
REVIEWS 

 
 

81 Critical Care and Resuscitation  •  Volume  9  Number 1  •  March 2007 81 

Why another review of statistics? Presumably because the 
conduct of “statistics” in the medical literature has been 
found to be consistently poor,1 the transfer of innovative 
statistical techniques into the medical literature has been 
characterised by significant time-lags,2 and statistical 
input into medical research and publication, although 
“widely recommended … [is] … inconsistently 
obtained”.3 It may also reflect an undervaluation of 
statistical contributions to medicine, as articulated by the 
doyen of biostatistics, Norman Breslow.4 He observed 
that the work of econometricians Daniel McFadden and 
James Heckman on discrete choice models and selection 
bias received a Nobel Prize in 2000, but that similar 
contributions to medicine by statisticians and 
epidemiologists remain, as yet, unrecognised. Thus, we 
must “grapple” with statistics in the same manner as 
Appleby urged with respect to health economics.5 To this 
extent, the now dominant evidence-based medicine 
movement has mandated “critical appraisal”, which 
incorporates, to varying degrees, statistical methods,6 and 
we reiterate that the discipline of statistics is increasingly 
engaged with “front-line science”.7  

Statistics as we know and practise it today had its 
foundation in the first half of the 20th century and was 
established — more particularly, the “testing” paradigm 
of P values and Type I and II errors8 — by two dominant 
figures, R A Fisher (1890–1962), who was born in 
England and died in Adelaide, South Australia (see 
http://digital.library.adelaide.edu.au/coll/special/fisher/ind
ex.html),9 and Jerzy Neyman (1894–1981), who was born 
in Russia and died in Berkeley, California, USA.10  

This discursive introduction does not portend a 
compression-in-miniature of the standard textbook 
presentation of medical statistics;11 rather, the purpose is 
to highlight directions for those conducting their own 
analyses or reviewing the literature “critically”. 

Graphical display 

Graphical display12-14 is fundamental to our interpretation 
of data,15 especially in large multi-variable data sets, 
where, for instance, a scatter-plot matrix is useful (Figure 1). 
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ABSTRACT

Statistics and biomedical literature have historically had 
an uneasy alliance. A critical approach to the 
application of statistics is developed. Initially, we survey 
graphical data display and trace the historical 
development of the “testing” statistical paradigm, and 
the contributions of A R Fisher and J Neyman and E 
Pearson. The nuances of data summary and testing are 
illustrated by way of population versus sample 
estimation. The importance of the normality 
assumption is stressed, and the recurring contrast of 
parametric (t test) versus non-parametric (Mann–
Whitney) approaches to summary statistics is discussed. 
The t test is found to be adequate. Effect measures are 
outlined, and we demonstrate the utility of the 
unpaired t test for binary data analysis. The theory of 
linear models is introduced, and the underlying 
assumptions of the standard ordinary least squares 
regression are presented. The implications of 
transformations, in particular log transformation, are 
detailed, and we conclude with an overview of the 
principles of model selection.  

Crit Care Resusc 2007; 9: 81–90 

Figure 1. Scatter-plot matrix of patient 
database variables* 

 
* Data for this and other figures and examples were obtained from 

the Australian and New Zealand Intensive Care Society (ANZICS) 

Adult Patient Database (1993–2003) with permission of the 

ANZICS Database Management Committee. 
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This may be variously extended to, say, a trellis plot 
(Figure 2) based on a formula with the structure 

|y x a b�:  

where y is a continuous or factor variable, x is 
continuous, and a and b are factors.16 Smoothing 
techniques are also useful for time profiling, and we 
illustrate this using a running line smoother17 for time 
change of central venous pressure in survivors and non-
survivors after acute lung injury (Figure 3).  

Although there are standard tests for “non-normality” 
(Shapiro–Wilk and Shapiro–Francia),18,19 graphical display 
is of value, particularly quantile-normal plots (which 
emphasise the distribution tails, normal-probability plots 
(which emphasise the distribution centre),20,21 and kernel 

density plots. The latter, a useful general graphical tool, 
are a modification of the histogram (a “smoothed” 
histogram), where densities are the continuous analogues 
of proportions (derivatives of the cumulative distribution 
function, so that areas under the density function read 
off as probabilities). The data are divided into intervals 
(which may overlap), and estimates of the density at the 
interval centres are produced; the “kernel” is the 
function (a number are available) that weights the 
observations by the distance from the centre of the 
interval.22 Figure 4 shows normal-probability and 
quantile-normal plots (a “normal” distribution 
approximates to the 45º line), and a conventional 
histogram of patient APACHE III scores23 (n = 4408) from 
a number of Australian intensive care units, with 

Figure 2. Trellis box plots of age, APACHE III score and hospital length of stay for ICU–hospital level 
(metropolitan or tertiary) against geographic locality for patients alive and dead* 

 
* Key: age = blue; APACHE III score = pink; hospital length of stay = green.  

~ 
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superimposed normal (solid line) and kernel (dashed line) 
density plots.  

P values and confidence intervals  

Since the establishment of the “testing” paradigm in the 
1920s and 1930s by A R Fisher, Jerzy Neyman and Egon 
Pearson,24 the status of P values in the scientific literature 

has been problematic.25 As previously reviewed,26 the 
Fisher significance test derives from inductive inference to 

establish a null hypothesis (H0) and to use data 
discrepancies to reject this hypothesis. The associated P 
value was deemed the probability of obtaining a result 
equal to or more extreme than what was actually 
observed. The deductive revision of Fisher’s position by 
Neyman and Pearson formulated the now familiar two 
competing hypotheses paradigm (effectively rules for 
making decisions): the null (H0) and alternate (HA) 

hypotheses; and the probability of committing two kinds 

of errors: false rejection (Type I or α error) and false 
acceptance (Type II or β error). The α error probability 

thus had the interpretation that a series of α level tests 
will reject no more than 100α% of true H0 (in the long 

run). Confidence intervals (CIs), introduced by Neyman in 
1937, were considered integral to the overall theory of 
hypothesis testing, and the interpretation was not that of 
a probability interval. Rather, in an infinite number of 
repetitions of a study, an exact proportion (say, 95%) of 
all such intervals would enclose the parameter θ for a 
95% CI. Importantly, once the data had been collected, 
and a single 95% CI had been calculated, the probability 

that θ lay within this CI was now 0 or 1.27  

Data summaries and tests 

Initially, we stress the importance of the normality 
assumption.28 If the population mean (location para-
meter) is μ, and the standard deviation (SD, or scale 

parameter) is σ, then the value of a normal curve (the 

Figure 3. Central venous pressure (CVP) profile for 
survivors and non-survivors after acute lung injury 

 
Profiles show running line smooth (solid line) and 95% confidence 
limits (dotted lines).  

Figure 4. Normal-probability, quantile-normal and kernel density plots of patient APACHE III scores  

 
A and B. Normal-probability and quantile-normal plots of patient APACHE III scores (n = 4408) from Australian intensive care units. 23 A “normal”  
distribution approximates to the 45º line.  

C. A conventional histogram of the scores, with superimposed normal (solid line) and kernel (dashed line) density plots. 

A B C
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probability density function) is29  

( )2

2

1 exp
22
x

y
μ

σσ π
⎛ ⎞− −

= ⎜ ⎟⎜ ⎟⎝ ⎠  

and the familiar z score (standard normal deviate, written 
N (0, 1)) is defined as  

x μ
σ
−

 

and, correspondingly,  

x zμ σ= + .  

One SD corresponds to z = 1 (68.26% of the distribution 
within 1 SD of the mean), and the familiar 95% of the 
distribution lies within 1.96 SDs of the mean. By the 
central limit theorem, the sampling distribution of a mean 
is normally distributed; the mean of this sampling 

distribution is therefore μ, and the SD (or the standard 
error [SE] of the sample mean) is σ/√n, where n is the 

sample size. Therefore for “large” samples (say, n � 60,30 
although this may be a “generous” n if the distribution is 

fairly symmetric with tails that decay rapidly, when the 

more often quoted n � 30–35 seems sufficient31), the 

95% confidence limits of the sample mean  

ix
x

n
= ∑

 

are given by  

1.96x ±  × SE,  

where the SE of x  is now estimated by s√n, s being the 

sample standard deviation. The difference between 
means (where variances are known), using the z test, is 

given by  

1 2

2 2
1 2

1 2

x xz

n n
σ σ

−=
⎛ ⎞+⎜ ⎟
⎝ ⎠  

(if variances are estimates, the statistic is a t statistic). 
For “small” samples, the t distribution (introduced in 

1909 by William Gosset) is appropriate, and the larger 
tails (for smaller n) of a bell-shaped distribution are 

Figure 5. Effect of sample size (n) on density distributions 
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determined by the degrees of freedom (df, n – 1). The 

95% confidence limits are given by  

sx t
n

⎛ ⎞⎛ ⎞′± �⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠  

where t’ gives the percentage points of the t 
distribution.30 The difference between means (using the 
pooled variance), using the t test, is  

1 2
1 2

1 2

, 2
1/ 1/
x xt df n n

s n n
−= = + −

+
 

where s is given by  

( ) ( )
( )

2 2
1 1 2 2

1 2

1 1
2

n s n s
n n

⎛ ⎞− + −
⎜ ⎟⎜ ⎟+ −⎝ ⎠ .

 

For unequal variances, the t statistic requires the 
calculation of “approximate” degrees of freedom. 

The effect of sample size (n) on density plots for 
random samples of APACHE II scores (total n = 223 129), 
with normal and t density distributions overlaid, is shown 

in Figure 5.  
In reports of observational studies or controlled trials, 

there are invariably initial data summaries32 with, 
perhaps, group comparisons reporting the (sample) mean 

of variables of interest ( x ) in tabular or graphical form. 

Other measures of central tendency are also available:  

  the geometric mean ( n
nx∏ , where ∏ is the 

“product of all the xs”, and n  is the nth square 

root33);  

  the harmonic mean (
1/

n

n
x∑

);  

  the quadratic mean (   root mean square) 
2
ix

n
∑ ; and  

  formal trimming of the arithmetic mean.34,35  

Note that the mean of log-transformed values is the 
geometric mean of the original data. For ICU length of 
stay, the four estimates of central tendency are shown in 
Table 1.  

Two sometimes vigorous debates have attended such 
initial data presentations and tests: 

  The use of the standard deviation (SD) 

( )2

1

x x

n

−
−

∑
 

versus the standard error (SE) s/√n (for binary data, 
SE of a proportion is  

( )1p p
n
−

).36

 

The SE, reflecting the variability of the mean (if the 
study were repeated a large number of times), is “not 
particularly useful”, and the SD, reflecting the 
variability of the original data, should be reported37 and 
has been mandated for some journals.38 

  The use of parametric or non-parametric summary 
statistics and tests when biomedical data, such as 
length of stay, length of ventilation, costs and risk of 
death are “non-normally” distributed with kurtosis 
(“peakedness” of the distribution) and/or skewness 
(usually a long right tail).39,40 The t test has 

demonstrated remarkable robustness in the face of 
small n non-normal data, as opposed to the often 

recommended (non-parametric) Mann–Whitney test41 
(which is not a test of medians, but rather a test of the 
equality of group mean ranks42 — that is, location and 
shape), and under most circumstances the t test is to 

be preferred.43 Permutation and bootstrap techniques 
which relax the assumptions of normality and equal 
variances (respectively and cumulatively) may be 
utilised, but are computer-intensive, especially for 
more-than-small studies.44 When examining the 
statistical significance of the difference between two 
means, the method of “95% CI overlap” (mean 
± 1.96 × SE) is noted to be conservative and cannot be 
substituted for formal hypothesis testing of the 
difference; however, the abutting of the 83% CI 

(approximately equal to mean ± 1.4 × SE) corresponds 
with a P of approximately 0.05.45,46  

Group comparisons normally proceed by conventional 
tests: for continuous data, the t test (theory should 

dictate when to use equal or unequal variances); and for 

Table 1. Estimates of central tendency for ICU 
length of stay 

    95% CLs 

Variable Estimate n Mean Lower  Upper  

Arithmetic 4408 3.05 2.91 3.19 
Geometric 4408 1.76 1.71 1.81 

ICU length 
of stay 
(days) Harmonic 4408 1.15 1.12 1.19 

 Quadratic 4408 5.58 5.15 5.98 

CL = confidence limit. 
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categorical data, Fisher’s exact (a permutation test47) or 
the χ2 test (introduced by Karl Pearson48). With respect to 

the use of the χ2 versus Fisher exact test, the general rule 

of thumb is that the χ2 approximation works well, 
provided all cell frequencies are > 5; if any cell 

frequencies are � 5, Fisher's exact test is indicated, 

although claims have been made for the preferential use 
of the latter test for inference under conditions of 
randomisation.49 For the approximation of the binomial 
distribution by the normal, the following guides have been 
formulated: np(1 – p) > 9 and np > 5 for 0 < p < 0.5 and 
n(1 – p) > 5 for 0.5 < p < 1 (where p is the binomial 
probability [0 < p < 1]).50 The unpaired t test may also be 

used for binary data,51 and we illustrate this little 
appreciated fact by contrasting the probability of success 
(scored 1) of two binary series (scored 0 or 1). The sample 
estimates are: mean of A = 0.5, and mean of B = 0.6.  

A: 1 1 0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 1  

B: 1 1 0 1 0 0 1 0 1 1 0 1 1 1 0 0 0 1 1 0 1 0 0 1 1 1 0 0 0 0 

  The t test: t = – 0.6871; df = 48; P = 0.4953; 

  Pearson's χ2 test with Yates' continuity correction: 
χ2 = 0.1644; df = 1; P = 0.6852; and 

  Pearson's χ2 test without Yates’ continuity correction: 
χ2 = 0.4831; df = 1; P = 0.487 (note that this is also 
apparent comparing the actual statistics: t2 = 0.472). 

Effect measures 

The treatment effects of a randomised trial are variously 
reported.52 In Table 2, we analyse an imaginary trial of 
innovative “therapy” versus control (placebo) with 
respect to mortality outcome in a condition with a 
baseline control mortality (risk) of 50%, and visualise the 
results in a familiar 2 × 2 table with the cells also 
classified using the “a, b, c, d” terminology.  

The risk of therapy is a/(a+b) = 0.38, and of control is 
c/(c+d) = 0.5. The odds of death are a/b = 0.61 for 

therapy, and c/d = 1.0 for control, and the 
risk = odds/(1 + odds). The risk ratio (RR) is 
[a/(a+b)]/[c/(c+d)] = 0.38/0.5 = 0.76 (95% CI, 0.59–0.98), 
and the odds ratio (OR) is (a/b)/(c/d) = 0.61/1.0 = 0.61 
(95% CI, 0.39–0.96); RR = OR/[1 + Ic(OR – 1)] where Ic is 
the event incidence in the control group (under the 
“rare” event assumption). The risk difference (RD) is 
[a/(a+b)] – [c/(c+d)] = 0.38 – 0.5 = – 0.12 (95% CI, – 0.23 
to – 0.01). The one-sided Fisher exact test gives a P value 

of 0.02, and the two-sided 0.04. The number needed to 
treat (NNT) = 1/RD = 1/0.12 = 8 (number of avoided 
events per 1000 population: 10–230, for baseline control 
risk of 0.5). We adjudge our innovative therapy as 
efficacious. 

Odds ratios have better statistical properties than RRs 
or RDs and are the key parameter in the linear logistic 
regression model.53,54 The (log) odds scale is unbounded 
in both directions, but is numerically greater than the risk 
ratio when underlying event rates are frequent.55 Risk 
ratio has been found to be more intuitive than OR,56 but 
is bounded above in a manner dependent on the control 
group risk. Risk difference is immediately intuitive and 
expresses the consequences of no therapy (unlike both 
ORs and RRs), but is constrained from – 1 to 1, and may 
suffer from bias with variable time to follow-up. An 
advantage of RD is that it enables an NNT and its 
confidence interval to be conveniently estimated. 
However, the NNT is also affected by the baseline risk, 
and recent cautions have been expressed about the 
properties of this statistic.57 

Linear regression models  

Fundamental to data analysis, beyond “simple” 
descriptive statistics and graphical display, are linear 
models, the general form of which is 

( )1, , pY f X X ε= +K
 

Where ( )1, , pf X XK is an expectation function (of the 

dependent variable Y), and ε is the error term.58 The most 
well-known linear model is the simple linear regression 
model:59  

y xα β ε= + +  

where y is the dependent variable, α the intercept, x the 
independent (predictor) variable(s) with associated 

Table 2. 2 × 2 table analysing an imaginary trial of 
therapy versus control with respect to mortality 
outcome 

 Dead Alive Total 

Therapy 57 (“a”) 93 (“b”) 150 

Control 80 (“c”) 80 (“d”) 160 
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parameter(s) β, and ε the “error” term(s). We can further 
distinguish additive (multiple) linear models 

1 1 2 2y x xα β β ε= + + +
 

and multiplicative linear models, the simplest form of 
which is the interaction effect  

( )1 1 2 2 3 1 2.y x x x xα β β β ε= + + + +
 

Non-linear models (which we do not further discuss) are 
similar to linear models, but the expectation function 
does not have to be linear in all parameters; thus, the 
Michaelis–Menton model from pharmacokinetics  

( )1 2/i i i iy x xθ θ ε= + +
 

where θ is used (instead of β) to indicate this distinction.  

Simple linear regression 

Simple linear regression, a form of the ordinary least squares 
model (OLS),60 minimises the sum of squared errors:  

2 2

1 1

ˆˆ ( )
n n

i i i
i i

Y Yε
= =

= −∑ ∑
  

where Yi is the observed value, and îY  is the predicted 

value (this may also be expressed as  

( )( )
2

1

ˆˆ
n

I i
i

Y xα β
=

− +∑
 

where β̂ , say, is the estimate of β). The assumptions of 

OLS are conventionally:  

  Dependent observations are assumed to be 
independent with a common constant variance;  

  Independent variable(s) are measured without error 
(the statistical evaluation of measurement error in the 
dependent variable addresses the various concepts 
associated with reliability studies,61,62 including Deming 
regression which incorporates errors in the dependent 
and independent variables62); 

  The mean value of the dependent variable is a linear 
function of the (combinations of) independent 
variables; 

  There is a lack of perfect (multi-)collinearity; 

  For the error term(s): the variance is constant for 
dependent variable combinations (homoscedasticity), 

they are normally distributed with mean = 0, with 
constant variance (these assumptions are termed iid: 
independent and identically distributed; that is the 
variables have the same probability distribution and are 
mutually independent), and no serial correlation nor 
correlation with the independent variables; and  

  There is no substantive effect of outliers.63  
Various methods have been developed to compensate 

for the common violations of these requirements, such 
as: 

  “robust” variance and clustering adjustments to 
overcome observation non-independence;  

  so-called “Newey–West” errors to adjust for serial 
correlation;64 and  

  measurement error models which model covariate 
measurement error (for an additive measurement error, 

the effect is to bias the estimated coefficient ( β̂ ) 

towards the null65). 
Depending on the effect size, the number of 

“subjects” required in OLS is usually around four to five 
per predictor variable, although other larger requirements 
have been formulated (from 50 + m up to 50 + 8m 
[where m is the number of predictors]).66 

The dependent variable is often transformed to achieve 
linearity of effect, rather than “normality” (a common 
misconception), which is not often achieved;67 the most 
common transformation is logarithmic.68 Under this 
transformation, the interpretation of (continuous) 
predictor (independent) variables is that they show the 
percentage change in the untransformed dependent 
variable per one unit change in the predictor variable (if 
in original units); if the predictor has also been log 
transformed, the coefficient is interpreted as the 
percentage change in the untransformed dependent 
variable for a 1 per cent change in the untransformed 
predictor variable. For categorical variables, this 
translation is somewhat biased.69 With log 
transformation, recovery of predicted values (of the 
dependent variable) in the original metric is not 
transparent; simple exponentiation is biased (it recovers 
the geometric mean). Alternative methods are available 
as:  

  exponential of the sum of prediction + one half of the 
square of the regression root mean square 
(exp[prediction + 0.5*(RMSE)2]); and  

  Duan’s smearing estimate.70,71 
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Model selection 

We may ask of any regression analysis that: 

  The covariate selection process is specified; we may be 
suspicious of (automated) stepwise selection as 
resulting in potentially biased and unstable models;72,73  

  The functional form of continuous variables is 
investigated; categorisation (eg, median splitting) is not 
necessarily a good idea (it wastes data, inflates Type I 
error rates and produces biased increments in coefficient 
estimates);74 continuous variables may have non-linear 
effects which may be best displayed by fractional 
polynomials,75 splines or other smoothing techniques;76  

  Interaction(s) as reflecting entirely plausible model 
mechanisms58,77,78 should be formally addressed, albeit 
there is an increased sample size required for their 
detection compared with main effects, and an 
associated decreased power of finding interaction 
terms with categorical variables;79  

  Centring ( x x− ) of continuous covariates may aid in 
interpretation and reduce collinearity (ie, reference to 
the mean covariate values rather than the default 
regression reference value of “0”);  

  Variable (multi-)collinearity should be reported, using 
the variance inflation factor (VIF) and condition number 
(CN) (where VIF < 10 and CN < 30 are apposite80), and 
should be addressed; 

  Model “fit” should be explored using: 
 residual analysis (eg, normal distribution of residuals 
and no evidence of heteroscedasticity71); the 
functional form of continuous predictors may be 
revealed via analysis of specific residuals;  

 specific indices, such as  
o mean absolute error, RMSE68 and R2 in OLS and 

logistic81 regression, noting that transformations of 
the dependent variable may affect the magnitude 
of R2 (increased with log transformation82); 

o for logistic regression, the conventional criteria of 
discrimination (area under receiver operating 
characteristic [ROC] curve83 and calibration 

[Hosmer–Lemeshow Ĉ statistic];84 the latter test 
should be interpreted with caution for large data 
sets as the P value is invariably “significant”, at P 

<< 0.1 for a Ĉ statistic >> 15.9985);  
o for Cox hazard regression;86 Harrell’s C statistic;73 

the May–Hosmer goodness-of-fit statistic, testing 
for proportional hazards and approximation of 

cumulative Cox–Snell residuals to (– log) Kaplan–
Meier estimates;87 

o for parametric (accelerated failure time [AFT]) 
survival models, approximation of cumulative Cox–

Snell residuals to (– log) Kaplan–Meier estimates, 
plotting log(time) against a linear function of the 
cumulative (Nelson–Aalen) hazard rate;88 

 likelihood ratio tests and information criteria, such as 
the Akaike information criterion (AIC: – 2*(model log-
likelihood) + 2*p, where p = number of parameters) 

and Bayesian information criterion (BIC: – 2*(model 
log-likelihood) + log(n)*p, where scalar model 

differences of � 10 are adjudged as meaningful);89 

these may be used for model comparisons. Likelihood 
ratio and AIC assume nested comparisons (those in 
which covariates in one model form a subset of the 
covariates in a larger model, and formal goodness of 
fit to the data can be compared using standard tests, 
such as likelihood ratio tests), whereas BIC does not 
assume nested models.  

  Standard individual parameter tests reported by 
statistical software programs (“Wald” tests: 
estimate/SE) are fallible and not invariant under 
transformations of the parameters,90 and, in logistic 
and time-to-event regression models, likelihood ratio 
tests are preferable;91 

  Predictive models generated on a single data set are 
known to have inferior performance when applied to 
independent data sets,92,93 and methods to reduce such 
bias have been developed, such as cross validation 
(data splitting) and bootstrap validation;94,95 

  In general, there is no independence of model selection 
and inference,96 although any “dependence” may be a 
function of limited data size; 

  The impact of a covariate or risk factor (the measure of 
association indicated by β) may be insufficient to 
determine, say, the public health implication of the 
covariate, without knowledge of the prevalence, as 
realised in the “attributable risk”.97 

Conclusion 

The principles of linear modelling, having been 
established, will be further illustrated in Part 2 of this 
review, which will appear in the next issue. Part 2 will 
discuss generalised linear models, time-to-event and 
time-series analysis. 
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