Conformal Invariant and Fixed Point Theorem

Hang Wang

University of Adelaide

7 February, 2018

Main Results

We use tools of noncommutative geometry to obtain:

- Local index formula of Atiyah-Singer in the setting of the action of a group of conformal-diffeomorphisms.
- Construct a class of conformal invariants out of equivariant characteristic classes.

Main References

- Ponge, R.; Wang, H.: *Noncommutative geometry and conformal geometry. I. Local index formula and conformal invariants.* J. Noncommut. Geom. (to appear).
- Ponge, R.; Hang, W.: Noncommutative geometry and conformal geometry. II. Connes-Chern character and the local equivariant index theorem. J. Noncommut. Geom. 10, no. 1, (2016) 303–374.

Spectral Triples

Definition (Connes)

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of

1 A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.

2 An involutive algebra \mathcal{A} represented in \mathcal{H} .

3 A selfadjoint unbounded operator D on \mathcal{H} such that

1
$$D$$
 maps \mathcal{H}^{\pm} to \mathcal{H}^{\mp} .

2
$$(D \pm i)^{-1}$$
 is compact.

3 [D, a] is bounded for all $a \in A$.

Example (Dirac Spectral Triple)

- (Mⁿ, g) compact Riemannian spin manifold (n even) with spinor bundle \$ = \$⁺ ⊕ \$⁻.

Overview of Noncommutative Geometry

Classical	NCG
Riemannian Manifold (M,g)	Spectral Triple $(\mathcal{A}, \mathcal{H}, D)$
Vector Bundle <i>E</i> over <i>M</i>	$egin{aligned} & extsf{Projective Module } \mathcal{E} extsf{ over } \mathcal{A} \ \mathcal{E} &= e \mathcal{A}^q, \ \ e \in M_q(\mathcal{A}), \ e^2 = e \end{aligned}$
Connection ∇^E on E	Connection $ abla^{\mathcal{E}}$ on \mathcal{E}
$ind \not\!$	$ind D_{\nabla^\mathcal{E}} := ind D_{\nabla^\mathcal{E}}^+$
de Rham Homology/Cohomology	Cyclic Cohomology/Homology
Atiyah-Singer Index Formula ${ m ind} atla_{ abla^E} = \int_M \hat{A}(R^M) \wedge { m Ch}(E)$	$\begin{array}{l} Connes-Chern\ Character\ Ch(D)\\ ind\ D_{\nabla^{\mathcal{E}}}=\langleCh(D),Ch(\mathcal{E})\rangle \end{array}$
Local Index Theorem	CM cocycle

Conformal Changes of Metrics

Setup

- $(C^{\infty}(M), L^2_g(M, \$), \not D_g)$ is a Dirac spectral triple.
- Conformal change of metric: $\hat{g} = k^{-2}g$, $k \in C^{\infty}(M)$, k > 0.

Observation

Define
$$U: L^2_g(M, \$) \rightarrow L^2_{\hat{g}}(M, \$)$$
 by

$$Uf = k^{\frac{n}{2}}f \quad \forall f \in L^2_g(M, \$).$$

Then U is a unitary operator and intertwines the spectral triples

$$\left(C^{\infty}(M), L^2_{\hat{g}}(M, \$), \mathcal{P}_{\hat{g}}\right)$$
 and $\left(C^{\infty}(M), L^2_{g}(M, \$), \sqrt{k}\mathcal{P}_{g}\sqrt{k}\right)$

In particular,

$$U \not\!\!D_{\hat{g}} U^* = \sqrt{k} \not\!\!D_g \sqrt{k}.$$

Twisted Spectral Triples

Definition (Connes-Moscovici)

A twisted spectral triple $(\mathcal{A}, \mathcal{H}, D)(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ consists of

- **1** A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
- 2 An involutive algebra A represented in H together with an automorphism σ : A → A such that σ(a)* = σ⁻¹(a*) for all a ∈ A.
- **3** A selfadjoint unbounded operator D on \mathcal{H} such that
 - **1** D maps \mathcal{H}^{\pm} to \mathcal{H}^{\mp} .
 - **2** $(D \pm i)^{-1}$ is compact.
 - **3** $[D,a][D,a]_{\sigma} := Da \sigma(a)D$ is bounded for all $a \in A$.

Conformal Deformations of Spectral Triples

Example (Connes-Moscovici)

- An ordinary spectral triple $(\mathcal{A}, \mathcal{H}, D)$.
- A positive element $k \in A$ with inner automorphism $\sigma(a) = k^2 a k^{-2}$, $a \in A$.

Then $(\mathcal{A}, \mathcal{H}, kDk)_{\sigma}$ is a *twisted* spectral triple.

Example

- ① Conformal Dirac spectral triple (Connes-Moscovici).
- Twisted spectral triples over NC tori associated with "conformal weights" (Connes-Tretkoff).
- Twisted spectral triples associated to some quantum statistical systems (e.g., Connes-Bost systems, supersymmetric Riemann gas) (Greenfield-Marcolli-Teh '13).

Twisted Noncommutative Geometry	
Twisted (C+M, P+W)	
Twisted Spectral Triple $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$	
Projective Module ${\cal E}$ over ${\cal A}$ w/ σ -translate ${\cal E}^\sigma$	
σ -Connection on \mathcal{E}	
$ abla^{\mathcal{E}}: \mathcal{E} ightarrow \mathcal{E}^{\sigma} \otimes \mathcal{L}(\mathcal{H})$	
$D_{ abla} arepsilon : \mathcal{H} \otimes \mathcal{E} o \mathcal{H} \otimes \mathcal{E}^{\sigma}$	
ind $D_ abla arepsilon$	
$Connes ext{-}Chern\;Character\;Ch(D)_\sigma\ ind\; D_ abla^arepsilon = \langleCh(D)_\sigma,Ch(\mathcal{E}) angle$	
????	

Conformal Dirac Spectral Triple

Setup

- **1** M^n is a compact spin oriented manifold (*n* even).
- **2** C is a conformal structure on M.
- **3** *G* is a group of conformal diffeomorphisms preserving *C*. Thus, given any metric $g \in C$ and $\phi \in G$,

$$\phi_*g = k_\phi^{-2}g$$
 with $k_\phi \in C^\infty(M), \ k_\phi > 0.$

4 $C^{\infty}(M) \rtimes G$ is the crossed-product algebra, i.e.,

$$C^{\infty}(M)
times G = \left\{ \sum f_{\phi} u_{\phi}; \ f_{\phi} \in C^{\infty}(M)
ight\}, \ u_{\phi}^* = u_{\phi}^{-1} = u_{\phi^{-1}}, \qquad u_{\phi}f = (f \circ \phi^{-1})u_{\phi}.$$

Conformal Dirac Spectral Triple

Lemma (Connes-Moscovici)

For
$$\phi \in G$$
 define $U_{\phi} : L^2_g(M, \$) \to L^2_g(M, \$)$ by
 $U_{\phi}\xi = k_{\phi}^{\frac{n}{2}}\phi_*\xi \quad \forall \xi \in L^2_g(M, \$).$

Then U_{ϕ} is a unitary operator, and

$$U_{\phi} D_{g} U_{\phi}^{*} = \sqrt{k_{\phi}} D_{g} \sqrt{k_{\phi}}.$$

Theorem (Connes-Moscovici)

The datum of any metric $g \in C$ defines a twisted spectral triple $(C^{\infty}(M) \rtimes G, L_g^2(M, \$), \mathcal{D}_g)_{\sigma_g}$ given by

- **1** The Dirac operator \mathcal{D}_g associated to g.
- 2 The representation $fu_{\phi} \to fU_{\phi}$ of $C^{\infty}(M) \rtimes G$ in $L^2_g(M, \$)$.
- **3** The automorphism $\sigma_g(fu_{\phi}) := k_{\phi}fu_{\phi}$.

Conformal Connes-Chern Character

Theorem (RP+HW)

- **1** The Connes-Chern character $Ch(\mathcal{D}_g)_{\sigma_g} \in HP^0(C^{\infty}(M) \rtimes G)$ is an invariant of the conformal class C.
- Por any even cyclic homology class η ∈ HP₀(C[∞](M) ⋊ G), the pairing,

 $\langle \mathsf{Ch}(D_g)_{\sigma_g}, \eta \rangle,$

is a scalar conformal invariant.

Computation of $Ch(p_g)_{\sigma_g}$

Theorem (Ferrand, Obata)

If the conformal structure C is non-flat, then G is a compact Lie group, and so C contains a G-invariant metric.

Fact

If
$$g \in C$$
 be G-invariant, then $(C^{\infty}(M) \rtimes G, L_g^2(M, \$), \mathcal{D}_g)_{\sigma_g}$ is an ordinary spectral triple (equivariant Dirac spectral triple, $\sigma_g = 1$).

Consequence

When C is non-flat, we are reduced to the computation of the Connes-Chern character of $(C^{\infty}(M) \rtimes G, L_g^2(M, \$), \mathcal{D}_g)$ where G is a group of isometries.

Local Index Formula in Conformal Geometry

Setup

- C is a nonflat conformal structure on M.
- g is a G-invariant metric in C.

Notation

Let $\phi \in G$. Then

M^φ is the fixed-point set of *φ*; this is a disconnected sum of submanifolds.

$$M^{\phi} = \bigsqcup M^{\phi}_{a}$$
, dim $M^{\phi}_{a} = a$.

• $\mathcal{N}^{\phi} = (TM^{\phi})^{\perp}$ is the normal bundle (vector bundle over M^{ϕ}).

Local Index Formula in Conformal Geometry

Theorem (RP+HW)

Let g be any G-invariant metric in $\mathcal{C},$

1 The Connes-Chern character $Ch(\mathcal{D}_g)_{\sigma_g}$ is represented by the CM cocycle $\varphi^{CM} = (\varphi_{2q}^{CM})$.

2 We have

$$\varphi_{2q}^{\mathsf{CM}}(f^{0}u_{\phi_{0}},\cdots,f^{2q}u_{\phi_{2q}}) = \frac{(-i)^{\frac{n}{2}}}{(2q)!}\sum_{a}(2\pi)^{-\frac{a}{2}}\int_{M_{a}^{\phi}}\hat{A}(R^{\mathcal{T}M^{\phi}})\wedge\nu_{\phi}\left(R^{\mathcal{N}^{\phi}}\right)\wedge f^{0}d\tilde{f}^{1}\wedge\cdots\wedge d\tilde{f}^{2q},$$

where
$$\phi := \phi_0 \circ \cdots \circ \phi_{2q}$$
, and $\tilde{f}^j := f^j \circ \phi_0^{-1} \circ \cdots \circ \phi_{j-1}^{-1}$, and

$$u_{\phi}\left(\mathcal{R}^{\mathcal{N}^{\phi}}
ight) := \mathsf{det}^{-rac{1}{2}}\left[1 - \phi_{|\mathcal{N}^{\phi}}' e^{-\mathcal{R}^{\mathcal{N}^{\phi}}}
ight].$$

Local Index Formula in Conformal Geometry

Remark

The *n*-th degree component is given by

$$\varphi_n(f^0 U_{\phi_0}, \cdots, f^n U_{\phi_n}) = \begin{cases} \int_M f^0 d\tilde{f}^1 \wedge \cdots \wedge d\tilde{f}^n & \text{if } \phi_0 \circ \cdots \circ \phi_n = 1, \\ 0 & \text{if } \phi_0 \circ \cdots \circ \phi_n \neq 1. \end{cases}$$

This represents Connes' transverse fundamental class of M/G.

Remark

- The computation of the CM cocycle is obtained as a consequence of a new heat kernel proof of the equivariant index theorem of Atiyah-Segal-Singer.
- It combines Getzler's rescaling with the Greiner-Hadamard approach to the heat kernel asymptotics.

Mixed Complexes

Definition (Kassel)

A mixed complex is given by

1 Spaces of chains C_m , $m \in \mathbb{N}_0$.

2 Differentials $b: C_{\bullet} \to C_{\bullet-1}$ and $B: C_{\bullet} \to C_{\bullet+1}$.

Definition (Kassel)

The mixed (or cyclic) homology of a mixed complex (C_{\bullet}, b, B) is the homology of the complex,

$$(CC_{\bullet}, b+B), \quad CC_m := \bigoplus_{p+q=m} C_{p-q} = C_m \oplus C_{m-1} \oplus \cdots.$$

Mixed Complexes

Example (Connes, Tsygan)

The cyclic homology of a unital algebra \mathcal{A} is the mixed homology of the mixed complex,

$$(C_{\bullet}(\mathcal{A}), b, B), \quad C_m(\mathcal{A}) = \mathcal{A}^{\otimes (m+1)}.$$

Example

Any cyclic object C (i.e., simplicial object with a cyclic structure) in any Abelian category gives rise to a mixed complex,

$$(C_{\bullet}, b, B), \quad B = (1-t)sN, \quad N_m = 1 + t + \cdots + t^m.$$

Group Homology

Fact

Any (discrete) group Γ admits the free resolution,

$$\cdots \xrightarrow{\partial} \mathbb{C}[\Gamma]^{\otimes 3} \xrightarrow{\partial} \mathbb{C}[\Gamma]^{\otimes 2} \xrightarrow{\partial} \mathbb{C}[\Gamma] \longrightarrow \mathbb{C} \to 0,$$
$$\partial(\psi_0, \dots, \psi_m) = \sum_{0 \le j \le m} (-1)^j (\psi_0, \dots, \hat{\psi}_j, \dots, \psi_m), \quad \psi_j \in \Gamma.$$

Definition

The group homology of Γ with coefficients in a Γ -module V is the homology of the complex,

$$(\mathbb{C}[\Gamma]^{\otimes (\bullet+1)} \otimes_{\Gamma} V, \partial \otimes 1).$$

Remark

For $V = \mathbb{C}$ we get the group homology $H_{\bullet}(\Gamma) \simeq H_{\bullet}(B\Gamma)$.

Equivariant Cohomology

Definition (Bott, Borel)

Given an action of Γ on a manifold X, the equivariant cohomology $H^{\bullet}_{\Gamma}(X)$ is the homology of the double complex,

$$\left(\operatorname{\mathsf{Hom}}_{\Gamma}\left(\mathbb{C}[\Gamma]^{\otimes (p+1)},\Omega^{q}(X)\right),\partial,d
ight).$$

Remark (Borel, Dupont)

We have $H^{\bullet}_{\Gamma}(X) \simeq H^{\bullet}(E\Gamma \times_{\Gamma} X)$.

Theorem (Bott)

Given a Γ -equivariant bundle E over X and a connection ∇ on E, there is a well defined equivariant Chern character,

 $Ch_{\Gamma}(E, \nabla) \in H^{\bullet}_{\Gamma}(X).$

Mixed Equivariant Homology

Definition

The mixed equivariant homology $H^{\Gamma}_{\bullet}(X)^{\natural}$ is the mixed homology of the mixed double complex,

$$\left(\mathbb{C}[\mathsf{\Gamma}]^{\otimes (ullet+1)}\otimes \Omega^{ullet}(X),\partial,d
ight).$$

That is, the mixed homology of the total mixed complex,

$$\left(igoplus_{p+q=ullet} \mathbb{C}[\Gamma]^{\otimes (p+1)} \otimes \Omega^q(X), \partial, d
ight).$$

Proposition

There is a natural bilinear map,

$$H^{ullet}_{\Gamma}(X) \times H_{ullet}(\Gamma) \longrightarrow H^{\Gamma}_{ullet}(X)^{\natural}.$$

Construction of Conformal Invariants

Theorem (RP+HW)

Given $\phi \in G$, let $G_{\phi} = \{\psi \in G; \psi \circ \phi = \phi \circ \psi\}/\langle \phi \rangle$ be its normalizer (where $\langle \phi \rangle$ is the subgroup generated by ϕ). Then

1 There is an explicit embedding,

$$H^{G_{\phi}}_{\bullet}(M^{\phi})^{\natural} \hookrightarrow HC_{\bullet}(\mathcal{A}_{G}), \quad \mathcal{A}_{G} := C^{\infty}(M) \rtimes G.$$

2 We have a bilinear map,

$$H^{\bullet}_{G_{\phi}}(M^{\phi}) \times H_{\bullet}(G_{\phi}) \ni (\omega, \gamma) \longrightarrow \eta(\omega, \gamma) \in HC_{\bullet}(\mathcal{A}_{G}).$$

3 For any $(\omega, \gamma) \in H^{\bullet}_{G_{\phi}}(M^{\phi}) \times H_{\bullet}(G_{\phi})$, the pairing

$$I_{g}^{\phi}(\omega,\gamma) := \langle \mathsf{Ch}(\not\!\!D_{g})_{\sigma_{g}}, \eta(\omega,\gamma) \rangle$$

is an invariant of the conformal class C.

Conformal Invariants

Theorem (RP+HW)

Let E be G-equivariant vector bundle over M and ∇^E a G-invariant connection on E. Then

1 For G-invariant metric $g \in C$,

$$\begin{split} I_{g}^{\phi}\left(\mathsf{Ch}_{\Gamma_{\phi}}(\mathcal{E}_{\mid M^{\phi}}, \nabla^{\mathcal{E}}), 1\right) &= \int_{M^{\phi}} \hat{A}(\mathcal{R}^{\mathcal{T}M^{\phi}}) \wedge \nu_{\phi}\left(\mathcal{R}^{\mathcal{N}^{\phi}}\right) \wedge \mathsf{Ch}(\mathcal{F}^{\mathcal{E}}), \\ &= \mathsf{ind} \mathcal{D}_{\nabla^{\mathcal{E}}}(\phi), \end{split}$$

where $\operatorname{ind} \mathcal{D}_{\nabla^{\mathcal{E}}}(\phi)$ is the equivariant index of $\mathcal{D}_{\nabla^{\mathcal{E}}}$ at ϕ .

When φ has isolated fixed-points we recover the Lefschetz number of φ w.r.t. the spin complex (with coefficients in E).

Remarks & Consequences

Corollary (Branson-Ørsted; Conformal Indices)

Given $\phi \in G$, let $g \in C$ be such that $\phi_*g = g$. Then the value of

does not depend on the choice of g.

Remark

The results of this talk provide us with a cohomological interpretation of Branson-Ørsted's result. In particular, the conformal indices are conformal invariants and Fredholm indices in the usual sense.