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1. Introduction

I C-projective geometry—a natural analogue of projective
geometry in the setting of complex, in particular Kähler
manifolds

I C-projective structures have been studied between 1960 and
1990 in the Japanese and Soviet schools of differential
geometry

I Recently, there has been new interest in c-projective geometry:

I Hamiltonian 2-forms
(Apostolov–Calderbank–Gauduchon–Tonnesen-Friedman)

I C-projective transformations of Kähler manifolds (Matveev,
Kiosak, Rosemann,...)

I Integrable systems (Kiyohara, Topalov, Matveev,...)
I Parabolic geometries

I My talk is based on joint papers arXiv:1512.04516, 1705.11138
with Calderbank–Eastwood–Matveev, and with Matveev.
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2. Projective Geometry

Projective structure on a manifold Mn (n ≥ 2) is an equivalence
class of torsion-free affine connections [∇], where ∇̂ and ∇ are
equivalent if they have the same unparametrised geodesics.

Equivalently, if ∃ a 1-form Υ ∈ Ω1(M) such that

∇̂aX
b = ∇aX

b + ΥaX
b + ΥcX

cδa
b X ∈ X(M).

Projective manifolds can be viewed as geometric structures
infinitesimally modelled on

RPn ∼= PSL(n + 1,R)/P.

via Cartan connections.
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For a Lie group G and a closed subgroup P ⊂ G write g
respectively p for their Lie algebras.

A Cartan geometry of type (G ,P) on a manifold M is given by:
I a principal G -bundle G̃ → M with a principal connection
ω̃ ∈ Ω1(G̃, g)

I a reduction of structure group i : G → G̃ to P

that satisfy that ω = i∗ω̃ ∈ Ω1(G, g) induces an isomorphism

TM ∼= G ×P g/p.

Homogenous model: G → G/P (with G̃ := G ×P G ∼= G/P × G )
equipped with the Maurer–Cartan form ω = ωMC ∈ Ω1(G , g)

If G is semisimple and P a parabolic subgroup, then a Cartan
geometry of type (G ,P) is called a parabolic geometry.
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Curvature: κ ∈ Ω2
hor(G, g)P ∼= Ω2(M,G ×P g).

κ ≡ 0 if and only if the Cartan geometry is locally equivalent to its
homogeneous model.

For any representation V of G the Cartan connection induces a
linear connection (tractor connection) ∇V on

V = G ×P V = G̃ ×G V.

Examples:
I Riemannian manifolds ↔ torsion-free Cartan geometries of

type Euc(n)/O(n) ∼= Rn

I Projective manifolds ↔ normal Cartan geometries of type
PSL(n + 1,R)/P ∼= RPn

I Conformal manifolds ↔ normal Cartan geometries of type
SO(n + 1, 1)/P ∼= Sn
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Metrisability of projective structures (Liouville)
Given a projective structure (Mn, [∇]), does [∇] contain the
Levi-Civita connection of a (pseudo-)Riemannian metric? If so, how
many compatible metrics are there?

Solved only for n = 2 (Bryant–Dunajski–Eastwood, 2008) and
n = 3 (Dunajski–Eastwood, 2014; Eastwood 2017).

The problem is controlled by projectively invariant linear
overdetermined system of PDE; the dimension of the solution space
of this system is called the degree of mobility.

Question
Given a (pseudo-)Riemannian manifold, what are the geometric and
topological consequences of degree of mobility at least 2?
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; commuting integrals for the geodesic flow

methods from integrable systems can be used (cf work of
Matveev–Topalov, Matveev)

; special metric projective invariant connections on tractor
bundles (Kiosak–Matveev, Gover–Matveev, CEMN)

Remark
I Parabolic geometries, such as projective structures, come

equipped with sequences of invariant differential operators,
called BGG-sequences—a sequence for each tractor bundle
(Čap–Slovak–Soucek, Calderbank–Diemer),

I The first operators of these sequences gives rise to linear
overdetermined systems of PDE, e.g. the metrisability
equation of projective structures and the equations for any
kind of Killing tensors on Riemannian manifolds.
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3. C-projective manifolds

Suppose (M, J) is a complex manifold of dimension 2n ≥ 4.

Otsuki/Tashiro 1954:

I A curve c : (a, b)→ M is called J-planar with respect to a
complex affine connection ∇ (i.e.∇J = 0), if ∇ċ ċ lies in the
span of ċ and Jċ .

I Two complex connections are called c-projectively equivalent,
if they have the same J-planar curves.

Example: Consider complex projective space CPn equipped with
the c-projective structure induced by (the Levi-Civita connection
of) the Fubini-Study metric gFS. Then the J-planar curves are the
regular (smooth) curves that lie within complex lines.
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span of ċ and Jċ .
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Proposition (Otsuki/Tashiro, Mikeš/Sinyukov)
Two torsion-free affine complex connections ∇ and ∇̂ on (M, J)
are c-projectively equivalent ⇐⇒ if ∃ a 1-form Υ on M such that

∇̂aX
c = ∇aX

c + υab
cX b,

where υab
c := 1

2(Υaδb
c + δa

cΥb − Ja
dΥdJb

c − Jb
dΥdJa

c).

A c-projective structure on M2n (2n ≥ 4) consists of a complex
structure J and a c-projective equivalence class of complex
torsion-free connections [∇].

C-projective densities: We set E(1) := (∧2nTM)
1

n+1 and
E(−1) := E(1)∗. It follows that on E(1) one has

∇̂aΣ = ∇aΣ + ΥaΣ.

; special connections in c-projective class
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Set G := PSL(n + 1,C) and let P be the stabiliser in G of a line in
Cn+1.

Theorem (Yoshimatsu, 1978)
There is an equivalence of categories between c-projective manifolds
(M2n, J, [∇]) (2n ≥ 4) and (real) normal torsion-free parabolic
geometries of type (G ,P). The flat homogeneous model is

(CPn, J, [∇gFS ]),

where ∇gFS is the Levi-Civita connection of the Fubini–Study
metric gFS .
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Curvature of a c-projective structure

I The P-invariant filtration g ⊃ p ⊃ p+, where p+ is the
nilradical of p, induces a filtration on AM = G ×P g by
subbundles.

I For a choice ∇ ∈ [∇] the bundle AM = G ×P g can be
identified with

TM ⊕ gl(TM, J)⊕ T ∗M.

and the Cartan curvature with a 2-form on M with values in:

gl(TM, J)⊕ T ∗M,

given by
W∇ + C∇,

where W∇ is the c-projective Weyl curvature and C∇ the
c-projective Cotton–York tensor.
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We have W∇
ab

c
d = R∇ab

c
d − (∂P∇)ab

c
d , where

(∂P∇)ab
c
d := δ[a

cP∇b]d − J[a
cP∇b]eJd

e − P∇[ab]δd
c − J[a

eP∇b]eJd
c ,

P∇ab = 1
n+1(R∇ab + 1

n−1(R∇(ab) − J(a
cJb)

dR∇cd)),

where R∇ab := R∇ca
c
b is the Ricci tensor of ∇ and and P∇ the

c-projective Schouten tensor of ∇.

I 2n ≥ 6: W has two irreducible components (of complex type
(1, 1) and (2, 0)) and is independent of the choice of
connection.

I 2n = 4: W is irreducible of complex type (1, 1); W and the
(2, 0)-component of C are independent of the choice of
connection.

I If W ≡ 0 (respectively W = 0 = C (2,0)), then (M, J, [∇]) is
locally equivalent to (CPn, J, [∇gFS ]).
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4. Metrisable c-projective structures

Any (pseudo-)Kähler manifold (M, J, g) gives rise to a c-projective
manifold (M, J, [∇g ]), where ∇g is the Levi-Civita connection.

Let (M, J, [∇]) be a c-projective manifold and denote by S2
+TM

the J-invariant elements in S2TM.

For any section ηab ∈ Γ(S2
+TM(−1)) and connection ∇ ∈ [∇] the

trace-free-part(∇aη
bc) =: tfp(∇aη

bc),

is independent of the choice of connection in [∇]. Hence,

DMet : ηab 7→ tfp(∇aη
bc)

is a c-projectively invariant differential operator.
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I The degree of mobility of [∇] is defined to be the dimension of
kerDMet.

I Non-degenerate elements ηab in the kernel of DMet that satisfy
Wad

b
cη

dc = 0 and Cabcη
bc = 0 corresponds to compatible

(pseudo-)Kähler–Einstein metrics.

I S2
+TM(−1) is isomorphic to ∧2

+TM(−1)
; Hamiltonian 2−forms (Apostolov–Calderbank–Gauduchon).

Another important c-projective invariant operator is the c-projective
Hessian operator given by

DHes : E(1)→S2
−T
∗M(1)

DHesσ = ∇(a∇b)σ + P(ab)σ − J(a
cJb)

d(∇c∇dσ + Pcdσ),
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Proposition
For a nowhere vanishing section σ ∈ Γ(E(1)) we have DHesσ = 0
⇐⇒ the Ricci tensor of the special connection corresponding to σ
(i.e. ∇σ = 0) is J-invariant.

Observation
For any compatible (pseudo-)Kähler metric gab = ηab| det(η)|, the
section vol(g)−

1
n+1 = det(η) ∈ Γ(E(1)) is in the kernel of the

c-projective Hessian.
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5. Consequences of degree of mobility ≥ 2—Conserved
quantities for geodesic flow

Suppose (M, J, g) is a (pseudo-)Kähler manifold. Denote by Ω the
associated Kähler form and by ∇ its Levi-Civita connection, and
consider the induced c-projective manifold (M, J, [∇]).

Proposition
Then σ = hvol(g)−

1
n+1 ∈ Γ(E(1)) is in the kernel of the c-projective

Hessian ⇐⇒
Kb := Ωab∇ah = Ja

bgac∇ch,

is a holomorphic Killing vector field with respect to (J, g) (i.e. h is
a Killing potential or Hamilitonian for K ).
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Invariant Differential Pairing

Γ(S2
+TM(−1))× Γ(E(1))→ Γ(TM)

Λc(η, σ) = ηac∇aσ− 1
nσ∇aη

ac resp. Kb(η, σ) = Jc
bΛc(η, σ).

Suppose η and η̃ are two linearly independent nondegenerate
solutions of the metrisability equation (corresponding to metrics
(g , g̃)). Consider

η̃ab(t) := η̃ab − tηab σ̃(t) := det η̃(t).

Then for any s ∈ R such that η̃(s) is non-degenerate

K (η̃(s), σ̃(t)) = K (η̃(t) + (t − s)η, σ̃(t)) = (t − s)K (η, σ̃(t)),

is a holomorphic Killing vector field with respect to the
corresponding metric for all t ∈ R.
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I family of commuting Killing vector fields K (t) := K (η, σ̃(t))
corresponding to (g , g̃) ; family of Possion-commuting linear
integrals Lt for the geodesic flow

I family of canonical symmetric Hermitian Killing tensors H̃(t)
corresponding to (g , g̃) ; family of Poisson-commuting
quadratic integrals It for the geodesic flow (Topalov)

I Integrability is related to the spectral theory of
Aa

b = vol(g)−
1

n+1 η̃bcgac ∈ End(TM).



I family of commuting Killing vector fields K (t) := K (η, σ̃(t))
corresponding to (g , g̃) ; family of Possion-commuting linear
integrals Lt for the geodesic flow

I family of canonical symmetric Hermitian Killing tensors H̃(t)
corresponding to (g , g̃) ; family of Poisson-commuting
quadratic integrals It for the geodesic flow (Topalov)

I Integrability is related to the spectral theory of
Aa

b = vol(g)−
1

n+1 η̃bcgac ∈ End(TM).



I family of commuting Killing vector fields K (t) := K (η, σ̃(t))
corresponding to (g , g̃) ; family of Possion-commuting linear
integrals Lt for the geodesic flow

I family of canonical symmetric Hermitian Killing tensors H̃(t)
corresponding to (g , g̃) ; family of Poisson-commuting
quadratic integrals It for the geodesic flow (Topalov)

I Integrability is related to the spectral theory of
Aa

b = vol(g)−
1

n+1 η̃bcgac ∈ End(TM).



Theorem
Let (M, J, [∇]) be a c-projective manifold that admits compatible
(pseudo-)Kähler metrics gab and g̃ab associated to linearly
independent solutions ηab and η̃ac = ηabAb

c of the metrisability
equation.
1. The number of functionally independent linear integrals Ls of

g is equal to the number of nonconstant eigenvalues of A at
any generic point.

2. The number of functionally independent quadratic integrals It
of g is equal to the degree of the minimal polynomial of A at
any generic point.

3. The integrals It are functionally independent from the integrals
Ls .



6. Consequences of degree of mobility ≥ 2—Special
connections on tractor bundles

Theorem [Fedorova et al., 2014]
Suppose (M2n, J, g) is a connected (pseudo-)Kähler manifold
(2n ≥ 4) of degree of mobility ≥ 3. Then there exists constant
B ∈ R such that all solutions of the metrisability equation
Aab ∈ Γ(S2

+TM) uniquely lift to sections of V that are parallel for
the following connection

∇a

Abc

Λb

µ

 =

∇aA
bc + δa

(bΛc) + Ja
(bJe

c)Λe

∇aΛb + µδa
b − 2BgacAbc

∇aµ− 2BgabΛb

 ,

where ∇ is the Levi-Civita connection of g and densities are
trivialised by g .

I this lift of Aab to a section of V differs from the lift that is
parallel for the prolongation connection
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I the formula for the connection occurs when one replaces Pab

in the tractor connection by 2Bgab

Denote the Kähler curvature tensor of metrics of constant sectional
holomorphic curvature 4 by:

Sabcd := gacgbd − gbcgad + ΩacΩbd − ΩbcΩad + 2ΩabΩcd

I At any point x ∈ M there exist at most one constant B ∈ R
such that

GB
abcd := Rabcd − BSabcd

has nullity at x , i.e. there exists 0 6= v ∈ TxM such that
GB
abcdv

d = 0.

I We write Nx for x ∈ M for the nullity distribution of (M, J, g)
and say that g has nullity at x , if Nx is nonzero.
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Proposition
Suppose (M2n, J, g) is a (pseudo-)Kähler manifold (2n ≥ 4) and let
vd ∈ TxM be a nonzero tangent vector. Then the following
statements are equivalent:
1. vd ∈ Nx

2. there exists a constant B ∈ R such that
Wab

c
dv

d = (Ja
ePeb − 2BΩab)Jd

cvd

3. Wab
c
dv

avd = 0 and (Wab
c
d + Jb

eJf
cWae

f
d)vb = 0.

Corollary
At any x ∈ M, the nullity distribution of Nx is a metric c-projective
invariant, i.e. the same for c-projectively equivalent (pseudo-)Kähler
metrics g and g̃ . Furthermore, if Nx is nonzero, then

P̃ab − 2B̃g̃ab = Pab − 2Bgab.
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I In the above Theorem the constant B is characterised by
nullity unless all c-projectively equivalent metrics are affinely
equivalent, since

GB
abcdΛd = 0

for any solution Aab is a solution of the metrisability equation.

Theorem
Let (M, J, g) be a connected (pseudo-)Kähler manifold of degree of
mobility at least 2. Assume that there is a dense open subset
U ⊆ M on which (J, g) has c-projective nullity and denote by B
the corresponding function. Then the following hold:

I B is constant
I any solution Aab of the metrisability equation lifts uniquely to a

section of V which is parallel for the special tractor connection.
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Theorem (Yano–Obata conjecture)
Let (M, g , J) be a complete connected Kähler manifold of real
dimension 2n ≥ 4. Then Aff0(g , J) = CProj0(g , J), unless
(M, g , J) is actually compact and isometric to (CPn, J, cgFS) for
some positive constant c ∈ R.

In the compact case, this was first proved by Matveev–Rosemann
resp. Bolsinov–Matveev–Rosemann in the (pseudo-)Kähler setting.

Structure of the proof

I For φ ∈ CProj0(g , J) \ Aff0(g , J), g and φ∗g are c-projectively
equivalent, non-affinely equivalent, complete Kähler metrics

I Then one can show that g has nullity on a dense open subset
with positive B and hence B is constant and any solution of
the metrisability equation lifts to a section parallel for the
special connection on V for that B
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I Then one can show that g has nullity on a dense open subset
with positive B and hence B is constant and any solution of
the metrisability equation lifts to a section parallel for the
special connection on V for that B
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I For any solution Aab ∈ Γ(S2
+TM) of the metrisability equation

the function λ = −1
2Aa

a satisfies the following differential
equation:

∇a∇b∇cλ = −B(2Λagbc+gabΛc+gacΛb−ΩabJc
dΛd−ΩacJb

dΛd),

where Λa = ∇aλ.

Theorem (Tanno 1978)
Suppose a connected complete Kähler manifold (M, J, g) admits a
non-trivial solution λ ∈ C∞(M) of the above equation for B ∈ R+.
Then (M, J, g) ∼= (CPn, J, gFS).

Theorem (Matveev–N., 2017)
Suppose (M, J, g) is a connected complete Kähler manifold of
dimension 2n ≥ 4 whose holomorphic sectional curvature is not a
positive constant. Then the index of the subgroup Aff(J, g) in the
group CProj(J, g) is at most 2.
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