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Abstract

Morse theory is the study of the relationship between the critical points of a class
of functions on a closed n-manifold M and the topology of the manifold. In this
dissertation we state and prove the Morse inequalities, which relate the Betti numbers
βk(M) = dimRHk(M,R) to the Morse numbers of a Morse function µf (k) as βk(M) ≤
µf (k) and

∑k
l=0(−1)lβk−l ≤

∑k
l=0(−1)lµf (k − l) for all k ∈ {0, . . . n}. We follow

the strategy of Witten in [8], presenting an analytic proof of these inequalities via
deformations of the de Rham complex.
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Chapter 1

Introduction

Manifolds impart certain topological spaces with a differentiable structure. This struc-
ture can in turn tell us much about the underlying topology. One way to do this is
by analysing the behaviour of functions at their critical points. To see why this is a
viable strategy, consider a torus embedded in R3 as shown in Figure 1 below. Con-
sider the “height” function f : T → R given by (x, y, z) 7→ z and its strict sublevel sets
Mα = {x ∈M : f(x) < α}.

y

x

f(x, y, z) = z

d

a

c

b

Figure 1. A height function on a torus.

This function has four critical points, a, b, c, d, as indicated. The homotopy type of the
Mα change as α passes through the heights of each critical point, as shown in Figure
2 below.
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z
α ≤ f(a) α ≤ f(b) α ≤ f(c) α ≤ f(d)

∅

Figure 2. Strict sublevel sets for various heights.

The topology of the sublevel sets clearly changes at each critical point, giving us an
indication as to why these functions help describe the topology - in particular, the ho-
motopy type of the manifold. In fact, Milnor describes how passing through a critical
point describes a handle attachment in [5].

We can formalise this approach with Morse Theory, a branch of differential topology.
This involves finding “well-behaved” functions (i.e., those with non-degenerate critical
points, such as the one above) and then describing their behaviour at its critical points.
By counting the points with similar behaviours, we construct the Morse numbers µf (k)
of the given function, which we show are intimately related to the well known Betti
numbers βk(M) via the Morse inequalities:

Theorem 1 (Morse Inequalities). Suppose M is a closed n-manifold and f : M → R
is a Morse function. Then:

βk(M) ≤ µf (k); and

k∑
l=0

(−1)lβk−l ≤
k∑
l=0

(−1)lµf (k − l).

for all k ∈ {0, . . . , n}.

In this thesis we present an analytic proof of these inequalities following methods out-
lined by Witten in [8]. In Chapter Two we introduce the key definitions of Morse
functions as well as preliminary results about their behaviour at critical points, allow-
ing us to define the Morse numbers µf (k) of a Morse function on a closed manifold.
In Chapter Three we construct the algebra of differential forms of a manifold Ω(M),
the exterior derivative d, and the corresponding de Rham complex (Ω•, d•). We ex-
plore techniques for computing the cohomology groups Hk

dR(M) = ker dk/im dk−1: the
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Künneth theorem and the Mayer-Vietoris sequence. This allows us to define the Betti
numbers βk(M) as the dimensions of the de Rham cohomology groups over R.

In Chapter Four we endow our closed manifold with a Riemannian metric g from
which we can construct the Hodge star operator and an inner product on the space of
differential forms. This defines an adjoint of the exterior derivative d∗, known as the
codifferential. Together with the exterior derivative, this defines the Dirac operator
D = d + d∗ and its square, the Laplacian ∆ = dd∗ + d∗d. The Hodge decomposition
theorem allows us to form a linear isomorphism from ker ∆k to Hk

dR(M).

Further, we introduce the Witten deformation of the exterior derivative dt = e−tfdetf

by a Morse function f . Further, this gives a deformation of the codifferential dt =
etfd∗e−tf , the Dirac operator Dt = dt + d∗t , and the Laplacian ∆t = D2

t . We prove
that this deformation does not change the zeroth eigenspace, so there is another iso-
morphism between ker ∆ and ker ∆t for all t > 0, allowing us to study the de Rham
cohomologies via the kernel of the deformed Laplacian for large t.

We show that on a neighbourhood of a critical point of rank λ, the kernel of the
deformed Laplacian is one dimensional and is generated by a form of rank λ. We then
extend these forms to the entire manifold and use appropriate projections to form a
subspace of Ωk(M) containing the kernel of ∆t with dimension µf (k) for appropriately
large t. From this, we prove both forms of the Morse inequalities in Chapter Five.

Throughout this dissertation, we assume a basic knowledge of manifolds, homologi-
cal algebra, and functional analysis.
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Chapter 2

Morse Functions

We want to describe a subset on the smooth functions between manifolds called Morse
functions. For the following, let M and N be (respectively) m and n dimensional
manifolds, let f : M → N be a smooth function, and let X,Y ∈ Γ(TM) be smooth
vector fields on M .

2.1 Critical Points

Definition 2. Let x ∈ M and consider the differential dfx : TxM → Tf(x)N . We call
p a critical point of f if rank(dfp) < min(m,n). The set of critical points of f is
written Crf .

For our purposes we will only care about real valued functions, so the definition above
immediately simplifies to the following:

Proposition 3. If N = R, then p ∈M is a critical point of f if, and only if, dfp = 0.

Definition 4. We define the directional derivative of f along X ∈ Γ(TM) as
Xf : M → R where:

(Xf)(x) = (dfx)X(x)

Lemma 5. Let N = R, and take some p ∈ Crf . If X ′, Y ′ ∈ Γ(TM) are vector fields
on M which agree with X and Y respectively at p, then we have that

(XY f)(p) = (Y Xf)(p); and

(XY f)(p) = (X ′Y ′f)(p).

Proof. The first equality follow from the fact that p is a critical point of f , as we
see that [U, V ]f(p) = dfp[U, V ](p) = 0 (as dfp = 0), and so UV f(p) = V Uf(p) for

9
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all U, V ∈ Γ(TM). Now see that (X − X ′)(p) = 0, so if g ∈ C∞(M) then (X −
X ′)(g)(p) = dgp(X − X ′)(p) = 0. Thus in particular (X − X ′)(Uf)(p) = 0, and so
XUf(p) = X ′Uf(p) (similarly Y ′V f(p) = Y V f(p)). So in particular, we have:

Y Xf(p) = XY f(p) = X ′Y f(p) = Y X ′f(p) = Y ′X ′f(p)

giving us the desired equality.

Definition 6. Let p ∈ Crf , and define the Hessian of f at p by:

Hf : TpM × TpM → R
(X(p), Y (p)) 7→ (X ′Y ′f)(p)

Where X ′ and Y ′ are vector fields extending X(p) and Y (p).

The previous lemma ensures that this is well defined; it does not depend on the choice
of vector fields for X and Y , so long as they agree with the given vectors X(p) and
Y (p) at the critical point p.

Definition 7. A critical point p ∈ Crf is called non-degenerate if the Hessian at p is
non-degenerate: Hf (X(p), Y (p)) vanishes for all Y (p) ∈ TpM if and only if X(p) = 0.

2.2 Morse Functions

Definition 8. A smooth function is called a Morse function if all p ∈ Crf are
non-degenerate.

This is a strong condition, but one that allows us to simplify the behaviour of the
functions near critical points immensely. It may not be immediately obvious that such
functions even exist given the strength of this condition, but in fact one can show that
they are abundant in the space of continuous real-valued functions on any manifold M .

Proposition 9. Let M be a smooth manifold embedded in Rm. For almost every point
p ∈ Rm, the function fp : M → R given by

fp(x) = ‖x− p‖2

is a Morse function.

Proposition 10. Let M be a smooth manifold embedded in Rm, and let f : M → R
be a smooth function. Then f and all its derivatives can be uniformly approximated by
Morse functions on every compact subset of M .

Both propositions are proved in [1].
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2.3 Morse Numbers

As we will see, Morse functions are particularly nice to work with and can be exploited
to provide information about the structure of the manifold. We do this by understand-
ing the functions behaviour at each critical point and then count the critical points in
a useful way to construct the Morse numbers of a given function.

Definition 11. For p ∈ Crf , we call the maximum dimension of a subspace of TpM
on which Hf (p) is negative definite the Morse index of f at p. Equivalently, as p is
nondegenerate, the index of a critical point is the number of negative eigenvalues of the
Hessian at that critical point.

Lemma 12 (Morse Lemma). If f : M → R is a Morse function with index λ and
critical point p, then there exists a neighbourhood of p and a local coordinate system
(x1, · · · , xn) with xi(p) = 0 for all i and

f(x) = f(p)−
λ∑
i=1

(xi)2 +

n∑
i=λ+1

(xi)2

Proof. Here we follow [1] and use induction on the dimension of the manifold. Consider
the one-dimensional case. Taking the second order Taylor expansion for f on some
neighbourhood Mp of p (with p identified with 0) gives:

f(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2 + ε(x)x2 = f(0) + (a+ ε(x))x2

Define φ(x) =
√
a+ ε(x))x, so that f(x) = f(0)± φ(x)2. By construction a and ε are

local diffeomorphisms, and so φ is a local diffeomorphism too. φ′(0) =
√
a 6= 0 so by

the inverse function theorem we can invert φ, and get

f(x) = f ◦ φ−1(x1) = f(0)± (x1)2

Now consider the n-dimensional case. Write the coordinates as (x, y) ∈ R × Rn, and
write f(x, y) = fy(x), which we consider as a function of one real variable (as y varies
in Rn). If f ′y(0) = 0, then we can proceed as in the one dimensional case and find

f(x, y) = f ◦ ϕ−1(x1, y1) = ±(x1)2 + f(0, y1)

If f ′y(0) 6= 0, we find a C∞ function φ with ∂xf(x, y) = 0 and x = φ(y) and in the
desired neighbourhood. Define Φ(x, y) = (x+φ(y), y), so that then g = f ◦Φ(x, y) has
∂xg(x, y) = 0 for all y and the same Hessian as f . This allows us to continue as above,
and then induct on the dimension of the manifold to see that

f(x) = f(p) +
∑
i=1

(±(xi)2)
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It is then clear that the Hessian of f at p is represented by the matrix with ±2 on
the diagonal and 0 elsewhere. Thus there are exactly λ negative terms, and so by
permuting the xi we get the desired expression for f(x).

We often call such coordinates (or rather, an appropriate scaling of these coordinates
by a half so that |dfu| = |u|) a Morse chart corresponding to f . These charts are
particularly useful as they allow us to write:

df = −x1dx1 − · · · − xλdxλ + xλ+1dxλ+1 + · · ·+ xndxn

for all x in the neighbourhood of p ∈ Crf covered by the chart.

Corollary 13. The critical points of a Morse function are isolated.

Proof. The expansion of f on this neighbourhood of a critical point has only one critical
point.

Corollary 14. The number of critical points of a Morse function on a closed manifold
is finite.

This means that we can count the critical points of a given Morse function in a useful
way, allowing us to define one side of the Morse inequalities.

Definition 15. Let f be a Morse function with finitely many critical points p ∈ Crf
with indices λp on the compact, smooth n-manifold M . We define the Morse polyno-
mial of f to be

Pf (x) =
∑
p∈Crf

xλp =
n∑
l=0

µf (l)xl

where µf (l) = |{p ∈ Crf : λp = l}| is the number of critical points with index l, which
we call the Morse numbers of f .

Example 16. Consider the 2-torus T 2, and let f be the height function as defined in
Chapter 1. We see that the lowest critical point, a, is a minimum, and so has index
0. Similarly, the highest critical point d is a maximum and so has index 2. The middle
two critical points b and c are both saddles with index 1. Thus the Morse numbers of f
are µf (0) = 1, µf (1) = 2, µf (2) = 1, and µf (k) = 0 for all other k.



Chapter 3

De Rham Cohomology

In this chapter we define the Betti numbers of a closed orientable manifold M . We
do this by showing that the exterior derivative turns spaces of differetial forms into a
cochain complex. The dimensions of the cohomology groups of this complex are the
Betti numbers. We also show that these are readily computable by providing techniques
and examples in Section 3.3.

3.1 Differential Forms and the Exterior Derivative

Definition 17. We define Ωk(M) = Λk(T ∗M) as the space of completely skew k-forms
on M , and define the space of differential forms Ω(M) =

⊕n
k=0 Ωk(M), a C∞(M)

module endowed with the bilinear (graded) commutative wedge product ∧ : Ω(M) ×
Ω(M)→ Ω(M).

Remark 18. A simple counting argument shows that if M is an n-dimensional man-
ifold then Ωk(M) can be generated over C∞(M) by

(
n
k

)
forms {dui1 ∧ · · · ∧ duik : 1 ≤

i1 < · · · ik ≤ n}, and that Ωn(M) = 0 for n > dimM .

Definition 19. Let X,Xi ∈ Γ(TM) for each i ∈ N. Define the interior product with
X as the map ιX : Ωk(M)→ Ωk−1(M) defined by:

(ιXω)(X1, . . . , Xk−1) = ω(X,X1, . . . , Xk−1)

We often write ιX(ω) as Xyω and call it the contraction of X and ω.

Proposition 20. The interior derivative is C∞-linear and for ω ∈ Ωk(p) and η ∈
Ωj(M) satisfies the graded Liebniz rule:

Xy(ω ∧ η) = (Xyω) ∧ η + (−1)kω ∧ (Xyη)

13
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For a proof, see [6].

Definition 21. Let M be a smooth manifold, X1, . . . , Xk+1 ∈ Γ(TM) be vector fields
on M , and Ωk(M) be the set of completely skew k-forms on M . We define the exterior
derivative dk : Ωk(M)→ Ωk+1(M) as:

dkω(X1, . . . , Xk+1) =
k+1∑
i=1

(−1)iXi ω(X1, . . . , X̂i, . . . Xk+1)

+

k+1∑
i=1

i∑
j=1

(−1)i+jω([Xj , Xi], V1, . . . , X̂j , . . . , X̂i, . . . Xk+1)

Where [Xi, Xj ] is the Lie bracket of Xi and Xj, and X̂i mean omitting Xi.

The fact that dkω (as defined above) is in fact a completely skew k+ 1 tensor on T ∗M
follows immediately from the properties of ω and the Lie bracket. We call forms for
which dω = 0 closed and forms ω for which ω = dα for some α exact. The exterior
derivative has several useful properties.

Proposition 22. The exterior derivative satisfies the following properties:

1. d is R-linear;

2. d commutes with pullbacks, i.e., f∗d(ω) = d(f∗ω);

3. d(df) = 0 for all f ∈ C∞(M); and

4. d(α ∧ β) = (dα) ∧ β + (−1)k(α ∧ (dβ)) for any α ∈ Ωk(M) and β ∈ Ωj(M).

Moreover, any graded derivation δ : Ωk(M) → Ωk+1(M) that satisfies these properties
agrees with the exterior derivative.

For a proof, see [6], where it is also shown that there is a convenient local expression
for d:

Proposition 23. If ω ∈ Ωk(M) is given in local coordinates on some chart U by

ω = ωi1···ikdui1 ∧ · · · ∧ duik

then the exterior derivative is given locally by:

dkω = ∂jωi1···ikduj ∧ dui1 ∧ · · · ∧ duik
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Proposition 24. Suppose M is endowed with a Riemannian metric g, and that in a
local chart U ⊆ M the coordinate basis ∂i form an orthonormal frame for TM with
dual basis dui ∈ T ∗M , then

d =
n∑
i=1

dui ∧∇∂i .

Proof. First, suppose that (∂1, . . . , ∂n) is another orthonormal frame on U , with ∂i =
ai
k∂k and dvi = bikdu

k. Thus we have that

dvi ∧∇∂i = (bikdu
k) ∧∇aik∂k = bikai

kduk ∧∇∂k = duk ∧∇∂k

as we have ai
kbil = δkl. Thus the right hand side is independent of choice of co-

ordinates. Therefore, we can work in normal coordinates, for which the connection
simplifies to ∇∂i = ∂i at a given point u. From this it is clear that it agrees with the
local form in Proposition 23 by the C∞ linearity of ∧. Then again by the coordinate
independence, this extends everywhere.

Example 25. For a smooth function f ∈ C∞(M) = Ω0(M), its exterior derivative is
just its differential:

d0f(V )(x) = −V f(x) = (df)V (x).

For a 1-form ω, its exterior derivative is:

d1ω(V1, V2) = V1ω(V2)− V2ω(V1)− ω([V1, V2]).

3.2 The de Rham Complex

Proposition 26. The composition dk+1 ◦ dk = 0 for all k ≥ 0.

Proof. Take some chart U ⊆M and form ω ∈ Ωk(M), and express it in coordinates on
U as ω = ωi1···ik(dui1 ∧ · · · ∧ duik), where each ωik···ik ∈ C∞(M) = Ω0(M). Then we
have

dk+1 ◦ dkω = dk+1 ◦ dk(ωi1···ik(dui1 ∧ · · · ∧ duik))

= (∂j∂iωi1···ik)(duj ∧ dui ∧ dui1 ∧ · · · ∧ duik)

= −(∂i∂jωi1···ik)(dui ∧ duj ∧ dui1 ∧ · · · ∧ duik)

= −dk+1 ◦ dkω

because the partials commute and the wedge product is skew. Thus indeed d◦d = 0 on
U . Since d commutes with pullbacks Proposition 22, it is invariant under coordinate
transforms, and so dk+1 ◦ dk = 0 globally.
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Corollary 27. The sequence (Ωk(M), dk)k≥0, is a cochain complex.

We often drop the k from dk and rely on the context of the form it is acting on for this
information.

Definition 28. The k-th de Rham cohomology group Hk
dR(M) is the k-th coho-

mology groups of the cochain (Ω•(M), d•);

Hk
dR(M) =

ker dk

im dk−1

These de Rham cohomology groups are readily computable as we show in Section
3.3. More importantly, by de Rham’s theorem the de Rham cohomology groups are
isomorphic to the singular cohomology of the manifold with real coefficients Hk(M,R).

Theorem 29 (De Rham’s Theorem). Define the map I : Hk
dR(M) → Hk(M,R), for

which if [ω] ∈ Hk
dR(M), then I([ω]) is the element of Hom(Hk(M,R),R) ' Hk(M,R)

that acts as:

[c] 7→
∫
c
ω

for smooth c. Then I is an isomorphism, and thus Hk
dR(M) ' Hk(M,R).

This means that the de Rham cohomology groups are in fact homotopy invariants
(i.e., invariants under continuous deformations) of the manifold. We sometimes drop
the subscripted dR because of this. These cohomology groups capture much of the
topological information of the manifold, especially the well known Betti numbers.

Definition 30. We define the Betti numbers βk of a smooth manifold M to be the
dimensions of the de Rham cohomology groups

βk(M) = dimRH
k
dR(M)

Proposition 31. Let M be a smooth n-manifold, then βk(M) = 0 if k < 0 or k > n.

Proof. This follows from the fact that dimC∞(M) Ωk(M) =
(
n
k

)
for 0 ≤ k ≤ n and 0

otherwise.

To show the importance of these numbers, we note that they are used to define the
well known Euler characteristic.

Definition 32. The Poincaré polynomial of a smooth n-manifold M is defined as
the generating function of the Betti numbers,

PM (t) =
n∑
k=0

βk(M)tk
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Definition 33. The Euler characteristic of a smooth n-manifold is

χ(M) =
n∑
k=0

(−1)kβk(M) = PM (−1)

3.3 Computations of Cohomology Groups

In order to calculate the de Rham cohomology groups and the consequent Betti num-
bers, we utilise well known tools from homological algebra; namely the Künneth theo-
rem and the Zigzag lemma. This allows us to construct cohomology groups for mani-
folds by analysing smaller and more workable examples first. We first consider certain
subsets of Rn, then the circle S1 and n-tori.

Theorem 34 (Poincaré Lemma). Suppose that U ⊆ Rn is a star like set, i.e., an open
set for which there exists a point x0 ∈ U with {(1 − t)x0 + tx : t ∈ [0, 1]} ⊆ U for all
x ∈ U . Then:

Hk
dR(U) =

{
R, if k = 0

0, otherwise

The proof is given in [2]. It is clear that Rn is itself star-like, which gives us:

Corollary 35. H0
dR(Rn) = R and Hk

dR(Rn) = 0 for all other k.

We now shift focus to a general closed manifold M .

Proposition 36. Let M be a closed manifold. Then H0(M) ' Ra where a = dimH0(M)
is the number of connected components of M .

Proof. From Example 25, we see that [f ] ∈ H0
dR(M) if and only if df = 0, which

implies that f is constant on each connected component of M . Thus H0(M) =
ker d/d({0}) ' ker d ' Ra.

Consider a smooth manifold M covered by open sets U and V . Let ιA,B : A→ B be the
inclusion map of A in B. The maps ιU,M , ιV,M , ιU∩V,U , and ιU∩V,V induce contravariant
inclusion maps on the forms on these sets: ι∗U,M : Ω•(M) → Ω•(U) given by ω 7→ ω|U
etc.. Also define k∗ = ι∗U,M ⊕ ι∗V,M : Ω•(M)→ Ω•(U)⊕ Ω•(V ) by ω 7→ (ι∗U,Mω, ι

∗
V,Mω),

and j∗ = ι∗U∩V,U−ι∗U∩V,V : Ω•(U)⊕Ω•(V )→ Ω•(U ∩V ) by (ω, η) 7→ ι∗U∩V,Uω−ι∗U∩V,V η.
These six induced maps are all linear, and they all commute with the exterior derivative
(as they are all just restrictions), thus they induce maps on the cohomology groups of
these modules (we denote these by the same names).

Theorem 37 (Mayer-Vietoris sequence). If a smooth manifold M is covered by open
sets U and V , then for each n the following sequence is exact:
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0 Ωn(M) Ωn(U)⊕ Ωn(V ) Ωn(U ∩ V ) 0k∗ j∗

This then allows us to apply the Zigzag lemma (proved in Appendix A) to the short
exact sequence of cochain complexes above to construct a connecting homomorphism
δ.

Corollary 38. The following is a long exact sequence.

· · · Hn(M) Hn(U)⊕Hn(V ) Ωn(U ∩ V ) Hn+1(M) · · ·k∗ j∗ δ

This sequence, also known as the Mayer-Vietoris sequence gives us a powerful tool for
computing de Rham cohomology groups. In particular, if we can cover our manifold
by two open sets with the same homotopy type as Rn, then we can use the Poincaré
lemma and the Mayer-Vietoris sequence to find the cohomology groups of the manifold.

Example 39. Consider the circle S1, covered by two open sets overlapping as in the
figure below.

S1

U

V

U ∩ V

Figure 3. A chart on a circle.

Both U and V have the same homotopy type as R, and U ∩V has two components each
with the homotopy type of R. Thus H0(U) ' H0(V ) ' R and H0(U ∩V ) ' R⊕R, and
Hn(U) ' Hn(V ) ' Hn(U ∩ V ) ' 0. Thus the Mayer-Vietoris sequence for the circle
is:

0 H0(S1) R⊕ R R⊕ R H1(S1) 0k∗ j∗ δ

Hence δ is surjective and so H1(S1) ' Im δ = ker j∗ ' R (the last isomorphism
here follows from the fact that the subtraction map j∗ clearly has kernel {(ω, ω) : ω ∈
H0(U)}). By Proposition 36, we also know that H0(S1) ' R, and so H0(S1) '
H1(S1) ' R whilst Hn(S1) = 0 for all other n.
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These calculations for “small” manifolds quickly generalise to higher dimensional prod-
uct manifolds via the well known Künneth theorem of homological algebra.

Theorem 40 (Künneth Theorem). Hk(X × Y ) '
⊕

i+j=kH
i(X)⊗Hj(Y )

Corollary 41. If pX(x) and pY (x) are generating functions for the Betti numbers of X
and Y (respectively), then pX(x)pY (x) is the generating function of the Betti numbers
of X × Y .

Since we are primarily interested in the Betti numbers of a manifold, this gives us a
powerful tool for computing them. Since we have constructed the Betti numbers of
Rn using the Poincaré lemma and of the circle S1 via the Mayer-Vietoris sequence,
we can use their generating functions to find the Betti numbers of any manifold M
homotopically equivalent to a direct product of these spaces.

Example 42. As seen previously in Example 39, the circle S1 has Betti numbers
1, 1 and thus pS1(x) = 1 + x. The n-torus Tn is isomorphic to the product (S1)n, thus
pTn(x) = (1 +x)n, and hence the Betti numbers of the n-torus are given by the nth row
of Pascal’s triangle. That is,

Hk
dR(Tn) ' R(nk).

This implies, for instance, that the Betti numbers of the 2-torus are 1,2,1, and so its
Euler characteristic is χ(T 2) = 1 − 2 + 1 = 0 which agrees with the genus definition
χ(T 2) = 2− 2g = 0 and a homotopic polyhedral approximation:

which has 16 vertices, 32 edges, and 16 faces and thus has an Euler characteristic of
V −E +F = 16− 32 + 16 = 0. We also note that these Betti numbers are equal to the
Morse numbers of the height function described in Example 16.
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Chapter 4

Hodge Theory and Witten
Deformations

4.1 Inner Product on the Space of Differential Forms

Take a closed n-manifold M equipped with a Riemannian metric g. This induces a
pairing on contravariant k-tensors S = SIdu

I , T = TJduJ ∈ Γ(T ∗M⊕k) given in local
coordinates by

〈S, T 〉g = ga1b1 · · · gakbkSa1a2···akTb1b2···bk

The metric also induces a canonical volume form dM ∈ Ωn(M), given in local coor-
dinates by dM =

√
|g|du1 ∧ · · · ∧ dun. Since ∧ is C∞ linear, for any η ∈ Ωk(M)

and h ∈ C∞(M) it is clear that we can always find a form ω ∈ Ωn−k(M) for which
η ∧ ω = hdM and that this form must be unique.

Definition 43. Fix k ∈ {1, . . . , n−1}. Define the Hodge star operator ? : Ωk(M)→
Ωn−k(M) of ω ∈ Ωk(M) by the unique n− k form that satisfies

η ∧ (?ω) = 〈η, ω〉gdM

for all η ∈ Ωk(M).

The following is then immediately clear from the definition:

Proposition 44. ? ? ω = (−1)k(n−k)ω, and thus

?−1 =

{
? if n is odd

(−1)k? if n is even

21
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Definition 45. We define an inner product on each Ωk(M) by

〈ω, η〉 =

∫
M
ω ∧ ?η =

∫
M
〈ω, η〉gdM

For a proof that this is an inner product see [7].

4.2 The Laplacian and Harmonic Forms

The Hodge star operator allows us to define the adjoint of the exterior derivate, explic-
itly:

Definition 46. The codifferential is given by d∗ : Ωk(M) → Ωk−1(M) by d∗ =
(−1)nk+n+1 ? d? = (−1)k ?−1 d?.

Proposition 47. d∗ is the adjoint to the exterior derivative d with respect to the inner
product 〈·, ·〉, i.e., 〈dω, η〉 = 〈ω,d∗η〉 for all ω ∈ Ωk−1(M) and η ∈ Ωk(M).

Proof. Using Stokes’ theorem, and noting that M is closed and so ∂M = ∅, we see
that:

〈dω, η〉 − 〈ω,d∗η〉 =

∫
M

(dω) ∧ ?η −
∫
M
ω ∧ ?(d∗η)

=

∫
M

d(ω ∧ ?η) + (−1)kω ∧ d(?η)−
∫
M
ω ∧ ?(−1)k ?−1 d ? η

=

∫
∂M
〈ω, η〉gdM +

∫
M

(−1)kω ∧ d(?η)−
∫
M
ω ∧ (−1)kd(?η)

= 0

So indeed 〈dω, η〉 = 〈ω,d∗η〉.

Lemma 48. d∗ ◦ d∗ = 0.

Proof. We have 〈η,d∗ ◦ d∗ω〉 = 〈d ◦ dη, ω〉 = 0 for all η ∈ Ωk(M) and ω ∈ Ωk+2, hence
d∗ ◦ d∗ = 0.

We can also find a local description of the codifferential in terms of the Levi-Civita
connection, similarly to the exterior derivative in Propositition 24.

Proposition 49. Suppose M is endowed with a Riemannian metric g,and that on a
local chart U ⊆ M the coordinate basis ∂i form an orthonormal frame for TM with
dual basis dui ∈ T ∗M , then

d∗ = −
n∑
i=1

∂iy∇∂i .
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Proof. Analogously to Proposition 24, take another orthonormal frame (∂1, . . . , ∂n)
for TM with dual frame (dv1, . . . ,dvn). Expand as before and see that

n∑
i=1

∂iy∇∂i = ai
kbki ∂iy∇∂i = ∂iy∇∂i

as ai
kbi

l = δkl. So indeed both sides are independent of coordinates.

Suppose that (u1, . . . , un) form normal coordinates on U , so that the induced frame
(∂i, . . . , ∂n) is orthonormal at its center x0. Take I = (i1, . . . , ik), and define ε :
{0, . . . , n} → {0, . . . , k} by ia 7→ a. By the C∞-linearity and the Leibniz rule of
the interior product:

∂lyduI =

k∑
j=1

(−1)ε(j)+1δlijdu
i1 ∧ · · · ∧ d̂uj ∧ · · · ∧ duik

= (−1)ε(l)+1dui1 ∧ · · · ∧ d̂ul ∧ · · · ∧ duik

if l = ia for some a, and 0 otherwise (where ε(l) = a). Then see that

?∂lyduI = ?(−1)a+1dui1 ∧ · · · ∧ d̂uia ∧ · · · ∧ duik

= (−1)a+1ε1duia ∧ duj1 ∧ · · · ∧ dujn−k

= (−1)a+1ε1duia ∧ ε2 ? duI

Where ε1 is 1 if (i1, . . . , îa, . . . , ik, ia, j1, . . . , jn−k) is an even permutation of (1, . . . , n)
and −1 otherwise. Similarly, ε2 is 1 if (i1, . . . , ik, j1, . . . , jn−k) is an even permutation
of (1, . . . , n) and −1 otherwise. Hence ε2 = (−1)k−aε1 and so

∂lyduI = (−1)k+1 ?−1 (duia ∧ ?duI).

Now take a k-form ω = ωi1...ikdui1 ∧ · · · ∧ duik = ωIdu
I . We have:

d∗ω = (−1)k ?−1 d ? (ωIdu
I) = (−1)k ?−1 d(ωI ? (duI))

= (−1)k ?−1 (∂lωI)du
l ∧ ?(duI))

= (−1)(∂lωI)(−1)k+1 ?−1 (dul ∧ ?(duI))

= (−1)(∂lωI)∂lyduI = −
n∑
l=1

∂ly∇∂lω

in this coordinate system. By the independence shown above we then get the desired
result.
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Definition 50. The Dirac operator D : Ω(M) → Ω(M) is defined by the sum D =
d + d∗. The Laplacian of the de Rham complex is the linear operator

∆k : Ωk(M)→ Ωk(M)

ω 7→ dd∗ω + d∗dω = D2ω.

This is a generalisation of the multivariable calculus Laplacian ∆ = ∇ · ∇f from
functions to differential forms, as d∗f = 0 and so ∆0f = d∗df = (−1)0 ? d ? df =
?d ? ((df)])[ = −div gradf . In fact:

Proposition 51. On a local chart U ⊆M , if ∂i form an orthonormal frame for TM ,
then

∆ω = −
n∑
i=1

(∂i)
2ω.

Proof. Note that d + d∗ =
∑n

i=1 c(∂i)∇∂i where c(∂i) = (dui∧) − (∂iy). Since c is a
Clifford map (see Appendix B), by the commutativity of ∇∂i and ∇∂j on this chart
we have:

(d + d∗)2 =

(
n∑
i=1

c(∂i)∇∂i

)2

=

n∑
i,j=1

c(∂i)∇∂ic(∂j)∇∂j

=
n∑

i,j=1

c(∂i)(c(∇∂i∂j) + c(∂j)∇∂i)∇∂j =
n∑

i,j=1

c(∂i)c(∂j)∇∂i∇∂j

=

n∑
i=1

c(∂i)
2∇2

∂i
+

n∑
i=1

i−1∑
j=1

(c(∂i)c(∂j) + c(∂j)c(∂i))∇∂i∇∂j

Utilising the Clifford relations in Appendix B, we have c(∂i)
2 = −1 and c(∂i)c(∂j) +

c(∂j)c(∂i) = 0 for i 6= j, which gives the required equality.

Definition 52. The harmonic k-forms on a manifold M are the forms α ∈ Ωk(M)
such that ∆kα = 0. We write:

Hk∆(M) = {α ∈ Ωk(M) : ∆kα = 0} = ker ∆k

Lemma 53. A form ω is harmonic if and only if dω = d∗ω = 0.

Proof. Note that if ω ∈ ker ∆ then by the properties of the inner product 0 = 〈∆ω, ω〉 =
〈dd∗ω, ω〉 + 〈d∗dω, ω〉 = 〈d∗ω,d∗ω〉 + 〈dω,dω〉 ≥ 0, so we must have dω = d∗ω = 0.
The converse is clear.
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Proposition 54. The operator ∆ is self-adjoint.

Proof. Note that 〈∆ω, η〉 = 〈dd∗ω, η〉+〈d∗dω, η〉 = 〈ω,dd∗η〉+〈ω,d∗dη〉 = 〈ω,∆η〉.

This implies (in particular) that harmonic forms are closed Hk∆(M) ⊆ ker dk, and so the
canonical homomorphism from ker dk to Hk(M) restricted to Hk∆(M) is a well-defined
homomorphism. We will show that this is in fact an isomorphism, using the Hodge
decomposition theorem for self-adjoint elliptic differential operators. The proof of this
theorem can be found in [7].

Theorem 55 (Hodge Decomposition Theorem for ∆). Let (M, g) be a closed, oriented
Reimannian manifold. Then Ωk(M) admits an orthogonal decomposition:

Ωk(M) = ker ∆k ⊕ im ∆k(M) = Hk∆(M)⊕ d(Ωk−1(M))⊕ im d∗(Ωk+1(M))

Moreover, ker ∆k is finite dimensional over R.

Theorem 56. Let M be a closed Riemannian manifold. The homomorphism φ :
Hk∆(M)→ Hk∆(M)/Im d ⊆ Hk

dR(M) is in fact an isomorphism.

Proof. Suppose that Hk∆(M) 3 γ, η 7→ [ω] ∈ Hk
dR(M), i.e., they are cohomologous.

Then γ = η + dα for some dα ∈ Im d. Then dα = γ − η ∈ Hk∆(M), and so by
Lemma 53 d∗dα = 0. Thus 0 = 〈α,d∗dα〉 = 〈dα,dα〉 and so dα = 0 and η = γ,
giving us injectivity. Now take ω ∈ ker dk, and expand as ω = dα+ d∗β+ γ. Note that
d(ω − dα) = 0, and that d∗(ω − dα) = d∗(d∗β + γ) = 0. Thus (again by Lemma 53)
Hk∆(M) 3 ω − dα 7→ [ω] which proves surjectivity.

Importantly, this means that every cohomology class in Hk
dR(M) contains a unique

harmonic form. This description of the de Rham cohomology groups will be essential
for proving the Morse inequalities. We also get two important corollaries:

Corollary 57. If M is a closed n-manifold, then Hk
dR(M) is finite dimensional for

each k.

Corollary 58. Since Hk
dR(M) is independent of the metric, so is ker ∆k for every

k ≥ 0.

This independence is important, since we may now choose a metric so that on each
Morse chart around a critical point, the coordinate basis ∂i are orthonormal.
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4.3 Witten Deformations

Fix a Morse function, f , on a closed n-manifold M . Take t ∈ R and define:

dt = e−tfdetf ,

which is called the Witten deformation of the exterior derivative. Since Ωk(M) is
linear over C∞(M), this deformed derivative still maps k-forms linearly to (k+1)-forms.
It is also clear that

d2
t = (e−tfdetf )(e−tfdetf ) = e−tfd ◦ d etf = 0,

So (Ωk(M), dt) defines another cochain complex with cohomology groups Hk
t (M).

Proposition 59. For all t ∈ R and k ∈ Z, Hk
dR(M) is isomorphic to Hk

t (M), and so

dimHk
dR(M) = dimHk

t (M)

Proof. Define the map φt : Ωk(M)→ Ωk(M) by φt(ω) = e−tfω, which is clearly linear
over C∞(M). Note that dte

−tf = e−tfd, so for any form ω ∈ Ωk(M), we have

dt(φt(ω)) = dt(e
−tfω) = e−tfdω = φt(dω).

Thus φt maps closed forms (under d) to closed forms (under dt) and exact forms (under
d) to exact forms (under dt). Hence φt induces a linear map from Hk

dR(M) to Hk
t (M).

But the map φ−t has all the same properties and clearly inverts φt, so the induced map
is indeed an isomorphism between Hk

dR(M) and Hk
t (M) and so they must have the

same dimension.

Proposition 60. The adjoint of dkt with respect to the inner product on Ωk(M) is

dkt
∗ = etfd∗e−tf .

Proof. Note that 〈dtω, η〉 = 〈e−tfdetfω, η〉 = 〈d(etfω), e−tfη〉 by the C∞(M)-linearity,
and this equals 〈etfω, d∗e−tfη〉 = 〈ω, etfd∗e−tfη〉 again by linearity. Hence dt

∗ =
etfd∗e−tf .

Proposition 61. Let U be a local chart of M . The exterior derivative and the codif-
ferential are related to their deformations on U as:

dt = d + t(df)∧
d∗t = d∗ + t(df)[y

for any t ∈ R and Morse function f .
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Proof. By the Leibniz rule for the exterior derivative, we have:

dtω = e−tfd(etf ∧ ω) = e−tf (detf ) ∧ ω + e−tfetf ∧ dω = tetf (df) ∧ ω + dω

giving us the first equality. Now using Proposition 49, we have that:

d∗tω = −etf
(

n∑
i=1

∂iy∇∂i

)
e−tfω = −etf

(
n∑
i=1

∂iy
(

(∂ie
−tf )ω + e−tf∇∂iω

))

= −etf
(

n∑
i=1

∂iy
(

(∂ie
−tf )ω

))
− etf

n∑
i=1

e−tf∇∂iω

= d∗ω − etf
(

n∑
i=1

∂iy
(
−te−tf (∂if)ω

))
= d∗ω + t

n∑
i=1

(∂if)∂iyω = d∗ω + t(df)[yω,

as required.

We get a corresponding deformation of the Dirac operator and the Laplacian:

Dt = dt + d∗t = d + tdf ∧+d∗ + t(df)[y = D + tĉ(df); and

∆t = dtd
∗
t + d∗tdt = D2

t

where ĉ(df) = df ∧ +(df)[y (another Clifford operator discussed in Appendix B).
This deformed Laplacian is in fact another self adjoint elliptic operator, so it has an
analogous Hodge decomposition. This gives the following chain of isomorphisms:

ker ∆k
t ' Hk

t (M) ' Hk
dR(M) ' ker ∆k,

which allows us to compute the Betti numbers via studying the deformed harmonic
forms. Particularly, our proof of the Morse inequalities relies on constructing a space
that contains all of the harmonic forms of rank k, but has dimension µf (k).

4.4 Description of ker ∆k
t

Consider the neighbourhood of a critical point p of a Morse function f with index λ,
identifying points with their Morse coordinates (u1, . . . , un) on U containing p. Pick a
metric g such that ∂i form an orthonormal frame on U .

Proposition 62. The deformed Laplacian at u ∈ U has the local form ∆t = Ht + Kt
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where:

Ht = −
n∑
i=1

(∂i)
2 − nt+ t2|u|2; and

Kt = 2t

(
λ∑
i=1

∂iydui ∧+
n∑

i=λ+1

dui ∧ ∂iy

)
.

Proof. From the definitions, we have that:

∆t = dtd
∗
t + d∗tdt = Dt

2 = (D + tĉ(df))2 (4.1)

= D2 +Dtĉ(df) + tĉ(df)D + t2ĉ(df)ĉ(df) (4.2)

= ∆ + t(Dĉ(df) + ĉ(df)D) + t2|df |2. (4.3)

Since we are in a Morse chart, |df | = |u|. Considering the middle bracket, we have:

Dĉ(df) + ĉ(df)D =

n∑
i=1

c(∂i)∇∂i ĉ(df) + ĉ(df)c(∂i)∇∂i

=

n∑
i=1

c(∂i)ĉ(∇∂idf) + c(∂i)ĉ(df)∇∂i + ĉ(df)c(∂i)∇∂i

=

n∑
i=1

c(∂i)ĉ(∇∂idf).

But ∇∂idf = (−1)adui, where a = 1 if i ≤ λ and a = 0 otherwise, thus we have:

Dĉ(df) + ĉ(df)D = −
λ∑
i=1

c(∂i)ĉ(du
i) +

n∑
i=λ+1

c(∂i)ĉ(du
i). (4.4)

From the definitions, we have:

c(∂i)ĉ(du
i) = (dui ∧ −∂iy)(dui ∧+∂iy) = dui ∧ ∂iy− ∂iydui ∧ .

Via the Leibniz rule of the interior product, we get:

c(∂i)ĉ(du
i) = (dui ∧ ∂iy)− (dui(∂i)∧) + (dui ∧ ∂iy) = 2dui ∧ ∂iy− 1 = 1− 2∂iydui ∧ .
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Inserting this into (4.4) gives:

Dĉ(df) + ĉ(df)D = −
λ∑
i=1

(1− 2∂iydui∧) +
n∑

i=λ+1

(2dui ∧ ∂iy− 1)

= 2

λ∑
i=1

∂iydui ∧+2

n∑
i=λ+1

dui ∧ ∂iy−
n∑
i=1

1

= 2

(
λ∑
i=1

∂iydui ∧+
n∑

i=λ+1

dui ∧ ∂iy

)
− n.

Thus subsituting into (4.3), we get the sought expression:

∆t = −
n∑
i=1

(∂i)
2 − nt+ t2|u|2 + 2t

(
λ∑
i=1

∂iydui ∧+

n∑
i=λ+1

dui ∧ ∂iy

)
= Ht +Kt.

The operator Ht (acting on Ω(U)) is the well known harmonic oscillator. It has a one
dimensional kernel (over Ω0(U)), generated over R by the Gaussian function f(u) =
exp(−t|u|2/2) (c.f [4], Theorem 5.1).

Proposition 63. Let ω ∈ Ω(U). We have Ht(ωIdu
I) = (HtωI)du

I and if Ht(ωIdu
I) =

0 then ωI = af for some a ∈ R.

Proof. The first part is clear from the definition of Ht. The second is then an immediate
corollary.

Proposition 64. Let ω ∈ Ω(U). Then Ktω = 2tmω for some m ∈ N and kerKt =
spanC∞(M)(du

1 ∧ · · · ∧ duλ) = spanC∞(Mp)(ω0).

Proof. On U we have ω = ωIdu
I and Ktω = ωIKtdu

I by the C∞-linearity of y and ∧.
Note that ∂iydui ∧ duI = 0 if i ∈ I and equals duI otherwise. Also see that ∂iyduI = 0

if i /∈ I, and if i = ia ∈ I then ∂iyduI = (−1)a+1dui1 ∧ · · · ∧ d̂uia ∧ · · · ∧ duik . Wedging
with dui, we get:

dui ∧ ∂iyduI = (−1)a+1duia ∧ dui1 ∧ · · · ∧ d̂uia ∧ · · · ∧ duik = (−1)a−1(−1)a−1duI
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Thus we have:

Kt(ωIdu
I) = 2t

(
λ∑
i=1

∂iydui ∧+

n∑
i=λ+1

dui ∧ ∂iy

)
ωIdu

I

= 2tωI

(
λ∑
i=1

∂iydui ∧ duI +
n∑

i=λ+1

dui ∧ ∂iyduI

)
= 2tωI

(
a(I)duI + b(I)duI

)
= 2tmω

where a(I) = |{i ∈ N : i ≤ λ and i /∈ I}| and b(I) = |{i ∈ N : λ < i ≤ n and i ∈ I}|,
proving the first statement. Now Ktω = 0 if and only if m = a(I) + b(I) = 0, which is
equivalent to a(I) = b(I) = 0. This only occurs if I is some permutation of (1, . . . , λ).
Thus the kernel of Kt is generated over C∞(U) by du1 ∧ · · · ∧ duλ.

Theorem 65. ker ∆t|U = spanR(fω0).

Proof. First, note that [Kt, Ht]ω = Kt2tmω −Ht(KtωI)du
I = 2tmKtω − 2tmKtω = 0

by the above propositions and the linearity of Kt and Ht. Since [Kt, Ht] = 0, [∆t,Kt] =
[Kt + Ht,Kt] = 0 = [∆t, Ht], all three are simultaneously diagonalisable from which
the result follows.

This gives us a description of harmonic forms in Ω(U):

ker ∆k = spanR{exp(
−t|u|2

2
)du1 ∧ · · · ∧ duλ}

This immediately suggests that joining these spaces together gives us some connection
between the Morse numbers (which come from the number of generators of a given
rank) and the Betti numbers, given by the dimension of the kernel restricted to the
space of forms of a given rank. However, this adjoining process introduces some mis-
match, the result of which is an inequality rather than equality.

To extend these generators from each U to M , we want to keep the behaviour lo-
calised around p by ensuring that it vanishes on M \ U , and yet remains smooth. To
do this, we take a bump function γ : M → [0, 1] for which γ(u) = 1 on some disc of
radius r centred at p (in the Morse co-ordinates), and smoothly decreases to 0 outside
of a disc of radius 2r also centred at p (where this disc is still entirely contained inside
U). Define the forms:

ρp,t =
γ(u)
√
αp,t

exp(
−t|u|2

2
)du1 ∧ · · · ∧ duλ ∈ Ωλ(M)
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where the normalisation function αp,t is given by

αp,t =

∫
Mp

γ(u) exp(
−t|u|2

2
)du1 ∧ · · · ∧ duλ,

which ensures that 〈ρp,t, ρp,t〉 = 1. These functions are in general not in the kernel of
∆t because of the Leibniz rule. However, they are still useful for describing the kernel
of ∆t as we will show.

Define H0 and H1 as the 0th and 1st Sobolev spaces induced by the inner product
on Ω(M), with norms ‖ · ‖0 and ‖ · ‖1 respectively. Define the space Et ⊆ H0 as the
subspace generated by the set {ρp,t : p ∈ Crf}. Take E⊥t as its orthogonal complement
in H0. We can then decompose the Dirac operator Dt = dt + d∗t via the projections
πt : H0 → Et and π⊥t : H0 → E⊥t : i.e.,

Dt,1 = πtDtπt Dt,2 = πtDtπ
⊥
t

Dt,3 = π⊥t Dtπt Dt,4 = π⊥t Dtπ
⊥
t

Further, take c > 0 and let Et(c) be the subspace of H0 defined as the direct sum
of eigenspaces of Dt with eigenvalues in the range [−

√
c,
√
c]. Let $t,c : H0 → Et(c)

be the orthogonal projection onto Et(c). Using techniques outside of the scope of this
dissertation, one can prove the following estimates. For a detailed proof, see [9].

Lemma 66. We have that:

1. Dt,1 = 0 for all t > 0;

2. there exists a T1 > 0 such that for all t > T1, s ∈ E⊥t ∩H1 and s′ ∈ Et,

‖Dt,2s‖0 ≤
‖s‖0
t

and ‖Dt,3s
′‖0 ≤

‖s′‖0
t

;

3. there exists a T2 > 0 and a C1 > 0 such that for all t > T2 and s ∈ E⊥t ∩H1,

‖Dt,4s‖0 ≥ C1

√
t‖s‖0; and

4. there exists a T3 > 0 and a C2 > 0 such that for all t > T3 and s ∈ Et,

‖$t,C1s− s‖0 ≤
C2

t
‖s‖0.

These estimates allow us to prove the following result, which we use to show that
Et(c) ∩ Ωk(M) not only contains every harmonic form of rank k, but has dimension
µf (k).
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Proposition 67. For any c > 0, there exists a T0 > 0 such that for all t > T0, the
number of eigenvalues of ∆k

t in the range [0, c] equals µf (k) for all k ∈ {0, . . . , n}.

Proof. Take distinct x, y ∈ Crf and c > 0. Note that 〈ρx,t, ρy,t〉 = 0 and so

〈$t,cρx,t, $t,cρy,t〉 = 〈$t,cρx,t − ρx,t + ρx,t, $t,cρy,t − ρy,t + ρy,t〉
= 〈$t,cρx,t − ρx,t, $t,cρy,t − ρy,t〉+ 〈ρx,t, $t,cρy,t − ρy,t〉

+ 〈$t,cρx,t − ρx,t, ρy,t〉.

By the Cauchy-Shawrtz inequality, we have:

|〈$t,cρx,t, $t,cρy,t〉| ≤ ‖$t,cρx,t − ρx,t‖0‖$t,cρy,t − ρy,t‖0 + ‖ρx,t‖0‖$t,cρy,t − ρy,t‖0
+ ‖ρy,t‖0‖$t,cρx,t − ρx,t‖0.

Because ‖ρx,t‖0 = ‖ρy,t‖0 = 1 and by part 4 of Lemma 66, the right hand side tends
to zero as t → 0, and so for t greater than some T4 > 0, the terms $t,cρp are linearly
independent for all p ∈ Crf . Thus we have that dimEt = dim$t,cEt and so:

dimEt ≤ dimEt(c).

Suppose for a contradiction that the inequality is strict. Then there exists some non-
zero s ∈ Et(c) ∩ ($t,cEt)

⊥, for which:

πts =
∑
x∈Crf

〈s, ρx,t〉ρx,t

=
∑
x∈Crf

〈s, ρx,t〉ρx,t − 〈s, ρx,t〉$t,cρx,t + 〈s, ρx,t〉$t,cρx,t − 〈s,$t,cρx,t〉$t,cρx,t

=
∑
x∈Crf

〈s, ρx,t〉(ρx,t −$t,cρx,t) + 〈s, ρx,t −$t,cρx,t〉$t,cρx,t

Thus again using the Cauchy-Scharz inequality and noting that ‖$t,cρx,t‖0 ≤ ‖ρx,t‖0 =
1 we get:

‖πts‖0 ≤
∑
x∈Crf

‖s‖0‖ρx,t‖0‖$t,cρx,t − ρx,t‖0 + ‖s‖0‖$t,cρx,t‖0‖$t,cρx,t‖0

≤
∑
x∈Crf

2‖$t,cρx,t − ρx,t‖0‖s‖0.

By part 4 of Lemma 66 we see that with C2 = 2|Crf |C1 > 0, then 2
∑

x∈Crf
‖$t,cρx,t−

ρx,t‖0 ≤ C2
t ‖ρx,t‖0 = C2

t , and thus ‖πts‖0 ≤ C2
t ‖s‖0 for all t > T3. The reverse triangle

inequality then implies that

‖π⊥t s‖0 = ‖s− πts‖0 ≥ ‖s‖0 − ‖πts‖0 ≥ (1− C2

t
)‖s‖0
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So by part 3 of Lemma 66 we get:

C1

√
t(1− C2

t
)‖s‖0 ≤ C1

√
t‖π⊥t s‖0 ≤ ‖Dt,4π

⊥
t s‖0 ≤ ‖Dtπ

⊥
t s‖0 ≤ ‖Dts‖0 + ‖Dtπts‖0

As Dtπts = Dt,1s+Dt,3s = Dt,3s, we have:

C1

√
tC3‖s‖0 ≤ ‖Dts‖0 + ‖Dt,3s‖0 ≤ ‖Dts‖0 +

1

t
‖s‖0

(again by Lemma 66) and so ‖Dts‖0 ≥ (C1

√
tC3 − 1

t )‖s‖0. But then as T → ∞
‖Dts‖0 →∞, contradicting the assumption that s is a linear combination of eigenvec-
tors of Dt with eigenvalues in the range [−

√
c,
√
c]. Thus we must have dimEt(c) =

dimEt =
∑n

k=0 µf (k), with {$t,cρx,t : x ∈ Crf} as a basis for Et(c).

Now let Qi denote the projections from H0 onto the completions of each Ωi(M) in
H0. For each x ∈ Crf with index λ, we have

‖Qλ$t,cρx,t − ρx,t‖0 = ‖Qλ($t,cρx,t − ρx,t)‖0 ≤ ‖$t,cρx,t − ρx,t‖0 ≤
C2

t
.

Thus for all t > T0, the terms Qλ$t,cρx,t are linearly independent and so

dimQkEt(c) ≥ µf (k)

for all k ∈ {0, . . . , n}. If the inequality were strict, then summing over k would give

n∑
k=0

dimQkEt(c) >
n∑
k=1

µf (k) =
n∑
k=0

dimEt(c)

a clear contradiction, so dimQkEt(c) = µf (k). Then note that if Dts = as where
a ∈ [−

√
c,
√
c], then

∆tQis = QiD
2
t s = a2Qis

as ∆t preserves the grading of Ω(M). So QiEt(c) is the space of eigenvectors of ∆t

with eigenvalues in the range [0, c], with dimension µf (k) for t > T0.
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Chapter 5

The Morse Inequalities

5.1 Statement and Proof

We are now in a position to bring the previous results together to prove the Morse
inequalities.

Theorem 68 (The Morse Inequalities). Given a closed smooth n-manifold M and any
Morse function f on M , the kth Betti number of M is bounded above by the kth Morse
number; i.e.,

µf (k) ≥ βk(M).

These are known as the weak Morse inequalities. For each k ∈ {0, . . . , n}, the
strong Morse inequalities are:

k∑
l=0

(−1)lµf (k−l) = µf (k)−µf (k−1)+· · ·±µf (0) ≥ βk−βk−1+· · ·±β0 =
k∑
l=0

(−1)lβk−l

Proof. Let M be a compact manifold and let f : M → R be a Morse function. For each
k ∈ {0, . . . , n} and c ∈ [0,∞), define F ct,k ⊆ Ωk(M) as the finite dimensional vector

space generated by the eigenspaces of ∆k
t with eigenvalues in [0, c]. By Proposition

67 we can increase t until dimF ct,k = µf (k). But also, ker ∆k
t ⊆ F ct,k−1, so

βk(M) = dim ker ∆k
t ≤ dimF ct,k−1 = µf (k)

thus proving the weak Morse inequalities.
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Then, by the Rank-Nullity theorem, we have that

µf (k) = dimF ct,k−1 = dim ker dkt |F c
t,k

+ dim im dkt |F c
t,k

= dim
ker dkt |F c

t,k

im dk−1
t |F c

t,k−1

+ dim im dk−1
t |F c

t,k−1
+ dim im dkt |F c

t,k

= βk(M) + dim im dk−1
t |F c

t,k−1
+ dim im dkt |F c

t,k

Now taking the alternating sum up to j ∈ {0, . . . n}, we get:

j∑
i=0

(−1)jµf (j − i) =

j∑
i=0

(−1)j(βj−i(M) + dim im dj−i−1
t |F c

t,j−i−1
+ dim im dj−it |F c

t,j−i
)

=

j∑
i=0

(−1)jβj−i(M) +

j∑
i=0

(−1)j(dim im dj−i−1
t |F c

t,j−i−1
+ dim im dj−it |F c

t,j−i
)

=

j∑
i=0

(−1)jβj−i(M) + dim im dit|F c
t,i

≥
j∑
i=0

(−1)jβj−i(M),

proving the strong Morse inequalities.
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Appendix A

Homological Algebra

The following is a basic review of definitions and results for homology, but also hold
for cohomology by reversing arrows. In particular, we provide a constructive proof of
the Zigzag lemma which is used to form the Mayer-Vietoris sequence in Section 3.3.

Definition 69. Let {Cn}n∈N be a sequence of modules over a ring R, and let {dn}n∈N
be homomorphisms dn : Cn → Cn−1 such that dn ◦ dn+1 = 0. Then we call (Cn, dn)n∈N
a chain complex, and the dn the boundary maps. We call Im d the boundaries of
Cn and ker d the cycles of Cn.

Definition 70. Given a chain complex C = (C•, d•), define its kth homology groups
as

Hk(C) =
ker dk

im dk+1

If a complex has only trivial homology groups, then we say that the chain complex is
exact.

Definition 71. Let C = (C•, d•) and D = (D•, δ•) be chain complexes. A sequence of
homomorphisms fn : Cn → Dn is a chain map if each fn commutes with the boundary
operators:

fn−1 ◦ dn = δn−1 ◦ fn
i.e., for which the following diagram commutes:

Cn+1 Cn Cn−1

Dn+1 Dn Dn−1

fn+1

dn+1

fn

dn

fn−1

δn+1 δn

These are important because of the following:
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Lemma 72. Chain maps map cycles to cycles and boundaries to boundaries.

Proof. Let c ∈ ker d. Then by the commutativity of f , cfδ = cdf = 0f = 0, so
indeed cycles are preserved. Now take c = bd ∈ Imd. Then again by commutativity
cf = bdf = bfδ ∈ Imδ, so boundaries are mapped to boundaries too.

Now consider a commutative diagram of the form:

0 0 0

Cn+1 Cn Cn−1

Dn+1 Dn Dn−1

En+1 En En−1

0 0 0

jn+1

dn+1

jn

dn

jn−1

jn+1

dn+1

jn

dn

jn−1

dn+1 dn+1

If the columns are exact, then we call this a short exact sequence of chain com-
plexes. It is possible to relate the homology groups by a long exact sequence:

Hn(D) Hn(E) Hn−1(C) Hn−1(D)
i∗ j∗ δ i∗ j∗

To see this, note that the commutativity of the diagram means that i and j are chain
maps, as defined above. They induce homomorphisms i∗ : Hn(C) → Hn(D) and
j∗ : Hn(D) → Hn(E) given by, [c] 7→ [ci] and [d] 7→ [jd]. All that we need is the
boundary map δ : Hn(E)→ Hn−1(C).

Take [e] ∈ Hn(E). Since j is onto, e = aj for some a ∈ D. Now consider adj =
ajd = ed = 0, so ad ∈ ker j = Imi. But then there exists a c ∈ C so that ci = ad.
Moreover, c is unique because i is injective. Define δ by [e] 7→ [c].

Lemma 73. δ : Hn(E)→ Hn−1(C) is a well defined homomorphism.

Proof. First, note that cdi = cid = add = 0, so by injectivity of i, c ∈ ker d.

Secondly, we need that [c] as defined is an invariant of the choice of a. Suppose both a
and a′ have aj = a′j = e. Then a − a′ ∈ ker j = Im i, so a − a′ = c′i for some c′ ∈ C.
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Thus a′ = a+ c′i, and so a′d = ad+ c′id = ci+ c′di = (c+ c′d)i. But [c] = [c+ c′d], so
indeed this does not depend on the choice of a.

Thirdly, note that the map does not depend on the choice of representative from the
cohomology class of e. Take e, e′ ∈ [e], with preimages (under j) a and a′ respectively.
Then we must have a′ = a+ a0d so ad = a′d, and thus we are done.

Lastly, δ is indeed a homomorphism. Let [e1] 7→ [c1] and [e2] 7→ [c2] via the choices
a1 and a2 as above. See that (a1 + a2)j = a1j + a2j = e1 + e2 and that (c1 + c2)i =
c1i+ c2i = a1d+ a2d = (a1 + a2)d. Then

([e1] + [e2])δ = ([e1 + e2])δ = [c1 + c2] = [c1] + [c2]

Theorem 74 (Zigzag lemma). The following sequence of homology groups is exact.

Hn(D) Hn(E) Hn−1(C) Hn−1(D)
j∗ δ i∗ j∗

Proof. We must show that the kernel for each homomorphism is indeed the image of
the prior one. We do this for each map below.

It is clear that Imi∗ ⊆ ker j∗ because ij = 0 and so j∗i∗ = 0. So let [a] ∈ ker j∗.
Then aj = ed for some e ∈ E. By the sujectivity of j, there exists some b ∈ Dn+1 with
bj = e. Then

(a− bd)j = aj − adj = aj − ajd = aj − ed = aj − aj = 0

so a− bd ∈ ker j = Imi. Thus a− bd = ci for some c ∈ C, and so

cdi = cid = (a− bd)d = ad = 0

But then by the injectivity of i, cd = 0. Thus [c]i∗ = [a− bd] = [a], so [a] ∈ Imi∗.

We now show Imj∗ = ker δ. First, note that if [e] = [b]j∗ ∈ Imj∗ then we must
have b ∈ ker d, so bd = 0i (by injectivity of i), and so [e]δ = [0], so Imj∗ ⊆ ker δ. Now
let [e] ∈ ker δ, and take b ∈ D such that bj = e. Then [c]δ = [a] = 0 so a ∈ ker d, and
thus a = a′d for some a′ ∈ C. Now

(b− a′i)d = bd− a′id = bd− a′di = bd− ai = bd− bd = 0

so (b− a′i) ∈ ker d. Then (b− a′i)j = bj − a′ij = bj = e and so [b− a′i]j∗ = [e] ∈ Imj∗.



42 APPENDIX A. HOMOLOGICAL ALGEBRA

Lastly, note that Imδ ⊆ ker i∗ as [a]δi∗ = [c]i∗ = [bd] = 0. So take [a] ∈ ker i∗, so
ai = bd for some b ∈ D. Then bdj = bdj = aij = 0, so bj ∈ ker d. Then δ maps
[bj] 7→ [a] ∈ Imδ, finishing the proof.



Appendix B

Clifford Relations

The following are basic definitions and results needed from [3]. Let (M, g) be a closed
oriented Riemannian manifold.

Definition 75. Take v ∈ TM and v∗ ∈ T ∗M . Define the Clifford maps c(v) =
(v∗∧)− (vy), ĉ(v) = (v∗∧) + (vy). Also define these operators on the cotangent bundle
by setting c(v∗) = c(v) and ĉ(v∗) = ĉ(v).

Proposition 76. We have:

1. c(v)c(w) + c(w)c(v) = −2g(v, w);

2. ĉ(v)ĉ(w) + ĉ(w)ĉ(v) = 2g(v, w); and

3. c(v)ĉ(w) + ĉ(w)c(v) = 0.

Corollary 77. If ∂i form an oriented orthonormal frame then c(∂i)
2 = −1 = −ĉ(∂i)2

Proposition 78. The Levi-Civita connection ∇ is compatible with the Clifford maps,
i.e., [∇v, ρ(w)] = ρ(∇vw) where ρ = c or ρ = ĉ.
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