Integrability and Associativity

Rui Loja Fernandes

Department of Mathematics University of Illinois at Urbana-Champaign, USA

Rui Loja Fernandes Integrability and Associativity

Every finite dimensional Lie algebra is the Lie algebra of a Lie group

Every finite dimensional Lie algebra is the Lie algebra of a Lie group

This fundamental result fails in other contexts, such as:

- Infinite dimensional (e.g., Banach) Lie algebras
- Lie algebroids

Every finite dimensional Lie algebra is the Lie algebra of a Lie group

This fundamental result fails in other contexts, such as:

- Infinite dimensional (e.g., Banach) Lie algebras
- Lie algebroids

Aim: Failure in integrability is closely related to failure in associativity.

Every finite dimensional Lie algebra is the Lie algebra of a Lie group

This fundamental result fails in other contexts, such as:

- Infinite dimensional (e.g., Banach) Lie algebras
- Lie algebroids

Aim: Failure in integrability is closely related to failure in associativity.

Based on:

- joint work with Marius Crainic (Utrecht)
- PhD Thesis of my student Daan Michiels (UIUC)

Groupoids

Definition

A groupoid is a category where every arrow is invertible.

Groupoids

Definition

A groupoid is a category where every arrow is invertible.

Source/target maps:

(

$$G = \{ \text{ arrows } \} \rightrightarrows \{ \text{ objects } \} = M$$

а

Groupoids

Definition

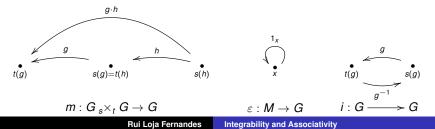
A groupoid is a category where every arrow is invertible.

Source/target maps:

$$G = \{ \text{ arrows } \} \Rightarrow \{ \text{ objects } \} = M$$

g

Multiplication, inversion and unit:



Lie Groupoids

Definition

A **Lie groupoid** is a groupoid $G \Rightarrow M$ where *G* and *M* are manifolds, $s, t : G \Rightarrow M$ are submersions, and $m : G_{s} \times_{t} G \rightarrow G, \varepsilon : M \rightarrow G$ and $i : G \rightarrow G$ are smooth. \triangle

Lie Groupoids

Definition

A Lie groupoid is a groupoid $G \Rightarrow M$ where G and M are manifolds, $s, t : G \Rightarrow M$ are submersions, and $m : G_s \times_t G \rightarrow G, \varepsilon : M \rightarrow G$ and $i : G \rightarrow G$ are smooth. \triangle

Basic concepts:

- **source/target fibers** $s^{-1}(x)$, $t^{-1}(x)$ (closed submanifolds);
- orbits: $\mathcal{O}_x = t(s^{-1}(x))$ (immersed submanifolds);
- isotropy Lie groups: $G_x = s^{-1}(x) \cap t^{-1}(x)$ (Lie groups);

Lie Groupoids

Definition

A **Lie groupoid** is a groupoid $G \rightrightarrows M$ where *G* and *M* are manifolds, $s, t : G \rightrightarrows M$ are submersions, and $m : G_s \times_t G \rightarrow G, \varepsilon : M \rightarrow G$ and $i : G \rightarrow G$ are smooth. \triangle

Basic concepts:

- **source/target fibers** $s^{-1}(x)$, $t^{-1}(x)$ (closed submanifolds);
- orbits: $\mathcal{O}_x = t(s^{-1}(x))$ (immersed submanifolds);
- isotropy Lie groups: $G_x = s^{-1}(x) \cap t^{-1}(x)$ (Lie groups);

There is an obvious notion of (Lie) groupoid morphism:

Lie Groupoids and Moduli Spaces/Stacks

Given a Lie groupoid $G \Rightarrow M$ its **coarse moduli space** is: $\blacksquare M/G$ with the quotient topology.

Lie Groupoids and Moduli Spaces/Stacks

Given a Lie groupoid $G \rightrightarrows M$ its **coarse moduli space** is:

• M/G with the quotient topology.

Information is lost! Instead:

Definition

A **differentiable stack** is a Morita equivalence class of Lie groupoids.

(i.e, a Lie groupoid is an atlas for a stack and Morita equivalence is the notion of equivalence for such atlas) \triangle

Lie algebroids

Lie algebroids

Definition

A **Lie algebroid** is a vector bundle $A \rightarrow M$, with a Lie bracket $[,] : \Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$ and a bundle map $\rho : A \rightarrow TM$, called the anchor, such that:

 $[s_1, fs_2] = f[s_1, s_2] + \rho(s_1)(f)s_2, \quad \forall f \in C^{\infty}(M), s_1, s_2 \in \Gamma(A).$

 \triangle

Lie algebroids

Definition

A **Lie algebroid** is a vector bundle $A \rightarrow M$, with a Lie bracket $[,] : \Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$ and a bundle map $\rho : A \rightarrow TM$, called the anchor, such that:

$$[s_1, fs_2] = f[s_1, s_2] + \rho(s_1)(f)s_2, \quad \forall f \in C^{\infty}(M), s_1, s_2 \in \Gamma(A).$$

\triangle

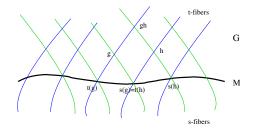
Basic concepts:

- **Orbits:** $\rho([s_1, s_2]) = [\rho(s_1), \rho(s_2)] \Rightarrow \text{Im } \rho \text{ is integrable (singular)}$ distribution.
- Isotropy Lie algebras: For x ∈ M, [,] restricts to Lie bracket on g_x := ker ρ.

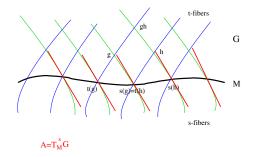
There is also a notion of Lie algebroid morphism.

Lie Functor

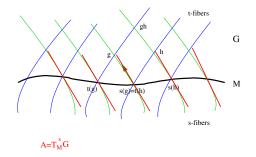
Lie Functor



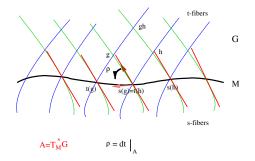
Lie Functor



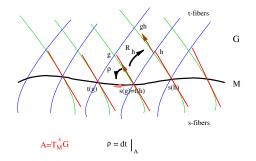
Lie Functor



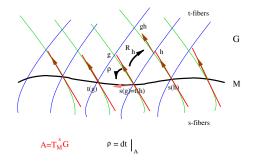
Lie Functor



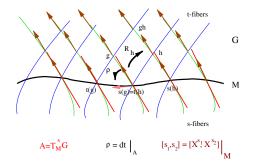
Lie Functor



Lie Functor

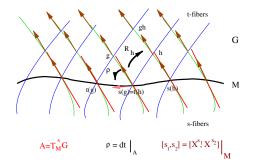


Lie Functor



Lie Functor

• Given $G \rightrightarrows M$ there is an **associated Lie algebroid** $A(G) \rightarrow M$:



• Given a groupoid morphism $\Phi : G_1 \to G_2$ there is an **associated** algebroid morphism $\Phi_* : A(G_1) \to A(G_2)$. \triangle

Lie's fundamental theorems

■ Lie I: Given a source connected Lie groupoid $G \Rightarrow M$ there is a unique source 1-connected Lie groupoid $\tilde{G} \Rightarrow M$ with $A(\tilde{G}) \simeq A(G)$ and a unique cover of Lie groupoids $\tilde{G} \rightarrow G$;

Lie's fundamental theorems

- Lie I: Given a source connected Lie groupoid $G \Rightarrow M$ there is a unique source 1-connected Lie groupoid $\tilde{G} \Rightarrow M$ with $A(\tilde{G}) \simeq A(G)$ and a unique cover of Lie groupoids $\tilde{G} \rightarrow G$;
- Lie II: Given a source 1-connected Lie groupoid $G_1 \rightrightarrows M_1$ and a Lie groupoid $G_2 \rightrightarrows M_2$, each Lie algebroid morphism $\phi : A(G_1) \rightarrow A(G_2)$ integrates to a unique Lie groupoid morphism $\Phi : G_1 \rightarrow G_2$ with $\Phi_* = \phi$;

Lie's fundamental theorems

- Lie I: Given a source connected Lie groupoid $G \Rightarrow M$ there is a unique source 1-connected Lie groupoid $\tilde{G} \Rightarrow M$ with $A(\tilde{G}) \simeq A(G)$ and a unique cover of Lie groupoids $\tilde{G} \rightarrow G$;
- Lie II: Given a source 1-connected Lie groupoid $G_1 \rightrightarrows M_1$ and a Lie groupoid $G_2 \rightrightarrows M_2$, each Lie algebroid morphism $\phi : A(G_1) \rightarrow A(G_2)$ integrates to a unique Lie groupoid morphism $\Phi : G_1 \rightarrow G_2$ with $\Phi_* = \phi$;

Lie III fails: not every Lie algebroid arises from a Lie groupoid. Obstructions are completely understood. \triangle

Why do we care?

Classification of Kähler metrics with vanishing Bochner tensor [Bryant 2001]:

Why do we care?

Classification of Kähler metrics with vanishing Bochner tensor [Bryant 2001]:

Find all principal U_n-bundles *P* equipped with 1-forms $\theta \in \Omega^1(P, \mathbb{C}^n)$, $\eta \in \Omega^1(P, \mathfrak{u}_n)$ and functions $(S, T, U) : P \to i\mathfrak{u}_n \oplus \mathbb{C}^n \oplus \mathbb{R}$ such that:

$$\begin{cases} d\theta = -\eta \land \theta \\ d\eta = -\eta \land \eta + S\theta^* \land \theta - S\theta \land \theta^* - \theta \land \theta^* S + (\theta^* \land S\theta)I_n \\ dS = -\eta S + S\eta + T\theta^* + \theta T^* + \frac{1}{2}(T^*\theta + \theta^*T)I_n \\ dT = -\eta T + (UI_n + S^2)\theta \\ dU = T^*S\theta + \theta^*ST \end{cases}$$

Then $P = F_{U_n}(M)$ is the U_n -structure of a Bochner-Kähler manifold, with tautological 1-form θ , connection 1-form η and invariants {S, T, U}.

Why do we care?

Classification of Kähler metrics with vanishing Bochner tensor [Bryant 2001]:

Find all principal U_n-bundles *P* equipped with 1-forms $\theta \in \Omega^1(P, \mathbb{C}^n)$, $\eta \in \Omega^1(P, \mathfrak{u}_n)$ and functions $(S, T, U) : P \to i\mathfrak{u}_n \oplus \mathbb{C}^n \oplus \mathbb{R}$ such that:

$$\begin{cases} d\theta = -\eta \land \theta \\ d\eta = -\eta \land \eta + S\theta^* \land \theta - S\theta \land \theta^* - \theta \land \theta^* S + (\theta^* \land S\theta)I_n \\ dS = -\eta S + S\eta + T\theta^* + \theta T^* + \frac{1}{2}(T^*\theta + \theta^*T)I_n \\ dT = -\eta T + (UI_n + S^2)\theta \\ dU = T^*S\theta + \theta^*ST \end{cases}$$

Then $P = F_{U_n}(M)$ is the U_n -structure of a Bochner-Kähler manifold, with tautological 1-form θ , connection 1-form η and invariants {S, T, U}.

• Solutions can be found by integrating a Lie algebroid to a Lie groupoid!!

Why do we care?

Classification of Kähler metrics with vanishing Bochner tensor [Bryant 2001]:

Find all principal U_n-bundles *P* equipped with 1-forms $\theta \in \Omega^1(P, \mathbb{C}^n)$, $\eta \in \Omega^1(P, \mathfrak{u}_n)$ and functions $(S, T, U) : P \to i\mathfrak{u}_n \oplus \mathbb{C}^n \oplus \mathbb{R}$ such that:

$$\begin{cases} d\theta = -\eta \land \theta \\ d\eta = -\eta \land \eta + S\theta^* \land \theta - S\theta \land \theta^* - \theta \land \theta^* S + (\theta^* \land S\theta)I_n \\ dS = -\eta S + S\eta + T\theta^* + \theta T^* + \frac{1}{2}(T^*\theta + \theta^*T)I_n \\ dT = -\eta T + (UI_n + S^2)\theta \\ dU = T^*S\theta + \theta^*ST \end{cases}$$

Then $P = F_{U_n}(M)$ is the U_n -structure of a Bochner-Kähler manifold, with tautological 1-form θ , connection 1-form η and invariants {S, T, U}.

- Solutions can be found by integrating a Lie algebroid to a Lie groupoid!!
- The groupoid represents the moduli space of Bochner-Kähler metrics.

Why do we care?

Groupoids with an extra geometric structure (Riemannian groupoids, symplectic groupoids,...).

Why do we care?

Groupoids with an extra geometric structure (Riemannian groupoids, symplectic groupoids,...).

Definition

A symplectic groupoid (G, Ω) is a Lie groupoid $G \rightrightarrows M$ with a symplectic form Ω which is multiplicative:

$$m^*\Omega = \mathrm{pr}_1^*\Omega + \mathrm{pr}_2^*\Omega, \quad m, \mathrm{pr}_1, \mathrm{pr}_2: G_s \times_t G \to G.$$

Why do we care?

Groupoids with an extra geometric structure (Riemannian groupoids, symplectic groupoids,...).

Definition

4

A symplectic groupoid (G, Ω) is a Lie groupoid $G \rightrightarrows M$ with a symplectic form Ω which is multiplicative:

$$m^*\Omega = \mathrm{pr}_1^*\Omega + \mathrm{pr}_2^*\Omega, \quad m, \mathrm{pr}_1, \mathrm{pr}_2: G_s \times_t G \to G.$$

$$\begin{cases} \text{symplectic groupoids} \\ (G, \Omega) \rightrightarrows M \end{cases} \implies \begin{cases} \text{Poisson manifolds} \\ (M, \pi) \end{cases}$$

Why do we care?

Groupoids with an extra geometric structure (Riemannian groupoids, symplectic groupoids,...).

Definition

4

A symplectic groupoid (G, Ω) is a Lie groupoid $G \rightrightarrows M$ with a symplectic form Ω which is multiplicative:

$$m^*\Omega = \mathrm{pr}_1^*\Omega + \mathrm{pr}_2^*\Omega, \quad m, \mathrm{pr}_1, \mathrm{pr}_2: G_s \times_t G \to G.$$

$$\begin{cases} \text{symplectic groupoids} \\ (G, \Omega) \rightrightarrows M \end{cases} \implies \begin{cases} \text{Poisson manifolds} \\ (M, \pi) \end{cases} \end{cases}$$

 \leftarrow

Monodromy

For a Lie algebroid $A \rightarrow M$ and $x \in M$ there is a **monodromy map**:

$$\partial_{x}: \pi_{2}(\mathcal{O}_{x}) \rightarrow G(\mathfrak{g}_{x}).$$

The image of this homomorphism is called the **monodromy group**:

$$\mathcal{N}_{x}(A) = \operatorname{Im} \partial_{x} \subset G(\mathfrak{g}_{x}).$$

-Integrability

Monodromy

For a Lie algebroid $A \rightarrow M$ and $x \in M$ there is a **monodromy map**:

$$\partial_{x}: \pi_{2}(\mathcal{O}_{x}) \rightarrow G(\mathfrak{g}_{x}).$$

The image of this homomorphism is called the **monodromy group**:

$$\mathcal{N}_{x}(A) = \operatorname{Im} \partial_{x} \subset G(\mathfrak{g}_{x}).$$

Theorem (Crainic & RLF)

A Lie algebroid $A \rightarrow M$ is integrable if and only if the monodromy groups $\mathcal{N}_x(A)$, $x \in M$, are uniformly discrete.

 \triangle

Integrability

Integrability and σ -models

Proof (following ideas of Severa, Cataneo-Felder, Weinstein):

-Integrability

Integrability and σ -models

Proof (following ideas of Severa, Cataneo-Felder, Weinstein):

Step 1
$$G(A) = \frac{\{A - paths\}}{A - homotopies}$$
 (σ -model);

Step 2 $G(A) \Rightarrow M$ is a topological groupoid which is smooth iff A is integrable;

Step 3 G(A) is smooth iff monodromy groups are uniformly discrete.

-Integrability

Integrability and σ -models

Proof (following ideas of Severa, Cataneo-Felder, Weinstein):

Step 1 $G(A) = \frac{\{A - paths\}}{A - homotopies}$ (σ -model);

Step 2 $G(A) \Rightarrow M$ is a topological groupoid which is smooth iff A is integrable;

Step 3 G(A) is smooth iff monodromy groups are uniformly discrete.

Rmk: $G(\cdot)$ gives a functor:

 ${\text{Lie Algebroids}} \implies {\text{Topological Groupoids}}.$

Local Integrations

Proposition

Every Lie algebroid integrates to a local Lie groupoid.

Local Integrations

Proposition

Every Lie algebroid integrates to a local Lie groupoid.

What is a local Lie groupoid?

Local Integrations

Proposition

Every Lie algebroid integrates to a local Lie groupoid.

What is a local Lie groupoid? Just like a groupoid $G \rightrightarrows M$ but:

Local Integrations

Proposition

Every Lie algebroid integrates to a local Lie groupoid.

What is a local Lie groupoid? Just like a groupoid $G \rightrightarrows M$ but:

Multiplication is only defined on an open set:

$$(M_{s} \times_{t} G) \cup (G_{s} \times_{t} M) \subset \mathcal{U} \subset G_{s} \times_{t} G$$

Inversion is only defined on an open set:

$$M \subset \mathcal{V} \subset G$$

Associativity only holds on an open set:

 $(M_s \times_t G_s \times_t G) \cup (G_s \times_t M_s \times_t G) \cup (G_s \times_t G_s \times_t M) \subset \mathcal{W} \subset G_s \times_t G_s \times_t G$

Mal'cev Theorem for Lie Groupoids

G' is obtained by **restriction** from *G* if the arrows coincide (G = G') and the domain of multiplications restrict $U' \subset U$.

Mal'cev Theorem for Lie Groupoids

Rui Loja Fernandes

G' is obtained by **restriction** from *G* if the arrows coincide (G = G') and the domain of multiplications restrict $U' \subset U$.

Proposition (Michiels-RLF)

Given a local Lie groupoid G and an integer $n \ge 3$ there is a restriction G' of G which is n-associative.

Integrability and Associativity

 \wedge

Mal'cev Theorem for Lie Groupoids

G' is obtained by **restriction** from *G* if the arrows coincide (G = G') and the domain of multiplications restrict $U' \subset U$.

Proposition (Michiels-RLF)

Given a local Lie groupoid G and an integer $n \ge 3$ there is a restriction G' of G which is n-associative.

 \wedge

What about global associative (i.e., *n*-associative for all *n*)?

Mal'cev Theorem for Lie Groupoids

G' is obtained by **restriction** from *G* if the arrows coincide (G = G') and the domain of multiplications restrict $U' \subset U$.

Proposition (Michiels-RLF)

Given a local Lie groupoid G and an integer $n \ge 3$ there is a restriction G' of G which is n-associative.

 \wedge

What about global associative (i.e., *n*-associative for all *n*)?

Theorem (Mal'cev, Michiels-RLF)

A local Lie groupoid is globally associative if and only if it is globalizable (i.e., a restriction of a global Lie groupoid).

Corollary

A Lie algebroid is integrable if and only if it admits a local integration which is globally associative.

Associative Completion and Associators

Mal'cev's Theorem relies on the following construction for a local groupoid $G \rightrightarrows M$:

Associative Completion and Associators

Mal'cev's Theorem relies on the following construction for a local groupoid $G \rightrightarrows M$:

•
$$W(G) = \bigcup_n \underbrace{G_{s \times_t} G_{s \times_t} \cdots G_{s \times_t} G_{n-\text{copies}}}_{n-\text{copies}}$$
 (well-formed words);

• \sim equivalence relation on W(G) generated by:

$$(g_1,\ldots,g_i,g_{i+1},\ldots,g_k)\sim (g_1,\ldots,g_ig_{i+1},\ldots,g_k),$$
if $(g_i,g_{i+1})\in\mathcal{U}.$

Associative Completion and Associators

Mal'cev's Theorem relies on the following construction for a local groupoid $G \rightrightarrows M$:

•
$$W(G) = \bigcup_n \underbrace{G_{s \times_t} G_{s \times_t} \cdots G_{s \times_t} G_{s \times_t} \cdots G_{s \times_t} G_{s \times_t}}_{n-\text{copies}}$$
 (well-formed words);

• ~ equivalence relation on W(G) generated by:

$$(g_1,\ldots,g_i,g_{i+1},\ldots,g_k)\sim (g_1,\ldots,g_ig_{i+1},\ldots,g_k),$$
if $(g_i,g_{i+1})\in\mathcal{U}.$

Juxtaposition of words gives a (global) topological groupoid

 $\mathcal{AC}(G) = W(G) / \sim \Rightarrow M$ associative completion

together with a morphism of (local) groupoids:

 $G
ightarrow \mathcal{AC}(G), \quad g \mapsto [(g)].$ completion map

Associative Completion Functor

 $\mathcal{AC}(\cdot)$ gives a functor:

 $\{Local Lie Groupoids\} \implies \{Topological Groupoids\}$

Associative Completion Functor

 $\mathcal{AC}(\cdot)$ gives a functor:

 $\{ \text{Local Lie Groupoids} \} \implies \{ \text{Topological Groupoids} \}$

characterized by the universal property:

■ For any (global) Lie groupoid H ⇒ M and any morphism of (local) Lie groupoids Φ : G → H there exists a unique morphism of topological groupoids:

(i.e., $\mathcal{AC}(\cdot)$ is adjoint to the forgetful functor).

Associators

When is $\mathcal{AC}(G)$ a Lie groupoid?

$$\mathsf{Assoc}(G)_x = \{g \in G_x : (g) \sim (\mathsf{1}_x)\}$$
 associators

Theorem (Michiels-RLF)

 $\mathcal{AC}(G)$ is a Lie groupoid iff $Assoc(G)_x$ are uniformly discrete in G.

Associators

When is $\mathcal{AC}(G)$ a Lie groupoid?

$$\mathsf{Assoc}(G)_x = \{g \in G_x : (g) \sim (\mathsf{1}_x)\}$$
 associators

Theorem (Michiels-RLF)

 $\mathcal{AC}(G)$ is a Lie groupoid iff $Assoc(G)_x$ are uniformly discrete in G.

Assume further that *G* is "shrinked" so that for all $x \in M$:

- *G_x* is 1-connected;
- $G_x \to G(\mathfrak{g}_x)$ is injective.

Theorem (Michiels-RLF)

If G is a shrunk local Lie groupoid with Lie algebroid A then:

 $\mathsf{Assoc}(G)_x = \mathcal{N}_x(A) \cap G_x.$

References

- M. Crainic, R.L. Fernandes. Integrability of Lie brackets, Ann. of Math. (2002)
- R.L. Fernandes, D. Michiels, Associativity and Integrability, soon in arXive.
- R.L. Fernandes, I. Struchiner. The classifying Lie algebroid of a geometric structure I: Classes of coframes, *Trans. AMS* (2013)
- P.J. Olver, Non-associative local Lie groups, *J. Lie Theory* (1996)
- T. Tao, Hilbert's Fifth Problem and Related Topics, AMS, (2015)
- W.T. van Est and M.A.M van der Lee, Enlargeability of local groups according to Mal'cev and Cartan-Smith, *Travaux en Cours* (1988).

THANK YOU!