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Abstract

This article is an introduction to newly discovered relations between volumes of moduli
spaces of Riemann surfaces or super Riemann surfaces, simple models of gravity or supergravity
in two dimensions, and random matrix ensembles. (The article is based on a lecture at the
conference on the Mathematics of Gauge Theory and String Theory, University of Auckland,
January 2020. It has been submitted to a special issue of the Quarterly Journal of Mathematics
in memory of Michael Atiyah.)
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1 Introduction

In this article, I will sketch some recent developments involving the volume of the moduli space
Mg of Riemann surfaces of genus g, and also the volume of the corresponding moduli space Mg

of super Riemann surfaces. The discussion also encompasses Riemann surfaces with punctures
and/or boundaries. The main goal is to explain how these volumes are related to random matrix
ensembles. This is an old story with a very contemporary twist.

What is meant by the volume of Mg? One answer is that Mg for g > 1 has a natural Weil-
Petersson symplectic form. A Riemann surface Σ of genus g > 1 can be regarded as the quotient
of the upper half plane H ∼= PSL(2,R)/U(1) by a discrete group. Accordingly Σ carries a natural
Riemannian metric g pulled back from H; this metric has constant scalar curvature R = −2 and
is called a hyperbolic metric. Similarly, Σ is endowed with a natural flat PSL(2,R) bundle1 with
connection A pulled back from H. A point in Mg determines a Riemann surface together with
such a flat connection, and the symplectic form ω of Mg can be defined by

ω =
1

4π

∫
Σ

Tr δA ∧ δA, (1.1)

in close analogy with the definition used by Atiyah and Bott [1] for a symplectic form on the moduli
space of flat bundles with compact structure group G. The volume of Mg is then

Vg =

∫
Mg

Pf(ω) =

∫
Mg

eω, (1.2)

1 The group PSL(2,R) is contractible onto U(1), so a PSL(2,R) bundle over a surface Σ has an integer invariant,
the first Chern class. The flat bundle related to a hyperbolic metric has first Chern class 2 − 2g. A similar remark
applies for the supergroup OSp(1|2) introduced shortly. The maximal bosonic subgroup of OSp(1|2) is the spin double
cover SL(2,R) of PSL(2,R), so in that case the relevant value of the first Chern class is 1− g.
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where Pf is the Pfaffian.

This approach generalizes perfectly well for super Riemann surfaces. One replaces SL(2,R),
which is the group of linear transformations of R2 that preserve the symplectic form dudv, with
OSp(1|2), which is the supergroup of linear transformations of R2|1 that preserve the symplectic
form dudv − dθ2. OSp(1|2) is a Lie supergroup of dimension 3|2. Its Lie algebra carries a nonde-
generate bilinear form that I will denote as Tr. A point in Mg, the moduli space of super Riemann
surfaces of genus g, determines an ordinary Riemann surface Σ together with a flat OSp(1|2) con-
nection A. The symplectic form of Mg can be defined by the same formula as before, only for flat
OSp(1|2) connections rather than flat PSL(2,R) connections:

ω̂ =
1

4π

∫
Σ

Tr δA ∧ δA, (1.3)

The volume V̂g of Mg can be defined

V̂g =

∫
Mg

√
Ber ω̂, (1.4)

where Ber is the Berezinian, the superanalog of the determinant. This is analogous to the first of
the two formulas in eqn. (1.2). There is no good superanalog of the integral of eω, but the formula
Pf(ω) for a measure does have a good superanalog, namely

√
Ber(ω̂).

I will now make a slight digression to explain how an ordinary Riemann surface Σ with a
flat OSp(1|2) connection of the appropriate topological type (see footnote 1) determines a super
Riemann surface Σ̂. The superanalog of the upper half plane H is Ĥ = OSp(1|2)/U(1). Ĥ is a
smooth supermanifold of real dimension 2|2; it carries a complex structure in which it has complex
dimension 1|1. Ĥ also carries a canonical “completely unintegrable distribution” making it a super
Riemann surface. (There is no natural splitting of the Lie superalgebra osp(1|2) as the direct sum
of even and odd parts, but the choice of a point in Ĥ determines such a splitting, and the odd part
defines a subbundle of the tangent bundle to Ĥ. This is the unintegrable distribution.) By taking
the monodromies of the flat connection A → Σ, we get a homomorphism ρ : π1(Σ) → OSp(1|2).
Let Γ = ρ(π1(Σ)). The quotient Σ̂ = Ĥ/Γ is a smooth supermanifold of dimension 2|2 that inherits
from Ĥ the structure of a super Riemann surface. Σ̂ is the super Riemann surface associated to
the pair Σ, A. For our purposes here, however, it is convenient to study the pair Σ, A rather than
the super Riemann surface Σ̂.

It is possible to describe the super volumes V̂g in purely bosonic terms, that is in terms of
ordinary geometry. The “reduced space” of Mg is the moduli space M′g that parametrizes an

ordinary Riemann surface Σ with a spin structure, which we can think of as a square root K1/2 of
the canonical bundle K → Σ. M′g is a finite cover of Mg. The normal bundle to M′g in Mg is the

vector bundle U →M′g whose fiber is H1(Σ,K−1/2). Viewing U as a real vector bundle (of twice
its complex dimension), we denote its Euler class as χ(U). The symplectic form ω̂ of Mg restricts
along M′g to the ordinary symplectic form ω of M′g (which is a finite cover of Mg). By general
arguments about symplectic supermanifolds, one can show that

V̂g =

∫
M′g

χ(U)eω. (1.5)
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Thus what I will say about supervolumes can be interpreted as a purely classical statement about
M′g. The quantities on the right hand side of eqn. (1.5) were studied by Norbury [2] from a different
point of view (related however to the same spectral curve that appears in our discussion in section
5).

The bosonic volumes Vg can also be expressed in terms of the intersection theory ofMg. Indeed,
the Weil-Petersson form is one of the tautological classes onMg that were introduced by Mumford,
Morita, and Miller. Maryam Mirzakhani described [3] a sort of converse of this statement: from
a knowledge of the volumes (for Riemann surfaces possibly with geodesic boundary, as discussed
momentarily) one can deduce the intersection numbers of tautological classes. These facts do not
generalize directly to Mg, as there is not a natural intersection theory on a supermanifold.

Volumes for surfaces with boundary are introduced as follows. Let Σ be a hyperbolic Riemann
surface of genus g with n boundaries. We require the boundaries to be geodesics of prescribed
lengths b1, b2, · · · , bn. Let M

g,~b
be the moduli space of such objects. It has a symplectic form and

volume that can be defined by precisely the same formulas (1.1) and (1.2) as before. Mirzakhani
showed that V

g,~b
is a polynomial in b1, b2, · · · , bn, and that the canonical intersection numbers are

the coefficients of the top degree terms in this polynomial.

One can similarly define a moduli space M
g,~b

of super Riemann surfaces with geodesic bound-

aries of specified lengths b1, b2, · · · , bn, and its volume V̂
g,~b

.

The relation of volumes to intersection numbers gives one way to compute them [4, 5]. Mirza-
khani, however, discovered a new direct way to compute the volumes [6]. Regardless of how volumes
are to be computed, the relation between volumes and intersection numbers shows that volumes
are related to random matrix ensembles, since intersection numbers are known to be related to ran-
dom matrix ensembles in multiple ways. Indeed, my conjecture [7] on intersection theory on Mg

was inspired directly by discoveries made in that period [8–10] relating two dimensional gravity to
random matrix ensembles. Moreover, Kontsevich’s proof [11] involved a relation of the intersection
numbers to a different random matrix ensemble. However, at least in my opinion, the role of the
random matrices in all of these constructions was somewhat obscure. The new developments that
I will describe give a much clearer picture, since the random matrix will have a simple physical
meaning.

In this article, I will sketch how Saad, Shenker, and Stanford [12], following Eynard and Orantin
[13], reinterpreted Mirzakhani’s results in terms of a random matrix ensemble. They were motivated
by considerations of quantum gravity, and I will try to give at least some idea about their motivation
and why their results are of physical interest. Then I will explain how Stanford and I [14] generalized
the story to super Riemann surfaces and quantum supergravity.

3



2 Universal Teichmüller Space

Let S1 be a circle and diff S1 its group of orientation-preserving diffeomorphisms. The homogeneous
spaces diffS1/PSL(2,R) or diffS1/U(1) can be viewed as coadjoint orbits of a central extension of
diff S1, so they carry natural symplectic structures. Let X be one of these spaces, and denote its
symplectic structure by ω. We will see that X with its symplectic structure is a sort of infinite-
dimensional analog of Mg. Actually, diffS1/PSL(2,R) is sometimes called universal Teichmüller
space, and the developments that will be reviewed here perhaps give a perspective on the sense in
which this name is justified.

It is believed that there is no reasonable definition of the “volume”
∫
X e

ω. However, we can
do the following. Consider a subgroup U(1) ∼= S1 ⊂ diffS1, consisting of rigid rotations of S1. In
other words, for some parametrization of S1 by an angle θ, U(1) acts by θ → θ + constant. Then
there is a moment map K for this action of U(1); in other words, if V is the vector field on X that
generates U(1) and iV is contraction with V, then

dK = −iVω. (2.1)

Then introducing a real constant β, the integral

Z(β) =

∫
X

exp(K/β + ω) (2.2)

is better-behaved.

In fact, this integral can be viewed as an infinite-dimensional example of a situation that was
studied by Duistermaat and Heckman [18], and then reinterpreted by Atiyah and Bott [19] in
terms of equivariant cohomology. Let Y be a symplectic manifold (compact, or with some suitable
conditions at infinity) with symplectic form ω and action of U(1). Let p1, . . . , ps be the fixed points
of the U(1) action. For simplicity I assume that there are finitely many. Let K be the moment map
for the U(1) action. The Duistermaat-Heckman/Atiyah-Bott (DH/AB) formula gives∫

Y
exp(K/β + ω) =

∑
i

exp(K(pi)/β)∏
α(ei,α/2πβ)

,

where the ei,α are integers that represent the eigenvalues of the U(1) action on the tangent space
to Y at pi.

In the present example, there is only one fixed point in the U(1) action on diffS1/PSL(2,R)
or diffS1/U(1). The product over eigenvalues at this fixed point becomes formally

∏∞
n=2 n/2πβ in

the example of diffS1/PSL(2,R) (or
∏∞
n=1 n/2πβ in the other example). This infinite product is

treated with (for example) ζ-function regularization. For diffS1/PSL(2,R), the result is

Z(β) =
C

4π1/2β3/2
exp(π2/β), (2.3)

where the constant C, which has been normalized for later convenience, depends on the regulariza-
tion and so is considered inessential, but the rest is “universal.” (This problem was first studied
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by Kitaev [15] and subsequently analyzed in [16]. There are many derivations of the formula (2.3)
in the physics literature. The explanation that I have sketched is from [17].) There is a similar
formula for the other example diffS1/U(1).

To use the DH/AB formula, we did not need to know what is the moment map K (only its value
at the fixed point). But in fact it is a function of interest. To pick the U(1) subgroup of diff S1 that
was used in this “localization,” we had to pick an angular parameter θ on the circle; an element of
diff S1 maps this to another parameter u, and K is the integral of the Schwarzian derivative {u, θ}.

By an inverse Laplace transform, we can write

Z(β) =

∫ ∞
0

dEρ(E) exp(−βE), (2.4)

with

ρ(E) =
C

4π2
sinh(2π

√
E). (2.5)

3 Quantum Gravity In Two Dimensions

I will next explain why this result was considered problematical and how it has been interpreted [12].
This will require explaining some physics.

General Relativity is difficult to understand as a quantum theory. Searching for understanding,
physicists have looked for a simpler model in a lower dimension. Two dimensions is a good place
to look. An obvious idea might be to start with the Einstein-Hilbert action in two dimensions,
IEH =

∫
Σ d2x

√
gR/2π, with R the Ricci scalar of a Riemannian metric g. This does not work well,

as in two-dimensions this action is a topological invariant, the Euler characteristic χ, according to
the Gauss-Bonnet theorem. Instead it turns out to be better to add a scalar (real-valued) field
φ. For many purposes, a simple and illuminating model of two-dimensional gravity is “Jackiw-
Teitelboim (JT) gravity,” with action

IJT = −1

2

∫
Σ

d2x
√
g φ(R+ 2). (3.1)

Actually, even though the Einstein-Hilbert action is a topological invariant, it turns out that it is
important to include a multiple of this term in the action. The combined action is then

I = IJT − S0IEH = −1

2

∫
Σ

d2x
√
g φ(R+ 2)− S0

∫
d2s
√
g
R

2π
. (3.2)

In conventional General Relativity, the coefficient of the Einstein-Hilbert term is 1/16πGN , where
GN is Newton’s constant. In the real world, GN is extremely small in natural units set by the
values of Planck’s constant, the speed of light, and atomic masses. So 1/16πGN is very large in
natural units. Similarly, here we are going to think of S0 as being large. The same goes for the
renormalized parameter S introduced below.
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Because IEH is a topological invariant, the Euler-Lagrange equations come entirely from IJT .
The Euler-Lagrange equation for φ is simply R + 2 = 0, so a classical solution is a hyperbolic
Riemann surface. The Feynman path integral for compact Σ without boundary (or with geodesic
boundary of prescribed length) is very simple. The path integral is

ZΣ =
1

vol

∫
DφDg e−I , (3.3)

where formally vol is the volume of the diffeomorphism group and the factor 1/vol is a way to
indicate that we have to divide by the diffeomorphism group (that is, we integrate over pairs φ, g
up to diffeomorphism). Since I = IJT − S0IEH = IJT − S0χ, we have in more detail

ZΣ = eS0χ · 1

vol

∫
DφDg exp

(
1

2

∫
d2x
√
gφ(R+ 2)

)
. (3.4)

The integral over φ and g is studied by integrating first over φ (after rotating the integration contour
φ→ iφ) and gives a delta function setting R+2 = 0. Since we have to divide by the diffeomorphism
group, the integral “localizes” on the moduli space of two-manifolds with hyperbolic structure,
modulo diffeomorphism.

If Σ is orientable and of genus g, the moduli space of two-manifolds with metric of constant
curvature R = −2 is the usual moduli spaceMg of Riemann surfaces of genus g, and one can show
that the integral over Mg gives its usual volume, up to an elementary factor:

1

vol

∫
DφDg exp

(
1

2

∫
d2x
√
gφ(R+ 2)

)
= Cχ

∫
Mg

eω. (3.5)

C is a constant, independent of g, that depends on the regularization used in defining the integral.
There is no natural choice of regularization, so there is no preferred value of the constant C.
However, in eqn. (3.3), we see that ZΣ has an additional factor eS0χ. We simply eliminate the
arbitrary constant C by setting eS = eS0C. So finally

ZΣ = eSχ
∫
Mg

eω. (3.6)

What has just been explained is a typical, though elementary, example of renormalization theory.
The theory does not depend on the choice of regularization, as long as it is expressed in terms of
the “renormalized” parameter S rather than the “bare” parameter S0. If Σ is unorientable, the
moduli space of hyperbolic structures is not a symplectic manifold, and the formula analogous to
eqn. (3.6) involves the Reidemeister or Ray-Singer torsion [14].

So far, I have assumed that Σ is a compact surface without boundary. The case that Σ has
geodesic boundaries of specified length is similar. What really led to progress in the last few years
was applying JT gravity to, roughly speaking, the whole upper half-plane H. The Euler-Lagrange
field equations of JT gravity tell us that R + 2 = 0, and also give a certain equation for the real-
valued field φ. Since the natural metric on H has R + 2 = 0, H, endowed with a suitable φ field,
can be regarded as a classical solution of JT gravity. The Euler-Lagrange equations for φ have a
natural interpretation if one views H as a Kahler manifold, and thus in particular as a Riemannian
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geodesic of length �
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Figure 1: On the left, the upper half plane H is represented as a disc, and the shaded portion of the disc
is a large region U ⊂ H. On the right, a Riemann surface Σ is built by gluing together two pieces U ′ and
Σ′ (shaded) along an embedded geodesic of circumference b. Σ′ is a surface of g > 0 with one geodesic
boundary. U ′ is an annulus with a geodesic “inner” boundary and a large “outer” boundary. Near its outer
boundary, U ′ resembles locally a large region in H.

manifold that also has a symplectic structure. These equations say that φ is the moment map
for a vector field V on H that generates an automorphism of H as a Kahler manifold: thus V is
a Hamiltonian vector field, with Hamiltonian function φ, for H viewed as a symplectic manifold,
and also is a Killing vector field for H viewed as a Riemannian manifold. In short, V generates
a one-parameter subgroup of the automorphism group PSL(2,R) of H. The case that one wants
(because it makes possible a limiting procedure that is described shortly) is that this is a compact
subgroup U(1) ⊂ PSL(2,R). Any two such subgroups are conjugate so it does not matter which
one we choose. Concretely, if one describes H as the sheet x > 0 in a hyperboloid x2− y2− z2 = 1,
then we can choose the U(1) that rotates y and z. The moment map for a generator of this U(1)
is simply the function x, and we take φ to be a positive multiple of this:

φ = cx, c > 0. (3.7)

In this description, the conformal boundary of H is at x → ∞, and we see that φ blows up
everywhere near this conformal boundary.

But it turns out that literally studying JT gravity on all of H is not the right thing to do. This
would be rather like trying to calculate the naive integral

∫
X e

ω, with X = diffS1/PSL(2,R), rather
than the improved version (2.2). A better thing to do is to study JT gravity not on all of H but
on a very large region U ⊂ H [23].

Such a large region is sketched on the left of fig. 1. (The right of the figure will be discussed
later.) We are going to study JT gravity on a two-manifold U that topologically is a disc. To get
a good variational problem for JT gravity on a manifold with boundary, one needs to include in
the action a boundary contribution, somewhat like the boundary correction to the Einstein-Hilbert
action of General Relativity [20,21]. The JT action, with the boundary term, is

IJT = −1

2

∫
Σ

d2x
√
gφ(R+ 2)− 1

2

∫
∂Σ

dx
√
hφ(K − 1), (3.8)

where K is the extrinsic curvature of the boundary ∂Σ, and h is the induced metric of the boundary.
The Einstein-Hilbert action IEH similarly needs a boundary term, so that it still equals the Euler
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characteristic χ. On ∂U , we impose a version of2 Dirichlet boundary conditions: we specify the
induced metric h of the boundary ∂U , along with the boundary value of3 φ. Moreover, we specify
them so that the circumference of ∂U is very large, as is φ|∂U .

In a limit as the circumference of ∂U goes to infinity and φ|∂U is taken to be a large constant,
the Feynman integral ZU (β) of JT gravity on U can be evaluated in terms of an integral that we
already studied in section 2: ZU (β) = eS0

∫
X exp(K/β + ω), where X = diff S1/PSL(2,R). The

prefactor eS0 comes from the Einstein-Hilbert part of the action; that is, it is eS0χ, where the
disc U has χ = 1. More subtle is to explain how the rest of the path integral gives the integral∫
X exp(K/β + ω). Note first that S1 = ∂H comes with an angular parameter that is uniquely

determined up to the action of PSL(2,R). Moreover, since its induced metric is specified, ∂U
has a natural arclength parameter, up to an additive constant. In the limit of interest in which
U is very large, it makes sense to compare these two parameters, and the comparison defines an
element of X = diff S1/PSL(2,R). So we can think of X as parametrizing a family of large regions
U ⊂ H, up to PSL(2,R). It turns out that in the limit that φ|∂U is large, forcing ∂U closer to
∂H,

∫
∂Σ(K − 1) becomes a multiple of the moment map K for the U(1) action on X . Hence in this

limit, apart from the factor eS0 , the Feynman integral ZU of JT gravity on the disc U becomes our
friend

∫
X exp(K/β + ω). To achieve convergence to this limit, both the circumference of ∂U and

the constant value of φ|∂U are taken to infinity, keeping fixed their ratio, β. From eqns. (2.4) and
(2.5), and setting eS0C = eS , we get

ZU (β) =

∫ ∞
0

dE ρ(E) exp(−βE), ρ(E) =
eS

4π2
sinh(2π

√
E). (3.9)

Here β is regarded as the renormalized circumference of ∂U , and S is the renormalized coefficient
of the Einstein-Hilbert term.

This is a deeply problematic answer for the Feynman integral on the disc U . To understand
why, one should be familiar with holographic duality between gravity in the bulk of spacetime
and an ordinary quantum system on the boundary [24]. If the bulk were 4-dimensional, as in
ordinary physics, the boundary would be 3-dimensional and the “ordinary quantum system” on the
boundary would be a quantum field theory – not a very easy concept to understand mathematically.
But here the bulk is 2-dimensional, so the boundary is 1-dimensional and matters are simpler.
An ordinary quantum system in 1 dimension is just described by giving a Hilbert space H and
a Hamiltonian operator H acting on H. The basic recipe of holographic duality predicts that
ZU (β) = TrH exp(−βH).

In a moment, we will check that that prediction is false, but before doing so, I want to explain
that this actually did not come as a complete surprise. Analogous calculations going back to the
1970’s [21,25] have always given the same problem: Euclidean path integrals give results that lack

2Note in particular that we do not constrain ∂U to be a geodesic. Classically, it would be impossible to impose
such a constraint, since a disc does not admit a hyperbolic metric with geodesic boundary. But more to the point,
we want a boundary condition that leads U to be, in some sense, a good approximation to H.

3With this boundary condition, eqn. (3.8) leads to a sensible classical variational problem (and quantum path
integral) regardless of whether we use K or K−1 in the boundary term. We use K−1 because K−1 vanishes in the
limit of a large disc in H. This is important for the existence of the limit discussed momentarily in which U becomes
large.
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the expected Hilbert space interpretation. The calculations were traditionally done in models (like
four-dimensional General Relativity) that were too complicated for a complete calculation, and
there was always a possibility that a more complete calculation would make the issue go away.
The novelty is that holographic duality and a variety of other related developments have made it
possible to ask the question in a model – JT gravity – that is so simple that one can do a complete
calculation, demonstrating the problem.

To see that the prediction of the duality is false, we just note the following. If we do have a
Hilbert space H and a Hamiltonian H acting on it such that the operator e−βH has a trace, then H
must have a discrete spectrum with eigenvalues E1, E2, · · · (which moreover must tend to infinity
fast enough) and

TrH exp(−βH) =
∑
i

e−βEi =

∫ ∞
0

dE
∑
i

δ(E − Ei) e−βE . (3.10)

But the integral over diff S1/PSL(2,R) gave

ZU (β) =

∫ ∞
0

dE
eS

4π2
sinh(2π

√
E)e−βE . (3.11)

The function eS

4π2 sinh(2π
√
E) is not a sum of delta functions, so the prediction of the duality is

false.

However, the interpretation via JT gravity gives us a key insight that we did not have when we
were just abstractly integrating over X = diffS1/PSL(2,R). In equation (2.5), C was an arbitrary
constant, but now C has been replaced with eS where S is should be large to get a model more
similar to the real world. This was explained following eqn. (3.2). To amplify on the point a
bit, S is analogous to black hole entropy in four dimensions; it is very large in any situation in
which the usual puzzles of quantum black hole physics arise. If S is just moderately large, say of
order 100, then eS is huge. So we think of eS as a huge number. With this in mind, the function
eS

4π2 sinh(2π
√
E) actually can be well-approximated for many purposes as

∑
i δ(E−Ei), for suitable

Ei. One must look very closely to see the difference. One could not reasonably approximate
2 sinh(2π

√
E) (for example) by a such a sum, but e100 sinh(2π

√
E) is another matter.

4 A Random Matrix Ensemble

The novel idea of Saad, Shenker, and Stanford [12] was to interpret the function eS

4π2 sinh 2π
√
E not

as the density of energy levels of a particular Hamiltonian but as the average level density of an
ensemble of Hamiltonians – a random matrix. In terms of the physics involved, this interpretation
is rather provocative, though it may be a challenge to convey this fully.

What motivated this interpretation? One clue came from the work of Kitaev [15], who discovered
a simple model of holographic duality based on a random ensemble that was more complicated than
the one of Saad et. al. Unfortunately, to explain this would take us rather far afield. Another
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clue came from the prior history of relations between random matrices and two-dimensional gravity
[8–11]. A final clue, more directly related to the topic of the present article, involved the volumes
of the moduli spaces of Riemann surfaces. As noted in the introduction, Mirzakhani [6] had found
a powerful new way to compute the volumes of these moduli spaces. And Eynard and Orantin [13]
had interpreted her formulas in terms of their notion of topological recursion [22], which is related
to a random matrix ensemble. The key technical observation of Saad et. al. was that the eigenvalue
density of a random matrix ensemble related to the spectral curve of Eynard and Orantin is precisely
the function eS

4π2 sinh 2π
√
E that arises in JT gravity and integration over diff S1/PSL(2,R).

The sort of random matrix ensemble used in [12] is the following. M will be an N×N hermitian
matrix for some N . We are really interested in N very large and ultimately in a limit with N →∞.
Picking some suitable real-valued function T (M), we consider the integral

Z(T ;N) =
1

vol(U(N))

∫
dM exp(−NTrT (M)). (4.1)

(The space of N × N Hermitian matrices is a copy of RN2
, and the measure dM is the standard

Euclidean measure on RN2
.) If the function T (M) is quadratic, this is a Gaussian random matrix

ensemble, as studied originally in the 1960’s by Wigner, Dyson, Mehta, and many others. We
are interested in the case that T (M) is not quadratic. In this case, Z(T ;N) or more precisely its
logarithm has an asymptotic expansion for large N :

logZ(T ;N) = N2F0(T ) + F1(T ) +
1

N2
F2(T ) + · · · =

∞∑
g=0

N2−2gFg(T ). (4.2)

This expansion can be constructed by standard Feynman diagram methods. As shown by ’t Hooft
[26], the Feynman diagrams for a matrix model are in a natural way ribbon graphs, each of which
can be naturally drawn on a certain Riemann surface. Fg(T ) is the contribution of connected
ribbon graphs that can be drawn on a surface of genus g.

However, instead of making a Feynman diagram expansion, we can try to just evaluate the
integral [27]. We do this by first diagonalizing M , writing M = UΛU−1, with U ∈ U(N), and
Λ a diagonal matrix Λ = diag(λ1, λ2, · · · , λN ), λ1 ≤ λ2 ≤ · · · ≤ λN . The measure becomes
dM = dU

∏
i dλi

∏
j<k(λj − λk)2. Here dU is Haar measure on the group U(N), and the integral

over U just cancels the factor 1/vol(U(N)) in the definition of Z(T ;N). So we reduce to

Z(T ;N) =

∫
dλ1 · · · dλN

∏
i<j

(λi − λj)2 exp

(
−N

∑
k

T (λk)

)
. (4.3)

For largeN , the integrand
∏
i<j(λi−λj)2 exp(−N

∑
k T (λk)) has a sharp maximum as a function

of the λi. To describe this maximum, assuming N to be very large, we think in terms of a continuous
distribution of eigenvalues, ρ(λ) = Nρ0(λ) for some function ρ0(λ) (normalized to

∫
dλρ0(λ) = 1).

In terms of such a distribution, the integrand in (4.3) becomes

exp

(
N2

(
−
∫

dλρ0(λ)T (λ) +

∫
dλdλ′ρ0(λ)ρ0(λ′) log |λ− λ′|

))
. (4.4)
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Figure 2: For a nice class of functions T (λ), the support of the eigenvalue density ρ0(λ) is an interval [a, b].

For a nice class of functions T (λ), the exponent has a unique maximum at some function ρ0(λ). The
most famous case is that T is quadratic; then (with suitable normalization) ρ0(λ) = 2

π

√
1− λ2 in

the interval [−1, 1] and ρ0(λ) = 0 outside the interval. This example illustrates a general behavior;
for a nice class of functions T , the support of the function ρ0(λ) is an interval [a, b]; moreover, ρ0(λ)
vanishes near the endpoints of the interval as the square root of the distance to the endpoint, and
can be continued to an algebraic function of λ with only those singularities.4

If F0(T ) is the value of the exponent at its maximum, then the leading approximation to the
logarithm of the integral is

logZ(N ;T ) = N2F0(T ) +O(1). (4.5)

How can we calculate the further terms in this expansion? Something quite remarkable happens,
though a detailed explanation would go beyond the scope of this article. (There is a brief introduc-
tion in section 4 of [14], for example.) One should define the “spectral curve” in the y − λ plane:5

y2 = −π2ρ2
0(λ). (4.6)

This curve is a double cover of the λ plane, branched at the endpoints of the eigenvalue distribution,
where the function ρ2

0(λ) has simple zeroes. Once one knows this spectral curve, one can forget
about doing integrals and one can forget the original function T (M). The whole expansion

logZ(T ;N) = N2F0(T ) + F1(T ) +
1

N2
F2(T ) + · · · =

∞∑
g=0

N2−2gFg(T ) (4.7)

(and a wide variety of other things about this ensemble) can be worked out just from a knowledge
of the spectral curve. A very useful version of this process is the “topological recursion” of Eynard
and Orantin [22].

4Because of the square root singularities at λ = a, b, the analytically continued function ρ0(λ) is imaginary on
the real axis outside the interval [a, b], so in terms of the continued function, the eigenvalue density is Re ρ0(λ). For
example, note that the function 2

π

√
1− λ2 which arises in the Gaussian case is imaginary on the real axis outside the

interval [−1, 1].
5The factor of π2 here is conventional. Its purpose is to avoid a factor of π in the relationship between y and the

expectation value of the matrix resolvent Tr 1
λ−M .
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Now let us go back to the volumes of moduli spaces. As I have explained, Saad, Shenker, and
Stanford interpreted the function eS

4π2 sinh 2π
√
E as the average density of eigenvalues for a random

matrix drawn from a non-Gaussian hermitian matrix ensemble. In principle, the procedure is to
start with a function T and then compute the density of eigenvalues Nρ0,T (E), where we now
denote the eigenvalue as E, and we also make explicit the dependence of ρ0 on T . Then we take
N →∞ while adjusting T so that Nρ0,T (E) converges to the desired eS

4π2 sinh 2π
√
E. This process

is called double-scaling.

But we can skip all that work, because everything we want to compute depends only on the
spectral curve, which we know is going to be

y2 = − 1

16π2
sinh2(2π

√
E). (4.8)

This curve is a double cover of the complex E-plane, with branch points at E = 0 and E = ∞.
(In the process of double-scaling to get this curve, the interval [a, b] converges to [0,∞).) In short,
all we have to do is to start with that spectral curve, and apply topological recursion to get the
expansion logZ(T ) =

∑∞
g=0 e

(2−2g)SFg, as well as other quantities of interest that are introduced

momentarily. Here, after double-scaling, the expansion parameter is e−S rather than 1/N .

Now we can compute volumes, with a few steps, as follows. First we compute the average of
Tr exp(−βH) in this matrix ensemble, where now I refer to the random matrix M as a Hamiltonian
H. This can be done explicitly, applying topological recursion to the spectral curve (4.8). The result
is an expansion of the ensemble average 〈Tr exp(−βH)〉 in powers of e−2S .

To interpret the result in terms of volumes, one proceeds as follows. The Feynman diagram
expansion of 〈Tr exp(−βH)〉 involves Feynman diagrams drawn on a Riemann surface Σ with one
boundary component, like those drawn in fig. 1. This happens because when we make a Feynman
diagram expansion, the trace Tr exp(−βH) turns into a boundary. The picture on the left of fig.
1 actually corresponds to the leading contribution, the special case that Σ is a disc. In section
3, we analyzed the JT path integral for the case of a disc of regularized circumference β, and
interpreted the answer as

∫∞
0 dEρ(E) exp(−βE) with ρ(E) = eS

4π2 sinh 2π
√
E. We have chosen a

matrix ensemble that reproduces this answer for the leading contribution. We are now interested
in the higher topologies shown on the right of fig. 1. They contribute the higher order terms in the
expansion in powers of e−S . The contribution from Feynman diagrams drawn on a genus g surface
Σ is of relative order exp(−2gS).

In the right hand panel of fig. 1, the surface Σ has been cut in two along a geodesic of length b.
To the right of the cut is a hyperbolic Riemann surface Σ′ of genus g, with one geodesic boundary
of length b. Let Mg,b be the moduli space of such hyperbolic surfaces, and Vg,b its volume. To
the left of the cut is a hyperbolic two-manifold U ′ that is topologically an annulus. U ′ has one
geodesic boundary of length b and another “large” boundary near which U ′ looks locally like a
large portion of H. In the same sense that the disc U depicted on the left of fig. 1 represents
diffS1/PSL(2,R), U ′ represents diffS1/U(1). Apart from an overall multiplicative constant, the
symplectic structure of diffS1/U(1) depends on one parameter6 b, which corresponds to the length

6As explained for example in section 3.1 of [14], diffS1/U(1) can be viewed as a coadjoint orbit of the Virasoro
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of the geodesic boundary of U ′. Let us just write Θ(b;β) for the JT integral on this orbit (β being
again the regularized circumference of the “large” boundary of U ′). The function Θ(b;β) can be
computed from the DH/AB formula and is given by a formula similar to eqn. (2.4). Roughly
because of locality properties of quantum field theory, or because the length of a geodesic on a
hyperbolic two-manifold is the Hamiltonian that generates a corresponding Dehn twist, the JT
path integral ZΣ on Σ is obtained by integrating over b the product of the JT path integral on U ′

times the JT path integral on Σ′:

ZΣ = eS(1−2g)

∫ ∞
0

bdbΘ(b;β)Vg,b. (4.9)

One has to include here a factor of b that comes from integrating over a “twist” parameter in the
gluing of U ′ to Σ′. We have used the fact that the JT path integral on Σ′ is eSχ(Σ′)Vg,b = eS(1−2g)Vg,b.

On the other hand, the Feynman diagram expansion of the matrix model makes us expect that
ZΣ will be the term of order eS(1−2g) in the expansion of 〈Tr exp(−βH)〉. This can be computed by
applying topological recursion to the spectral curve (4.8). Using also the explicit result for Θ(b;β),
one can make an inverse Laplace transform of the result for ZΣ to obtain an explicit formula for
Vg,b.

This procedure can be generalized to give the volumes V
g,~b

of moduli spacesM
g,~b

of hyperbolic

surfaces of genus g with boundary geodesics of specified lengths ~b = (b1, b2, · · · , bn). The resulting
formulas are correct, in view of the relation demonstrated by Eynard and Orantin [13] between
topological recursion for the spectral curve y2 = − 1

16π2 sinh2 2π
√
E and the recursion relation used

by Mirzakhani [6] to compute V
g,~b

.

Matching with Mirzakhani’s recursion relation was how Eynard and Orantin determined which
spectral curve to use. Another way is to use the relation between volumes and intersection numbers
and the general relation of intersection numbers to spectral curves. (This approach is sketched
in [28]; see section 2.4 and eqn. (4.46).) As I have explained, Saad, Shenker, and Stanford instead
arrived at the same spectral curve from the path integral of JT gravity on a disc.

The approach involving JT gravity is very interesting for physicists, but if one only cares about
volumes of moduli spaces, one might ask why it is important. One answer is that this derivation
sheds a new light on the relationship between diff S1/PSL(2,R) and the moduli spaces of Riemann
surfaces. Another answer is that this approach possibly gives a better understanding of why random
matrix ensembles are related to volumes and intersection numbers. A third answer is given by my
work with Stanford [14]. We ran the entire story for super Riemann surfaces. Every step has a
direct analog for that case.

group (that is, the central extension of diffS1). But actually, there is a one-parameter family of coadjoint orbits that
are all isomorphic to diffS1/U(1), so the symplectic structure of diffS1/U(1) depends on a parameter b, in addition
to the possibility of scaling it by an overall constant.
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5 Matrix Ensembles and Volumes of Super Moduli Spaces

The superanalog of JT gravity is JT supergravity, which computes the volumes of moduli spaces
of super Riemann surfaces, in general with geodesic boundaries of specified lengths. As before, it
is important to consider the special case of a super Riemann surface which is the super upper half
plane Ĥ, or more precisely a very large region Û ⊂ Ĥ, as in the left hand side of the familiar fig.
1. The boundary of Û , or simply the boundary of Ĥ, is a super circle that we may call S1|1. I also
write Sdiff S1 for its group of orientation-preserving diffeomorphisms. Let X̂ = Sdiff S1/OSp(1|2),
which we might think of as universal super Teichmüller space. By similar arguments to those that
were described in section 3, the super JT path integral on a large region Û ⊂ Ĥ computes

Z
Û

(β) = eS0

∫
X̂

exp(K̂/β + ω̂), (5.1)

where K̂ is the moment map for a subgroup U(1) ⊂ Sdiff S1, ω̂ is the symplectic form of X̂ , and S0

is the coefficient of the Einstein-Hilbert term in the action. This integral can be computed using
DH/AB localization, with the result [14]

Z
Û

(β) =

∫ ∞
0

dE e−βE ρ̂(E), ρ̂(E) =
eS
√

2

π

cosh(2π
√
E)√

E
. (5.2)

As before, S is the renormalized coefficient of the Einstein-Hilbert term. Again, this is not
TrH exp(−βH) for a Hamiltonian H acting on a Hilbert space H, but now we know what to do: we
have to consider a random quantum ensemble.

We can rerun the previous story with a few changes. The formula for Z
Û

(β) tells us the spectral
curve:

y2 = − 2

E
cosh2(2π

√
E). (5.3)

However, the matrix ensemble is of a different type than we encountered before. One way to see
that it must be different is that the eigenvalue density ρ̂(E) in eqn. (5.2) behaves as E−1/2 near the
endpoint of the energy spectrum at E = 0, in contrast to the typical E+1/2 behavior of a matrix
ensemble of the sort that we studied in section 4.

The ensemble must be different because as we are now studying super Riemann surfaces rather
than ordinary ones, the dual quantum mechanical system is now supposed to be supersymmetric. So
we need to do random supersymmetric quantum mechanics, not just random quantum mechanics.

In supersymmetric quantum mechanics, the Hilbert space H is Z2-graded by an operator

(−1)F =

(
I 0
0 −I

)
, (5.4)

where I is the identity operator. The hamiltonian H commutes with the Z2-grading, but it is
supposed to be the square of an odd self-adjoint operator Q, that is, a self-adjoint operator that
anticommutes with (−1)F :

Q =

(
0 P
P † 0

)
, H = Q2 =

(
PP † 0

0 P †P

)
. (5.5)
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We then consider a random ensemble for Q defined by the measure exp(−NTrT (Q2)), for some
suitable function T . If the function T is linear, this is a Gaussian ensemble; here we are interested in
a non-Gaussian ensemble. Ensembles of this type have been introduced (originally in the Gaussian
case) in [29–31].

Random supersymmetric quantum mechanics leads easily to the E−1/2 behavior of the density
of eigenvalues near E = 0 that we see in eqn. (5.2). Let µ be an eigenvalue of Q, and let f(µ)dµ be
the corresponding normalized density of eigenvalues. Since the ensemble for Q is invariant under
Q → −Q, we have f(µ) = f(−µ). The condition f(0) 6= 0 is generic. Now since H = Q2, the
relation between an eigenvalue E of H and an eigenvalue µ of Q is E = µ2. Since f(µ)dµ =
f(
√
E)dE/2

√
E, the density of eigenvalues of H behaves as E−1/2 near E = 0. So an ensemble of

this kind is a good candidate for interpreting the formula (5.2) for Z
Û

(β).

For such a “supersymmetric” matrix ensemble, there is again a version of topological recur-
sion. Applying this to the spectral curve of eqn. (5.3), we get an expansion of 〈TrH exp(−βH)〉
in powers of e−2S . More generally, we can study the expectation value of a product of traces
〈
∏n
i=1 TrH exp(−βiH)〉. The terms in the expansion are related to the volumes of supermoduli

spaces in the same manner as in the bosonic case.

In this way, Stanford and I deduced a recursion relation that determines the volumes of the
supermoduli spaces M

g,~b
. Moreover, we were able to prove this formula by finding analogs of results

of Mirzakhani and of Eynard and Orantin. By imitating Mirzakhani’s derivation, we obtained
a Mirzakhani-style recursion relation for the volumes of supermoduli spaces. (See also [32] for a
related super McShane identity.) And similarly to the arguments of Eynard and Orantin, we showed
that the recursion relation that comes from the matrix ensemble agrees with the Mirzakhani-style
recursion relation. Thus the relation of random matrices, volumes, and gravity has a perfect
counterpart in the supersymmetric case.

Actually, the supersymmetric random matrix ensemble that was just described potentially in-
volves an integer invariant, the index of the operator P , or equivalently the difference in dimension
between the even and odd subspaces of H. It turns out that to compute volumes of supermoduli
spaces M

g,~b
of super Riemann surfaces with geodesic boundaries, one should take the index to van-

ish. But what happens if the index is nonzero? At least in low orders of the expansion in powers
of e−S , the answer is known: the same type of ensemble based on the same spectral curve but
with a nonzero index can be used to compute volumes of moduli spaces of super Riemann surfaces
with Ramond punctures as well as geodesic boundaries. (A Ramond puncture represents a certain
type of singularity in the superconformal structure of a super Riemann surface; roughly, the spin
structure is branched over a Ramond puncture.) For this, one takes the size of the matrices to
infinity, keeping the index fixed. A complete proof to all orders in e−S is not yet available in this
case.

Ramond punctures are the only punctures that add something essentially new to the computa-
tion of volumes, once one has already analyzed surfaces with geodesic boundaries. For purposes of
computing volumes, a puncture of an ordinary Riemann surface, or a Neveu-Schwarz puncture of
a super Riemann surface (which is a similar notion), is equivalent to the small b limit of a geodesic
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boundary of length b. Nothing like that is true for Ramond punctures.

Another important detail concerns the spin structures on a Riemann surface, which may be
“even” or “odd.” The two cases are distinguished by a topological invariant, interpreted by Atiyah
as the mod 2 index of the Dirac operator [33]. Accordingly, Mg has two components, parametrizing
super Riemann surfaces with even or odd spin structure. In the case of a super Riemann surface
with boundary, there is another topological invariant (also interpretable as a mod 2 index) that
specifies whether the spin structure on a given boundary component is even or odd. To get a full
answer for the volumes in all cases, one has to consider also a somewhat different matrix ensemble
in which it is still true that H = Q2 (leading again to ρ̂(E) ∼ E−1/2 near E = 0), but a Z2-grading
by (−1)F is not assumed.

Finally, one can make a similar analyis for unorientable two-manifolds. Even if Σ is unorientable,
we can still define a moduli space of hyperbolic structures on Σ. These moduli spaces are not
symplectic, but JT gravity or supergravity determines volume forms on them. It turns out that these
volume forms can be computed using the Reidemeister or Ray-Singer torsion of a flat connection
(whose structure group is the full symmetry group of H or Ĥ, including symmetries that reverse
the orientation). In the bosonic case, the same volume form was first defined by Norbury [34]
in another way. The moduli space volumes are in most cases divergent if Σ is unorientable, but
the volume forms can be compared to random matrix theory. In a detailed analysis [14], all ten
standard types of random matrix ensemble [31] make an appearance.
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