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A NEW PROOF OF A THEOREM OF
NARASIMHAN AND SESHADRI

S. K. DONALDSON

1. Introduction

In 1965 Narasimhan and Seshardri proved that the stable holomorphic
vector bundles over a compact Riemann surface are precisely those arising
from irreducible protective unitary representations of the fundamental group
[5], We shall give here a different, more direct, proof of this fact using the
differential geometry of connections on holomorphic bundles. This comple-
ments, in a small way, the recent paper by Atiyah and Bott [1] in which the
result of Narasimhan and Seshadri is used to calculate the cohomology of the
moduli spaces of stable bundles, and which we take as a general reference for
background and notation.

Let X be a compact Riemann surface with a Hermitian metric normalized to
unit volume. If E is a vector bundle over X we write

μ(E) = degree(E)/rank(£),

where the degree is obtained by evaluating cλ(E) on the fundamental cycle. A
holomorphic bundle & is defined to be indecomposable if it cannot be written as
a proper direct sum, and to be stable if for all proper holomorphic sub-bundles

<ju(S),orequivalently/x(S/SΓ) > μ(&).

Certainly a stable bundle is indecomposable. The theorem to be proved is:
Theorem. An indecomposable holomorphic bundle & over X is stable if and

only if there is a unitary connection on & having constant central curvature

*F = -2πiμ(&). Such a connection is unique up to isomorphism.

Note. If deg(S) = 0, these connections are flat and so are given by unitary
representations of the fundamental group. In the general case it is easy to
prove the equivalence of this form of the result with the statement of Nara-
simhan and Seshadri [1, §6].
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2. Definitions and notation, outline of proof

If E is a C°° Hermitian vector bundle over X9 a unitary connection A on E
gives an operator dA : Q°(E) -> Ω 1 ^ ) which has a (0,1) component 3̂  : Ω°(E)
-> Ω 0 1(^), and this defines a holomorphic structure &A on £" (see [1,§5] for a
proof that there are sufficiently many local solutions of dAs = 0). Conversely if
& is a holomorphic structure on E, there is a unique way to define a unitary
connection>1 such that & — &A.

A connection on E induces a connection on all associated bundles, in
particular, on the bundle of endomorphisms End E. The "gauge group" § of
unitary automorphisms of E acts as a symmetry group on the affine space &, of
all unitary connections on E by

u(A)=A- dAuu~\ wG§, AE&.

The action extends to the complexification §c = group of general linear
automorphisms of E:

g(A) =A- (dAg)g-1 + (iU)g-1)*, g e §C,A e β,

and connections define isomorphic holomoφhic structures precisely when they
lie in the same § c orbit. Thus the set of orbits parametrize all the holomoφhic
bundles of the same degree and rank as E (there are no further topological
invariants of bundles over X). Given a holomoφhic bundle S, we write 0(S)
for the corresponding orbit of connections on the appropriate C°° bundle.

Each connection A has a curvature F(A) E Ω2(End E), and F(A + a) =
F(A) + dAa + a A a.

The plan of the proof is this: we suppose inductively that the result has been
proved for bundles of lower rank (the case of the line bundles being an easy
consequence of the Hodge theory), then we choose a minimizing sequence in
0(S) for a carefully constructed functional / of the curvature and extract a
weakly convergent subsequence. Either the limiting connection is in 0(S) and
we deduce the result by examining small variations within 0(S), or in another
orbit 0(^) and we deduce that & is not stable. The main ingredient in this
approach is a result of K. Uhlenbeck [6] on the weak compactness of the set of
connections with L2 bounded curvature.

In the intermediate stages of the argument we have to allow generalized
connections of class L\ (i.e., which differ from some fixed C00 connection by
an element of the Hubert space with norm ||α||£2 = | |α| | 2 + ||Vα||2) with
curvature in L2 and gauge transformations in L\. As explained in ([6, §1], [1,
§14]) the group actions and properties of curvature which we use extend
without essential change (in particular L\ ^ C°, so the topology of the bundle
is preserved), and it is proved in [1, Lemma 14.8] that each L2 connection
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defines a holomorphic structure. For simplicity we shall work throughout with
these more general objects with only occasional further comment.

Definition of the functional /. The "trace norm" is defined on n X n
Hermitian matrices by

n

v(M) = Tr(M*M)ι/2 = 2 |λ, | ,

where {λ,} are the eigenvalues of M, repeated according to multiplicity. We
shall need to know that v defines a norm and that if M is written in blocks:
M ~ (B*D)>

 t h e n v(M)>\TrA\+\ΊrD\. Both properties follow easily from
the characterization:

KM) = max
to} i=

where {e, } runs over all orthonormal frames for C". (There is a complete
account of such convex invariant functions in [1, §12].)

Applying v in each fibre we define, for any smooth self-adjoint section s in
Ω°(End E),

Then N is a norm equivalent to the usual L2 norm and so extends to the L2

cross sections. For an L2 connection^, set

where μ — μ{E). Thus J(A) — 0 if and only if the connection is of the type
required by the theorem. For bundles of rank 2 and degree 0, / is essentially
the Yang-Mills functional | |/Ί|L2. For larger ranks the definition of / is chosen
to make the inductive step (Lemma 3) carry through easily, although the
connections we find in the end are of course Yang-Mills connections. Although
/ is not smooth, it does have the semi-continuity property: iίA^A weakly in
L2, so F(At) -> F(A) weakly in L2, then/(Λ) < liminf J(At\ because for each
ε > 0 we can separate *F(A)/2πi from the closed convex set {a \N(a + μl) ^
J(A) — ε] by a hyperplane.

3. Proof of main lemma

This section contains the main part of the argument for which we need to
extract the following proposition from [6, Theorem 1.5].
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Proposition. Suppose that At E 6£ is a sequence of L\ connections with

bounded. Then there are a subsequence {/'} C {/} and L\ gauge

transformations ur such that ur(Ar) converges weakly in L\.

From this we deduce:

Lemma 1. Let & be a holomorphic bundle over X. Then either inf/ | 0 ( g ) is

attained in 0(S) or there is a holomorphic bundle <$ s* S of the same degree and

rank as & and with inf / \^^ < inf / |Q ( S ) ; Hom(S, SΓ) Φ 0.

Proof. Pick a minimizing sequence At for /|0(g) Since N is equivalent to

the L2 norm, we have H F ^ ) ! ! ^ bounded and can apply the proposition to

deduce that, without loss of generality, A(^> B weakly in L\ and

J(B) < liminf J(A() = inf/ | 0 ( δ ) .

Since B defines a holomorphic structure &B, the lemma will follow if we

show Hom(S, &B) ψ 0. (The two alternatives holding as & = &B or not.) To

see this, define for any A, A' E & a connection dAA, on the bundle Hom(£I, E)

= E* ® E built from the connection A on the left hand factor and A on the

right, with a corresponding

dAA,: Ω°(Hom(£, E)) -> Ω 0 1 ( H o m ( £ , E)).

Thus solutions of 3^A,s = 0 correspond exactly to elements of H o m ^ , &Λ,).

If in fact Hom(S, &B) = 0, then dAoB has no kernel, and since it is a first

order elliptic operator we have

\\*ΛOBS\\I? > C\\s\\Li for some C, all J .

By the Sobolev inequality \\s\\L2 > Const | | j | | L 4 so

On the other hand L\ =* L4 is compact, so At -> BinL4 norm and dAoB —

is the algebraic operator s ^ (B — A^^.s. Thus

Since 4̂Z -+ B in L4 norm, this implies that Hom(S, &Aj) = 0 for large

enough /, contradicting S^ = &.

4. Curvature and holomorphic extensions

We have to show that if & is stable, the second alternative of Lemma 1 does

not occur. In general if a : & -> <% is a (nonzero) holomorphic map of bundles
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over X, there are proper extensions and a factorization (cf. [5, §4]):

With rows exact, rank 2 = rank 911, det β ΞΞ 0, deg 2 < deg 9lt.

The next two lemmas give bounds on the curvature of bundles expressed as

extensions; the first exactly as in [1, §8], the second a little stronger, exploiting

the special properties of /.

First some generalities: if we have any exact sequence of holomorphic

bundles 0->S-»?Γ->(?L-»0, then any unitary connection A on § has the

shape:

(As β \
A — \ RWt withτ4§, A u connections

on S, % and β in Ω01(^L* ® S) because S is a holomorphic subbundle (β is a

representative of the extension class in H\Gll* ® §)). In the corresponding

curvature matrix

F(As)-βΛβ* dβ

-dβ* F(Au)-β*Λβ)

where d: Ω](%* ® S) -• Ω2(%* <8> S) is built from Λ%, A%, the quadratic

terms have a definite sign (this is the principle that curvature decreases in

holomorphic subbundles and increases in quotients). For convenience normal-

ize so that *Tr(β* Λ β) = 2iri | j812.

Conversely, connections on S, % and a representative /? of the extension

class define a unique connection on ?Γ, and any nonzero multiple of β also

gives a bundle isomorphic to ?Γ (although a different extension class).

Lemma 2. // ̂  is a holomorphic bundle over X which can be expressed as an

extension: O-^^lt-^-^^l-^O, and if μ{(ΐί\L) > μ(^) (so also μ(^) > μ(9l)),

ί/ẑ « /or αw^ unitary connection A on 5",

rkgitίμί^lU-μίf^ + rk'

equality occurring only if the extension splits.

Proof. Using the property of v on block matrices mentioned in §3 and the

notation of the discussion above we have

2πι , > )
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where μ — μ{^). So

But fxTr(*F(AM)/2πi) = -deg 9 ϊ t ^ jii/^Tr 1^ by hypothesis, so the first
term on the right is rk((DTL)(μ(cDTL) — ̂ (S")) H-1|/3||2. Similarly for the second
term.

Lemma 3. Suppose that & is a stable holomorphic bundle and make the
inductive hypothesis that the main theorem has been proved for bundles of lower
rank. If & can be expressed as an extension 0-*9-^&->Q,^>0(so from the
definition of stability μ(9) < μ(&) < μ(£)), then there is a connection A on &
with

J(A) < rk 9(μ(&) - μ(9)) + rk S(ju(S) - μ(&))

= Jx say.

Proof. Observe first that for a general extension O - ^ S - ^ ί W ^ - ^ O , the
connections in 0(?Γ) given by triples (As, A^, tβ) converge in C°° as / -» 0 to a
connection in 0(S θ % ) . Now it is not hard to prove ([1, §7], [2]) that any
holomorphic bundle 9 has a canonical "semi-stable filtration"

0 = %<<$x< - < 9k = 9

with %/%-x semi-stable and μ{%/%-λ) decreasing with /.
Each quotient 9i/<$._ has in turn a filtration [2] with associated quotients Qtj

stable and μ(β/ 7) ='μ(9 i /9._ () < μ(%). If 9 < & are the bundles in the
statement of the lemma, we must have μ(β/7) < μ(&) since & is stable. Also
rank β i y < rank S, so we can suppose inductively that each β/y has a connec-
tion with constant central curvature. Applying the observation to each of the
steps in the filtrations we find connections Ay E 0(?)(/ ^ 0) converging as
t -» 0 to A% E 0(θ z 7 β / 7 ), and *F(A%) + 2iriK9 where Â > is the constant
diagonal matrix with entries the μ(β/7) < μ(&).

Similarly there are A'% -> A\, *F(A^) = 2τr/Λa, and the entries of Λ 2 are
greater than/x(S).
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For each /, A'9 and A\ give an operator dt on the forms with values in the
C°° bundle corresponding to S* ® <3\ For t Φ 0, choose the harmonic repre-
sentative βt of the extension class corresponding to S, i.e., dtβt — 0, scaled to

Since dt -> d0 as t -+ 0 and the rf, are elliptic on Ω0'1, there is a uniform
bound \\βt\\co < Const (because for each t we have the usual elliptic bounds

and the Ct can be uniformly bounded since the dt converge).
By our general discussion the triples (A$9 A'%, sβt) (s, t > 0) give connec-

tions A(s9 /) G 0(5) with curvature

F( Λ=lF(A'9)-s%Λβτ* 0 \
{S'n \ 0 F(Ai)-s%*ΛβTj-

It is clear that J(A(s, t)) -+ Jx as s, t -+ 0. We have to check that for suitably
chosen small s, /, J(A(s, t)) < Jλ.

Since Aq, — μ.\<$ has all its eigenvalues negative, the same is true for nearby
matrices, and for such matrices v{) = -Tr(). Using the uniform bound on the
βt and F(At<3>) -> Λ̂ >, together with the corresponding facts for the other
component, we have for small s, t,

where ε(/) -> 0 with t. So

Choosing s so small that s4fx\βtf is much less than s2fx\βt\
2 = s2 (using the

uniform bound again), and then t small enough for the terms in ε to be
negligible gives J(A(s91)) < Jλ.

5. Proof of the theorem

First, the final clause of Lemma 2 shows that if & is an indecomposable
bundle with a connection of the type required by the theorem (i.e., / = 0), then
& must be stable.

Conversely, if & is stable and the theorem has been proved for bundles of
lower rank, then inf / | 0 ( S ) is attained in 0(S). For if not, Lemma 1 constructs a
bundle f with deg f = deg S, rank ^ = rank S, Hom(S, W) ¥= 0 and
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inf J | 0 ( S ) ^ inf / 1 ^ . In the corresponding diagram (*) we have

So we can apply Lemma 2 to the bottom row of (*) to deduce

and Lemma 3 to the top row to deduce

in

But rk S = rk 911, rk 9 = rk 91, deg £ > deg 911, deg 9 < deg 91 implies Jλ <
Jo and we obtain a contradiction.

So suppose inf/^g) is attained at A E 0(6). The operator t/*^ acting on

L2 self-adjoint sections of End E has kernel the constant scalars (because any
other element of the kernel would have eigenspaces that would decompose &
holomorphically), and the projection of *F/(2πi) onto the scalars is μ(S).
Thus by the Hodge theory (in a version [4] adapted to the case where the
coefficients need not be smooth), there is a self-adjoint section h E L\ such
that

d*dAh = 2πμ-i*F(A).

For small ί, 1 + th — gt E β c . Let At — gt(A) E 0(S). Then we can compute
the curvature

F ( A t ) = F ( A ) - d A { ( )

= F(A) - t{dAdA - dAdA)h + q(t9 h) say,

with \\q(t, h)\\L2 ^ C(||Λ||L2).r2 for small t. Since d$dA = i*(dAdA - dβA) we
get

And if J{At) is to be a minimum at / = 0 we must have *F(A)/2πi = — μ as
required.

Referring again to the paper by Uhlenbeck [6, Corollary 14.] we find that in
some gauge the solution is smooth (i.e., there is u E § with u(A) smooth). Thus
in each stable orbit 0(S) there is at least one connection of the required type.

Finally, to see that A is unique up to the action of § on 0(S), recall that any
g £§c can be factored g — g.u with g = g*, u Eg, so if A, B are distinct
solutions we can suppose B — g(A) g = g*. One computes the formula

F(A) = F(B) = μ.l - dAdAg
2 = ~ { ( ^ V
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Taking the trace τ = Tr(g2) of this gives ΔT < 0 with equality if and only if
dAg

2 = 0. By the maximum principle the only possibility is ΔT = 0 everywhere
and dAg

2 = 3Ag2 = 0. Again since & is indecomposable, we must have g a
constant scalar and A — B. This completes the proof of the theorem.

Remark. One may ask whether a holomorphic vector bundle over a compact
Kahler manifold has a distinguished connection. In [3] a natural condition is
suggested, which reduces in complex dimension one to the condition of the
theorem above. In a future article we shall prove that for certain complex
surfaces this condition too is precisely related to the algebro-geometric condi-
tion of stability.

I am very grateful to Dr. N. J. Hitchin for explaining this problem to me,
and to him and Professor M. F. Atiyah for their guidance.
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