
4 Spectral Analysis: analysis in the fre-

quency domain

4.1 Moment Generating Function

• For a discrete random variable Y , the moment
generating function is

MY (t) = E
[
etY

]
=

∑
y

etyP (Y = y)

• The mgf is a transform of P (Y = y) which (usu-
ally subject to regularity conditions) gives the mo-
ments of the random variable Y .

• Thus at least for the discrete case, P (Y = y)

and MY (t) share a mathematical equivalence,
but supply different information about Y .

c©Time Series 2004 4-1

4.2 Fourier Transform

• For real −π ≤ ω ≤ π, the discrete Fourier trans-
form of a (possibly complex) function h(y) of a
real variable y is

H(ω) =
∞∑

y=−∞
h(y)e−iωy

• Inversion: given a Fourier transform H(ω) we can
recover h(y) as

h(y) =
1

2π

∫ π

−π
H(ω)eiωydω

• Even Function: if h(−y) = h(y), then noting

e−iωy + eiωy = 2cos(ωy),

we see

H(ω) = h(0) + 2
∞∑

y=1

h(y) cos(ωy).
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4.3 The Spectrum

The spectral representation of a time series decom-
poses it into a sum of sinusoidal components with un-
correlated coefficients. The spectral decomposition is
thus an analogue for stationary processes of the more
familiar Fourier representation of deterministic func-
tions.

The analysis of stationary processes by means of
their spectral representation is often referred to as ‘fre-
quency domain analysis’ or ‘spectral analysis’.

The periodogram provides a sample-based estimator
of the spectral density.
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• We have a stationary random sequence {Yt} with
autocovariance function γk and autocorrelation
function ρk.

• Autocovariance generating function: for z a com-
plex variable,

G(z) =
∞∑

k=−∞
γkzk.

• Taking z = e−iω and noting γk = γ−k, and

e−iωy + eiωy = 2cos(ωy),

the (power) spectrum is defined as

f(ω) =
∞∑

k=−∞
γke−iωk

= γ0 + 2
∞∑

k=1

γk cos kω.
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• Normalized spectrum:

f∗(ω) =
f(ω)

γ0
= 1 + 2

∞∑
k=1

ρk cos kω

• f(ω) = f(−ω), f(ω+2πm) = f(ω) for all inte-
gers m so that the spectrum need only be defined
for 0 ≤ ω ≤ π.

• Periodogram and the normalized periodogram:

I(ω) = g0 + 2
n−1∑
k=1

gk cos kω

I(ω)

g0
= 1 + 2

n−1∑
k=1

rk cos kω

• The spectrum and autocorrelation function inver-
sion:

γk =
1

2π

∫ π

−π
f(ω)eiωkdω

=
1

π

∫ π

0
f(ω) cos kωdω (∗∗)

c©Time Series 2004 4-5

Wold’s Theorem : (not examinable)

Any non-negative valued function f(ω) on (0, π) de-
fines a legitimate spectrum, and γk is therefore a le-
gitimate autocovariance function if and only if it can
expressed in the form (∗∗) for some such f(ω).

Proof: Beyond the scope of this course. [See, for ex-
ample, Priestly (1981).]#

The important point here is that the permissible form
of γk is quite severely constrained, whereas that for
f(ω) is not.

Wiener-Khintchine Theorem : (not examinable)

For any real-valued stationary stochastic process with
acf, γk, there exists a monotonically increasing func-
tion F (ω) such that

γk =
∫ π

0
cos(ωk)dF (ω).

It can be shown that

γ(0) = var(Yt) =
∫ π

0
dF (ω) = F (π).
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Some Examples

1. White noise (normal case)

• Yt = Zt, where Zt ∼ N(0, σ2) and the Zt are
independent.

• autocovariance function

γk =

{
σ2 k = 0
0 otherwise

• autocorrelation function

ρk =

{
1 k = 0
0 otherwise

• spectrum

For all ω,

f(ω) = σ2

f∗(ω) = 1
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2. Autoregressive process of order 1

• Yt = αYt−1 + Zt, where Zt ∼ N(0, σ2) and the
Zt are independent.

• autocovariance function : For |α| < 1

γk =

{
σ2

Y = σ2/(1− α2) k = 0
σ2

Y αk k > 0

• autocorrelation function

ρk =

{
1 k = 0
αk k > 0

• spectrum

For all ω,

f(ω) = σ2/(1− 2α cosω + α2)

f∗(ω) = (1− α2)/(1− 2α cosω + α2)
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4.4 Linear filters

A filter is simply a transformation of one random se-
quence, say Ut into another Yt.

• A linear filter is defined as

Yt =
∞∑

j=−∞
ajUt−j

for some sequence aj.

• If Ut is stationary, and the number of nonzero aj

is finite, Yt is also stationary. If the latter is not
true, the precise form of the aj will determine if Yt

is stationary.

• autocovariance function: if Ut has acf γU(k),
then

γY (k) =
∞∑

j=−∞

∞∑
i=−∞

ajaiγU(k + i− j)
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• the autocovariance generating function of Yt is

GY (z) = A(z)A(z−1)GU(z),

where A(z) =
∑∞

j=−∞ ajz
j and GU(z) is the

autocovariance generating function of Ut.

• Putting z = e−iω we find

fY (ω) = |a(ω)|2fU(ω),

where

a(ω) =
∞∑

j=−∞
aje

−iωj

is called the transfer function of the linear filter.
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4.5 General Linear Process

• Recall : Yt =
∑∞

j=0 ajZt−j where Zt is white
noise and aj are constants.

• Spectrum:

fY (ω) = σ2|a(ω)|2 = σ2A(e−iω)A(eiω)

= σ2

b0 +
∞∑

m=1

bm cos(mω)

 (∗)

• Fourier Analysis: any real valued continuous
function f(ω) which is even, f(ω) = f(−ω), and
has period 2π, f(ω + 2πm) = f(ω), for integer
m, can be expressed as (∗).

• Thus any stationary random sequence with a
continuous spectrum has a representation as a
general linear process.
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4.6 Moving Average

Yt = θ(B)Zt

where

θ(B) =
q∑

j=0

βjB
j

with β0 = 1 and θ(0) = 1.

• Spectrum:

f(ω) = σ2|θ(e−iω)|2

= σ2


1 +

q∑
j=1

βj cos(jω)


2

+


q∑

j=1

βj sin(jω)


2
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4.7 Autoregressive process

φ(B)Yt = Zt

where

φ(B) = 1−
p∑

j=1

αjB
j

and φ(0) = 1.

• Spectrum:

|φ(e−iω)|2f(ω) = σ2

f(ω) = σ2


1−

p∑
j=1

αj cos(jω)


2

+


p∑

j=1

αj sin(jω)


2

−1

There is a potential problem: the term in square
brackets may be zero for some ω for specific αj.
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4.8 ARMA processes

φ(B)Yt = θ(B)Zt

where

φ(B) = 1−
p∑

j=1

αjB
j, θ(B) = 1 +

q∑
j=1

βjB
j

and φ(0) = 1 and θ(0) = 1.

• Spectrum: must satisfy

|φ(e−iω)|2f(ω) = σ2|θ(e−iω)|2

Thus the spectrum is σ2 times the terms in the
MA(q) and AR(p) spectra.
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Usefulness of ARMA processes

• Useful empirical tool, summarising time series
with a small number of parameters (αi and βj).

• Of limited value if the underlying mechanisms
need to be understood.

• Useful if, for example, forecasting is the aim be-
cause of the wide variety of shapes the spectrum
can take on for small p and q.
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5 ARIMA processes, and fitting ARIMA

processes to data

An extension which greatly enhances the value of
ARMA processes as empirical descriptors of non-
stationary time series is the class of autoregressive
integrated moving average processes:

Yt ∼ ARIMA(p, d, q)

if the dth difference of Yt is a stationary, invertible
ARMA process of order p, q, i.e.,

φ(B)(1−B)dYt = θ(B)Zt.

φ(B), θ(B) are polynomials of degree p, q, with all
roots of the equations φ(u) = 0 and θ(u) = 0 have
modulus greater than 1.

Example : the simple random walk

Yt − Yt−1 = Zt

is an ARIMA(0,1,0) process.
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5.1 Notation for ARIMA processes

ARMA(p, q) is stationary if all the roots of φ(B) = 0

have modulus greater than one.

Consider the non-stationary series

ϕ(B)Yt = θ(B)Zt

where

ϕ(B) = φ(B)(1−B)d

and φ(B) has all its roots greater than one in mod-
ulus. Thus the full process has d unit roots. Notice
that

(1−B)Yt = Yt −BYt = Yt − Yt−1 = DYt

(1−B)2Yt = Yt − 2Yt−1 + Yt−2 = D2Yt

and in general

(1−B)dYt = DdYt

so that the unit roots correspond to differencing the
original series. The differenced series is therefore a
stationary ARMA(p, q) process.
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The ‘I’ stands for integrated or differenced series.

(See separate handout for simulated ARIMA pro-
cesses.)

This is a specialized form of a non-stationary process,
but this and extensions (fractional difference) are use-
ful in practice. These models are used to provide a
summary of a time series and to forecast or predict
future values. We proceed in three stages:

1. identification of plausible model(s),

2. estimation or fitting the model(s),

3. diagnostic checks of the fit.
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5.2 Partial Autocorrelation function

Consider AR(p),

Yt =
p∑

i=1

αiYt−i + Zt

Change notation and write

Yt =
p∑

i=1

αipYt−i + Zt

to indicate a pth order process. Thus if

Yt =
r∑

i=1

αirYt−i + Zt

and r > p, we have

αp+1,p+1 = αp+2,p+2 = · · · = αrr = 0

Therefore the extra autoregressive parameters are
zero.

In practice, if we estimate αr,r and plot against r, and
if the process has order p, there should be a cutoff in
the plot at r = p, after which these partial autocorre-
lations will be zero.
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In R,

acf(series, type="partial")

produces the sample partial autocorrelations using an
efficient algorithm.

As for sample autocorrelations, we have α̂kk ∼
N(0,1/n) for k > p if the process is AR(p).

The αri satify the Yule-Walker equations

ρk =
r∑

i=1

αriρk−i

and these equations, k = 1,2, . . . r, can be written in
matrix form as

ρ1
ρ2
...

ρr

 =


1 ρ1 ρ2 . . . ρk−1
ρ1 1 ρ1 . . . ρk−2... ... . . . ... ...

ρk−1 ρk−2 ρk−3 . . . 1




αr1
αr2

...
αrr


or

ρr = Prαr

c©Time Series 2004 5-5

Using Cramer’s Rule, solutions for αrr for r = 1,2

are

α11 = ρ1, α22 =

∣∣∣∣∣ 1 ρ1
ρ1 ρ2

∣∣∣∣∣∣∣∣∣∣ 1 ρ1
ρ1 1

∣∣∣∣∣
=

ρ2 − ρ2
1

1− ρ2
1

This is not the recommended way to solve these equa-
tions. There are efficient recursive algorithms.

The partial correlogram is useful in identification of
models for time series.

Why is it called a partial autocorrelation? In fact it is a
correlation between two variables, given the interme-
diate values.
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1. Identification

• The first step is to look at the data series for evi-
dence of non-stationarity. If data appear station-
ary, no differencing is required, and provisionally
we identify d = 0.

• If data appear non-stationary, successively differ-
ence the series until the time plot looks stationary
(in practice, d = 1 or 2 is usually enough).

• If unclear, look at the correlogram. Why?

In general, we use the following to identify a model:

• correlogram

• partial correlogram
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and the fact that

• for MA processes, the correlogram shows a cut-
off

• for MA processes, the partial correlogram decays
to zero

• for AR processes, the correlogram decays to zero

• for AR processes, the partial correlogram shows
a cut-off

• for ARMA processes, the correlogram decays to
zero as for AR, with the first few autocorrelations
differing

• for ARMA processes, the partial correlogram de-
cays to zero as for MA, with the first few partial
autocorrelations differing.

Usually (p, d, q) are all 0, 1 or 2.
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2. Estimation

We consider maximum likelihood estimation for an
ARMA(p, q) model based on the normal distribution.

Two approaches:

• multivariate normal linear model,

• conditional decomposition of the multivariate nor-
mal.

The second approach is based on the fact that the
joint density of a random vector Y can be decom-
posed into a product of marginal and conditional den-
sities, namely

f(y) = f(y1)
n∏

i=2

f(yi|yi−1, yi−2, . . . , y1)

If

E
[
Yt|Yt−1, . . . , Y1

]
= µt, Var

[
Yt|Yt−1, . . . , Y1

]
= σ2ft
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then as Yt|Yt−1, . . . , Y1 ∼ N(µt, σ
2ft), the log-

likelihood is

L(µ, σ2, α, β;y) = −
1

2

n∑
t=1

{
log(σ2ft) +

e2t
σ2ft

}

where et = (yt − µt).

In R, a conditional version is used in which the first p

terms in the sum are ignored. For ARIMA(p, d, q) the
first p + d terms are ignored.
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3. Diagnostic checks

• Overfitting: if an ARIMA(p, d, q) has a maximized
log-likelihood L0, we fit

– ARIMA(p + 1, d, q) with maximized log-
likelihood L1 and

– ARIMA(p, d, q + 1) with maximized log-
likelihood L2

and compare

2(L1 − L0), 2(L2 − L0)

with χ2(1). These test if the additional autore-
gressive parameter and moving average parame-
ter respectively, are equal to zero (H0). We reject
H0 if the statistics are bigger than χ2

1−α(1) for a
test of size α.
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• Residuals: using the conditional log-likelihood,
the residuals are êt and the standardized resid-
uals are

Ẑt =
êt√
f̂t

We use these by

– plotting Ẑt vs t: if all is well this plot should
look like white noise,

– finding the correlogram for the Ẑt which
should look like white noise,

– plotting the cumulative periodogram of the
residuals which should look like white noise.
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• Portmanteau Statistic: using the sample autocor-
relations of the residuals, if the series is white
noise, rk ∼ N(0,1/n) and so

nr2k ∼ χ2(1), Qm = n
m∑

k=1

r2k ∼ χ2(m)

Qm is called the portmanteau statistic (uncor-
rected, see earlier for the corrected version).

We reject the hypothesis of ‘white noise’ if Qm >

χ2
1−α(m) at level α. Usually this statistic is cal-

culated for several consecutive values of m.
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5.3 Forecasting

Forecasting is the prediction of future values of the
time series. It is difficult because:

• extrapolation assumes the processes driving the
series do not change,

• requires a model which at best can be an approxi-
mation to reality (several models may fit the series
equally well but produce different forecasts), and

• errors associated with predictions increase as
they are made progressively further into the fu-
ture.

There are some standard approaches which are not
always very good. We will focus on the use of ARIMA
models, the so-called Box-Jenkins approach.
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Consider

ϕ(B)Yt = θ(B)Zt, ϕ(B) = φ(B)(1−B)d.

Then as a general linear process (GLP)

Yt = ϕ(B)−1θ(B)Zt

=
∞∑

j=0

ajZt−j

Let Yt(k) denote the predicted value of Yt+k based
on Y1, Y2, . . . , Yt. We consider linear predictors

Yt(k) =
t−1∑
i=1

wiYt−i

for some weights wi. Thus using the GLP

Yt(k) =
t−1∑
i=1

wi

∞∑
j=0

ajZt−i−j =
∞∑

j=0

WjZt−j

How to select the weights? Minimize the mean square
error of prediction,

MSEP = E
[
[Yt+k − Yt(k)]

2
]
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MSEP is minimized if Wj = aj+k, so that

Yt(k) =
∞∑

j=k

ajZt+k−j

while

Yt+k =
∞∑

j=0

ajZt+k−j

Thus

Yt+k = Yt(k) + Rt(k), Rt(k) =
k−1∑
j=0

ajZt+k−j

and Rt(k) are called the forecast errors.

Thus Yt(k) is calculated from the definition of Yt+k

except that future vales Zt+1, Zt+2, . . . , Zt+k are set
to zero. Note

• Yt+1 − Yt(1) = Zt+1 so that one step forecast
errors are not correlated; this is not true for larger
steps.

• Zt = Yt − Yt−1(1) which is very useful in actual
calculations.
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• E [Rt(k)] = 0 and Var [Rt(k)] = σ2 ∑k−1
j=0 a2

j
so that assuming normality a 1− α prediction in-
terval for Yt+k is

Yt(k)± z1−α/2σ̂

√√√√√k−1∑
j=0

a2
j

Calculation of forecasts

The Predictor Yt(k) is actually a conditional expecta-
tion,

Yt(k) = E
[
Yt+k|Yt, Yt−1, . . .

]
Now

ϕ(B) = φ(B)(1−B)d

= (1 + α1B + α2B2 + . . . αpB
p)(1−B)d

= (1 + ϕ1B + ϕ2B2 + . . . ϕp+dB
p+d)

for some ϕj. Thus

Yt+k = −
p+d∑
i=1

ϕiYt+k−i +
q∑

j=0

βjZt+k−j
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To find the forecast we take conditional expectations
and use

E
[
Yt+k−j|Yt, Yt−1, . . .

]
=

{
Yt+k−j if j ≥ k

Yt(k − j) if j < k

and

E
[
Zt+k−j|Yt, Yt−1, . . .

]
=

{
Zt+k−j if j ≥ k

0 if j < k

where for j ≥ k

Zt+k−j = Yt+k−j − Yt+k−j−1(1) (∗)

Thus our forecast is found from the actual model
where

• observed Yt+k−j are left alone

• unobserved Yt+k−j are replaced by earlier fore-
casts, Yt(k − j)

• observed Zt+k−j are replaced by (∗)

• unobserved Zt+k−j are replaced by zero (0).
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5.4 Seasonal Models

• Earlier in the course we saw differencing at lag
12 removed the seasonal effect for the bronchitis
data.

• Logically then, the operator (1−Bs) where s de-
notes the period of the seasonal effects (12 for
monthly data, 4 for quarterly) would seem to be
appropriate.

• 1 − us = 0 has roots u = ei(2πk/s), k =

0,1,2, . . . , s−1, which are evenly spaced on the
unit circle (in the complex plane). Thus this oper-
ator is like (1− B)d and implies non-stationarity,
which seasonal effects naturally are!
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• Multiplicative models: Consider an ARIMA type
model for seasonal effects,

Φ(Bs)(1−Bs)DYt = Θ(Bs)Ut

where the terms on the left correspond to an AR
and a differencing operation and on the left to a
MA. The process Ut is NOT white noise because
we expect there to be relationships between not
only the corresponding seasonal terms but also
between observations in previous cycles as well
as within the current seasonal cycle. So we have
an ARIMA model for the Ut namely,

φ(B)(1−B)dUt = θ(B)Zt

and putting it all together

φ(B)Φ(Bs)(1−B)d(1−Bs)DYt = θ(B)Θ(Bs)Zt

is called an ARIMA (p, d, q)× (P, D, Q) model; it
is a multiplicative model.
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• This is only one particular approach. Non multi-
plicative models are also very useful, and an ex-
perienced analyst can propose such models for
an application.

• Identification: requires study of simple models,
but in principle follows as for ARIMA models.

• Estimation: as before.

• Diagnostics: as before.

• Forecasting: same principles apply as for ARIMA
models, namely the use of the model and condi-
tional expectations.
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