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1. Introduction

» C-projective geometry—a natural analogue of projective
geometry in the setting of complex, in particular Kihler
manifolds

» C-projective structures have been studied between 1960 and
1990 in the Japanese and Soviet schools of differential
geometry

» Recently, there has been new interest in c-projective geometry:

» Hamiltonian 2-forms
(Apostolov—Calderbank—Gauduchon—Tonnesen-Friedman)

» C-projective transformations of Kihler manifolds (Matveev,
Kiosak, Rosemann,...)

» Integrable systems (Kiyohara, Topalov, Matveev,...)

» Parabolic geometries

» My talk is based on joint papers arXiv:1512.04516, 1705.11138
with Calderbank—Eastwood—Matveev, and with Matveev.
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2. Projective Geometry

Projective structure on a manifold M"” (n > 2) is an equivalence
class of torsion-free affine connections [V], where V and V are
equivalent if they have the same unparametrised geodesics.

Equivalently, if 3 a 1-form T € QY(M) such that
VaXP =V XP 4+ T X0+ T X6, X ex(M).

Projective manifolds can be viewed as geometric structures
infinitesimally modelled on

RP” = PSL(n + 1,R)/P.

via Cartan connections.
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For a Lie group G and a closed subgroup P C G write g
respectively p for their Lie algebras.

A Cartan geometry of type (G, P) on a manifold M is given by:
» a principal G-bundle § — M with a principal connection
& eQG,9)
» a reduction of structure group i : G — G to P
that satisfy that w = i*© € Q(G, g) induces an isomorphism

™ =G ng/p.

Homogenous model: G — G/P (with G := G xp G = G/P x G)
equipped with the Maurer—Cartan form w = wyc € QY(G, g)

If G is semisimple and P a parabolic subgroup, then a Cartan
geometry of type (G, P) is called a parabolic geometry.
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Curvature: k € Q2_(G,9)" = Q%(M,G xp g).

hor

x = 0 if and only if the Cartan geometry is locally equivalent to its
homogeneous model.

For any representation V of G the Cartan connection induces a
linear connection (tractor connection) VY on

V:QXPV:C;XGV.

Examples:
» Riemannian manifolds <> torsion-free Cartan geometries of
type Euc(n)/O(n) = R"
» Projective manifolds <> normal Cartan geometries of type
PSL(n+ 1,R)/P = RP"
» Conformal manifolds <+ normal Cartan geometries of type
SO(n+1,1)/P=S"
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Metrisability of projective structures (Liouville)

Given a projective structure (M",[V]), does [V] contain the
Levi-Civita connection of a (pseudo-)Riemannian metric? If so, how
many compatible metrics are there?

Solved only for n = 2 (Bryant-Dunajski—Eastwood, 2008) and
n = 3 (Dunajski-Eastwood, 2014; Eastwood 2017).

The problem is controlled by projectively invariant linear
overdetermined system of PDE; the dimension of the solution space
of this system is called the degree of mobility.

Question
Given a (pseudo-)Riemannian manifold, what are the geometric and
topological consequences of degree of mobility at least 27
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~» commuting integrals for the geodesic flow

methods from integrable systems can be used (cf work of
Matveev—Topalov, Matveev)

~» special metric projective invariant connections on tractor
bundles (Kiosak-Matveev, Gover—-Matveev, CEMN)

Remark

» Parabolic geometries, such as projective structures, come
equipped with sequences of invariant differential operators,
called BGG-sequences—a sequence for each tractor bundle
(Cap—SIovak—Soucek, Calderbank—Diemer),

» The first operators of these sequences gives rise to linear
overdetermined systems of PDE, e.g. the metrisability
equation of projective structures and the equations for any
kind of Killing tensors on Riemannian manifolds.
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3. C-projective manifolds

Suppose (M, J) is a complex manifold of dimension 2n > 4.

Otsuki/Tashiro 1954:

» A curve c: (a,b) — M is called J-planar with respect to a
complex affine connection V (i.e. VJ = 0), if V¢ lies in the
span of ¢ and J¢.

» Two complex connections are called c-projectively equivalent,
if they have the same J-planar curves.

Example: Consider complex projective space CP" equipped with
the c-projective structure induced by (the Levi-Civita connection
of) the Fubini-Study metric ggs. Then the J-planar curves are the
regular (smooth) curves that lie within complex lines.
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Proposition (Otsuki/Tashiro, Mikes/Sinyukov)
Two torsion-free affine complex connections V and V on (M, J)
are c-projectively equivalent <= if 3 a 1-form T on M such that

VaXC = VX + 2 XP,
where v 1= 3(Ta0" + 6,5Th — J29Tadp® — Jp9T g5 ).

A c-projective structure on M2" (2n > 4) consists of a complex
structure J and a c-projective equivalence class of complex
torsion-free connections [V].

C-projective densities: We set £(1) := (A2 TM)#+1 and
E(—1) :=&(1)*. It follows that on £(1) one has

V.Y =V, +7T.X.

~» special connections in c-projective class
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Set G :=PSL(n+1,C) and let P be the stabiliser in G of a line in
crtt.

Theorem (Yoshimatsu, 1978)

There is an equivalence of categories between c-projective manifolds
(M27J,[V]) (2n > 4) and (real) normal torsion-free parabolic
geometries of type (G, P). The flat homogeneous model is

(CP", J, [VE=]),

where V&Fs is the Levi-Civita connection of the Fubini-Study
metric grs.
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Curvature of a c-projective structure

» The P-invariant filtration g D p D p, where p4 is the
nilradical of p, induces a filtration on AM = G xp g by
subbundles.

» For a choice V € [V] the bundle AM = G xp g can be
identified with

TM @ gl(TM, J)® T*M.
and the Cartan curvature with a 2-form on M with values in:
g(TM, ) T*M,

given by
WY +Cv,

where WV is the c-projective Weyl curvature and CV the
c-projective Cotton—York tensor.
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(OPY)abd = 0aPYjg — Jja"Phedd® — Pp0d® — Ha"PYeda®,

P3 = a1 (R + w21 (RGs) — Ja"In) 7 R));

where RY, := RY.¢} is the Ricci tensor of V and and PV the
c-projective Schouten tensor of V.



We have WY b d = Rab d — (OPY) a4, Where
(OPY)abd = 0aPYjg — Jja"Phedd® — Pp0d® — Ha"PYeda®,

P3 = a1 (R + w21 (RGs) — Ja"In) 7 R));

where RY, := RY.¢} is the Ricci tensor of V and and PV the
c-projective Schouten tensor of V.

» 2n > 6: W has two irreducible components (of complex type
(1,1) and (2,0)) and is independent of the choice of
connection.

» 2n =4: W is irreducible of complex type (1,1); W and the
(2,0)-component of C are independent of the choice of
connection.

> If W =0 (respectively W = 0 = C(20)) then (M, J,[V]) is
locally equivalent to (CP", J, [V&Fs]).
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Any (pseudo-)Kahler manifold (M, J, g) gives rise to a c-projective
manifold (M, J,[V#]), where V& is the Levi-Civita connection.

Let (M, J,[V]) be a c-projective manifold and denote by 52 TM
the J-invariant elements in S>TM.

For any section 2P € I'(S2 TM(—1)) and connection V € [V] the
trace-free-part(V,n"¢) =: tfp(V "),
is independent of the choice of connection in [V]. Hence,
DYt i tfp(Van®)

is a c-projectively invariant differential operator.
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(pseudo-)Kahler metrics of (M, J,[V]) and non-degenerate
solutions of DMet(p) = 0.
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Mapping a Hermitian metric gap € [(S2T*M) on (M, J) to
g?vol(g) 1 restricts to a bijection between compatible

(pseudo-)Kahler metrics of (M, J,[V]) and non-degenerate
solutions of DMet(p) = 0.

Let 7 be the tractor bundle associated to the representation C"*+1
of SL(n+1,C) and set

V= S3T = S2TM(-1) + TM(-1) + £(-1).

Prolongation

Elements in the kernel of DMet are in bijective correspondence to
sections that are parallel for a linear connection on V. For a choice
of connection V € [V], this connection is given by

nbc Vanbc _|_5a(bxc) + Ja(deC)Xd 1 0
verI Xb | = VaXb + P5ab - Pacnbc +; Wadbcndc
1Y vap - PabXb _Cabcnbc

)



» The degree of mobility of [V] is defined to be the dimension of
ker DMet,



» The degree of mobility of [V] is defined to be the dimension of
ker DMet
» Non-degenerate elements 7?2 in the kernel of DMet that satisfy

W,a?en® = 0 and C,penP = 0 corresponds to compatible
(pseudo-)Kahler-Einstein metrics.



» The degree of mobility of [V] is defined to be the dimension of
ker DMet

» Non-degenerate elements 7?2 in the kernel of DMet that satisfy
W,a?en® = 0 and C,penP = 0 corresponds to compatible
(pseudo-)Kahler-Einstein metrics.

» S2 TM(-1) is isomorphic to /A2 TM(—1)
~> Hamiltonian 2—forms (Apostolov—Calderbank—Gauduchon).



» The degree of mobility of [V] is defined to be the dimension of
ker DMet

» Non-degenerate elements 7?2 in the kernel of DMet that satisfy
W,a?en® = 0 and C,penP = 0 corresponds to compatible
(pseudo-)Kahler-Einstein metrics.

» S2 TM(-1) is isomorphic to /A2 TM(—1)
~> Hamiltonian 2—forms (Apostolov—Calderbank—Gauduchon).

Another important c-projective invariant operator is the c-projective
Hessian operator given by

DMes: £(1) =82 T*M(1)

DHesO' — v(avb)g + P(ab)a — J(aCJb)d(chdU + Pch')a
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<= the Ricci tensor of the special connection corresponding to o
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Proposition

For a nowhere vanishing section o € I'(£(1)) we have DH¢sg = 0
<= the Ricci tensor of the special connection corresponding to o
(i.e. Vo =0) is J-invariant.

Observation
For any compatible (pseudo-)Kahler metric g2 = 12| det(n)|, the

section vol(g)fﬁ = det(n) € ['(£(1)) is in the kernel of the
c-projective Hessian.
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5. Consequences of degree of mobility > 2—Conserved
quantities for geodesic flow

Suppose (M, J, g) is a (pseudo-)Kahler manifold. Denote by Q the
associated Kahler form and by V its Levi-Civita connection, and
consider the induced c-projective manifold (M, J, [V]).

Proposition

Then o = hvol(g)_n%1 € I'(£(1)) is in the kernel of the c-projective
Hessian <=
KP = Q°V,h = J,°g°V.h,

is a holomorphic Killing vector field with respect to (J,g) (i.e. his
a Killing potential or Hamilitonian for K).
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Invariant Differential Pairing
[(S2TM(-1)) x T(E(1)) — T(TM)
Ne(n,0) = n?°Va0—1oV 0> resp. Kb(n,0) = J.PAC(n, 0).

Suppose 1 and 7j are two linearly independent nondegenerate
solutions of the metrisability equation (corresponding to metrics
(g,&)). Consider

7?P(t) == 7 — iy 5(¢) := detii(t).

Then for any s € R such that 7j(s) is non-degenerate

K(ii(s), 5(t)) = K(ii(t) + (t — s)n, 6(t)) = (t — s)K(n,5(1)),

is a holomorphic Killing vector field with respect to the
corresponding metric for all t € R.
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corresponding to (g, &) ~ family of Possion-commuting linear
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» family of commuting Killing vector fields K(t) := K(n,5(t))
corresponding to (g, &) ~ family of Possion-commuting linear
integrals L; for the geodesic flow

» family of canonical symmetric Hermitian Killing tensors I:l(t)
corresponding to (g, &) ~ family of Poisson-commuting
quadratic integrals /; for the geodesic flow (Topalov)

» Integrability is related to the spectral theory of
1
AP = vol(g) 1P g,c € End(TM).



Theorem

Let (M, J,[V]) be a c-projective manifold that admits compatible
(pseudo-)Kahler metrics g, and g, associated to linearly
independent solutions 7?? and 7j2¢ = n?PA,¢ of the metrisability
equation.

1. The number of functionally independent linear integrals Ls of
g is equal to the number of nonconstant eigenvalues of A at
any generic point.

2. The number of functionally independent quadratic integrals /;
of g is equal to the degree of the minimal polynomial of A at
any generic point.

3. The integrals /; are functionally independent from the integrals
Ls.
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6. Consequences of degree of mobility > 2—Special
connections on tractor bundles

Theorem [Fedorova et al., 2014]

Suppose (M?", J, g) is a connected (pseudo-)Kahler manifold

(2n > 4) of degree of mobility > 3. Then there exists constant

B € R such that all solutions of the metrisability equation

AP € T(S2 TM) uniquely lift to sections of V that are parallel for
the following connection

Abc vaAbc +5a(b/\c) +Ja(bJec)/\e
Vol At | = VAP 4+ ué.b —2Bg,cAP |,
[ Vatt — 2BgapN\P

where V is the Levi-Civita connection of g and densities are
trivialised by g.

» this lift of A% to a section of V differs from the lift that is
parallel for the prolongation connection
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» the formula for the connection occurs when one replaces P
in the tractor connection by 2Bg,,

Denote the Kihler curvature tensor of metrics of constant sectional
holomorphic curvature 4 by:

Sabed = Bac8bd — 8bc8ad + Lacbd — Qpcag + 225 Q2cq

» At any point x € M there exist at most one constant B € R
such that

B ._
Gabcd = Rabcd - Bsabcd

has nullity at x, i.e. there exists 0 # v € T, M such that
Gﬁxdvd =0.

» We write Ny for x € M for the nullity distribution of (M, J, g)
and say that g has nullity at x, if N is nonzero.



Proposition
Suppose (M?", J, g) is a (pseudo-)Kzhler manifold (2n > 4) and let
v? € T,M be a nonzero tangent vector. Then the following

statements are equivalent:
1. v¥ e N,
2. there exists a constant B € R such that
Wabcdvd = (J ePeb — 2BQab)JdCVd
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Proposition

Suppose (M?", J, g) is a (pseudo-)Kzhler manifold (2n > 4) and let
v? € T,M be a nonzero tangent vector. Then the following
statements are equivalent:

1. v¥ e N,
2. there exists a constant B € R such that
Wabcdvd = (JaePeb — 2BQab)JdCVd
3. Wapqviv? =0 and (W,pq + JpeJr Wael g)vP = 0.

Corollary

At any x € M, the nullity distribution of A is a metric c-projective
invariant, i.e. the same for c-projectively equivalent (pseudo-)K3hler
metrics g and g. Furthermore, if N, is nonzero, then

5ab - 2§'é-ab = Pab - 2Bgab-



» In the above Theorem the constant B is characterised by
nullity unless all c-projectively equivalent metrics are affinely
equivalent, since

GE N =0

abci

for any solution A2? is a solution of the metrisability equation.



» In the above Theorem the constant B is characterised by

nullity unless all c-projectively equivalent metrics are affinely
equivalent, since

GE N =0

abci

for any solution A2? is a solution of the metrisability equation.

Theorem

Let (M, J, g) be a connected (pseudo-)Kahler manifold of degree of
mobility at least 2. Assume that there is a dense open subset

U C M on which (J, g) has c-projective nullity and denote by B
the corresponding function. Then the following hold:

» B is constant

» any solution A?? of the metrisability equation lifts uniquely to a
section of V which is parallel for the special tractor connection.



Theorem (Yano—Obata conjecture)
Let (M, g, J) be a complete connected Kahler manifold of real
dimension 2n > 4. Then Affy(g,J) = CProjy(g, J), unless

(M, g, J) is actually compact and isometric to (CP", J, cges) for
some positive constant ¢ € R.

In the compact case, this was first proved by Matveev—Rosemann
resp. Bolsinov—Matveev—Rosemann in the (pseudo-)Kahler setting.
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Theorem (Yano—Obata conjecture)
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Structure of the proof

» For ¢ € CProjy(g,J) \ Affo(g,J), g and ¢*g are c-projectively
equivalent, non-affinely equivalent, complete Kihler metrics

» Then one can show that g has nullity on a dense open subset
with positive B and hence B is constant and any solution of
the metrisability equation lifts to a section parallel for the
special connection on V for that B
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Theorem (Tanno 1978)
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non-trivial solution A € C*°(M) of the above equation for B € R,.
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Theorem (Matveev—N., 2017)

Suppose (M, J, g) is a connected complete Kahler manifold of
dimension 2n > 4 whose holomorphic sectional curvature is not a
positive constant. Then the index of the subgroup Aff(J, g) in the
group CProj(J, g) is at most 2.



