2 Descriptive methods of analysis

There is a large literature devoted to deriving meth-
ods for estimating and removing, or adjusting, various
features of a time series. But in the first instance, it
is important to look at your data, and to use simpler
methods of analysis where appropriate.

e Time plots.

Smoothing: looking for trends, seasonal effects
— moving averages
— regression models

— spline smoothing.

Differencing: removal of trend and seasonal ef-
fects.

Autocovariance and autocorrelation functions.

Variogram.

e Periodogram.
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2.1 Time Plots

e Always start by plotting the series in time or-
der. This is the most basic graphical represen-
tation; examine the main (qualitative) features of
the graph.

What might these be?

e Options are point or line plots; the latter usually
enhance the display especially if you want to com-
pare several series on the same plot. However,
joining consecutive points can give a false sense
of continuous observation, and any gaps or jumps
may not be so obvious.

e Aspect ratio : relative sizes of the y and = axes.

Although graphical representations are assumed ‘triv-
ial' or easy, good representations require thought.
There are now several books on the subject.
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Example : Lynx data. Figure 2.1 shows two time plots
of a well-known dataset on the annual numbers of lynx
trapped in the Mackenzie river district of North-West
Canada from 1821 to 1934.

The data show a strong, approximate, 10 year cycle
and perhaps also a 50 to 60 year cycle. In the second
plot, we can clearly see the differences between the
heights of successive peaks.

In the top plot, the y-axis is compressed relative to the
x-axis, and the effect of this choice of aspect ratio is
to highlight the asymmetry of the rise and fall within
each cycle.
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Fig. 2.1: Annual numbers of lynx trapped in the
Mackenzie River District, Canada 1821-1934.
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2.2 Smoothing

e Fundamentally an exploratory tool to

— gain insight with respect to trends and/or sea-
sonal effects, or

— to remove trends and/or seasonal effects.

e Example: Monthly numbers of female deaths in
the UK attributed to bronchitis, emphysema and
asthma over the years 1974 to 1979; see Figure
2.2,

Suppose we ‘smooth’ the data as follows. Let

st = (y—1 +yt + Ye41)/3
and instead of plotting y; versus t, plot s; ver-
sus t. Then join s; by line segments and ob-
tain the ‘continuous’ trace superimposed on the
data. The smooth emphasizes the major features
of the data, especially the seasonal pattern, but
de-emphasizes the random fluctuations evident in
the raw data.
(©Time Series 2004 2-5

Fig. 2.2: Female deaths in the UK from bronchitis,
emphysema and asthma 1974-1979. From Diggle
(1990).
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e Smoothing: a decomposition of a time series y;
into a ‘'smooth’ component s; and a ‘rough’ com-
ponent ry:

Yyt = st + 1t

(Note that this is *not* a model.)

Although it is tempting to equate the above de-
composition to

Y (t) = p(t) +U),

suggesting the s; is an estimate of u(t), one
needs more formal models and hypotheses.

(©Time Series 2004 2-7

Moving averages

e Definition A moving average of order 2p+ 1 of a

time series {y: : t =1,2,...,n}isatime series
defined by
p
St = Z WiYitj> t=p+1,...,n—p,
j=-p
where p is a positive integer, the weights w; are
typically positive and satisfy Zﬁ?:_p w; = 1.

Usually w_; = wj, and 2p+ 1 is called the order
of the moving average.

e The definition leaves s; undefined at the ends of
the series. One approach is to sum from j; =
max(—p,1 — t) to min(p,n — t) and divide by
the sum of weights included.

e Moving averages of odd order — to preserve the
correspondence between y; and s;.
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e Seasonal effects : handling these depends on
whether the purpose is to

— measure, or
— to eliminate the seasonal effects

e Example: monthly deaths from lung diseases
data.

— To measure the effects for series with little or
no trend, it is usually adequate to calculate the
average for each month and compare these
with the overall mean, either as a difference or
a ratio. An alternative is to form a low-order
moving average.

— One way to eliminate the seasonal effects is
to find a 13-point moving average with end

weights 1/24 and the rest 1/12.

Time Series 2004 2-9
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Fig. 2.3: Three-point (top) and 13-point (bottom) mov-
ing averages fitted to UK male and female deaths
from bronchitis, emphysema and asthma 1974-1979.
From Diggle (1990).
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General comments :

e How to choose an appropriate moving average?
Sometimes this is suggested by the context of the
problem, or simply chosen for convenience.

e The example on Slide 2.5 with all w; the same is
called a simple moving average of order 3.

e Moving average smoothing is easy to implement
and interpret (don't have to assume a parametric
model).

e The method of repeated application of 3-point
moving averages, inspecting the intermediate re-
sults, is a convenient (subjective) interactive way
to proceed.

(©Time Series 2004 2-11

Regression models or curve fitting

e From a statistical point of view, fitting a regression
model in time to the time series would appear to
be a sensible way in which to model a trend.

e For example, polynomials are often used, al-
though it is recognised that they are global mod-
els and as such rather inflexible. Thus we might

take
p )
s(t) =Y Bt/
j=0
so that
y=XB+e

where X has (4, j)th element t{ and g is the vec-
tor of the 3;. This is a linear model, and assuming
the ‘errors’ are independent and identically dis-
tributed, we have the least squares estimate of 3,

B=&Tx)"1xTy
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e Low values of p (say 1 or 2) are useful for remov-
ing trends from time series, but large values are
not usually useful.

e Copes with unequally spaced data.
e Least squares analysis straightforward.

e However, polynomial regression models of this
form impose global assumptions about the nature
of the data which are seldom warranted, and can
produce artefacts.

(©Time Series 2004 2-13

Smoothing Spline

e To estimate the trend wu(t), we might consider
least squares

n
min 3 (y; — p(t;))?
H(t) i=1
to choose an arbitrary function u(t). Obviously
taking ji(t;) = y; will provide a perfect fit but give
no indication of trend!

e Instead we consider minimizing
. 2 e 2
> i = n)2+a [ (1))t
i=1 >

— The second term is a penalty function, with
« governing the amount of roughness we are
prepared to tolerate.

— If @« = 0, we reproduce the original data, that
is, the fit is very ‘rough’. As « increases, the
second term dominates, making the fitted val-
ues smooth.
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e The ‘smoothest’ curve under this scheme is the
straight line.

e The solution to the above problem is a function
which satisfies the following:

— () has a continuous first derivative every-
where

— p(t)islinearfort < t1 and t > ty

— (t) is a cubic polynomial in ¢t between each
successive pair of ¢;.

— It can be shown that

n
a(t) = > wijy;
J=1
for certain weights w;;, which is closely re-
lated to a moving average smoother.

(©Time Series 2004 2-15

e There is an automated way to select «, called
cross validation. Unfortunately, for correlated
data such as time series, the choice may not be
very good.

e Spline smoothing can be advantageous as it can

cope with arbitrary patterns of missing values in
the data.
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Example : Mauna Loa Carbon Dioxide Concentration.

The time series in Figure 2.4 represents monthly CO»
concentrations in ppm (parts per million) from January
1959 to December 1990.

There is a strong yearly seasonal effect with CO» up
in winter. There is also an obvious trend of increasing

CO5 concentration.
1. Moving averages: wiggly line is three-point mov-
ing average; smooth line is 13-point moving aver-

age.

2. Polynomial regressions: p = 1, linear regression;
and p = 2, quadratic regression.

3. Smoothing B-splines: large @ smooths the time
series; a (approx. 10~10) gives the wiggly line.

(©Time Series 2004 2-17

Moving Averages Polynomial regressions

1960 1870 1980 1990

1980 1870 1980 1290

year

Fig. 2.4: Mauna Loa Carbon Dioxide Concentration:
monthly concentrations in ppm from 1959 to 1990.
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2.3 Differencing

The classical approach to time series is to remove
trends, any seasonal effects, etc, with a view to em-
phasizing the ‘roughness’ or other features of the
residuals.

e Simple approach to removing rather than high-
lighting trends.

e First Difference: Dys = yt — yi—1.

e Higher-order Differences: are obtained by re-
peated application, so for example, the second
difference is

D2y = D(Dyt) = Dy — Dy;_1
= yt—2y-1+ Y2

o If y; consists of a kth degree polynomial in ¢, tak-
ing kth order difference of the series will remove
this trend.

(©Time Series 2004 2-19

e If, in addition, the random component is station-
ary, { D¥y,;} is also stationary.

e More importantly, it is sometimes the case that
while y; is not stationary, the differenced series
{DFy;} is stationary.

o |[f differencing is used to remove trend, the usual
approach is to try Dy;, D?y; and so on and ex-
amine the plots of these series, choosing the dif-
ferencing that suggests stationarity.

e In practice, k = 1 or £k = 2 is usually enough,

and correspond to subtraction of simple moving
averages of order 2 and 3.
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e If an increase in variability is observed, this usu-
ally indicates that the series has been ‘over-
differenced’.

e Seasonal effects : can be eliminated by the use
of appropriate differencing. For example, for
monthly data, defining B¥y; = y,_; to be the
backward shift operator of order &, we take

12
2t =yt— Byt =yt —yt—12

We'll be using B with ARMA series later. Note
that Dy; = y1 — By = (1 — B)y.

Example : Mauna Loa CO5 concentration. See Figure
2.5.

The dataset is available in R as data(co2)
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Fig. 2.5:
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2.4 Autocovariance and autocorrelation func-
tions

e Let Y (¢) be a stationary random function.

e The autocovariance function of Y (t) is
(k) = cov{Y (1), Y (t — k)}

where k is the lag.

e The autocorrelation function of Y (t) is defined to
be

p(k) = ~v(k)/~(0),
since Var(Y (t)) = v(0).

e Important properties of p(k) are:

- p(k) = p(—k)
- —1<pk) <1

— ifY(t) and Y (¢t — k) are independent, p(k) =
0, but note the converse is not true.
(©Time Series 2004 2-23

For the discrete case , {Y;} is a stationary random
sequence and k is an integer, and we often write

e ~;. = autocovariance coefficient of {Y;} and
e p;, = autocorrelation coefficient of {¥;}.

The acf is an important (albeit incomplete) summary
of the serial dependence within a stationary random
function or sequence.

Example : A first-order autoregressive process.

Consider the random sequence {Y;} defined by
Vi=aYi 1+ Zi, (%)

where {Z;} is a sequence of white noise. When o =
1, we obtain the simple random walk considered in
previous examples. In Chapter 3, we will show that
{Y}%} is stationary if and only if —1 < o < 1. Assume
this for now.

©Time Series 2004 2-24



We can show that E(Y;) = 0, so the first condition
for stationarity is satisfied. Multiplying both sides of (*)
by Y;_;, we can (eventually) show that

Ve = ak’YO
and hence that
g
var(Y;) = = —7F.
( t) Y0 1_ a2
(We will work through this example in the lectures.)

Example : Simulations with normally distributed white
noise sequences {Z;} for different values of a. See
Figure 2.6 (which is Figure 2.9 from Diggle, 1990).

e a = —0.5: the alternating pattern of autocorre-
lations for small lags reflects the tendency of the
series {Y;} to zigzag about zero.

e o = 0.5: the autocorrelations are strictly positive
and this imparts some degree of smoothness in

{¥i}.

e a = 0.9: the smoothness is how more evident;
{Y:} takes relatively long excursions above and
below zero (its average value).

(©Time Series 2004 2-25
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4. Autocorrelation functions and simulated realizations of the fist-order
autoregressive pracess, ¥, = a¥, (b} a= =05 (c), (d) a=0.5,

Fig. 2.7: This is Figure 2.6 continued.
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2.5 Estimating the autocorrelation function

Equally spaced series: the correlogram
e Let y be the sample mean.

e The kth sample autocovariance coefficient is

1> _ _
gw== > Ww—DW-r—9
"y—k+1

e The kth sample autocorrelation coefficient is

Tk = 9k/90,
where gq is the sample variance.

e The correlogram is a plot of r;, against k.
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e Bartlett (1946) showed that
1
T ~ N (O, *)
n

if process is white noise, so |r.| > 2/+/n is sig-
nificant at about the 5% level. However,

— the more rj, that are examined the more likely
a significant one will be found, even if the pro-
cess is white noise.

— the rj, are not independent;

— Portmanteau test of white noise: under that
null hypothesis,

Qm=nn+2) Y (n—k)"1r ~x2
k=1

— A large value of Q,,, suggests that the sample
autocorrelations in the data are too large to be
a sample from a white noise sequence.

— The sensitivity of @y, to various types of
departure from white noise depends on the
choice of m.
(©Time Series 2004 2-29

e The primary use of the correlogram is, however,
to shed light on the nature of the serial depen-
dence within a set of data. Thus we want to relate
the form of the correlogram to various theoretical
forms of the autocorrelations with a view to sug-
gesting plausible models.

e The acf is valuable for determining the nature of
the serial dependence in a time series.

e When {Y(¢)} jointly normal, p; completely de-
scribes the process.

e In general though, the acf is an incomplete de-
scription of serial dependence in the sense that
random processes whose realizations are quali-
tatively different can give rise to the same acf.
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Some remarks:

1.

We use the correlogram to shed light on the na-
ture of the serial dependence within a time series.
Thus the overall pattern is typically more impor-
tant than the individual values of ry,.

. One can relate the qualitative behaviour of the

correlogram to various theoretical forms of the au-
tocorrelation function, and this may suggest plau-
sible models. The reliability of the correlogram for
this purpose increases with the length of the se-
ries. Why?

. Slow, approximate linear decay is typical of the

behaviour of a correlogram of a non-stationary
series whose theoretical autocorrelation function
does not exist.

Trend and seasonality are usually detected by in-
specting the graph of the (possibly transformed)
series. However, they are also characterized by
autocorrelation functions that are slowly decaying
and nearly periodic respectively.
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Unequally spaced series: the variogram

Consider a stationary random function Y ().
Variogram: V (k) = 1E [{Y(t) —Y(t— k)}z].
Can show V (k) = v(0)(1 — p(k)).

For atime series y(¢;) : 1 =1,2,...,n,

— calculate v;; = 3{y(t;) — y(t;)}? and k;; =

t; —t; for all distinct 5n(n — 1) pairs of obser-
vations.

— Empirical or sample variogram: plot wv;;
against k;;. Improve the plot by averaging
all values with common k;;, call these values

5(k).

As k increases, usually p(k) decays to zero. So
the limiting value of V (k) can be estimated by

R

13 2
Voo =g0=—y_ (yt — )
Ny=1
Hence
plk) = 1 —5(k) /vsc
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Comments
1. If v, does not level off, then

e the serial dependence extends beyond the time
span of the data, or

e the underlying process is non-stationary.

2. V (k) exists for some non-stationary processes

e.g.
Y=Y, 1+7%, Yo=0,
has V (k) = Sko?.
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2.6 Impact of trend removal on autocorrelation
structure

Recall our basic working model for a non-stationary
random function:

Y(t) =pu(t) +UQR).
If we knew p(t) exactly, we could subtract it from
the observed series {y(¢;)}, ¢ = 1,...,n, to obtain
{u(t;)}, a stationary series. In practice, u(t) is usu-
ally not known and we estimate it. Then subtracting
gives
r(t) = y(t) — a(t) # u(t).

That is, {r(¢;)} is a ‘corrupted’ residual series.

One consequence of trend removal is that it induces
spurious autocorrelations into the residual sequence.

Example : Suppose {U:} is a white noise sequence,
and consider a moving average of order 3, so that

re = up — (up—1 +up +upg1)/3
= (—up—1 +2u —w41)/3.
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Let { R} with

Ry = (=Uj—1+2U; —Upy1)/3

be a stationary random sequence with autocovariance
coefficient ;.

Then we can show that the induced autocorrelation
coefficient of { R} is

1 ifk=0
2 .
-z ifk=1
173
PEZALT k=2
0 ifk =3
#
(©Time Series 2004 2-35

In general, the number of non-zero induced autocor-
relations is one less than the order of the moving av-
erage.

For example, for a 3-point moving average, we get 2
induced autocorrelations.

But their magnitudes decrease as the order of the
moving average decreases, e.g., using a (2p + 1)-
point (unweighted) moving average, the induced au-
tocorrelation at lag 1 is

(p+1) 1

pPL= T R ——
p(2p+1) 2p
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2.7 Periodogram

e Summary plot resulting from representing a time
series as a sum of sinusoidal waves at various
frequencies.

e Why? To elucidate the cyclic structure in the se-
ries, at frequencies not predictable in advance.

In fact the periodogram is now more broadly
viewed as a way of representing trends and other
fluctuations in time series. It is especially use-
ful for summarizing seasonality and short-term
trends.

e Expressing the series in terms of its Fourier com-
ponents forms the basis of frequency domain
methods. This approach is especially important in
engineering applications such as signal process-
ing and structural design.
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e A simple model:

yr = acos(wt) + Bsin(wt) + 2

where z; is white noise, t = 1,...,n,

frequency w =27/p, 0 <w <7

period p, assumed known,

amplitude /a2 4 32

usually restrict to Fourier frequencies, w; =
2mj/n, for some positive integer j < n/2, so
that the period is n/j.
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Treat as a linear model :
y= X0+ z,

where 8 = (o, 8)T, and estimate « and 3 by least
squares:

e 0= (XTx)"1xTy

25y cos(wi)

a

°
e regression sum of squares:
n, . ~
5(042 +52)
which has a x3 distribution under Hp : o = 3 =
0 (i.e., no cyclic effect), and assuming {Z;} nor-

mal. It is approximately X% for large n and white
noise.
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e Generalize the simple model to one with several
sinusoidal components: m is the largest integer
less than n/2:

m

Yt = Z {ak COS(wkt) + Bk sin(wkt)} + u
k=1

allows for more complex cyclic patterns.

e At the Fourier frequencies, k > 0, w;, = 27k/n,

2 n
= yscos(wyt)

Ny=1

5‘]{: ==

. 20

Br == > yesin(wyt)
Ny=1

e As m increases, we can achieve an orthogonal
partitioning of progressively more of the varia-
tion in the series {y; } into sinusoidal components,
each with 2 degrees of freedom.
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e To achieve a complete partitioning of the sum of
squares, add the extreme frequencies w = 0 and
(if n is even), w = .

e w = Q: sine terms vanish, cosines are identically
1. Thus model becomes y; = o + 2;. Clearly
a = y and the associated contribution to the re-
gression SS is ng2 on 1 df.

e w = m, neven:
~ 12 t
Oén/z = — E (_1) Yt
ny—1
and the associated SS on 1 df is

1|2 2
g { z (—1)tyt} .

t=1
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e Periodogram ordinates

I(w)=% (Zytcosm) —f-(ZytSinwt)

e Thus if we include all the frequencies

yy=10)4+2 3 I(2rj/n) + I(x),
j=1

the last term appearing only if n is even.
e Periodogram : plot of I(w) vs w, for 0 < w < 7.

e The periodogram is an attempt to separate out
the various cyclic components via this decompo-
sition into orthogonal parts.

e Exclude w = 0: little information on cyclic effects.

e Fourier frequencies: this is a restriction which
provides simplified statistical properties because
of the orthogonality induced. The decomposition
will not work at other frequencies, and so can at
best be an approximation if it is used.
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Remarks :

The periodogram is a plot of the squared amplitudes
times 4 /n for various frequencies w.

If the series contains a well-defined cyclic compo-
nent then the periodogram can be expected to have
a sharp peak at the appropriate value of w.

Note though that in practice, such a peak is often
masked because the variability in the 7(w) values can
make the plot extremely irregular. Sometimes peaks
appear even when there are no genuine cycles be-
cause one or more local maxima stand out relative to
its neighbouring values.

The periodogram is the basic tool in estimating the
spectral density function f(w) (see Chapter 4).

(©Time Series 2004 2-43

Connection between the periodogram
and the correlogram (see Chapter 4)

n—1
I(w) =go+2 Y gpcos(kw)
h=1

so that the periodogram is the discrete Fourier trans-
form of the sample autocovariance function. Hence
the normalized periodogram

n—1

I(w)/go =142 > ricos(kw)
k=1

is the discrete Fourier transform of the correlogram.

Thus mathematically, the two are equivalent. But from
a practical view, the periodogram focuses on the cyclic
nature of the data, and the correlogram focuses on the
serial dependence.
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Cumulative Periodogram

One application of the periodogram is that we can
derive an alternative to the Box-Pierce Portmanteau
statistic for testing the hypothesis that {Y;} is white
noise.

Forj =1,2,...,pwhere p = [n/2], define
J
C; =Y I(2nk/n)
k=1

° Letp/=p—1ande:%Z.

D

e Cumulative periodogram: plot of U; vs j/pr.

e Under white noise: all the ‘true’ amplitudes of the
sinusoidal components should be 0; thus the pe-
riodogram ordinates should only differ because
of sampling fluctuations and the cumulative pe-
riodogram should be linear from 0 to 1 as j runs
from 1 to pr.
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e Test statistic (Kolmogorov-Smirnov): largest verti-
cal distance of the cumulative periodogram to the
straight line.

e Approximate critical value: +£1.358(y/p/ +
0.12 4 0.11//p7)

e Plot includes two parallel straight lines implied by
the 5% critical values for visual assessment of the
test.
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Discussion example : Heroin purity and fatal heroin
overdose.

In a recent study, researchers in NSW used time se-
ries analysis to determine the role, if any, played by
heroin purity in fatal heroin overdoses. A total of 322
heroin samples were analyzed in fortnightly periods
between February 1993 and January 1995: the sam-
ples were taken from street seizures in south-western
Sydney. Over the same period, a total of 61 overdose
deaths occurred in the same region.

Figure 2.8 shows a lineplot of the heroin purity
data, Figures 2.9 to 2.11 give the raw periodogram,
the smoothed periodogram, and the cumulative peri-

odogram, respectively.

We will analyse these data further in Computing Prac-
tical 3.
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Mean heroin purity per fortnight
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Fig. 2.8: Heroin samples taken from street seizures in
south-western Sydney 1993-1995.
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Fig. 2.9: Acfs for heroin samples and deaths from
overdose, 1993-1995.
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Series: heroin.purity
Raw Periodogram

spectrum

Fig. 2.10: The raw periodogram for heroin purity data.
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Spectrum of heroin purity
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Fig. 2.11: The smoothed periodogram for heroin purity
data.
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Deries: neroin.purity
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Fig. 2.12: The cumulative periodogram for heroin pu-
rity data.
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2.8 A note on transformations

In general, there are three main reasons for making a
transformation:

e To stabilize the variance: if there is an increas-
ing trend, and the standard deviation is directly
proportional to the mean, a log transformation is
indicated.

e To make seasonal effect additive: if there is a
trend in mean, and the size of the seasonal effect
appears to increase with the mean, then it may be
advisable to transform the data to make the sea-
sonal effect constant from year to year. For ex-
ample, if the seasonal effect is proportional to the
mean, then the relationship is multiplicative and
log transformation will induce additivity, although
it only stabilizes the variance if the error term is
also multiplicative.
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e To make data normally distributed: model building
and forecasting are usually carried out on the as-
sumption that the data are normally distributed.
This may not be the case, e.g., skewness leads
to peaks (in one direction) in a time plot. Non-
normal error distributions can be difficult to esti-
mate and it may therefore be simpler to transform
the data.

e A useful family of transformations is the Box-Cox
family:

o St = 1/A ifAEO
t log y¢ ifA=0

However, for forecasting from time series, studies
have found little improvement in forecast performance
following transformation. Transformation may correct
some features of the data, but not others, and one
often has to ‘transform back’ to provide useful inter-
pretation, and this can induce bias. It is therefore bet-
ter to avoid transformation wherever possible, except
when the transformed variable has a direct physical
interpretation.
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