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• Design microarray experiments.

? Glonek & Solomon 2002.

• Image processing:

? quantifying expression.

• Normalisation:

? Removing dye and other systematic biases.

? Robust normalisation, Calvert et al.

• Statistical analysis:

? Detecting differential or co-expression in

complex experiments

? Reynolds et al., Lloyd et al., Cox & Solomon 2002.

• No single method of analysis can be appropriate for

all experiments.



What do we mean by ‘design’ for

microarray experiments?

What do we mean by ‘design’ for

microarray experiments?

� Which mRNA samples should be competitively

hybridised on the same slide?∗

? Should samples from individual animals or

people be compared directly or via a common

reference mRNA sample?∗



What do we mean by ‘design’ for

microarray experiments?

What do we mean by ‘design’ for

microarray experiments?

� Which mRNA samples should be competitively

hybridised on the same slide?∗

? Should samples from individual animals or

people be compared directly or via a common

reference mRNA sample?∗

� Should tissue samples from animals be pooled then

compared, or should different animals be hybridised

to different slides?∗

� Which sample should be labelled with one dye and

which with the other?

? Should dye-swapped replicates be made on

different extractions?
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� How many replicates should there be of each gene

within an array?

� How many times should each array be replicated?∗

� . . .

� There are few published studies addressing these

issues:

? ∗Glonek & Solomon 2002: ‘The first careful

treatment of optimal design for factorials’

(Yang & Speed 2002). Invited paper ASC 16.

� Our premise is that the most appropriate way to

find differentially expressed genes is to prescribe

a design subject to

? the key contrasts and parameters of interest

? and the practical constraints of the problem.
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Biological function of theBiological function of the
activated mutants in FDB cellsactivated mutants in FDB cells

FI∆∆∆∆ V449E

⇒ Different signals generated by the two mutants

• Aim: to identify genes that play an important role in

receptor signalling and leukaemogenesis in mutant mice.
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A 2x2 factorial designA 2x2 factorial design

• Hypothesis: that there is a set of genes induced specif-

ically in response to expression of V449E that results

in its leukaemic effects.

� Compare two cell populations: FI∆ and V449E

at two times 0 hours and 24 hours

? -→ 4 combinations F0, V0, F24, V24.

? -→ 2× 2 factorial design of block size 2.

• Interaction of primary interest:

e.g. genes that are differentially expressed in the two

samples at time 24 hours, but not at time 0 hours.
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Optimal design: 6 slidesOptimal design: 6 slides
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Human clones with MCF-7 and Jurkatt probes
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Quantifying expressionQuantifying expression

• For each spot on the array, calculate the background-

adjusted intensities:

red intensity R → R −Rb

green intensity G → G −Gb

• and combine them in the log base 2 ratio:

M = log2(R/G) = log2R − log2G

• We use seeded region growing and morphological opening

in Spot which runs within R.

• Background is a big issue.



Pre-processing angiogenesis: time 0 versus .5 hour
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Angiogenesis: after printtip normalisation
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Bayesian analysis of differential expression
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Angiogenesis: control K time course
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Some ‘truths’Some ‘truths’

• ‘When we entered the era of high technology, we

entered the era of mathematical technology’ 1.

• The interface between statistics, biology, computer

science and medicine has gone from information-poor

to information-mega-rich.

� Statistics has a central role to play in processing

that information and making it intelligible.

• Biology looks set to dominate statistics at the

beginning of this century, just as it did at the

beginning of the last one.

1Ad hoc Committee on Resources for the Mathematical Sciences,
US National Research Council, 1981.
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