STATS 3005

TIME SERIES Il

Lecturer: Associate Professor Patty Solomon
School of Mathematical Sciences
The University of Adelaide

Semester 2, 2004

These outline notes are copies of the overhead trans-
parencies shown in lectures, and are intended as a
guide to this course.

1 INTRODUCTION

1.1 Some history and examples

The time series plot is the most frequently used form
of graphic design.

e The oldest known attempt to show changing val-
ues graphically dates from the 10th century and il-
lustrates the inclinations of the planetary orbits as
a function of time. Figure 1.1 is from a manuscript
of Macrobius, commentary of Cicero’s In Som-
nium Scipionis, 10th century.

e It was not until the late 1700’s that time series
charts began to appear in scientific writing. The
two great inventors of modern graphical designs
were Lambert (1728-1777) a Swiss-German sci-
entist and mathematician, and William Playfair
(1759-1823) an English political economist.
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Fig. 1.1: Inclinations of the planetary orbits as a func-
tion of time. From E.R. Tufte (1983) The visual display
of quantitative information.
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e The first known time series using economic data

was published in Playfair's book The commerical
and political atlas, London 1786.

In later work, Playfair (1821) addressed the ques-
tion of whether the price of wheat had increased
relative to wages. He plotted three parallel time
series: prices, wages, and the reigns of British
kings and queens; see Figure 1.2.

Up to 1925, a time series was regarded as gen-
erated deterministically. But R.A. Fisher made
clear that measured assessments of variability
are at the heart of quantitative reasoning (Statis-
tical Methods for Research Workers, Edinburgh
1925).

In 1927, Udney Yule broke new ground in the
analysis of sunspot data.
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Fig. 1.2: Playfair (1821): Three parallel time series of
wheat prices, wages, and the reigns of British kings
and queens. From E.R. Tufte (1983).
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e E.W Maunder’'s 1904 butterfly diagram shows a
distributional cycle of sunspots moving from the
centre of each hemisphere towards the equator,
as Galileo had noted in the early 1700's. The first
butterfly diagram in Figure 1.3 gives a strong vi-
sual measure of variation about the average.

e The modern butterfly diagram increases the data
density 10-fold, shows a full century of solar
memoirs, 9 cycles of sunspots (see second but-
terfly diagram in Figure 1.3). The time series
shows the area of sun covered by sunspots as
a measure of sunspot activity (obtained by sum-
ming over all latitudes at any given time). This
display is called parallel-sequencing.

— Yule introduced autoregressive processes;

— he proposed methods for investigating irregu-
lar amplitudes, distances between successive
peaks and troughs, and

— suggested incorporating ‘shocks’ into the fu-
ture behaviour of the series: stochastic pro-
cesses.
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Fig. 1.3: Sunspot data: from E.R. Tufte (1990).
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Further examples

We will discuss these examples in the lectures.
1. Newcomb’s measurement of the speed of light
(deviations from 24,800 nanoseconds): an exam-
ple of a simple time plot (Figure 1.4).
2. Monthly sales of Australian red wine (Figure 1.5).
3. Biweekly measles notifications and yearly births
for 60 cities in England and Wales from 1944 to

1964 (Figure 1.6).

4. The value of the Australian dollar.
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Fig. 1.4: Time plot of Newcomb’s measurements of
the speed of light.
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Figure 1-1
reg wine
Jol.

Fig. 1.5: Monthly sales (in kilolitres) of red wine by
Australian wine-makers from January 1980 to October
1991. From Brockwell & Davis, 1996.
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measles

Fig. 1.6: (a) Biweekly measles natifications and (b)
yearly births for 60 cities in England and Wales 1944—
1964. From Finkenstadt & Grenfell Applied Statistics,
2000.
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1.2 Characteristics of time series

A univariate time series consists of values of a vari-
able recorded over a long period of time, each obser-
vation y¢, t = 1,...,n, being recorded at a specific
time t.

Time series require special methods for analysis be-
cause of the presence of serial correlation, a form of
‘time dependence’ between the observations. For ex-
ample, in a series of hourly blood pressure readings,
a high reading at 1pm is likely to have a certain in-
ertia and to remain high at 2pm. This is an example
where neighbouring observations in a time series are
positively correlated.

Moreover, there are always few, and typically only one
independent replication of the data from which to esti-
mate this correlation.
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Many time series have one or more of the following
characteristics:

Order of observations is important . This im-
plies some sort of dependence or serial correla-
tion .

Existence of a trend , or an apparent systematic
component.

Fluctuations about the trend; these can be reg-
ular or irregular.

A deterministic or other regular cycle e.g. a
seasonal component. By seasonal, we mean any
periodic behaviour known a priori.

Cyclic fluctuations or changes of an irregular
nature. By cyclic, we mean any periodic be-
haviour which may or may not be known in ad-
vance.

Residual or random effects.

In economic applications, interest often lies in the diffusion about
the trend or drift rather than the drift itself, e.g., the volatility of
the stock market about a general trend.
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Modern methods for the analysis of time series
can be divided roughly into two classes:

The time domain: focus on the original series in
time; methods are based on direct modelling of
the lagged relationship between a series and its
past.

The frequency domain: look at harmonic ‘sum-
maries’ of the series; called spectral analysis.

We will be considering both of these broad classes of
methods, with emphasis on analysis in the time do-
main.
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1.3 General Approach to Time Series Analysis

Plot series and examine the main features of the
graph, checking in particular if there is

(a) atrend

(b) a seasonal component

(c) any apparent sharp changes in behaviour

(d) any outlying observations.

e Remove the trend and seasonal components to
get stationary residuals.

e Choose a model to fit the residuals.
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1.4 Objectives of Time Series Analysis

The objective depends on the particular application,
and the main ones are:

e Describing the series

Forecasting

Comparing two or more series (transfer function
models; time series regression)

Assessing interventions (intervention analysis)

Comparing treatments

Modelling with a view to understanding.

Data may be
e continuous or discrete
e aggregated

e equally or unequally spaced in time.
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1.5 Data and Notation

e Random variables denoted by upper case letters

e realized values of random variables or observa-
tions denoted by lower case letters

e atime series {y; : t = 1,2,...,n} is a set of
realized values of random variables {Y; : t =
1,2,...,n}

e for continuous or unequally spaced series, write
— Y (¢) rather than Y;

— y(t) rather than y;

e study of time series is a study of the random se-
quence {Y;} or the random functions {Y (¢)}.
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1.6 Relationship to random processes

Terminology :

1. ‘Time series’ means both the data, and the
process of which it is a realization.

2. In practice, all observed series are finite , but for
the theory it is convenient to regard them as infinitely

extendable . This relates the study of time series to in-
finite random sequences, {Y;}, and random functions,

{Y(®}
3. For random sequences: ¢ integer.

For random functions: ¢ varies over R. Use ‘random
process’ for both.
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A random sequence {Y;} can arise in a number of
ways:

e The underlying time scale is genuinely discrete in
that the phenomenon of interest does not exist at
intermediate times.

e An underlying random function {X (¢)} may be
sampled at equally spaced time points, e.g., tak-
ing blood samples at hourly intervals.

e An underlying random function may be accumu-
lated over equal time intervals so that

-t
Ytz/ X (s)ds.
t—1

For example, monthly deaths from asthma.
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Time series models:

A (discrete) time series model for observed data {y;}
in principle specifies the joint distribution (or possibly
only the means and covariances) of a sequence of
random variables {Y;}. Similarly for the continuous
case.

A time series is said to be continuous when obser-
vations are made continuously. For example, a switch
may be ‘on’ or ‘off’ so the random variable Y is binary,
but the series itself is continuous.
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1.7 Some simple (zero-mean) models

1. i.i.d. noise: the simplest model for a time series is
one in which there is no trend or seasonal (i.e. pe-
riodic) component and the observations are i.i.d.
random variables with zero mean.

We know that for observations y1, . . ., yn,

P(Y1<y1,....Yn <yn) = F(y1) ... F(yn),

where F' is the cumulative distribution function.
Also, since the random variables are indepen-
dent, for h > 1,

P(Ypin <ylY1=w1,.-..,Yn = yn)
= P(Yn-l—h <y).

This model is not very interesting for forecasting,
but it is an important building block for more com-
plex models.
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2. A binary process: this is an example of i.i.d.
noise. Consider the sequence {Y;,t = 1,...}
where P(Y; = 1) = pand P(Y; = —1) = 1—p,
where p = 1/2. How could you produce a real-
ization of this process?

3. A random walk: A random walk with zero mean
is obtained by defining Sop = 0 and S; = Y7 +
Yo+ -+ Yifort =1,2,..., where {Y;} is iid
noise.

If {Y;} is the binary process of Example 2 above,
then {S¢,t = 0,1,...} is called a simple sym-

metric random walk.

We will consider some simple examples with trend
and seasonality (an example of a cyclic trend) shortly.
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1.8 Trend, serial dependence and stationarity

These concepts are central to understanding the prob-
ability structure of time series data. Assume we are
dealing with random functions; the ideas apply also to
random sequences.

e Trend: u(t) = E[Y ()]

e Serial dependence : Y (t) and Y (s) are statisti-
cally dependent for at least some pairs of times

(t,8),t # s.

Typically, Y (¢) and Y (s) are correlated, and this
leads us to define the

— autocovariance function of {Y ()} as

v(t,s) = E{Y (1) — u(O)HY (s) — p(s)}]

(auto means self, own, of or by oneself)
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e Stationarity

Stationarity implies that the probability structure
of the time series doesn’t change over time, i.e.,
{Y (t)} looks the same at whatever point we be-
gin to observe it.

— The strongest form of stationarity is called
strict (or full) stationarity: this requires that the
joint distribution of Y (¢1), ..., Y (¢m) be iden-
tical to that of Y (¢t1 + 7),...,Y (tm + 7) for
all m and all  between —oco < 7 < 0.

If m = 1, the distribution of Y (¢) must be the
same for all ¢ so that u(t) = p and 02(t) =
o2 are both constants which do not depend on
the value of t. Furthermore, if m = 2, the joint
distribution of Y'(¢1) and Y (¢») depends only
on (t» — t1) which is callled the lag.

The acf (¢4, t>) also depends only on (5 —
t1) and may be written as

() = EY () =) (Y (t +7) — p)].
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Strict stationarity is a strong but usually uncheckable
assumption. In practice, simpler and weaker forms of
stationarity are used.

e Stationarity in mean: requires that

EY ()] = u(t) = g,
i.e. the mean does not depend on time t.

e Marginal stationarity: requires that the marginal
distribution of Y (¢) does not depend on ¢.

e Second-order or weak stationarity: requires only
that the mean is constant and its acf depends only
on the lag, so that

p) =p, At s) =~(t—s|)
No assumptions are made about higher moments
than those of second order. Note that the above
definition implies that the variance is constant as
well.

From now on, unless stated otherwise, stationary will
mean second-order stationary.
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Example : the simplest example of a stationary series
is white noise. This consists of a sequence of mutually
independent random variables, each with mean zero
and finite variance o2.

As an exercise, show that the autocovariance function
is
2

(t.s) = oc ift=s
T ifeEs

Note that white noise implies i.i.d. noise, but not vice
versa.

Example : Suppose {Y (t1),...,Y (tn)} is multivari-
ate normal for all ¢1,...,t,. The mvn distribution is
completely characterized by its first and second mo-
ments, and hence by p(t) and (|t — s|), and so it
follows that second-order stationary implies strict sta-
tionarity for normal processes.

For processes which are very ‘non-normal’, x and
~v(|t — s|) may not adequately describe the process.
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Some comments

The notion of ‘independent replications’ that forms
the basis of most statistical models is replaced in
time series analysis by the assumption of stationarity.
This assumption of ‘homogeneity’ over time provides
some degree of replication within a single time series,
thereby making formal inference possible.

Most of the probability theory of time series is con-
cerned with stationary time series, so we often need
to turn a non-stationary series into a stationary one in
order to use this theory. For example, we may remove
the trend and seasonal variation from a set of data and
then attempt to model the variation in the residuals by
means of a stationary stochastic process.

These definitions are for univariate time series. They
can be generalized to multivariate time series consid-
ered simultaneously.
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A statistical model

A useful theoretical framework for handling a wide
range of practical problems is a model of the form

Y(t) = pu(t) +U®R)
where Y (¢) is a measurement (or a transformation
of a measurement) made at ¢, . (t) is a non-random
trend function, and U (t) is a stationary random func-
tion with

E[UM] =0, E[UMU(s)] =~(|t—sD.

Example: A simple random walk. We will work
through this example in the lecture.#

The difficulty in practice is the separation of the fixed
part, u(t), and the stochastic part, U(t), and in-
evitably this involves assumptions. For example, by
proposing a parametric model for p(t) or U(t), or
by assuming the trend is ‘smooth’, while the random
component is ‘rough’.

Note however, that judgement of what is rough and
what is smooth can depend on the scale of observa-
tion.
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Fig. 1.12, A simulated realization of n stationary random function on the inierval
0= 100,

Fig. 1.13, Part of the same realization of the stationary random function shown in
Fig. 112, but restricted to the interval 0= 7= 10

Fig. 1.7: A stationary random function, Y (t) =
21 f(t —T;), where f is the standard normal den-
sity, and the T; form a homogeneous Poisson point
process with unit rate. From Diggle (1990).
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