3 Theory of stationary random pro-

cesses

3.1 Linear filters and the General linear process

A filter is a transformation of one random sequence

{U:} into another, {Y;}.

e A linear filter is a transformation of the form

o0

Y%: Z ajUt,j.

j=—o0

If {U:} is stationary and a finite number of the a;
are nonzero, then {Y;} is also stationary. When
infinitely many a; are nonzero, {Y;} may or may
not be stationary, depending on the precise form

of the a;.
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e General linear process : Y; = Y a;Z;_;
j=0

where Z; is white noise and the a; are constants.

e Mean: E[Y;] =0

(0.0}
e Variance: Var [V;] = 02 aJQ-
=0

o0
e Autocovariance: Cov [Ys, Vil = 02 Y aja;_ o1
i=0

e Stationary: mean and variance are constant pro-
vided 322 ag < oo. The autocovariance de-

pends on k = t — s, again if the sum is finite.

e A necessary and sufficient condition for a general

linear process to be stationary is

o0
Z aiz < 00
=0

(©Time Series 2004 3-2



In practice, a general linear process is a useful model
only when its coefficients a; are expressible in terms
of a finite number of parameters, which we can then
hope to estimate from a set of data.

A very rich class of models which satisfies this re-
quirement is the class of autoregressive moving av-
erage (ARMA) processes.
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3.2 ARMA processes

{Z:} white noise is the basic building block of these
processes.

e Moving Average, Y; ~ MA(q),

q
Yi=Zi+ Y. BjZi—;

j=1
e Autoregressive, Y; ~ AR(p),

p
Yi=Y oY i+ Z
=1

e ARMA, Y; ~ ARMA(p, q)

p q
Vi= Y oV i+ Ze+ Y BiZj
i=1 j=1

e The above assume a zero mean, but can consider

P q
Vi—u=23 ai(Yii—p)+2Zi+ ) BiZi
i=1 =1
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3.3 Backward Shift Operator

The above notation is relatively cumbersome, and it
gets worse! We use the backward shift operator nota-
tion to simplify things.

e Recall: BY; = Y;_1, BYY; = Y;_j;, and 1Y; =
Y;.
e AR(p) may be written

(1-aiB—--—apBP)Y; = Z;

e and the MA(q) may be written
Yi=1+61B+ -+ B4BNZ

e Combining for ARMA(p, ¢) model:
¢(B)Y; = 0(B)Z,
P . q )
¢(B)y=1-> oB', 6(B)=1+ > pB;B’
i=1 Jj=1
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e Note the side conditions

¢(0) =0(0) =1
These eliminate redundancy in the specification
of {¥;}.

p(B)Y; = 0(B)Z;

assumes no factors in common.

e Operations involving B are assumed to follow al-
gebraic lines, so, for example,
B\J
()}
2

B -1
-2 -
2
Q*J‘Bjy%
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3.4 Second-order properties of Moving Average
process, MA(Q)

Now, we know
Y; =0(B)Z;
where
q .
0(B) = Z ,BjBJ
j=0
with 8o = 1 and #(0) = 1.

e Autocovariance function

—k
Ve = { 0227?=052+kﬁ2 k=0,1,2,...,q

0 k>q
e Autocorrelations :fork=0,1,2,...,q
—k
o= Si—0 Bitk0i
- q 2
Zi:o /3@

e The ‘cut-off’ in ~;, after k = ¢ is a characteristic
of the MA(Q) process.

e Stationarity : for finite 3;, always stationary.
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e Invertibility : Consider model MA(1):
Yi=2Zi+ B2

— The only non-zero autocorrelation is
—__B
P1 = 1+52

— However if we replace 8 by 1/3, p; doesn't
change. Thus the model YV; = Z; + %Zt_l
has the same second order properties as the
model above. To resolve the ambiguity, write

Y; = (14 8B)Z
and invert to give

OO . .
Zy=1+8B) Y=Y (-1VFY,,
j=0
expressing {Z;} as a linear filter of {Y%}.

— Invertibility: influence of present and past Y;
on Z; vanishes as lag increases if and only if
—-1<p<1.

— In general, invertibility means the roots of
6(u) = 0 must be greater than 1 in absolute
value.
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Invertibility ensures a unique MA process for a given
acf.

Comment : MA processes have been used in many
areas, particularly econometrics where, for example,
economic indicators are affected by a variety of ‘ran-
dom effects’ such as strikes, terrorist attacks, govern-
ment decisions, shortages of raw materials, etc. Such
events will not only have an immediate effect, but may
also affect economic indicators to a lesser extent in
several subsequent periods. Thus it is at least plausi-
ble that an MA process may be an appropriate model.

Example: See handout on simulated MA(1) pro-
cesses:
B8 = -0.9,-0.5,0.5,0.9, n = 200.

We will discuss the behaviour of these series in the
lectures.
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3.5 Autoregressive process, AR(p)

Recall: Y; is expressed as a linear combination of the
past Ys and a white noise term Z;. Note also that it
expresses the white noise sequence {Z;} as a linear
filter of {Y;}.

We write
d(B)Y; = Z;
where
p .
p(B)=1-> ;B
j=1
and ¢(0) = 1.

e Stationary if and only if all the roots of the equa-
tion ¢(u) = O have modulus greater than one
(this is a theorem; for the proof, see handout and
Diggle, p.76-77).
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e Example: AR(1).
Yi =aYi 1+ Zs.
Thus,

Yi—aYi 1 = Z;
ie. (1—aB)Y; = Z,
where (1 — au) = ¢(u). This has root 1/a.

Provided |a| < 1, then |1/« > 1 as required for
stationarity.

Recall earlier work with this example where we
assumed this result.

e Autocovariance function for AR(p) process  :in
general, need to solve the Yule-Walker equations

p
Pk — Zajpk'—j7 k:1)27
=1
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To see this, consider

p
Yi= > ajVi_;+ Z.
J=1
Multiply both sides by Y;_;. to give
P
ViYeok = Y oY Yok + ZiYiy
Jj=1

Taking expectations of both sides leads to

p
Y =EMY_p) = D v,
=1

(check this as an exercise).

Finally, dividing both sides by vo = var(Y;) gives the
autocorrelation coefficients

p
szzajpk—ja k:1,2,....
j=1

This gives a way of calculating the p;, from the o;: can
solve by successive substitution, or solve as a system
of linear difference equations.
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Difference Equations: pth order,
constant coefficients

Agtp T a1 pqp1 + -+ aphp = by

® aj,an,...,ap are known constants, by an arbi-
trary function of .

e Homogeneous equation: b, = 0

— auxiliary equation: \;, = A¥ is a solution iff
>\p+a1>\p71+...+ap:o

— distinct roots rj,rp,...,rp, the solution is
)\kzclr]f+~~~+cprl;

— some equal roots, for example r; = rp =
- =1y = r for some m, \p = (c1 +cok+
e emk™ )k e rk ek

— the constants ¢; are determined by initial con-
ditions.

e Solution to general equation: general solution to
homogeneous equation plus any particular solu-
tion to the general equation.
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Thus we look for solutions to the Yule-Walker equa-
tions of the form

pr, = N

The auxiliary equation is

N —a APl =0

In fact, the general solution for distinct roots
A1, .., Ap, has the form

pk=01>\]f+~-+cp>\’§

[ Note that the Yule-Walker equations can be used to
infer values of a; corresponding to an observed set
of sample autocorrelation coefficients: this suggests
a method of parameter estimation for autoregressive
processes.]
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Example : AR(2). The general form of this process is

Yi=a1Yi 1+ a0+ Zt.

This model generates a rich variety of second-order
properties depending on the numerical values of the
parameters «q and ao.

Write model as
Yi—a1Yi1 —aYi 1 =27 ()
Find p;..

The Yule-Walker equations are

Pk = a1pg—1 + aopg—2, k>0
We look for solutions of the form pj, = A,
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Substitute into (x) to give

/\2—041)\—0@:0,
the auxiliary equation.

We know that solutions to the auxiliary equation are
solutions to (x) as well.

This quadratic equation has two roots:

A== \/a% + 4dao

Call these
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Now, the nature of the solution depends on whether
the roots are

e real and distinct, i.e., a + 4ap > 0
e real and coincident, i.e., a3 + 4ap = 0, or
e complex, i.e., aF 4+ 4ap < 0.

In the lectures, we will obtain the general solution for
each case and consider some illustrative examples.
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3.6 ARMA(p,q) processes

We write
#(B)Yr = 0(B)Zy
where
p . q .
¢(B)=1—-> o;B), 0(B)=1+4 ) B;B,
j=1 j=1
and ¢(0) = 1, 6(0) = 1.

e Autocorrelation function is found in specific
cases by expressing Y; as a general linear pro-
cess, that is

¥i = {6(B)) 10(B) 7 = (§ ajBf‘) Z

Jj=0
where the coefficients a; are determined by a for-
mal power series expansion of {¢(B)} 1.
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e Stationarity is determined by the AR part, that is,
if the roots of ¢(u) = O are greater than one in
absolute value.

e Invertibility : the ARMA(p,q) process is invertible
if the roots of the polynomial equation 8(u) = 0
are all greater than one in absolute value.

Example : the ARMA(1,1) process.

See also separate handout of simulated ARMA pro-
cesses.

ARMA processes are valuable in time series analysis
owing to their ability to approximate a wide range of
second-order behaviour using only a small number of
parameters.

Additional motivation is their central role in Box-
Jenkins forecasting, and their extension to ARIMA
processes. Further comments are made at the end
of Chapter 4.
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