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@ Joint work with Paul Norbury (Melbourne)

Preliminary investigation trying to connect the Jackiw-Nohl-Rebbi
(JNR) ansatze with previous work we did on hyperbolic monopoles
with Michael Singer.
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What is this?

@ Energy density at infinity for a JNR hyperbolic monopole with
poles 1;1; 1; i and weights 0:9;0:3;0:4;0:4.

@ | will explain what these things are and how we calculate this
energy density.
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Instantons in four dimensions

Euclidean monopoles
Hyperbolic monopoles
Jackiw—Nohl-Rebbi (JNR) ansatze
Holomorphic sphere

Energy density



Instantons in four-dimensions

Recall that if E ¥ S* is a bundle with connection A we say that A is
an instanton if it has self-dual curvature that is Fa Fa.
Instantons are the minima of the Yang-Mills action

z

LA KFak? volgs
54

They have non-negative charge k c; E and the quotient of the
space of solutions by gauge transformations (autorphisms of E) is
the moduli space which is a manifold of dimension 8k.

The self-duality equations are invariant under conformal changes
of the metric on the four-sphere.
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Euclidean monopoles

Conformally S* point R*. Bundles are then trivial so a
connection for an SU 2 bundle is an su 2 valued one-form.
Monopoles are time invariant instantons so let

A X x dt A X

where x;t 2R3> R, :R3¥su?2 andAisansu 2 valued
one-form on R3.

The self-duality equations become the Bogomolny equations
FA dA :

which minimise
Z
L A; kFak? kda k2 d3x
RS

is called the Higgs field and required to satisfy the boundary
conditionthatk x k?> ¥ 1 askxk ¥ 1.
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Euclidean monopoles: existence

The boundary conditions imply that the Higgs field has a limit at
infinity: 1:S% ¥ S2 su 2 sohasadegree k 0 called the
(magnetic) charge of the monopole.

If kK 1 there is, essentially up to translations a unique monopole,
the Bogomolny, Prasad, Sommerfield (BPS) monopole (1975), given

by
L L 1 e
r tanhr r
A x . 1 1 e;de
sinhr r g

. P i :
wherer jxjande X f’ . x'e! for an orthonormal basis e!,
e, e3ofsu 2 .

Taubes in 1980 showed the existence of monopoles of higher
charge.

7/32



Energy-density isosurface

To get an idea of what a monopole looks like you plot an
energy-density isosurface.

kFak? kda k?* constant

For the BPS monopole this will be a sphere. For a higher charge
monopole it might look like this k 7 example:
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Confession

The previous picture is actually of a JNR hyperbolic monopole
energy-density isosurface taken from

Stefano Bolognesi and Alex Cockburn and Paul Sutcli [e;1
Hyperbolic monopoles, JNR data and spectral curves,
Nonlinearity, 28 (2015), 211-235.

But at this qualitative level hyperbolic monopoles and Euclidean
monopoles look much the same. Except that the more recent the
paper the nicer the pictures!
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Monopole scattering

Monopoles are static things by design. But there is a hyper-kaehler
metric on monopole moduli space whose geodesics can be
interpreted as low-energy scattering. The moduli space is
non-compact and has a region in the boundary where the
energy-density isosurface will look like k widely seperated spheres.
Motion along the geodesic will see the spheres come together,
merge and then become separate spheres again. Here is a nice
example again from Bolognesi et al of 3-monopole scattering.

..
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More cheating

Again | am cheating. One of the di Lerknces between Euclidean
and hyperbolic monopoles is that the natural metric you can
define on Euclidean monopoles is infinite when you try and define
it on hyperbolic monopoles. However in the Euclidean case this
picture does arise and is motion along a geodesic.

So let’s think about the hyperbolic case.
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Hyperbolic monopoles

Hyperbolic monopoles arise by studying a di Cerent conformal
transformation S* S22 H?® S'orR* R2Z 7 H3 Sl

R&
Upper hat £
Sﬂ)auz i
FE?

dx? dy? dt2 5

gre  dx? dy? dt? t3d ? +t? 2
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Hyperbolic monopoles

This approach was developed by Atiyah in 1984. There are two
important di Cerences to the Euclidean case:

@ The length of the Higgs field at infinity or m the mass of the
monopole is a new invariant. In the Euclidean case we can
trivially rescale so that m 1. In the hyperbolic case that
rescaling changes the curvature of H2. If m 2 Z the instanton
on S* S2 extends to all of S*.

@ There is a connection at infinity which determines the
monopole completely (Braam Austin 1990). In the Euclidean
case the connection at infinity is always a standard form.

Note that we expect all the moduli spaces to be di Ledmorphic and
di Cedmorphic to the Euclidean moduli space. This is known for
integer mass.
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Minitwistor space for hyperbolic space
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All the geodesics through t; define a curve of degree 1;1 in
M called the star of t; . This curve is determined by the
correspondence equation

Ct. : - 2 jj? 0:
Notice that if we let t ¥ 0 then the point t; moves out to the
point at infinity and curve becomes 1 N 0. Thisis
the union of all the geodesics ending at  with all the geodesics
starting at

Star Star ot /\“7["”"7&/
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Spectral curve

A monopole determines a curve S of degree k;k in M called the
spectral curve. This means it is determined by a polynomial
equation p ; 0 of degree k;k . The spectral curve also
determines the monopole. It satisfies a number of constraints:

@ The spectral curve is real. That means fixed by the involution
that reverses the direction of the geodesic.

@ It doesn’t intersect the anti-diagonal.
@ The holomorphic line bundle

LZnk o2m k 2m k

is trivial over S. Note that L is well-defined on M for
non-integral values of m.

The intuition is that if we think of a monopole as a collection of k
points which are very widely separated in H? the spectral curve is
approximately the union of all the stars through those points.
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Jackiw—-Nohl-Rebbi ansatze

The INR ansatze is a method of defining instantons in R* (1977).
It can be adapted to defining hyperbolic monopoles of mass

m % You get elegant, simple, formulae for various of objects
related to a monopole in particular

@ the spectral curve
@ the non-vanishing holomorphic section of L2™ k |k 1
@ the holomorphic sphere (not defined yet)

One reason the JNR ansatze is remarkable is that we don’t have
exact formulae for monopoles in terms of their connection and
Higgs field or the precise polynomial defining the spectral curves
except in some highly symmetric cases.
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JNR data

INR data consists of k 1 poles which are points ¢;:::; kinS?
and k 1 charges which are positive real numbers ¢;:::; k. The
charges are only relevant up to an overall scale.

Not all monopoles arise from JNR data as it contains
2k 1 k 1 1 3k 2real parameters whereas the
monopole moduli space is known to be 4k 1 dimensional.
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JNR spectral curve

The equation of the spectral curve is (Bolognesi et al)
X ¥
2

P i il i
io jo
ji

Notice that this has degree k;k . | leave as an exercise checking
that it is real and avoids the anti-diagonal.

Which spectral curves arise ? We can give the following partial
answer.

Notice firstthatp = j  Oforanyi j.
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So the JNR spectral curve vanishes on a set like

s
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Let us define a grid in M to be a subset of the form
C ! D
G — JO i ] Kk

for o;:::; k pointsin Py.

We say that a curve S in M admits a grid if there is a grid G with
G S.
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Then we have:

Let S be a real curve of degree k;k not intersecting the
anti-diagonal and admitting a grid G defined by ¢;:::; k. Then
there exist unique positive real numbers ;:::; ksuchthatS is a
JNR spectral curve for the poles ¢;:::; k and weights ¢;:::; k.

Besides this result we don’t have any intuition for what is special
about the 3k 2 dimensional JINR monopole submanifold inside
the full 4k 1 dimensional monopole moduli space.



The holomorphic section for JINR monopole

In the case that m % we want a non-vanishing section of L* 1.
This is given b
g y Qx _
<o ;
s o

iol i
which is a meromorphic section of LX ! on M but actually
holomorphic on the spectral curve.
This is relevant to definining the rational map of the monopole
which also can be defined using JNR data and is given in Bolognesi
et al. These isn’t time to discuss this here.
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The JNR spectral curve formula has some nice asymptotic
behaviour.

X 2“\*’
P i il i
o0 jo
J 1
Rescale so that ¢ 1 and let all the others approach zero. Then
this curve approaches

W

jo

jd

which corresponds to stars at infinity through the points
0::70 d 15 d ittty ke

So as we take this limit our monopole seems to be approximating
a monopole located at points which are near to the

0;:i5) d 1, d 1;::5; k atinfinity.
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Holomorphic sphere

In M-Norbury-Singer 2003 we introduced the following
construction. Let

p
This defines a positive definite matrix
So we can write Q Q for some invertible Q unique up to
multiplying on the left by elements of U k 1 . Define
qz Q1l;z;:::;z
Then
q: Pt 1 Pk

is an embedding, unique up to the action of U k 1 called the
holomorphic sphere. The holomorphic sphere is an invariant of
the monopole.
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The holomorphic sphere of a JNR monopole

In the case of a JNR monopole a straightforward calculation shows

The holomorphic sphere of a JNR monopole with poles ¢;:::; g
and weights ¢;:::; k is given by
" "
0 1 K
z : : ;
q Z 0 Z 1 V4 Kk
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Curvature of the connection at infinity

Recall that in the hyperbolic case there is a connection at infinity
which determines the monopole.

In M-Norbury-Singer we showed that the curvature of the
connection at infinity Fa1 is given by the pull-back of the Kaehler
form on Py under the holomorphic sphere q: Py ¥ Py.

It is of interest to consider the energy density which is the function

f such that
Far  Fvols2

and also the energy-density of the holomorphic sphere
q: P; ¥ Pg. This is a straight-forward calculation and we obtain
the example we began with.
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Energy-density

If we choose JNR poles 1;i; 1; 1 and weights 0:9;0:3;0:4;0:4 then
the charge density at infinity is give by
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Experiments

Set oy 1 and let the others become small. Then the monopole
with poles 1;i; 1; i and weights 1;0:1;0:1;0:1 should be
approaching i; 1; i atinfinity. The energy density in fact peaks
ati; 1; 1.

We can prove this behaviour in general.
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Information metric

The holomorphic sphere and the relationship with the energy
density first appeared in Braam-Austin (1990) in the case of integer
mass hyperbolic monopoles. The approach in M-Norbury-Singer
was a di Lerent method applicable to monopoles of any mass.

In Braam-Austin they consider the metric on monopole moduli
space obtained by imposing an L? metric on the space of
connections at infinity.

There is another natural metric on any space of probability
densities called the Fisher-information metric. Future work will
include trying to understand the metric on the monopole moduli
space, or at least on the JNR part of it, obtained by imposing the
information metric on the charge densities.
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