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Variance Components

In a simple random sample, one observation is made
on each of a number of separate individuals and the
variation is assumed to be represented by independent
and identically distributed random variables, one for
each individual. This forms the basis of regression
and other models widely used in biostatistics. How-
ever, there are two ways in which the assumption
of a single random component corresponding to each
individual might fail to be adequate. In the first, the
random variation may have a more complex structure
arising from several identifiable sources. The varia-
tion is then considered to have multiple components,
which we call components of variance. This is the
classical field of variance components and has a long
history dating from the nineteenth century. The sec-
ond way in which the assumption can fail is when the
parameters describing the systematic part of the varia-
tion may themselves change randomly, for example,
between individuals or groups of individuals. This
forms the basis of hierarchical or multilevel model-
ing in which the emphasis is on computer intensive
methods for handling unbalanced or nonnormal data.

We begin this article with three examples to illus-
trate the key concepts and objectives involved in
variance component analysis. Example 1 presents the
simplest situation of the balanced one-way model.
Example 2 describes a more complex model for
microarray data, which involves nesting and cross-
classification and helps distinguish these features.
Examples 1 and 2 are classical variance component
models. Example 3 outlines a linear random effects
regression for a marker of HIV/AIDS disease and is
an example of a multilevel model.

Example 1 One-way balanced model. Consider a
group of patients, each of whom has a ‘true’ value of
cholesterol say, or blood pressure, denoted by µj ,
j = 1, . . . , nJ . For each patient, one measurement
is made by a conditionally unbiased method; this
means that for a given patient, µj has corresponding
observation Yj = µj + εj , where the random term
εj has mean zero and variance σ 2

ε . We call σ 2
ε the

component of variance within patients, which usually
represents sampling or measurement error or some
such.

Suppose now that the nJ patients are to be
regarded as a random sample from a hypothetical

infinite population of patients of true mean µ. This
situation could arise, for example, in a clinical trial
in which a homogeneous group of patients has been
randomized to a treatment and interest centers on
the efficacy of that treatment. The mean for patient
j becomes a random variable, which can be written
as the sum of the overall population mean, µ, and an
independent random contribution from the patient, ξj .
This gives Yj = µ + ξj + εj , where ξj has mean zero
and variance σ 2

ξ . The latter is called the component
of variance between patients. It follows that the vari-
ance of Y is the sum of two components, σ 2

ξ + σ 2
ε ,

which are not separately estimable without either an
external estimate of σ 2

ξ from other studies or repeated
measurements on each patient.

Suppose that several measurements are made on
each patient for whom the response is assumed to
remain stable. This gives observations

Yj = µ + ξj + εjs (1)

in which nS , s = 1, . . . , nS , repeat observations are
nested within patients. This means that observation
1 on patient i is assumed to have no special con-
nection with observation 1 on a different patient k,
and so on. The simplest situation assumes that all
the random variables ξ and ε are mutually uncorre-
lated, but such an assumption should not be made
uncritically. For example, errors would be uncorre-
lated if repeated samples were taken from a patient,
homogenized, then split into nS subsamples. Many
such considerations relate to the design of the inves-
tigation.

This is the balanced one-way model in which
there are two components of variance, between-
patients and within-patients, each with zero mean.
The random variables are usually, although by no
means necessarily, assumed independently normally
distributed. Repeat observations for a randomly cho-
sen patient are correlated in the one-way model with
intraclass correlation coefficient ρ = σ 2

ξ /(σ 2
ξ + σ 2

ε ).
This is a dimensionless measure and such measures
are in general useful for formal inference, such as in
genetics, but the variance components themselves are
more informative as a basis for comparing the spread
between and within patients.

Some statisticians prefer to represent variance
component models via covariance matrices rather
than random variables. The covariance matrix of the
full nJ nS × 1 random vector formed by stacking the
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rows of {Yjs} into a single column is a block diagonal
matrix of the form

(τξJnS
+ τεInS

) ⊗ InJ
= τξUξ + τεUε, (2)

where ⊗ denotes the Kronecker product [27], and
InS

and JnS
are the nS × nS identity matrix and

the matrix all of whose elements are one, respec-
tively; Uξ , Uε are associated matrices connected with
indicator matrices defining the contribution of the
component random variables to the observations (see
Matrix Algebra). This formulation paves the way
for a very general version with each separate com-
ponent of variance identified with its own associated
matrix. For interpretation and inference, however, we
regard the representation in terms of component ran-
dom variables as primary and this is the focus of the
present article.

Example 2 A model for cDNA microarray data
(see DNA Sequences). In cDNA microarrays, known
single-stranded DNA clones are robotically spotted
out and fixed onto a glass microscope slide. At the
same time, two mRNA samples from the cell popu-
lations to be compared are reversed transcribed into
cDNA and separately labeled with dyes, usually red
(Cy5) and green (Cy3). The two labeled targets are
mixed together and applied to the microarray slide.
During hybridization, single strands in the target solu-
tion competitively combine with their complementary
base-pair nucleotide sequences spotted on the slide.
The relative intensities of red and green at a spot are
extracted by image processing the scanned microar-
ray images. The motivation for the technique is that
the mRNA in the original cell sample reflects which
genes are being used by the cell, and that the intensity
ratio at a spot is a measure of the relative abun-
dance of that gene in the two samples. The intensity
ratios are usually adjusted for background noise on
the slide, normalized to remove systematic sources of
variation, transformed to log base 2 to induce approx-
imate normality and additivity of effects, and denoted
by the random variable M . For a detailed description
of the biological and technical background, see [29].

In a study of osteoarthritis, n bone samples from
diseased patients are compared to n bone samples
taken from the same site in nondiseased control
cadavers. The aim of the investigation is to iden-
tify which genes are differentially expressed in the

osteoarthritis and control bone samples. In a simpli-
fied situation, the patients are assumed to be homo-
geneous for the risk factors age and sex. There is
no shortage of slides so each case i is hybridized
with each control j , m times. Replicates are assumed
to be independent. One model for the observed log
intensity ratio for gene g is

Mgijk = µg + ξD
gi + εD

gi − ξN
gj − εN

gj + εgijk, (3)

where µg represents the true mean difference in
expression of gene g in the two samples and all
the remaining terms are independent random vari-
ables with zero means. In particular, ξD

gi and ξN
gj are

crossed random effects specific to the diseased and
control individuals with variances σ 2

gξD and σ 2
gξN ,

respectively. The random variable εD
gi is an error term

with component of variance σ 2
gεD specifically associ-

ated with the ith diseased case and believed to arise
from random errors accumulating through the mRNA
extraction, amplification, and labeling steps prior to
hybridization; σ 2

gεN is the analogous component of
error for the j th control sample. Finally, εgijk is the
measurement error associated with the hybridization,
scanning and image processing of patient i with con-
trol j and is assumed to have variance σ 2

gε for gene
g. The k replicates across slides are nested within the
disease-control classification (i, j ). The variance of
Mgijk is then

var(Mgijk) = σ 2
gξD + σ 2

gεD + σ 2
gξN + σ 2

gεN + σ 2
gε.

(4)

In practice, it may not be feasible to estimate
the separate components of variance in the model,
not least because many sources of systematic and
random variation in microarray experimentation are
still not well understood. In this example, it would
be adequate for determining differential expression
to combine the sources of error into a single vari-
ance component term corresponding to the variability
between log intensity ratios across slides for gene g.
This illustrates an important general point that it is
often adequate to use a model in which many sources
of error are combined into a single variance term.

Microarray data analysis is receiving increasing
attention from statisticians. Speed and Yang [44] are
among the first researchers to critically examine the
assumption of independent random variables and
replication in this context.
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Example 3 A random effects regression model. Sup-
pose that a marker of disease progression such as log
viral load or CD4 cell count in individuals infected
with HIV varies roughly linearly over time in each
individual. An initial analysis might be reasonably
based on a linear regression with time, in which each
individual j has intercept and slope parameters β0

and β1, that is,

Yjt = β0 + β1xt + εjt . (5)

(see Nonlinear Mixed Effects Models for Longitu-
dinal Data).

However, a cohort of infected individuals would
be very unlikely to have the same parameters. The
next step might then be to regard the intercept and
slope as responses regressed on individual character-
istics, or to consider models in which the parameters
themselves have random structure; that is, to model
the slope for individual j as β1j = β1 + ξ1j , where
β1 is the mean slope and ξ1j is a random term,
and similarly for the intercept, which we write as
β0j = β0 + ξ0j . In this model, interest focuses on
the magnitudes of the random variation of individual
responses about their regression line, in the variation
in the intercepts and slopes, as well as on explana-
tory determinants of the regression parameters. The
random effects themselves are often assumed to be
normally distributed although it may not be possible
to test the assumption, and it will nearly always be
essential to allow these random terms to be correlated
so that σ 2

ξ denotes the covariance matrix of (ξ0j , ξ1j ).
These ideas generalize to nonnormal response data
and to binary logistic regression models in particular.

There are only really two key ideas involved in
these examples and in variance component problems
generally. The first is the distinction between nesting
and cross-classification. This is a qualitative rather
than a statistical issue, and is to do with the design
and logical structure of the data under study and
not with any probabilistic or distributional model
assumptions (see Experimental Design). The second
key idea is statistical: are we going to treat the levels
of factors as intrinsically interesting (i.e. as fixed
effects) or are the factors to be regarded as random
variables (i.e. as random effects) where interest
might be in their variances? For example, in genetics,
an investigator may want to partition the variability
into environmental versus inherited components (see
Twin Analysis).

Both dichotomies are subject-matter considera-
tions. There are some general principles, which can
be helpful in deciding whether a factor should be
regarded as fixed or random. If the levels of a fac-
tor are treatments, for example, different therapies for
breast cancer, they would usually be treated as fixed
effects. Exceptions arise, such as in a clinical trial
comparing the effects of many antibiotics.

The key to variance component analysis is to build
models that represent different situations and explain
levels of variability that are plausible approximations
of what we actually observe. The motivation may be
intrinsic interest in the variance components them-
selves, such as in a comparison of different measuring
techniques, or on estimating the precision of the mean
or other model parameters. Alternatively, the moti-
vation may be the design of further studies via a
synthesis of variance, which we discuss below.

History

The idea of partitioning variability can be traced
at least as far back as Airy’s interest in errors of
measurement in astronomy [1]. The more recent sys-
tematic study of splitting variation into components
dates from R.A. Fisher’s introduction of the analysis
of variance; his original motivation was to improve
on the intraclass correlation. There followed periods
of intense activity during the last century in bio-
metrical genetics as described by Bulmer [6] (see
Polygenic Inheritance), in the analysis of variability
in industrial processes dating from the 1930s work
in the cotton industry by Tippett [46] and in the
wool industries by Daniels [12], and on error struc-
tures especially in randomized experimental designs
in the 1950s [8]. Eisenhart made explicit the dis-
tinction between fixed and random interpretations of
an analysis of variance and introduced this terminol-
ogy [13].

Much of the early work dealt with balanced data.
Henderson, in a long series of papers starting in
the 1950s, gave noniterative methods for handling
unbalanced data based on equating suitable quadratic
forms to their expectation [18, 19]. This more intu-
itive approach has now largely been replaced by
likelihood-based methods. Hartley and Rao [17] gave
a general matrix formulation and maximum like-
lihood estimation for the unbalanced linear model.
The important subsequent generalization of maxi-
mum likelihood to REML (reduced, restricted or
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residual maximum likelihood, which we discuss in
the next section) for unbalanced data was developed
in detail by Patterson and Thompson [30]. Searle
et al. [38] provide a very detailed and systematic
account of the normal theory formulations and the
associated matrix algebra for balanced and unbal-
anced data. Rao gives a broad account of normal
theory aspects too [35]. Rao and Kleffe [34] empha-
size the point estimation of variance components
using quadratic error loss, and we discuss this and
other methods of estimation in the next section.

Variance component problems with discrete re-
sponse data have a long history going back to
the Lexis urn models of dispersion associated with
the binomial distribution; see, for instance, [20]
(see Overdispersion). For an early paper on the
beta-binomial distribution, see [40]. Greenwood
and Yule [16] derived the negative binomial
distribution as a Poisson distribution with an
additional source of variation in connection with
an analysis of accidents to London bus drivers
(see Accident Proneness). Anscombe [2] compared
the theoretical properties of various methods of
estimation of its parameters. Cox [9] proposed simple
methods for variance components in multiplicative
models for Poisson variables.

The literature on multilevel modeling has
been steadily growing over the past decade and
is now very large. See Goldstein [15] for a
thorough discussion. In addition to the references
already mentioned, Snijders and Bosker [41] contains
important computational work and guidance for
fitting random effects and other models and Verbeke
and Molenberghs [48] give an extremely thorough
account of linear mixed models. McCulloch and
Searle [28] discuss generalized, linear, and mixed
models as do Fahrmeir and Tutz [14]. Pinheiro
and Bates [32] focus on nonlinear normal theory
models (see Nonlinear Mixed Effects Models for
Longitudinal Data).

Variance components arise implicitly or explic-
itly in many problems in sampling and experimental
design. Important applications include industrial pro-
cesses and reliability studies, genetics, animal and
plant breeding, econometrics, the design and analysis
of interlaboratory standardization trials, epidemiol-
ogy, psychometric testing, and education. Khuri and
Sahai [23] review developments in variance com-
ponents analysis to the mid-1980s and include a
comprehensive bibliography, and a recent issue of

Statistical Methods in Medical Research was devoted
to variance components [42].

Estimation

The most important and often most difficult issue
in variance component problems is the appropriate
formulation of a model, or equivalently, the formu-
lation of an analysis of variance table. We begin
with the simplest situation described in Example 1.
It is well known from the analysis of variance that
for balanced systems, there are parallel orthogonal
decompositions of the data vector, of sums of squares
of the components, and of the degrees of freedom.
The observation vector is decomposed into orthogo-
nal components as

Yjs = Y .. + (Y j. − Y ..) + (Yjs − Y j.), (6)

and if we write the data as one long vector, orthog-
onality implies that the cross-product terms on the
right-hand side vanish.

It is conventional to write out the analysis of vari-
ance table for the components and this is shown
in Table 1, in which MS denotes Mean Square.
Roughly, the mean square measures the sum of
squares per dimension for the component. The anal-
ysis of variance formulation is entirely structural and
does not involve model or distributional assumptions.
For interpretation, we bring in the probability model,
although we still only need the theory of a simple
random sample to derive the key properties, in par-
ticular, for equating mean squares to their expected
values.

For the one-way balanced arrangement, the first
important property is that E(MSε) = σ 2

ε , which only
concerns how repeat observations for an individ-
ual vary around the true mean for that individual.
It is also straightforward to show that E(MSξ ) =

Table 1 Analysis of variance table for the one-way bal-
anced variance component model

Source SS df

Mean Σj,sY
2
.. 1 MS

Between individuals Σj,s(Y j. − Y ..)
2

nJ − 1 MSξ

Within individuals Σj,s(Yjs − Y j.)
2

nJ (nS − 1) MSε

Total Σj,sY
2
js nJ nS
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nSσ
2
ξ + σ 2

ε , from which we deduce σ 2
ξ is estimated

via (MSξ − MSε)/nS .
If we are interested in the overall mean µ, for

instance, to compare the means in two or more groups
treated in different ways, we want E(Y ..) = µ and
var(Y ..) = σ 2

ξ /nJ + σ 2
ε /(nJ nS). Hence, a pivot for

the estimation of µ is

Y .. − µ√
MSξ /(nJ nS)

.

Assuming the pivot is approximately normally dis-
tributed, we can also obtain (approximate) confidence
limits for µ.

These estimates are sometimes called the least-
squares–based estimators and are unbiased estimates
of the variance components. The overall approach can
be generalized to more complex situations in which
estimating equations are formed by equating suitable
functions of the data (here sums of squares) to their
expectations under the assumed model (see Estimat-
ing Functions). Alternative (biased) estimators are
given by the method of maximum likelihood and
these are discussed below.

If we make the further assumption that all the ran-
dom variables are independently normally distributed,
several important properties follow that also extend
to general balanced cases. The most important is that
the two sums of squares and the sample mean are
minimal sufficient statistics implying various strong
optimum properties, and in particular, that as long as
the model is adequate, all we need for analysis are
the sums of squares and the mean. The assumption of
normality should not be made uncritically however,
and some effort should be expended on investigating
the sensitivity of the conclusions. We discuss ways
of assessing model adequacy later.

Certain exact inferential procedures for the three
unknown parameters µ, σ 2

ξ , and σ 2
ε follow from the

assumption of normality. For example, a technical
refinement of the pivot for µ is that it then has
the Student t distribution with nJ − 1 degrees of
freedom. However, only certain combinations of the
parameters can be tackled by these procedures, which
may not be of substantive interest. For example, we
can obtain exact confidence limits for the ratio of
variances σ 2

ξ /σ 2
ε , but not for σ 2

ξ itself, which is of
interest in comparing estimates from two or more
similar sets of data, subject to checks of homogene-
ity. The safest general procedure for doing this is the

use of profile likelihood or one of its generalizations.
There are however simpler and essentially equivalent
methods. For example, if T is an approximately unbi-
ased estimate of a positive parameter θ with effective
degrees of freedom d, then logT is approximately
normally distributed around mean logθ with variance
2/d, and further issues of analysis are in a normal
theory least-squares framework. See [11] for a more
thorough discussion of these less standard procedures.

Example 4 Angiogenesis microarray data. In a col-
laborative study, the author has been investigating
genes involved in the growth of blood vessels, a
process known as angiogenesis. The ability to stim-
ulate new blood vessel growth is a prerequisite for
the expansion of a solid tumor and future anticancer
treatments are postulated to involve therapy directed
to both cancer cells and the expanding vascular sys-
tem. COX2 (Prostaglandin endoperoxide synthase 2)
is a gene known to regulate angiogenesis and cell
migration, and served as a control gene in a cDNA
microarray experiment comparing mRNA samples
from time three hours with time zero. The microar-
ray consisted of a subtracted library of 10 400 clones,
each duplicated on the slide. The duplicate spots were
printed next to each other and are therefore spatially
correlated, but we will ignore this special feature of
the data. Four slides were hybridized and we assume
that the hybridized slides are independent.

The observed log intensity ratios for COX2 are
given in Table 2, which illustrates the data struc-
ture for the simple one-way model with two replicate
observations. Note that in general, the ordering of
the observations within rows is arbitrary. In the nota-
tion of Table 1, nJ = 4 and nS = 2. The appropriate
analysis is based on the pivot for the mean, µ,
which under the null hypothesis of no differential
expression and the assumption that the log ratios are
normally distributed, is t with 3 degrees of freedom.

Table 2 Log intensity ratios for a COX2 in a cDNA
microarray experiment with four slides and duplicate spots
within slides

Slide Log ratios M

1 3.5040 3.4757
2 3.7160 3.7896
3 3.6215 3.7496
4 2.9467 2.8873
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Thus, T = 3.4613/(0.3796/2) = 18.23 on 3 degrees
of freedom. The associated P value is 0.00036 with
an estimated 95% confidence interval for the true
mean difference in expression (2.8572, 4.0654), indi-
cating that COX2 is significantly upregulated at three
hours.

We are ignoring here issues of multiple testing,
which can be important in microarray experiments
when many thousands of genes are analyzed simul-
taneously (see Multiple Comparisons).

Negative estimates: All variances are by defini-
tion nonnegative. However, the standard least-squares
estimates of the upper variance component in the one-
way balanced model are based on differences of mean
squares and hence may sometimes be negative. The
simplest way to deal with negative estimates arising
from this and similar situations is to replace them
by zero. For example, we would take max{(MSξ −
MSε)/nS, 0} as an estimate of σ 2

ξ . There are two qual-
ifications to this recommendation. Firstly, if the mean
square between individuals is substantially smaller
than the mean square within individuals, this indi-
cates that the data are inconsistent with the model
and may be a warning that a systematic effect has
been omitted. Alternatively, it may be a warning that
important correlations between the random variables
have been ignored. Secondly, in an analysis that syn-
thesizes an estimate of σ 2

ξ from several separate sets
of data, such as in a meta-analysis of case–control
studies, then negative values should be retained to
avoid systematic error in the pooled estimate.

The procedures described so far extend directly to
more complex models provided the data are balanced.
In practice, however, data are often not balanced,
either by design or as a result of various forms of
missingness. The concepts involved are not affected
by lack of balance, but the analytical details are. In
particular, the decompositions for the balanced case
no longer hold and the underlying algebra is more
complicated. It is not always obvious how to find the
variance estimates for more complicated models and
general procedures are required. One very powerful
procedure is maximum likelihood for which we find
algebraically, or more commonly numerically, the
combination of parameter values that maximize the
likelihood.

Maximum likelihood and REML: It is well known
that the maximum likelihood estimate of the variance
in a simple random sample is biased, having divi-
sor nS rather than nS − 1. In more complex models,

the resulting estimates of variance may be entirely
unsatisfactory especially if the number of nuisance
parameters is large, and alternative methods of esti-
mation need to be deployed. The most widely used
method and preferred basis for the formal analysis
of unbalanced normal models is REML, which max-
imizes the likelihood of judiciously chosen parts of
the data, rather than that of all the data.

REML may be formulated as follows for the one-
way analysis. We may apply an orthogonal transfor-
mation to each individual (or sample) to replace the
nS values by the quantity Y j.

√
nS and nS − 1 vari-

ables, which are independently normally distributed
with zero mean and variance σ 2. The contribution
of the individual to the likelihood is thus the prod-
uct of two factors, one depending on µj and σ 2,
and the other depending only on σ 2 and involving
the data only via

∑
(Yjs − Y j.)

2. In many problems,
especially when little is known initially about µj ,
the first factor contains little or no information about
σ 2. Thus, for inference about σ 2, we use only the
second factor. This leads to a loglikelihood based
on nJ (nS − 1) observations that are independently
normally distributed with mean zero and variance
σ 2. The corresponding maximum likelihood estimate
then has the correct divisor, which is the degrees of
freedom within individuals. The same idea can be
applied to the general linear mixed model with fixed
and random effects.

REML has the advantage of returning the usual
least-squares estimates of the variance components
for balanced data. It is a particular case of the use
of marginal likelihood and conditional likelihood;
see [21] for a general study of both. Barndorff-
Nielsen and Cox [3] show that REML is a special
case of modified profile likelihood.

Alternative methods of estimation: Powerful and
efficient methods for model fitting are important.
Indeed, the lack of such methods for unbalanced data
held the subject of variance components back until
relatively recently. A disadvantage of these develop-
ments, however, is that the relationship between the
data and the conclusions can be obscure, and for com-
plicated problems, simpler methods may be useful for
conceptual clarity and interpretation.

For the unbalanced one-way arrangement, the two
simplest procedures are to base the estimation of
the upper-level variance component σ 2

ξ on either the

unweighted sum of squares
∑

(Y j. − Y
(u)

.. )2, where
Y j. is the mean of the rj responses for individual j
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and Y
(u)

.. is the unweighted average of these means,
or on the usual analysis of variance sum of squares∑

rj (Y j. − Y
(r)

.. )2, where Y
(r)

.. is the average of the
Y j. weighted by the group size. The idea is to decide
informally whether the upper or lower component
of variance is dominant and to use the unweighted
or standard analysis of variance sum of squares as
a basis for examining the upper-level component of
variance. The same idea can be extended to general
models. These simpler approaches are related to the
various methods of estimation proposed by Hender-
son and are described in detail in [38].

An important special case is when T1, . . . , TnJ
are

estimates of a parameter θ obtained from independent
sets of data, each with its own internal estimate of
error. For example, in combining the results of a num-
ber of case–control studies, θ could be the log odds
ratio for treatment versus control after adjustment
by maximum likelihood logistic regression for imbal-
ance with respect to explanatory variables, which
might be different in the different studies. Note that
it is not necessary that the same model is fitted to
each group of data, only that the parameter θ has
the same interpretation. The estimates may vary more
than would be expected on the basis of internal error
and it may not be feasible to explain the extra vari-
ability as systematic. In this case, we may represent
the additional variability as random, and in particular,
take as a reasonable approximation Tj = θ + ξj + εj ,
where the ξ and ε are approximately normally dis-
tributed and independent. The idea is that a simple
analysis helps decide whether a component of vari-
ance σ 2

ξ is necessary, whether there are outlying
groups, and which of the weighted or unweighted
estimates of θ are likely to have high efficiency.
Similar arguments apply if θ is a vector. Cox [10]
outlines the approach and Cox and Solomon [11] give
details of these simpler procedures in applications to
nonnormal response data and random effects logistic
regression.

We mention briefly another class of methods
for estimating variance components known as mini-
mum norm quadratic unbiased estimators (MINQUE)
described in detail in [34]. In this and related criteria,
low moment assumptions are made about the com-
ponent random variables and attention focusses on
quadratic point estimates that satisfy conditions such
as unbiasedness and minimum variance (see Mini-
mum Variance Unbiased (MVU) Estimator).

Synthesis of Variance

This refers to the process of putting the variance
components back together with a view to determining
what the variability would be in different sampling
situations, or the variance that should be attached to a
nonstandard type of comparison. Calculations of this
sort are particularly important in designs of systems
to achieve a balance between the number of groups
or individuals that need to be studied and the number
of replicates within each individual.

The simplest example is to estimate the vari-
ance of a mean if nS1 repeat observations are to
be made on each of nJ1 individuals. This is (σ 2

ε +
nS1σ

2
ξ )/(nJ1nS1), which can be estimated. We may be

interested to know how much better will the preci-
sion be if we take three or four repeat observations
on each individual rather than one, say. If the differ-
ent individuals are very different, that is, σ 2

ξ is large,
then there is little point in replicating more within
individuals. But if σ 2

ε is large relative to σ 2
ξ , there

will be an nJ1nS1 effect and increasing the number
of replicates will improve the precision of the overall
mean.

The estimated synthesized variance of the mean
under the new design with nS1 rather than nS repeated
observations within each individual is

1

nS1nJ1

(
MSε + nS1

MSξ − MSε

nS

)
,

where the observed mean squares and degrees of
freedom are those from the original data.

Example 4 revisited: Angiogenesis microarray
data. The estimated components of variance for the
gene COX2 in Example 4 are 0.3731 for the between-
slide component and 0.0131 for the within-slide
component. In view of the considerations outlined
above, increasing the number of replicate spots within
a slide would have little impact on the precision
as compared with increasing the number of slides
hybridized in the experiment.

Components of Covariance and Regression

In the simplest case of a number of groups with
a regression of Y , say, on X within each group,
work on multilevel modeling has tended to stress
the effect of the correlation and additional variation
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within groups on the regression coefficient of Y on
X and its standard error. But if the groups represent
bivariate populations, there are two regression coef-
ficients, one within groups and another that would
be defined by a scatterplot of the means of X and
Y . In an early exposition of analysis of covariance,
Pearson stressed the distinction between these coeffi-
cients [31].

To formulate the issues explicitly, consider the
bivariate one-way balanced model in which each
observation Yjs is a 1 × 2 row vector giving an
nJ nS × 2 data matrix Y . The pairs of observations
are

Yjs = µY + ξY
j + εY

js,

Xjs = µX + ξX
j + εX

js, (7)

for which there are four variances σ 2
Yξ , σ 2

Xξ , σ 2
Yε

and σ 2
Xε as well as covariances cov(ξY

j , ξX
j ) and

cov(εY
js , εX

js). In the general case with p response
variables, each observed random variable is replaced
by a set of p components.

As explained above, we can view the bivariate
decomposition in two different ways. If Y and X are
treated on an equal footing, we have two covariance
matrices for the interpretation of associations at the
two different levels. Sometimes it may be helpful to
estimate separately the two correlations corr(ξY

j , ξX
j )

and corr(εY
j , εX

j ). The second possibility is that X

should be considered as explanatory to the response
Y . Then there are two regression coefficients of Y

on X, namely, βξ,YX and βε,YX, regression coeffi-
cients from the between- and within-group structure,
respectively.

Suppose as an illustration that on a large sample
of subjects of stable health and in a narrow age
range, measurements are made of blood pressure,
Y , and sodium (Na) intake, X. For each subject,
the observations are repeated some months later. If
we ignore possible time trends, we may consider a
one-way analysis. The regression coefficient βε,YX

measures the mean increase in blood pressure Y when
the Na intake, X, of a particular subject varies by
one unit, for example, 10 mg per day. By contrast
βξ,YX is the average difference in the mean blood
pressure of two different subjects whose long-run
mean Na intakes differ by 10 mg per day. The naive
interpretation of βξ,YX would imply that if subjects
changed their long-run mean Na intake by 10 mg per

day, then there would be a corresponding change
in long-run mean blood pressure as determined by
βξ,YX. The naive interpretation of βε,YX would imply
that individuals increasing their Na intake by 10 mg
per day would on average have an increase in blood
pressure determined by the regression coefficient.

In an observational study, both interpretations
involve substantial assumptions and would be quite
speculative. If individuals had been randomized to
Na levels on the other hand, the interpretation of the
regression coefficients would be unambiguous. In the
absence of randomization, however, there may be
explanatory variables, observed or unobserved, and
long-run features of individuals that are themselves
explanatory to both Y and X. These arguments extend
to more complicated structures. The difficulties of
applying aggregate-level conclusions to individuals
in this way is often called ecological.

Empirical Bayes

When a frequency probability analysis is based on
empirical data with structural assumptions, for exam-
ple, that certain terms in a regression are random, we
call the analysis empirical Bayes. No special con-
ceptual issues to do with defining a suitable prior
probability and so forth are involved.

Classical empirical Bayes analysis proceeds as fol-
lows. Consider the univariate one-way model again
where, as before, the ξj and the εjs are independently
normally distributed with zero mean. There are three
unknown parameters in the model, θ = (µ, σ 2

ξ , σ 2
ε ).

Suppose θ is known and that interest is in the mean
of the first group, µ + ξ1; ξ1 is an unobserved random
variable, which itself partly determines the distribu-
tion of the observations. It is therefore appealing, and
can be justified formally from various points of view
that information about ξ1 is best summarized by its
conditional distribution given the data. This is derived
by Bayes’s theorem. We can show [11, Chapter 3]
that the required conditional distribution is normal
with mean of the form of an optimally weighted mean
obtained from combining the information from the
data y1. and that from the distribution of ξ1 around
µ, denoted ξ̃1. In effect, the sample mean y1. is
shrunk towards the general mean (see Shrinkage).
By the same argument, the estimate of any contrast
is obtained by shrinking the sample contrast towards
zero (see Shrinkage Estimation).
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It can be shown that if in the originating model, the
random variables are not normally distributed, then
the above estimates are in a sense the best linear
estimates. Viewed as a point predictor of ξ1, the
quantity ξ̃1 has a property summarized in the term
best linear unbiased predictor (BLUP; see [37]).

Nonnormal Models

There are broadly parallel developments for the Pois-
son and binomial distributions with one extra level
of variability to those discussed above for continuous
random variables. An alternative approach to analysis
may be to use (approximate) weighted least-squares
methods on the basis of an empirical transform of
the response variable, for example, the square root
or logarithm of Poisson variables and the empiri-
cal logistic, probit, or log–log transform of binomial
variables.

There may be some loss of efficiency in these
approximate procedures. But a more general dis-
cussion of variance component models for gener-
alized linear models and normal theory nonlinear
regression is difficult, primarily due to the fact that
formally efficient methods of estimation involve high-
dimensional integration. The general form of the full
likelihood is given by

∫
lik(θ | ξ ; y) dF(ξ ; τ),

where F(ξ ; τ) is the distribution function of ξ

depending on parameters τ , which are typically com-
ponents of variance and their generalizations. In cases
without time series or similar structure, ξ will consist
of independent components so that F(ξ ; τ) factorizes
into a product component by component. The inte-
gral will factorize into subintegrals but, even so, the
dimension of each may be large.

In the special case in which, given the random
terms ξ , the observations have an exponential family
distribution, we obtain a generalized linear mixed
model. In the simplest formulation, the random
effects ξj are independently and identically normally
distributed with zero mean and q-dimensional vari-
ance matrix D(τ), where τ is a vector of unknown
variance components; D is often called the dispersion
matrix. The conditional independence of the observa-
tions within an individual or cluster allows us to write

the exact marginal likelihood

lik(β, τ ; y) =
nJ∏

j=1

∫ rj∏
s=1

f (yjs |ξj ; β)g(ξj ; τ) dξj ,

(8)

where g is the link function for the generalized linear
model.

Formal inference can be based on maximum like-
lihood or on Bayesian considerations, and there are
currently three ways to approach the numerical inte-
gration problem. The most direct and appealing
method is direct or preferably adaptive quadrature.
The second, applicable when the integrals can be
resolved into a sequence of one-dimensional inte-
grals, is to use an analytical approximation, usually
based on a few terms of a Laplace expansion [5,
39, 43]. Such expansions are based on the idea that
integrals involving an exponential of a function are
dominated by behavior of that function near its max-
imum. This method can sometimes yield relatively
simple interpretable results. Calculation of higher
terms in the expansions may be feasible, especially
if aided by computerized algebra. Higher terms are
important to give at least a partial check on the ade-
quacy of the approximations but there is often some
uncertainty about the range of applicability of the
approximations.

The third method is Markov chain Monte Carlo
(MCMC). In the Bayesian version, a Markov chain
is defined, which has as its equilibrium distribution,
the posterior distributions of interest. The chain is
then simulated a very large number of times and if the
realizations appear to have converged to stationarity,
the frequency distribution of realized values, exclud-
ing a run-in period, is used to estimate the posterior
distributions. MCMC is a powerful and general tech-
nique but there is the possibility, in theory at least,
that apparent convergence to a stationary state is illu-
sory. Some protection can be achieved by starting the
simulations from very different initial states.

There are also at least two other approaches to
these problems. Lee and Nelder [25, 26] study a
notion of h-likelihood in which, in effect, realized
values of individual random variables representing
portions of variability are treated like unknown
parameters. This is likely to be effective when there
is substantial information about each such realized
value. Another mode of analysis called penalized
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quasi-likelihood concentrates on the underlying
estimating equations and their justification in a
broader setting than a fully parametric one [4,
5, 24, 45] (see Penalized Maximum Likelihood;
Quasi-likelihood). Rabe-Hesketh et al. [33] provide
a valuable comparison of methods for estimation in
generalized linear mixed models.

In survival or event history data, a random term
for each individual with an associated variance com-
ponent is often called frailty. The terminology arises
from applications in which the randomly occurring
events are failures or adverse reactions of some kind.
See Frailty for a detailed discussion of these and
related models.

Model Assessment and Prediction

Although there is a very large literature on formal
and informal tests of model adequacy, little of it
is directly relevant to variance component models
(see Model Checking). The most important type of
failure of a model stems from omitting a substantial
effect, for example, treating a cross-classification as if
nested. This destroys the independence assumptions
underlying the discussion and is likely to be detected
by anomalous behavior of the mean squares, possibly
leading to substantial negative estimates of variance.

Outlying observations or individuals can influence
the usual quadratic estimates of variance. For exam-
ple, in the one-way arrangement, an anomalous single
observation has a large effect on the estimated com-
ponent of variance within individuals, but relatively
little effect on the estimated component between
individuals. In more complex situations, the distinc-
tion between outliers at the different levels becomes
harder to detect empirically. Robust methods provide
one way of dealing with outlying observations but do
not retain key parameter properties, which are cen-
tral to variance component analysis, in particular, the
additivity of variance as a parameter.

Other important departures from the standard for-
mulation include nonnormality of one or more of the
component random variables, or dependence between
the variability within an individual and the individual
mean. Mild nonnormality of the variances within or
between individuals may be of relatively minor con-
cern, but the dependence described above may lead to
inappropriate predictions or supplementary analyses.
Solomon and Cox [43] suggested a formal analysis

in which the nonnormal variances and dependence
features are separated.

Further, special topics on model criticism and
improvement include the prediction of exceedances,
the analysis of panel data, fitting more elaborate
models, transformations, and study of the distribu-
tional form of the underlying random variables. Many
of these methods and ideas are discussed in detail
in [11]. An important general point when assessing
model adequacy is that the analysis should focus on
issues that are of substantive importance. For exam-
ple, discriminating between heterogeneous variances
versus constant variances with differing individual
means is only worth attempting if the distinction can
be given a physical interpretation.

Generalizations and Further Topics

There are many additional areas of current work
related to variance components including the follow-
ing.

Measurement error models: The main emphasis in
this article has been on the estimation of variance
components as parameters of intrinsic interest. One
situation where the real emphasis lies elsewhere and
the components of variance are of concern because
they affect this primary aspect, is the effect of mea-
surement error in explanatory variables on regression
analysis (see Errors in the Measurement of Covari-
ates). Measurement error models have a long his-
tory and an extensive literature; see, for example, [7,
36] for a recent application.

Design of investigations: The objective of vari-
ance components analysis is the study of patterns
of variation as they exist rather than the assess-
ment of interventions under controlled conditions,
which is the purpose of formal design of experiments.
However, many of the general principles of exper-
imental design, and especially those common with
the principles of sampling (see Sample Surveys in
the Health Sciences), apply. Khuri [22] gives a sys-
tematic review and bibliography of work on design
for the estimation of variance components, and Cox
and Solomon [11, Chapter 3] present some new ideas.

Finite population aspects: Occasionally, the indi-
viduals are not regarded as individuals or as sampled
from an infinite population but as from an existing
finite population of known size, or in particular,
as forming the whole of the population in which
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variation is to be assessed. The finite population
variance component is relevant only in very special
situations, and in some industrial problems in partic-
ular. The importance of distinguishing between finite
and infinite populations when defining variance com-
ponents was first stressed by Daniels in the context
of studies of variation in industrial processes [12].
Tukey [47] extended these ideas to sampling a finite
population. A formulation relevant to the industrial
context is outlined in [11].

Synthesis of studies: In many fields of application,
the synthesis of information from several studies is
crucial. Variation between studies and interactions
of such variation with the treatment effects under
investigation may involve representation by compo-
nents of variance. In biostatistics, the term overview
or meta-analysis is often used and is an integral
part of evidence-based medicine. A representation in
terms of random effects would only be indicated if
no direct explanation of important observed variation
in treatment effect is apparently available, such as
nonconstancy of the treatment effect being confined
to certain contrasts. The use of variance components
in meta-analysis is not without controversy.
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