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Dirac operators

Idea (Dirac, 1928):

Special relativity: E 2 = p2c2 + m2c4

Quantum mechanics: p2 = ~2∆, with

∆ = −
∑
j

∂2

∂x2j

the Laplacian.

So look for Dirac operator D representing E , such that

D2 = ∆ + zero-order terms.
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Clifford bundles

Tool to construct Dirac operators: Clifford bundles.

If V is a (fin. dim., real) vector space, with a quadratic form q, its
Clifford algebra is

Cl(V , q) :=

⊕∞
j=0 V

⊗j

ideal generated by {v ⊗ v + q(v); v ∈ V }
.

If M is a manifold with a Riemannian metric B, we have the Clifford
bundle Cl(TM,B)→ M whose fibre at m ∈ M is Cl(TmM,Bm).
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Spinc-structures

Let (M,B) be an oriented, even-dimensional Riemannian manifold.

A Spinc-structure on M is a Hermitian vector bundle S → M with an
isomorphism of complex algebra bundles

c : Cl(TM,B)⊗ C
∼=−→ End(S).

This exists if and only if the second Stiefel–Whitney class
w2(M) ∈ H2(M;Z/2Z) is the image of a class in H2(M;Z). Examples:

all manifolds of dimension ≤ 4;

(stably) almost complex manifolds, hence all symplectic manifolds;

Spin-manifolds (w2(M) = 0).
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Spinc-Dirac operators

Let S → M be a Spinc-structure. A Clifford connection on S is a
Hermitian connection ∇S such that

∇Sv c(w)s = c(∇LC
v w)s + c(w)∇Sv s ∈ Γ∞(S).

for all s ∈ Γ∞(S) and v ,w ∈ Vect(M). Here ∇LC is the Levi–Civita
connection on TM. Clifford connections always exist.

Definition

The Spinc-Dirac operator D associated to a Clifford connection ∇S is

D : Γ∞(S)
∇S
−−→ Γ∞(T ∗M ⊗ S)

c−→ Γ∞(S).
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Properties

We indeed have (Bochner, 1949)

D2 = ∆ + R,

where ∆ := (∇S)∗∇S and R ∈ EndS.

The Dirac operator D is formally self-adjoint. (Essentially s.a. if M is
complete.)

Since M is even-dimensional, there is a Z/2Z-grading S = S+ ⊕ S−,
and D interchanges S+ and S−. Let D± be the restriction

D± : Γ∞(S±)→ Γ∞(S∓).

Then (D+)∗ = D−.

If M is compact, then kerD is finite-dimensional. (Since D is
elliptic.)
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The index of a Spinc-Dirac operator

From now on,

M is a compact, connected, oriented, even-dimensional Riemannian
manifold;

S → M is a Spinc-structure;

∇S is a Clifford connection on S;

D is the associated Spinc-Dirac operator.

We saw that kerD is finite-dimensional, and the adjoint of

D+ : Γ∞(S+)→ Γ∞(S−).

is D−. Hence we have the index of D+,

indexD+ = dim kerD+ − dim kerD− ∈ Z.

It is independent of ∇S .
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Example: complex manifolds

If M has an almost complex structure, it has a Spinc-structure

S :=
∧

CTM
∼=
∧0,∗T ∗M,

with, for all v ∈ TM, α ∈
∧

CTM,

c(v)α = v ∧ α− v∗yα.

Or more generally,
SL :=

∧0,∗T ∗M ⊗ L

for any complex line bundle L→ M.

If M is complex and L is holomorphic:

indexD+ =
∑
j even

dimH j
Dolb(M; L)−

∑
j odd

dimH j
Dolb(M; L),

the Riemann–Roch number of L→ M.

Peter Hochs (UoA) Spinc-quantisation 8-2-2018 7 / 32



Example: complex manifolds

If M has an almost complex structure, it has a Spinc-structure

S :=
∧

CTM
∼=
∧0,∗T ∗M,

with, for all v ∈ TM, α ∈
∧

CTM,

c(v)α = v ∧ α− v∗yα.

Or more generally,
SL :=

∧0,∗T ∗M ⊗ L

for any complex line bundle L→ M.

If M is complex and L is holomorphic:

indexD+ =
∑
j even

dimH j
Dolb(M; L)−

∑
j odd

dimH j
Dolb(M; L),

the Riemann–Roch number of L→ M.

Peter Hochs (UoA) Spinc-quantisation 8-2-2018 7 / 32



Example: complex manifolds

If M has an almost complex structure, it has a Spinc-structure

S :=
∧

CTM
∼=
∧0,∗T ∗M,

with, for all v ∈ TM, α ∈
∧

CTM,

c(v)α = v ∧ α− v∗yα.

Or more generally,
SL :=

∧0,∗T ∗M ⊗ L

for any complex line bundle L→ M.

If M is complex and L is holomorphic:

indexD+ =
∑
j even

dimH j
Dolb(M; L)−

∑
j odd

dimH j
Dolb(M; L),

the Riemann–Roch number of L→ M.

Peter Hochs (UoA) Spinc-quantisation 8-2-2018 7 / 32



Equivariant indices

Let G be a compact, connected Lie group, acting isometrically on M.
Suppose the action lifts to S. (There is a criterion in equivariant
cohomology for this.) Suppose ∇S is G -invariant.

Then kerD is a finite-dimensional representation of G , so we have the
equivariant index

indexG D+ = [kerD+]− [kerD−]

in the representation ring

R(G ) = {[V ]− [W ];V ,W finite-dimensional representations}.
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Representation theory
Equivariant indices of Spinc-Dirac operators are a rich source of
representations.

Example

Let T < G be maximal torus. The manifold M = G/T is complex. Take

SL =
∧0,∗T ∗M ⊗ L,

with L := G ×T Cξ, where T acts on Cξ with weight ξ ∈ T̂ ⊂ it∗.

Then
by the Borel–Weil–Bott theorem,

indexG D+ = ±[π∗ξ′ ],

where πξ′ is the irreducible representation with highest weight ξ′, obtained
from ξ via the Weyl group action.

Central question: How does indexG D+ decompose into irreducible
representations in general?
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II Geometric quantisation
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Quantisation and reduction

Idea from physics:

Classical
mechanics

with symmetry

quantisation

Q
//

reduction R (use symmetry to simplify)
��

Quantum
mechanics

with symmetry

R
��

Simpler
classical

mechanics
Q

//
Simpler

quantum
mechanics

Quantisation commutes with reduction:

Q ◦ R = R ◦ Q, or ‘[Q,R] = 0’.
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Milestones

The quantisation commutes with reduction principle was stated rigorously
and proved for compact symmetry groups and compact classical phase
spaces M.

1982 Guillemin–Sternberg M Kähler
1998, 1999 Meinrenken, Sjamaar M symplectic
2014 Paradan–Vergne M Spinc

Work has been done by many others since 1982, including Cannas da
Silva, Duistermaat, Jeffrey, Karshon, Kirwan, Ma, Tian, Tolman,
Weitsman, Zhang, . . .

The original problem was directly motivated by physics, but especially the
Spinc-case has much wider relevance, to geometry, representation theory
and index theory.
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Geometric quantisation: idea
Let (M, ω) be a compact, connected symplectic manifold, modelling a
classical mechanical system. What is Q(M, ω)?

This should be a Hilbert space. We could try

Q(M, ω) := L2(M, ωn/n!)

(dimM = 2n). But:

L2(M) is too large, e.g. we would like Q(R2, dp ∧ dq) = L2(R).

Adding a line bundle helps to quantise observables f ∈ C∞(M).

Initial idea: define
Q(M, ω) ⊂ Γ∞(L),

for a line bundle L→ M with c1(L) = [ω] ∈ H2(M). (Under an integrality
assumption on [ω].)

Then quantise f ∈ C∞(M) as

Q(f ) := ∇L
Xf
− 2πif ,

where (∇L)2 = 2πiω, if this operator on Γ∞(L) preserves Q(M, ω).
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Geometric quantisation: definitions
1 If (M, ω) is Kähler, we take Q(M, ω) to be the holomorphic

sections of a holomorphic line bundle L→ M with c1(L) = [ω]:

Q(M, ω) := H0
Dolb(M; L).

Up to isomorphism, this is determined by dimH0
Dolb(M; L).

2 One can also include other Dolbeault cohomology groups:

Q(M, ω) :=
∑
j even

dimH j
Dolb(M; L)−

∑
j odd

dimH j
Dolb(M; L).

If κ∗ ⊗ L is positive, this reduces to the first definition by Kodaira’s
vanishing theorem. (With κ the canonical line bundle.)

3 We saw that the second definition equals

Q(M, ω) = indexD+,

the index of a Spinc-Dirac operator. This can still be defined if
(M, ω) is not Kähler, or even if M just has a Spinc-structure.
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Equivariant geometric quantisation

Suppose a compact, connected Lie group G acts on M, preserving ω.

Bott: define the geometric quantisation of the action as

QG (M, ω) := indexG D+ ∈ R(G ),

for the Spinc-structure
∧0,∗T ∗M ⊗ L on M, w.r.t. a G -invariant almost

complex structure J such that ω(−, J −) is a Riemannian metric.

This definition of geometric quantisation as an index is the right one for
applications to representation theory. (E.g. Borel–Weil–Bott.)

This is physics-inspired maths.
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Quantum reduction

Quantum reduction at an irreducible representation π of G is the map

Rπ : R(G )→ Z

defined by

Rπ([V ]) = [V : π],

the multiplicity of π in a representation V of G .
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Moment maps
Suppose there is a moment map

µ : M → g∗,

which is equivariant, and satisfies

d〈µ,X 〉 = −ω(XM ,−) ∈ Ω1(M).

Here X ∈ g, and XM is the induced vector field.

If the action preserves h ∈ C∞(M), then

vh(〈µ,X 〉) = 0

for all X ∈ g, where vh is the Hamiltonian vector field of f . So µ is
conserved by the dynamics determined by h.

Example

Consider n particles in R3. Then M = R6n, and

µ is total linear momentum for the translation action by R3;

µ is total angular momentum for the rotation action by SO(3).
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Classical reduction

Let ξ ∈ g∗ be a regular value of µ. The reduced space at ξ is

Mξ := µ−1(ξ)/Gξ,

where Gξ is the stabiliser of ξ w.r.t. the coadjoint action. This is an
orbifold.

Example

For n particles in R3 and the translation action by R3 on R6n,

M0 = µ−1(0)/R3,

the rest frame of the system up to translation of its centre of mass.

Theorem (Marsden–Weinstein, 1974)

The symplectic form ω descends to a symplectic form ωξ on Mξ.
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Quantisation commutes with reduction

G � (M, ω)
QG //

Rξ

��

indexG (D+)

Rπ

��
(Mξ, ωξ)

Q // indexD+
Mξ

[indexG D+ : π]

Theorem (Meinrenken, 1998)

If ξ is the highest weight of π, then

[indexG D+ : π] = Q(Mξ, ωξ) := indexD+
Mξ

∈ Z.

This is a localisation result, more refined than fixed point formulas.

Meinrenken–Sjamaar (1999) generalised this to singular reduced spaces.
Meinrenken’s proof is geometric in nature. Tian–Zhang (1998) gave an
analytic proof, and Paradan (2001) gave a topological proof.
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Example: branching rules for SU(2)
Irreducible representations of SU(2):

πn = QSU(2)(S
2, ωn)

for n = 0, 1, 2, 3, . . ..

U(1) ↪→ SU(2) acts on S2 by double rotations.

µ−1(l)/U(1) ={
point if |l | ≤ n;
∅ if |l | > n.

Peter Hochs (UoA) Spinc-quantisation 8-2-2018 19 / 32



Example: branching rules for SU(2)
Irreducible representations of SU(2):

πn = QSU(2)(S
2, ωn)

for n = 0, 1, 2, 3, . . .. U(1) ↪→ SU(2) acts on S2 by double rotations.

µ−1(l)/U(1) ={
point if |l | ≤ n;
∅ if |l | > n.

Peter Hochs (UoA) Spinc-quantisation 8-2-2018 19 / 32



Example: branching rules for SU(2)
Irreducible representations of SU(2):

πn = QSU(2)(S
2, ωn)

for n = 0, 1, 2, 3, . . .. U(1) ↪→ SU(2) acts on S2 by double rotations.

µ−1(l)/U(1) ={
point if |l | ≤ n;
∅ if |l | > n.

Peter Hochs (UoA) Spinc-quantisation 8-2-2018 19 / 32



Example: branching rules for SU(2)

Because

µ−1(l)/U(1) =

{
point if |l | ≤ n;
∅ if |l | > n,

[Q,R] = 0 implies

πn|U(1) = QU(1)(S
2, ωn) =

⊕
l∈Z

Q(µ−1(l)/U(1))Cl

= C−n ⊕ C−n+2 ⊕ · · · ⊕ Cn−2 ⊕ Cn.

Here Cl is the representation of U(1) in C with weight l ∈ Z.

This goes in steps of 2 because we use orbifold indices.
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Branching rules and [Q,R] = 0

So branching rules for compact Lie groups follow from [Q,R] = 0.

This is good because

It links physics, geometry and representation theory together.

In particular, geometry of µ reflects the classical limit of a multiplicity
function. (See also: Duistermaat–Heckman measure µ∗(ω

n/n!).)

We can apply geometry to representation theory. E.g.
I The image of the moment map determines which representations occur.
I If a reduced space is a point, the multiplicity is 0 or 1.
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III The Spinc-case
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Spinc-manifolds

Now consider the more general case where M is a compact, connected,
even-dimensional manifold with a Spinc-structure S → M. Suppose the
action by G lifts to S. Then one can still define

QG (M,S) := indexG D+ ∈ R(G ),

although the relation with physics is lost in the Spinc-context.
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Spinc-moment maps
The determinant line bundle of the Spinc-structure S is

λ := HomCl(TM,B)(S,S)→ M,

where S equals S with the opposite complex structure. Let ∇λ be a
G -invariant Hermitian connection on λ.

The Spinc-moment map of ∇λ is the map µ : M → g∗ defined by

2πi〈µ,X 〉 = ∇λXM − LX ∈ End(λ) = C∞(M,C).

Here LX is the Lie derivative of sections of λ. If 2πiω := (∇λ)2 is
symplectic, this reduces to the previous definition of moment maps.
(Kostant’s formula.)

One can still define the reduced space

Mξ := µ−1(ξ)/Gξ

for a regular value ξ ∈ g∗ of µ. This inherits a Spinc-structure Sξ → Mξ

from S → M (constructed by Paradan–Vergne).
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Spinc-quantisation commutes with reduction

Theorem (Paradan–Vergne, 2014)

If the action by G on M has abelian stabilisers, then for all irreducible
representations π of G ,

[indexG D+ : π] = Q(Mξ,Sξ) := indexD+
Mξ

∈ Z,

if ξ is the highest weight of π plus half the sum of a positive root system.
In general, [indexG D+ : π] is a finite sum of quantisations of reduced
spaces.

This is now a result on the general index theory of Spinc-Dirac operators,
not just on geometric quantisation.

Corollary (Originally Atiyah–Hirzebruch, 1970)

If M has a Spin-structure to which the action lifts, and the action on M is
not trivial, then indexG D+ = 0. In particular,

∫
M Â(M) = 0.
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Noncompact manifolds and groups

It is a natural question if [Q,R] = 0 extends to the noncompact case.

In physics, many classical phase spaces are noncompact, e.g.
cotangent bundles.

In mathematics, representation theory of noncompact groups is
much more complicated than for compact groups, and [Q,R] = 0 can
shed light on this.

There are some challenges for noncompact manifolds and groups.

If M is noncompact, then kerD is infinite-dimensional in general.

If G is noncompact, then it is not clear what kind of object the
quantisation should be. (E.g. R(G ) is no longer well-defined.)

So the first question is how to generalise the equivariant index to the
noncompact case.
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Results in the noncompact case

M symplectic M Spinc

M/G compact
H.–Landsman (2008)
Mathai–Zhang (2010)
H. (2010, 2015)

H.–Mathai (2014)

M noncompact
G compact

Ma–Zhang (2014)
Paradan (2011)
H.–Song (2017)

H.–Song (2017)

M/G , G noncompact H.–Mathai (2014)
H.–Mathai (2014)
H.-Song (to appear)

The results for M/G compact involve K -theory of C ∗-algebras.

The results for M noncompact but G compact are stated in terms of
several equivalent analytic and topological indices.
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IV Application to representation theory
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Realising representations

Let G be a semisimple Lie group. Let π be an irreducible representation of
G that is a direct summand of L2(G ) (assuming it exists). Let K < G be
maximal compact and T < K a maximal torus.

Theorem (Paradan, 2003)

The restriction π|K is the K -equivariant Spinc-quantisation of an elliptic
coadjoint orbit of G ,

π|K = QK (O);

O = Ad∗(G )ξ ∼= G/T .

Important: O has to be treated as a Spinc-manifold, not as a symplectic
manifold. Because

the natural complex structure on O is not compatible with the
symplectic form;

the natural line bundle on O is not a prequantum line bundle.
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Example: G = SL(2,R)

Then π = D±n for n = 1, 2, 3, . . ., the discrete series of SL(2,R). And
D+
n |K is the K -equivariant Spinc-quantisation of

By [Q,R] = 0 (Paradan, H.-
Song),

D+
n |K =⊕
l∈Z

Q(µ−1(l)/SO(2))Cl

= Cn+1⊕Cn+3⊕Cn+5⊕· · ·
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Realising representations (2)

Theorem (H.–Song–Yu, 2016)

For any irreducible representation π of G occurring in L2(G ) (not
necessarily discretely), π|K is the Spinc-quantisation of a coadjoint orbit.

Relevant for example because for many groups L2(G ) has no irreducible
direct summands.

Then applying the [Q,R] = 0 result by H.-Song from 2017 gives a
geometric expression for the multiplicities of irreducible representations of
K in π|K .

Corollary

Geometric sufficient condition for representations to occur with
multiplicities 0 or 1.
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Example: the principal series of SL(2,R)

Principal series: π = P±iν for ν ≥ 0. P+
iν |K is the Spinc-quantisation of

By [Q,R] = 0,

P+
iν |K =

· · ·⊕C−2⊕C0⊕C2⊕C4⊕· · ·
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Example: the principal series of SL(2,R) (2)

P−iν |K is the Spinc-quantisation with a different Spinc-structure of

By [Q,R] = 0,

P−iν |K =

· · ·C−3 ⊕C−1 ⊕C1 ⊕C3 ⊕ · · ·
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Limits of discrete series of SL(2,R)
The other representations occurring in L2(G ) are the limits of discrete
series π = D±0 . For D+

0 , the map µ is now a shifted and deformed version
of the the projection map from a coadjoint orbit.

Similarly to the discrete series case, we obtain

D+
0 |K = C1 ⊕ C3 ⊕ C5 ⊕ · · · and D−0 |K = C−1 ⊕ C−3 ⊕ C−5 ⊕ · · ·
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Thank you
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