
3 Theory of stationary random pro-

cesses

3.1 Linear filters and the General linear process

A filter is a transformation of one random sequence
{Ut} into another, {Yt}.

• A linear filter is a transformation of the form

Yt =
∞∑

j=−∞
ajUt−j.

If {Ut} is stationary and a finite number of the aj

are nonzero, then {Yt} is also stationary. When
infinitely many aj are nonzero, {Yt} may or may
not be stationary, depending on the precise form
of the aj.
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• General linear process : Yt =
∞∑

j=0

ajZt−j

where Zt is white noise and the aj are constants.

• Mean: E [Yt] = 0

• Variance: Var [Yt] = σ2
∞∑

j=0

a2
j

• Autocovariance: Cov [Ys, Yt] = σ2
∞∑

i=0

aiat−s+i

• Stationary : mean and variance are constant pro-
vided

∑∞
i=0 a2

i < ∞. The autocovariance de-
pends on k = t− s, again if the sum is finite.

• A necessary and sufficient condition for a general
linear process to be stationary is

∞∑
i=0

a2
i < ∞
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In practice, a general linear process is a useful model
only when its coefficients aj are expressible in terms
of a finite number of parameters, which we can then
hope to estimate from a set of data.

A very rich class of models which satisfies this re-
quirement is the class of autoregressive moving av-
erage (ARMA) processes.
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3.2 ARMA processes

{Zt} white noise is the basic building block of these
processes.

• Moving Average, Yt ∼ MA(q),

Yt = Zt +
q∑

j=1

βjZt−j

• Autoregressive, Yt ∼ AR(p),

Yt =
p∑

i=1

αiYt−i + Zt

• ARMA, Yt ∼ ARMA(p, q)

Yt =
p∑

i=1

αiYt−i + Zt +
q∑

j=1

βjZt−j

• The above assume a zero mean, but can consider

Yt − µ =
p∑

i=1

αi(Yt−i − µ) + Zt +
q∑

j=1

βjZt−j
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3.3 Backward Shift Operator

The above notation is relatively cumbersome, and it
gets worse! We use the backward shift operator nota-
tion to simplify things.

• Recall: BYt = Yt−1, BjYt = Yt−j, and 1Yt =

Yt.

• AR(p) may be written

(1− α1B − · · · − αpB
p)Yt = Zt

• and the MA(q) may be written

Yt = (1 + β1B + · · ·+ βqB
q)Zt

• Combining for ARMA(p, q) model:

φ(B)Yt = θ(B)Zt,

φ(B) = 1−
p∑

i=1

αiB
i, θ(B) = 1 +

q∑
j=1

βjB
j
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• Note the side conditions

φ(0) = θ(0) = 1

These eliminate redundancy in the specification
of {Yt}.

•

φ(B)Yt = θ(B)Zt

assumes no factors in common.

• Operations involving B are assumed to follow al-
gebraic lines, so, for example,

(
1−

B

2

)−1
Yt =


∞∑

j=0

(
B

2

)j
 Yt

=
∞∑

j=0

2−jBjYt

=
∞∑

j=0

2−jYt−j
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3.4 Second-order properties of Moving Average
process, MA(q)

Now, we know

Yt = θ(B)Zt

where

θ(B) =
q∑

j=0

βjB
j

with β0 = 1 and θ(0) = 1.

• Autocovariance function :

γk =

{
σ2 ∑q−k

i=0 βi+kβi k = 0,1,2, . . . , q
0 k > q

• Autocorrelations : for k = 0,1,2, . . . , q

ρk =

∑q−k
i=0 βi+kβi∑q

i=0 β2
i

• The ‘cut-off’ in γk after k = q is a characteristic
of the MA(q) process.

• Stationarity : for finite βj, always stationary.
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• Invertibility : Consider model MA(1):
Yt = Zt + βZt−1

– The only non-zero autocorrelation is
ρ1 = β

1+β2

– However if we replace β by 1/β, ρ1 doesn’t
change. Thus the model Yt = Zt + 1

βZt−1
has the same second order properties as the
model above. To resolve the ambiguity, write

Yt = (1 + βB)Zt

and invert to give

Zt = (1 + βB)−1Yt =
∞∑

j=0

(−1)jβjYt−j,

expressing {Zt} as a linear filter of {Yt}.

– Invertibility: influence of present and past Yt

on Zt vanishes as lag increases if and only if
−1 < β < 1.

– In general, invertibility means the roots of
θ(u) = 0 must be greater than 1 in absolute
value.
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Invertibility ensures a unique MA process for a given
acf.

Comment : MA processes have been used in many
areas, particularly econometrics where, for example,
economic indicators are affected by a variety of ‘ran-
dom effects’ such as strikes, terrorist attacks, govern-
ment decisions, shortages of raw materials, etc. Such
events will not only have an immediate effect, but may
also affect economic indicators to a lesser extent in
several subsequent periods. Thus it is at least plausi-
ble that an MA process may be an appropriate model.

Example : See handout on simulated MA(1) pro-
cesses:
β = −0.9,−0.5,0.5,0.9, n = 200.

We will discuss the behaviour of these series in the
lectures.
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3.5 Autoregressive process, AR(p)

Recall: Yt is expressed as a linear combination of the
past Ys and a white noise term Zt. Note also that it
expresses the white noise sequence {Zt} as a linear
filter of {Yt}.

We write

φ(B)Yt = Zt

where

φ(B) = 1−
p∑

j=1

αjB
j

and φ(0) = 1.

• Stationary if and only if all the roots of the equa-
tion φ(u) = 0 have modulus greater than one
(this is a theorem; for the proof, see handout and
Diggle, p.76–77).
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• Example : AR(1).

Yt = αYt−1 + Zt.

Thus,

Yt − αYt−1 = Zt

i.e. (1− αB)Yt = Zt,

where (1 − αu) = φ(u). This has root 1/α.
Provided |α| < 1, then |1/α| > 1 as required for
stationarity.

Recall earlier work with this example where we
assumed this result.

• Autocovariance function for AR(p) process : in
general, need to solve the Yule-Walker equations

ρk =
p∑

j=1

αjρk−j, k = 1,2, . . .

c©Time Series 2004 3-11

To see this, consider

Yt =
p∑

j=1

αjYt−j + Zt.

Multiply both sides by Yt−k to give

YtYt−k =
p∑

j=1

αjYt−jYt−k + ZtYt−k.

Taking expectations of both sides leads to

γk = E(YtYt−k) =
p∑

j=1

αjγk−j

(check this as an exercise).

Finally, dividing both sides by γ0 = var(Yt) gives the
autocorrelation coefficients

ρk =
p∑

j=1

αjρk−j, k = 1,2, . . . .

This gives a way of calculating the ρk from the αj: can
solve by successive substitution, or solve as a system
of linear difference equations.
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Difference Equations: pth order,

constant coefficients

λk+p + a1λk+p−1 + · · ·+ apλk = bk

• a1, a2, . . . , ap are known constants, bk an arbi-
trary function of k.

• Homogeneous equation: bk = 0

– auxiliary equation: λk = λk is a solution iff
λp + a1λp−1 + · · ·+ ap = 0

– distinct roots r1, r2, . . . , rp, the solution is
λk = c1rk

1 + · · ·+ cprk
p

– some equal roots, for example r1 = r2 =
· · · = rm = r for some m, λk = (c1+ c2k+
· · · cmkm−1)rk + cm+1rk

m+1 + · · ·+ cprk
p

– the constants ci are determined by initial con-
ditions.

• Solution to general equation: general solution to
homogeneous equation plus any particular solu-
tion to the general equation.
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Thus we look for solutions to the Yule-Walker equa-
tions of the form

ρk = λk

The auxiliary equation is

λp − α1λp−1 − · · · − αp = 0

In fact, the general solution for distinct roots
λ1, . . . , λp, has the form

ρk = c1λk
1 + · · ·+ cpλ

k
p

[ Note that the Yule-Walker equations can be used to
infer values of αj corresponding to an observed set
of sample autocorrelation coefficients: this suggests
a method of parameter estimation for autoregressive
processes.]
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Example : AR(2). The general form of this process is

Yt = α1Yt−1 + α2Yt−2 + Zt.

This model generates a rich variety of second-order
properties depending on the numerical values of the
parameters α1 and α2.

Write model as

Yt − α1Yt−1 − α2Yt−1 = Zt (∗)

Find ρk.

The Yule-Walker equations are

ρk = α1ρk−1 + α2ρk−2, k > 0

We look for solutions of the form ρk = λk.
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Substitute into (∗) to give

λk = α1λk−1 + α2λk−2,

i.e.,

λ2 − α1λ− α2 = 0,

the auxiliary equation.

We know that solutions to the auxiliary equation are
solutions to (∗) as well.

This quadratic equation has two roots:

α1 ±
√

α2
1 + 4α2

2

Call these

λ1 =
1

2

(
α1 +

√
α2
1 + 4α2

)
,

λ2 =
1

2

(
α1 −

√
α2
1 + 4α2

)
,

c©Time Series 2004 3-16



Now, the nature of the solution depends on whether
the roots are

• real and distinct, i.e., α2
1 + 4α2 > 0

• real and coincident, i.e., α2
1 + 4α2 = 0, or

• complex, i.e., α2
1 + 4α2 < 0.

In the lectures, we will obtain the general solution for
each case and consider some illustrative examples.
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3.6 ARMA(p,q) processes

We write

φ(B)Yt = θ(B)Zt

where

φ(B) = 1−
p∑

j=1

αjB
j, θ(B) = 1 +

q∑
j=1

βjB
j,

and φ(0) = 1, θ(0) = 1.

• Autocorrelation function is found in specific
cases by expressing Yt as a general linear pro-
cess, that is

Yt = {φ(B)}−1θ(B)Zt =

 ∞∑
j=0

ajB
j

 Zt

where the coefficients aj are determined by a for-
mal power series expansion of {φ(B)}−1.
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• Stationarity is determined by the AR part, that is,
if the roots of φ(u) = 0 are greater than one in
absolute value.

• Invertibility : the ARMA(p,q) process is invertible
if the roots of the polynomial equation θ(u) = 0

are all greater than one in absolute value.

Example : the ARMA(1,1) process.

See also separate handout of simulated ARMA pro-
cesses.

ARMA processes are valuable in time series analysis
owing to their ability to approximate a wide range of
second-order behaviour using only a small number of
parameters.

Additional motivation is their central role in Box-
Jenkins forecasting, and their extension to ARIMA
processes. Further comments are made at the end
of Chapter 4.
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