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1Normalizing cDNA microarray dataNormalizing cDNA microarray data

� There are many sources of systematic variation in

microarray experiments which affect the measured

gene expression level.

� Normalization is the term used to describe the

process of removing bias due to

? differential incorporation of dyes

? different amounts of mRNA

? different scanning properties or parameters

? spatial effects

e.g., bent pin heads → print-tip effects

? . . .

� Aim is to balance the red and green intensities.
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2How should we normalize?How should we normalize?

� It can be done in a number of ways, depending on

the experimental setup.

� We distinguish1

? location and scale normalization within a single

slide;

? location and scale normalization across multiple

slides;

? self-normalization for dye-swapped experiments;

? microarray sample pool normalization based on

a control sample ensemble; and

? composite normalization.

1Yang et al 2001, 2002
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3Within-slide normalizationWithin-slide normalization

• Location:

� standard practice is global normalization which forces

the M’s to have 0 mean or median;

? it is assumed that intensities are related by a con-

stant factor (R = kG), so that

log2

R

G
→ log2

R

G
− log2 k

? But this is inadequate in situations where dye

biases depend on overall spot intensity and

location on the array.
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4? Why?

Because interest is in differential expression, but

the differential is intensity and location depen-

dent.

� We normalize in an intensity-dependent way:

? in R, fit a robust scatterplot smoother called lowess

to the M versus A plot:

log2

R

G
→ log2

R

G
− c(A)

where c(A) is the lowess fit to the M versus A
plot.

? The lowess curve becomes the new zero line.
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5M is intensity dependent
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We normalise in an A-dependent way.
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6M can be spatially dependent

Print-tip effects
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7Print-tip normalizationPrint-tip normalization

• Location:

� fit lowess curve to each print-tip group.

• Scale:

� Assume all the log ratios from ith print tip group

∼ N(0, a2
iσ

2)

? Estimate the scale factors ai by maximum likeli-

hood:

âi =

∑ni
j=1M

2
ij

I

√

∏J
k=1

∑ni
j=1M

2
kj

? In practice, we use a robust estimate, then

eliminate the âi’s.
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8Lowess curves fitted to each print-tip group
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9After print-tip normalizationAfter print-tip normalization
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Changes are roughly symmetric about zero.
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10After print-tip normalizationAfter print-tip normalization
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11Normalizing across arraysNormalizing across arrays

� After within-slide normalization, all log ratios will

be centred around zero.

� If arrays have different spreads, may need to

perform scale normalization as well.

? Can apply same principles used for within-slide

print-tip scale normalization.

? In practice, the need for scale adjustment across

slides is determined empirically.

? Research is underway to develop improved

procedures for scale adjustment.

� → Bias–variance trade-off.
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12Multiple arrays before location and scale normalization
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13Multiple arrays after print-tip location and scale

normalization
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14Multiple arrays after scale normalization
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15Self-normalizationSelf-normalization

• If the experiment is replicated (and it should be) use

dye-swapped replicates:

� 2 hybridizations for 2 mRNA samples with dye

assignment reversed in the second hybridization

(Latin square)

? For each gene, get M and M ′.

? Dye-swapped replicates are like ordinary repli-

cates, but in addition, allow direct measurement

of the dye bias.

� Self-normalization: assuming the normalization func-

tion is the same in the two slides, we can estimate

the combined relative expression level by

(M −M ′)/2
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16Which genes to use for normalizationWhich genes to use for normalization

� When

? only a small proportion expected to be differen-

tially expressed in the two samples, or

? there is symmetry in the expression levels of the

up/down regulated genes,

? use all genes on array or self-normalization.

� When many genes expected to change, can use

? self-normalization based on dye-swapped

replicates, or

? Microarray Sample Pool (MSP) controls which span

the intensity range and are ‘constant’ across

biological samples.



Dr Patty Solomon, University of Adelaide ©2002

17Microarray Sample Pool

Red dots : 18S rRNA, Red line: lowess smooth; Yellow: GAPDH, tubulin;, Light blue: DNA pool/titration.

Orange: Schadt-Wong rank invariant set 
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18Microarray sample poolMicroarray sample pool

� Advantages:

? Mimics yeast genomic DNA.

? Titration series covers whole intensity range.

? Relatively constant expression level.

? Potentially, all labelled cDNA sequences can

hybridize → minimal sample-specific bias.

� Disadvantages:

? May produce less stable estimates in context of

spatial normalization, since have only small num-

ber of MSP spots per print-tip group.

� This leads to composite normalization.
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19Composite normalizationComposite normalization

• It is a weighted average of the MSP lowess curve g(A)
and the within-print-tip group lowess curve fi(A) for

the ith print-tip group:

ci(A) = αAĝ(A)+ (1−αA)f̂i(A)

where αA is proportion of genes less than a given

intensity A.

� In practice, composite normalization recommended

for genetically divergent mRNA samples

? evident in increased spread of log ratios at high

intensities.
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20A simple discriminant analysisA simple discriminant analysis

• Comparison of 2 mutant cells linesN and L in leukaemic

mice at time 0 hours and time 24 hours based on

Mahalanobis distance:

� N0 and L0 compared using dye-swapped replicates

? Slide 1 N is labelled G and L is labelled R

? Slide 2 N is labelled R and L is labelled G;

� N24 and L24 compared using dye-swapped repli-

cates

? Slide 3 N is labelled G and L is labelled R

? Slide 4 N is labelled R and L is labelled G.
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23An empirical Bayes analysisAn empirical Bayes analysis

� Idea: the information from all genes is combined

to estimate a statistic B for each gene.

? B is the log posterior odds of differential

expression2 and provides an alternative estima-

tor to M, or to statistics based on M.

? Useful when have small number of replicates per

gene, and many genes.

? Consider previous example, reversing sign on one

of the dye-swapped replicates.

2Lönnstedt & Speed 2002
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24Comparing cell samples at time 0 hours
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25Comparing cell samples at time 24 hours
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26Further referencesFurther references
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cated cDNA microarray experiments. Statistica Sinica

12, 2002.
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27•
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for cDNA microarray data. In ML Bittner, Y Chen,

AN Dorsel, ER Gougherty (editors) Microarrays: op-
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28THE ENDTHE END


