Spin^c-quantisation

Peter Hochs

University of Adelaide

Conformal and symplectic geometry University of Auckland 8 February 2018

Application to representation theory

I Spin^c-Dirac operators

イロト イ団ト イヨト イヨト

Dirac operators

Idea (Dirac, 1928):

- Special relativity: $E^2 = p^2 c^2 + m^2 c^4$
- Quantum mechanics: $p^2 = \hbar^2 \Delta$, with

$$\Delta = -\sum_{j} \frac{\partial^2}{\partial x_j^2}$$

the Laplacian.

• So look for Dirac operator D representing E, such that

$$D^2 = \Delta + \text{zero-order terms.}$$

()

Clifford bundles

Tool to construct Dirac operators: Clifford bundles.

• If V is a (fin. dim., real) vector space, with a quadratic form q, its **Clifford algebra** is

$$\mathsf{Cl}(V,q) := rac{igoplus_{j=0}^{\infty} V^{\otimes j}}{\mathsf{ideal generated by } \{v \otimes v + q(v); v \in V\}}$$

A B F A B F

Clifford bundles

Tool to construct Dirac operators: Clifford bundles.

• If V is a (fin. dim., real) vector space, with a quadratic form q, its **Clifford algebra** is

$$\mathsf{Cl}(V,q) := rac{igoplus_{j=0}^{\infty} V^{\otimes j}}{\mathsf{ideal generated by } \{v \otimes v + q(v); v \in V\}}.$$

• If *M* is a manifold with a Riemannian metric *B*, we have the **Clifford bundle** $Cl(TM, B) \rightarrow M$ whose fibre at $m \in M$ is $Cl(T_mM, B_m)$.

A B F A B F

Spin^c-structures

Let (M, B) be an oriented, even-dimensional Riemannian manifold.

A Spin^c-structure on M is a Hermitian vector bundle $S \to M$ with an isomorphism of complex algebra bundles

$$c: \mathsf{Cl}(TM, B) \otimes \mathbb{C} \xrightarrow{\cong} \mathsf{End}(\mathcal{S}).$$

()

Spin^c-structures

Let (M, B) be an oriented, even-dimensional Riemannian manifold.

A Spin^c-structure on M is a Hermitian vector bundle $S \to M$ with an isomorphism of complex algebra bundles

$$c: \mathsf{Cl}(TM, B) \otimes \mathbb{C} \xrightarrow{\cong} \mathsf{End}(\mathcal{S}).$$

This exists if and only if the second Stiefel–Whitney class $w_2(M) \in H^2(M; \mathbb{Z}/2\mathbb{Z})$ is the image of a class in $H^2(M; \mathbb{Z})$. Examples:

- all manifolds of dimension \leq 4;
- (stably) almost complex manifolds, hence all symplectic manifolds;
- Spin-manifolds $(w_2(M) = 0)$.

くほと くほと くほと

Spin^c-Dirac operators

Let $S \to M$ be a Spin^c-structure. A **Clifford connection** on S is a Hermitian connection ∇^S such that

$$abla^{\mathcal{S}}_{v}c(w)s = c(
abla^{\mathcal{LC}}_{v}w)s + c(w)
abla^{\mathcal{S}}_{v}s \quad \in \Gamma^{\infty}(\mathcal{S}).$$

for all $s \in \Gamma^{\infty}(S)$ and $v, w \in \text{Vect}(M)$. Here ∇^{LC} is the Levi-Civita connection on *TM*. Clifford connections always exist.

Spin^c-Dirac operators

Let $S \to M$ be a Spin^c-structure. A **Clifford connection** on S is a Hermitian connection ∇^S such that

$$abla^{\mathcal{S}}_{v}c(w)s = c(
abla^{\mathcal{LC}}_{v}w)s + c(w)
abla^{\mathcal{S}}_{v}s \quad \in \Gamma^{\infty}(\mathcal{S}).$$

for all $s \in \Gamma^{\infty}(S)$ and $v, w \in \text{Vect}(M)$. Here ∇^{LC} is the Levi-Civita connection on *TM*. Clifford connections always exist.

Definition

The Spin^c-**Dirac operator** D associated to a Clifford connection ∇^{S} is

$$D: \Gamma^{\infty}(\mathcal{S}) \xrightarrow{\nabla^{\mathcal{S}}} \Gamma^{\infty}(T^*M \otimes \mathcal{S}) \xrightarrow{c} \Gamma^{\infty}(\mathcal{S}).$$

• We indeed have (Bochner, 1949)

 $D^2 = \Delta + R,$

where $\Delta := (\nabla^{\mathcal{S}})^* \nabla^{\mathcal{S}}$ and $R \in \operatorname{End} \mathcal{S}$.

(日) (周) (三) (三)

• We indeed have (Bochner, 1949)

$$D^2 = \Delta + R,$$

where $\Delta := (\nabla^{\mathcal{S}})^* \nabla^{\mathcal{S}}$ and $R \in \operatorname{End} \mathcal{S}$.

• The Dirac operator *D* is formally self-adjoint. (Essentially s.a. if *M* is complete.)

• We indeed have (Bochner, 1949)

$$D^2 = \Delta + R,$$

where $\Delta := (\nabla^{\mathcal{S}})^* \nabla^{\mathcal{S}}$ and $R \in \operatorname{End} \mathcal{S}$.

- The Dirac operator *D* is formally self-adjoint. (Essentially s.a. if *M* is complete.)
- Since *M* is even-dimensional, there is a $\mathbb{Z}/2\mathbb{Z}$ -grading $S = S^+ \oplus S^-$, and *D* interchanges S^+ and S^- . Let D^{\pm} be the restriction

$$D^{\pm}: \Gamma^{\infty}(\mathcal{S}^{\pm}) \to \Gamma^{\infty}(\mathcal{S}^{\mp}).$$

Then $(D^+)^* = D^-$.

• We indeed have (Bochner, 1949)

$$D^2 = \Delta + R,$$

where $\Delta := (\nabla^{\mathcal{S}})^* \nabla^{\mathcal{S}}$ and $R \in \operatorname{End} \mathcal{S}$.

- The Dirac operator *D* is formally self-adjoint. (Essentially s.a. if *M* is complete.)
- Since *M* is even-dimensional, there is a $\mathbb{Z}/2\mathbb{Z}$ -grading $S = S^+ \oplus S^-$, and *D* interchanges S^+ and S^- . Let D^{\pm} be the restriction

$$D^{\pm}: \Gamma^{\infty}(\mathcal{S}^{\pm}) \to \Gamma^{\infty}(\mathcal{S}^{\mp}).$$

Then $(D^+)^* = D^-$.

• If *M* is **compact**, then ker *D* is **finite-dimensional**. (Since *D* is elliptic.)

- 4 同 6 4 日 6 4 日 6

The index of a Spin^c-Dirac operator

From now on,

- *M* is a compact, connected, oriented, even-dimensional Riemannian manifold;
- $\mathcal{S} \to M$ is a Spin^c-structure;
- $\nabla^{\mathcal{S}}$ is a Clifford connection on \mathcal{S} ;
- *D* is the associated Spin^c-Dirac operator.

The index of a Spin^c-Dirac operator

From now on,

- *M* is a compact, connected, oriented, even-dimensional Riemannian manifold;
- $\mathcal{S} \to M$ is a Spin^c-structure;
- $\nabla^{\mathcal{S}}$ is a Clifford connection on \mathcal{S} ;
- *D* is the associated Spin^c-Dirac operator.

We saw that ker D is finite-dimensional, and the adjoint of

$$D^+:\Gamma^\infty(\mathcal{S}^+)\to\Gamma^\infty(\mathcal{S}^-).$$

is D^- . Hence we have the index of D^+ ,

$$\operatorname{index} D^+ = \operatorname{dim} \operatorname{ker} D^+ - \operatorname{dim} \operatorname{ker} D^- \quad \in \mathbb{Z}.$$

It is independent of $\nabla^{\mathcal{S}}$.

Example: complex manifolds

If M has an almost complex structure, it has a Spin^c-structure

$$\mathcal{S} := \bigwedge_{\mathbb{C}} TM \cong \bigwedge^{0,*} T^*M,$$

with, for all $v \in TM$, $\alpha \in \bigwedge_{\mathbb{C}} TM$,

$$c(\mathbf{v})\alpha = \mathbf{v} \wedge \alpha - \mathbf{v}^* \lrcorner \alpha.$$

() <) <)</p>

Example: complex manifolds

If M has an almost complex structure, it has a Spin^c-structure

$$\mathcal{S} := \bigwedge_{\mathbb{C}} TM \cong \bigwedge^{0,*} T^*M,$$

with, for all $v \in TM$, $\alpha \in \bigwedge_{\mathbb{C}} TM$,

$$c(\mathbf{v})\alpha = \mathbf{v} \wedge \alpha - \mathbf{v}^* \lrcorner \alpha.$$

Or more generally,

$$\mathcal{S}_L := \bigwedge^{0,*} T^* M \otimes L$$

for any complex line bundle $L \rightarrow M$.

< ∃ > < ∃

Example: complex manifolds

If M has an almost complex structure, it has a Spin^c-structure

$$\mathcal{S} := \bigwedge_{\mathbb{C}} TM \cong \bigwedge^{0,*} T^*M,$$

with, for all $v \in TM$, $\alpha \in \bigwedge_{\mathbb{C}} TM$,

$$c(\mathbf{v})\alpha = \mathbf{v} \wedge \alpha - \mathbf{v}^* \lrcorner \alpha.$$

Or more generally,

$$\mathcal{S}_L := \bigwedge^{0,*} T^* M \otimes L$$

for any complex line bundle $L \rightarrow M$.

If M is complex and L is holomorphic:

index
$$D^+ = \sum_{j \text{ even}} \dim H^j_{\text{Dolb}}(M; L) - \sum_{j \text{ odd}} \dim H^j_{\text{Dolb}}(M; L),$$

the **Riemann–Roch number** of $L \rightarrow M$.

Equivariant indices

Let G be a compact, connected Lie group, acting isometrically on M. Suppose the action lifts to S. (There is a criterion in equivariant cohomology for this.) Suppose ∇^{S} is G-invariant.

(3)

Equivariant indices

Let G be a compact, connected Lie group, acting isometrically on M. Suppose the action lifts to S. (There is a criterion in equivariant cohomology for this.) Suppose ∇^{S} is G-invariant.

Then ker D is a finite-dimensional representation of G, so we have the **equivariant index**

$$\operatorname{index}_{G} D^{+} = [\ker D^{+}] - [\ker D^{-}]$$

in the representation ring

 $R(G) = \{[V] - [W]; V, W \text{ finite-dimensional representations}\}.$

Representation theory

Equivariant indices of Spin^c-Dirac operators are a rich source of representations.

Example

Let T < G be maximal torus. The manifold M = G/T is complex. Take

$$\mathcal{S}_L = \bigwedge^{0,*} T^* M \otimes L,$$

with $L := G \times_T \mathbb{C}_{\xi}$, where T acts on \mathbb{C}_{ξ} with weight $\xi \in \hat{T} \subset i\mathfrak{t}^*$.

< 3 > < 3 >

Representation theory

Equivariant indices of Spin^c-Dirac operators are a rich source of representations.

Example

Let T < G be maximal torus. The manifold M = G/T is complex. Take

$$\mathcal{S}_L = \bigwedge^{0,*} T^* M \otimes L,$$

with $L := G \times_T \mathbb{C}_{\xi}$, where T acts on \mathbb{C}_{ξ} with weight $\xi \in \hat{T} \subset i\mathfrak{t}^*$. Then by the **Borel–Weil–Bott theorem**,

$$\operatorname{index}_{G} D^{+} = \pm [\pi^{*}_{\xi'}],$$

where $\pi_{\xi'}$ is the irreducible representation with highest weight ξ' , obtained from ξ via the Weyl group action.

Representation theory

Equivariant indices of Spin^c-Dirac operators are a rich source of representations.

Example

Let T < G be maximal torus. The manifold M = G/T is complex. Take

$$S_L = \bigwedge^{0,*} T^* M \otimes L,$$

with $L := G \times_T \mathbb{C}_{\xi}$, where T acts on \mathbb{C}_{ξ} with weight $\xi \in \hat{T} \subset i\mathfrak{t}^*$. Then by the **Borel–Weil–Bott theorem**,

$$\operatorname{index}_{G} D^{+} = \pm [\pi^{*}_{\xi'}],$$

where $\pi_{\xi'}$ is the irreducible representation with highest weight ξ' , obtained from ξ via the Weyl group action.

Central question: How does $index_G D^+$ decompose into irreducible representations in general?

Peter Hochs (UoA)

II Geometric quantisation

<ロト </p>

Quantisation and reduction

Idea from physics:

Quantisation and reduction

Idea from physics:

Quantisation commutes with reduction:

$$Q \circ R = R \circ Q$$
, or $`[Q, R] = 0'$.

Milestones

The quantisation commutes with reduction principle was stated rigorously and proved for **compact** symmetry groups and **compact** classical phase spaces M.

1982	Guillemin–Sternberg	M Kähler
1998, 1999	Meinrenken, Sjamaar	M symplectic
2014	Paradan–Vergne	M Spin ^c

3 🕨 🖌 3

Milestones

The quantisation commutes with reduction principle was stated rigorously and proved for **compact** symmetry groups and **compact** classical phase spaces M.

1982	Guillemin–Sternberg	M Kähler
1998, 1999	Meinrenken, Sjamaar	M symplectic
2014	Paradan–Vergne	M Spin ^c

Work has been done by many others since 1982, including Cannas da Silva, Duistermaat, Jeffrey, Karshon, Kirwan, Ma, Tian, Tolman, Weitsman, Zhang, . . .

- 4 同 6 4 日 6 4 日 6

Milestones

The quantisation commutes with reduction principle was stated rigorously and proved for **compact** symmetry groups and **compact** classical phase spaces M.

1982	Guillemin–Sternberg	M Kähler
1998, 1999	Meinrenken, Sjamaar	M symplectic
2014	Paradan–Vergne	M Spin ^c

Work has been done by many others since 1982, including Cannas da Silva, Duistermaat, Jeffrey, Karshon, Kirwan, Ma, Tian, Tolman, Weitsman, Zhang, . . .

The original problem was directly motivated by physics, but especially the Spin^c-case has much wider relevance, to geometry, representation theory and index theory.

イロト 不得下 イヨト イヨト 二日

Let (M, ω) be a compact, connected symplectic manifold, modelling a classical mechanical system. What is $Q(M, \omega)$?

Let (M, ω) be a compact, connected symplectic manifold, modelling a classical mechanical system. What is $Q(M, \omega)$?

This should be a Hilbert space. We could try

$$Q(M,\omega):=L^2(M,\omega^n/n!)$$

 $(\dim M = 2n)$. But:

- $L^2(M)$ is **too large**, e.g. we would like $Q(\mathbb{R}^2, dp \wedge dq) = L^2(\mathbb{R})$.
- Adding a **line bundle** helps to quantise observables $f \in C^{\infty}(M)$.

< 3 > < 3 >

Let (M, ω) be a compact, connected symplectic manifold, modelling a classical mechanical system. What is $Q(M, \omega)$?

This should be a Hilbert space. We could try

$$Q(M,\omega):=L^2(M,\omega^n/n!)$$

 $(\dim M = 2n)$. But:

• $L^2(M)$ is **too large**, e.g. we would like $Q(\mathbb{R}^2, dp \wedge dq) = L^2(\mathbb{R})$.

• Adding a **line bundle** helps to quantise observables $f \in C^{\infty}(M)$. Initial idea: define

$$Q(M,\omega)\subset \Gamma^{\infty}(L),$$

for a line bundle $L \to M$ with $c_1(L) = [\omega] \in H^2(M)$. (Under an integrality assumption on $[\omega]$.)

Let (M, ω) be a compact, connected symplectic manifold, modelling a classical mechanical system. What is $Q(M, \omega)$?

This should be a Hilbert space. We could try

$$Q(M,\omega):=L^2(M,\omega^n/n!)$$

 $(\dim M = 2n)$. But:

• $L^2(M)$ is too large, e.g. we would like $Q(\mathbb{R}^2, dp \wedge dq) = L^2(\mathbb{R})$.

• Adding a **line bundle** helps to quantise observables $f \in C^{\infty}(M)$. Initial idea: define

$$Q(M,\omega)\subset \Gamma^{\infty}(L),$$

for a line bundle $L \to M$ with $c_1(L) = [\omega] \in H^2(M)$. (Under an integrality assumption on $[\omega]$.)

Then quantise $f \in C^{\infty}(M)$ as

$$Q(f) := \nabla^L_{X_f} - 2\pi i f,$$

where $(\nabla^L)^2 = 2\pi i\omega$, if this operator on $\Gamma^{\infty}(L)$ preserves $Q(M, \omega)$.

Geometric quantisation: definitions

If (M, ω) is Kähler, we take Q(M, ω) to be the holomorphic sections of a holomorphic line bundle L → M with c₁(L) = [ω]:

$$Q(M,\omega) := H^0_{\mathsf{Dolb}}(M;L).$$

Up to isomorphism, this is determined by dim $H^0_{\text{Dolb}}(M; L)$.

Geometric quantisation: definitions

If (M, ω) is Kähler, we take Q(M, ω) to be the holomorphic sections of a holomorphic line bundle L → M with c₁(L) = [ω]:

$$Q(M,\omega) := H^0_{\mathsf{Dolb}}(M;L).$$

Up to isomorphism, this is determined by dim $H^0_{\text{Dolb}}(M; L)$. One can also include other Dolbeault cohomology groups:

$$Q(M,\omega) := \sum_{j \text{ even}} \dim H^j_{\text{Dolb}}(M;L) - \sum_{j \text{ odd}} \dim H^j_{\text{Dolb}}(M;L).$$

If $\kappa^* \otimes L$ is positive, this reduces to the first definition by Kodaira's vanishing theorem. (With κ the canonical line bundle.)
Geometric quantisation: definitions

If (M, ω) is Kähler, we take Q(M, ω) to be the holomorphic sections of a holomorphic line bundle L → M with c₁(L) = [ω]:

$$Q(M,\omega) := H^0_{\mathsf{Dolb}}(M;L).$$

Up to isomorphism, this is determined by dim $H^0_{\text{Dolb}}(M; L)$. One can also include other Dolbeault cohomology groups:

$$Q(M,\omega) := \sum_{j \text{ even}} \dim H^j_{\text{Dolb}}(M;L) - \sum_{j \text{ odd}} \dim H^j_{\text{Dolb}}(M;L).$$

If $\kappa^* \otimes L$ is positive, this reduces to the first definition by Kodaira's vanishing theorem. (With κ the canonical line bundle.)

We saw that the second definition equals

$$Q(M, \omega) = \operatorname{index} D^+,$$

the index of a Spin^c-Dirac operator. This can still be defined if (M, ω) is not Kähler, or even if M just has a Spin^c-structure.

Equivariant geometric quantisation

Suppose a compact, connected Lie group G acts on M, preserving ω .

Bott: define the geometric quantisation of the action as

$$Q_G(M,\omega) := \operatorname{index}_G D^+ \Big| \in R(G),$$

for the Spin^c-structure $\bigwedge^{0,*} T^*M \otimes L$ on M, w.r.t. a *G*-invariant almost complex structure J such that $\omega(-, J -)$ is a Riemannian metric.

Equivariant geometric quantisation

Suppose a compact, connected Lie group G acts on M, preserving ω .

Bott: define the geometric quantisation of the action as

$$Q_G(M,\omega) := \operatorname{index}_G D^+ \quad \in R(G),$$

for the Spin^c-structure $\bigwedge^{0,*} T^*M \otimes L$ on M, w.r.t. a *G*-invariant almost complex structure J such that $\omega(-, J -)$ is a Riemannian metric.

This definition of geometric quantisation as an index is the right one for applications to representation theory. (E.g. Borel–Weil–Bott.)

This is physics-inspired maths.

Quantum reduction

Quantum reduction at an irreducible representation π of G is the map

$$R_{\pi}: R(G) \rightarrow \mathbb{Z}$$

defined by

$$R_{\pi}([V]) = [V:\pi],$$

the multiplicity of π in a representation V of G.

E 5 4

Moment maps

Suppose there is a moment map

$$\mu: \boldsymbol{M} \to \boldsymbol{\mathfrak{g}}^*,$$

which is equivariant, and satisfies

$$d\langle \mu, X \rangle = -\omega(X^M, -)$$
 $\in \Omega^1(M).$

Here $X \in \mathfrak{g}$, and X^M is the induced vector field.

3 🕨 🖌 3

Moment maps

Suppose there is a moment map

$$\mu: \boldsymbol{M} \to \boldsymbol{\mathfrak{g}}^*,$$

which is equivariant, and satisfies

$$d\langle \mu, X \rangle = -\omega(X^M, -)$$
 $\in \Omega^1(M).$

Here $X \in \mathfrak{g}$, and X^M is the induced vector field.

If the action preserves $h \in C^{\infty}(M)$, then

$$v_h(\langle \mu, X \rangle) = 0$$

for all $X \in \mathfrak{g}$, where v_h is the Hamiltonian vector field of f. So μ is **conserved** by the dynamics determined by h.

Moment maps

Suppose there is a moment map

$$\mu: \boldsymbol{M} \to \boldsymbol{\mathfrak{g}}^*,$$

which is equivariant, and satisfies

$$d\langle \mu, X \rangle = -\omega(X^M, -)$$
 $\in \Omega^1(M).$

Here $X \in \mathfrak{g}$, and X^M is the induced vector field.

If the action preserves $h \in C^{\infty}(M)$, then

$$v_h(\langle \mu, X \rangle) = 0$$

for all $X \in \mathfrak{g}$, where v_h is the Hamiltonian vector field of f. So μ is **conserved** by the dynamics determined by h.

Example

Consider *n* particles in \mathbb{R}^3 . Then $M = \mathbb{R}^{6n}$, and

- μ is total linear momentum for the translation action by \mathbb{R}^3 ;
- μ is total angular momentum for the rotation action by SO(3).

Classical reduction

Let $\xi \in \mathfrak{g}^*$ be a regular value of μ . The **reduced space** at ξ is

$$M_{\xi}:=\mu^{-1}(\xi)/G_{\xi},$$

where G_{ξ} is the stabiliser of ξ w.r.t. the coadjoint action. This is an orbifold.

Classical reduction

Let $\xi \in \mathfrak{g}^*$ be a regular value of μ . The **reduced space** at ξ is

$$M_{\xi} := \mu^{-1}(\xi)/G_{\xi},$$

where G_{ξ} is the stabiliser of ξ w.r.t. the coadjoint action. This is an orbifold.

Example

For *n* particles in \mathbb{R}^3 and the translation action by \mathbb{R}^3 on \mathbb{R}^{6n} ,

$$M_0=\mu^{-1}(0)/\mathbb{R}^3,$$

the rest frame of the system up to translation of its centre of mass.

Classical reduction

Let $\xi \in \mathfrak{g}^*$ be a regular value of μ . The **reduced space** at ξ is

$$M_{\xi} := \mu^{-1}(\xi)/G_{\xi},$$

where G_{ξ} is the stabiliser of ξ w.r.t. the coadjoint action. This is an orbifold.

Example

For *n* particles in \mathbb{R}^3 and the translation action by \mathbb{R}^3 on \mathbb{R}^{6n} ,

$$M_0 = \mu^{-1}(0)/\mathbb{R}^3,$$

the rest frame of the system up to translation of its centre of mass.

Theorem (Marsden–Weinstein, 1974)

The symplectic form ω descends to a symplectic form ω_{ξ} on M_{ξ} .

Peter Hochs (UoA)

8-2-2018 17 / 32

(日) (周) (三) (三)

Quantisation commutes with reduction

$$\begin{array}{ccc} G \circlearrowright (M,\omega) & \xrightarrow{Q_G} & \to \operatorname{index}_G(D^+) \\ & & & & & & \\ R_{\xi} & & & & & \\ (M_{\xi},\omega_{\xi}) & \xrightarrow{Q} & \operatorname{index} D^+_{M_{\xi}} & & [\operatorname{index}_G D^+ : \pi] \end{array}$$

Theorem (Meinrenken, 1998)

If ξ is the highest weight of π , then

$$[\operatorname{index}_G D^+ : \pi] = Q(M_{\xi}, \omega_{\xi}) := \operatorname{index} D^+_{M_{\xi}} \in \mathbb{Z}.$$

< ∃ > < ∃

Quantisation commutes with reduction

$$\begin{array}{ccc} G \circlearrowright (M,\omega) & \xrightarrow{Q_G} & \text{index}_G(D^+) \\ R_{\xi} & & & \downarrow R_{\pi} \\ (M_{\xi},\omega_{\xi}) & \xrightarrow{Q} & \text{index} D^+_{M_{\xi}} & \quad [\text{index}_G D^+ : \pi] \end{array}$$

Theorem (Meinrenken, 1998)

If ξ is the highest weight of π , then

$$[\operatorname{index}_G D^+ : \pi] = Q(M_{\xi}, \omega_{\xi}) := \operatorname{index} D^+_{M_{\xi}} \in \mathbb{Z}.$$

This is a **localisation** result, more refined than fixed point formulas.

Meinrenken–Sjamaar (1999) generalised this to singular reduced spaces. Meinrenken's proof is geometric in nature. Tian–Zhang (1998) gave an analytic proof, and Paradan (2001) gave a topological proof.

Example: branching rules for SU(2) Irreducible representations of SU(2):

$$\pi_n = Q_{\mathrm{SU}(2)}(S^2, \omega_n)$$

for $n = 0, 1, 2, 3, \ldots$

A D A D A D A

Example: branching rules for SU(2) Irreducible representations of SU(2):

$$\pi_n = Q_{\mathsf{SU}(2)}(S^2, \omega_n)$$

for $n = 0, 1, 2, 3, \dots$ U(1) \hookrightarrow SU(2) acts on S^2 by double rotations.

Example: branching rules for SU(2) Irreducible representations of SU(2):

$$\pi_n = Q_{\mathsf{SU}(2)}(S^2, \omega_n)$$

for $n = 0, 1, 2, 3, \dots$ U(1) \hookrightarrow SU(2) acts on S^2 by double rotations.

Example: branching rules for SU(2)

Because

$$\mu^{-1}(I)/\operatorname{U}(1) = \begin{cases} \text{point} & \text{if } |I| \leq n; \\ \emptyset & \text{if } |I| > n, \end{cases}$$

[Q, R] = 0 implies

$$\pi_n|_{\mathsf{U}(1)} = Q_{\mathsf{U}(1)}(S^2, \omega_n) = \bigoplus_{I \in \mathbb{Z}} Q(\mu^{-1}(I)/\mathsf{U}(1))\mathbb{C}_I$$
$$= \mathbb{C}_{-n} \oplus \mathbb{C}_{-n+2} \oplus \cdots \oplus \mathbb{C}_{n-2} \oplus \mathbb{C}_n.$$

Here \mathbb{C}_l is the representation of U(1) in \mathbb{C} with weight $l \in \mathbb{Z}$.

くほと くほと くほと

Example: branching rules for SU(2)

Because

$$\mu^{-1}(I)/\operatorname{U}(1) = \begin{cases} \text{point} & \text{if } |I| \leq n; \\ \emptyset & \text{if } |I| > n, \end{cases}$$

[Q, R] = 0 implies

$$\pi_n|_{\mathsf{U}(1)} = Q_{\mathsf{U}(1)}(S^2, \omega_n) = \bigoplus_{I \in \mathbb{Z}} Q(\mu^{-1}(I)/\mathsf{U}(1))\mathbb{C}_I$$
$$= \mathbb{C}_{-n} \oplus \mathbb{C}_{-n+2} \oplus \cdots \oplus \mathbb{C}_{n-2} \oplus \mathbb{C}_n.$$

Here \mathbb{C}_l is the representation of U(1) in \mathbb{C} with weight $l \in \mathbb{Z}$.

This goes in steps of 2 because we use orbifold indices.

A B A A B A

Branching rules and [Q, R] = 0

So branching rules for compact Lie groups follow from [Q, R] = 0.

< ロ > < 同 > < 三 > < 三

Branching rules and [Q, R] = 0

So branching rules for compact Lie groups follow from [Q, R] = 0.

This is good because

- It links physics, geometry and representation theory together.
- In particular, geometry of μ reflects the classical limit of a multiplicity function. (See also: Duistermaat–Heckman measure $\mu_*(\omega^n/n!)$.)
- We can apply geometry to representation theory. E.g.
 - > The image of the moment map determines which representations occur.
 - If a reduced space is a point, the multiplicity is 0 or 1.

- 4 同 6 4 日 6 4 日 6

III The Spin^c-case

イロト イヨト イヨト イヨト

Spin^c-manifolds

Now consider the more general case where M is a compact, connected, even-dimensional manifold with a Spin^c-structure $S \rightarrow M$. Suppose the action by G lifts to S. Then one can still define

$$Q_G(M, \mathcal{S}) := \operatorname{index}_G D^+ \in R(G),$$

although the relation with physics is lost in the Spin^c-context.

Spin^c-moment maps

The **determinant line bundle** of the Spin^c-structure S is

$$\lambda := \operatorname{Hom}_{\operatorname{Cl}(TM,B)}(\overline{\mathcal{S}}, \mathcal{S}) \to M,$$

where \overline{S} equals S with the opposite complex structure. Let ∇^{λ} be a *G*-invariant Hermitian connection on λ .

Spin^c-moment maps

The **determinant line bundle** of the Spin^c-structure S is

$$\lambda := \operatorname{Hom}_{\operatorname{Cl}(TM,B)}(\overline{\mathcal{S}}, \mathcal{S}) \to M,$$

where \overline{S} equals S with the opposite complex structure. Let ∇^{λ} be a *G*-invariant Hermitian connection on λ .

The Spin^c-moment map of ∇^{λ} is the map $\mu: M \to \mathfrak{g}^*$ defined by

$$2\pi i \langle \mu, X \rangle =
abla^{\lambda}_{X^M} - \mathcal{L}_X \qquad \in \operatorname{End}(\lambda) = C^{\infty}(M, \mathbb{C}).$$

Here \mathcal{L}_X is the Lie derivative of sections of λ . If $2\pi i\omega := (\nabla^{\lambda})^2$ is symplectic, this reduces to the previous definition of moment maps. (Kostant's formula.)

Spin^c-moment maps

The **determinant line bundle** of the Spin^c-structure S is

$$\lambda := \operatorname{Hom}_{\operatorname{Cl}(TM,B)}(\overline{\mathcal{S}}, \mathcal{S}) \to M,$$

where \overline{S} equals S with the opposite complex structure. Let ∇^{λ} be a *G*-invariant Hermitian connection on λ .

The Spin^c-moment map of ∇^{λ} is the map $\mu: M \to \mathfrak{g}^*$ defined by

$$2\pi i \langle \mu, X \rangle =
abla^{\lambda}_{X^M} - \mathcal{L}_X \qquad \in \operatorname{End}(\lambda) = C^{\infty}(M, \mathbb{C}).$$

Here \mathcal{L}_X is the Lie derivative of sections of λ . If $2\pi i\omega := (\nabla^{\lambda})^2$ is symplectic, this reduces to the previous definition of moment maps. (Kostant's formula.)

One can still define the reduced space

$$M_{\xi} := \mu^{-1}(\xi)/G_{\xi}$$

for a regular value $\xi \in \mathfrak{g}^*$ of μ . This inherits a Spin^c-structure $S_{\xi} \to M_{\xi}$ from $S \to M$ (constructed by Paradan–Vergne).

Spin^c-quantisation commutes with reduction

Theorem (Paradan-Vergne, 2014)

If the action by G on M has abelian stabilisers, then for all irreducible representations π of G,

$$[\operatorname{index}_G D^+ : \pi] = Q(M_{\xi}, \mathcal{S}_{\xi}) := \operatorname{index} D^+_{M_{\xi}} \in \mathbb{Z},$$

if ξ is the highest weight of π plus half the sum of a positive root system. In general, $[index_G D^+ : \pi]$ is a finite sum of quantisations of reduced spaces.

- A I I I A I I I I

Spin^c-quantisation commutes with reduction

Theorem (Paradan–Vergne, 2014)

If the action by G on M has abelian stabilisers, then for all irreducible representations π of G,

$$[\operatorname{index}_G D^+ : \pi] = Q(M_{\xi}, \mathcal{S}_{\xi}) := \operatorname{index} D^+_{M_{\xi}} \in \mathbb{Z},$$

if ξ is the highest weight of π plus half the sum of a positive root system. In general, $[index_G D^+ : \pi]$ is a finite sum of quantisations of reduced spaces.

This is now a result on the general index theory of Spin^c-Dirac operators, not just on geometric quantisation.

Corollary (Originally Atiyah-Hirzebruch, 1970)

If *M* has a Spin-structure to which the action lifts, and the action on *M* is not trivial, then $index_G D^+ = 0$. In particular, $\int_M \hat{A}(M) = 0$.

(日) (同) (日) (日) (日)

Noncompact manifolds and groups

It is a natural question if [Q, R] = 0 extends to the noncompact case.

- In **physics**, many classical phase spaces are noncompact, e.g. cotangent bundles.
- In mathematics, representation theory of noncompact groups is much more complicated than for compact groups, and [Q, R] = 0 can shed light on this.

Noncompact manifolds and groups

It is a natural question if [Q, R] = 0 extends to the noncompact case.

- In **physics**, many classical phase spaces are noncompact, e.g. cotangent bundles.
- In mathematics, representation theory of noncompact groups is much more complicated than for compact groups, and [Q, R] = 0 can shed light on this.

There are some challenges for noncompact manifolds and groups.

- If *M* is noncompact, then ker *D* is infinite-dimensional in general.
- If *G* is noncompact, then it is not clear what kind of object the quantisation should be. (E.g. *R*(*G*) is no longer well-defined.)

So the first question is how to generalise the equivariant index to the noncompact case.

イロト 不得下 イヨト イヨト 二日

Results in the noncompact case

	M symplectic	M Spin ^c
<i>M/G</i> compact	H.–Landsman (2008) Mathai–Zhang (2010)	H.–Mathai (2014)
	H. (2010, 2015)	
<i>M</i> noncompact <i>G</i> compact	Ma–Zhang (2014) Paradan (2011) H.–Song (2017)	H.–Song (2017)
M/G, G noncompact	H.–Mathai (2014)	H.–Mathai (2014) HSong (to appear)

- The results for M/G compact involve K-theory of C*-algebras.
- The results for *M* noncompact but *G* compact are stated in terms of several equivalent analytic and topological indices.

IV Application to representation theory

A (10) A (10)

Realising representations

Let G be a semisimple Lie group. Let π be an irreducible representation of G that is a direct summand of $L^2(G)$ (assuming it exists). Let K < G be maximal compact and T < K a maximal torus.

Realising representations

Let G be a semisimple Lie group. Let π be an irreducible representation of G that is a direct summand of $L^2(G)$ (assuming it exists). Let K < G be maximal compact and T < K a maximal torus.

Theorem (Paradan, 2003)

The restriction $\pi|_{K}$ is the K-equivariant Spin^c-quantisation of an elliptic coadjoint orbit of G,

$$\pi|_{\mathcal{K}} = Q_{\mathcal{K}}(\mathcal{O});$$

 $\mathcal{O} = \operatorname{Ad}^*(G)\xi \cong G/T.$

Realising representations

Let G be a semisimple Lie group. Let π be an irreducible representation of G that is a direct summand of $L^2(G)$ (assuming it exists). Let K < G be maximal compact and T < K a maximal torus.

Theorem (Paradan, 2003)

The restriction $\pi|_{K}$ is the K-equivariant Spin^c-quantisation of an elliptic coadjoint orbit of G,

$$\pi|_{\mathcal{K}} = Q_{\mathcal{K}}(\mathcal{O});$$

 $\mathcal{O} = \operatorname{Ad}^*(G)\xi \cong G/T.$

Important: ${\mathcal O}$ has to be treated as a ${\sf Spin}^{\sf c}{\sf -manifold},$ not as a symplectic manifold. Because

- \bullet the natural complex structure on ${\cal O}$ is not compatible with the symplectic form;
- \bullet the natural line bundle on ${\cal O}$ is not a prequantum line bundle.

<ロ> (四) (四) (三) (三) (三) (三)

Example: $G = SL(2, \mathbb{R})$

Then $\pi = D_n^{\pm}$ for n = 1, 2, 3, ..., the **discrete series** of $SL(2, \mathbb{R})$. And $D_n^+|_{\mathcal{K}}$ is the *K*-equivariant Spin^c-quantisation of

< ∃ > <

Example: $G = SL(2, \mathbb{R})$

Then $\pi = D_n^{\pm}$ for n = 1, 2, 3, ..., the **discrete series** of SL(2, \mathbb{R}). And $D_n^+|_{\mathcal{K}}$ is the *K*-equivariant Spin^c-quantisation of

By [Q, R] = 0 (Paradan, H.-Song),

$$D_n^+|_{\mathcal{K}} = \bigoplus_{l \in \mathbb{Z}} Q(\mu^{-1}(l) / \operatorname{SO}(2)) \mathbb{C}_l$$

$$=\mathbb{C}_{n+1}\oplus\mathbb{C}_{n+3}\oplus\mathbb{C}_{n+5}\oplus\cdots$$

< ∃ > <

Realising representations (2)

Theorem (H.–Song–Yu, 2016)

For any irreducible representation π of G occurring in $L^2(G)$ (not necessarily discretely), $\pi|_K$ is the Spin^c-quantisation of a coadjoint orbit.

Relevant for example because for many groups $L^2(G)$ has no irreducible direct summands.
Realising representations (2)

Theorem (H.-Song-Yu, 2016)

For any irreducible representation π of G occurring in $L^2(G)$ (not necessarily discretely), $\pi|_K$ is the Spin^c-quantisation of a coadjoint orbit.

Relevant for example because for many groups $L^2(G)$ has no irreducible direct summands.

Then applying the [Q, R] = 0 result by H.-Song from 2017 gives a geometric expression for the multiplicities of irreducible representations of K in $\pi|_{K}$.

Realising representations (2)

Theorem (H.-Song-Yu, 2016)

For any irreducible representation π of G occurring in $L^2(G)$ (not necessarily discretely), $\pi|_K$ is the Spin^c-quantisation of a coadjoint orbit.

Relevant for example because for many groups $L^2(G)$ has no irreducible direct summands.

Then applying the [Q, R] = 0 result by H.-Song from 2017 gives a geometric expression for the multiplicities of irreducible representations of K in $\pi|_{K}$.

Corollary

Geometric sufficient condition for representations to occur with multiplicities 0 or 1.

イロト イヨト イヨト

Example: the principal series of $SL(2,\mathbb{R})$

Principal series: $\pi = P_{i\nu}^{\pm}$ for $\nu \ge 0$. $P_{i\nu}^{+}|_{\kappa}$ is the Spin^c-quantisation of

Example: the principal series of $SL(2,\mathbb{R})$

Principal series: $\pi = P_{i\nu}^{\pm}$ for $\nu \ge 0$. $P_{i\nu}^{+}|_{\kappa}$ is the Spin^c-quantisation of

By [Q, R] = 0,

$$P_{i\nu}^+|_{\mathcal{K}} = \cdots \oplus \mathbb{C}_{-2} \oplus \mathbb{C}_0 \oplus \mathbb{C}_2 \oplus \mathbb{C}_4 \oplus \cdots$$

Example: the principal series of $SL(2,\mathbb{R})$ (2)

 $P_{i\nu}^{-}|_{\mathcal{K}}$ is the Spin^c-quantisation with a different Spin^c-structure of

Example: the principal series of $SL(2,\mathbb{R})$ (2)

 $P_{i\nu}^{-}|_{K}$ is the Spin^c-quantisation with a different Spin^c-structure of

By [Q, R] = 0,

$$P_{i\nu}^{-}|_{\mathcal{K}} = \cdots \mathbb{C}_{-3} \oplus \mathbb{C}_{-1} \oplus \mathbb{C}_{1} \oplus \mathbb{C}_{3} \oplus \cdots$$

Limits of discrete series of $SL(2, \mathbb{R})$

The other representations occurring in $L^2(G)$ are the **limits of discrete** series $\pi = D_0^{\pm}$. For D_0^+ , the map μ is now a shifted and deformed version of the the projection map from a coadjoint orbit.

Limits of discrete series of $SL(2, \mathbb{R})$

The other representations occurring in $L^2(G)$ are the **limits of discrete** series $\pi = D_0^{\pm}$. For D_0^+ , the map μ is now a shifted and deformed version of the the projection map from a coadjoint orbit.

Similarly to the discrete series case, we obtain

 $D_0^+|_{\mathcal{K}} = \mathbb{C}_1 \oplus \mathbb{C}_3 \oplus \mathbb{C}_5 \oplus \cdots$ and $D_0^-|_{\mathcal{K}} = \mathbb{C}_{-1} \oplus \mathbb{C}_{-3} \oplus \mathbb{C}_{-5} \oplus \cdots$

Thank you

イロト イヨト イヨト イヨト