic metrics such that all timelike geodesics
of (M, g,) are past incomplete for each g1 € U(g).

If we change the time function on (M, g) tom; : M — R defined by 71 (¢, h) =
—t, and apply Lemmas 7.16 and 7.17 to the resulting space-time, we obtain
the exact analogue of these lemmas for the future directed timelike geodesic c :
[wo,b) — (M, g) given by c(t) = (t,yo) in the given space-time. Hence if (M, g)
is a Lorentzian warped product M = (a, b) X y H with (H, h) homogeneous and
b < 0o, the same proof as for Theorem 7.18 yields the CC stability of the future
timelike geodesic incompleteness. Combining this remark with Theorem 7.18

then yields the following result.

Theorem 7.20. Let (M,g) be a Lorentzian warped product of the form
M = (a,b) x; H, g = —dt?> ® fh, with both a and b finite and (H,h) ho-
mogeneous. Then there is a fine C° neighborhood U(g) of g in Lor(M) of
globally hyperbolic metrics such that all timelike geodesics of (M, g1) for each
g1 € U(g) are both past incomplete and future incomplete.

It is interesting to note that while the finiteness of a and b is essential to
the proof of Theorem 7.20, the proof is independent of the particular choice of
warping function f : (a,b) — (0,00). While the homogeneity of the Riemann-
ian factor (H, h) is also used in the proof of Theorem 7.20, no other geometric
or topological property of (H, h) is needed.

In general relativity and cosmology, closed big bang models for the uni-
verse are considered [cf. Hawking and Ellis (1973, Section 5.3)]. These models
are Robertson—-Walker space-times for which b — a < oo and H is compact.
Hence Theorem 7.20 implies, in particular, the C° stability of timelike geodesic
incompleteness for these models.

We now turn to the proof of the C?! stability of null geodesic incompleteness
for Robertson-Walker space-times. Taking M = (0,1) x;y R with f(t) =
(2t)~2 and § = —dt? @ fdz?, it may be checked using the results of Section
3.6 that the curve v : (—00,0) — (M,g) given by ~(t) = (e,e?) is a past
complete null geodesic. Thus by choosing the warping function suitably, it
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is possible to construct Robertson—-Walker space-times with a > —oo which
are past null geodesically complete. Thus unlike the proof of stability for
timelike geodesic incompleteness, it is necessary to assume that (M, g) contains
a past incomplete (respectively, past and future incomplete) null geodesic to
obtain the null analogue of Theorem 7.19 (respectively, Theorem 7.20). Not
surprisingly, the proof of the C' stability of null geodesic incompleteness is
more complicated than for the timelike case since affine parameters must be
used instead of Lorentzian arc length to establish null incompleteness. Also
for the proof of Lemma 7.22, we need the isotropy as well as the homogeneity
of (H, h). Thus we will assume that M = (a,b) x¢ H is a Robertson-Walker
space—-time in the rest of this section.

Let (V,z1,...,z,) denote an adapted normal neighborhood of (M, g) with
adapted coordinates (z1,...,Zn). For the proof of Lemma 7.22, it is neces-
sary to define a distance between compact subsets of vectors that are null for
different Lorentzian metrics for M and are attached at different points of V.
Recall from Section 7.2 that local coordinates (zi,...,zy) for V give rise to
local coordinates T = (21, .- -, Zn, Tnt1,-- -, Z2n) for TV = TM|,,. Thus given
any ¢ € V, g; € Lor(M), and & > 0, we may define

S(g,2,91) = {v € TyM : 1(v,0) = 0 and Tn41(v) = —a}.

Then S(q, @, g1) is a compact subset of T,M for any a > 0 and g; € Lor(M).
Given p,q € V, g1,92 € Lor(M), and a1, az > 0, define the Hausdorff distance
between S(p, a1, g1) and S(q, az, g2) by

dlSt(S(py alygl)7 S(Q7 02,92)) =

1

2n 2
supilgf (Z[mz(v) - xz(w)]2> : w € S(g,2,92), v € S(p,01,91)

=1

The continuity of the components of the metric tensor g as functions g;; :
V x V — R and the closeness of light cones for Lorentzian metrics close in the
C° topology imply the continuity of this distance in p, a, and g [cf. Busemann
(1955, pp. 11-12)].
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Lemma 7.21. Let V be an adapted normal neighborhood adapted at p €
(M,g). Given a > 0 and € > 0, there exists § > 0 such that |p — q|l2 < 6,
g1 € Lor(M) with ||g — g1llo,y < 8, and |a1 — a| < § together imply that
dist(S(g, 1,91), 5(p, @, 9)) <e.

Now let (M,g) be a Robertson-Walker space-time (a,b) x s H which is
past null incomplete. Thus some past directed, past inextendible null geodesic
c:[0,4) — (M,g) is past incomplete (i.e., A < co0). Since (H,h) is isotropic
and spatially homogeneous, and since isometries map geodesics to geodesics,
it follows that all null geodesics are past incomplete. We now fix through the
proof of Theorem 7.23 this past inextendible, past incomplete, null geodesic
c:[0,A) — (M, g) with the given parametrization.

Let (wo,y0) = ¢(0) € M = (a,b) xy H. With this choice of wg, apply
Lemma 7.15 to the future directed timelike geodesic ¢ — (¢,y0), t < wo, to
get an admissible chain {Uy}, {tx} for this timelike geodesic. Using this choice
of {tx}, we may find sx with 0 = 51 < s < --- < s < --- < A such that
c(sk) € {tx} x H for each k. Set Asx = sgy1 — sk. As above, let z; : M — R
denote the projection map z; (¢, h) =t on the first factor of M = (a,b) x5 H.
Notice that if (V,z1,%2,...,2,) is any adapted coordinate chart, then the
coordinate function z; : V — R coincides with this projection map. If «y is any
smooth curve of M which intersects each hypersurface {t} x H of M exactly
once and v(s) € {t} x H, we will say that |[(z; o)'(s)]| is the z; speed of v at
{t} x H. In particular, we will denote by ax = |(z1 o ¢)’'(sk)| the z1 speed of
the fixed null geodesic c : [0, A) — (M, g) at {¢tx} x H for each k.

Lemma 7.22. Let € > 0 be given. Then for each k > 0, there exists a
continuous function 6k : [tg+1,tk] X H — (0,00) with the following properties.
Let g1 € Lor(M) with |g — g1]1 < 6k on [tk+1,tk) X H, and let v: [0, B) - M
be any past directed, past inextendible, null geodesic with v(0) € {tx} x H
and with z, speed of ay at {tx} x H. Then v reaches {tx+1} X H with an
increase in affine parameter of at most 2Asy, and moreover, the x; speed 6 of

v at {ti+1} X H satisfles the estimate
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Proof. Let c: [0, A) — (M, g) be the given past incomplete null geodesic as
above. Fix k£ > 0. By the spatial homogeneity of Robertson—-Walker space—
times, we may find an isometry ¢ € I(H) such that ¢ = id x ¢ € I(M,g)
satisfies ¥(c(sx)) = (tk,yo) with yo as above. Since k is fixed during the
course of this proof, we may set p = (fx, yo) without danger of confusion. Put
c1(s) = Y oc(s+ sk). Then ¢ is a past inextendible, past incomplete, null
geodesic of (M, g) with ¢;(0) € {tx} x H, c1(Ask) € {tx+1} x H, and ¢1(s) =
exp,[ g](sv) for v = 1. (c(sk)). Choose b > 0 with Ask < b < 2As such that
c1(s) € Uy for all s with 0 < s < b. Since b > As, we have ¢;(b) € {t} x H
for some t < txy1. Hence (z1 0 ¢1)(Ask) — (10 ¢1)(b) = tey1 —t > 0. Set
€1 = min{e, tx41 — (z10¢1)(b)} > 0.

Now let g; € Lor(M), and let ¢ € UxN({tx}x H). Suppose that v : [0, B) —
(M, g1) is any past directed, past inextendible, null g; geodesic with v(0) = ¢
and with z; speed oy at ¢. Then w = +/(0) € T, M satisfies g; (w, w) = 0 and
Tnt1(w) < 0. Moreover, (s) = expy[g1](sw). Applying Lemmas 7.10 and
7.11 to ¢; and co = v with the constant €; as above, we may find a constant
8o > 0 with 0 < 8o < Asg such that ||[v — w|2 < 6o, ||g — g1]l1,u. < o, and
|so — Asg| < 8o imply that

(1) [(z10c1)(s) = (z10c2)(s)] < €1 < trq1 — (T10€1)(D)

for all s with 0 < s <band

(z1 0 c2)(s0)
(z10c1) (Ask)
Setting s = b in (1), we obtain |(z1 0 ¢1)}(b) — (z10¢2)(b)| < try1 — (z10¢1)(b),
from which (z7 o ¢2)(b) < tr+1. Hence there exists an s’ with 0 < s’ < b such
that (z1 o c2)(s’) = tg41- But then s’ < b < 2Asg, which shows that the

increase in affine parameter of ¢, in passing from {tr} x H to {tx+1} x H is

(2) l-6<

<1l+e.

less than 2As, provided that ¢ is chosen as above.

For any geodesic ca(s) = exp[g:1](sw) with g; and w ép-close to g and v
as above, let s’ denote the value of the affine parameter s of ¢y such that
z1 0 ca(s’) = tg41. As 6o — 0, the corresponding value of s’ must approach

Asy, by Lemma 7.10. Thus by continuity we may choose §; with 0 < §; < &g
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such that for any geodesic c2(s) = exp[ g1](sw) with g; and w both §;-close to
g and v, we have z; o ca(s’) = txy1 for some s’ € [Asg — bo, Asg + 6o). Hence
as 61 < 8o, we may apply estimate (2) above with sg = s’ to obtain

(z10¢2)'(s")
(1131 o Cl)I(ASk)

We now need to extend these estimates from a neighborhood of v € T,M

(7.4) l-€<

<l+e

Qi1

to a neighborhood of S(p, ak,g). To this end, note that since (a,b) x5y H =
M is a warped product of H and the one-dimensional factor (a,b) with f :
(a,b) — R, it follows that I'(H) acts transitively on S(p, ak,g). Thus given
any z € S(p,ak,g), we may apply the previous arguments using the same
admissible chain {U}, {tx} to find a constant 6;(z) > 0 such that if w € TM
satisfies ||w — z||2 < 81(2), m(w) € Uk N ({tx} x H), llg1 — gll1,v. < 61(2), and
ca(s) = exp[gi1](sw) has z; speed ax at {tx} x H, then cy has an increase
in affine parameter of at most 2As in passing from {tx} x H to {tx+1} x H
and satisfies estimate (7.4). Using the compactness of S(p,ak,g), we may
choose null vectors v1,vs,...,v; € S(p, ak,g) such that S(p, ak,g) is covered
by the sets {w € S(p,ax,9) : |w — vm|l2 < 61(vm)} for m =1,2,...,5. Set
82 = min{61 (vm) : 1 < m < j}. By Lemma 7.21 we may find a constant §3 with
0 < 63 < 62 such that if ||p—qll2 < 83, ||lg1 — gll1,u. < 63, and w € S(p, ok, g1),
then ||w — vpm||2 < 61(vm) for some m. Hence 83 has the following properties.
If v:[0,B) — (M, g1) is any past inextendible, past directed, null geodesic of
(M, g1) such that |lg1—gll1,u. < 83,7(0) € ({tx} xH)N{q € Uk : [[p—qll2 < 83}
where p = (tk, yo), and ~ has z; speed oy at (0), then the conclusions of the
theorem apply to 7. Since I(H) acts transitively on H, we may extend this
result from ({tx} x H)N{q € Uk : ||p — gll2 < 83} to all of {tx} x H just as
in the proof of Lemma 7.17. The function 6k : [tk+1,tk] X H — (0,00) may be

constructed exactly as in Lemma 7.17. O

With Lemma 7.22 in hand, we are now ready to prove the C! stability of
past null geodesic incompleteness for Robertson-Walker space-times. Since
R