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String theory in a background flux

Review: T-duality in an H-flux:
the case of free circle actions



String theory in a background flux

Data for a partial definition for Type Il string theory is:
Let Z be spacetime:

@ A background H-flux H € Q3(Z), dH = 0 with integral
periods. Let {U,} be a good open cover of Z, B, € Q?(U,)
such that dB,, = H|,. Let A, € Q'(U,z) such that
B, — Bg = dA.3. Then (H, B,, A,3) captures integral info.

© Ramond-Ramond (RR) fields G € Q¢¢"(Z), Type IIB and
G € Q°%(7), Type IIA satisfying the equations of motion,
(d — HA)G = 0; = twisted cohomology/twisted K-theory.

© Einstein-Maxwell equation for the metric.

© dilaton + axion.




T-duality - The case of circle bundles

We will be concerned with T-duality between the string theories,
Type lIA < Type IIB, for circle bundle compactifications
or free circle actions with an H-flux.

The transformation rules of the low energy effective fields under
T-duality, are known as the Buscher rules.

However, in cases in which there is a topologically nontrivial NS
3-form H-flux, the Buscher rules only make sense locally and
do not give global information/rules.

The general formula for the topology and H-flux of the T-dual
with respect to any free circle action (on smooth spacetime)
was presented for the first time in [BEM].



T-duality - The case of circle bundles

In [BEM], compactify spacetime Z as a principal T-bundle over
M, with Chern class c¢{(Z) € H?*(M,Z), and flux H € H3(Z,Z).

T — Z

" (1)

1%

The T-dual is another principal T-bundle over M, denoted by Z,

T— 2
frl ()
M

A

which has Chern class ¢1(Z) = m.H.
The Gysin sequence for Z enables us to define a T-dual H-flux
H e H3(Z.7), satisfying  ¢(2) = #.H



T-duality & correspondence spaces

N.B. A is not fixed by this data, since any integer degree 3
cohomology class on M that is pulled back to Z integrates to zero.
However, [Fl] is determined uniquely upon imposing the condition

[H] = [A] on the correspondence space Z x y Z, otherwise known as
the doubled space,  ZxyZ={(x,%) € Z x Z : n(x) = #(%X)}.

(Z xm Z,[H] = [H])

AN
NS




T-duality in a background flux - the slogan

Thus a slogan for T-duality for circle bundles is the exchange,

background H-flux <= Chern class J

The surprising/striking new phenomenon that we discovered is
that there is a change in topology of spacetime when either

* the background H-flux topologically nontrivial,

* or the Chern class is topologically nontrivial.



T-duality in a background flux - Examples

Example ( )
L(p,1) = SB/Zp, where S® = {(z1,25) € C?: |24|2 + |z = 1}
& Zp acts on S® by

exp(2nik/p).(z1,22) = (z1,exp(27ik/p)z2), k=0,1,...,p—1.

L(p, 1) is the total space of the circle bundle overS? with Chern
class equal to p times the generator of H?(S?,Z) = Z.

FACT: L(p, 1) is never homeomorphic to L(g,1) if p # g.
Nevertheless

(L(p,1),H=q) and  (L(g,1).H=p). |

are T-dual pairs! Thus T-duality is the interchange

p—q J




T-duality in a background flux - Examples

Since L(1,1) = S2 & L(0,1) = S? x S', we get the T-dual pairs:
(xS H=1) and (S® H=0) )

A picture (suppressing one dimension) illustrating this is the
doughnut universe (H = 1) & the spherical universe (H = 0)




Example of T-duality: Heisenberg nilmanifolds
Example ( )

Recall that the Heisenberg group is

Heisg = X,y,Z€R

o O =
o = X
- < N

which is a central extension,
1 - R, — Heisg —» RS, — 1

and for each p € Z \ {0}, Heisg has the lattices

1 x
Heisz(p)=| 0 1 y X, y,Zz€Z
00




Example of T-duality: Heisenberg nilmanifolds and Seifert fibred spaces

which is a central extension,
1 — Z; — Heisz(p) — Z,ZW —1

It follows that the Nilmanifold Nil(p) = Heisg /Heisz(p) is a
principal circle bundle over T? with Chern number p.
FACT: Nil(p) is never homeomorphic to Nil(q) if p # q.

Nevertheless (Nil(p), H = q) and (Nil(g),H=p).

are T-dual pairs! Thus T-duality is the interchange

p<q |

Similarly for Seifert fibred spaces over Riemann surfaces.



T-duality in a background flux - isomorphism of charges

T-duality gives rise to a map inducing degree-shifting
isomorphisms between the

* H-twisted cohomology of Z and H-twisted cohomology of Z;
* H-twisted K-theory of Z and H-twisted K-theory of Z;

where charges of RR-fields in background 3-flux fields live.

These are twisted generalizations of the smooth analog of the

Fourier-Mukai transform = a geometric Fourier transform. J

T-duality map is assumed to be an isometry, relating

radius R circle fibres of Z < radius 1/R circle fibres of 2, J

a salient feature of T-duality.



T-duality in a background flux - cohomology

Choosing connection 1-forms A and A, on the T-bundles Z and
Z, respectively, the rules for transforming the RR fields can be
encoded in the [BEM] is a Twisted Fourier-Mukai transform,

T*G:/TeAAAG, (3)’

where G € Q*(Z)" is the total RR fieldstrength,

G e Qe Z)T  for Type lIA;
G € Q°%(Z)T  for Type IIB,

and where the right hand side of (3) is an invariant differential
form on Z x Z, and the integration is along the T-fiber of Z.



T-duality in a background flux

Let F = dA and F = dA be the curvatures of the connections,
and we can assume wlog that H is T-invariant. Then on Z

H=AANF-Q, (4)
for some Q € Q3(M), while the T-dual H on Z is given by
AH=FAA-Q. (5) |
We note that
dANA)Y = —-H+H, (6)

T. indeed maps dy-closed forms G to dy-closed forms T.G.
Twisted cohomology (first defined by Rohm-Witten) is

H*(Z, H) = H*(Q*(Z), dyy = d — HN). )

So T-duality T, induces a map on twisted cohomologies,
T.:H*(Z,H) = H'(Z,H). |



T-duality in a background flux

We define the Riemannian metrics on Z and 2 by
gz =m'gu+ RPAGA  gy=m'gu+RPAGA

Theorem (Bouwknegt, Evslin, V.M., 2004, V.M., Siye Wu 2011)

Under the above choices of Riemannian metrics and flux forms,

T: Q5(2)T —» QF1(2)T, (7)

for k = 0,1, are isometries, inducing isometries on the spaces
of twisted harmonic forms and twisted cohomology groups.

The circle fibre radius R of Z goes to circle fibre radius 1/R of
Z and there is an induced degree-shifting isomorphism

T, : H(Z, H) = H*'(Z, A).




String theory in a background flux

A graded version and the Euler operator



String theory in a background flux

Recall that Hori maps for k = 0, 1, are isometries.

T: QK 2)T = k12T, (8)

Since QK(2)T =~ QK(M) @ QK1 (M) A A so that

T(F+GAA) :/eAAA(F+ GAA) = (—1) (G + F AA)
T

This is the dimensionally reduced form of T-duality.
For m € 7Z, define the level m Hori map by

T.m(G) = / e MG, ©)
T
for G is an T-invariant form on Z and (d + mH)G = 0. Since
mH = mH + d(mA A A), (10)

it is not hard to see that T, G is a T-invariant form on Z and
(d + mH)(T.m(G)) = 0.



String theory in a background flux

Let Qk(Z)(d+mH) ¢ denote the T-invariant (d + mH)-closed
forms on Z with degree parity k. Then the level m Hori map,

T, ,m - Q (Z)(d+mH) o T Qk+1 (2)21‘d+mf-l)—cl

Now let the formal variable y encode the level. That is, define

Ty : D XD agsmmya V™ — @Qk+1 )1(r -

mez meZ

Zwmym> (11)

meZ

Take a representative

with wm € QR(Z)ETd+mH)_C,, m € Z. Then each wp, must be of the

form
Fm+ Gn AA, (12)

with Fo,, Gy being valued in QX(M) and Q<1 (M).



String theory in a background flux

Applying the level m Hori’'s formula, we get
Tem(Fm + Gm A A)
_ /T e ™AL 4 G A A) (13)
=(—1)*(Gm + mFpy A A).
Applying the reverse level m Hori’s formula, we get
Tem((=)*(Gm + mFp A A))
—(—1)k+ /T e™M(Gpy + MFy A A))

(14)
=(=1) (1) mGm + (—1)*mFp)



String theory in a background flux

Therefore we see that

ooty (z -

mez

= Z t,m o T*,m(wm)ym

meZ

That is,

(15)

(16)J




String theory and loopspaces

A loop space refinement and Jacobi forms



String theory and loopspaces

Motivated by string theory, people have been attempting to
generalize many concepts like vector bundles, Dirac operators,
the Atiyah-Singer index theory and so on to free loop spaces.
Let V be a rank r complex vector bundle on M and V=V_C’
in the K-group of M. In the theory of elliptic genera, one
considers the Witten bundles ©,(V) and ©3(V), elements in
K(M)[[q"/?]], as follows:

oo

02(V) == @A_y 12N ®QA_1/2(V), O3(V) =
j=1

j=1 j=1

s

Aj—12(N) @ Ny 12(V). (17)
j=1

where g = exp(27rv/—17) and 7 € H. They are formally viewed
as vector bundles over (small) loop space LM. Physically, they
arise in heterotic string theory.



String theory and loopspaces

Recall here that for an indeterminate ¢,

A(E) = C|y+tE+PN2(E)+---, SHE) = C|y+tE+2S?*(E)+-- -,
(18)

are the total exterior and symmetric powers of E respectively.

The following relations between these two operations hold,

i MEA e

(19)

Let {27ix;}, 1 < i < r, be the formal Chern roots of V and

q = €™, r € H, the upper half plane. In terms of Jacobi theta
functions, the Chern characters of the Witten bundles ©,(V)
and ©3(V) are



String theory and loopspaces

on(©z(v)) = [] 2%57) ¢ perenqunig!/2)),  on(og(v)) = [ 20T

HE¥e (anita’ /2. 20
i=1 62(0, 7) e 93(077_) € (M)[lq 1 (20)

Equip V with a connection V", then the Chern characters
above can be represented by holomorphic functions on Hi,
taking values in Q¢¢"(M)[[q"/?]]. Suppose one has

0= 2pi(V) = ai(VP —20(V) = ehi¥(V),  (21)
where py(V), c1(V), co(V) and ch(V) stand for the first
Pontryagin class, the first and second Chern class and the
Chern character respectively.
Under these anomaly vanishing conditions, the degree p
(with p even) components chlPl(©,(V)) and chlPl(©3(V)) are
modular forms of weight £ over 'y(2) and I'p(2) respectively.



Examples of Jacobi forms: Witten gerbe modules

Examples of Jacobi forms: Witten gerbe modules



Gerbe modules and connections

The next goal is to generalise this construction from finite
dimensional vector bundles, to infinite dimensional Hilbert
bundle gerbe modules.

Let M be an oriented closed smooth manifold of dimension 2r.
Let H be a closed 3-form on M with integral periods. Let

B, € Q?(U,) such that dB, = H|,. Let A,5 € Q(U,z) such that
B, — Bg = dA,p. Let {(Los, d + Ayp)} be geometric realization
of a gerbe (with connection). Then we have

(Vis)? = Ft3 = Bs — B. (22)



Gerbe modules

Let E = {E,} be a collection of (infinite dimensional) separable
Hilbert bundles E, — U, whose structure group is reduced to
Us, which are unitary operators on the model Hilbert space $) of
the form (identity + trace class operator). Here J denotes the
Lie algebra of Uy, the trace class operators on §. In addition,
assume that on the overlaps U,z there are isomorphisms

(ﬁag : Laﬁ X Eg = Ea, (23)

which are consistently defined on triple overlaps because of the
gerbe property. Then {E,} is said to be a gerbe module for
the gerbe {L,3}.



Gerbe modules with connection

A gerbe module connection V£ is a collection of (local)
connections {VE} is of the form VE = d + AE where
AE € Q'(U,) ® 7 whose curvature FE= on the overlaps U,z
satisfies

G (FE)pap = Flos I+ F5, (24)

Using equation (42), this becomes
Gup(Bal + F5)bas = Bsl + F. (25)

It follows that exp(—B) Tr (exp(—FE) — 1) is a globally well
defined differential form on M of even degree. Notice that
Tr(/) = oo which is why we need to consider the subtraction.



Anomaly vanishing conditions

Suppose that VE, VE' are gerbe module connections on the
gerbe modules E, E’ respectively. Then the twisted Chern
character is

Chy : K%(Z,G) — H®®"(Z, H)

Chi(E, E') = exp(~B) Tr (exp(~ FE) — exp(—FF)) (20)

That this is a well defined homomorphism is explained in
[BCMMS]. The degree 0 term of Chy(E, E') is 0, and

Ch\(E,E') = TH[FE — FE] = {T(F& — F&]} e HA(Z) (27)

The degree 4 term is

crfj(e, £y = B F)22_ ELEN c riz.m) o9

The anomaly vanishing conditions in the twisted case is,
chi2l(E,E") = 0 and chl(E, E") = 0.




Anomaly vanishing conditions

On U, define
O(Ea) = Q)N -qu(Ea) ® Q) N_gu(Es). (29)
u=1 u=1

It turns out that ©(E) := {©(E,)} defines a globally defined
gerbe module, which we call the Witten gerbe module.

Since it involves tensor products of E, ©(E) is a gerbe module
for the gerbe {P,,c, Lfg’} and its induced connection.



Anomaly vanishing conditions

To compute the graded twisted chern character GChy(©(E)),
one expresses O(E) as a sum
Gch [ SE)) _ S (3" Cho(Wann(E.ENg)y™  (30)
o(E") M

meZ n=0

where {Wp »(E, E'} is a gerbe module for the gerbe
(mH, mB,, mA,z) for each m € Z, and hence the expression
above makes sense.

Under the twisted anomaly vanishing condition discussed
earlier, it turns out that the graded twisted chern character
Gchy(©(E)) is a Jacobi form (which will be defined next).



Jacobi theta functions

Recall that

a b
SL>(7) =
@={(25)
is the modular group. Let
S_ 0 —1 7= 11
1 0 0 1

be the two generators of SLy(Z). Their actions on H are given
by

ab,c,deZ, ad—bc:1}

1
S:tr——, T:7—=7+1.
T



Jacobi theta functions

Let

Mo(2) = { ( ‘Z 2 ) € SLy(2)

ro(2) = { ( i Z) € SLo(Z)| b=0 (mod 2)}

ee{(2 8)emef (2 2) (3 2)e(2 1) o)
be the three modular subgroups of SL,(Z). It is known that the

generators of ['y(2) are T, ST2ST, the generators of I°(2) are
STS, T?STS and the generators of [y are S, T2.

¢=0 (mod 2)},




Jacobi theta functions

The Jacobi theta-function (and its variants) defined by infinite
products are

o(v, 7) = 2q'/® sin(xv) TTI(1 — — VIV — e 2TV TV 31)
Jj=1

It is a holomorphic function for (v, 7) € C x H, where C is the

complex plane and H is the upper half plane.
The theta function satisfies the the following transformation law

_ o a _ 1 T \"2 avTinR )
o(v,T+1)=e"" 4 0(v,7), 9(v,—1/r)_ﬁ<\/j) e o0(rv,7); (32)

0z +1,7) = —0(z,7), 0(z +7,7) = —e~ "Y1z 1) (33)



Jacobi forms and graded Hori formula

Jacobi forms and graded Hori formula



Jacobi forms and graded Hori formula

Let I' be a subgroup of SL(2,7Z) of finite index. Let L be an
integral lattice in C preserved by I'. Denote H the upper half
plane. A (meromorphic) Jacobi form of weight s and index /
over L x I is a (meromorphic) function J(z, ) on C x H such
that

() J (g Z15) = (cr + d)ser e (e y(z, ),

(i) J(z + AT + p, 7) = e 27V=TT4202)) y(g 7). where

(\p) €L, (ab>er.

c d

We will use a slight extension of the above definition of Jacobi
forms, namely, (i) we will allow J(z, 7) to take values in the
differential forms on a manifold M; (ii) as J(z, 7) takes values in
differential forms, we don’t require the singular points be poles
but only be undefined.



Jacobi forms and graded Hori formula

Let M be a manifold with H-flux. Let AK(M)T,, ., denote
the space of holomorphic functions on H except for a set of
isolated points, which take values in Q’_‘(Z)(d+mH),c,, the
T-invariant (d + mH)-closed forms on M with degree parity k.
Let ’H’_‘(M, mH) denote the space of holomorphic functions on
H except for a set of isolated points, which take values in
HX(M, mH).

Denote g = €2™V-1" r e Hand y = e 27V-12 7z ¢ C. On the
spacetime M, further consider the 2-variable series

w(z,r) € @ H M, mH) - y™

mez



Jacobi forms and graded Hori formula

with the following properties: w(z, 7) is represented by

> wm(r)y™, (34)

meZ

with w(7) € AK(M )(as-mH)—c» M € Z such that the degree p
(with p = k) component

Z W [P] ym (35)

mez

is the expansion at y = 0 of a Jacobi form of weight %’_{ and
index 0 over L x I'. Denote the abelian group of all such w(z, )
by J&(M, H; L,T).



Jacobi forms and graded Hori formula

Now consider the situation of T-duality with pair (Z, H), (Z, H)
as before. For m € Z,recall the level m Hori map by

T, m(G) = / e mAAG (36)
T

for Gis an T-invariant form on Z and (d + mH)G = 0.
Define the graded Hori map of Jacobi forms,

k k+1 T
LT, : @A (d+mH o Y= EBA )(d+mH) a V"
mez mez
(37)

by

LT, (Z wm(T)ym> = Z Tem(wm(T))y™, (38)

meZ meZ
for

Zwm y E@A d+mH cl‘ym'

mez meZ



Jacobi forms and graded Hori formula

Theorem (T-duality for Jacobi forms)

Let H(H) denote the space of holomorphic functions on H. The
following statements hold:

(i) LT and LT are both isomorphisms of H(H) modules under
the restriction that the coefficient of y° is zero; moreover

LAToLT:—yaay, Lrofrz—y;y; (39)
(ii) After restriction, we have
LT (7§(Z. H; L T))) € F5(2,Fs L) (40)
and therefore get a morphism of abelian groups,

LT : JK(Z,H; L,T)) = JEHN(2, A LT); (41)




Alternate approach to T-duality on loop space

Alternate approach to T-duality on loop space

Fei Han and V. M.,
Exotic twisted equivariant cohomology of loop spaces,

twisted Bismut-Chern character and T-duality.
Communications in Mathematical Physics,
337, No. 1, (2015) 127-150.




Motivation for some constructions on loop space

Jones-Petrack showed that a completed version of equivariant
cohomology of loopspace LZ with respect to the rotation circle
action, localises to the ordinary cohomology of Z, that is,

res

h3(LZ) = H*(Z)[u, u™"]]

[HM15] is concerned with the analog of this result is for twisted
cohomology, H*(Z, H) where H is a closed degree 3 form on
Z with integral periods, i.e. [H] € H3(Z; Z).

Here H*(Z, H) = H*(Qodd/even(Z) d + HA) is a Zp-graded
cohomology theory, coinciding with H*(Z) when H = 0.

It was first studied by Rohm-Witten (1986), and arose in String
Theory as the charge group classifying D-brane charges at
least rationally. It has many applications in mathematics such
as twisted eta invariants, twisted analytic torsion, etc.



Motivation for some constructions on loop space

In [HM15], we defined an exotic equivariant cohomology.
A key innovation is the construction of a canonical S'-flat
superconnection on the the holonomy line bundle of a gerbe
with connection, satisfying the localisation formula

W(LZ, V"  H) 2 H(Z, H)[u, u )]

where res is the localisation map.



Consider a pair (Z, H), where Z is a spacetime and H is a
background flux, i.e. a closed 3-form on Z with Z periods.

We want to study open covers {U,} of Z such that the space of
loops {LU,} is an open cover of LZ = C=(S', Z).

The usual Cech open cover of Z consisting of a convex open
cover of Z does not satisfy this property.

Suppose that {U, } is a maximal open cover of Z with the
property that H'(U,,) = 0 for i = 2,3 where U,, = ;¢ Ua,,

|l] < oo. Such an open cover is a Brylinski open cover of Z.

It is easy to see that {LU,} is an open cover of LZ.

Let H a closed 3-form on Z with integral periods. Then

H\Ua = dB, since H3(U,) = 0 where B, € Q?(U,). Also

Bs — B, = dA,p since H?(U, N Ug) = 0. Then (H, B, A) defines
a connective structure (or connection) for a gerbe Gg on Z.



More precisely, a gerbe G on Z is a collection of line bundles
{L.p} on double overlaps, L,z — U,g = U, N Uz such that on
triple overlaps U,z there is a trivialization

¢a6'y : Laﬁ 02y Lﬁ«, by L’ya i C

Then {¢.3+} is a U(1)-valued Cech 2-cocycle representing the
Dixmier-Douady invariant of the gerbe in H3(Z, 7).
Upto equivalence, gerbes on Z are classified by H3(Z, Z).

A trivial gerbe {L.z} is of the form L3 = L, ® L, where
{L, — U,} is a collection of line bundles.



GERBE



Example: Spin®-gerbes

Let {gas : Usg — SO(N)} denote the set of transition functions
for the oriented orthonormal frame bundle of Z,

U(1) — Spin®(n) — SO(n)

is the defining nontrivial central extension. Let L — SO(n) be
the associated line bundle, L = Spin©(n) x y(1y C. Then the
gerbe {L.s = g;,5(L)} is called the Spin“-gerbe of Z. The
Dixmier-Douady class of this gerbe is equal to W3(Z2), the 3rd
integral Stiefel-Whitney class of Z. So every oriented
manifold has a Spin®-gerbe.

This construction also works for the oriented orthonormal frame
bundle of any oriented vector bundle E over Z.



Example: PU-gerbes

Let {gas : Usp — PU} denote the set of transition functions for
a principal PU-bundle P over Z,

u1l)—-U— PU

is the defining nontrivial central extension.

Let L — PU be the associated line bundle, L = U x (1) C.
Then the gerbe {L.s = g,5(L)} is called the PU-gerbe of P
over Z.

The Dixmier-Douady class of this gerbe is equal to DD(P).



Gerbes, connections and their holonomy line bundle

A connection on the gerbe Gg is {(Lag, Véﬁ)}, a collection of
line bundles L,3 — U, such that there is an isomorphism
Lap ® Lgy = Loy 0N U, and collection of connections {V5 5}
such that V5, = d + A, (note that as H?(U, N Up) = 0, the
bundle L,z is trivial). Then we have

(Vis)? = FLy = Bs — B.. (42)

The holonomy of this gerbe is a line bundle £B — LZ over the
loop space LZ. LB has T-invariant Brylinski local sections {o}
with respect to {LU, } such that the transition functions are
{e‘ﬁT(A“ﬁ)}, i.e. O = e_mT(A"ﬁ)og,
7:Q%(Us,) — Q*7'(LU,,) is the transgression map defined as
(&) = Jpevi (&), &1 € Q*(U,,). Here ev is the evaluation

map ev : T x LUy, — Uy, : (t,7) — ~(1).



Gerbes and their holonomy line bundle

The holonomy line bundle £8 on loopspace LZ comes with a
natural connection, whose definition with respect to the basis
{oa}is VES = d— v—17(B,). The curvature of the connection
V£E% is Fg = (V£°)2 = —\/=17(H) is the transgression of the
minus i x 3-curvature H of the gerbe G;.

Observe that £B is never flat if H # 0.

Consider Q*(LZ, £B) = the space of differential forms on loop
space LZ with values in the holonomy line bundle £8 — LZ of
the gerbe Gg on Z.



Induced tensors on loop space

Let w € Q/(Z2). Define &s € Q/(LZ) for s € [0,1] by

‘:‘\)S(X‘I P )(I)(’Y) = w(X1 |'y(S)’ T )(’|'y(3))

fory € LZ and Xj, ..., X; are vector fields on LZ defined near
~. Then one checks that dus = C/fc\us.

The j-form ;
o= / eds € Q(LZ)
0
is the extension of w on Z, to LZ. Then & = is T-invariant, that
is, Lk (@) = 0 and do = dw.

Moreover 7(w) = ix@ and that @ restricts to w on the
submanifold of constant loops.



Exotic twisted equivariant cohomology of loop space

Let H be as before and H € Q3(LZ) be the associated closed
3-form on LZ. Define Dy, = VL% — i + H. Then we compute,

Lemma

(Dg)2 = 0 on Q*(LZ, LB)".

Let {U,} be a Brylinski open cover of Z. Then FI‘LU = dB, on
LU,. On LU, we have ’

(D)2 =(V*° — i + H)? (43)
=(d — ixB, — ix + H)? (44)
= ((d — ik) + (d — ix)Ba)® (45)
= (exp(—Ba)(d — i) exp(Ba))” (46)
=— Lk — (LxB.) = —Lk, (47)



Exotic twisted equivariant cohomology of loop space

where Lk denotes the Lie derivative of the vector field K. As the
Brylinski sections are invariant, we have Ly = Lﬁs on LU,. So
(Dg)2 = —L£", which vanishes on Q*(LZ, £B)T as claimed. [

Notice that D, = V£° — ik + H is a flat T-equivariant
superconnection (in the sense of Quillen) on Q*(LZ, £B)T.
Therefore (Q°(LZ, £B)T, Dy) is a Zo-graded complex. We call
the cohomology of this complex the exotic twisted
T-equivariant cohomology of loop space, denoted by
H(LZ,VE° - H).



Completed exotic twisted equivariant cohnomology of

loop space
Define the completed periodic exotic twisted T-equivariant

cohomology h;(LZ, AL H) to be the cohomology of the
complex

(Q(LZ, £B)"[u, u™ )], VE° — uix + u~1H).

NB the holonomy line bundle £8 is trivial when restricted to Z,
the constant loop space, we have

Theorem (Localisation)

The restriction to the constant loops
res : Wi(LZ,VE° - H) = H*(Z, H)[u,u™"]]

is an isomorphism.




This justifies the following 2 proposals:

RR fields in type Il String Theory in a background
H-flux, are exotic differential forms in
Q°*(LZ,£B)S"  and are closed wrt the exotic
differential D;. (EOM)

It also includes massive RR-fields.

Also

Over the rationals, D-brane charges on space-time Z
in a background H-flux, take values in hi(LZ, V5 : H).




Path ordered exponential

Let A be a unital Banach algebra and a: [0,1] — A be a
continuous function. Define the path ordered exponential,
denoted T () = exp(f0 ds)) as the unique solution to

d
2T = anT(1)
7(0)=1

Then it has a convergent power series expansion

T(t) =1 +i / a(sy)---a(sn)dss ---dsp
=1 aq(t)

where Ap(t) is the n-simplex of size t, ie

Ap(t)={0<s1 <--- <5y < t}.



Via the path ordered exponential method, lift the twisted Chern
character of [BCMMS] to loop space LZ by defining
BCh,o(VE,VF') € Q*(LUa, £L5)"[u, u™"]] by

BChy (VE,VE') =

1+Z(_u)—"/ Bus,+Bas, | (BCha(VE) — BCh.(VE)) o
n=1

An(1)

- T (exp <U1 / 1 é;sds)> (BCha(VE) _ BCha(VE')> a
0

BCh,(VE) is the path ordered exponential lift of the Chern
chracter to loop space LZ due to Bismut. Since the curvature of
VE is vector valued therefore parallel transport wrt VE has to
be inserted into the curvature factors before taking the trace.



Define the twisted Bismut-Chern character form
BChy(VE,VE') € Q*(LZ, £B) [u, u~"]] to be the global form
patched together from the local forms constructed above.

Theorem

(i) We have (V£° — uix + u~'H)BChy(VE, VE') = 0;
(i) The exotic twisted T-equivariant cohomology class
[BChy(VE, VE')] does not depend on the choice of
connections VE, VE'.

(iii) One has a commutative diagram

BChy

K*(Z,H) h(LZ,VE° : H)

Chy res

H*(Z, H)[u,u™ "]




T-duality: a loop space perspective
Consider

/
o)

where Z, Z are principal circle bundles over a base X with
fluxes H and H, respectively, satisfying

p.(H) = ¢1(2), p.(H) = ¢1(Z) and H — H is exact on the
correspondence space Z x x Z. The T-duality Theorem for
circle bundles states that there is an isomorphism of twisted
K-theories K*(Z, H) = K'+1(2, I?I) and an isomorphism of
twisted cohomology theories, H*(Z, H) = H*+'(Z, H),

As a consequence of our Localisation Theorem, properties of
the twisted Bismut-Chern character, T-duality Theorem for circle



T-duality: a loop space perspective

Theorem (T-duality : a loop space perspective)

In the notation above, there is an isomorphism
T h(LZ, V5 H) = het (12,950 H),

such that the following diagram commutes,

K*(Z,H) 4 K*+1(Z, H)
BChy
Chyy he(LZ, V£ H) hetl(LZ,
H*(Z, H)[u, u™ "] ——= H**Y(Z, H)[u, u™"]]




