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Knot Categorification



I will describe

two geometric approaches to the

knot categorification problem,

which emerge from string theory.



The relation between our

two approaches

is a variant of 

two dimensional mirror symmetry.

Mirror symmetry turns out to play a crucial role

in essentially all aspects of the problem.



One of approaches is in the same spirit as that of

Kamnitzer and Cautis.



The other approach uses symplectic geometry.

It is a cousin of the approach of 

Seidel and Smith,

who pioneered such geometric approaches to problem,

but produced a theory not sufficiently rich. 



There is a third approach 

with the same string theory origin,

due to Witten.

What emerges from string theory

is  unified framework 

for knot categorification.



The story I will tell you about originated from joint work

with Andrei Okounkov,

where the main focus was integrable lattice models, 

rather than knot invariants.

Some mirror symmetry aspects of the story are also new,

and will appear in joint work with Vivek Shende and Michael McBreen.

Here, I will focus on what is directly relevant to knot theory.



To begin with, it is useful to recall

some well known aspects of knot invariants.



A quantum invariant of a link

depends on a choice of a Lie algebra,

and a coloring

of its strands by representations of       . 



The link invariant,

in addition to the choice of a group

and its representations,

depends on one parameter 



if      is integer,  the knot invariant

comes from

 Chern-Simons theory with gauge group based on the Lie algebra 

and (effective) Chern-Simons level

Edward Witten explained in ’89 that, 



In the same paper he also showed that

underlying Chern-Simons theory is a

 two-dimensional conformal field theory associated to

an affine Lie algebra of         , at level     .         

We will take this as the starting point.



x x x

Start with the space conformal blocks of

on a Riemann surface        with punctures



To eventually get invariants of knots in       or 3,

we want to take 

to be a complex plane with punctures.

xx
x

It is equivalent, but better for our purpose,

to take it to be a punctured infinite cylinder.



x
x

x

Conformal blocks  of             on          

     
are the following correlators of chiral vertex operators 



x x x x

associated to a finite dimensional representation      

A chiral vertex operator

of          adds a puncture at a finite point on         



Punctures at               and       ,

are labeled by a pair of highest weight vectors 

of  Verma module  representations of the algebra.

x x
x

x

and



A chiral vertex operator acts as an intertwiner

between a pair of  Verma module representations,

x x x x



we get different conformal blocks, 

Sewing the chiral vertex operators

x x x

(which the notation hides).

depending on choices of intermediate Verma module representations.



The Chern-Simons path integral on

in the presence of a braid

gives the corresponding

quantum braid invariant. 



The braid invariant 

is a matrix that transports

the space of conformal blocks,

along the braid      .  



To describe the transport,

instead of characterizing            conformal blocks 

in terms of vertex operators and sewing,

it is better to describe them as solutions to a differential equation.

x x
x

x



conformal blocks of           onThe equation solved by

                

   

is the equation discovered by Knizhnik and Zamolodchikov in ’84:

The equation makes sense for any                  ,  not necessarily integer.



The quantum braid invariant

is the monodromy matrix of the Knizhnik-Zamolodchikov equation,

along the path in the parameter space corresponding to 

the braid        .



The monodromy problem of the           Knizhnik-Zamolodchikov equation 

They showed that its monodromy matrices are given in terms of the 

R-matrices of the quantum group 

was solved by Tsuchia and Kanie in ’88 and,  Drinfeld and Kohno in ’89.

corresponding to 



Action by monodromies

turns the space of conformal blocks into a module for the 

quantum group in representation, 

The representation          is viewed here as a representation of         ,

and not of         ,  but we will denote by the same letter. 



The monodromy action   

is irreducible only in the subspace of

  

x x
x

x

of fixed    

We will make use of that.



This perspective leads to

quantum invariants of not only braids

but knots and links as well.



Any  link  K can be represented as a 

a closure of some braid      . .

=



The corresponding quantum link invariant is the matrix element 

of  the braiding matrix,

taken between a pair of conformal blocks



correspond to the top and the bottom of the picture.

The pair of conformal blocks

that pick out the matrix element



The conformal blocks 

we need are specific solutions to KZ equations

which describe pairwise fusing vertex operators

 

into copies of trivial representation. 

Necessarily they correspond to subspace of              

      

of weight  



To categorify quantum knot invariants,

one would like to associate 

to the space conformal blocks one obtains at a fixed time slice

a   bi-graded category,

and to each conformal block an object of the category.

x x x



To braids,

one would like to associate 

functors between the categories 

corresponding to the

top and the bottom.



Moreover,

we would like to do that in the way that

recovers the quantum knot invariants upon 

de-categorification.



One typically proceeds by coming up with a category,

and then one has to work to prove

that de-categorification gives

the quantum knot invariants one aimed to categorify.

 



The virtue of the two of the approaches 

I am about to describe,

is that the second step is automatic.



I will start by describing the two 

approaches we end up with,

and the relation between them

in a manner that is more or less self contained.



Later on,

I will describe their superstring theory origin

which is the same as in Witten’s approach.



The starting point for us is 

a geometric realization 

Knizhnik-Zamolodchikov equation. 



so                      are one of the following types:

For the rest of the talk, we will specialize            be a simply laced Lie algebra 

The generalization to non-simply laced Lie algebras

 involves an extra step, we won’t have time for.



It turns out that Knizhnik-Zamolodchikov equation of

is the “quantum differential equation” of a 

certain holomorphic symplectic manifold.

This result has been proven very recently,

by Andrei’s student Ivan Danilenko.



Quantum connection of a Kahler  manifold        ,  is a connection

The connection is defined in terms of quantum multiplication by divisors 

 over the complex Kahler moduli.

 on a (flat) vector bundle, with fiber             ,



defined in terms of Gromov-Witten theory or,

the topological A-model of 

Quantum multiplication used in the connection 

                          

is a product  on 



Just as Knizhnik-Zamolodchikov equation

is central for many questions in representation theory,

quantum differential equation

is central  for many questions in 

algebraic geometry and in mirror symmetry.

We will be discovering here a new connection between the two.



to coincide with the Knizhnik-Zamolodchikov equation

solved by conformal blocks of           ,  

one wants to take           to be a very special  manifold.

To get the quantum differential equation 



Recall that the conformal blocks take values

in the tensor product  

of fixed weight 



The manifold 

we need can be described as the moduli space of

monopoles on 

where         is an adjoint form of a group with Lie algebra 



corresponds a singular          monopole of charge 

located at  the                          point on          .

x x x x

To a vertex operator

x

 the highest weight of          ,



The choice of in:

determines the total monopole charge, 

whose positions on                 we get to vary

including that of smooth monopoles, 



The complex dimension of the monopole moduli space is determined 

from the  

and weight 

as 



 

which is the case if the representations            are minuscule,

The manifold 

it is also hyperkahler.

is holomorphic symplectic.  If it is smooth,



The best known one is as an intersection

of transversal slices in affine Grassmannian  of 

Our manifold            has several other useful descriptions.

Here, the vector 

encodes the singular monopole charges.



arises by thinking about singular         monopoles on

as a sequence of Hecke modifications of holomorphic G-bundles on         

parameterized by        .

The description in terms of 

The loop variable         of the affine Grassmanian 

is the coordinate on



All the ingredients in

have a geometric interpretation in terms of          , 

x x
x

x

which are the complexified Kahler moduli of                

starting with the (relative) positions of vertex operators on

.



one has to work equivariantly with respect to a torus action

For quantum cohomology to be non-trivial,

that scales the holomorphic symplectic form.

  This action acts on         in  

For it to be a symmetry,  all the singular monopoles must be at the origin.

by



        

The equivariant parameters for 

preserving the holomorphic symplectic form, 

determine the highest weight vector of  Verma module              in

One works equivariantly with respect to a full torus of symmetries



The fact that Knizhnik-Zamolodchikov equation solved by

has a geometric interpretation as the 

quantum differential equation of 

computed by        equivariant Gromov-Witten theory,

implies the conformal blocks too have a geometric interpretation.



equivariant counts of holomorphic maps 

 

Solutions of the quantum differential equation are 

equivariant Gromov-Witten theory. 

These generating functions go under the name Givental’s J-function

of all degrees computed by 

or,  “cohomological              function” of        .



The domain curve

is best thought of an infinite cigar  with an         boundary at infinity. 

which determines which solution of the

 The boundary data is a choice of a K-theory class

Knizhnik-Zamolodchikov equation computes.



The vertex function also depends on the insertion of  a class in

at the origin of         .

In the present context, 

   

 is identified with the weight space  

of              by               

Geometric Satake correspondence.



in terms of

The geometric interpretation of conformal blocks of 

has more information than the conformal blocks themselves.



Underlying the Gromov-Witten theory of  

       

is a two-dimensional supersymmetric sigma model with

        as a target space.



is the partition function of the supersymmetric sigma model 

      

                    

The physical meaning of 

 Gromov-Witten vertex function

with target         on



In our setting, the category of B-type boundary conditions is

One has, in the interior of      ,   an A-type twist

and at infinity, one places a  B-type boundary condition.

                    
 the derived category of         equivariant  coherent sheaves on 



Picking, as a boundary condition, an object

we get                     as the partition function.

 

only through its K-theory class

    depends on the choice of         



      

 

the action of                  on the space of conformal blocks          

       

is the  monodromy of the quantum differential equation of          ,

Since the Knizhnik-Zamolodchikov equation of

is the quantum differential equation of        ,

along the path in its Kahler moduli corresponding to the braid        .



of the brane  at the boundary at infinity,

K-theory class a-priori comes from its action on the

The action of monodromy on

although from perspective

it really comes from the action on the brane                                 itself.

of the 2d sigma model,



 This is in fact a theorem, due to Bezrukavnikov and Okounkov, which states that,

via the  monodromy of the quantum differential equation

lifts to

a derived auto-equivalence functor of the category 

the action of braiding on the K-theory 

for a class of holomorphic symplectic manifolds which includes our     ,



Along a path B in Kahler moduli

the derived category stays the same,  so the functor 

is an equivalence of categories.  Individual objects do change so we get a map

that depends on the braid.



What this expresses physically is that we can cut the infinite cigar

very near the boundary,  and insert a “complete set of branes”,

to extract matrix elements.

Existence of the complete set is part of of the conditions of the theorem. 



The matrix element of the monodromy matrix 

is the annulus amplitude of sigma model to          

with the pair of B-branes at the boundary.



         

The B-model annulus amplitude, is essentially per definition, 

the supertrace, over the graded Hom space between the branes

computed in 



This also implies that quantum invariants of links

are categorified by

since they too can be expressed as matrix elements of the braiding matrix

between pairs of conformal blocks. 



For this one first needs to understand which objects of   

correspond to conformal blocks 

where pairs of vertex operators fuse to trivial representations.



develops singularities.

This turns out not to be difficult.

The  singularities come from cycles that collapse as

as a pair of vertex operators approach each other



The collapsing cycles one gets turn out to be

This is a reflection of the fact that as a pair of vertex operators

approach, one gets a new natural basis of conformal blocks: 

which are eigenvectors of braiding.

labeled by representations that occur in 



To a cap colored by representation                   

which approach each other and fuse to the identity:

corresponds to a pair of vertex operators, 

colored by conjugate representations



For example, for a pair of conjugate minuscule representations 

our manifold is 

The object of              corresponding  to 

where          is the corresponding maximal parabolic subgroup of   

is the structure sheaf  of .



More generally,  to a collection of complex conjugate pairs  of

corresponds a local neighborhood of  

where we can approximate it as  

where 

minuscule representations



Object of              which corresponds to a collection of caps 

  

In particular, categorifies  

is the structure sheaf of in 



One can also get a fairly detailed picture of the functors

that categorify braiding



By it origin in the sigma model to          , the functor 

comes from a variation of stability condition on 

defined with respect to a central charge function

which is a close cousin of 



except with trivial insertion at the origin.

In the end one turns off the equivariant parameters,

Like                   , it can be computed by 

equivariant Gromov-Witten theory 

to get a map 

depending only on Kahler moduli.



The stability condition defined with respect to

is known as the Pi stability condition,

Our setting should provide a model example of 

a Bridgeland stability condition

discovered by Douglas.

on



structure which comes from  

Since          is also hyper-Kahler, the stability

is extremely simple.



It is constant in a chamber  in Kahler moduli which

corresponds to fixing the order of vertex operators, 

x x
x

x

and only changes when a pair of them trade places.



Near a wall in Kahler moduli where 

and objects                     whose  central charge vanishes as fast 

as the dimension of the cycle

we get vanishing cycles             corresponding to ways of fusing:



by the order of vanishing of        

This leads to a filtration on the derived category,

In fact, one gets a pair of such filtration, one on each side of the wall:

 

 

for                          and                   

for                     .                  



Crossing the wall  preserves the filtrations, 

since it has the effect of mixing up objects of a given order of vanishing,

with those of that vanish faster, and which belong to lower orders

in the filtration.



The derived equivalence functor is a degree shift acting on

and on the path around the singularity 

and which comes from the equivariant central charge.

which depends only on the order in the  filtration,



which comes from geometry and physics.

This provides an example of a perverse equivalence of 

Rouquier and Chuang,



Mirror symmetry 

gives a second description of homological 

knot invariants.

It is based on the "equivariant mirror” of 



is a Landau-Ginzburg theory with target      ,

       

The equivariant mirror 

and potential .



Ordinary,  non-equivariant mirror of

 

is a hyper-Kahler manifold 

which is, to a first approximation,

given by a hyper-Kahler rotation of  



As          has only Kahler but not complex moduli,

due to the        equivariance we impose,  

             has only complex but no Kahler moduli turned on.



A description based on 

would give a symplectic geometry approach to the categorification problem,

with 

replaced by its homological mirror, an appropriate category of 

Lagrangian branes on 



such as those in the work of Seidel and Smith, for Khovanov homology.

At the moment, one does not have this,

since it is not known how to 

describe the mirror of the 

action.  Without it, one gets “symplectic” homological link invariants,

which describe the theory at 



There is an alternative symplectic geometry approach,

where the  dependence of the theory

instead of being mysterious, 

is manifest.

on       ,



action on       ,          

The key fact is that, since we work equivariantly with respect to the 

  

all the relevant information about its  geometry            

 

 which scales the symplectic form

is contained in its fixed locus, 

        

holomorphic

which is a holomorphic Lagrangian, its  “core”.



Instead of working with

one can work with the the core  and the core’s mirror 

and its mirror 

mirror

mirror

Working  equivariantly with respect to                       action on 

 the bottom row has as much information about the geometry 

as the top.  

,



While           embeds into   

   fibers over         with holomorphic Lagrangian                fibers

holomorphic Lagrangian submanifold of dimension 

as a



For example,  for 

       which is an            surface, its core        looks like

and  is  mirror to         .

and its mirror          is a            fibration over         , which looks like  



    

are Lagrangians in       that begin and end

 

at the punctures,

and which are projections  from Lagrangian spheres in         .

Mirror to vanishing          ’s in  

In this case,          is a single copy of the surface          from the 

where the          fibration  degenerates.

from the beginning of the talk, with marked points



     

is a Landau-Ginsburg model, with target 

Conjecturally,  the equivariant mirror of   

and the ordinary mirror of its core        ,

where                    ,   and specific potential           

mirror to the equivariant        action.



The potential              is a multi-valued function on       , 

which is a sum of three types of terms, all coming from the equivariant actions 

and two which come from the                   action:

a term coming from the               -action:

,



Mirror symmetry predicts that the conformal block of                  

is the partition function of the B-twisted theory on       ,

 

with A-type boundary condition at infinity, corresponding to the

Lagrangian         in       . 



where is the top holomorphic form on          , 

Such amplitudes have the following form

is the Landau-Ginsburg potential,

and ’s are the chiral ring operators.



We are rediscovering here,  from mirror symmetry, 

 
 conformal blocks 

which goes back to work of Feigin and E.Frenkel in the ’80’s

and Schechtman and Varchenko.

the  integral formulation of the 



There is a reconstruction theory,

due to Givental and Teleman,

which says that starting with the genus zero data,  

or more precisely, with the solution of  quantum differential equation,

one gets to reconstruct all genus topological string amplitudes

of a semi-simple 2d field theory.

Thus, the B-twisted the Landau-Ginsburg model             ,

and A-twisted sigma model on          , 

working equivariantly with respect to         ,

are expected to be equivalent to all genus.



Knizhnik-Zamolodchikov equation

is an A-brane at the boundary of         at infinity,

the derived Fukaya-Seidel category of  A-branes on       with potential      . 

The brane is an object of

Corresponding to a solution of the



In general, to formulate a category of

A-branes on a non-compact manifold such as  

requires work, to cure the non-compactness.



In the present case, we are after a symplectic-geometry based 

The Lagrangians we need are all compact,

since they are related by mirror symmetry 

to compact vanishing cycles on       . 

approach to knot homology. 



there are no issues with non-compactness of     .

For such Lagrangians, 

The superpotential              would have played no role either, 

were it single valued. 



 is not single valued for us,

but its only effect is to provide additional gradings on

the Floer cohomology groups.



The additional grades may be defined 

analogously to the way the lift of the phase of 

by lifting the phase of   

to a real valued function on the Lagrangian,

is used used to define Maslov grading.



Mirror symmetry   

equivariant 
mirror

mirror

mirror

helps us understand exactly which questions we need to ask

to recover homological knot invariants from       .



Since             is an ordinary mirror of         , 

 
we should start by understanding how to recover  

homological knot invariants from         ,  instead of               

equivariant 
mirror

mirror

mirror



Every B-brane on           which is relevant to us  

“comes from” a B-brane on        

via a pushforward functor, 

that interprets a sheaf        on      ,                             

as a sheaf on 

(more precisely, an object of            ) 



This functor has an adjoint, that goes the other way,

that takes a sheaf on         to a sheaf on       ,  

by tensoring with the structure sheaf         ,  and restricting to 



Hom’s on           to those on        .  

The fact these are adjoint functors is what lets us relate the computations of   



Given any pair of objects on         that come from       

agrees with the Hom downstairs,  in         ,                 

the Hom between them, computed upstairs, in 

after replacing           with              ,



By mirror symmetry, for every pair of objects 

on         which come from       ,  there is a pair of Lagrangians  

on         which are mirror to        and         , 

such that Hom’s on          agree with those on        .



The functors that enter

relate objects on         and on        ,

in a way that mirrors           and         ,

They come from a Lagrangian correspondence on

and 

The construction of these functors, 

is joint work with Shende and McBreen.

and the parallel understanding of mirror symmetries upstairs and downstairs



Recall our example,         the equivariant mirror to                                             .

       which is the              surface.

Mirror to  i-th vanishing         in        is the  Lagrangian  



which is a         fibration over     .

        the multiplicative          surface, The mirror of         is 

The functor                            maps any Lagrangian in       ,

to a Lagrangian in      , which fibers over        with           fibers. 

 
In particular,               is the i-th vanishing sphere in       . 



The functor going the other way                        

does not send the vanishing sphere               back to      :

or its  via its definition coming from a Lagrangian correspondence,

one finds a figure eight Lagrangian

Instead, either computing it either  from mirror symmetry, 



is that one ends up preserving Hom’s. 

It is not difficult to see that this indeed is the case

The basic virtue of the pair of adjoint functors,



The example we just gave  is relevant construction of 

Khovanov homology, 

surface:copies of an 

can be described as  

          

an open subspace in the symmetric product of 

since the needed 



 is  the same geometry Seidel and Smith

in their work on symplectic Khovanov homology,

studied

This

as shown by Manolescu.



The corresponding  Landau-Ginsburg model

has the target which is also an open subset of symmetric product, 

with potential  

of the surface where the conformal blocks live 



The objects corresponding to top and the bottom 

are the Lagrangians:

* * * *

* * * *



The generators of the Floor co-chain complex 

To get a non-trivial link,  one  starts by transporting             along the braid:

* ** *

are the intersection points

graded by the Maslov index,  and  the new grading that comes 

 
non-single valued super-potential.from the



The homological link invariant is the Floer cohomology group

whose differential is obtained by counting holomorphic disks 

requires           to be single valued around the boundary of the disk,

The condition that the disk is in 

so equivariant grade of  the differential is zero.

of Maslov index one on       , as in Floer’s theory.



To compute the Jones polynomial,

one simply counts the intersection points 

* ** *

keeping track of gradings.

The result is the construction of  Jones polynomial due to Bigelow.

To prove this categorifies the Jones polynomial is easy.



The theory that results is no doubt novel and somewhat subtle.

equivariant 
mirror

mirror

by equivariant homological mirror symmetry,

However all of its features are forced on us by

In particular, a failure of its existence would be a failure of mirror symmetry.



In the remaining time,

let me try to explain the string theory origin of this construction.

The two dimensional theories we have been 

discussing originate directly from string theory.



A helpful observation is another interpretation of 

In addition to being the  intersection of slices in the affine Grassmannian 

and the moduli space of singular        -monopoles, 

is also a Coulomb branch of a three dimensional gauge theory.



 three dimensional quiver gauge theory

The theory is a

V1

W1

V2

W2

with quiver           

based on the Dynkin diagram of



Wa

Va

The ranks of the vector spaces

are determined from   in 



This gauge  theory arises on  defects,

of a certain six dimensional “little” string theory

labeled by a simply laced Lie algebra              

with (2,0) supersymmetry.

or more precisely, on D-branes



The six dimensional string theory is

obtained by taking a limit of IIB string theory on  an

 ADE surface singularity of type

In the limit, one keeps only the degrees of freedom

supported at the singularity and decouples the 10d bulk.



One wants to study the six dimensional (2,0) little string theory on 

where 

is the Riemann surface where the conformal blocks live,

and         is the domain curve of the 2d theories we had so far.

is the space where the monopoles live



The vertex operators on the Riemann surface 

x x
x

x

come from a collection of defects in the little string theory,

which are inherited from D-branes of the ten dimensional string.



The D-branes needed are 

two dimensional defects of the six dimensional theory on

      

 

x x
x

x

supported on         and the origin of 



The theory on the D-branes is the quiver gauge theory 

V1

W1

V2

W2

This is a consequence of the familiar description of 

D-branes on ADE singularities

due to Douglas and Moore in ’96.



The theory on the D-branes supported on     ,   

is a three dimensional quiver gauge theory on               

rather than a two dimensional theory on       ,

 due to a stringy effect.

             

V1

W1

V2

W2



x

These turn the theory on the defects supported on       ,     

to a three dimensional quiver gauge theory on

where the        is the dual of the circle in      .

In a string theory,

one has to include the winding modes of strings around C.

x
xx



The same T-duality that makes the D-branes 

three dimensional turns them into monopoles on 

of the T-dual six dimensional (1,1) string 

which is a gauge theory.



x x
x

x

The choice of the  Verma module state

is the choice of moduli of little string theory, 

i.e. they are the expectation values of dynamical fields.

The choice of vertex operators in

 

is the choice of D-branes of the  little string. 



One can study the three dimensional theory on 

which comes from little string theory,

in much the same way

as we did  the two dimensional theory.



The fact that the string scale is finite,

leads to a deformation of the structures 

we had found, in particular, it breaks conformal invariance.



Rather than getting conformal blocks 

and Knizhnik-Zamolodchikov equation,

from partition functions of the 3d theory on

corresponding to replacing

 quantum affine algebraaffine Lie algebra

one obtains their deformation



Pursuing our story further,

rather than discovering knot invariants

we would discover integrable lattice models,

those of, in some sense, very general kind.

This story is developed in the work with Andrei.



The six dimensional (2,0) string theory has a point particle limit

in which it becomes the six dimensional conformal field theory

of type        

This limit coincides with the conformal limit of the quantum affine algebra



In the point particle limit,

the winding modes that made the theory

on the defects three dimensional, instead of two,

 become infinitely heavy.

x
xx

As a result,  in the conformal limit,  the theory on the defects

becomes a two dimensional theory on 



It is surprising,  but by now well understood 

that there are different two dimensional limits

a three dimensional gauge theory can have. 

The point particle limit of little string theory 

specifies which two dimensional limit

of the three dimensional gauge theory on a circle we need to take.



The resulting theory is not a gauge theory,

but it has the two other descriptions,

I described earlier in the talk,

related by two-dimensional mirror symmetry.



There is a third description,

 due to Witten.

It describes the same physics,

just from the bulk perspective.



Compactified on a very small circle,

the six dimensional        -type (2,0) conformal theory

with no classical description,

becomes a        -type gauge theory

in one dimension less.



To get a good 5d gauge theory description of the problem,

the circle one shrinks corresponds to         in

so from a six dimensional theory on

one gets a five-dimensional gauge theory on a manifold with a boundary



The five dimensional  gauge theory  is 
supported on

where

It has gauge group 

which is the adjoint form of a Lie group with lie algebra       .



Our two dimensional defects become monopoles 

of the 5d gauge theory on 

supported on         and at points on, 

along its boundary. 

,



Witten shows that the five dimensional theory on

can be viewed as a gauged 

Landau-Ginzburg model on           with potential  

on an infinite dimensional target space       ,

corresponding to          connections on 

with suitable boundary conditions (depending on the knots).



To obtain knot homology groups in this approach,

one ends up counting solutions to

certain five dimensional equations.

The equations arise in 

constructing the Floer cohomology groups

of the five dimensional Landau-Ginzburg theory.



Thus, we end up with three different approaches 

to the knot categorification problem,

all of which have the same 

six dimensional origin.



They all describe the same physics

starting in six dimensions.

The two geometric approaches, 

describe the physics from perspective of the defects that introduce knots 

in the theory.

The approach based on the 5d gauge theory,

describes it from perspective of the bulk.



In general,

theories on defects 

capture only the local physics of the defect.

In this case, 

they capture all of the relevant physics,

due to a version of supersymmetric localization:

in the absence of defects, 

the bulk theory is trivial.


