Please note: Questions 4 and 6 (marked with asterisks) should be handed in as part of Assignment 2, due by noon on Friday 17 September.

1. Let $\left\{Z_{t}\right\}$ be a stationary process with mean zero and variance σ_{Z}^{2}, and let a and b be constants. If

$$
Y_{t}=a+b t+s_{t}+Z_{t}
$$

where s_{t} is a non-random seasonal component with period 12 , show that $D\left(1-B^{12}\right) Y_{t}$ is stationary and express its autocovariance function in terms of the autocovariance function of $\left\{Z_{t}\right\}$.
Reminder: D is the first difference operator, and B is the backward shift operator, both defined in lectures.
2. Show that the autocorrelation function for the process given by

$$
Y_{t}=\sum_{j=0}^{m} Z_{t-j} /(m+1)
$$

where Z_{t} is white noise, is

$$
\rho_{k}= \begin{cases}(m+1-k) /(m+1) & k=0,1,2, \ldots, m \\ 0 & \text { otherwise }\end{cases}
$$

3. Let $\left\{Y_{t}\right\} t=1,2, \ldots, n$ be a stationary time series.
(a) Show that \bar{Y} is an unbiased estimator of the mean, μ, of the series.
(b) Let ρ_{k} be the autocorrelation function of Y_{t}. Show that

$$
\operatorname{Var}[\bar{Y}]=\frac{\sigma^{2}}{n}\left\{1+\frac{2}{n} \sum_{k=1}^{n-1}(n-k) \rho_{k}\right\}
$$

i.e. the variance of the mean depends on the autocorrelation structure.
4. * A first order moving average process or $M A(1)$ process:

Let $Y_{t}=Z_{t}+\beta Z_{t-1}$, for $t=0,1, \ldots$, where $\left\{Z_{t}\right\}$ is a white noise sequence with variance σ_{Z}^{2} and β is a constant. Find the mean, variance and autocovariance function of $\left\{Y_{t}\right\}$.
5. More general moving average processes: Suppose that $\left\{Z_{t}\right\}$ is a white noise sequence with mean zero and variance σ_{Z}^{2}. Then a random process $\left\{Y_{t}\right\}$ is said to be a moving average process of order q, written MA(q), if

$$
Y_{t}=Z_{t}+\beta_{1} Z_{t-1}+\ldots+\beta_{q} Z_{t-q}
$$

where $\beta_{1}, \ldots, \beta_{q}$ are constants.
(a) Find $E\left(Y_{t}\right)$ and $\operatorname{Var}\left[Y_{t}\right]$.
(b) Show that the autocovariance function of $\left\{Y_{t}\right\}$ is

$$
\gamma_{k}=\sigma_{Z}^{2} \sum_{i=0}^{q-k} \beta_{i} \beta_{i+k} \quad \text { for } \quad k=1, \ldots, q
$$

and zero for $k>q$, where k is the lag.
6. * Find the general linear process representation of the $\mathrm{AR}(1)$ process

$$
Y_{t}=0.3 Y_{t-1}+Z_{t}
$$

where Z_{t} is white noise. Is $\left\{Y_{t}\right\}$ is a stationary process? Justify your answer.
7. We will prove the following theorem used in lectures if we have time: Let $\omega_{j}=$ $2 \pi j / n$ for some positive integer j less than $n / 2$. Let $c_{t}=\cos (\omega t)$ and $s_{t}=\sin (\omega t)$. Then

$$
\begin{aligned}
\sum_{t=1}^{n} c_{t} & =\sum_{t=1}^{n} s_{t}=\sum_{t=1}^{n} c_{t} s_{t}=0 \\
\sum_{t=1}^{n} c_{t}^{2} & =\sum_{t=1}^{n} s_{t}^{2}=n / 2
\end{aligned}
$$

Patty Solomon
August 2004

