# The ambient obstruction tensor and conformal holonomy

#### **Thomas Leistner**



'Conformal and Symplectic Geometry - Common Threads and Global Aspects' University of Auckland, February 4–9, 2018

Joint work with A. Lischewski [Humboldt University Berlin]

## Setting the scene

Conformal manifold:  $(M, c = [g]), \quad \hat{g} \sim g \iff \exists f \in C^{\infty}(M) : \hat{g} = e^{2f}g$ 

Invariant descriptions:

- (Normal conformal) Cartan-connection (and its holonomy group)
- Fefferman-Graham ambient metric (and the obstruction tensor)

#### Holonomy groups

- Let (E, ∇) be a vector bundle with connection ∇ For example: E = TM, ∇ = ∇<sup>g</sup> Levi-Civita connection of a metric g.
- ►  $\mathcal{P}_{\gamma}^{\nabla}$  :  $E|_{\gamma(0)} \to E|_{\gamma(1)}$  parallel transport along a curve  $\gamma$  : [0, 1]  $\to M$
- ►  $\operatorname{Hol}_{\rho}(E, \nabla) = \{ \mathcal{P}_{\gamma}^{\nabla} \mid \gamma(0) = \gamma(1) = p \} \subset \operatorname{GL}(E|_{\rho}) \text{ holonomy group}$ For example:  $\operatorname{Hol}_{\rho}(E, \nabla^{g}) \subset \operatorname{O}(T_{\rho}M).$
- For  $\phi \in \Gamma(E)$  or  $\phi \in \Gamma(\otimes^{r,s} E)$  with we have

 $\nabla \phi = 0 \quad \Longleftrightarrow \quad \operatorname{Hol}_{\rho}(E, \nabla) \subset \operatorname{Stab}(\phi|_{\rho})$ 

For example: (M, g, J) Kähler, i.e.,  $\nabla^g J = 0 \iff \text{Hol} \subset \mathbf{U}(\frac{n}{2})$ 

Both descriptions of conformal geometry have associated holonomy groups.

# Flat model of conformal geometry

Light cone in Minkowski space:

$$C := \left\{ (r_{-}, \mathbf{x}, r_{+}) \in \mathbb{R}^{1, n+1} \setminus \{0\} \mid 2r_{+}r_{-} + \|\mathbf{x}\|^{2} = 0, \ r_{+} > 0 \right\} \cup \mathbf{SO}^{0}(1, n+1)$$

$$\iota : \mathbb{R}^{n+1} \times \mathbb{R}^+ \longrightarrow \mathbb{R}^{1,n+1}$$
  
$$(\mathbf{y} = (y^0, \dots, y^n), t) \mapsto t \cdot \left(\frac{y^{0-1}}{\sqrt{2}}, y^1, \dots, y^n, \frac{y^{0+1}}{\sqrt{2}}\right),$$

$$\implies \iota(\mathbb{S}^n \times \mathbb{R}^+) = C \text{ and } \mathbb{S}^n = \mathbb{P}C = \mathbf{SO}(1, n+1)/P, \text{ where}$$
$$P = \operatorname{Stab}(\mathbb{R} \cdot s_-) \text{ stabiliser of the null line } (r_-, \mathbf{0}, \mathbf{0}) \text{ in } C.$$

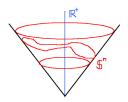
The flat Minkowski-metric

$$g = 2dr_+dr_- + d\mathbf{x} \cdot d\mathbf{x},$$

with  $r_{\pm} = \frac{t}{\sqrt{2}}(y^0 \pm 1)$  and  $x^i = ty^i$  becomes

$$\iota^*g = \underbrace{\left(||\mathbf{y}||^2 - 1\right)}_{=0 \text{ on } \mathbb{S}^n} dt^2 + 2t \underbrace{\left(\mathbf{y} \cdot d\mathbf{y}\right)}_{=0 \text{ on } \mathbb{S}^n} dt + t^2 \underbrace{\left(d\mathbf{y} \cdot d\mathbf{y}\right)}_{=0 \text{ on } \mathbb{S}^n} \overset{\rho = \frac{|\mathbf{y}|^2 - 1}{=^2}}_{\text{round metric on } \mathbb{S}^n} 2\rho \, dt^2 + 2t \, d\rho \, dt + \underbrace{t^2 g_{\text{round}}}_{\in [g_{\text{round}}]}$$

and induces a conformal structure on  $\mathbb{S}^n \rightsquigarrow Conf(\mathbb{S}^n, g_r) = \mathbf{SO}(1, n+1).$ 



# The Fefferman-Graham ambient metric

- (M, g) semi-Riemannian manifold of dim n.
- A pre-ambient metric (in normal form) for (M, g) is a metric g̃ on an open nbhd M̃ of {1} × M × {0} in ℝ<sup>+</sup> × M × ℝ = {(t, x, ρ)} of the form

 $\widetilde{g} = 2\rho \, dt^2 + 2t \, dt \, d\rho + t^2 \, g_{
ho}$ 

with a  $\rho$ -dependent family of metrics  $g_{\rho}$  on M such that

$$g_{\rho}|_{
ho=0}=g.$$

A pre-ambient metric g for g is an ambient metric if

$$\widetilde{\mathsf{Ric}} = O(
ho^{\infty}),$$
 when *n* is odd (1)

$$\begin{array}{rcl} \widetilde{\textit{Ric}} & = & O(\rho^{\frac{n}{2}-1}) \\ \mathrm{tr}_g(\iota^*\widetilde{\textit{Ric}}) & = & O(\rho^{\frac{n}{2}}) \end{array} \end{array} \qquad \text{when } n \text{ is even,} \qquad (2)$$

where  $\iota : M \to \widetilde{M}$  is the injection  $x \mapsto (1, x, 0)$  and  $\widetilde{Ric}$  is the Ricci tensor of  $\widetilde{g}$ .

• Conformally invariant: If g and  $\hat{g} = e^{2t}g$  are conformally equivalent,  $\tilde{g}$  ambient metric for g, then there is a diffeomorphism  $\psi$  such that  $\psi^* \tilde{g}$  is an ambient metric for  $\hat{g}$ .

If an ambient metric exits and is unique it provides an invariant description of conformal structures: conformal invariants then are just Riemannian invariants of the ambient metric.

If *n* is odd:

- ▶ ∃ an ambient metric, and it is unique in the following sense: for ambient metrics  $\tilde{g}_1$  and  $\tilde{g}_2$  there is a diffeom  $\Phi : \tilde{M}_1 \to \tilde{M}_2$ : with  $\Phi|_{\rho=0} = Id$  and  $\tilde{g}_1 - \Phi^* \tilde{g}_2 = O(\rho^{\infty})$ .
- If g is analytic, there is a unique analytic ambient metric  $\tilde{g}$  with  $Ric(\tilde{g}) = 0$ .

If n = 2s is even:

- ▶ ∃ an ambient metric, unique in the sense that for ambient metrics  $\tilde{g}_1$  and  $\tilde{g}_2$  there is a diffeom  $\Phi : \tilde{M}_1 \to \tilde{M}_2$ : with  $\Phi|_{\rho=0} = Id$  and  $\tilde{g}_1 \Phi^* \tilde{g}_2 = O(\rho^s)$ .
- ∃ conformally covariant, symmetric (0, 2)-tensor *O*, the *Fefferman-Graham* obstruction tensor, with tr(*O*) = 0 and div(*O*) = 0 and such that *Ric*(g) = O(p<sup>∞</sup>) implies O = 0. It is

$$\iota^*\widetilde{\operatorname{Ric}} = c_n \rho^{s-1}O + \rho^s T, \quad c_n = \text{constant}, \ T = \text{tensor on } M$$

- Even if O = 0, ambient metrics are not unique to all orders.
- $O = \Delta^{s-2} (\Delta P \nabla^2 tr(P)) +$ lower order terms, where

$$\mathsf{P} = \frac{1}{n-2} \operatorname{Ric}(g) - \frac{\operatorname{scal}}{2(n-1)}g,$$

is the Schouten tensor and  $\Delta$  is the Laplacian of g.

• If n = 4, then O is the Bach tensor  $B_{ij} = \nabla^k \nabla_k \mathsf{P}_{ij} - \nabla^k \nabla_i \mathsf{P}_{kj} - \mathsf{P}^{kl} W_{kijl}$ .

# Examples of conformal structures with explicit ambient metrics

An ambient metric with *Ric* = 0 always exists if [g] contains an Einstein metric: if g<sub>Λ</sub> ∈ [g] an Einstein-metric with P = Λg, then

$$\widetilde{g} = 2\rho dt^{2} + 2td\rho dt + t^{2} (1 + \rho \Lambda)^{2} g_{\Lambda}$$

$$= \begin{cases} -\frac{1}{2\Lambda} ds^{2} + \frac{1}{2\Lambda} dr^{2} + r^{2} g_{\Lambda}, & \text{if } \Lambda \neq 0, \\ cone \text{ metric} \\ 2dv dt + t^{2} g_{0}, & \text{if } \Lambda = 0, \quad (v = t\rho). \end{cases}$$

In both cases,  $(\widetilde{M}, \widetilde{g})$  admits a parallel vector field,  $\frac{\partial}{\partial s}$  or  $\frac{\partial}{\partial v}$ .

Conversely, if the ambient metric exists and admits a parallel vector field of length λ, then on an open dense set, locally [g] contains an Einstein metric g<sub>Λ</sub> with Λ = −λ.

# Examples of conformal structures with explicit ambient metrics

- Conformal structures defined by (2, 3, 5) distributions in dimension 5 [Nurowski '05].
   In general they are not conformally Einstein, but in some cases one can find explicit ambient metrics [Nurowski/L '12]
- ▶ Conformal structure defined by generic rank 3 distributions on  $\mathbb{R}^6$  [Bryant '06]. In general neither conformally Einstein nor O = 0, but there are examples with explicit  $\widetilde{Ric} = 0$  ambient metrics [Anderson/Nurowski/L,'15]

# The normal conformal Cartan connection

Recall the flat model of conformal geometry

$$\mathbb{S}^{p,q} = \mathbf{SO}^0(p+1,q+1)/P$$
, where  $P =$  stabiliser of a null line *L*.

The Maurer-Cartan form of  $\mathbf{SO}^0(p+1, q+1) \rightarrow \mathbf{SO}^0(p+1, q+1)/P$ generalises to the *normal conformal Cartan connection*  $\omega$  on a *P*-bundle  $\mathcal{P}$  over (M, [g]) with values in the |1|-graded Lie algebra

$$\mathfrak{so}(p+1,q+1) = \mathfrak{g}_{-1} \oplus \underbrace{\mathfrak{g}_{-1}^{\mathfrak{so}(p,q)} \oplus \mathfrak{g}_{1}}_{=\mathfrak{p}} = \mathfrak{so}(p,q) \ltimes \mathbb{R}^{p,q} = \mathfrak{stab}(L)$$

[Recall Andreas' or Katharina's talks]

The Cartan connection extends to a principle fibre bundle connection  $\omega$  on  $\tilde{\mathcal{P}} = \mathcal{P} \times_{\mathcal{P}} \mathbf{SO}^{0}(p, q).$ 

## The conformal tractor bundle and the normal conformal tractor connection

- Tractor bundle T = P ×<sub>P</sub> ℝ<sup>p+1,q+1</sup> = P̃ ×<sub>so(p+1,q+1)</sub> ℝ<sup>p+1,q+1</sup> with induced metric ḡ.
- $\mathbb{T}$  is filtered as  $\mathcal{L} \subset \mathcal{L}^{\perp} \subset \mathbb{T}$ , where

$$\mathcal{L} = \mathcal{P} \times_{\mathcal{P}} \mathcal{L}, \qquad \mathcal{L}^{\perp} = \mathcal{P} \times_{\mathcal{P}} \mathcal{L}^{\perp}.$$

(Recall:  $P = \operatorname{Stab}(L)$ .)

- $\omega$  defines a covariant derivative  $\overline{\nabla}$  on  $\mathbb{T}$ .
- ▼ admits a parallel section ⇔ locally on an open dense set [g] contains an Einstein metric.
- The conformal holonomy at  $p \in M$

$$\operatorname{Hol}_{\rho}(M,[g]) := \left\{ \mathcal{P}_{\gamma}^{\overline{\nabla}} \in \mathbf{O}(\mathbb{T}_{\rho}) \mid \gamma(0) = \gamma(1) = x \right\}$$

with Lie algebra  $\mathfrak{hol}(M, [g]) \subset \mathfrak{so}(p + 1, q + 1)$ .

#### The tractor bundle and tractor connection

Any metric  $g \in [g]$  gives a reduction of  $\mathcal{P}$  to the bundle of orthonormal frames  $O^g$  with respect to the injection  $\mathbf{SO}(p, q) \subset P$ . The  $\mathbf{SO}(p, q)$ -invariant splitting  $\mathbb{R}^{p+1,q+1} = \mathbb{R}e_- \oplus^{\perp} \mathbb{R}^{p,q} \oplus^{\perp} \mathbb{R}e_+$  with  $L = \mathbb{R}e_-$  yields two sections  $s_-$  and  $s_+$  of  $\mathbb{T}$  and a splitting

$$\mathbb{T} = \mathcal{P} \times_{\mathcal{P}} \mathbb{R}^{p+1,q+1} = O^g \times_{\mathbf{SO}(p,q)} \mathbb{R}^{p+1,q+1} = \mathbb{R}s_- \oplus^{\perp} \underbrace{(O^g \times_{\mathbf{SO}(p,q)} \mathbb{R}^{p,q})}_{=s_-^{\perp} \cap s_+^{\perp} = TM} \oplus^{\perp} \mathbb{R}s_+$$

with the normal conformal Tractor connection given by

$$\overline{
abla}_X s_- = X, \qquad \overline{
abla}_X Y = 
abla_X Y - P(X, Y) s_- - g(X, Y) s_+, \qquad \overline{
abla}_X s_+ = P(X)^{\sharp}.$$

Changing the metric to  $\hat{g} = e^{2\sigma}g$  yields

$$\hat{\mathbf{s}}_{-} = \mathrm{e}^{-\sigma}\mathbf{s}_{-}, \quad \hat{X} = \mathrm{e}^{-\sigma}(X + d\sigma(X)\mathbf{s}_{-}), \qquad \hat{\mathbf{s}}_{+} = \mathrm{e}^{\sigma}\mathbf{s}_{+} - \mathrm{e}^{-\sigma}\left(\frac{\|\nabla\sigma\|^{2}}{2}\mathbf{s}_{-} - \nabla\sigma\right)$$

The identification

$$\mathcal{L}^{\perp}/\mathcal{L} = \mathcal{P} \times_{\mathcal{P}} (L^{\perp}/L) = O^g \times_{\mathbf{SO}(p,q)} \mathbb{R}^{p,q} \simeq TM$$

is independent of the of the chosen metric g.

# The conformal holonomy distribution [Lischewski-L '15]

Recall that  $\mathfrak{hol}([g]) = \mathfrak{hol}(\overline{\nabla})$  is contained in

$$\mathfrak{so}(p+1,q+1) = \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} = \left\{ \begin{pmatrix} a & \mathbf{v} & \mathbf{0} \\ u & X & \mathbf{v}^{\sharp} \\ \mathbf{0} & u^{\flat} & -a \end{pmatrix} | \begin{array}{c} (a,X) \in \mathfrak{co}(p,q) \\ u \in \mathbb{R}^{p,q}, \mathbf{v} \in (\mathbb{R}^{p,q})^{*} \end{array} \right\}$$

Using  $pr : \mathcal{L}^{\perp} \to \mathcal{L}^{\perp}/\mathcal{L} \simeq TM$ , define the conformal holonomy distribution in TM,

 $\mathcal{E} := \mathfrak{hol}([g]) \cap \mathfrak{g}_1 = \left\{ \mathrm{pr}(\mathrm{im}(A)) \mid A \in \mathfrak{hol}([g]), A\mathcal{L} = 0, A\mathcal{L}^{\perp} \subset \mathcal{L} \right\} \subset TM.$ 

► There is an open dense subset M<sub>0</sub> in M such that rk(E) is constant over the connected components of M<sub>0</sub>, "E-adapted sets".

## Proposition

Over each *&*-adapted set we have that:

- $\mathcal{E}$  is totally null (i.e. light-like) or  $\mathfrak{hol}([g]) = \mathfrak{so}(p+1, q+1)$ .
- E is either integrable or one of the generic distributions in dimension 5 or 6 that define the two exceptional conformal structures.

The proofs use that  $s_{-}$  behaves like an Euler vector field  $\overline{\nabla}_{X} s_{-} = X$  and that  $\nabla_{X} H \in \mathfrak{hol}$  if  $H \in \mathfrak{hol}$ .

►  $V \in \mathcal{E}$  can be identified with  $s_{-} \land V = \begin{pmatrix} 0 & V^{\flat} & 0 \\ 0 & 0 & -V \\ 0 & 0 & 0 \end{pmatrix} \in \mathfrak{hol}$ 

► Then for 
$$X \in IM$$
 we get  
 $\overline{\nabla}_X(s_- \wedge V) = X \wedge V + \nabla_X V^{\flat} \wedge s_+ - g(X, V)s_- \wedge s_+ = \begin{pmatrix} -g(X, V) & \nabla_X V^{\flat} & 0 \\ 0 & X \wedge V & -\nabla_X V \\ 0 & 0 & g(X, V) \end{pmatrix}$ 
is in hol.

Take Lie brackets

$$\left[\mathbf{s}_{-} \wedge \hat{\mathbf{V}}, \overline{\nabla}_{\mathbf{X}}(\mathbf{s}_{-} \wedge \mathbf{V})\right] = \begin{pmatrix} 0 & g(\mathbf{X}, \mathbf{V})\hat{\mathbf{V}}^{\flat} + g(\mathbf{X}, \hat{\mathbf{V}})\mathbf{V}^{\flat} - g(\hat{\mathbf{V}}, \mathbf{V})\mathbf{X}^{\flat} & 0 \\ 0 & 0 & \vdots \\ 0 & 0 & 0 \end{pmatrix} \in \mathfrak{hol}$$

► Take  $V = \hat{V}$  and  $X \in V^{\perp}$ , then  $g(V, V) \neq 0$ , implies  $\mathcal{E} = \mathbb{R}V \oplus V^{\perp} = TM$ .

$$\left[\overline{\nabla}_{X}(s_{-} \wedge \hat{V}), \overline{\nabla}_{X}(s_{-} \wedge V)\right] = \begin{pmatrix} 0 & \dots & 0 \\ 0 & g(X, X)V \wedge \hat{V} & \vdots \\ 0 & 0 & 0 \end{pmatrix} \in \mathfrak{hol} \text{ shows that } \mathfrak{p} \subset \mathfrak{hol}$$

- Differentiate this again gives g<sub>-1</sub> ⊂ hol and hence hol = so(p + 1, q + 1)
- Integrability: similar computations give

$$[V, \hat{V}] - \frac{2g(\nabla_X V, \hat{V})}{g(X, X)} X \in \mathcal{E}, \qquad \forall X \in (V, \hat{V})^{\perp}, \ g(X, X) \neq 0$$

#### Theorem

Let (M, [g]) be a conformal manifold, of even dim n and signature (p, q). Then

- the image of O when considered as an endomorphism field on M is contained in E = hol([g]) ∩ g₁ and in particular, rk(O) ≤ dim(hol([g]) ∩ g₁).
- ▶ If  $\mathfrak{hol}([g]) \neq \mathfrak{so}(p+1, q+1)$ , then the image of *O* is totally null and in particular,  $\mathrm{rk}(O) \leq \min(p, q)$ .

*l.e.*, if rk(O) > min(p,q), then hol([g]) = so(p + 1, q + 1).

## Corollary

If (M, [g]) be a Riemannian conformal manifold with  $\mathfrak{hol}([g]) \neq \mathfrak{so}(1, n + 1)$ , then O = 0.

# Idea of the proof:

- 1. Relation between the tractor bundle and the ambient metric:
  - Affine bundle isomorphism of  $(T\widetilde{M}|_M, \widetilde{\nabla})$  and  $(\mathbb{T} = \mathbb{R}s_- \oplus TM \oplus \mathbb{R}s_+, \overline{\nabla})$  via

$$\partial_t \mapsto \mathbf{s}_-, \qquad TM \stackrel{Id}{\mapsto} TM, \qquad \partial_\rho \mapsto \mathbf{s}_+$$

- ▶ Hence,  $\operatorname{Hol}(M, [g]) \subset \operatorname{Hol}(\widetilde{M}, \widetilde{g})$ .
- Moreover, one can show that [Čap, Gover, Graham & Hammerl '15]

$$\mathfrak{hol}(\mathbb{T},\overline{\nabla}) = \mathfrak{hol}^{\frac{n}{2}-1}(\widetilde{M},\widetilde{g}) := \left\{ \begin{array}{c} (\widetilde{\nabla}_{X_k} \dots \widetilde{\nabla}_{X_3}\widetilde{R})(X_2,X_1) \mid X_i \in T\widetilde{M}, \\ X_i \notin TM \oplus \mathbb{R}\partial_t \text{ for at most } \frac{n-2}{2} \text{ many } X_i \end{array} \right\},$$

- 2. Relation between the obstruction tensor and conformal holonomy:
  - Ambrose-Singer holonomy theorem implies

$$\widetilde{\nabla}_{X_1} \cdots \widetilde{\nabla}_{X_k} \widetilde{R}(Y, Z) \in \mathfrak{hol}(\widetilde{M}, \widetilde{g})$$

• Use  $O = \widetilde{\nabla}_{\partial_o}^{\frac{n-2}{2}} \widetilde{Ric}|_{\rho=0}$  to express O in terms of derivatives of ambient curvature,

$$\partial_t \wedge O(X,.) \in \mathfrak{hol}^{\frac{n}{2}-1}(\widetilde{M},\widetilde{g}) = \mathfrak{hol}(\mathbb{T},\overline{\nabla}).$$

#### Consequences

With  $\operatorname{im}(O) \subset \mathcal{E} = \operatorname{\mathfrak{hol}}([g]) \cap \mathfrak{g}_1$ , any conformal holonomy reduction, i.e.,  $\operatorname{\mathfrak{hol}}([g]) \subseteq \mathfrak{so}(p+1, q+1)$ , imposes conditions on  $\operatorname{im}(O)$ :

► Let  $\overline{\alpha} \in \Lambda^{k+1} \mathbb{T}^*$  a  $\overline{\nabla}$ -parallel form,  $\overline{\alpha} = s^{\flat}_+ \wedge \alpha + ...$  with  $\alpha \in \Lambda^k T^* M$  the associated *normal conformal Killing form*. Then

$$\operatorname{im}(O) \wedge \alpha = 0.$$

 If N ⊂ T is a hol([g])-invariant subspace, then N = Rs<sub>+</sub> ⊕ N with N ⊂ L<sup>⊥</sup> and

$$\operatorname{im}(O) \subset N = \operatorname{pr}(\mathcal{N}) \subset TM.$$

In this situation, locally in an open dense set there is a metric  $g \in [g]$  such that:

- ▶ If *N* is non degenerate, then  $g = g_1 \times g_2$  is a *special Einstein product*, i.e., a product of Einstein metrics with  $\Lambda_1 = -\Lambda_2$ , [Armstrong '05, Leitner '05]
- ▶ If *N* is totally null, then *N* is parallel for  $\nabla^g$  and  $im(Ric^g) \subset N$ , [L '06, Nurowski-L '11, Lischewski '15]

# Special conformal structures

Let (M, [g]) be a conformal manifold of dimension n = p + q

| ⊽-parallel                                      | ( <i>M</i> , [ <i>g</i> ])      | $\operatorname{Hol}([g]) \subset$                  | rk(O)                                          |
|-------------------------------------------------|---------------------------------|----------------------------------------------------|------------------------------------------------|
| $\alpha \in \mathbb{T}^*$                       | conf Einstein                   | $\begin{pmatrix} 1 & * \\ 0 & H \end{pmatrix}$     | 0                                              |
| $\alpha \in \Lambda^{p+1} \mathbb{T}^*$ decomp. | special Einstein product        | $\begin{pmatrix} H_1 & 0 \\ 0 & H_2 \end{pmatrix}$ | 0                                              |
|                                                 | Parallel null <i>p</i> -plane N | $\begin{pmatrix} H_1 & * \\ 0 & H_2 \end{pmatrix}$ | $\mathit{Im}(\mathcal{O}) \subset \mathcal{N}$ |
| $J \in \Lambda^2 \mathbb{T}^*, J^2 = -1$        | normal conformal vf             | $SU(\frac{p}{2}+1,\frac{q}{2}+1)$                  | ≤ 1                                            |
|                                                 | Fefferman space                 |                                                    | 0 if $p = 1, \subsetneq$                       |
| $\alpha \in \Lambda^3 \mathbb{T}^*, n = 5$      | (2, 3, 5) distribution          | <b>G</b> <sub>2(2)</sub>                           | —                                              |
|                                                 | [Nurowski]                      |                                                    |                                                |
| $\alpha \in \Lambda^4 \mathbb{T}^*, n = 6$      | (3,6) distribution              | <b>Spin</b> (3,4)                                  | ≤ 1 if ⊊                                       |
|                                                 | [Bryant]                        |                                                    |                                                |

#### The obstruction tensor vanishes in each of the following cases:

- [g] is Riemannian and hol([g]) ≠ so(1, n + 1);
   i.e., O also obstructs the existence of parallel tractors that do not come from the tractor metric;
- 2. [g] is Lorentzian and  $\mathfrak{hol}([g]) \subsetneq \mathfrak{su}(1, n/2)$ ;
- if hol([g]) is reducible, i.e., locally in a dense open set in *M* the conformal class contains an Einstein metric or special Einstein product [Gover/Leitner09].
- ∃ a non-null normal conformal vector field V or 2 normal conformal vector fields (e.g. Fefferman spaces over quaternionic contact structures in signature (4k + 3, 4l + 3) if bol([g]) ⊂ sp(k + 1, l + 1)),
- 5.  $\exists$  twistor spinors  $\varphi_{i=1,2}$  such that { $X \in TM \mid X \cdot \varphi_i = 0$ } are complementary.

 $rk(O) \le 1$  for each of the following cases:

- 1. (p,q) = (3,3) and  $\mathfrak{hol}([g]) \subsetneq \mathfrak{spin}(3,4)$  (Bryant's conformal structures)  $\stackrel{\bullet\bullet}{\frown}$
- 2. (p,q) = (n,n) and  $\mathfrak{hol}([g]) \subset \mathfrak{gl}(n+1) \subset \mathfrak{so}(n+1,n+1);$
- 3.  $\exists$  normal conformal vector field (e.g. Fefferman conformal structures, i.e.,  $\mathfrak{hol}([g]) \subset \mathfrak{su}(r+1, s+1));$
- the action of Hol(M, [g]) on the light cone C ⊂ ℝ<sup>p+1,q+1</sup> does not have an open orbit.

For each of these geometries one can give an explicit subspace  $V \subset TM$  with  $Im(O) \subset V$  at each point.

# Thank you!

