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1 INTRODUCTION

1.1 What is Statistics?

A truth: Statistics is an enabling discipline.

Statisticians have by training the skills of syn-

thesis, empirical investigation, modelling and

interpretation which are crucial to application

areas such as engineering, finance and

bioinformatics.

Statistics is as much the art as the science of

collecting, modelling, analysing, and interpet-

ing data.

‘Statistical thinking will one day be as neces-

sary for efficient citizenship as the ability to

read and write.’

H.G. Wells
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1.2 Why do you need this subject?

IMS is about

• building probability models, and

• describing and understanding the properties

of those models.

We use models to describe reality. So we want

to know:

Do our models fit the observed data or facts?

How do we determine which models are the

best for describing the system under study?

It is the presence of variability in the real world

which underpins the need for probability mod-

els which quantify the variation or uncertainty

in outcomes.

Probability theory is an important field of study

in its own right, but we use it primarily as a

tool for modelling and analysing data that in

some vague sense have a random or chance

character.
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1.3 Examples

• How should we design a clinical trial to com-

pare a new treatment for leukaemia with stan-

dard treatments?

• In the Ash Wednesday bushfires, vast areas of

southern Australia were burnt, including many

houses. What were the factors which increased

or decreased the risk of houses being burnt?

• Algal blooms: data have been collected over

many years on the occurrence of algal blooms

along the River Murray. What can we say

about the conditions which influence the oc-

currence of these blooms?

• Writing software: a software house supplies

computer software under contract. How do

we estimate the cost of providing the software,

and how can we improve our prediction of soft-

ware costs over time?
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1.4 Some motivating examples

1. Ohm’s Law tells us that

V = IR

where V is the voltage, I is the current, R is

the resistance.

This is a deterministic model. Suppose 20

electrical engineering students all set up cir-

cuits with the same current and resistance, and

all measure the voltage.

How many different voltages will be observed?

A better approach is to use a probabilistic or

stochastic model

V = IR + ε

where ε represents random error.
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2. DNA sequences

The DNA of an organism consists of very long

sequences from an alphabet of four letters

called nucleotides: a g c and t for ade-

nine, guanine, cytosine, and thymine. These

sequences undergo change within any popula-

tion over the course of many generations, and

random mutations arise and become fixed in

the population. Therefore two rather differ-

ent sequences may well derive from a common

ancestor.

Suppose we have two small DNA sequences

from two different species, where the arrows

indicate paired nucleotides that are the same

in both sequences

↓ ↓ ↓ ↓ ↓ ↓ ↓
g g a g a c t g t a g a c
g a a c g c c c t a g c c
↓ ↓ ↓ ↓
a g c t a a t g c t a t a
a c g a g c c c t t a t c
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We wish to gauge whether the two sequences

show significant similarity to indicate whether

they have a remote common ancestor.

If the sequences were each generated at ran-

dom, with the four letters a g c and t having

equal probabilities of occurring at any position,

then the two sequences should tend to agree

at about one quarter of the positions.

The two sequences agree at 11 out of 26 po-

sitions.

How unlikely is this outcome if the sequences

were generated at random?

Probability theory shows that under the as-

sumption of equal probabilities for a g c

and t at any site, and independence of the

nucleotides, the probability of 11 or more

matches in a sequence comparison of length

26 is approximately 0.04.

Thus our observation of 11 matches gives

evidence that something other than chance is

at work.
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3. Convolution

Convolution forms the basis of the method of

backcalculation for estimating past HIV infec-

tion incidence and predicting future diagnoses

of AIDS.

A simple model for AIDS incidence fA is

fA(a) =

∫

y
fX(a − y)fY (y)dy

where fX is the density function for the time

from infection with HIV to development of

AIDS, known as the incubation period, and fY

is the density function for the incidence of HIV

infection.

In practice, we observe fA, assume we know

the incubation distribution fX, and invert the

above equation to estimate the past HIV in-

fection fY . We can then substitute these esti-

mates of HIV incidence back into the equation

and predict future cases of AIDS.
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4. Statistical modelling of BSE

BSE has a long and variable incubation period

which means that cows showing signs of dis-

ease now were infected many years ago. We

use these sorts of models to estimate the past

pattern of infection and to predict future cases

of BSE.

A ‘simple’ model for the hazard of infection

at time t of horizontal transmission of prions

between an infected and susceptible host (i.e.

cow) is

∫ t−t0

0
βΨ(τ)f(t − t0 − τ |t0)dτ

where β is the age-dependent transmission co-

efficient, Ψ represents the expected infectivity

of an individual at time τ since infection, and

f is the density of hosts born at time t0 who

were infected time τ ago.
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2 PROBABILITY

The mathematical theory of probability has

been applied to a wide variety of phenomena,

for example:

• In genetics as a model for mutations and

ensuing natural variability.

• There are highly developed theories that

treat noise in electrical devices and commu-

nication systems as random processes.

• Many models of atmospheric turbulence use

concepts of probability theory.

• Actuarial science, which is used by insurance

companies, relies heavily on the tools of prob-

ability theory.

• Probability theory is used to study complex

systems and improve their reliability, such as in

modern commercial or military aircraft.
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2.1 Notation and axioms

[WMS, Chapter 2]

Sample space: S is the set of all possible

outcomes.

Event: A, B, ... is a combination of outcomes,

and a subset of the sample space S.

Probability: is a measure, or function, that

tells you the size of the sets.

The probability of an event A is denoted P(A).

It assigns a numerical value to each outcome

and event in the sample space, according to

specified rules.

Note: a sample space may be discrete (possibly

countable) or continuous. WMS (p. 26) refer

to ‘simple events’ rather than ‘outcomes’.

The ‘sample space’ is also referred to as the

‘outcome space’.
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e.g. The annual rainfall for a given city could

take any non-negative value:

S = {x|x ≥ 0, x ∈ R}

e.g. The number of cars passing a given point

on the road in 1 hour could take any non-

negative integer:

S = {x|x = 0,1,2,3, ....}

N.B. Read the ‘|’ as ‘given’.

e.g. of an event: rainfall less than 600mm in

a year:

A = {x|0 ≤ x < 600}
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Axioms of probability:

Axiom 1: For any set A, P(A) ≥ 0.

Axiom 2: P(S) = 1. This is the certain event.

Axiom 3: (Addition Rule.) If A1, ..., An is a set

of mutually exclusive events, then

P(A1 ∪ A2 . . . ∪ An) = P(A1) + ... + P(An).

If we let A = A1∪A2 . . .∪An, and A1, ..., An are

mutually exclusive, i.e. disjoint, then A1, ..., An

is said to be a partition of A.

[WMS, p.29]
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What we mean by a Distribution: For any
partition of S, the probability gets ‘distributed’

onto each member of the partition and it all

adds up to 1. In the case of a countable sample
space S, once we assign probabilities to all the

‘outcomes’, then we can find the probability

of any event we like by summation. (This is
easier said than done, as we shall see.)

************************************

We can also derive a number of results from
these basic ones:

Complements: P(Ā) = 1 − P(A).

Differences: If A is contained in B (we write
A ⊂ B), then

P(B ∩ Ā) = P(B) − P(A).

Inclusion-Exclusion:

P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

[Check these yourself using set theory or draw
the Venn diagrams; WMS p. 22.]
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2.2 Equally likely outcomes

Often, we can safely assume that outcomes

are equally likely.

Examples: Rolling dice; tossing a fair coin

twice.

Why? If we can assume our coin or die is

perfect, the answer follows by symmetry.

So, for example, the perfect coin is our model.

But clearly it is not always true that all out-

comes are equally likely.

For example, we cannot assume that all ‘rain-

falls’ in a year are equally likely.
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If all outcomes are equally likely in a finite set

S, then the probability that event A occurs is:

P(A) =
#(A)

#(S)

Chance Odds and the Odds Ratio:

Odds are a useful way of comparing probabili-

ties. [Note that odds are not covered in WMS.]

If the outcomes are equally likely, the odds in

favour of A are

Odds(A) =
#(A)

#(NotA)

or, more generally,

P(A)

1 − P(A)

The log odds is known as the logit.
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Example: Investigating the relationship

between Apgar score at birth and measured

foetal growth retardation in pregnancy.

The Apgar score assesses a baby’s general

state of health at birth on a 0-10 scale. Using

ultrasound during pregnancy, growth retarda-

tion is assessed as ‘symmetric’ or ‘asymmet-

ric’.

An apgar score of < 7 indicates that the baby is

not doing too well. Is symmetric or asymmetric

growth indicative of apgar score?

A study of 107 babies who were ‘small for

dates’ (smallest 5% of babies) was conducted.

The data are:

Symm Asymm Tot

Apgar < 7 2 33 35
score ≥ 7 14 58 72

16 91 107
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What are the odds of an Apgar score < 7?

We can calculate the odds for each group

separately:

- odds of <7 if Symmetric: 2/14 = 0.143

- odds of <7 if Asymmetric: = 33/58.

That is, there is a much higher odds of a low

Apgar score with asymmetric growth.

The relative odds (or risk) of a low score in

the two groups is the ratio of these two odds,

and is called the odds ratio:

(2/14)/(33/58) = 2 × 58/(14 × 33) = 0.25.

Note that these quantities are estimated odds

based on a sample.
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2.3 Interpretations of probability

Will it rain tomorrow?

Viewed as either:

• Limiting relative frequency (i.e. proportion),

or

• Subjective opinion i.e. a statement which

quantifies the speaker’s uncertainty about the

outcome and is therefore a personal or subjec-

tive notion.

Relative frequency forms the basis of frequen-

tist statistics. Subjective opinion forms the

basis of Bayesian statistics. There has been

rigorous debate between these two versions.

We will discuss these notions in answer to the

question ‘will it rain tomorrow?’
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Opinion or ‘subjective probabilities’.

Often referred to as Bayesian statistics after

Rev Thomas Bayes (1763) who first developed

what we now know as Bayes’ Theorem. In

essence, the idea is that we start with some

idea of what we think the probability is (a prior

probability) and then, as we collect informa-

tion, we update our ‘subjective’ probability on

the basis of that information. Bayes was the

first to give us a specific formula for doing that

‘updating’.

The difficulties with this are:

• How do you determine what is your prior

probability/opinion?

• If we are trying to convince others?

• How do you ensure that your subjective prob-

abilities are consistent?

Discussion example: Doctors quoting the

probability of survival.
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How else might we develop probabilities?

Symmetry

Do not assume symmetry when you shouldn’t!

Year No.births Propn.boys

1974 3,159,958 0.51333
1975 3,144,198 0.51305
1976 3,167,788 0.51280
1977 3,326,632 0.51281
1978 3,333,279 0.51283
1979 3,494,398 0.51261
1980 3,612,258 0.51287
1981 3,629,238 0.51258

John Arbuthnot(1710):

‘it is odds, if a woman be with child, but it

shall be a boy, and if you would know the just

odds, you must consider the proportion in the

Bills that the males bear to females.’

[Ref: Hacking, I. (1975) The Emergence of

Probability.]
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2.4 Conditional probability and indepen-

dence

[WMS, p. 50]

All probability statements are, to some extent,

conditional; consider the fact that

P(A) = P(A|S).

Axiom 4: P(A|B) = P (A∩B)
P (B)

.

Read this as ‘the probability of A given B’.

Interpretation: we are regarding B as the com-

plete space.

Note: P(A|B) is not necessarily the same as

P(B|A).
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Example: Consider the cards again.

We have 3 cards, each with two sides: one is

red on both sides, one is green on both sides,

and one is red on one side and green on the

other. We can label them (r1, r2), (g1, g2),

(r3, g3) where r and g indicate red and green.

If I pick a card, each of the 6 sides are equally

likely. If I tell you one side is red, what is the

probability that the other side is red?

Exercise: Toss 2 coins. What is the probabil-

ity of 2 heads?

Given that the first toss gave a head, what is

the probability of 2 heads?
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Example: Digitalis therapy is often used to

treat congestive heart failure. However, it can

lead to digitalis toxicity which is difficult to

diagnose. To improve the chances of a correct

diagnosis, the concentration of digitalis in the

blood can be measured (Rice, p.15).

An historical study investigated the relation-

ship between digitalis concentration in the

blood and digitalis intoxication in 135 patients.

Notation:

T + /T−: high/low blood titre;

D + /D−: digitalis toxicity/or not.

Digitalis toxicity
D+ D− Total

Titre T+ 25 14 39
T− 18 78 96

Total 43 92 135

Regard the proportions as probabilities. Then

P(D+) = 43/135 = 0.3185.

We call this the ‘prior probability’ of digitalis

toxicity.
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But the conditional probabilities are

P(D + |T+) = 25/39 = 0.641

P(D + |T−) = 18/96 = 0.188

Thus, knowing that the high titre is present

doubles the probability of toxicity.

Note how this is ‘evidence’ that can be included

in the assessment of future patients.

We can of course find the other conditional

probabilities:

P(T + |D+) = 25/43 = 0.581. This is known

as the sensitivity of the test.

P(T − |D−) =

P(T + |D−) =

P(T − |D+) =
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Technically, of course, these are all ‘propor-

tions’ and only become probabilities if either

(i) we use large enough samples such that the

relative frequency is close to the true probabil-

ity, or (ii) we think of choosing one of these

people at random from the population.

In practice, you should assess whether (i) or

(ii) is reasonable. If not, interpret the results

with caution.
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Multiplication Rule:

P(A ∩ B) = P(B)P(A|B),

which follows directly from Axiom 4.

It is useful because in practice it is often easier

to find P(A|B) or P(B) than the joint proba-

bility.

Tree Diagrams can be helpful to depict the

Multiplication Rule in action:

The idea is that each branch in the tree rep-

resents a possible outcome. The paths to par-

ticular events which occur in sequence have

the property that the probabilities at the nodes

have to sum to 1.

Example: A system has 2 electrical compo-

nents. The first component has a probability

of failure of 10%. If the first component fails,

the second fails with probability 20%. If the

first works, then second fails with probability

5%.
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SECONDFIRSTCOMPONENT

Works

Fails

Fails

Works

Works

Fails

0.10

0.90

0.80

0.20

0.05

0.95

Fig. 2.1: Tree diagram.

Let B be the event that the first component

works.

Let A be the event that the second component

works.
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Find the probability that

• at least one component works:

• exactly one component works:

• the second component works:

Note that there are two ways we can find these

probabilities. One is to work out the probabil-

ities along each of the 4 paths and add up the

right ones. Alternatively, find each probability

separately. We will obtain the solutions in the

lectures.
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Motivation for Law of Total Probability

P(A) is the probability that the second com-

ponent works. Clearly it lies between 0.80 and

0.95. (Why?)

If B is the event that the first component works

and B̄ is that it doesn’t, then

P(A) = P(A ∩ B) + P(A ∩ B̄),

which is then

P(B)P(A|B) + P(B̄)P(A|B̄).

This is a weighted average of the two condi-

tional probabilities.
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Law of total probability

Theorem: If B1, ..., Bn is a partition of S,

P(A) = P(B1)P(A|B1) + ... + P(Bn)P(A|Bn).

=
n
∑

i=1

P(Bi)P(A|Bi)

This provides a way to average conditional

probabilities.

How would you represent this in a tree

diagram?
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Independence

If the probability of the second component

working was the same regardless of the first,

then

P(A|B) = P(A|B̄),

and, regardless of the weights, both are equal

to P(A). Then B doesn’t affect P(A) and we

say A and B are independent.

Definition: Events A and B are independent

if and only if

P(A ∩ B) = P(A)P(B).

Exercise: Show that Ā and B̄ are independent.
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2.5 Named Distributions

(i) Bernoulli distribution

Two outcomes, success (S) and failure (F):

Outcome Failure Success
X 0 1

Probability 1 − p p

p is referred to as a ‘parameter’ and we often

want to estimate it. We write P(X = 0) = 1−p

and P(X = 1) = p.

The ‘numerical’ outcome is the random vari-

able X. We say ‘X has the Bernoulli distribu-

tion with parameter p’.

[We can ‘draw’ such a distribution; called a

probability histogram.]
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(ii) Uniform distribution over a finite set.

Suppose a sample space has a set of n possible

outcomes, all equally likely.

Outcome A1 A2 .... An

Probability 1/n 1/n .... 1/n

There may be a numerical outcome.

It is an important distribution in finite sampling

theory.

Examples?

Roll a die. Then n = 6 and P(anyoutcome) =

1/6.
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(iii) Empirical distribution (i.e. based on

data)

Categorical data:

e.g. smoker/non-smoker/ex-smoker.

For categories A1, . . . , Am, we count the num-

ber fi in each category, and give the proportion

p̂i = fi/n in each.

Note: the (empirical) proportions add to 1.

Measurement data: e.g. time.

Divide the line with breaks at b1, ..., bm.

If there are fi obervations in the interval

(bi, bi+1], the height of the bar is

fi

n × (bi+1 − bi)
.

Why?
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Explanation: Think of each observation as

having an area 1/n. We drop them into their

bins from above. If the bin is wider, the ob-

servations will not stack up as high. The total

area is 1 and the area in the ith bin is propor-

tional to the number falling into that bin. The

height must then be the area divided by the

width.
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2.6 Sequences of events

This simply extends the Multiplication Rule to

n events in sequence:

P(A1 ∩ A2 ∩ . . . ∩ An)

= P(A1)P(A2|A1)P{A3|(A1 ∩ A2)} . . .

Tree diagrams can be extended to have multi-

ple branches at each node and multiple nodes.

We may only have some of the information.

Independence is not so simple here.

Exercise: Reliability of two components in

parallel and in series.

Suppose we know the separate probabilities

that the two components work are P(W1) =

0.9 and P(W2) = 0.8. Each probability is

known as the reliability.

Explore the effects of assuming independence

of the two components on the overall reliability

of the system firstly in series, then in parallel.
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Geometric distribution: a discrete waiting

time distribution.

Suppose we conduct a sequence of indepen-

dent Bernoulli trials, where p is the probability

of success at each trial. Repeat the trials until

we get a success.

What is the probability that we stop at k trials?

Let X be the random variable which takes

values equal to the number of trials until we

get the first success. Then

X 1 2 3 ...

Prob p qp q2p ...

The probability function for the geometric

distribution is

P(X = k) = qk−1p, k = 1,2, . . . .
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In principle, the sequence of trials can go on

indefinitely if a success is never obtained (e.g.

tossing a coin and never getting a head). It

is called the geometric distribution because its

probabilities are terms in a geometric series.

Exercise: Verify that these probabilities add

to 1 by showing
∑∞

k=1 qk−1p = 1.

We will meet this distribution again in Chapter

3.

c©IMS Semester 1, 2004 2-30



Example: Gambler’s Rule.

If you have a probability p = 1/N of success

each time you play a game over and over again,

the Gambler’s Rule is that you need to play

about 2N/3 games to have a better than 50%

chance of at least one win.

How can we show this?

******************************

The method of solving many of these problems

is:

• get a notation,

• think of most problems as sequences of

events,

• do a tree diagram,

• break up the answer into bits that can be

found relatively easily.
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Independence for > 2 events:

Three events A, B, C are independent provided

P(B|A) = P(B|Ā) = P(B),

and

P(C|A ∩ B) = P(C|A ∩ B̄) =

P(C|Ā ∩ B) = P(C|Ā ∩ B̄) = P(C).

It follows that:

P(A ∩ B ∩ C) = P(A)P(B)P(C).

This is a very strong condition. For n events,

there are 2n possible intersections whose prob-

abilities are all determined by just the proba-

bilities of the n events.
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Pairwise independence:

A weaker form of independence, requiring only

that Ai and Aj be independent for each pair.

Exercise: Toss 2 coins. Let A be the event

that the two coins give the same result.

Then show that the events H1 (head first

time), H2 (head second time) and A are pair-

wise independent, but are not fully indepen-

dent.
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2.7 Bayes’ Rule

Example: Digitalis revisited.

We know that the probability of a positive titre

is P(T+) = 39/135.

If we are also given that the person is D+, then

it is of interest to ask: what is P(T + |D+)?

In other words, if we have the additional in-

formation about the toxicity, how does that

change our probabilities?
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Bayes’ Rule gives a general formula for updat-

ing probabilities in the light of new information.

Suppose we have a partition B1, ..., Bn and we

know the probabilities P(Bi) of each.

Now suppose that we find out that the event

A has occurred. How do the probabilities of

the Bi’s change?

In other words, what is P(Bi|A)?

How can we visualise this?
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We know

P(A ∩ Bi) = P(Bi|A)P(A) = P(A|Bi)P(Bi).

We also know that if B1, . . . , Bn partition A,

then

P(A) = P(B1)P(A|B1) + ... + P(Bn)P(A|Bn)

by the Law of Total Probability.

From above,

P(Bi|A) =
P(A|Bi)P(Bi)

P(A)
,

and we are then led to Bayes’ Rule:

P(Bi|A) =
P(A|Bi)P(Bi)

P(A|B1)P(B1) + ... + P(A|Bn)P(Bn)
.
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Two senses of Bayesian:

1. Frequentist: Bayes’ Rule allows the

inversion of order in a conditional probability

statement.

2. Non-frequentist: the prior distribution

(here P(Bi)) reflects a personal degree of

belief which is updated in the light of data

(here P(A|Bi)) to give a posterior distribution

for Bi, i.e., P(Bi|A), i = 1, . . . , n.
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So now return to our digitalis example. For

convenience, the data are given again here:

Recall this study investigated the relationship

between digitalis concentration in the blood

and digitalis intoxication in 135 patients; the

notation is T + /T−: high/low blood titre;

D + /D−: digitalis toxicity/or not.

Digitalis toxicity
D+ D− Total

Titre T+ 25 14 39
T− 18 78 96

Total 43 92 135

To keep the notation consistent in this section,

let events T+ and T− be B1 and B2 respec-

tively; note that since there are only two out-

comes of positive or negative titre, B2 = B̄1.

The event A is digitalis intoxication D+; Ā is

D−.
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Now

P(B1) = 39/135, P(B1|A) =?

The answer is just

P(A|B1)P(B1)

P(A)
=

(25/39) × (39/135)

(43/135)

= 25/43

= 0.581,

and the other results follow similarly.

We can see how this works by giving the earlier

table with the four individual joint probabilities

P(B1 ∩ A), etc:

A Ā Total

B1 .185 .104 .289
B2 .133 .578 .711

Total .318 .682 1.000
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Convert the (joint) probabilities in the previous

table to the conditional probabilities P(A|Bi)

by dividing each element by the row total:

A Ā Total

B1 .641 .359 1.000
B2 .188 .812 1.000

And similarly, convert the joint probabilities to

P(Bi|A) by dividing by the column totals:

A Ā
B1 .581 .152
B2 .419 .848

Total 1.000 1.000

Note how we can move between these tables.
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Revisiting odds: [Not in WMS]

If there are just 2 choices or hypotheses, so

that B1 = B and B2 = B̄, then we can consider

the odds P(B)/P(B̄) of B occurring.

If we are then given further information that A
has occurred, how do the odds change?

Likelihood:

Consider first a distribution, e.g. the geometric

distribution. If we know the value of the pa-

rameter p, we can give the probability of each

value of X occurring, i.e. P(X = k|p) = pqk−1.

Suppose, however, that we have already ob-

served that X takes the value k, a number,

but that p is unknown. The probability is no

longer a function of k, but only depends on

the unknown p. In statistics, the latter prob-

ability is referred to as a likelihood; namely a

probability distribution which we consider to be

a function of the (unknown) parameter (here

p) for a given value of the data k. We write

L(p|X = k) = pqk − 1
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Here, we know that A has occurred (A is the

‘data’) and we want to assess the odds of the

unknown ‘parameter’, namely whether B or B̄

is more likely.

Bayes’ Rule shows that:

P(B|A)

P(B̄|A)
=

P(A|B)

P(A|B̄)

P(B)

P(B̄)
.

Can you see why?

The ratio

P(A|B)

P(A|B̄)

can be regarded as a ‘likelihood ratio’; that is,

the relative likelihood of A occurring, given the

two different hypotheses.

Thus,

Posterior Odds = Likelihood Ratio x Prior

Odds.
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Example: Lie detector tests.

B=telling the truth, B̄= lying.

A, Ā = lie detector reads positive or negative.

Suppose from historical reliability studies we

know:

P(A|B̄) = 0.88, P(Ā|B) = 0.86.

Say that before the test, P(B) = 0.99.

Suppose that an employee tests positive: how

does this affect our view of the employee?

What is the probability that the employee is in

fact telling the truth (i.e. what is P(B|A))?

We will answer this question in the lecture us-

ing Bayes’ Rule.
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We will also investigate this question in terms

of odds:

P(B|A)

P(B̄|A)
=

P(A|B)

P(A|B̄)

P(B)

P(B̄)
.

The LHS is the posterior odds that the em-

ployee is telling the truth. We want to find

this quantity.
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3 DISCRETE RANDOM

VARIABLES

3.1 Random variables

Now consider outcomes or events which have

a numerical value.

In mathematical terms, this is a function:

Y : S → R

which maps each outcome in the sample space

S onto a single point on the real line.

Such a function is called a random variable.

So a random variable is simply a variable which

takes values according to some probability dis-

tribution.
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If the set of possible values for Y is countable,

the random variable is called discrete.

Notation:

X, Y, Z, . . . random variables what we might get

x, y, z, . . . values what we got

Each time we choose an outcome from S, we

get a particular outcome y from the possible

values of Y .

Note that random variables are denoted by

capital letters.

Values of random variables are denoted by

lower case letters.
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Examples

Y is the number of people diagnosed with Hep-

atitis C in South Australia each year; Y =

0,1,2, . . ..

Y is the number of farm animals slaughtered

during an outbreak of foot and mouth disease;

Y = 0,1,2, . . ..

Y is the number of heads in two tosses of a

fair coin; Y = 0,1,2.
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3.2 Probability distributions

Probability distribution of Y : the probability

associated with each possible value of Y ,

p(y) = P(Y = y), y ∈ range(Y ).

An event is a statement about Y , e.g. Y ≤ 3.

If A is an event,

P(A) = P(Y ∈ A) =
∑

y∈A

P(Y = y).

i.e. the probability of event A is the sum of

the probabilities of outcomes that belong to

the event.

Notes:

(i) Discrete: the probabilities add to 1, since

each outcome maps onto a single y value and

takes its probability with it.

(ii) Continuous: P(Y = y) is replaced by the

density function f(y), where the integral of

f(y) over the range of values for Y is 1; i.e.

probabilities are given by areas under the curve

f(y).
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Examples: We have already met the

Bernoulli, uniform (Section 2.5), and geomet-

ric distributions (Section 2.6).

As with probabilities in general, we have:

• 0 ≤ p(y) ≤ 1 for all y ∈ range(Y ).

• ∑y p(y) = 1.
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3.3 Expectation

The expectation, expected value or population

mean of the random variable Y is

E(Y ) =
∑

all y

yP(Y = y)

Notes:

• It is a population parameter, often denoted

µY or µ,

• obvious analogy to the sample mean,

• average, weighted by the probability,

• ∑

y(y − µ)P(Y = y) = 0,

indicating that µ is the ‘centre of gravity’,

• only exists if sum absolutely convergent, i.e.

∑

all y

|y|p(y) < ∞
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Examples:

(i) Equally likely outcomes. If Y takes the val-

ues y1, . . . , yn with equal probability, then

P(Y = y1) = P(Y = y2) = . . . = P(Y = yn) =
1

n

and

µ =
∑

y
yP(Y = y) =

n
∑

i=1

yiP(Y = yi) =
n
∑

i=1

yi
1

n
= ȳ

(ii) Just two values.

If Y takes values either a or b with probabilities

(1 − p) and p respectively, then

µ =
∑

y
yP(Y = y) = a(1 − p) + bp

Note that the mean µ shifts between a and b

as the probability p moves from 0 to 1.
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Functions of a random variable

Suppose we want to find the average ki-

netic energy of a gas molecule. We know

K = mV 2/2, and have the distribution of the

velocities V . We therefore want the expected

value E(mV 2/2).

This leads us to an important result.

Theorem 3.1: If g(y) is any (deterministic)

function of Y ,

E{g(Y )} =
∑

all y

g(y)P(Y = y) (∗)

provided the sum is absolutely convergent, i.e.,

∑

y
|g(y)|P(Y = y) < ∞.

We will typically assume the expectation exists.

We will now prove this Theorem.
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Proof: [Not examinable] Any function of a

random variable is also a random variable. Let

X = g(Y ), then by definition

E(X) = µX =
∑

x
xP(X = x).

We need to prove that the rhs is the same as

(*) above. Now

P(X = x) =
∑

y:g(y)=x

P(Y = y)

by the Addition Rule, where y : g(y) = x is the

set of y’s mapped onto x by g. So we have, by

substituting,

E(X) =
∑

x
x







∑

y:g(y)=x

P(Y = y)







=
∑

x

∑

y:g(y)=x

xP(Y = y)

=
∑

x

∑

y:g(y)=x

g(y)P(Y = y),
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since x = g(y), so that

E(X) =
∑

y g(y)P(Y = y) which is the right-

hand-side of (*), as required.

##

This last step follows because the sets

{y : g(y) = x} are disjoint, and every y belongs

to some set.

Note that

E[g(Y )] 6= g[E(Y )].

Example: Suppose we have a random variable

Y with the following probability distribution:

Y -1 0 1

P(Y = y) 1
4

1
2

1
4

Let X = g(Y ) = Y 2. What is E(X)?
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One easy solution is simply to observe that X

takes values

X 0 1

P(X = x) 1
2

1
2

Then

E(X) = 0 × 1

2
+ 1 × 1

2
=

1

2
.

Using Theorem 3.1:

E(X) =
∑

y
g(y)P(Y = y)

=
∑

y
y2P(Y = y)

= (−1)2 × 1

4
+ 02 × 1

2
+ 12 × 1

4
=

1

2
.
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The population variance, denoted σ2,

measures the spread of a population:

σ2 = Var(Y ) = E[(Y − µ)2]

=
∑

y
(y − µ)2P(Y = y)

It is known as the second moment about the

mean or simply the variance.

The population standard deviation σ of Y

is the square root of the variance.

Notes:

• E(Y ) and Var(Y ) can go a long way towards

characterising a distribution.

• Var(Y ) = 0 if and only if Y has all its prob-

ability concentrated at the point Y = µ.

• If g(Y ) = Y k, then E(Y k) is known as the

kth moment of Y .
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Examples:

(i) Bernoulli distribution

µ = E(Y ) = 1 × p + 0 × (1 − p) = p.

σ2 = Var(Y ) = E[(Y − µ)2]

= (1 − p)2p + (0 − p)2(1 − p) = p(1 − p).

(ii) Uniform distribution over a finite set

Let the possible values for Y be y1, . . . , yn. We

showed earlier that µ = E(Y ) = ȳ. Then,

σ2 = E[(Y −µ)2] = (y1−µ)2
1

n
+ . . .+(yn−µ)2

1

n

=
1

n

n
∑

i=1

(yi − µ)2 =
1

n

n
∑

i=1

(yi − ȳ)2.
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(iii) A special case of the uniform distribu-

tion: We often take yi = i, i.e., each obser-

vation is replaced by its rank value. Then we

can show in general that

µ =
n + 1

2

and

σ2 =
n2 − 1

12
.

(You are asked to find the mean and variance

of this uniform distribution in Tutorial 2.)

These results have important applications to

the construction of nonparametric tests based

on the ranks of the data.
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The geometric distribution

Recall that Y is geometric with probability of

success p if

P(Y = y) = p(1 − p)y−1, y = 1,2, . . .

If Y has a geometric distribution with prob-

ability of success p, then E(Y ) = 1/p and

Var(Y ) = (1 − p)/p2.

We will prove these results in the lecture.
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3.4 Expected values of linear functions of

random variables

There are several important results, and we

will prove each of the following in lectures:

Theorem 3.2:

• E(c) = c, for any constant c.

• E{cg(Y )} = cE{g(Y )}, for any constant c.

• E{∑i cigi(Y )} =
∑

i ciE{gi(Y )}, for any

constants ci.

These results make finding expected values

considerably easier.

The proofs are straightforward.
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We can use Theorem 3.2 to show that

Var(Y ) = E(Y 2) − µ2

This is an extremely useful result and provides

an alternative to finding the variance from first

principles.

Examples:

(i) The above result provides an easy proof of

the variance for the Bernoulli distribution.

σ2 = E(Y 2) − p2 since we know that µ = p.

Now,

E(Y 2) = 12 × p + 02 × (1 − p) = p.

So

σ2 = p − p2 = p(1 − p).

(ii) Find the variance of the geometric distribu-

tion with probability p. (We will work through

this in the lecture.)
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3.5 Random sampling

In many cases, we sample items at random

from a population. We use this scenario to

motivate the binomial and hypergeometric dis-

tributions.

This might be a population of people, e.g. in

a city, or parts off a production line.

Consider the case where there are just two out-

comes for each item – success or failure.

If the population has size N , of which m are

successes, then choosing one item at random

implies a probability of p = m/N that it will be

a success.

What is the probability that the second item

drawn will be a success? The answer depends

on how you do the sampling.

c©IMS Semester 1, 2004 3-18



There are two cases:

Sampling with replacement: The item cho-

sen is returned before choosing the next one.

Then the probability remains constant at p =

m/N for each item drawn.

Taking a random sample in this manner leads

to the binomial distribution.

Sampling without replacement: The item

chosen is not returned before choosing the

next one. Then the probability changes each

time, e.g. let S1 be a success on the first

draw, etc, then

P(S2|S1) = (m − 1)/(N − 1)

P(S2|F1) = m/(N − 1)

This leads to the hypergeometric distribution.

The two distributions are closely related.

Under the right conditions we can approximate

the hypergeometric distribution by the bino-

mial distribution.

c©IMS Semester 1, 2004 3-19

3.6 Binomial distribution

Suppose n individuals are drawn one-by-one

from the population, with replacement be-

tween the draws. On each draw, it is assumed

that each of the N individuals has the same

chance of being chosen and the successive

draws are assumed to be independent. Then

there are Nn possible sequences of choices.

Suppose now that we are interested in the dis-

tribution of the number of successes y in the

sample. Each draw is an independent trial and

p = m/N is the probability of success, so the

probability of such a sequence is

p . . . p(1 − p) . . . (1 − p) = py(1 − p)n−y.

There are also
(n

y

)

=
n!

y!(n − y)!

ways of getting y successes from n draws.
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This gives the binomial probability function of

obtaining y successes from n independent tri-

als:

P(Y = y) =
(n

y

)

py(1 − p)n−y

for y = 0,1, . . . , n; 0 ≤ p ≤ 1. We write

B(n, p).

In summary, the binomial situation is:

• n independent Bernoulli trials,

• at each trial, there can be a failure or a suc-

cess,

• the probability of failure is (1 − p) and the

probability of success is p,

• our random variable Y is the number of suc-

cesses.

c©IMS Semester 1, 2004 3-21

The tree diagram nicely describes the probabil-

ity function for the binomial distribution, and

we present it here as an alternative derivation.

Recall that in a tree diagram:

• the probability of any pathway is the prod-

uct of the (conditional) probabilities along that

pathway;

• the probability of reaching any node is the

sum of the probabilities of all pathways to that

node;

• the sum of all probabilities at the terminating

nodes is 1.
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The tree diagram for the binomial distribution

with n = 4 is

q

q

q

q

q

q

q

q

q

q

p

p

p

p

p

p

p

p

p

p

0

1

2

3

4

Fig. 3.1: Tree diagram for binomial distribu-

tion, n = 4.

In general, after n trials, the final nodes at the

right hand end have 0,1, ..., n successes.
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By comparison, the geometric distribution is

just followed until the first success:

q q q q q q

p p p p p p

Fig. 3.2: Tree diagram for geometric distribu-

tion.

We are only interested in nodes which repre-

sented either 0 or 1 success and any number

of failures.

c©IMS Semester 1, 2004 3-24



Summary of binomial: At any given node,

after n trials,

• all pathways have probability pyqn−y, where

y is the number of successes,

• the number of paths that lead to that node

is the number of ways of ordering y successes

among n trials, i.e.
(

n
y

)

.

Hence we are led to:

The random variable Y is said to have a bi-

nomial distribution B(n, p), with n trials and

probability of success p if and only if

P(Y = y) =
(n

y

)

pyqn−y, y = 0,1, . . . , n,

0 ≤ p ≤ 1.
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Note that the binomial probabilities are the

terms in a binomial expansion:

(p + q)n =
n
∑

y=0

(n

y

)

pyqn−y = 1.

If you are unfamiliar with these ideas you need

to work through Section 3.4 in WMS.

Exercises:

(i) Show that
(

n
y

)

=
(

n−1
y

)

+
(

n−1
y−1

)

.

(ii) Give a literal explanation of why this for-

mula works.
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As an example, consider n = 20, p = 0.5:
0.

0
0.

05
0.

10
0.

15
0.

20

Number of successes

P
ro

ba
bi

lit
y

0 1 2 3 4 5 6 7 8 9 1011121314151617181920

Fig. 3.3: Binomial distribution, n=20, p=0.5
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Example: A simple noise model. If a single

bit (0 or 1) is transmitted over a noisy com-

munications channel, it has probability p = 0.1

of being incorrectly transmitted.

Now suppose we use a ‘majority decoder’; that

is, we send each bit an odd number n of times

and we decipher that bit as 0 or 1 according

to whichever occurs most often. What is the

probability of getting the ‘correct’ bit for dif-

ferent values of n, say, 3, 5, 7?

Consider n = 5, and let Y be the number of

bits in error. The probability that the message

is received correctly is then the probability of

2 or fewer errors.

Show that P(Y ≤ 2) = 0.9914.
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Mean and variance of binomial distribution

Theorem 3.3: If Y is Bin(n, p), then

E(Y ) = np and Var(Y ) = np(1 − p).

Proof:
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3.7 Hypergeometric distribution

Here we sample, but the items sampled are

not replaced and hence cannot be selected the

next time. The probability of selection changes

according to what has already been selected.

The number of possible ways of drawing n

items, taking order into account, is now

N(n) = N(N − 1)...(N − n + 1),

where n ≤ N .

Note that N(n) =
(

N
n

)

n!
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How might we get y ‘successes’ in our sam-
ple of size n if there are m ‘successes’ in the
population of N from which we sample without

replacement?

Suppose the first y elements in the sample are
successes, and the remaining n− y are failures.

The probability of this happening is

m

N

(m − 1)

(N − 1)
. . .

(m − y + 1)

(N − y + 1)

×(N − m)

(N − y)
. . .

(N − m − (n − y) + 1)

(N − y − (n − y) + 1)

=
m(y)(N − m)(n−y)

N(n)

But this is just one of the
(

n
y

)

different possible
patterns of y successes and n− y failures in an
ordered sample of size n, each of which has

the same probability. That is

P(Y = y) =
(n

y

)m(y)(N − m)(n−y)

N(n)
=

(

m
y

)(

N−m
n−y

)

(

N
n

) .

This is the hypergeometric distribution for the

number of successes Y .
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The similarity in the formula for the binomial

and hypergeometric distributions can be seen

as follows:

Binomial: P(Y = y) =
(

n
y

)

my(N−m)n−y

Nn

Hypergeometric:

P(Y = y) =
(n

y

)m(y)(N − m)(n−y)

N(n)

where the () around the exponent is as defined

earlier.

Note:

(i) the limits on the values Y can take,

(ii) if the sampling fraction n/N is low, it is un-

likely that you will get the same item sampled

again, and the binomial and hypergeometric

are very close together.

More formally, N(n) ≈ Nn if N is large and n is

small relative to N .

In practice, this makes the binomial distribu-

tion a useful approximation to the hypergeo-

metric. Hypergeometric probabilities converge

to binomial probabilities as N becomes large

and m/N is held constant.
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Mean and variance

Theorem 3.5: If Y has a hypergeometric dis-

tribution, with a sample size n, and m suc-

cesses in a population of N , then

E(Y ) = nm/N, var(Y ) =
nm(N − m)(N − n)

N2(N − 1)
.

Proof: Omitted.

Note the similarity with the binomial distribu-

tion if we take p = m/N .

The factor (N − n)/(N − 1) is known as the

finite population correction.
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Here is a comparison of the two distributions.

What do you notice, and why?

Hyper
Binomial

0.
0

0.
1

0.
2

0.
3

0.
4

Fig. 3.4: Binomial and Hypergeometric; n=10;

m=5, N=20.
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Example: A batch of 5000 electrical fuses

contains 5% defectives. If a sample of 5 fuses

is tested, what is the probability of observing

at least one defective?

Is this a hypergeometric or binomial situation?

Let Y be the number of defectives observed. It

is reasonable to assume that Y is approximately

binomial because the batch is large. Then

P(Y ≥ 1) = 1 − P(Y = 0) = 1 −
(5

0

)

p0q5

= 1 − 0.955 = 0.226.

So even with a small sample, the probability

of obtaining at least one defective is still quite

high.

N.B. What assumptions are we making here?
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3.8 Normal distributions

(WMS, p.170)

This is the first continuous distribution we

have seen. It is included in this Chapter as

revision because we need it for the normal

approximation to the binomial distribution.

The normal distribution N(µ, σ2) is described

by a smooth curve called a density function

(rather than by a probability histogram):

f(y) =
1

σ
√

2π
e−(y−µ)2/(2σ2),

which has mean µ and standard deviation σ.

Then:

• the total area under the curve is 1;

• the probability of lying within the limits (a, b)

is given by the area between vertical lines at

y = a and y = b. These are obtained by nu-

merical integration (in practice, we use tables

or software).
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Some examples follow:

y

f(
y)

-6 -4 -2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

N(0,2)
N(0,1)
N(2,1)

Fig. 3.5: Three normal distributions N(µ, σ).
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It is not practical to have a table of probabili-

ties for every pair (µ, σ2), but happily we only

need one table - that for the standard normal

distribution.

This is because any random variable Y ∼
N(µ, σ2) can be written as a linear transfor-

mation of Z ∼ N(0,1), i.e.,

Y = σZ + µ

so that Z = Y −µ
σ .

This follows from the general result that if X ∼
N(µ, σ2), then for constants a and b,

a + bX ∼ N(a + bµ, b2σ2).

[We will prove this later using moment gener-

ating functions.]
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The probabilities are determined using the

standard normal distribution with µ = 0 and

σ2 = 1 and density function:

φ(z) =
1√
2π

e−z2/2.

The probability that Y lies between a and b

is the probability that the transformed variable

Z = (Y − µ)/σ lies between the limits

(

a − µ

σ

)

,

(

b − µ

σ

)

.

If Φ(z) = P(Z ≤ z), then we can tabulate Φ(z),

and the required probability is

Φ

(

b − µ

σ

)

− Φ

(

a − µ

σ

)

= Φ(zb) − Φ(za).
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• The tables (e.g. WMS, p.792, Table 4) give

the probability of being to the right of a given

point, i.e.

P(Z > z) = 1 − Φ(z),

for values of z > 0.

• Probabilities to the left are obtained as

P(Z ≤ z) = 1 − P(Z > z).

• Probabilities for z < 0 are obtained by sym-

metry. For example,

P(Z ≤ −2) = P(Z > 2)

Remember to always draw the picture.
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Exercises: Use the tables to convince yourself

of the following:

• 68.3% of the time Y will lie within

(µ − σ, µ + σ),

• 95.4% of the time Y will lie within

(µ − 2σ, µ + 2σ),

• 99.7% of the time Y will lie within

(µ − 3σ, µ + 3σ).

e.g.

P(µ − 2σ ≤ Y ≤ µ + 2σ) = P(−2 ≤ Z ≤ 2)

= 1 − 2 × 0.0228 = 0.9544.
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3.9 Normal approximation to the bino-

mial

Binomial probability calculations quickly be-

come tedious when n is large.

Figure 3.2 demonstrates the ‘smoothness’ that

we get in the probability histogram for large n.

Suppose we use a smooth normal curve as an

approximation. Which normal curve should we

take?

We know that for a binomial, µ = np and σ =
√

npq, so it makes sense to use a normal curve

with this mean and standard deviation.

Here, X ∼ B(20,0.5), which gives µ = 10,

σ2 = 5.

What is the probability that X = 10?

c©IMS Semester 1, 2004 3-42



Exact calculation using binomial probability

function:

P(X = 10) =
(20

10

)

.510.510 = .1762.

Using the normal approximation: since the in-

tegral at any single point is always zero, we

define a small interval to integrate over. Here,

the obvious choice is (9.5,10.5), and we de-

note the ‘new’ random variable by Y . Thus,

the normal approximation requires the area be-

tween 9.5 and 10.5, i.e.

Φ((10.5 − 10)/
√

5) − Φ((9.5 − 10)/
√

5)

= Φ(0.5/
√

5) − Φ(−0.5/
√

5)

= 0.5871 − 0.4129 = 0.1742.
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Continuity Correction

If X is binomial and Y is normal with the same

µ and σ, then

P(X ≤ a) ≈ P(Y < a + 0.5)

P(X < a) ≈ P(Y < a − 0.5)

P(X ≥ a) ≈ P(Y > a − 0.5)

P(X > a) ≈ P(Y > a + 0.5)

The application of the continuity correction is

an important general method.
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How good is the approximation?

Excellent when p = 0.5, since the binomial dis-

tribution is symmetric. It works well if np ≥ 10

for p = 0.5.

It works less well when p 6= 0.5, because the

binomial is skew, as shown by the following for

n=10, p=1/6:

0.
0

0.
1

0.
2

0.
3

0.
4

Number of successes

P
ro

ba
bi

lit
y

0 1 2 3 4 5 6 7 8 9 10

Fig. 3.6: Binomial, n=10, p=1/6

‘Rule of thumb’: approximation works well if

both np and n(1− p) are ≥ 10, i.e. have larger

n as p departs from 0.5.
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Example 3.3: You sample 100 travel claims

by politicians. If the true proportion of claims

with errors is 30%, what is the probability that

you will see fewer than 20 claims with errors in

your sample? Let X be the number of claims

with errors.

• First identify the steps you need to take in

order to use the normal approximation:

1. Is np ≥ 10?

2. µ = np = 30, σ2 = npq = 21 for Y .

3. Convert Y to Z, including continuity cor-

rection.

• Now do the calculations:

We want P(X < 20) = P(X ≤ 19) =?
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3.10 Poisson distribution

This is probably the most widely used dis-

crete distribution, and arises from random pro-

cesses. It is named after the French mathe-

matician Simeon Denis Poisson (1781–1840),

although it was actually introduced in 1718 by

De Moivre.

One of the earliest uses of the Poisson distri-

bution was to model the number of alpha par-

ticles emitted from a radioactive source during

a given period of time, and is used as a model

by insurance companies for freak accidents. It

is an important distribution in its own right,

but can also be derived as a limiting form of

the binomial distribution when n is very large, p

is very small and np is still small (roughly < 7).
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Motivating example: Consider the

BSE/vCJD epidemic and suppose we are

investigating whether the disease has reached

South Australia.

Let Y be the number of cases of vCJD diag-

nosed in a year, Y = 0,1, . . . , n. What is the

probability of no cases in 2002, i.e. P(Y = 0)?

Consider each person as a Bernoulli trial. Then

Y is binomial and

P(Y = 0) =
(n

0

)

p0(1 − p)n = (1 − p)n.

Let the expected number of cases be λ = np.

Then p = λ/n, and

P(Y = 0) =

(

1 − λ

n

)n

,

which converges to e−λ as n → ∞. To show

this, expand nlog(1 − λ/n) as a power series,

or use l’Hospital’s Rule.
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What is the probability of one case?

P(Y = 1) =
(n

1

)

p(1 − p)n−1

= n
λ

n

(

1 − λ

n

)−1 (

1 − λ

n

)n

where the third term in the product tends to

1 as n → ∞, and the fourth term tends to e−λ

as above. Then

P(Y = 1) = λe−λ.

We can repeat this argument for Y = 2,3 . . ..

In general,

P(Y = y) =
(n

y

)

py(1 − p)n−y

=
n!

y!(n − y)!

(

λ

n

)y (

1 − λ

n

)n−y

=
λy

y!

n!

(n − y)!

1

ny

(

1 − λ

n

)n (

1 − λ

n

)−y
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As n → ∞, λ/n → 0,

n!

(n − y)!ny
→ 1,

(

1 − λ

n

)n

→ e−λ

and
(

1 − λ

n

)−y

→ 1.

Thus we have the Poisson probability function

P(Y = y) =
λy

y!
e−λ y = 0,1, . . .

Exercise: Show that
∑∞

y=0 P(Y = y) = 1.
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When n is large and p is small, then the bi-

nomial distribution Bin(n,p) is well approxi-

mated by the Poisson distribution with param-

eter λ = np. Here are two examples of Poisson

distributions (note that as λ increases the dis-

tribution becomes more nearly normal):
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Fig. 3.7: Poisson distributions, λ = 3,10.
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Mean and variance

Theorem 3.6: If Y has a Poisson distribution

with rate λ, then

E(Y ) = λ and var(Y ) = λ.

Proof: We know by construction that the ex-

pected number of counts per unit time is λ. It

is also straightforward to show this directly.
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Example 3.4: Death by horsekicks.

von Bortkiewitz collected data on fatalities

that resulted from being kicked by a horse for

10 cavalry corps in the Prussian army over a

period of 20 years, providing 200 corps-years

of data.

The first row in the following table gives the

number of deaths per year, Y , ranging from

0 to 4. The second row records how many

times that number of deaths was observed. For

example, in 65 of the 200 corps-years, there

was 1 death. In the third row, the observed

numbers are converted to relative frequencies

by dividing by 200, and the fourth row gives

the Poisson probabilities with ‘expected death

rate’ parameter λ = 0.61.

No.deaths/year 0 1 2 3 4

No.occurrences 109 65 22 3 1
Empirical dist’n .545 .325 .110 .015 .005
Fitted Poisson∗ .543 .331 .101 .021 .003
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∗ There were 122 deaths in the 200 observa-

tions, i.e. a mean of 0.61 per corps per year.

The ‘fitted’ Poisson then has this mean.

Calculating the fitted Poisson probabilities of

y deaths in a corps-year:

P(Y = 0) =
.610

0!
e−.61 = 0.5434

P(Y = 1) =
.611

1!
e−.61 = 0.3314

and so on.

Find the probabilities of 2,3,4 deaths as an ex-

ercise.

Note that we can find Poisson probabilities re-

cursively:

P(Y = y) =
λ

y
P(Y = y − 1).

[Similar relationships hold for other discrete

distributions.]
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Exercise: Suppose your lottery ticket has a

probability of 0.01 of winning a prize each

week. What is the probability that you will

win 0,1,2,... prizes during the year if you enter

every week?
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3.11 Moment generating functions

The kth moment of Y about the origin is

µ′
k = E(Y k) k = 1,2, . . . .

The kth moment of Y about the mean is

µk = E{(Y − µ)k} k = 1,2, . . . .

The moments about the mean are known as
central moments.

For example, the population mean is µ′
1, and

the variance is µ2, the second central moment.

There may be significant difficulties evaluating
these, which usually involve summation and in-
tegration. We seek an easier way using differ-
entiation.

The moment generating function m(t) of Y
is defined as E(etY ).

The mgf for Y exists if there is some b > 0
such that m(t) < ∞ for |t| < b. That is, m(t)
is finite for t in an open interval containing 0.
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The name comes from the property that the

mgf generates the moments of a distribution.

Theorem 3.7: If the mgf m(t) exists, then for

any positive integer k

dkm(t)

dtk
|t=0 = m(k)(0) = µ′

k.

Proof: This is an important result and we

will prove it in the lectures. It tells us that

the kth derivative of the mgf with respect to t,

evaluated at t = 0, is the kth moment of the

distribution.

We will show later that the mgf proves very

useful in deriving distributions; e.g. if we know

m(t), we can tell what the distribution of Y is.
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The mgf

• finds the moments of a distribution by differ-

entiation rather than by summation and inte-

gration;

• if the mgf exists, then so do all the moments;

and

• if the mgf exists, it is unique for that distri-

bution.
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Example 3.5: Find the mgf for the Poisson

distribution .

Solution:

m(t) = E(etY ) =
∑

y
etyP(Y = y)

=
∞
∑

y=0

etye−λλy

y!
= e−λ

∞
∑

y=0

(λet)y

y!

= e−λeλet
= eλet−λ

= eλ(et−1).

Now use this result to find the first and second

moments of the Poisson distribution.

Example: if m(t) = exp{2.1(et − 1)}, what is

the distribution of Y ?
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3.12 Bounding probabilities

Tail Sum Formula for the expected value

of a random variable:

Consider the simple situation where the pos-

sible values of a discrete random variable are

0,1, . . . , n. Then

E(Y ) =
n
∑

i=0

iP(Y = i)

= P(Y ≥ 1) + P(Y ≥ 2) + . . .

=
n
∑

j=1

P(Y ≥ j).

Can you see why?

This relationship tells us that the expected

value can be written as a sum of tail prob-

abilities. Obviously some bound on these is

needed or they will get too big. Markov’s in-

equality makes these ideas explicit, and we now

motivate the inequality with an example.
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Example: Suppose Y = 0,1,2, . . . is a discrete

random variable with E(Y ) = 3.

What is the largest that P(Y ≥ 100) could

possibly be?

Think of balancing the distribution at 3; how

could we get as much probability as possible in

[100,∞]? Intuitively, we could put some proba-

bility at 100 and the rest at 0. The distribution

will be balanced at 3 if the probability at 100

is 3/100, since

E(Y ) = 0 × P(Y = 0) + 100 × 3

100
= 3.

This suggests that P(Y ≥ 100) can be as large

as 3/100 but that it cannot be larger.
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We prove this as follows. We know

E(Y ) =
∑

i

iP(Y = i) = 3.

The terms with i ≥ 100 contribute
∑

i≥100 iP(Y = i) to the sum, so that

3 ≥
∑

i≥100

iP(Y = i)

≥
∑

i≥100

100P(Y = i)

= 100P(Y ≥ 100).

Therefore,

P(Y ≥ 100) ≤ 3

100
.
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Markov’s Inequality

Recall that E(Y ) is the balance point of a dis-

tribution. Markov’s Inequality puts a bound on

how large the tail probability can be; explic-

itly, it gives the relationship between the tail

probabilities and the expected value of a dis-

tribution. If Y ≥ 0, then we cannot go too far

out to the right without tipping the ‘seesaw’.

We can ask: how much probability can be out

beyond a point k? Generalising the argument

given above,

E(Y ) ≥
∑

i≥k

iP(Y = i)

≥
∑

i≥k

kP(Y = i)

= kP(Y ≥ k).

Hence we obtain Markov’s Inequality:

P(Y ≥ k) ≤ E(Y )/k.
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Example 3.6: Suppose the average family in-

come in a region is $10,000. Find an upper

bound for the percentage of families with in-

comes as large as or over $50,000.

We are given E(Y ) = 10,000 and k = 50,000.
From Markov’s Inequality,

P(Y ≥ 50000) ≤ 10000

50000
= 0.2.

That is, at most 20% of families have incomes

as large as or over $50,000, whatever the shape

of the distribution.

What does it imply if the bound is achieved?

Consider the inequalities that have to be sat-

isfied in the derivation. It implies that there

is no probability between 0 and k, and that all

the probability at or beyond k is concentrated

at k. That is,

E(Y ) = kP(Y = k) + 0P(Y = 0).

For the example, this implies that 80% of fam-

ilies have $0 income, and 20% have $50,000

income.
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3.13 Tchebyshev’s Inequality

Markov’s Inequality is quite ‘weak’, but we

now use it to obtain a much better bound

on tail probabilities, known as Tchebychev’s

Inequality. It makes precise the idea that a

random variable is unlikely to be more than a

few standard deviations away from its mean.

Consider P(|Y − µ| ≥ kσ) = P(
|Y −µ|

σ ≥ k).

If we have a normal r.v. Y , these tail probabil-

ities are P(|Z| ≥ k), where

k 1 2 3
.3174 .0456 .0027

(Check these using Table 4.) But what can we

say in general about the size of the tail proba-

bilities, whatever the shape of the distribution?

c©IMS Semester 1, 2004 3-65

Let Y be any discrete random variable, and let

W =
(Y − µY )2

σ2
Y

.

Then

E(W ) =
1

σ2
Y

E[(Y − µY )2] = 1.

Using Markov’s Inequality we can write (drop-

ping the subscript Y )

P(|Y − µ| ≥ kσ) = P

(

|Y − µ|
σ

≥ k

)

= P(W ≥ k2)

≤ E(W )/k2 = 1/k2.

Thus we have Tchebyshev’s Inequality:

P(|Y − µ| ≥ kσ) ≤ 1/k2.

It states that the probability a random variable

differs from its mean by more than k standard

deviations is at most 1/k2. The significance of

the result is that it is true no matter what the

shape of the distribution.
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Here are the bounds for k = 1,2,3:

k 1 2 3

1/k2 1.000 .2500 .1111

As this table shows, the bound will be very

crude for a distribution that is approximately

normal.

Under what conditions does equality occur?

P(|Y − µ| ≥ kσ) =
1

k2
⇒ k2P(|Y − µ| ≥ kσ) = 1

i.e. k2P(W ≥ k2) = 1. Thus equality

is achieved when W has a 2-point distribu-

tion with values 0 and k2, with probabilities

(1 − 1/k2) and 1/k2 respectively.

Optional exercise: What values does Y then

take, and what are their probabilities?
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Note that we can equivalently present Tcheby-

chev’s Inequality as a lower bound:

P(|Y − µ| < kσ) ≥ 1 − 1

k2
.

This is often a more convenient form of the

inequality.
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4 CONTINUOUS DISTRIBU-

TIONS

We now assume we have variables which take

‘continuous’ values. For example:

• survival time of patients following treatment

for cancer,

• yield from an agricultural experiment, such

as weight or height or protein content,

• time to failure of a piece of equipment,

• consumer price index.

Note: It is necessary for you to revise integrals,

integration by parts, etc, from Maths I or IM.
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4.1 Cumulative distribution function F(y)

The cdf can be used to describe probabiliy dis-

tributions for discrete and continuous random

variables.

If Y takes values on (−∞,∞) then the cumu-

lative distribution function F(y) is

F(y) = P(Y ≤ y).

Consider the familiar discrete binomial distri-

bution:

Example 4.1. Y ∼ Binomial(n, p):

F(y) = P(Y ≤ y) =
y
∑

i=0

P(Y = i).

Example 4.2. Z ∼ N(0,1):

F(z) = P(Z ≤ z) =

∫ z

−∞
φ(u)du =

∫ z

−∞
1√
2π

exp(u2/2)du
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The cdf: is usually denoted by upper case

letters, e.g., F , Φ.

Properties of the cdf:

• Definition applies to all discrete and contin-

uous variables,

• F(y) is a non-decreasing function of y,

• limy→−∞ F(y) = 0,

• limy→∞ F(y) = 1,

• F(y) is right continuous.

By right continuous, we mean that if you take

the limit as y → y0+ you get F(y0), but if you

take limit as y → y0− (i.e. from below) you

may not get F(y0).
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4.2 Probability density functions

If Y has a cdf F(y) which is continuous and

which is differentiable except at a countable

number of points on −∞ < y < ∞, then Y is

said to be a continuous random variable. (We

can draw the cdf without lifting the pen off

the paper.)

If Y is continuous with cdf F(y), then f(y)

defined by

f(y) =
dF(y)

dy
= F ′(y)

if the derivative exists, and is zero elsewhere,

is called the probability density function (pdf),

or density function of Y .

The pdf is important for describing continuous

random variables. Pdf’s are usually denoted by

lower case letters, such as f .
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Properties of f(y):

• f(y) ≥ 0, (note that the pdf is not a prob-

ability function and it can take values greater

than 1)

• f(y) is a piece-wise continuous function,

• ∫∞−∞ f(y)dy = 1,

• ∫ y
−∞ f(u)du = F(y) = P(Y ≤ y), where we

note the ‘dummy’ variable u in the integration,

• there is probability 0 associated with any in-

dividual point; only intervals have a probability

content,

• P(a ≤ Y ≤ b) =
∫ b
a f(y)dy = F(b) − F(a).

Given that f() is the derivative of F(), this is

essentially the Fundamental Theorem of Cal-

culus.
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Fig. 4.1: A generic density function f(y)

The shaded area is

P(3 ≤ Y ≤ 6) =

∫ 6

3
f(y)dy = F(6) − F(3).
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Example 4.3: the standard uniform dis-

tribution. Consider both f(y) and F(y) for

the uniform distribution on (0,1), which has

important applications in generating random

numbers and simulation; we write Y ∼ U(0,1).

f(y) = 1 for 0 < y < 1, and 0 elsewhere.

Sketch the density function.

Sketch the cdf:

F(y) =











0 if y < 0
y if 0 ≤ y ≤ 1
1 if y > 1
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Example 4.4. Suppose f(y) = cy for 0 < y < 2

and 0 elsewhere, where c is a constant.

What is the value of c?

And what is P(1 < Y < 2)?
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Quantiles: Suppose the cdf F is strictly in-

creasing on an interval I, 0 to the left of I and

1 to the right of I. Then the inverse function

F−1 is well-defined.

The pth quantile of the distribution F is defined

to be that value yp of the random variable such

that F(yp) = p. Thus yp = F−1(p).

Special cases:

p = 1
2

p = 1
4

p = 3
4
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4.3 Expected values

These are now defined in terms of integrals as

E(Y ) =
∫ ∞

−∞
yf(y)dy

where the expectation is defined provided the

integral converges absolutely, i.e.

E(|Y |) =

∫ ∞

−∞
|y|f(y)dy < ∞

Theorem 4.1: E{g(Y )} =
∫∞
−∞ g(y)f(y)dy.

Proof omitted (it is similar to the discrete

case).

Again, this theorem is useful because we don’t

have to find the density function of g(Y ) in

order to find its mean and other moments.

Note: The computing formula for the popula-

tion variance is as before

Var(Y ) = E(Y 2) − {E(Y )}2.
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Theorem 4.2: For any random variable Y ,

functions gi(Y ) and constants ci,

• E(c) = c,

• E{cg(Y )} = cE{g(Y )},
• E{∑i cigi(Y )} =

∑

ciE{gi(Y )}.

Proof: This is obtained by straightforward in-

tegration, and is left as an exercise. Note that

the interchange of summation and integration

is possible since the integral, if it exists, is ab-

solutely convergent.

Corollary: Var(aY + b) = a2Var(Y ).
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Example 4.3 (cont.): U is uniformly dis-

tributed on (0,1). Suppose Y = U2. We can

find the moments of Y without having to find

its distribution.

For example, E(Y ) = E(U2) = 1/3, and

Var(Y ) = E(Y 2) − {E(Y )}2

= E(U4) − 1/9

=

∫ 1

0
u4du − 1/9

= u5/5|10 = 1/5 − 1/9

= 4/45 = 0.0889.

Example 4.4 (cont.): Find the mean and

variance of Y when f(y) = cy, 0 < y < 2.

Recall c = 1/2 and f(y) = y/2.
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4.4 Uniform distribution on (a, b)

Y has the uniform distribution on the interval

(a, b) if

f(y) =

{

1/(b − a) if a < y < b,
0 otherwise

Note that:

• this fulfils all the criteria for a pdf,

• the cdf F(y) is given by:

F(y) =











0 y ≤ a,
(y − a)/(b − a) if a < y < b,
1 y ≥ b

• the probability of being in an interval (x, y)

where a ≤ x < y ≤ b is

P(x < Y < y) = (y − x)/(b − a),

i.e. the proportion of the full interval occupied

by the interval (x, y).
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Properties:

We can rescale Y to the interval (0,1) by

U = (Y − a)/(b − a),

where now 0 < U < 1, and

Y = a + (b − a)U.

If we generate a random value for U , we can

then convert it to a random value for Y .

E(U) =

∫ 1

0
udu = u2/2|10 = 0.5,

so that

E(Y ) = a + (b − a)E(U)

= a + (b − a)/2 = (a + b)/2.

Exercise: Show Var(U) = 1/12, and that

Var(Y ) = (b − a)2/12.
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Relationship between the Poisson and uni-

form distributions.

Suppose that the number of events that occur

in a time interval has a Poisson distribution.

If it is known that exactly one such event has

occurred in the interval (0, t) then the actual

time of occurrence is uniformly distributed over

this interval.

Example 4.5: The number of defective circuit

boards coming off a soldering machine follows

a Poisson distribution. During a specific 8-hour

day, one defective circuit board was found.

(a) Find the probability that it was produced

during the first hour of operation that day.

(b) Find the probability that it was produced

during the last hour of operation that day.
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4.5 Normal distributions

The random variable Y is normal N(µ, σ2) if it

has the density function

f(y) =
1

σ
√

2π
exp

{

−(y − µ)2

2σ2

}

.

For the particular case N(0,1), we use Z and

denote the density function by φ(z).

There is no simple formula for the cdf, so we

have

F(y) =

∫ y

−∞
f(w)dw, Φ(z) =

∫ z

−∞
φ(u)du,

where φ(u) = exp(−u2/2)/
√

2π is the standard

normal density function.

Note: We will show later that F(∞) = 1.
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Theorem 4.3: The random variable Y as de-

fined above has E(Y ) = µ and Var(Y ) = σ2.

Proof: There are two steps here. First we

show the result for Z, i.e. when µ = 0, σ2 =

1. Then we extend it to general Y by linear

transformation, i.e. Y = µ + σZ.

(i) Moments of Z ∼ N(0,1):

E(Z) =

∫ ∞

−∞
zφ(z)dz

=
∫ ∞

−∞
z

1√
2π

exp(−z2/2)dz.

zφ(z) is an odd function of z:

i.e. let h(z) = zφ(z), then h(z) = −h(−z).

See Figure 4.2.
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Fig. 4.2: Graph of zφ(z) versus z.

By symmetry, E(Z) = 0.
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As an exercise, we will check that the integral

is absolutely convergent. (Note that absolute

convergence holds for almost all the expecta-

tions we will consider, and we will usually as-

sume the condition holds unless stated other-

wise.)

For |Z|, the integrand becomes an even func-

tion, so the integral is then double the area.

Analytically:

E(|Z|) =
∫ ∞

−∞
|z| 1√

2π
exp(−z2/2)dz

= 2

∫ ∞

0
z

1√
2π

exp(−z2/2)dz.

Recall (Chain Rule, Maths I or IM) that
∫

f{g(u)}g′(u)du =
∫

f(x)dx.
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If we let x = g(z) = z2/2, then g′(z) = z, and

zdz = dx, so that E(|Z|) becomes

2
∫ ∞

0

1√
2π

exp(−x)dx =
2√
2π

(−e−x)|∞0 =

√

2

π
,

which is finite.

Check this as an exercise.

Now, Var(Z) = E(Z2) − E(Z)2.

So, how do we get E(Z2)?

Use integration by parts:
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(ii) For general Y , write E(Y −µ) and transform

under the integral to z = (y − µ)/σ. That is,

write

E(Y − µ) =
1

σ
√

2π

∫ ∞

−∞
(y − µ)e−(y−µ)2/(2σ2)dy.

Let z = (y − µ)/σ, so that dz = dy/σ. Then

E(Y − µ) =
1√
2π

∫ ∞

−∞
σze−z2/2dz

= σE(Z) = 0.

Therefore, E(Y ) = µ.

Can you see an easier way to show E(Y ) = µ

here?

[Note that in general it is easier to find the

moments of normal Y using the mgf.]
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Normal probabilities

For a general Y ∼ N(µ, σ2), we can find

P(Y > a) = P{(Y − µ)/σ > (a − µ)/σ}
= P{Z > (a − µ)/σ},

where Z ∼ N(0,1).

Check: Do the transformation using the inte-

gral!

Hence, we only need one table for Z.
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4.6 Cauchy distribution [Not in WMS]

This is given by the density

f(y) =
1

π{1 + (y − θ)2}
−∞ < y, θ < ∞,

where θ is a location parameter.

y

f(
y)

-5 0 5

0.
0

0.
1

0.
2

0.
3

0.
4

N(0,2)
Cauchy

Fig. 4.3: Cauchy distribution with θ = 0 and

a normal distribution. Note the similarity be-

tween the Cauchy and normal distributions.
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Note the long tails for Cauchy: the density

decreases so slowly that very large values of Y

can exist with substantial probability.

This leads to problems, and the mgf does not

exist.

Nevertheless, the Cauchy distribution has a

special role in the theory of statistics - it rep-

resents an extreme case against which conjec-

tures can be tested. It also turns up in sta-

tistical practice when you least expect it. For

example, the ratio of two standard normal ran-

dom variables has a Cauchy distribution.
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Here are 20 values from this distribution when

θ = 0:

-0.100 -0.667 0.647 -0.674 1.434
-0.439 12.060 0.343 0.842 -0.592
1.815 -2.267 1.204 2.385 0.345
2.044 -0.228 -6.197 8.298 -2.794

If we take E(Y − θ) here, directly or by sym-

metry, the areas cancel. However, if we try to

establish absolute convergence, we find that

E(|Y − θ|) = 2

∫ ∞

0
u

1

π(1 + u2)
du, u = y − θ

=
1

π
[log(1 + x)]∞0 , x = u2.

Hence we have to say that E(Y − θ) does not

exist in this case.

Question: How might we estimate θ here?

Clearly, E(Ȳ ) for a sample of size n does not

exist either!
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4.7 Exponential distribution

In many applications, interest centres on the

time taken for an event to occur. Examples

are:

• survival times for cancer patients,

• time to decay for radioactive atoms,

• time to failure of a piece of equipment.

These are characterised by continuous, non-

negative random variables. An example with

special properties is the exponential distribu-

tion, which is used extensively in reliability test-

ing. Generalizations are used in actuarial stud-

ies to model human lifetimes as a basis for

estimating life-insurance premiums.

The exponential distribution is very useful as a

model for right-skewed data.
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A non-negative random variable T is exponen-

tial with mean β if the density function

f(t) = (1/β)e−t/β, t ≥ 0, β > 0.

Note:

• ∫∞0 f(t)dt = 1.

• It is the continuous analogue of the geo-

metric distribution: the exponential distribu-

tion models the time to an event.

• Often used as a ‘waiting-time’ distribution,

with mean ‘time to event’ β.

• cdf is F(t) = P(T ≤ t) = 1 − e−t/β.

• β has units of time.

• λ = 1/β is called the rate and has units of

‘per unit time’.

• S(t) = 1 − F(t) = P(T > t) is known as

the ‘survivor function’. Here, S(t) = e−t/β. It

has an important role in the fields of Survival

Analysis and Reliability.
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Exp(0.5)

Fig. 4.4: Exponential distributions, Exp(β).

Regarded as ‘length of life’, lower β represents

earlier failure, and fewer survivors.
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Suppose we want P(a < T < b). This is equal

to
∫ b

a
f(t)dt = F(b) − F(a)

= (1 − e−b/β) − (1 − e−a/β)

= e−a/β − e−b/β

= S(a) − S(b).
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Moments:

Using integration by parts,

E(T) =
∫ ∞

0
(1/β)te−t/βdt

=
1

β

∫ ∞

0
te−t/βdt

=
1

β
{t(−βe−t/β)|∞0 +

∫ ∞

0
βe−t/βdt}

= 0 +

∫ ∞

0
e−t/βdt = −βe−t/β|∞0

= −β(0 − 1)

= β.

Exercise: Use the same method to find E(T2)

and hence show that Var(T) = β2.

Note that the mean equals the standard devi-

ation for the exponential distribution.
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Memoryless property of exponential distri-

bution

The exponential distribution is the only con-

tinuous distribution with this property.

Given that someone has survived to a certain

point in time, t0, what is the probability that

they survive a further s units?

This is given by the conditional probability

P{T > (t0 + s)|T > t0} =
P(T > (t0 + s) ∩ T > t0)

P(T > t0)

=
P(T > t0 + s)

P(T > t0)

=
S(t0 + s)

S(t0)

= e−(t0+s)/β+t0/β

= e−s/β

= P(T > s) = S(s)

which does not depend on t0.

c©IMS Semester 1, 2004 4-31

Thus the probability of surviving a further s

units given that you are alive at t0 is the

same as having survived s units in the first

place. (That is, the probability of surviving

a further s units is the same regardless of how

long you have already have survived.) This is

called the memoryless property of the expo-

nential distribution.
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The hazard function h(t):

This is the ‘instantaneous failure rate’,

h(t) = lim
δ→0

P(t < T ≤ t + δ|T > t)/δ

i.e. the risk of failing in a short interval (t, t+δ],

given that you are still alive at time t.

Using the same argument as for the memo-

ryless property on the previous slide, we can

show that the hazard function is (1− e−δ/β)/δ,

which tends to 1/β as δ → 0.

It follows that the hazard function for an ex-

ponential distribution is h(t) = λ = 1/β; it is

usually called the rate of the exponential dis-

tribution and is a constant.

Note it is true in general that

h(t) =
f(t)

S(t)
.

Thus for the exponential distribution, we have

f(t) = h(t)S(t) =
1

β
e−t/β.
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The hazard function has many different names,

including the:

• force of mortality in demography

• age-specific failure rate in epidemiology

• conditional failure rate in reliability

• intensity function in stochastic processes

• inverse of Mill’s ratio in economics.
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Half-life, or median time to failure t1
2

Atoms of radioactive isotopes like Carbon 14 or

Uranium 235 remain intact up to a random in-

stant of time when they suddenly decay, mean-

ing that they split or turn into some other kind

of atom, and emit a pulse of radiation or par-

ticles of some kind.

Let T be the random lifetime (time until decay)

of such an atom. It is reasonable to assume

that the distribution of T must have the mem-

oryless property, and in fact, the exponential

decay over time of the mass of a radioactive

substance has been verified experimentally.

Note that as the number of particles reduces,

so will the number decaying.
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The ‘rate of decay’ is often summarised by the

half-life, the time taken for half the material

to decay. This is given by t1/2 satisfying

P(T ≤ t1/2) = F(t1/2) = 0.5

=

∫ t1/2

0
(1/β)e−t/βdt

= 1 − e
−t1/2/β

,

so that

t1/2 = loge(2)β.

Thus the median is smaller than the mean by a

factor loge 2 = 0.693. Why does this happen?
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Example 4.6. Strontium 90 is a particularly

dangerous component of fallout from nuclear

explosions. The substance is toxic, easily ab-

sorbed into bones when eaten and has a long

half-life of about 28 years.

What is the proportion of atoms that decay in

a year?

At the end of the first year, the proportion

remaining is P(Y > 1) = exp(−1/β). So first

of all find β, then the proportion decayed is

1 − exp(−1/β).

Find (i) the mean life of such an atom; (ii)

the proportion still remaining after 50 years, or

100 years, and (iii) the number of years after a

nuclear explosion before 99% of the Strontium

90 produced by the explosion has decayed.
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Example 4.7. Bacteria survival: experimental

work has shown that the memoryless property

holds here too.

Suppose that under radiation, the half-life of a

bacterium is 10 seconds. What is the proba-

bility that it will survive 20 seconds?

What is the probability that it will die between

20 and 25 secs?
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Example 4.8. Australian AIDS survival in the

late 1980’s (see handout). This plot is taken

from a study of the effects of the widespread

introduction of AZT into clinical practice in

mid-1987.

• The dotted lines are nonparametric estimates

of survival and make no distributional assump-

tions about the survival times.

• The solid lines assume the survival times are

exponentially distributed.

Good agreement implies that the exponential

is a good fit.

Conclusions:

• Each curve suggests the ‘memoryless’ prop-

erty applies here, i.e., constant hazard of

death.

• The differences imply that pre-1987 cases

had shorter survival times (e.g. 35% survive

one year) than post-1987 case (where 70% sur-

vive one year).

Note: How could we plot these to illustrate the

exponential decay better?
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4.8 Poisson processes

A Poisson process is a model for random events

occurring in time, space, etc, at a rate λ. For

example, the number of industrial accidents at

a certain facility each day.

1. Consider a time interval of length L, and

let NL be the number of events in L. Then NL

has the Poisson distribution with mean λL.

2. Since events are occurring at random, the

times between them must be random too. So

suppose an event occurs at time t0, and let

T be the random variable representing time to

the next event. Then

P(T > t) = P(noevents in(t0, t0 + t))

=
(λt)0e−λt

0!
= e−λt

= 1 − F(t) = S(t)

for T an exponential random variable with λ =

1/β.
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Repeating this argument for the time to the

next event, etc, we can show that the times be-

tween events in a Poisson process are indepen-

dent and identically exponentially distributed.

Thus a Poisson process may be described in

two alternative ways:

• The number of events NL in an interval of

length L follows a Poisson distribution with

rate λL, and the number of events in non-

overlapping intervals are independent, or

• The waiting time T to the first success fol-

lows an exponential distribution of rate λ, and

the waiting times between each success and

the next are independent, with the same expo-

nential distribution.
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4.9 Gamma distribution

This is probably the most widely used two-

parameter distribution for a non-negative con-

tinuous random variable. It is extremely impor-

tant as a distribution for right-skewed data.

Let T be the sum of r independent exponen-

tial random variables W1, W2, . . . , Wr, each with

mean β. Then T = W1 + . . . + Wr, the time to

the rth event/success, has the gamma den-

sity function with parameters r, β:

f(t) =
1

βrΓ(r)
tr−1 exp(−t/β),

which exists for all r, β > 0; t ≥ 0.

r is called a shape parameter, β is called a scale

parameter, and Γ(r) is the gamma function.

What distribution do we get when r = 1?
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(We will work through most of the following

calculations in the lectures.)

• Check that
∫∞
0 f(t)dt = 1.

• We can also show that

E(T) = rβ, Var(T) = rβ2.

• Note that r need not be integer, in which

case

Γ(r) =

∫ ∞

0
tr−1e−tdt,

and this is the gamma function.

Exercise: Show that Γ(r + 1) = rΓ(r); this is

the recursion formula for the gamma function.

Also show that for integer r, Γ(r + 1) = r!.

• Note that
∫ d
c f(t)dt does not in general have

an analytic form and we need to use software

or tables of the incomplete gamma function.
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Example. The gamma distribution is often

used as a model for the AIDS incubation pe-

riod, which is the time from infection with HIV

to a diagnosis of AIDS.

An early study of people infected via blood

transfusions estimated that r = 2 and β =

7.143 (in years).

What is the mean time to AIDS (in years) un-

der the gamma model?

What is the probability of remaining AIDS-free

2, 10 or 15 years following infection?

c©IMS Semester 1, 2004 4-44



A useful device for integer r, based on an in-

teresting relationship between the gamma and

Poisson distributions.

Tail probabilities for the gamma can be quite

difficult to obtain, involving a complicated in-

tegral. However, we can often get to the solu-

tion using properties of the Poisson distribution

and Poisson process.

If a Poisson process has rate λ, the following

two statements are equivalent:

• the rth event occurs before time T = t, where

T has a Gamma(r,1/λ) distribution, and

• there are at least R = r events in the interval

(0, t], where R is Poisson with mean λt.

Thus the probabilities of both events are the

same, i.e. P(T < t) = P(R ≥ r), so that

∫ t

0

λr

Γ(r)
tr−1e−λtdt =

∞
∑

i=r

(λt)i

i!
exp(−λt).

[This can be shown using integration by parts.]
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Example 4.9. Let T2 = W1 + W2, i.e., the

time to the second event in a Poisson process

of rate λ.

What is the probability that T2 < 10 when λ =

0.5?

Here, the number of events in the first 10 units

of time is R which has a Poisson distribution

with mean 10λ = 5. Thus,

P(T2 < 10) = P{R ≥ 2}.

T2 is gamma (2,1/.5). So

P(T2 < 10) = P(R ≥ 2)

= 1 − P(R < 2)

= 1 − P(R = 0) − P(R = 1)

= 1 − e−5 − 5e−5

= 0.9596.
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The Chi-square distribution. This is an im-

portant special case of the gamma distribution.

Suppose Z ∼ N(0,1) and Y = Z2. What is the

density of Y ?

It is easiest to find it using the cdf method:

F(y) = P(Y ≤ y) = P(Z2 ≤ y)

= P(|Z| ≤ √
y) = P(−√

y ≤ Z ≤ √
y)

=
∫

√
y

−√
y

φ(z)dz

= 2

∫

√
y

0
φ(z)dz

since φ(z) is an even function. Then, since

f(y) = F ′(y),

f(y) = 2φ(
√

y)
1

2
y−1/2

=
1√
2πy

e−y/2, y > 0.

This is the density function for the chi-square

distribution with 1 degree of freedom, denoted

Y ∼ χ2
1.
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This is also a gamma distribution with r = 1/2

and β = 2.

Exercise: Show that P(Y < 3.84) = 0.95.
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4.10 Moment generating functions

As with discrete distributions, the moment

generating function m(t) of Y is defined as

E(etY ) =

∫

etyf(y)dy.

The mgf for Y exists if there is some b > 0

such that m(t) < ∞ for |t| < b.

Example 4.10. The mgf for an exponential

distribution with random variable Y is given by

E(etY ) =

∫ ∞

0
ety1

β
exp−y/β dy

=
1

β

∫ ∞

0
exp{(t − 1/β)y}dy

=
1

β(t − 1/β)
exp{(t − 1/β)y}|∞0 =

1

1 − βt

provided t < 1/β.

Under what conditions is this integration valid?
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An important example: Show that the mgf

for the standard normal distribution is

m(t) = et2/2.

Check that E(Z) = 0 and Var(Z) = 1.
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The same results for the mgf hold as for the

discrete case: m(k)(t) evaluated at t = 0 gives

the moments µ′
k about the origin.

Exercise: Find the mgf for a gamma distribu-

tion with parameters (r, β).

By differentiating with respect to t, find the

mean and variance of the gamma distribution.
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We will show later that the mgf proves very

useful, for example:

• If we know mY (t), we can often tell what

the distribution of Y is (this is the uniqueness

property).

• If T = Y1 + . . . + Yn is the sum of n indepen-

dent random variables, then the mgf of T is

just the product of the mgf’s of the n random

variables.

Exercise: Use the above two results to show

that if Y1 and Y2 are independent Poissons with

means λ1 and λ2, then X = Y1 + Y2 is also

Poisson, but with mean λ1 + λ2.

Sums of Poisson random variables are also

Poisson.
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4.11 Tchebyshev’s Inequality

This applies also for continuous random

variables. The proof is analogous to the

discrete case.

Theorem 4.4: If Y is a random variable with

finite mean µ and finite variance σ2, then for

any k,

P(|Y − µ| > kσ) ≤ 1

k2
.

Proof:

σ2 ≥
∫ µ−kσ

−∞
(y − µ)2f(y)dy +

∫ ∞

µ+kσ
(y − µ)2f(y)dy

≥
∫ µ−kσ

−∞
k2σ2f(y)dy +

∫ ∞

µ+kσ
k2σ2f(y)dy

= k2σ2P(|Y − µ| > kσ).

Hence result.

Note that if Var(Y ) = 0, then P(X = µ) = 1.
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5 MULTIVARIATE PROBABIL-

ITY DISTRIBUTIONS

5.1 Bivariate distributions

We are interested in how the random variables

X, Y , . . . behave together.

The event (X, Y ) = (x, y) is the intersection of

the events X = x and Y = y.

Examples:

• In ecological studies, counts (modelled as

random variables) of several species are often

made. One species is often the prey of an-

other, and clearly the number of predators will

be related to the number of prey.
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• A model for the joint distribution of age and

length of fish populations can be used to esti-

mate the age distribution from the length dis-

tribution; the age distribution is relevant to the

setting of reasonable harvesting policies.

• The joint probability distribution of the x, y

and z components of wind velocity can be mea-

sured experimentally in studies of atmospheric

turbulence.

• The joint distribution of factors such as

cholesterol, blood pressure and age is impor-

tant in studies for determining an individual’s

risk of heart attack.

• Interest may centre on the joint distribution

of quality of life and time since a diagnosis of

HIV/AIDS.
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Consider first the discrete case.

Suppose the outcomes in a sample space S are

indexed by two random variables (X, Y ).

Then each outcome (x, y) has an associated

probability P(X = x, Y = y).

Definition 5.1: If X and Y are discrete ran-

dom variables, then the (joint) probability dis-

tribution of (X, Y ) is defined by

p(x, y) = P(X = x, Y = y).

Theorem 5.1: p(x, y) ≥ 0 and
∑

p(x, y) = 1.
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Example 5.1: Roll two dice.

(i) X on Die 1, Y on Die 2. Then

P(X = x, Y = y) = P(X = x)P(Y = y),

by independence, and hence if the dice are fair

each outcome (x, y) has probability 1/36.

(ii) Let W be the sum and U be the product

of the two numbers showing. Then the events

{W = w} and {U = u} are not independent

and the joint probabilities P(W = w, U = u)

are more complex.

(Can you see why?)

We will discuss this example in the lectures.
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Example 5.1 (ii) Enumerate the 36 outcomes

and calculate the sum W and the product U

for each:

W 2 3 4 5 6 7 8 9 10 11 12

U 1 1
2 2
3 2
4 1 2
5 2
6 2 2
8 2
9 1

10 2
12 2 2
15 2
16 1
18 2
20 2
24 2
25 1
30 2
36 1

Note that
∑

x,y p(x, y) = 1.

c©IMS Semester 1, 2004 5-5

The joint behaviour of two random variables X

and Y is determined by the cumulative distri-

bution function. As for the univariate case, the

cdf is defined for both discrete and continuous

random variables.

Definition 5.2: If X and Y are any random

variables, then the (joint) cumulative distri-

bution distribution (cdf) of (X, Y ) is defined

by

F(x, y) = P(X ≤ x, Y ≤ y)

for −∞ < x < ∞ and −∞ < y < ∞.

The cdf gives the probability that the point

(X, Y ) belongs to a semi-infinite rectangle in

the plane.

c©IMS Semester 1, 2004 5-6



For two discrete random variables, F(x, y) has

the form

F(x1, y1) =
x1
∑

x=−∞

y1
∑

y=−∞
p(x, y)

Example 5.1 (cont.): In the table on the

previous slide, the cdf can be thought of as

summing the probabilities in the top left hand

rectangle from any nominated point (w, u).

Thus, for example, F(6,9) is

P(W ≤ 6, U ≤ 9) = p(1,1) + p(3,2) + . . . + p(6,9)

= 15/36.
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The bivariate continuous case: we now inte-

grate over regions in the plane to get proba-

bilities, which are volumes rather than areas.

Definition 5.3: Suppose X and Y are each

continuous random variables, and suppose

there exists a function f such that

F(x, y) =

∫ x

−∞

∫ y

−∞
f(u, v)dvdu.

Then X and Y are said to be jointly continu-

ous random variables. f is the joint probabil-

ity density function; it is a piecewise continuous

function of two variables.

• For any region R,

P{(X, Y ) ∈ R} =
∫

R
f(x, y)dxdy.

• Probabilities are given by volumes.
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The volume under f(x, y) over the small rect-

angle dxdy is approximately f(x, y)dxdy, i.e.,

P(x ≤ X ≤ x+dx, y ≤ Y ≤ y+dy) ≈ f(x, y)dxdy.

To obtain the volume for a whole region R,

sum all these little volumes.
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Theorem 5.2: If X and Y have joint density

f(x, y), then f(x, y) ≥ 0 for all x, y, and
∫ ∞

−∞

∫ ∞

−∞
f(x, y)dxdy = 1.

Note:

• If F is continuous in x and y, then

f(x, y) =
∂2

∂x∂y
F(x, y).

This is essentially the Fundamental Theorem

of Multivariable Calculus.
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Properties of the cdf:

• F(x,−∞) = F(−∞, y) = F(−∞,−∞) = 0,

• F(∞,∞) = 1,

• for x1 ≥ x0 and y1 ≥ y0,

P(x0 ≤ X ≤ x1, y0 ≤ Y ≤ y1)

= F(x1, y1)−F(x1, y0)−F(x0, y1)+F(x0, y0) ≥ 0.
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Example 5.2: Consider (X, Y ) jointly uni-

formly distributed on the unit square, so that

0 < x < 1, 0 < y < 1.

Then f(x, y) = 1
area = 1.

P(X < 0.5) = F(0.5,1) =

F(x, y) = P(X ≤ x, Y ≤ y) =

Example 5.3: Consider the joint distribution

of (X, Y ) defined by the density function

f(x, y) = c, 0 ≤ x ≤ 1; 0 ≤ y ≤ x.

Find c, and hence find P(X < 0.5) = F(0.5, x).

Always draw the region of integration first.
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Double integrals: see handout on multi-

variable integrals.

• Probabilities and expectations here are dou-

ble integrals.

• It is wise to always draw the region in the

(X, Y ) plane, and shade in the region of inte-

gration.

• Often the region is expressed in terms of the

values of x, and then values of y which vary

according to x.

• It is then necessary to integrate out y at a

given value of x and then integrate out x.

• If it makes the integration easier, reverse the

order of integration so that y has limits inde-

pendent of x, but the limits on x depend on y.
Then integrate out x first.

The multivariate case

Both the discrete and continuous cases gener-

alise to n random variables in an obvious way.
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5.2 Marginal distributions

Suppose X and Y have a known joint distribu-

tion.

Definition 5.4: If X and Y are discrete, the

marginal distributions of X and Y are defined

by

p1(x) =
∑

y
p(x, y), p2(y) =

∑

x
p(x, y).

(ii) If X and Y are jointly continuous, the

marginal density functions are

f1(x) =

∫

y
f(x, y)dy, f2(y) =

∫

x
f(x, y)dx,

where the integrals are over the whole real line.
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Example 5.4: Toss a fair coin 3 times.

Then the sample space S is {HHH, TTT, HHT,

TTH, HTH, THT, HTT, THH} and each out-

come has probability 1/8.

Let X be the number of heads in the first 2

tosses. What values can X take?

Let Y be the number of heads in the second 2

tosses. What values can Y take?

What is the joint distribution of (X, Y )?

We will work through this example in the lec-

tures, and will find the appropriate marginal

distributions.
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Example 5.5: Consider the joint density func-

tion

f(x, y) = λ2e−λy 0 ≤ x ≤ y < ∞

for a constant λ > 0.

Sketch the region of integration.

Let λ = 1 so that f(x, y) = e−y for 0 ≤ x ≤ y <

∞.

Find the marginal density function of X, and

hence establish that f(x, y) is a valid density

function by showing that the total volume un-

der the surface is 1.

Find the marginal density function of Y . (Do

you recognise these density functions?)

We will work through this example in the lec-

tures.
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Exercise: Example 5.1 (continued): (ii)

The joint distribution of W and U is given in

the table on Slide 5.5. The marginal distribu-

tion of W , for example, is obtained by summing

down each column to get:

W 2 3 4 5 6 7 8 9 10 11 12

36pw 1 2 3 4 5 6 5 4 3 2 1

Exercise: Example 5.3 (cont.): (X, Y ) de-

fined as

f(x, y) = 2, 0 ≤ x ≤ 1, 0 ≤ y ≤ x.

Find the marginal density functions f1(x) and

f2(y).
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5.3 Conditional distributions

Recall that P(A|B) = P(A ∩ B)/P(B). For

events {X = x} and {Y = y}, the same

applies. Hence for discrete distributions we

have:

Definition 5.5: If X and Y are jointly dis-

crete with joint probability distribution p(x, y),

and marginal probability distributions p1(x) and

p2(y), the conditional distribution of Y given

X = x is

p2(y|x) = P(Y = y|X = x) =
p(x, y)

p1(x)
,

defined for all values of X such that p1(x) > 0.

Similarly, the conditional distribution of X

given Y = y is

p1(x|y) = P(X = x|Y = y) =
p(x, y)

p2(y)
,

defined for all values of Y such that p2(y) > 0.
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Example 5.4 continued: toss 3 coins.

Find P(Y = 1|X = 1)

Find P(Y = 0|X = 1)

Find P(Y = 2|X = 1)

This is the conditional distribution of Y given

X = 1.
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Exercise: example 5.1 (cont.): Use this def-

inition to get the conditional distribution of U

given W = 7, say.

W 2 3 4 5 6 7 8 9 10 11 12

U 1 1
2 2
3 2
4 1 2
5 2
6 2 2
8 2
9 1

10 2
12 2 2
15 2
16 1
18 2
20 2
24 2
25 1
30 2
36 1

36pw 1 2 3 4 5 6 5 4 3 2 1
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Still on bivariate discrete distributions:

Note that we can write the joint probability

P(X = x, Y = y) = p(x, y) = p1(x)p2(y|x),

or equivalently, as

p(x, y) = p2(y)p1(x|y). (∗)

These formulae are useful for finding the joint

distribution of X and Y when, say, the marginal

distribution of Y and the conditional distribu-

tion of X given Y = y are known, but the joint

distribution is not known.

We can take this a step further by marginalising

(∗) over Y to obtain the marginal distribution

of X. Can you see how to do this?)

This is the Law of Total Probability.
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Conditional density functions

Care is needed in the continuous case because

the event X = x has probability 0.

By analogy with the discrete case, we use the

intuitive definitions:

f2(y|x) =
f(x, y)

f1(x)
, f1(x) > 0

and

f1(x|y) =
f(x, y)

f2(y)
, f2(y) > 0.

We can visualise, for example, f2(y|x) as the

profile of a slice through the joint density

f(x, y) with x held constant, normalised to

have unit area.
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Example 5.5 continued:

f(x, y) = e−y 0 ≤ x ≤ y < ∞.

What is the conditional density of Y given

X = x?

What is the conditional density of X given

Y = y?

Example 5.3 continued: (X, Y ) defined as

f(x, y) = 2, 0 ≤ x ≤ 1, 0 ≤ y ≤ x.

Find f2(y|x) and f1(x|y).
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Law of Total Probability for the continuous

case:

As for the discrete case, the joint density can

be expressed in terms of the marginal and con-

ditional densities. For example,

f(x, y) = f2(y|x)f1(x).

Then integrating both sides over x gives the

marginal distribution of y as

f2(y) =
∫ ∞

−∞
f2(y|x)f1(x)dx.
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5.4 Independence

Definitions for independence of events are:

• P(A ∩ B) = P(A)P(B),

• P(B|A) = P(B),

• P(A|B) = P(A).

For independence of random variables, we

need this to be true for all events such that A

is an event concerning X and B is an event

concerning Y .

Definition 5.6: Let X and Y have cdfs F1(x)

and F2(y), and joint cdf F(x, y). Then X and

Y are independent if and only if

F(x, y) = F1(x)F2(y),

for every pair of real numbers (x, y).

That is,

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y)

for all (x, y).
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Theorem 5.3: (i) If X and Y are discrete,

they are independent if and only if

p(x, y) = p1(x)p2(y),

for all real pairs (x, y).

(ii) If X and Y are continuous, they are inde-

pendent if and only if

f(x, y) = f1(x)f2(y),

for all real pairs (x, y).

Proof omitted.

Note that the ranges of f1(x) and f2(y) can-

not depend on y or x, respectively. So we

cannot have independence unless f(x, y) has

ranges which are independent of x and y.
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Examples: For Example 5.1(ii) and Example

5.3, the random variables are not independent.

Show this for Example 5.3.

Example 5.6: Suppose X and Y are indepen-

dent exponential random variables with means

β and γ. Then

f(x, y) = f1(x)f2(y)

=
1

βγ
exp(−1

β
x − 1

γ
y).
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Where the limits of integration are fixed (e.g.

at 0 or ∞), there is a simple way to show in-

dependence [WMS p.236]:

Theorem 5.4: Suppose X and Y have a joint

density f(x, y) positive if and only if a ≤ x ≤ b
and c ≤ y ≤ d. Then X and Y are independent

if and only if

f(x, y) = g(x)h(y),

where g() is a nonnegative function of x only

and h() is a nonnegative function of y only.

So when the conditions of the theorem are sat-

isfied, we don’t need to derive the marginal

densities in order to show independence.

Example 5.2 (cont.): If f(x, y) = 1 for

0 ≤ x, y ≤ 1, then X and Y are independent.

Example 5.3 (cont.): If f(x, y) = 2 for 0 ≤
y ≤ x ≤ 1, then this theorem cannot be applied.

However, we can state that X and Y are not

independent. Why?
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Note that for X and Y independent random

variables,

f1(x|y) = f1(x)

and

f2(y|x) = f2(y),

i.e. the conditional density functions reduce to

the marginal density functions.
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Example 5.7: extreme values and order

statistics.

Suppose a system has n components con-

nected in parallel, so that the system fails only

if all the components fail. Suppose also that

the lifetimes of the components T1, . . . , Tn are

independent, identically distributed exponen-

tial random variables with mean parameter β.

Let U be the random variable representing the

length of time the system operates; this is the

maximum of the Ti.

Find the density function of U =

max(T1, . . . , Tn).
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Example 5.8: convolution.

Let X and Y be discrete random variables with

joint probability p(x, y).

Let Z = X + Y , and find p(z).

Note that Z = z whenever x+y = z, i.e., when

X = x, Y = z − x. Then p(z) is the sum over

all x of these joint probabilities, i.e.,

p(z) =
∞
∑

x=−∞
p(x, z − x).

If X, Y are independent, then

p(x, y) = p1(x)p2(y)

and

p(z) =
∞
∑

x=−∞
p1(x)p2(z − x).

This sum is the convolution of the sequences

p1, p2.
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5.5 Expected values

Let X and Y be discrete random variables with

joint probability function

p(x, y) = P(X = x, Y = y).

Let g(X, Y ) be a function of X and Y . Then

the expected value of g(X, Y ) is

E{g(X, Y )} =
∑

y

∑

x
g(x, y)p(x, y).

If X and Y are continuous random variables

with joint density function f(x, y) then

E{g(X, Y )} =

∫

y

∫

x
g(x, y)f(x, y)dxdy.
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Example 5.4 continued: Toss coin 3 times.

Let g(X, Y ) = XY . Find E(XY ).

Example 5.2 continued: (X, Y ) uniform on

unit square.

Suppose we are interested in Z = g(X, Y ) =

X2Y . What is its expectation?

c©IMS Semester 1, 2004 5-33

The above results generalise to k random vari-

ables.

Let Y = (Y1, . . . , Yk)
′ be a vector of random

variables.

Definition 5.7: For any function Z = g(Y),

the expected value of Z is defined as

(i) for a discrete set of random variables

E{g(Y)} =
∑

. . .
∑

g(y)p(y),

(ii) for a continuous set of random variables

E{g(Y)} =

∫

. . .
∫

g(y)f(y)dyk . . . dy1.

If there are k random variables, but Z = g()

is a function of only some of them, then we

can use either the full density function or the

marginal density for any subset that includes

those involved in g().

Example 5.3 continued: If we want E(X), we

can use the joint density f(x, y) or the marginal

density f1(x).
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5.6 Combining expectations

These follow as in the univariate case.

Theorem 5.5: For any random variables

Y = (Y1, . . . , Yn)′, functions gi(Y) and con-

stants ci,

• E(c) = c,

• E{cgi(Y)} = cE{gi(Y)},
• E{∑i cigi(Y)} =

∑

ciE{gi(Y)}.

Example 5.3 continued: We know that

E(X) = 2/3, E(Y ) = 1/3.

So what is E(X − Y )?
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Group testing:

Suppose that a large number, n, of blood sam-

ples are to be screened for a rare disease. If

each sample is assayed individually, n tests will

be required. On the other hand, if each sam-

ple is divided in half, and one of the halves

is pooled with some of the other halves, the

pooled blood can be tested. The idea is that

if the pooled blood tests negative, then no fur-

ther testing of the samples in the pool is re-

quired. If however the pooled blood tests pos-

itive, each reserved half-sample can then be

tested individually.

Suppose the n samples are first grouped into

m subgroups of k samples in each group, i.e.

n = mk. Each subgroup is then tested: if a

subgroup tests positive, each individual in the

subgroup is tested. Let p be the probability of

a negative test on any individual, and let Xi be

the number of tests run on the ith subgroup.

If N is the total number of tests run, find the

expected value of N .
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Theorem 5.6: If Y1, . . . , Yn are independent

random variables, and the n functions gi(Yi)

are each a function of just one Yi,

E{
∏

gi(Yi)} =
∏

E{gi(Yi)},

provided the expectations exist.

Proof:

Corollary: In particular, if Y1 and Y2 are inde-

pendent, then

E(Y1Y2) = E(Y1)E(Y2).

This is a very useful result.
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We can now prove the following important re-

sult:

If X and Y are independent random variables

with moment generating functions mX(t) and

mY (t), and Z = X + Y , then

mZ(t) = mX(t)mY (t)

on the common interval where both mgfs exist.

Proof:

By induction, this result can be extended to

sums of several independent random variables.
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Example 5.9:

If X follows a gamma distribution with parame-

ters (r, β), and Y follows a gamma distribution

with parameters (s, β), then the mgf of X + Y

is
(

1

1 − βt

)r(
1

1 − βt

)s

=

(

1

1 − βt

)r+s

which is also gamma with parameters (r+s, β).

Note that this example is atypical. For exam-

ple, if the scale parameters are different, we

don’t get a gamma distribution.
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5.7 Covariance

We have already defined the variance of a

random variable as a measure of its variability:

Var(Y ) = E{(Y − µ)2},

where µ = E(Y ).

The covariance of two random variables is a

measure of their linear dependence or associa-

tion, or joint variability.

Definition 5.8: The covariance of two ran-

dom variables X and Y is defined as

Cov(X, Y ) = E{(X − µX)(Y − µY )},

where µX = E(X) and µY = E(Y ). This is the

average value of the product of the deviation

of X from its mean and the deviation of Y from

its mean.
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A snag is that covariance depends on the scale

of measurement, which makes it hard to as-

sess what is ‘big’ and what is ‘small’. So we

standardise it:

Definition 5.9: The correlation ρ of two ran-

dom variables X and Y is defined as

ρ = Corr(X, Y ) =
Cov(X, Y )

√

Var(X)Var(Y )
.

This is a dimensionless measure of the associ-

ation between two random variables.
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Theorem 5.7: The correlation of any two ran-

dom variables satisfies |ρ| ≤ 1, with equality if

and only if there is a linear relationship between

the two.

Theorem 5.8:

(i) Cov(X, Y ) = E(XY ) − E(X)E(Y ).

(ii) If X and Y are independent, then

Cov(X, Y ) = 0.

Proof:

Note: The converse of (ii) is not true in gen-

eral, and zero covariance does not imply inde-

pendence unless X and Y are jointly normally

distributed.
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Example 5.3 (cont.): f(x, y) = 2,0 ≤ y ≤
x ≤ 1. Find the variances of X and Y and

their covariance.

Example 5.10: Suppose X is uniform on

(−1,1). Let Y = X2. Are X and Y inde-

pendent? Find Cov(X, Y ).
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5.8 Linear combinations

This section is about finding the mean and

variance of linear combinations of random vari-

ables, not necessarily independent.

Let U = X + Y . Then

Var(U) = Var(X + Y )

= E[{(X + Y ) − (µX + µY )}2]
= . . .

= Var(X) + Var(Y ) + 2Cov(X, Y ).

This result generalises to more than two ran-

dom variables, and to more general linear com-

binations. For example,

Var(aX+bY ) = a2Var(X)+b2Var(Y )+2abCov(X, Y )
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WMS p.257 works through the more general

cases in detail. Here we give some further key

results:

Let U =
∑n

i=1 aiYi, a linear combination. Then

Var(U) =
n
∑

i=1

a2
i Var(Yi)+2

n
∑

i=1

n
∑

j=1

aiajCov(X, Y )

where the double sum is over all pairs (i, j) for

which i < j.

Now let V =
∑m

j=1 bjXj, a linear combination

of a different set of random variables. Then

the covariance between the two linear combi-

nations is

Cov(U, V ) =
n
∑

i=1

m
∑

j=1

aibjCov(Yi, Xj).
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If X and Y are independent, then

Var(X + Y ) = Var(X) + Var(Y ).

And this result generalises to more than two

random variables: if Yi, i = 1, . . . , n are inde-

pendent, then

Var





n
∑

i=1

Yi



 =
n
∑

i=1

Var(Yi).

Example 5.11: For any independent random

variables Yi, i = 1, . . . , n, with common mean

µ and variance σ2, it follows that

E(Ȳ ) = µ, Var(Ȳ ) =
σ2

n
.
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Example 5.12: Consider Y ∼ B(n, p).

Now let Xi be the indicator function defined by

Xi =

{

1 if success at trial
0 if failure at trial i

That is, Xi, i = 1, . . . , n, are independent

Bernoulli trials.

It is easily shown that E(Xi) = p, Var(X) =

p(1 − p), and that Y =
∑n

i=1 Xi, where the Xi

are independent. It follows that E(Y ) = np,

Var(Y ) = np(1 − p).
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5.9 Multinomial distribution

This generalises the binomial distribution to

cases where there are more than the two (suc-

cess, failure) categories. As with the binomial,

we can define it as:

• There are n independent, identical, trials.

• The outcome of each trial falls into one of k

classes or cells.

• At each trial, there is a probability pi of falling

into the ith class or cell, where
∑k

i=1 pi = 1.

• The random variables are the numbers

Y1, . . . , Yk falling into each of the k classes; note

that
∑

Yi = n.

l We will motivate the formal definition by a

classification problem.
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A simple classification problem:

Suppose we have n randomly sampled individ-

uals, and we want to classify each according to

one of three blood types characterised by ery-

throcyte antigen. The three blood phenotypes

are M , MN , N with probabilities p1, p2, p3,

where
∑3

i=1 pi = 1.

Suppose we observe that y1 individuals fall into

class 1, y2 into class 2, and y3 into class 3,

where
∑3

i=1 yi = n, and yi is the observed

value of the random variable Yi, representing

the number of individuals who fall into class i.

The probability of observing such an outcome

is

p
y1
1 p

y2
2 p

y3
3 .

How many ways can this occur?
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There are
( n

y1

)(n − y1

y2

)(n − y1 − y2

y3

)

=
n!

y1!y2!y3!

ways of obtaining the above probability.

This quantity is called the multinomial coeffi-

cient.

Thus,

P(Y1 = y1, Y2 = y2, Y3 = y3) =
n!

y1!y2!y3!
p
y1
1 p

y2
2 p

y3
3 .

This is called the trinomial distribution and

generalises to the multinomial distribution for

k classes.
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Definition 5.10: If p1, . . . , pk are each >

0 and
∑

pi = 1, then the random vari-

ables Y1, . . . , Yk have a multinomial distribu-

tion Mn(n; p1, . . . , pk) if the joint distribution is

p(y1, . . . , yk) =
n!

y1! . . . yk!
p
y1
1 . . . p

yk
k ,

where
∑

yi = n.

Example 5.13: Suppose a Poisson process

has a mean of 2 events per hour. In a pe-

riod of 3 hours, suppose we observe 5 events.

What is the probability of at least one in each

hour?
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Some key results:

We can show that the marginal distribution of

Y1 is binomial (n, p1). Similarly for Y2 and Y3.

Also, Cov(Y1, Y2) = −np1p2.

Note that the covariance is negative. This is

because if there is a large number of outcomes

in class 1, this would force the number of out-

comes in class 2 to be small, and vice versa.
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Theorem 6.3: If Y = (Y1, . . . , Yn) are in-

dependent normal variables with means µ =

(µ1, . . . , µn) and variances σ2
1, . . . , σ2

n, and if

Zi = (Yi − µi)/σi, then W =
∑

Z2
i has a χ2

distribution with n degrees of freedom.

Proof: We have already seen that n = 1 gives a

χ2 with 1 d.f., and that this is Gamma(1/2,2).

It has an mgf of (1 − 2t)−1/2.

Then

mW (t) =
n
∏

i=1

(1 − 2t)−1/2 = (1 − 2t)−n/2,

which is the mgf of a Gamma(n/2,2) distribu-

tion.

It follows that the density of W is given by

fW (w) =
1

2n/2Γ(n/2)
wn/2−1e−w/2.
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Theorem 6.4: If Y1, . . . , Yn are independent

N(µ, σ2), then

• Ȳ ∼ N(µ, σ2/n),

• (n − 1)S2/σ2 ∼ χ2
n−1, and

• these two are independent.

Proof: Not given, but uses the mgf method.
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6 FUNCTIONS OF RANDOM

VARIABLES

6.1 The three methods

In many cases, we form a statistic W = g(Y )

based on a random sample Y = (Y1, . . . , Yn)′

of size n.

We then need the distribution of W .

In this section, we discuss three methods for

doing this:
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1. Distribution functions

• F(w) = P(W ≤ w),

• we find the probability of lying in the region

(y1, . . . , yn) defined by W ≤ w.

2. Transformations

• we transform to include W , then

• integrate out the other random variables.

3. Moment generating functions

• defined as E(etY ) for general t,

• there is in general a 1-1 correspondence

between probability distributions and moment

generating functions.
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6.2 Distribution functions

Example 6.1: Consider X and Y each

uniform on (0, 1). What is the distribution of

W = X + Y ?

f(x, y) = 1, 0 ≤ x, y ≤ 1.

FW (w) = P(X + Y ≤ w) =

X

Y

1

1

Y=w-X

w

w

Y<w-X

Fig. 6.1: Bivariate uniform distribution.
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Example 6.2: Consider the exponential

distribution f(y) = exp(−y),

for which F(y) =

Consider the transformation W = − log(Y ).

Then P(W ≤ w) =

Then the density of W is:

So how can we generate exponentials with

mean β?
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Example 6.3: Suppose X and Y are each

N(0,1). Let W = Y/X. Use the cdf method

to determine the distribution of W .

P(W ≤ w) = P(Y/X ≤ w) =

Y<wX

Y

X

Y<wX

Fig. 6.2: Bivariate normal distribution.
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Example 6.4: Maximums and minimums.

This method is particularly useful for finding

the distribution of the maximum or minimum

of n independent random variables.

Suppose (Y1, . . . , Yn) are independent uniforms

on (0,1). What is the distribution of Y(n), the

largest order statistic?

P(Y(n) ≤ y) =

Exercise: Find the distribution of the mini-

mum in the same way.
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Summary of method:

• Find the region W = w in (y1, . . . , yn),

• find the region defined by W ≤ w,

• find FW (w) = P(W ≤ w) by integrating out

f(y1, . . . , yn) over the region,

• find fW (w) by differentiating FW (w).
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6.3 Transformations

We are used to ‘changing variables’ to evaluate

integrals.

However, we often need the distribution of W

where W = g(Y ). It turns out to be essentially

the same thing.

Consider first ‘linear functions’.

If fY (y) is uniform on (0,1), and W = aY + b,

then we know that to keep the area equal to 1,

we need to rescale the vertical axis, and that

for a > 0

fW (w) =

{

1/|a| if b < w < a + b,
0 otherwise
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Reason:

• Recall how the vertical axis in histograms was

relative frequency per unit length on the x-

axis, this being necessary to get areas which

sum to 1.

• Probability density gives the probability per

unit length in the same way.

• Hence, to map areas onto areas, we need to

watch how the horizontal axis gets compressed

or expanded, and then do the reverse to the

vertical axis.

• It follows that we require

fW (w)|dw| = fY (y)|dy|,

and hence that

fW (w) = fY (y)|dy/dw|.
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Example 6.4: Distribution of W = Y 2, when

Y is uniform.

y

f(
y)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2

w

f(
w

)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Fig. 6.3: Transforming the uniform by W =

Y 2.
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1:1 Differentiable functions

Suppose we have a density fY (y) defined on

(a, b).

Consider the transformation, or ‘change of

variable’ to W = g(Y ). Then W is defined

on the interval (g(a), g(b)).

The method is:

• invert the transformation as Y = h(W ),

• we require fW (w)|dw| = fY (y)|dy|,
• form the Jacobian |dy/dw| = |dh(w)/dw|,
• the density function fW (w) for W is then

fW (w) = fY (y)|dy/dw|,

where both y and dy/dw are expressed solely in

terms of w, i.e.

fW (w) = fY {h(w)}|dh(w)/dw|.

Note: the Jacobian is always |dold/dnew|.
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Example 6.4 (cont.): W = Y 2, when Y is

uniform.

In this case, g(y) = y2 is 1:1 and differentiable

over the interval in question, i.e. (0,1).

Here h(w) =
√

w, and the Jacobian is

dh(w)/dw = 1/(2
√

y).

We know that fY (y) = 1 over the interval.

Thus we have

fW (w) = fY (y).|dh(w)/dw| = 1/(2
√

y),

which is also defined on (0,1).
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Example 6.5: Log of uniform.

Notes:

• This is used as a way of generating random

exponential distributions.

• As an exercise, what happens if we let W =

−βlog(Y )?
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Many:1 transformations

A function w = g(y) may be differentiable but

have several cases where different values of y

lead to the same value of w.

Note: you will see this when you express y as

a function of w.

In this case,

fW (w) =
∑

y:g(y)=w

fY (y)

|dy/dw|.

Example 6.6: W = Y 2, in general.

Here y = −√
w and y = +

√
w both give the

same value of w, so the density of W is

fW (y) = {fY (
√

w) + fY (
√

w)}/(2
√

w).
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Chi-square distribution

Suppose Y ∼ N(0,1), and W = Y 2. What is

the density of W?

fY (y) =
1√
2π

y−1/2e−y/2, y > 0.

This is the chi-square distribution with 1 de-

gree of freedom, denoted Y ∼ χ2
1.

This is a gamma distribution with r = 1/2; β =

2.

Exercise: Show that P(W < 3.84) = 0.95.
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Summary of method

• Consider the transformation W = g(Y ).

• Invert the function and express Y in terms of

W as Y = h(W ).

• This will identify if g(Y ) is monotone.

• If W = g(Y ) is monotone,

fW (w) = fY (y)|dy/dw|,

where we replace y by h(w) in both fY (y) and

|dy/dw|.

• And if W = g(Y ) is a many:1 function,

fW (w) =
∑

y:w=g(y)

fY (y)|dy/dw|,

where again we replace y by h(w).

c©IMS Semester 1, 2004 6-16



6.4 Moment generating functions

The moment generating function m(t) of Y

is defined as E(ety).

The mgf for Y exists if there is some b > 0

such that m(t) < ∞ for |t| < b.

Theorem 6.1: If for X and Y the moment

generating functions mX(t) and mY (t) exist,

and if mX(t) = mY (t) for all values of t, then

X and Y have the same disribution.

Proof: Not given.
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Example 6.7: Suppose that Y is normal with

mean µ, variance σ2. Show that W = (Y −µ)/σ

is N(0,1).

First, the mgf of a standard normal is:

E{etZ} =
1√
2π

∫

exp(tz − z2/2)dz

=
1√
2π

∫

exp{−(z − t)2/2 + t2/2}dz

= exp(t2/2).

In the same way, if Y ∼ N(µ, σ2), its mgf is:

mY (t) = E{exp(tY )} = exp(µt + t2σ2/2).

Now

mW (t) = E(etW ) = E{exp(tY/σ − µt/σ)}
= exp(−µt/σ)mY (t/σ)

=
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Example 6.8: Sums of independent Poissons

random variables.

The moment generating function of a Poisson,

mean λ, is

m(t) = E{etY } = exp{λ(et − 1)}.

If Y1, . . . , Yn are n independent Poissons with

means λ1, . . . , λn, then the mgf of their sum

W = Y1 + . . . + Yn is:

mW (t) =
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Theorem 6.2: If Y = (Y1, . . . , Yn) are in-

dependent normal variables with means µ =

(µ1, . . . , µn) and variances σ2
1, . . . , σ2

n, and if

W = a′Y = aiY1 + . . . anYn, then W is normal

with

• mean µW =
∑

aiµi = a′µ and

• variance σ2
W =

∑

aiσ
2
i = a′Σa,

where Σ = diag(σ2
1, . . . , σ2

n).

Proof: We already know (Theorem 5.9) that

the mean and variance are correct.

E{exp(tW )} = E{exp(t
∑

aiYi)}
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7 Appendix of additional topics

(not examinable)

7.1 Bivariate normal distribution

We start with the ‘standardised bivariate nor-

mal with a correlation ρ’. The density is given

by:

f(x, y) =
1

2π
√

1 − ρ2
exp

(

−x2 + y2 − 2ρxy

2(1 − ρ2)

)

,

where −∞ < x, y < ∞.

This is denoted by (X, Y ) ∼ N2(ρ).

Figure 7.1 shows the densities for these for

ρ = 0.7,0.9.
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Fig. 7.1: Bivariate normals, with ρ = 0.7,0.9.
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Marginal density of X:

• We have to integrate out y.

• Take the exponent and make the Y part of

it look like a normal density by completing the

square:

(x2 + y2 − 2ρxy) = x2 + (y − ρx)2 − ρ2x2

= (1 − ρ2)x2 + (y − ρx)2

• The integral over y now looks like a normal

with mean ρx and variance (1−ρ2), so we get:

fX(x) =
1√
2π

e−x2/2 ×
∫ ∞

−∞
1

√

2π(1 − ρ2)
exp

(

−(y − ρx)2

2(1 − ρ2)

)

dy

=
1√
2π

e−x2/2.

• Hence the marginal density of X is just

N(0,1).
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Conditional density:

Here again we use the ratio:

fY |X(y|X = x) =
f(x, y)

fX(x)
.

Use the version of f(x, y) where we completed

the square, and divide by fX(x):

fY |X(y|X = x) =
1

√

2π(1 − ρ2)
exp

{

−(y − ρx)2

2(1 − ρ2)

}

.
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What does this say?

• If we don’t know X, then Y is just N(0,1).

• If we are told the value of X is x, then Y

is still normal, but has mean ρx and variance

(1 − ρ2).

• Knowing X = x helps us predict the value of

Y , with a variance smaller than the uncondi-

tional variance.

• The closer ρ is to 1, the better we can predict

the value of Y , given X = x.

c©IMS Semester 1, 2004 7-5

General bivariate normal

If X, Y have means µX, µY and standard devi-

ations σX, σY , and if

{(X − µX)/σX , (Y − µY )/σY }

is N2(ρ), then (X, Y ) is bivariate normal, or
[

X
Y

]

∼ N

{[

µX
µY

]

,

[

σ2
X ρσXσY

ρσXσY σ2
Y

]}

Exercise: Show that, in this case, the distri-

bution of Y given X = x is

N

(

µY +
ρσY

σX
(x − µX), σ2

Y (1 − ρ2)

)

.
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Independence in bivariate normal

In the standardised bivariate normal with ρ = 0,

f(x, y) =
1√
2π

exp
{

−(x2 + y2)/2
}

= φ(x)φ(y).

It follows by Theorem 5.4 that X and Y are

independent.

This holds in general for bivariate normal; this

is one case where zero covariance implies inde-

pendence.

Note for Statistics level III subjects: These re-

sults generalise to the multivariate case, where

E(Y ) = µ and Var(Y ) = Σ contains the vari-

ances and covariances. The density is then:

f(y) =
1

2πn/2det(Σ)
exp

{

−(y − µ)′Σ−1(y − µ)/2
}

.

c©IMS Semester 1, 2004 7-7

Origin of ‘regression’

Francis Galton looked at heights of fathers (X)

and their sons (Y ). Each is marginally normal

with the same σ and a correlation of about

ρ = 0.6.

Given the father’s height (i.e. X = x), the

son’s height Y is predicted to be

E(Y |X = x) = µy + ρ(x − µx),

which is a line of slope ρ as shown in Fig. 5.2,

not a line of slope 1.

Galton called this ‘regression towards the

mean’.
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Fig. 7.2: Heights of fathers and sons.

c©IMS Semester 1, 2004 7-9

7.2 Conditional expectation

Definition: For two random variables (X, Y ),

the conditional expectation of g(Y ) given

X = x is defined as

E{g(Y )|X = x} =

∫

y
g(y)fY |X(y|x)dy

= h(x), say.

Example 5.3 (cont.): We have

f(y|x) = 1/x,0 < y < x. Then E(Y |X = x) =
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Now, the expectation depends on X and can

be regarded in two ways:

• for given X = x, it specifies a value, or

• since X is a random variable, then h(X) =

E{g(Y )|X = x} can be thought of as a random

variable with its own distribution, mean, etc.

Theorem: For random variables X and Y ,

E{g(Y )} = EX[E{g(Y )|X = x}],

where the inside expectation is over Y |X = x

and the outer one over the marginal distribu-

tion of X.

Proof: If we denote h(X) = E{g(Y )|X = x},

EX[h(X)] =

∫

x
h(x)fX(x)dx

=

∫

x

∫

y
g(y)fY |X(y|x)fX(x)dydx

=
∫ ∫

g(y)f(x, y)dydx

= E{g(Y )}.
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Exercise: Show that if (X, Y ) in N2(ρ) then

E(XY ) = ρ.

We use the previous result:

E(XY ) = EX[EY |X{XY }]
=
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Theorem: For random variables X and Y ,

Var{g(Y )} = Var[E{g(Y )|X = x}]
+E[Var{g(Y )|X = x}],

where the inside expectation is over Y |X = x

and the outer one over the marginal distribu-

tion of X.

Proof: The previous result holds with g(Y )

equal to both Y and Y 2.
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Example: Suppose we observe events occur-

ring as a Poisson process, where each event is

a Bernoulli trial. If we observe the process for

a fixed period of time, the number of events N

is Poisson with mean λ. We obtain a value n.

Then, given the value of N = n, the number

of successes Y is Bin(n, p).

What is the mean and variance of Y ?
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