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• People *are* using robust regression to analyse data

from multiple-slide factorial cDNA microarray exper-

iments.

? Because of the heavy-tailed distributions involved,

this is a perfectly reasonable approach.

• The purpose of this talk is to warn plu’s not to trust,

as a matter of course, the results of reputable, off-

the-shelf robust regression methods for analysing cDNA

microarray data.
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Leukaemic mice projectLeukaemic mice project

Biological function of theBiological function of the
activated mutants in FDB cellsactivated mutants in FDB cells

FI∆∆∆∆ V449E

⇒ Different signals generated by the two mutants

• Aim: to identify genes that play an important role in

receptor signalling and leukaemogenesis in mutant mice.



A 2x2 factorial designA 2x2 factorial design

• Hypothesis: that there is a set of genes induced

specifically in response to expression of V449E that

results in its leukaemic effects.

? It is anticipated that measuring changes over 24

hours will distinguish genes involved in promot-

ing or blocking differentiation, or that suppress

or enhance growth, as genes potentially involved

in leukaemia.

• Two cell lines: FI∆ and V449E

at two times 0 hours and 24 hours

? -→ 2× 2 factorial design of block size 2.



A 2x2 factorial designA 2x2 factorial design

• Hypothesis: that there is a set of genes induced

specifically in response to expression of V449E that

results in its leukaemic effects.

? It is anticipated that measuring changes over 24

hours will distinguish genes involved in promot-

ing or blocking differentiation, or that suppress

or enhance growth, as genes potentially involved

in leukaemia.

• Two cell lines: FI∆ and V449E

at two times 0 hours and 24 hours

? -→ 2× 2 factorial design of block size 2.

• Interaction of primary interest.

• Only a few genes are expected to change.



Design for each geneDesign for each gene
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• 6 pairwise comparisons with dye-swaps on cell line comparisons at times 0 and 24 hours.



Precipitation, dust, high background, comet tails, ....



FI∆ versus V449E at 24 hours
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The 8 arrays after across-slide scale normalization
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Combine 8 slides using regressionCombine 8 slides using regression

• Define a design matrix X such that E(M) = Xθ where

θT = (α,β, γ). Find the least squares estimator of θ

for each gene:
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• A widely used ‘off-the-shelf’ method is MM-estimation1



Robust regressionRobust regression

• A widely used ‘off-the-shelf’ method is MM-estimation1

? The two MM’s stand for ‘robust method within

robust method’.

? We use rlm() from the VR library in R.

1Yohai 1987; Rousseeuw & Leroy 1987; Marazzi 1993
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i.i.d. N(0,1)
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Standard errors biased downwardsStandard errors biased downwards

• The parameter estimates themselves are well-behaved.

• Biased standard errors a problem in small samples.



Standard errors biased downwardsStandard errors biased downwards

• The parameter estimates themselves are well-behaved.

• Biased standard errors a problem in small samples.

� Salibian-Barrera & Zamar (2002) use a fast boot-

strap method to produce confidence intervals with

better coverage.

� DiCiccio & Monti (2002)

? derive asymptotic formulae for the bias and skew-

ness of the t-statistic and

? construct second-order accurate confidence

intervals with improved coverage accuracy.



Some concluding remarksSome concluding remarks

• When applying MM-estimation to cDNA microarray

data

� we believe it is an open question whether you can

fine-tune rlm(), or whether you need to look more

seriously at the accuracy of the estimation proce-

dure.



Some concluding remarksSome concluding remarks

• When applying MM-estimation to cDNA microarray

data

� we believe it is an open question whether you can

fine-tune rlm(), or whether you need to look more

seriously at the accuracy of the estimation proce-

dure.

• Take-home-message: don’t take the results of MM-

estimation at face value.
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