Conformal Invariant and Fixed Point Theorem

Hang Wang
University of Adelaide
7 February, 2018

Main Results

We use tools of noncommutative geometry to obtain:

- Local index formula of Atiyah-Singer in the setting of the action of a group of conformal-diffeomorphisms.
- Construct a class of conformal invariants out of equivariant characteristic classes.

Main References

- Ponge, R.; Wang, H.: Noncommutative geometry and conformal geometry. I. Local index formula and conformal invariants. J. Noncommut. Geom. (to appear).
- Ponge, R.; Hang, W.: Noncommutative geometry and conformal geometry. II. Connes-Chern character and the local equivariant index theorem. J. Noncommut. Geom. 10, no. 1, (2016) 303-374.

Spectral Triples

Definition (Connes)

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of
(1) $\mathrm{A} \mathbb{Z}_{2}$-graded Hilbert space $\mathcal{H}=\mathcal{H}^{+} \oplus \mathcal{H}^{-}$.
(2) An involutive algebra \mathcal{A} represented in \mathcal{H}.
(3) A selfadjoint unbounded operator D on \mathcal{H} such that
(1) D maps $\mathcal{H}^{ \pm}$to \mathcal{H}^{\mp}.
(2) $(D \pm i)^{-1}$ is compact.
(3) $D, a]$ is bounded for all $a \in \mathcal{A}$.

Example (Dirac Spectral Triple)

- $\left(M^{n}, g\right)$ compact Riemannian spin manifold (n even) with spinor bundle $\mathcal{S}=\$^{+} \oplus \mathcal{S}^{-}$.
- $\square_{g}: C^{\infty}(M, S) \rightarrow C^{\infty}(M, S)$ is the Dirac operator of (M, g).

Then $\left(C^{\infty}(M), L_{g}^{2}(M, S), D_{g}\right)$ is a spectral triple

Overview of Noncommutative Geometry

Classical
 NCG

Riemannian Manifold (M, g)
Vector Bundle E over M

Connection ∇^{E} on E

$$
\operatorname{ind} D_{\nabla^{E}}:=\operatorname{ind} D_{\nabla^{E}}^{+}
$$

de Rham Homology/Cohomology

Atiyah-Singer Index Formula ind $D_{\nabla^{E}}=\int_{M} \hat{A}\left(R^{M}\right) \wedge \operatorname{Ch}(E)$

Local Index Theorem

Projective Module \mathcal{E} over \mathcal{A}
$\mathcal{E}=e \mathcal{A}^{q}, \quad e \in M_{q}(\mathcal{A}), e^{2}=e$
Connection $\nabla^{\mathcal{E}}$ on \mathcal{E}

$$
\text { ind } D_{\nabla^{\mathcal{E}}}:=\text { ind } D_{\nabla^{\mathcal{E}}}^{+}
$$

Cyclic Cohomology/Homology
Connes-Chern Character $\mathrm{Ch}(D)$ ind $D_{\nabla^{\varepsilon}}=\langle\operatorname{Ch}(D), \operatorname{Ch}(\mathcal{E})\rangle$

CM cocycle

Conformal Changes of Metrics

Setup

- $\left(C^{\infty}(M), L_{g}^{2}(M, \$), D_{g}\right)$ is a Dirac spectral triple.
- Conformal change of metric: $\hat{g}=k^{-2} g, k \in C^{\infty}(M), k>0$.

Observation

Define $U: L_{g}^{2}(M, \mathbb{S}) \rightarrow L_{\hat{g}}^{2}(M, \mathbb{S})$ by

$$
U f=k^{\frac{n}{2}} f \quad \forall f \in L_{g}^{2}(M, \mathbb{S})
$$

Then U is a unitary operator and intertwines the spectral triples
$\left(C^{\infty}(M), L_{\hat{g}}^{2}(M, S), D_{\hat{g}}\right) \quad$ and $\quad\left(C^{\infty}(M), L_{g}^{2}(M, S), \sqrt{k} D_{g} \sqrt{k}\right)$.
In particular,

$$
U D_{\hat{g}} U^{*}=\sqrt{k} D_{g} \sqrt{k} .
$$

Twisted Spectral Triples

Definition (Connes-Moscovici)

A twisted spectral triple $(\mathcal{A}, \mathcal{H}, D)(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ consists of
(1) $\mathrm{A} \mathbb{Z}_{2}$-graded Hilbert space $\mathcal{H}=\mathcal{H}^{+} \oplus \mathcal{H}^{-}$.
(2) An involutive algebra \mathcal{A} represented in \mathcal{H} together with an automorphism $\sigma: \mathcal{A} \rightarrow \mathcal{A}$ such that $\sigma(a)^{*}=\sigma^{-1}\left(a^{*}\right)$ for all $a \in \mathcal{A}$.
(3) A selfadjoint unbounded operator D on \mathcal{H} such that
(1) D maps $\mathcal{H}^{ \pm}$to \mathcal{H}^{\mp}.
(2) $(D \pm i)^{-1}$ is compact.
(3) $\mathrm{D}, \mathrm{a}][D, a]_{\sigma}:=D a-\sigma(a) D$ is bounded for all $a \in \mathcal{A}$.

Conformal Deformations of Spectral Triples

Example (Connes-Moscovici)

- An ordinary spectral triple $(\mathcal{A}, \mathcal{H}, D)$.
- A positive element $k \in \mathcal{A}$ with inner automorphism $\sigma(a)=k^{2} a k^{-2}, a \in \mathcal{A}$.
Then $(\mathcal{A}, \mathcal{H}, k D k)_{\sigma}$ is a twisted spectral triple.

Example

(1) Conformal Dirac spectral triple (Connes-Moscovici).
(2) Twisted spectral triples over NC tori associated with "conformal weights" (Connes-Tretkoff).
(3) Twisted spectral triples associated to some quantum statistical systems (e.g., Connes-Bost systems, supersymmetric Riemann gas) (Greenfield-Marcolli-Teh '13).

Twisted Noncommutative Geometry

Untwisted \quad Twisted (C+M, P+W)

Spectral Triple $(\mathcal{A}, \mathcal{H}, D)$
Projective Module \mathcal{E} over \mathcal{A}

$$
\begin{gathered}
\text { Connection on } \mathcal{E} \\
\nabla^{\mathcal{E}}: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{L}(\mathcal{H}) \\
D_{\nabla^{\mathcal{E}}}: \mathcal{H} \otimes \mathcal{E} \rightarrow \mathcal{H} \otimes \mathcal{E} \\
\text { ind } D_{\nabla^{\mathcal{E}}}
\end{gathered}
$$

Connes-Chern Character $\mathrm{Ch}(D)$ ind $D_{\nabla^{\mathcal{E}}}=\langle\mathrm{Ch}(D), \operatorname{Ch}(\mathcal{E})\rangle$

Twisted Spectral Triple $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$

$$
\begin{gathered}
\text { Projective Module } \mathcal{E} \text { over } \mathcal{A} \\
\text { w/ } \sigma \text {-translate } \mathcal{E}^{\sigma} \\
\sigma^{\sigma} \text {-Connection on } \mathcal{E} \\
\nabla^{\mathcal{E}}: \mathcal{E} \rightarrow \mathcal{E}^{\sigma} \otimes \mathcal{L}(\mathcal{H}) \\
D_{\nabla^{\mathcal{E}}}: \mathcal{H} \otimes \mathcal{E} \rightarrow \mathcal{H} \otimes \mathcal{E}^{\sigma} \\
\text { ind } D_{\nabla^{\mathcal{E}}}
\end{gathered}
$$

Connes-Chern Character $\operatorname{Ch}(D)_{\sigma}$ ind $D_{\nabla^{\mathcal{E}}}=\left\langle\operatorname{Ch}(D)_{\sigma}, \operatorname{Ch}(\mathcal{E})\right\rangle$
????

Conformal Dirac Spectral Triple

Setup

(1) M^{n} is a compact spin oriented manifold (n even).
(2) \mathcal{C} is a conformal structure on M.
(3) G is a group of conformal diffeomorphisms preserving \mathcal{C}. Thus, given any metric $g \in \mathcal{C}$ and $\phi \in G$,

$$
\phi_{*} g=k_{\phi}^{-2} g \text { with } k_{\phi} \in C^{\infty}(M), k_{\phi}>0 .
$$

(4) $C^{\infty}(M) \rtimes G$ is the crossed-product algebra, i.e.,

$$
\begin{aligned}
& C^{\infty}(M) \rtimes G=\left\{\sum f_{\phi} u_{\phi} ; f_{\phi} \in C^{\infty}(M)\right\}, \\
& u_{\phi}^{*}=u_{\phi}^{-1}=u_{\phi^{-1}}, \quad u_{\phi} f=\left(f \circ \phi^{-1}\right) u_{\phi} .
\end{aligned}
$$

Conformal Dirac Spectral Triple

Lemma (Connes-Moscovici)

For $\phi \in G$ define $U_{\phi}: L_{g}^{2}(M, S) \rightarrow L_{g}^{2}(M, S)$ by

$$
U_{\phi} \xi=k_{\phi}^{\frac{n}{2}} \phi_{*} \xi \quad \forall \xi \in L_{g}^{2}(M, \mathcal{S})
$$

Then U_{ϕ} is a unitary operator, and

$$
U_{\phi} D_{g} U_{\phi}^{*}=\sqrt{k_{\phi}} D_{g} \sqrt{k_{\phi}} .
$$

Theorem (Connes-Moscovici)

The datum of any metric $g \in \mathcal{C}$ defines a twisted spectral triple $\left(C^{\infty}(M) \rtimes G, L_{g}^{2}(M, S), D_{g}\right)_{\sigma_{g}}$ given by
(1) The Dirac operator \emptyset_{g} associated to g.
(2) The representation $f u_{\phi} \rightarrow f U_{\phi}$ of $C^{\infty}(M) \rtimes G$ in $L_{g}^{2}(M, \$)$.
(3) The automorphism $\sigma_{g}\left(f u_{\phi}\right):=k_{\phi} f u_{\phi}$.

Conformal Connes-Chern Character

Theorem (RP+HW)

(1) The Connes-Chern character $\mathrm{Ch}\left(\mathbb{D}_{g}\right)_{\sigma_{g}} \in \mathrm{HP}^{0}\left(C^{\infty}(M) \rtimes G\right)$ is an invariant of the conformal class \mathcal{C}.
(2) For any even cyclic homology class $\eta \in \mathrm{HP}_{0}\left(C^{\infty}(M) \rtimes G\right)$, the pairing,

$$
\left\langle\operatorname{Ch}\left(D_{g}\right)_{\sigma_{g}}, \eta\right\rangle
$$

is a scalar conformal invariant.

Computation of $\mathrm{Ch}\left(ゆ_{g}\right)_{\sigma_{g}}$

Theorem (Ferrand, Obata)

If the conformal structure \mathcal{C} is non-flat, then G is a compact Lie group, and so \mathcal{C} contains a G-invariant metric.

Fact

If $g \in \mathcal{C}$ be G-invariant, then $\left(C^{\infty}(M) \rtimes G, L_{g}^{2}(M, S), \not D_{g}\right)_{\sigma_{g}}$ is an ordinary spectral triple (equivariant Dirac spectral triple, $\sigma_{g}=1$).

Consequence

When \mathcal{C} is non-flat, we are reduced to the computation of the Connes-Chern character of $\left(C^{\infty}(M) \rtimes G, L_{g}^{2}(M, \$), \not D_{g}\right)$ where G is a group of isometries.

Local Index Formula in Conformal Geometry

Setup

- \mathcal{C} is a nonflat conformal structure on M.
- g is a G-invariant metric in \mathcal{C}.

Notation

Let $\phi \in G$. Then

- M^{ϕ} is the fixed-point set of ϕ; this is a disconnected sum of submanifolds.
$M^{\phi}=\bigsqcup M_{a}^{\phi}, \quad \operatorname{dim} M_{a}^{\phi}=a$.
- $\mathcal{N}^{\phi}=\left(T M^{\phi}\right)^{\perp}$ is the normal bundle (vector bundle over $\left.M^{\phi}\right)$.

Local Index Formula in Conformal Geometry

Theorem (RP+HW)

Let g be any G-invariant metric in \mathcal{C},
(1) The Connes-Chern character $\mathrm{Ch}\left(\mathbb{D}_{\mathrm{g}}\right)_{\sigma_{g}}$ is represented by the CM cocycle $\varphi^{\mathrm{CM}}=\left(\varphi_{2 q}^{\mathrm{CM}}\right)$.
(2) We have

$$
\begin{aligned}
& \quad \varphi_{2 q}^{\mathrm{CM}}\left(f^{0} u_{\phi_{0}}, \cdots, f^{2 q} u_{\phi_{2 q}}\right)= \\
& \frac{(-i)^{\frac{n}{2}}}{(2 q)!} \sum_{a}(2 \pi)^{-\frac{a}{2}} \int_{M_{a}^{\phi}} \hat{A}\left(R^{T M^{\phi}}\right) \wedge \nu_{\phi}\left(R^{\mathcal{N}^{\phi}}\right) \wedge f^{0} d \tilde{f}^{1} \wedge \cdots \wedge d \tilde{f}^{2 q}, \\
& \text { where } \phi:=\phi_{0} \circ \cdots \circ \phi_{2 q}, \text { and } \tilde{f}^{j}:=f^{j} \circ \phi_{0}^{-1} \circ \cdots \circ \phi_{j-1}^{-1}, \text { and } \\
& \qquad \nu_{\phi}\left(R^{\mathcal{N}^{\phi}}\right):=\operatorname{det}^{-\frac{1}{2}}\left[1-\phi_{\mid \mathcal{N}^{\phi}}^{\prime} e^{-R^{\mathcal{N}^{\phi}}}\right] .
\end{aligned}
$$

Local Index Formula in Conformal Geometry

Remark

The n-th degree component is given by
$\varphi_{n}\left(f^{0} U_{\phi_{0}}, \cdots, f^{n} U_{\phi_{n}}\right)= \begin{cases}\int_{M} f^{0} d \tilde{f}^{1} \wedge \cdots \wedge d \tilde{f}^{n} & \text { if } \phi_{0} \circ \cdots \circ \phi_{n}=1, \\ 0 & \text { if } \phi_{0} \circ \cdots \circ \phi_{n} \neq 1 .\end{cases}$
This represents Connes' transverse fundamental class of M / G.

Remark

- The computation of the CM cocycle is obtained as a consequence of a new heat kernel proof of the equivariant index theorem of Atiyah-Segal-Singer.
- It combines Getzler's rescaling with the Greiner-Hadamard approach to the heat kernel asymptotics.

Mixed Complexes

Definition (Kassel)

A mixed complex is given by
(1) Spaces of chains $C_{m}, m \in \mathbb{N}_{0}$.
(2) Differentials $b: C_{\bullet} \rightarrow C_{\bullet-1}$ and $B: C_{\bullet} \rightarrow C_{\bullet+1}$.

Definition (Kassel)

The mixed (or cyclic) homology of a mixed complex $\left(C_{\bullet}, b, B\right)$ is the homology of the complex,

$$
\left(C C_{\bullet}, b+B\right), \quad C C_{m}:=\bigoplus_{p+q=m} C_{p-q}=C_{m} \oplus C_{m-1} \oplus \cdots
$$

Mixed Complexes

Example (Connes, Tsygan)

The cyclic homology of a unital algebra \mathcal{A} is the mixed homology of the mixed complex,

$$
\left(C_{\bullet}(\mathcal{A}), b, B\right), \quad C_{m}(\mathcal{A})=\mathcal{A}^{\otimes(m+1)}
$$

Example

Any cyclic object C (i.e., simplicial object with a cyclic structure) in any Abelian category gives rise to a mixed complex,

$$
\left(C_{0}, b, B\right), \quad B=(1-t) s N, \quad N_{m}=1+t+\cdots+t^{m} .
$$

Group Homology

Fact

Any (discrete) group 「 admits the free resolution,

$$
\begin{gathered}
\cdots \xrightarrow{\partial} \mathbb{C}[\Gamma]^{\otimes 3} \xrightarrow{\partial} \mathbb{C}[\Gamma]^{\otimes 2} \xrightarrow{\partial} \mathbb{C}[\Gamma] \longrightarrow \mathbb{C} \rightarrow 0 \\
\partial\left(\psi_{0}, \ldots, \psi_{m}\right)=\sum_{0 \leq j \leq m}(-1)^{j}\left(\psi_{0}, \ldots, \hat{\psi}_{j}, \ldots, \psi_{m}\right), \quad \psi_{j} \in \Gamma .
\end{gathered}
$$

Definition

The group homology of Γ with coefficients in a Γ-module V is the homology of the complex,

$$
\left(\mathbb{C}[\Gamma]^{\otimes(\bullet+1)} \otimes\ulcorner V, \partial \otimes 1)\right.
$$

Remark

For $V=\mathbb{C}$ we get the group homology $H_{\bullet}(\Gamma) \simeq H_{\bullet}(B \Gamma)$.

Equivariant Cohomology

Definition (Bott, Borel)

Given an action of Γ on a manifold X, the equivariant cohomology $H_{\Gamma}^{\bullet}(X)$ is the homology of the double complex,

$$
\left(\operatorname{Hom}_{\Gamma}\left(\mathbb{C}[\Gamma]^{\otimes(p+1)}, \Omega^{q}(X)\right), \partial, d\right)
$$

Remark (Borel, Dupont)

We have $H_{\Gamma}^{\bullet}(X) \simeq H^{\bullet}\left(E \Gamma x_{\Gamma} X\right)$.

Theorem (Bott)

Given a 「-equivariant bundle E over X and a connection ∇ on E, there is a well defined equivariant Chern character,

$$
\mathrm{Ch}_{\Gamma}(E, \nabla) \in H_{\Gamma}^{\bullet}(X) .
$$

Mixed Equivariant Homology

Definition

The mixed equivariant homology $H_{\bullet}^{\ulcorner }(X)^{\natural}$ is the mixed homology of the mixed double complex,

$$
\left(\mathbb{C}[\Gamma]^{\otimes(\bullet+1)} \otimes \Omega^{\bullet}(X), \partial, d\right) .
$$

That is, the mixed homology of the total mixed complex,

$$
\left(\bigoplus_{p+q=\bullet} \mathbb{C}[\Gamma]^{\otimes(p+1)} \otimes \Omega^{q}(X), \partial, d\right) .
$$

Proposition

There is a natural bilinear map,

$$
H_{\Gamma}^{\bullet}(X) \times H_{\bullet}(\Gamma) \longrightarrow H_{\bullet}^{\Gamma}(X)^{\natural} .
$$

Construction of Conformal Invariants

Theorem (RP+HW)

Given $\phi \in G$, let $G_{\phi}=\{\psi \in G ; \psi \circ \phi=\phi \circ \psi\} /\langle\phi\rangle$ be its normalizer (where $\langle\phi\rangle$ is the subgroup generated by ϕ). Then
(1) There is an explicit embedding,

$$
H_{\bullet}^{G_{\phi}}\left(M^{\phi}\right)^{\natural} \hookrightarrow H C_{0}\left(\mathcal{A}_{G}\right), \quad \mathcal{A}_{G}:=C^{\infty}(M) \rtimes G .
$$

(2) We have a bilinear map,

$$
H_{G_{\phi}}^{\bullet}\left(M^{\phi}\right) \times H_{\bullet}\left(G_{\phi}\right) \ni(\omega, \gamma) \longrightarrow \eta(\omega, \gamma) \in H C_{\bullet}\left(\mathcal{A}_{G}\right)
$$

(3) For any $(\omega, \gamma) \in H_{G_{\phi}}^{\bullet}\left(M^{\phi}\right) \times H_{\bullet}\left(G_{\phi}\right)$, the pairing

$$
I_{g}^{\phi}(\omega, \gamma):=\left\langle\operatorname{Ch}\left(\mathbb{D}_{g}\right)_{\sigma_{g}}, \eta(\omega, \gamma)\right\rangle
$$

is an invariant of the conformal class \mathcal{C}.

Conformal Invariants

Theorem (RP+HW)

Let E be G-equivariant vector bundle over M and ∇^{E} a G-invariant connection on E. Then
(1) For G-invariant metric $g \in \mathcal{C}$,

$$
\begin{aligned}
I_{g}^{\phi}\left(\mathrm{Ch}_{\Gamma_{\phi}}\left(E_{M^{\phi}}, \nabla^{E}\right), 1\right) & =\int_{M^{\phi}} \hat{A}\left(R^{T M^{\phi}}\right) \wedge \nu_{\phi}\left(R^{\mathcal{N}^{\phi}}\right) \wedge \operatorname{Ch}\left(F^{E}\right) \\
& =\operatorname{ind} \emptyset_{\nabla^{E}}(\phi)
\end{aligned}
$$

where ind $\mathbb{D}_{\nabla^{E}}(\phi)$ is the equivariant index of $\mathbb{D}_{\nabla^{E}}$ at ϕ.
(2) When ϕ has isolated fixed-points we recover the Lefschetz number of ϕ w.r.t. the spin complex (with coefficients in E).

Remarks \& Consequences

Corollary (Branson-Ørsted; Conformal Indices)

Given $\phi \in G$, let $g \in \mathcal{C}$ be such that $\phi_{*} g=g$. Then the value of

$$
\mathrm{Pf}_{t \rightarrow 0+} \operatorname{Tr}\left[\gamma e^{-t ゆ_{g}^{2}} U_{\phi}\right]=\varphi_{0}^{\mathrm{CM}}(1)=\left\langle\mathrm{Ch}\left(D_{g}\right)_{\sigma_{g}}, 1\right\rangle
$$

does not depend on the choice of g.

Remark

The results of this talk provide us with a cohomological interpretation of Branson- Ørsted's result. In particular, the conformal indices are conformal invariants and Fredholm indices in the usual sense.

