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Integrability and Associativity

Aim

Theorem (Lie III)

Every finite dimensional Lie algebra is the Lie algebra of a Lie group

This fundamental result fails in other contexts, such as:

Infinite dimensional (e.g., Banach) Lie algebras

Lie algebroids

Aim: Failure in integrability is closely related to failure in associativity.

Based on:

joint work with Marius Crainic (Utrecht)

PhD Thesis of my student Daan Michiels (UIUC)
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Lie Groupoids and Lie Algebroids

Groupoids

Definition
A groupoid is a category where every arrow is invertible.

Source/target maps:

G = { arrows }⇒ { objects } = M •
t(g)

•
s(g)

g
tt

Multiplication, inversion and unit:

•
t(g)

•
s(g)=t(h)

g
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•
s(h)

hrr

g·h
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m : G ×s t G→ G ε : M → G i : G // G
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Lie Groupoids and Lie Algebroids

Lie Groupoids

Definition
A Lie groupoid is a groupoid G ⇒ M where G and M are
manifolds, s, t : G ⇒ M are submersions, and
m : G ×s t G→ G, ε : M → G and i : G→ G are smooth. 4

Basic concepts:

source/target fibers s−1(x), t−1(x) (closed submanifolds);

orbits: Ox = t(s−1(x)) (immersed submanifolds);

isotropy Lie groups: Gx = s−1(x) ∩ t−1(x) (Lie groups);

There is an obvious notion of (Lie) groupoid morphism:

G2

�� ��

Φ // G1

�� ��
M1

φ
// M2
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Lie Groupoids and Lie Algebroids

Lie Groupoids and Moduli Spaces/Stacks

Given a Lie groupoid G ⇒ M its coarse moduli space is:
M/G with the quotient topology.

Information is lost! Instead:

Definition
A differentiable stack is a Morita equivalence class of Lie
groupoids.

(i.e, a Lie groupoid is an atlas for a stack and Morita
equivalence is the notion of equivalence for such atlas) 4
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Lie algebroids

Definition
A Lie algebroid is a vector bundle A→ M, with a Lie bracket
[ , ] : Γ(A)× Γ(A)→ Γ(A) and a bundle map ρ : A→ TM, called
the anchor, such that:

[s1, fs2] = f [s1, s2] + ρ(s1)(f )s2, ∀f ∈ C∞(M), s1, s2 ∈ Γ(A).

4

Basic concepts:

Orbits: ρ([s1, s2]) = [ρ(s1), ρ(s2)]⇒ Im ρ is integrable (singular)
distribution.

Isotropy Lie algebras: For x ∈ M, [ , ] restricts to Lie bracket
on gx := ker ρ.

There is also a notion of Lie algebroid morphism.

Rui Loja Fernandes Integrability and Associativity



Integrability and Associativity

Lie Groupoids and Lie Algebroids

Lie algebroids

Definition
A Lie algebroid is a vector bundle A→ M, with a Lie bracket
[ , ] : Γ(A)× Γ(A)→ Γ(A) and a bundle map ρ : A→ TM, called
the anchor, such that:

[s1, fs2] = f [s1, s2] + ρ(s1)(f )s2, ∀f ∈ C∞(M), s1, s2 ∈ Γ(A).

4

Basic concepts:

Orbits: ρ([s1, s2]) = [ρ(s1), ρ(s2)]⇒ Im ρ is integrable (singular)
distribution.

Isotropy Lie algebras: For x ∈ M, [ , ] restricts to Lie bracket
on gx := ker ρ.

There is also a notion of Lie algebroid morphism.

Rui Loja Fernandes Integrability and Associativity



Integrability and Associativity

Lie Groupoids and Lie Algebroids

Lie algebroids

Definition
A Lie algebroid is a vector bundle A→ M, with a Lie bracket
[ , ] : Γ(A)× Γ(A)→ Γ(A) and a bundle map ρ : A→ TM, called
the anchor, such that:

[s1, fs2] = f [s1, s2] + ρ(s1)(f )s2, ∀f ∈ C∞(M), s1, s2 ∈ Γ(A).

4

Basic concepts:

Orbits: ρ([s1, s2]) = [ρ(s1), ρ(s2)]⇒ Im ρ is integrable (singular)
distribution.

Isotropy Lie algebras: For x ∈ M, [ , ] restricts to Lie bracket
on gx := ker ρ.

There is also a notion of Lie algebroid morphism.
Rui Loja Fernandes Integrability and Associativity



Integrability and Associativity

Lie Groupoids and Lie Algebroids

Lie Functor

• Given G ⇒ M there is an associated Lie algebroid A(G)→ M:

M

G

t(g) s(h)s(g)=t(h)

g h

gh

s-fibers

t-fibers

A=T G
s

M   = dt
A

ρ

ρ

R h

[s ,s ] =
1

M

s2
2

[X , X   ]1s

• Given a groupoid morphism Φ : G1 → G2 there is an associated
algebroid morphism Φ∗ : A(G1)→ A(G2). 4
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Lie Groupoids and Lie Algebroids

Lie’s fundamental theorems

Lie I: Given a source connected Lie groupoid G ⇒ M there
is a unique source 1-connected Lie groupoid G̃ ⇒ M with
A(G̃) ' A(G) and a unique cover of Lie groupoids G̃→ G;

Lie II: Given a source 1-connected Lie groupoid G1 ⇒ M1
and a Lie groupoid G2 ⇒ M2, each Lie algebroid morphism
φ : A(G1)→ A(G2) integrates to a unique Lie groupoid
morphism Φ : G1 → G2 with Φ∗ = φ;

Lie III fails: not every Lie algebroid arises from a Lie groupoid.
Obstructions are completely understood. 4
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Lie Groupoids and Lie Algebroids

Why do we care?

Classification of Kähler metrics with vanishing Bochner tensor [Bryant
2001]:

Find all principal Un-bundles P equipped with 1-forms θ ∈ Ω1(P,Cn),
η ∈ Ω1(P, un) and functions (S,T ,U) : P → iun ⊕ Cn ⊕ R such that:

dθ = −η ∧ θ
dη = −η ∧ η + Sθ∗ ∧ θ − Sθ ∧ θ∗ − θ ∧ θ∗S + (θ∗ ∧ Sθ)In
dS = −ηS + Sη + Tθ∗ + θT ∗ + 1

2 (T ∗θ + θ∗T )In
dT = −ηT + (UIn + S2)θ
dU = T ∗Sθ + θ∗ST

Then P = FUn (M) is the Un-structure of a Bochner-Kähler manifold, with
tautological 1-form θ, connection 1-form η and invariants {S,T ,U}.

• Solutions can be found by integrating a Lie algebroid to a Lie groupoid!!
• The groupoid represents the moduli space of Bochner-Kähler metrics.
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Lie Groupoids and Lie Algebroids

Why do we care?

Groupoids with an extra geometric structure (Riemannian
groupoids, symplectic groupoids,. . . ).

Definition
A symplectic groupoid (G,Ω) is a Lie groupoid G ⇒ M with a
symplectic form Ω which is multiplicative:

m∗Ω = pr∗1Ω + pr∗2Ω, m, pr1, pr2 : G ×s t G→ G.

symplectic groupoids
(G,Ω) ⇒ M

 =⇒

Poisson manifolds
(M, π)


⇐=

4
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Integrability

Monodromy

For a Lie algebroid A→ M and x ∈ M there is a monodromy map:

∂x : π2(Ox )→ G(gx ).

The image of this homomorphism is called the monodromy group:

Nx (A) = Im ∂x ⊂ G(gx ).

Theorem (Crainic & RLF)
A Lie algebroid A→ M is integrable if and only if the
monodromy groups Nx (A), x ∈ M, are uniformly discrete.

4
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Integrability

Integrability and σ-models

Proof (following ideas of Severa, Cataneo-Felder, Weinstein):

Step 1 G(A) = {A−paths}
A-homotopies (σ-model);

Step 2 G(A) ⇒ M is a topological groupoid which is smooth iff A is
integrable;

Step 3 G(A) is smooth iff monodromy groups are uniformly discrete.

Rmk: G(·) gives a functor:

{Lie Algebroids} =⇒ {Topological Groupoids}.
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Local Integrations

Proposition

Every Lie algebroid integrates to a local Lie groupoid.

What is a local Lie groupoid? Just like a groupoid G ⇒ M but:

Multiplication is only defined on an open set:

(M ×s t G) ∪ (G ×s t M) ⊂ U ⊂ G ×s t G

Inversion is only defined on an open set:

M ⊂ V ⊂ G

Associativity only holds on an open set:

(M ×s tG ×s tG)∪(G ×s tM ×s tG)∪(G ×s tG ×s tM) ⊂ W ⊂ G ×s tG ×s tG

4
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Mal’cev Theorem for Lie Groupoids
G′ is obtained by restriction from G if the arrows coincide (G = G′) and the
domain of multiplications restrict U ′ ⊂ U .

Proposition (Michiels-RLF)

Given a local Lie groupoid G and an integer n ≥ 3 there is a restriction G′ of
G which is n-associative.

4
What about global associative (i.e., n-associative for all n)?

Theorem (Mal’cev, Michiels-RLF)

A local Lie groupoid is globally associative if and only if it is globalizable (i.e.,
a restriction of a global Lie groupoid) .

Corollary

A Lie algebroid is integrable if and only if it admits a local integration which is
globally associative.
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Associative Completion and Associators
Mal’cev’s Theorem relies on the following construction for a local
groupoid G ⇒ M:

W (G) =
⋃

n G ×s t G ×s t · · · ×s t G︸ ︷︷ ︸
n−copies

(well-formed words);

∼ equivalence relation on W (G) generated by:

(g1, . . . ,gi ,gi+1, . . . ,gk ) ∼ (g1, . . . ,gigi+1, . . . ,gk ),

if (gi ,gi+1) ∈ U .

Juxtaposition of words gives a (global) topological groupoid

AC(G) = W (G)/ ∼⇒ M associative completion

together with a morphism of (local) groupoids:

G→ AC(G), g 7→ [(g)]. completion map
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Associative Completion Functor

AC(·) gives a functor:

{Local Lie Groupoids} =⇒ {Topological Groupoids}

characterized by the universal property:

For any (global) Lie groupoid H ⇒ M and any morphism of
(local) Lie groupoids Φ : G→ H there exists a unique morphism
of topological groupoids:

G

��

Φ // H

AC(G)

<<

(i.e., AC(·) is adjoint to the forgetful functor).
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Associators
When is AC(G) a Lie groupoid?

Assoc(G)x = {g ∈ Gx : (g) ∼ (1x )} associators

Theorem (Michiels-RLF)

AC(G) is a Lie groupoid iff Assoc(G)x are uniformly discrete in G.

Assume further that G is ”shrinked” so that for all x ∈ M:

Gx is 1-connected;

Gx → G(gx ) is injective.

Theorem (Michiels-RLF)

If G is a shrunk local Lie groupoid with Lie algebroid A then:

Assoc(G)x = Nx (A) ∩Gx .

4
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