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Abstract

 

Background

 

Generalized linear models (GLMs) have recently been introduced into cost
data analysis. GLMs, transformations of the linear regression model, are characterized by
a particular response distribution from one of the exponential family of distributions and
monotonic link function which relates the response mean to a scale on which additive
model effects operate.

 

Objectives

 

This study compared GLMs and ordinary least squares regression (OLS) in
predicting individual patient costs in adult intensive care units (ICUs) and sought to define
the utility of the inverse Gaussian distribution family within GLMs.

 

Methods

 

A prospective ‘ground-up’ utilization costing study was performed in three adult
university associated ICUs, enrolling consecutive ICU admissions over a 6-month period
in 1991. ICU utilization, patient demographic and ICU admission day data were recorded
by dedicated data collectors. Model performance was assessed by prediction error [mean
absolute error (MAE), root mean squared error (RMSE)] and residual analysis.

 

Results

 

The cohort, 1098 patients surviving ICU, was of mean (SD) age 56 (19.5) years
and 41% female. Patient costs per ICU episode (1991 A$) were A$6311 (9689), with range
A$106 to A$95602. Prediction error for mean costs was minimal (MAE 4780; RMSE
8965) with OLS using heteroscedastic retransformation of log costs and GLM with Gaus-
sian family and log link (MAE 4798; RMSE 8907). Residual analysis suggested optimal
overall performance for the above two models and a GLM with inverse Gaussian family
and log link. 

 

Conclusions

 

Traditional cost models of OLS with (log) cost transformation may be
supplemented by appropriately specified GLM which more closely model the error
structure.

 

Introduction

 

Medical cost data are usually right skewed with variability increas-
ing as the mean costs increases. The traditional model for cost
prediction has been multivariable ordinary least squares regression
(OLS) [1–3], with or without initial transformation, usually loga-
rithmic, of the dependent cost variable [4]. As previously noted by
Chhikara & Folks [5], the use of transformations suggested by the
data still leaves the problem of interpretation of the results of
analysis. Analysis on transformed scales does not ‘provide infer-
ences about population mean costs which are of primary interest’
[6]. Thus, ‘simple’ logarithmic transformation has attendant prob-
lems in terms of both the appropriate back transformation into the
original scale (i.e. in this study, Australian dollars [A$]) [7] and the
interpretation of regression coefficients [8]. Recently, a new class
of predictive models, generalized linear models (GLMs), have been

introduced into the analysis of cost data [9–11]. GLMs are empir-
ical transforms of the classical linear (Gaussian) regression model
and are distinguished from OLS by particular model, rather than
data, transformations: specifically, a response distribution of one of
the exponential family of distributions (normal, Poisson, gamma,
binomial, inverse Gaussian) and a (monotonic) link function (iden-
tity, logarithmic, square root, logistic, power) which relates the
mean of the response to a scale on which the model effects combine
additively [11]. It has been suggested that health care expenditure
and use data frequently have a log-normal or gamma distribution
and the studies using GLM for cost analysis have focused on the
gamma response distribution [6,10]. However, the shape of the
inverse Gaussian distribution, with a high initial peak and long right
tail [5], may recommend its use for cost data.

The purpose of this paper was to compare the performance of
OLS, various GLMs [specific combinations of distribution (fam-
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ily) and link] in the analysis of individual patient costs derived
from a ‘ground-up’ ICU utilization study and to answer the ques-
tion: do GLMs, in particular a GLM using the inverse Gaussian
distribution response distribution, have particular advantage when
analysing medical cost data? Performance was adjudged using
established indices [mean absolute error (MAE), root mean
squared error (RMSE) and various coefficients of determination
(

 

R

 

2

 

)] and graphical residual analysis [2,12].

 

Methods

 

Data sources and settings

 

Cost data for ICU patient stay, including all related management
activity, but excluding costs associated with provision of services
external to the ICU, was generated from a 3-month study (1991) in
three South Australian adult ICUs; an in-detail analysis of this data
has recently been reported [13]; where separate predictive models
for survivors and non-survivors were presented. For all patients
(

 

n

 

 

 

=

 

 1333) [13] recorded total (1991) mean (SD) patient costs per
ICU episode as A$6801 (10 311) with ICU length of stay 3.9 (6.1)
days; using standard inflation adjustments, mean calendar year
2002 costs were A$9343. The computed (2002) occupied ICU
bed-day costs at A$ 2395 were, as noted by Rechner & Lipman
[14] quite similar to two recent studies: A$2670 for calendar year
2003 [14], from Australia, and approximately A$2400 for financial
year 2000–01 [15], from the UK.

 

Data collection [13]

 

In each ICU, dedicated unit data collectors recorded daily activity
and utilization. The specific utilization elements were: (i) drugs –
data on actual drug usage, including parenterally administered
fluids, were collected daily; (ii) procedural – medical and surgical
supplies, all medical and surgical supplies were identified and
recorded, by procedure or by individual item; (iii) pathology costs
– all pathology tests consumed were recorded by individual
patient and were costed using the current Commonwealth Gov-
ernment of Australia Benefits Schedule reimbursement rates; (iv)
radiology costs – were recorded by individual patient and were
costed using procedure costs developed by the South Australian
Government Health Commission; (v) physiotherapy costs – each
physiotherapy intervention was recorded by individual patient and
costed using a standard unit of time; (vi) nursing staff costs –
nursing salary and wage costs were derived using actual minutes
of nursing time for each ICU patient day (time spent on educa-
tional activities was excluded), standard nursing practice was 1–1
nurse patient ratio; (vii) medical staff costs – medical salary costs
were allocated to patients on the basis of days of ICU stay (time
spent on educational activities was excluded), all medical staff
were ‘full-time’; (viii) overhead costs – overhead costs attribut-
able to the operation of each ICU were derived using the Yale
Diagnostic Related Group (DRG) costing methodology [16], and
allocated to patients on the basis of ICU length of stay; and (ix)
other costs – these were the residual costs reported in the ICU cost
centre that remained unallocated to patients (such as, administra-
tion, repairs and maintenance, orderlies salaries and wages, linen
and domestic supplies) and were allocated to patients on the basis
of ICU length of stay. Re-admissions were included in the study

and each stay was costed individually. Total costs (1991 A$) were
computed as the sum of various cost fractions: (i) medication and
procedural, (ii) nursing, physiotherapy and medical, (iii) radiol-
ogy and pathology, and (iv) overhead and other; individual
(patient) day costs were not available for analysis.

Additional patient data recorded included: (i) demographics –
age, gender, ethnicity, co-morbidities consistent with the APACHE
III algorithm [17]; (ii) ICU stay variables – patient source, admis-
sion diagnosis and principal physiological system dysfunction on
admission, ventilatory status, cardiorespiratory (heart and respira-
tory rate, systolic and diastolic blood pressure), arterial blood gas
(pH, PaO

 

2

 

, PaCO

 

2

 

) and biochemical variables such that an
APACHE III score could be computed, ICU length of stay and
outcome; and (iii) hospital stay variables – treating hospital, DRG,
hospital length of stay and outcome. Categorical variables were
score as 0/1, 0/1/2 as indicated. For the purposes of this analysis:
(i) only ICU survivors were considered; (ii) potential predictor
variables were drawn from demographic and ICU admission day
data only; and (iii) two extreme (cost) outliers (ICU costs 

 

>

 

 A$
100 000) and a single case with incomplete first day data were not
considered.

 

Statistical analysis

 

Variables were reported as mean (SD) unless otherwise indicated;
Stata

 

®

 

 statistical software (Version 9.0 2005; Stata Corp, College
Station, TX) was used. Probability plots (P-P) were initially used
to compare the cost distribution with hypothesized distributions
(normal, lognormal, gamma and inverse Gaussian). If 

 

x

 

1

 

, 

 

x

 

2

 

, . . . 

 

x

 

n

 

is the ordered sample (size 

 

n

 

) from a distribution with location and
scale parameters 

 

α

 

 and 

 

β

 

 and 

 

F

 

 is the cumulative distribution
function, the P-P plots  against 

 

p

 

i

 

, where  and 
are estimators of location and scale, respectively, and 

 

p

 

i

 

 are plot-
ting positions [18].

Multivariable models to predict total costs were as follows:
OLS; OLS with log transformation of costs and back-
transformations of log-costs as: (i) simple exponential, (ii) ‘naïve’,
that is the exponential of (predicted costs 

 

+

 

 0.5*(RMSE)

 

2

 

, where
RMSE 

 

=

 

 square root of the mean square error of the OLS equa-
tion, (iii) Duan’s smearing estimate [7] and (iv) heteroscedastic
retransformation [10,19]; (v) GLM with Gaussian family and log
link; (vi) GLM with gamma family and log link; and (vii) GLM
with inverse Gaussian family and log link [12].

Variable selection from a full model used the Akaike informa-
tion criterion (AIC 

 

=

 

 

 

−

 

2(

 

L
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+

 

 2(

 

c

 

 

 

+

 

 

 

p

 

 

 

+

 

 1)), where 

 

L

 

 is the log-
likelihood

 

, c

 

 is the number of model covariates and 

 

p

 

 is the number
of model-specific ancillary parameters [20]. Specific attention was
directed to both the question of model selection with correlated
variables, and the potential effect of multi-colinearity (variance
inflation factor [VIF] 

 

<

 

 10 and condition number [CN] 

 

<

 

 15).
Non-linearity of covariate effect was investigated by using (para-
metric) fractional polynomials [21] and all first order interactions
were explored. Model performance was variously assessed:
(i) Quantitative predictive indices

a. MAE as mean of absolute difference between observed and
predicted cost.
b. RMSE as predicted cost minus observed, square of the dif-
ference, mean of the squared difference and square root of this
value.

Z F X ui i= −[ ]( )ˆ σ̂ û σ̂
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c. Correlation (Pearson, 

 

rho

 

) of cost and predicted cost (22)
with 95% bootstrap (BCa [23]) confidence intervals using 1000
repetitions.
d. Squared correlation (

 

R

 

2

 

), ensuring that scalar values of 

 

R

 

2

 

were compared on the same scale (24).
e. A ‘pseudo-

 

R

 

2

 

’ statistic from the GLM literature, the Ben-
Akiva and Lerman adjusted likelihood-ratio index 

 

=

 

 (1-
(

 

L

 

(

 

M

 

β

 

-

 

k

 

)/

 

L

 

(

 

M

 

α

 

)), where 

 

M

 

β

 

 is the log-likelihood of model with
intercept and predictors, 

 

k

 

 is the number of model parameters
and 

 

M

 

α

 

 is the log-likelihood of model with intercept only. (12)
f. Lin’s concordance correlation coefficient (

 

rho_c

 

, to be distin-
guished from Pearson’s correlation coefficient) of cost and pre-
dicted cost, with 95% BCa CIs. As noted by commentators,
correlation (

 

rho

 

) implies data for two variables 

 

Y

 

1

 

 and 

 

Y

 

2

 

 lying
on a line 

 

Y

 

1

 

 

 

=

 

 

 

α

 

 

 

+

 

 

 

β

 

Y

 

2

 

 and large values of 

 

rho

 

 may occur with

 

α≠

 

 0 and/or 

 

β≠

 

 1 (that is, in the absence of ‘perfect’ agreement
between 

 

Y

 

1

 

 and 

 

Y

 

2

 

). 

 

rho_c

 

 assesses the agreement between two
paired sets of measurements by measuring the variation from
the 45

 

°

 

 line of identity [25].
g. For the OLS models, formal tests for heteroscedasticity
(non-constant variance [26]) were performed; Breusch-Pagan/
Cook-Weisberg, Szroeter and a likelihood ratio test for group-
wise heteroscedasticity.

(ii) Graphical analysis using Anscombe residuals [12]
a. Residual plots versus fitted values, looking for even distribu-
tion of the residuals about the y 

 

=

 

 0 line.
b. Standardized normal probability plots (P-P plots, focusing on
centre of the distribution) and inverse normal quantile plots (Q-
Q plots, emphasizing the tails of the distribution) of the residu-
als, looking for close approximation to the 45

 

°

 

 line of identity
[18].
c. Plots of residuals to assess residual heteroscedasticity
[12,27]; heteroscedasticity was adjudged by the degree of slope
(away form the horizontal) of the lowess (locally weighted
scatter plot smoothing [28]) plot line relating the SD of the
residuals to the mean values of grouped fitted values and
grouped APACHE III scores looking for lack of trend.
d. Plots in a. to c. above were compared with those using
deviance residuals.

 

Results

 

The cohort consisted of 1098 patients of mean (SD) age 56
(19.5) years and 41% were female. Further patient details are
shown in Table 1. Total costs (1991 A$) were A$6311 (9689)
with a range of A$106 to A$9 5602. The distribution showed
marked kurtosis and skewness (

 

P

 

 

 

=

 

 0.0001) and log transforma-
tion did not yield a normal distribution (Shapiro–Wilk 

 

W

 

-test,

 

P

 

 

 

=

 

 0.0001), albeit the kurtosis was modified (

 

P

 

 

 

=

 

 0.44).
Figure 1 shows: (i) in the upper panel, a probability (P-P) plot
[21] of gamma and inverse Gaussian distributions generated
from the total cost data, in particular, for the (two parameter)
gamma distribution, the shape parameter (

 

alpha

 

) 

 

=

 

 0.953 and the
scale parameter (

 

beta

 

) 

 

=

 

 6604; and for the inverse Gaussian dis-
tribution, mean (

 

mu

 

) 

 

=

 

 6311 and 

 

lambda

 

 

 

=

 

 2677, where variance
is 

 

mu

 

3

 

 

 

lambda

 

−

 

1

 

 and (ii) in the lower panel, quantile-quantile (Q-
Q) plots of the above two generated distributions against total
costs. Total costs were better approximated (clustering of data
points about the 45

 

°

 

 line of identity) by the inverse Gaussian

distribution; no routine transformation of costs [29] yielded a
normal distribution.

Model covariates and performance indices are seen in Table 2.
Consistency of covariate selection for APACHE III score, ventila-
tion and hospital source was demonstrated across all models, with
chronic obstructive pulmonary disease and chronic dialysis being
the next most frequent selections. No significant interactions were
demonstrated and continuous variables (APACHE III score and
age) demonstrated consistent linear effects. Mean predicted costs,
MAE and RMSE varied considerably across models (Table 2). Of
note was the severe under-prediction of mean costs by simple
exponentiation in the OLS – log costs model and modest over
prediction of mean costs by GLM – inverse Gaussian family and
log link. The range of total costs was considerable, A$106 to
A$95 602; only three models had predicted costs 

 

>

 

 A$35 000;
OLS – log costs with heteroscedastic retransformation, GLM –
Gaussian family and log link, and GLM – inverse Gaussian family
and log link. MAE and RMSE were minimal using OLS – log
costs with heteroscedastic retransformation, and GLM – Gaussian
family and log link. Correlation (observed vs. fitted costs) and 

 

R

 

2

 

were best with the GLM – Gaussian family and log link, and OLS
– log costs with back transformation. Lin’s concordance correla-
tion coefficient (observed vs. fitted costs) suggested best perfor-
mance with GLM – Gaussian family and log link, GLM – inverse
Gaussian family and log link, and OLS: log cost with heterosce-
dastic retransformation. Considerable variation in concordance
was observed between the various back transformations of the
OLS log cost model.

Overall, model performance (systematic departure from model
assumptions) was assessed by inspection of plots of residuals
against fitted values (shown in Fig. 2) and standardized normal
probability (shown in Fig. 3) and inverse normal quantile plots of
residuals. Symmetrical distribution (residuals vs. fitted values) and
normality of residuals (probability and quantile plots), suggesting
optimal model performance, was observed for OLS – log costs,

 

Table 1

 

Patient demographics: mean (SD) or absolute numbers as
indicated

Variable

 

n

 

1098
Age (years) 56 (19.5)
APACHE III score 51 (22.5)

Hospital (patient number)
1 415
2 257
3 426

Gender (female/male; 

 

n

 

 

 

=

 

) 447/651
Ventilated (

 

n

 

 

 

=

 

) 552
Chronic dialysis (

 

n

 

 

 

=

 

) 10
COPD (

 

n

 

 

 

=

 

) 14
Hepatic failure (

 

n =) 6
Metastatic carcinoma (n =) 26
ICU length of stay (days) 2 (0.5–67)*
Hospital length of stay (days) 16 (0.5–248)*

COPD, chronic obstructive pulmonary disease; ICU, intensive care unit.
*Median (range).



4 © 2007 The Authors. Journal compilation © 2007 Blackwell Publishing Ltd

Generalized linear models for cost prediction J.L. Moran et al.

and GLM – inverse Gaussian family and log link. The only models
to reasonably satisfy homoscedasticity (constant variance assump-
tion) were GLM – Gamma family and log link, and OLS – log
costs, although all models appeared suspect (Fig. 4). This being
said, tests of heteroscedasticity identified significant overall
(P = 0.001) and covariate specific [APACHE III score (P = 0.001),
ventilation status (P = 0.001)] heteroscedasticity for both OLS and
OLS – log costs. No differential diagnostic sensitivity in the plots
between Anscombe and deviance residuals was noted.

Discussion
The models considered above addressed the estimation of mean or
total costs using particular covariate sets (conditional mean mod-
elling [10]); formally, the estimation of E(y|x). Although the
dependent variable (y) was positively skewed, estimation of
median costs was not considered, as this would have been less
relevant to ICU administrative concerns, which focus on total
costs = average costs × number of patients. The relevance of the
actual costs has been detailed above (Data sources and settings).

Distributions and transformations

The traditional model for skewed health data is one of logarithmic
transformation of the dependent variable [2,30–33]. Such a trans-
formation usually induces symmetry rather than normality into the
cost variable; if the variance-mean relationship is a power (square)
function, logarithmic transformation serves to stabilize variance
(homoscedasticity). OLS with a logged dependent variable
(log(y)) is contingent upon a linear relation of mean log(y) to the
covariates and the constancy of variance, not necessarily normal-
ity. This being said, inference is on the log-dollar scale [34].
Logarithmic transformation results in comparison of geometric
means and inference in comparing such means cannot be equated
with a test of arithmetic means unless log-scale variances
(between groups) are equal [30]. Back transformation to the origi-
nal scale of the dependent variable (in this case, Australian dollars)
is not simply a matter of exponentiation. As seen from Table 2, the
concordance (rho_c) of total costs with predicted costs for the
OLS log costs model is dependent upon the method of back
transformation, with rho_c varying from 0.146 with simple expo-

Figure 1 Probability and quantile-quantile plots for gamma and inverse Gaussian cost distributions. Upper panel: probability plot (P-P) of two
parameter gamma (left) and inverse Gaussian (right) distributions against costs. Vertical axis (cumulative) probability, 0–1; horizontal axis, Hazen
plotting position (=(i − 0.5)/n, where i = rank and n = count [18]. Lower panel: ordered quantile plots of distributions (gamma, left and inverse Gaussian,
right) generated from total costs (vertical axis) against total costs (horizontal axis). IVG, inverse Gaussian.
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nentiation, 0.219 with ‘naïve’ transformation, 0.231 with Duan’s
smearing estimate and 0.255 for heteroscedastic retransformation.
For OLS with normally distributed homoscedastic errors, the
recommended transformation is: exponential (fitted values +
0.5*(RMSE)2). For non-normally distributed, homoscedastic
errors, the smearing estimate ( ) has superior properties and is

given by:  , where ε are the absolute  residuals

from the OLS regression (33); the predicted costs are then calcu-
lated as , where Xβ is the OLS linear predictor.
In the current study, . For normally distributed heterosce-
dastic residuals: exponential {fitted values + 0.5* [log scale vari-
ance function, v(x)]}, where v(x) is the variance of the log-scale,
obtained by regressing the squared residuals on the covariates
[19]. Thus a seemingly ‘simple’ log transformation entails a rather
complex model dependent re-transformation process to recover
costs in the original scale, without incurring bias.

Similarly, the interpretation of regression coefficients with log
transform of the dependent variable is not facile: for the homosce-
dastic normal regression, the effect on the (untransformed) depen-
dent variable is in terms of a percentage change = 100 × (exp(β) −
1), where β is the (independent) variable regression coefficient,
continuous or categorical [8,35]. For heteroscedastic regression,
where the covariate (xj) also appears in the variance model
(σ2 = exp(γ ′xj)), covariate effect is somewhat more complex, as
developed by Zhou et al. [35], with different interpretations of unit
change of dependent variable for categorical and continuous
covariates.

The gamma distribution, most useful with positive responses
(≥0) having a constant coefficient of variation, has also been sug-

φ̂
ˆ ˆφ ε= ( )

=∑1
1N

ii

n
exp

E y X( ) = ( )ˆ .φ βexp
ˆ .φ = 1 60

gested as an appropriate distribution with which to model costs
[2,9,10], but the current total cost distribution was poorly approx-
imated by this distribution (Fig. 1). In a recent empirical investiga-
tion of costs generated from a randomized trial, the gamma
distribution was found to be the most appropriate, based primarily
upon analysis of residuals; no initial approximation of the cost
distribution to the exponential family of distributions was pro-
vided [6]. Such was not the case in the current study, where the
total cost distribution was poorly approximated by the gamma
distribution (Fig. 1). The inverse Gaussian distribution, with a high
initial peak with rapid drop-off and long right tail, would appear to
adequately reflect cost and length of stay distributions, although
little has been published on this [5]. A previous paper, applying the
inverse Gaussian distribution to length of stay, used the method of
sample quantiles (agreement of fitted and observed distributions at
specific quantiles) [36], but did not model the length of stay. This
being said, regression models appropriate for cost data are not
necessarily optimal for length of stay prediction [37].

Generalized linear models

The generalized linear model, introduced by Nelder & Wedder-
burn [38] and first implemented in the statistical software GLIM,
synthesizes the general techniques used to analyse continuous and
discrete data into a unified conceptual framework [39]. Explana-
tory features are combined additively (see Introduction) as in
classical linear models; the properties of the response variable are
matched by the particular distribution (any of the exponential
family of distributions, including the gamma and inverse Gauss-
ian); the variance is a function of the mean (var(y|x = σ2ν(x))),

Table 2 Total and predicted costs (A$) and model performance indices

Covariates Mean SD MAE RMSE Corr (95% CI) rho_c (95% CI) R2 BAL

Total costs 6311 9689
OLS APIII, metca age, 

vent, copd
6311 3313 4995 9101 0.342 (0.284–0.413) 0.209 (0.159–0.256) 0.117 0.006

OLS: log, exp Hosp, AP3, age, vent
copd, metca, hfail

3936 2131 4242 9420 0.369 (0.283–0.290) 0.146 (0.11–0.197) 0.136 0.106

OLS: log, naïve Hosp, AP3, age, vent
copd, metca, hfail

5902 3195 4753 9018 0.369 (0.283–0.290) 0.219 (0.167–0.295) 0.136 0.106

OLS: log, Duan Hosp, AP3, age, vent
copd, metca, hfail

6298 3410 4914 9002 0.369 (0.283–0.290) 0.231 (0.176–0.309) 0.136 0.106

OLS: log, het Hosp, AP3, age, vent
copd, metca, hfail

6037 3753 4780 8965 0.379 (0.295–0.499) 0.255 (0.189–0.363) 0.144 0.106

GLM: gausslog Hosp, AP3, age, vent
copd, metca, hfail

6121 4102 4798 8907 0.396 (0.304–0.517) 0.283 (0.202–0.402) 0.155 0.009

GLM: gamlog Hosp, AP3, vent 6368 3540 4990 9077 0.349 (0.283–0.454) 0.225 (0.171–0.295) 0.122 0.014
GLM: ivglog Hosp, AP3, vent, cdial 6805 4467 5198 9136 0.353 (0.280–0.468) 0.268 (0.202–0.369) 0.124 0.0004

SD, standard deviation; MAE, mean absolute error; RMSE, root mean squared error; Corr, Pearson correlation with 95% bootstrap (BCa) CI; rho_c,
Lin’s concordance correlation coefficient with 95% bootstrap (BCa) CI; R2, coefficient of determination; BAL, Ben-Akiva and Lerman adjusted
likelihood ratio index; Hosp, hospital source; AP3, APACHE III score; age, age in years; Vent, ventilation on ICU admission day; copd, history of chronic
obstructive pulmonary disease; metca, evidence of metastatic carcinoma; hfail, hepatic failure; cdial, chronic dialysis; OLS, ordinary least squares
regression; OLS, log, exp, ordinary least squares regression using log transformed costs and exponential back transformation; OLS: log, naïve,
ordinary least squares regression using log transformed costs and naive back transformation; OLS: log, Duan, ordinary least squares regression using
log transformed costs and Duan’s smearing back transformation; OLS: log, het, ordinary least squares regression using log transformed costs and
heterscedastic back transformation; GLM: gausslog, generalized linear model with Gaussian family and log link; GLM: gamlog, generalized linear
model with gamma family and log link; GLM: ivglog, generalized linear model with inverse Gaussian family and log link.



6 © 2007 The Authors. Journal compilation © 2007 Blackwell Publishing Ltd

Generalized linear models for cost prediction J.L. Moran et al.

except for the normal distribution, where the mean and variance
are independent; and the link function determines the appropriate
scale [40]. For example, in OLS with a (log) transformation (g),
the expectation (E) is E(g(Yi)) = α + xβ; for the GLM, the form of
the expectation is g(E(Y)) = α + xβ. That is, the GLM log-links the
predictor (xβ) rather than the response and parameters are equal to
the logs of arithmetic means (continuous variables) and their ratios
(categorical variables) [41]; thus, parameters can be interpreted
directly in a manner similar to odds ratios [34]. GLM are fitted by
either maximum likelihood or iteratively re-weighted least squares
and a key parameter is the deviance = 2logλ, where logλ =
likelihood (full or ‘saturated’ model) – likelihood (null or intercept
only model). For the normal distribution model, the deviance is the
residual sum of squares and hence the notion of R2 [=1 − (residual
sum of squares/total sum of squares)] may be interpreted as the
familiar ‘per cent variance explained’. Although there are ‘pseudo-
R2’ statistics for the GLM, the deviance for non-normal distribu-
tions is different from the residual sum of squares and the scalar
values of these various statistics are not monotone transforma-
tions, as would apply to the normal linear model. Thus, the
squared correlation (R2) of models showed modest correlation

(rho = 0.52, P = 0.1) with the Ben-Akiva and Lerman adjusted
likelihood ratio index (Table 2), but poor concordance
(rho_c = 0.07, P = 0.15).

Model performance

Overall, predictive performance was low, as adjudged by R2, but
similar to that of Becker et al. [1], who reported R2 = 0.13 for a
multivariable regression equation predicting costs after cardiac
surgery and also limited the covariate recording period to ≤3 days
post-operatively. There was no apparent advantage, in terms of R2,
of a ‘full’ model (17 covariates, data not shown), although the total
patient number would have been sufficient [42]. Covariate selec-
tion was not constrained to be constant between models and varia-
tion of the model covariate sets occurred, similar to that reported
by Dudley et al. [43] Formal data trimming was not initially
undertaken [44] and there may have been a tendency in the OLS
and GLM – inverse Gaussian family and log link models to over-
fitting, as evidenced by a relatively low RMSE and high MAE
[10]. Across both quantitative indices and graphical assessment of
model performance, OLS – log costs with heteroscedastic retrans-

Figure 2 Plots of Anscombe residuals versus fitted values for various models. Plots of Anscombe residuals (vertical axis) against fitted values
(horizontal axis) from regression models. Upper panel (left to right): least squares regression (OLS), OLS with log transformed costs, generalized linear
model (GLM) Gaussian family and log link. Lower Panel (left to right): GLM gamma family and log link, GLM inverse Gaussian (IVG) family and log link.
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formation, and GLM – inverse Gaussian family and log link
seemed the preferred models. That the GLM model(s) had com-
parative performance compared with OLS – log costs is of obvious
advantage, in that re-transformation is avoided and E(y|x) or
ln(E(y|x)) is ‘directly’ available [10]. In terms of selection between
GLMs, an assessment of the power function of the variance mean
(= µ) relation has been proposed (9,10), using regression of the log
of squared residuals , where yi = observed costs and

 = fitted or predicted values) against the log of the fitted values in
the raw scale: , the scalar quantity
of the coefficient (λ1) of the logged fitted values indicating the
degree of this power relationship. For the GLM gamma family,
λ = 2 (that is, variance = µ2) and for the GLM inverse Gaussian
family, λ = 3 (variance = µ3). In the current data set, λ was calcu-
lated as 2.1, suggesting initial model preference for the gamma
distribution; this was also reflected in model AIC values (normal-
ized for n, lower values being preferred), comparing across GLMs
(Table 2): 21.04, 19.24 and 26.28 (Gaussian, gamma and inverse
Gaussian family GLM respectively).

log y yi i−( )ˆ 2

ŷi

ln lny y y vi i i i−( ) = + ( ) +ˆ ˆ2
0 1λ λ

Heteroscedasticity

The primary concern in this study was the prediction of total costs
from ICU admission day data; that is, pragmatic rather than
explanatory [45]. Thus, unlike other studies [4,10,19], the effect
of, for example, patient groupings (into hospitals) and covariate
heteroscedasticity on precision of the β coefficients and the appro-
priate compensation for this via robust or bootstrapped variance
estimates [19], was not a focus of attention, although this would be
an issue in assessing the relative importance of various covariates
to cost determination. This being said, all models (including the
‘full’ model, data not shown) demonstrated heteroscedasticity to
some degree, with the GLM – gamma family and log link exhibit-
ing least tendency (Fig. 4). A number of factors undoubtedly con-
tributed to this: the skewness of the cost data, patient groupings
and the non-normality of the two continuous predictors, APACHE
III score and age. Standard transformations and quantile (n = 4)
categorization of the latter two covariates did not resolve this
heteroscedasticity.

Figure 3 Standardized normal probability plot of Anscombe (Ansc) residuals (P-norm plot). Standardized normal probability plot (‘P-norm’ plot) of
regression models. Vertical axis: cumulative probability related to normal distribution ), where  is mean of data and  is standard
deviation; horizontal axis: plotting positions (Weibull, pi = i / (n + 1). Upper panel (left to right): least squares regression (OLS), OLS with log transformed
costs, generalized linear model (GLM) Gaussian family and log link. Lower Panel (left to right): GLM gamma family and log link, GLM inverse Gaussian
(IVG) family and log link.
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Conclusions
Generalized linear models offer an alternative to the standard OLS
model for cost prediction. OLS with log transformation of the
dependent cost variable must appropriately formulate the problem
of back transformation to avoid predictive bias. GLM using the
inverse Gaussian response distribution may be of advantage in the
analysis of cost data. The relative paucity of studies using GLMs
in health cost studies may reflect the known lag-time of transfer of
statistical methodology to the medical literature [46].
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