Time Series III

Please note: Questions 1 and 5 (marked with asterisks) should be handed in as part of **Assignment 1**, due by **noon on Friday 27 August (week 5)**.

- 1. * *Covariances of linear combinations of random variables.* For constants *a*, *b*, *c* and *d*, show that
 - (a) Cov[a + X, Y] = Cov[X, Y]
 - (b) $\operatorname{Cov}[aX, bY] = ab\operatorname{Cov}[X, Y]$
 - (c) $\operatorname{Cov}[X, Y + Z] = \operatorname{Cov}[X, Y] + \operatorname{Cov}[X, Z]$
 - (d) Hence show

 $\operatorname{Cov}\left[aW + bX, \ cY + dZ\right] = ac\operatorname{Cov}\left[W, \ Y\right] + bc\operatorname{Cov}\left[X, \ Y\right] + ad\operatorname{Cov}\left[W, \ Z\right] + bd\operatorname{Cov}\left[X, \ Z\right]$

- 2. Suppose *X* and *Y* are random variables with means 3 and 5 respectively. If *X* and *Y* have variances 1 and 2 respectively and covariance 1, find
 - (a) the correlation of X and Y
 - (b) $\operatorname{Var}[2X + 3Y]$ and $\operatorname{Var}[X Y]$
 - (c) Cov[2X + 3Y, X Y]
 - (d) the correlation of 2X + 3Y with X Y
- 3. Assume random variables *X* and *Y* have variances σ_X^2 and σ_Y^2 , covariance σ_{XY} and correlation ρ . Show that

$$\operatorname{Var}\left[\frac{X}{\sigma_X} \pm \frac{Y}{\sigma_Y}\right] = 2(1 \pm \rho)$$

and hence show $-1 \le \rho \le 1$.

- 4. Let $\{Z_t\}$ be a sequence of independent normal random variables, each with mean zero and variance σ^2 , and let a, b and c be constants. Which, if any, of the following processes are stationary? For each stationary process specify the mean and autocovariance function.
 - (a) $Y_t = a + bZ_t + cZ_{t-2}$
 - (b) $Y_t = Z_1 \cos(ct) + Z_2 \sin(ct)$
 - (c) $Y_t = Z_t \cos(ct) + Z_{t-1} \sin(ct)$
 - (d) $Y_t = Z_t Z_{t-1}$
- 5. * A stationary random process $\{Y_t\}$ has mean μ and autocovariance function $\gamma_Y(k)$.
 - (a) Show that the new process $\{D_t\}$, where $D_t = Y_t Y_{t-1}$, is stationary and find its autocovariance function in terms of $\gamma_Y(k)$.
 - (b) If Y_t defines a first order autoregressive process with parameter α , find an explicit expression for the autocovariance function of $\{D_t\}$ in terms of α .

6. Suppose we have a random sequence $\{U_t\}$ which is white noise. If we smooth the sequence using a moving average then remove the smoothed trend, this induces spurious autocorrelation into the residual series, as you will show.

Define $R_t = U_t - S_t$, where

$$S_t = (U_{t-1} + U_t + U_{t+1})/3$$

is the simple moving average of order 3. Find the autocovariance function of $\{R_t\}$.

7. The first 10 sample autocorrelation coefficients of 400 'random' numbers are $r_1 = 0.02$, $r_2 = 0.05$, $r_3 = -0.09$, $r_4 = 0.08$, $r_5 = -0.02$, $r_6 = 0.00$, $r_7 = 0.12$, $r_8 = 0.06$, $r_9 = 0.02$ and $r_{10} = -0.08$. Is there any evidence of non-randomness?

Patty Solomon August 2004