Work in progress on the Australian and New Zealand Intensive Care (ANZICS) Database

Patty Solomon¹ John L. Moran²

¹School of Mathematical Sciences The University of Adelaide

²Department of Intensive Care Medicine The Queen Elizabeth Hospital Adelaide, South Australia

MRC Biostatistics Unit, Cambridge 12 November 2007

Dr John L. Moran

An outline of my talk today

1 The ANZICS adult patient database (APD)

ANZICS mortality and LOS outcomes 1993-2003

Quantitative indices reflecting provider 'process-of-care'

The ANZICS Adult Patient Database is the largest (bi-national) intensive care database in the world.

Currently contains > 700,000 intensive care submissions collected from 138 intensive care units (ICUs) in Australia and New Zealand since 1987.

Evolved from humble beginnings in recognition of the integral importance of high-quality databases to the *practice*, *management*, *research and audit of clinical services*.¹

Major advantage of a national database: ability to capture large amounts of data across a broad spectrum of diagnoses and interventions \rightarrow especially important in critical care medicine.

Intensive care is expensive: consumes an estimated AUS\$500m to AUS\$1b per annum.

The ANZICS Adult Patient Database is the largest (bi-national) intensive care database in the world.

Currently contains > 700,000 intensive care submissions collected from 138 intensive care units (ICUs) in Australia and New Zealand since 1987.

Evolved from humble beginnings in recognition of the integral importance of high-quality databases to the *practice*, *management*, *research and audit of clinical services*.¹

Major advantage of a national database: ability to capture large amounts of data across a broad spectrum of diagnoses and interventions \rightarrow especially important in critical care medicine.

Intensive care is expensive: consumes an estimated AUS\$500m to AUS\$1b per annum.

The ANZICS Adult Patient Database is the largest (bi-national) intensive care database in the world.

Currently contains > 700,000 intensive care submissions collected from 138 intensive care units (ICUs) in Australia and New Zealand since 1987.

Evolved from humble beginnings in recognition of the integral importance of high-quality databases to the *practice*, *management*, *research and audit of clinical services*.¹

Major advantage of a national database: ability to capture large amounts of data across a broad spectrum of diagnoses and interventions \rightarrow especially important in critical care medicine.

Intensive care is expensive: consumes an estimated AUS\$500m to AUS\$1b per annum.

The ANZICS Adult Patient Database is the largest (bi-national) intensive care database in the world.

Currently contains > 700,000 intensive care submissions collected from 138 intensive care units (ICUs) in Australia and New Zealand since 1987.

Evolved from humble beginnings in recognition of the integral importance of high-quality databases to the *practice*, *management*, *research and audit of clinical services*.¹

Major advantage of a national database: ability to capture large amounts of data across a broad spectrum of diagnoses and interventions \rightarrow especially important in critical care medicine.

Intensive care is expensive: consumes an estimated AUS\$500m to AUS\$1b per annum.

¹Black, Lancet 1999

The ANZICS Adult Patient Database is the largest (bi-national) intensive care database in the world.

Currently contains > 700,000 intensive care submissions collected from 138 intensive care units (ICUs) in Australia and New Zealand since 1987.

Evolved from humble beginnings in recognition of the integral importance of high-quality databases to the *practice*, *management*, *research and audit of clinical services*.¹

Major advantage of a national database: ability to capture large amounts of data across a broad spectrum of diagnoses and interventions \rightarrow especially important in critical care medicine.

Intensive care is expensive: consumes an estimated AUS\$500m to AUS\$1b per annum.

¹Black, Lancet 1999

The ANZICS Adult Patient Database is the largest (bi-national) intensive care database in the world.

Currently contains > 700,000 intensive care submissions collected from 138 intensive care units (ICUs) in Australia and New Zealand since 1987.

Evolved from humble beginnings in recognition of the integral importance of high-quality databases to the *practice*, *management*, *research and audit of clinical services*.¹

Major advantage of a national database: ability to capture large amounts of data across a broad spectrum of diagnoses and interventions \rightarrow especially important in critical care medicine.

Intensive care is expensive: consumes an estimated AUS\$500m to AUS\$1b per annum.

¹Black, Lancet 1999

A nice position paper describing the ANZICS APD

Journal of Critical Care (2006) 21, 133-141

Journal of Critical Care

Development and implementation of a high-quality clinical database: the Australian and New Zealand Intensive Care Society Adult Patient Database

Peter J. Stow^a, Graeme K. Hart^{b,c}, Tracey Higlett^{c,*}, Carol George^a, Robert Herkes^d, David McWilliam^d, Rinaldo Bellomo^e for the ANZICS Database Management Committee

- ^aANZICS Adult Patient Database (APD), Melbourne, Victoria 3053, Australia
- ^bANZICS Database Management Committee, Melbourne, Victoria 3053, Australia

^cANZICS Research Centre for Critical Care Resources (ARCCCR), Melbourne, Victoria 3053, Australia

^dIntensive Care Unit, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia

eIntensive Care Research, Austin Hospital, Melbourne, Victoria 3084, Australia

• origins of ANZICS APD up to December 2003

- 444, 147 case records
- collect raw physiology data
- 121/167 Australian and 10/27 New Zealand ICUs
- data submissions from contributing ICUs are voluntary.

Database evaluated according to criteria of the Directory of Clinical Audit Databases (DoCDAT) and the Arts *et al* framework.²

Overall: ANZICS APD is a high-quality database representative of the Australian population; it does have some weaknesses:

- completeness of recruitment < 80%
- some queries about reliability of coding (lack of intra-rater and inter-rater reliability testing).

²J Am Med Inform Assoc 2002

- origins of ANZICS APD up to December 2003
- 444, 147 case records
- collect raw physiology data
- 121/167 Australian and 10/27 New Zealand ICUs
- data submissions from contributing ICUs are voluntary.

Database evaluated according to criteria of the Directory of Clinical Audit Databases (DoCDAT) and the Arts *et al* framework.²

Overall: ANZICS APD is a high-quality database representative of the Australian population; it does have some weaknesses:

- completeness of recruitment < 80%
- some queries about reliability of coding (lack of intra-rater and inter-rater reliability testing).

²J Am Med Inform Assoc 2002

- origins of ANZICS APD up to December 2003
- 444, 147 case records
- collect raw physiology data
- 121/167 Australian and 10/27 New Zealand ICUs
- data submissions from contributing ICUs are voluntary.

Database evaluated according to criteria of the Directory of Clinical Audit Databases (DoCDAT) and the Arts *et al* framework.² Overall: ANZICS APD is a high-quality database representative of

the Australian population; it does have some weaknesses:

- completeness of recruitment < 80%
- some queries about reliability of coding (lack of intra-rater and inter-rater reliability testing).

²J Am Med Inform Assoc 2002

- origins of ANZICS APD up to December 2003
- 444, 147 case records
- collect raw physiology data
- 121/167 Australian and 10/27 New Zealand ICUs
- data submissions from contributing ICUs are voluntary.

Database evaluated according to criteria of the Directory of Clinical Audit Databases (DoCDAT) and the Arts *et al* framework.² Overall: ANZICS APD is a high-quality database representative of the Australian population; it does have some weaknesses:

- completeness of recruitment < 80%
- some queries about reliability of coding (lack of intra-rater and inter-rater reliability testing).

²J Am Med Inform Assoc 2002

- origins of ANZICS APD up to December 2003
- 444, 147 case records
- collect raw physiology data
- 121/167 Australian and 10/27 New Zealand ICUs
- data submissions from contributing ICUs are voluntary.

Database evaluated according to criteria of the Directory of Clinical Audit Databases (DoCDAT) and the Arts *et al* framework.²

Overall: ANZICS APD is a high-quality database representative of the Australian population; it does have some weaknesses:

- completeness of recruitment < 80%
- some queries about reliability of coding (lack of intra-rater and inter-rater reliability testing).

- origins of ANZICS APD up to December 2003
- 444, 147 case records
- collect raw physiology data
- 121/167 Australian and 10/27 New Zealand ICUs
- data submissions from contributing ICUs are voluntary.

Database evaluated according to criteria of the Directory of Clinical Audit Databases (DoCDAT) and the Arts *et al* framework.² Overall: ANZICS APD is a high-quality database representative of

- the Australian population; it does have some weaknesses:
 - completeness of recruitment < 80%
 - some queries about reliability of coding (lack of intra-rater and inter-rater reliability testing).

- origins of ANZICS APD up to December 2003
- 444, 147 case records
- collect raw physiology data
- 121/167 Australian and 10/27 New Zealand ICUs
- data submissions from contributing ICUs are voluntary.

Database evaluated according to criteria of the Directory of Clinical Audit Databases (DoCDAT) and the Arts *et al* framework.²

Overall: ANZICS APD is a high-quality database representative of the Australian population; it does have some weaknesses:

- completeness of recruitment < 80%
- some queries about reliability of coding (lack of intra-rater and inter-rater reliability testing).

- origins of ANZICS APD up to December 2003
- 444, 147 case records
- collect raw physiology data
- 121/167 Australian and 10/27 New Zealand ICUs
- data submissions from contributing ICUs are voluntary.

Database evaluated according to criteria of the Directory of Clinical Audit Databases (DoCDAT) and the Arts *et al* framework.²

Overall: ANZICS APD is a high-quality database representative of the Australian population; it does have some weaknesses:

- completeness of recruitment < 80%
- some queries about reliability of coding (lack of intra-rater and inter-rater reliability testing).

²J Am Med Inform Assoc 2002

- tertiary, metropolitan, rural or private hospitals;
- *distances* between centres are often *large*, and there may be geographical or other barriers to the transfer of patients between different levels of care.
- Private and public funding models may result in differences in clinical practice.
- In Australia, 50% of hospital care is private.

- tertiary, metropolitan, rural or private hospitals;
- *distances* between centres are often *large*, and there may be geographical or other barriers to the transfer of patients between different levels of care.
- Private and public funding models may result in differences in clinical practice.
- In Australia, 50% of hospital care is private.

- tertiary, metropolitan, rural or private hospitals;
- *distances* between centres are often *large*, and there may be geographical or other barriers to the transfer of patients between different levels of care.
- Private and public funding models may result in differences in clinical practice.
- In Australia, 50% of hospital care is private.

- tertiary, metropolitan, rural or private hospitals;
- *distances* between centres are often *large*, and there may be geographical or other barriers to the transfer of patients between different levels of care.
- Private and public funding models may result in differences in clinical practice.
- In Australia, 50% of hospital care is private.

- tertiary, metropolitan, rural or private hospitals;
- *distances* between centres are often *large*, and there may be geographical or other barriers to the transfer of patients between different levels of care.
- Private and public funding models may result in differences in clinical practice.
- In Australia, 50% of hospital care is private.

National Oceans Office, Australian Bureau of Statistics

Mortality and association with mechanical ventilation Moran *et al*, *Critical Care Medicine* **35** 2007

n = 223, 129, overall mortality 16.1%, mean *LOS* 3.6 days. Hospital mortality decreased 4% over 11 years.

- Considerable uncertainty has been apportioned to estimates of mortality as reflected in the Standardised Mortality Ratio (SMR).³
- Full 'explanatory' models are preferable to the limited purview of 'algorithmic' (APACHE, SAPS, MPM) models
 - Acute Physiology and Chronic Health Evaluation.

³Moran & Solomon Mortality and other event rates: what do they tell us about performance? *Crit Care & Resus* 2003

- Considerable uncertainty has been apportioned to estimates of mortality as reflected in the Standardised Mortality Ratio (SMR).³
- Full 'explanatory' models are preferable to the limited purview of 'algorithmic' (APACHE, SAPS, MPM) models
 - Acute Physiology and Chronic Health Evaluation.

³Moran & Solomon Mortality and other event rates: what do they tell us about performance? *Crit Care & Resus* 2003

- Considerable uncertainty has been apportioned to estimates of mortality as reflected in the Standardised Mortality Ratio (SMR).³
- Full 'explanatory' models are preferable to the limited purview of 'algorithmic' (APACHE, SAPS, MPM) models
 - Acute Physiology and Chronic Health Evaluation.

³Moran & Solomon Mortality and other event rates: what do they tell us about performance? *Crit Care & Resus* 2003

- Considerable uncertainty has been apportioned to estimates of mortality as reflected in the Standardised Mortality Ratio (SMR).³
- Full 'explanatory' models are preferable to the limited purview of 'algorithmic' (APACHE, SAPS, MPM) models
 - Acute Physiology and Chronic Health Evaluation.

³Moran & Solomon Mortality and other event rates: what do they tell us about performance? *Crit Care & Resus* 2003

Bootstrapped CIs of ranks (1993 - 1997)

Rank SMR order for FE and RE models 1993 – 2003

Rank SMR order for FE and RE models

Rank SMR order for FE and RE models

The outcomes paradigm

Is now a **dominant influence** within medicine, and *critical care* is no exception.⁴

In the USA

- Cleveland Health Quality Choice
- initially greeted with some enthusiasm
- but upon its demise, described as either *martyr* or *failure*.

In the UK

• the performance of the paediatric cardiac surgical service at the Royal Bristol infirmary.

In Australia

- ANZICS data-base initiative
- the inquiry into the Bundaberg Base Hospital, Queensland.⁵

⁴Davies & Crombie 1997; Sibbald *et al* 2001; Ridley 2002

The outcomes paradigm

Is now a **dominant influence** within medicine, and *critical care* is no exception.⁴

In the USA

• Cleveland Health Quality Choice

- initially greeted with some enthusiasm
- but upon its demise, described as either *martyr* or *failure*.

In the UK

• the performance of the paediatric cardiac surgical service at the Royal Bristol infirmary.

In Australia

- ANZICS data-base initiative
- the inquiry into the Bundaberg Base Hospital, Queensland.⁵

⁴Davies & Crombie 1997; Sibbald *et al* 2001; Ridley 2002 ⁵Scott & Ward, *MIA* 2006

The outcomes paradigm

Is now a **dominant influence** within medicine, and *critical care* is no exception.⁴

In the USA

- Cleveland Health Quality Choice
- initially greeted with some enthusiasm
- but upon its demise, described as either *martyr* or *failure*.

In the UK

• the performance of the paediatric cardiac surgical service at the Royal Bristol infirmary.

In Australia

- ANZICS data-base initiative
- the inquiry into the Bundaberg Base Hospital, Queensland.⁵

⁴Davies & Crombie 1997; Sibbald *et al* 2001; Ridley 2002 ⁵Scott & Ward, *MIA* 2006
Is now a **dominant influence** within medicine, and *critical care* is no exception.⁴

In the USA

- Cleveland Health Quality Choice
- initially greeted with some enthusiasm
- but upon its demise, described as either *martyr* or *failure*.

In the UK

• the performance of the paediatric cardiac surgical service at the Royal Bristol infirmary.

In Australia

- ANZICS data-base initiative
- the inquiry into the Bundaberg Base Hospital, Queensland.⁵

Is now a **dominant influence** within medicine, and *critical care* is no exception.⁴

In the USA

- Cleveland Health Quality Choice
- initially greeted with some enthusiasm
- but upon its demise, described as either *martyr* or *failure*.

In the UK

• the performance of the paediatric cardiac surgical service at the Royal Bristol infirmary.

In Australia

- ANZICS data-base initiative
- the inquiry into the Bundaberg Base Hospital, Queensland.⁵

Is now a **dominant influence** within medicine, and *critical care* is no exception.⁴

In the USA

- Cleveland Health Quality Choice
- initially greeted with some enthusiasm
- but upon its demise, described as either *martyr* or *failure*.

In the UK

• the performance of the paediatric cardiac surgical service at the Royal Bristol infirmary.

In Australia

- ANZICS data-base initiative
- the inquiry into the Bundaberg Base Hospital, Queensland.⁵

Is now a **dominant influence** within medicine, and *critical care* is no exception.⁴

In the USA

- Cleveland Health Quality Choice
- initially greeted with some enthusiasm
- but upon its demise, described as either *martyr* or *failure*.

In the UK

• the performance of the paediatric cardiac surgical service at the Royal Bristol infirmary.

In Australia

- ANZICS data-base initiative
- the inquiry into the Bundaberg Base Hospital, Queensland.⁵

Is now a **dominant influence** within medicine, and *critical care* is no exception.⁴

In the USA

- Cleveland Health Quality Choice
- initially greeted with some enthusiasm
- but upon its demise, described as either *martyr* or *failure*.

In the UK

• the performance of the paediatric cardiac surgical service at the Royal Bristol infirmary.

In Australia

- ANZICS data-base initiative
- the inquiry into the Bundaberg Base Hospital, Queensland.⁵

Is now a **dominant influence** within medicine, and *critical care* is no exception.⁴

In the USA

- Cleveland Health Quality Choice
- initially greeted with some enthusiasm
- but upon its demise, described as either *martyr* or *failure*.

In the UK

• the performance of the paediatric cardiac surgical service at the Royal Bristol infirmary.

In Australia

- ANZICS data-base initiative
- the inquiry into the Bundaberg Base Hospital, Queensland.⁵

APACHE $\rm II^6$ and exploration of risk adjusted mortality in a cohort of $\rm 13~ICUs$

- established the notion of 'institutional' or 'provider' comparisons within critical care, and
- introduced SMRs to the critical care literature.

From wherein has ensued a discordant debate regarding the relationship between the SMR and ICU *performance* or *quality*:

- SMR and its variability is problematic
- "mortality is unlikely to be a sufficient statistic for quality" (Spiegelhalter 1999)
- scoring systems at best describe 'elements' of performance.⁷

APACHE $\rm II^6$ and exploration of risk adjusted mortality in a cohort of $\rm 13~ICUs$

- established the notion of 'institutional' or 'provider' comparisons within critical care, and
- introduced SMRs to the critical care literature.

From wherein has ensued a discordant debate regarding the relationship between the SMR and ICU *performance* or *quality*:

- SMR and its variability is problematic
- "mortality is unlikely to be a sufficient statistic for quality" (Spiegelhalter 1999)
- scoring systems at best describe 'elements' of performance.⁷

APACHE $\rm II^6$ and exploration of risk adjusted mortality in a cohort of $\rm 13~ICUs$

- established the notion of 'institutional' or 'provider' comparisons within critical care, and
- introduced SMRs to the critical care literature.

From wherein has ensued a discordant debate regarding the relationship between the SMR and ICU *performance* or *quality*:

- SMR and its variability is problematic
- "mortality is unlikely to be a sufficient statistic for quality" (Spiegelhalter 1999)
- scoring systems at best describe 'elements' of performance.⁷

APACHE $\rm II^6$ and exploration of risk adjusted mortality in a cohort of $\rm 13~ICUs$

- established the notion of 'institutional' or 'provider' comparisons within critical care, and
- introduced SMRs to the critical care literature.

From wherein has ensued a discordant debate regarding the relationship between the SMR and ICU *performance* or *quality*:

- SMR and its variability is problematic
- "mortality is unlikely to be a sufficient statistic for quality" (Spiegelhalter 1999)
- scoring systems at best describe 'elements' of performance.⁷

APACHE $\rm II^6$ and exploration of risk adjusted mortality in a cohort of $\rm 13~ICUs$

- established the notion of 'institutional' or 'provider' comparisons within critical care, and
- introduced SMRs to the critical care literature.

From wherein has ensued a discordant debate regarding the relationship between the SMR and ICU *performance* or *quality*:

- SMR and its variability is problematic
- "mortality is unlikely to be a sufficient statistic for quality" (Spiegelhalter 1999)
- scoring systems at best describe 'elements' of performance.⁷

⁶Knaus, Draper *et al Ann Intern Med* 1986 ⁷Linde-Zwirble & Angus 1998: Lilford *et al* 200

APACHE $\rm II^6$ and exploration of risk adjusted mortality in a cohort of $\rm 13~ICUs$

- established the notion of 'institutional' or 'provider' comparisons within critical care, and
- introduced SMRs to the critical care literature.

From wherein has ensued a discordant debate regarding the relationship between the SMR and ICU *performance* or *quality*:

- SMR and its variability is problematic
- "mortality is unlikely to be a sufficient statistic for quality" (Spiegelhalter 1999)
- scoring systems at best describe 'elements' of performance.⁷

⁶Knaus, Draper *et al Ann Intern Med* 1986 ⁷Linde-Zwirble & Angus 1998; Lilford *et al* 200

APACHE $\rm II^6$ and exploration of risk adjusted mortality in a cohort of $\rm 13~ICUs$

- established the notion of 'institutional' or 'provider' comparisons within critical care, and
- introduced SMRs to the critical care literature.

From wherein has ensued a discordant debate regarding the relationship between the SMR and ICU *performance* or *quality*:

- SMR and its variability is problematic
- "mortality is unlikely to be a sufficient statistic for quality" (Spiegelhalter 1999)
- scoring systems at best describe 'elements' of performance.⁷

⁶Knaus, Draper *et al Ann Intern Med* 1986 ⁷Linde-Zwirble & Angus 1998; Lilford *et al* 2004

Coincident with the Knaus *et al* paper, Dubois and co-workers reported a study '*Adjusted hospital death rates: a potential screen for quality of care*'⁸

- looked at quality of care components
- at the sampled case-record level
- using both *structured explicit* and *implicit* review.

- identified differences between high and low mortality rate outliers
- ***not*** confirmed for any condition where *explicit structured process* criteria were used.

Coincident with the Knaus *et al* paper, Dubois and co-workers reported a study '*Adjusted hospital death rates: a potential screen for quality of care*'⁸

- looked at quality of care components
- at the sampled case-record level
- using both *structured explicit* and *implicit* review.

- identified differences between high and low mortality rate outliers
- ***not*** confirmed for any condition where *explicit structured process* criteria were used.

Coincident with the Knaus *et al* paper, Dubois and co-workers reported a study '*Adjusted hospital death rates: a potential screen for quality of care*'⁸

- looked at quality of care components
- at the sampled case-record level
- using both *structured explicit* and *implicit* review.

- identified differences between high and low mortality rate outliers
- ***not*** confirmed for any condition where *explicit structured process* criteria were used.

Coincident with the Knaus *et al* paper, Dubois and co-workers reported a study '*Adjusted hospital death rates: a potential screen for quality of care*'⁸

- looked at quality of care components
- at the sampled case-record level
- using both *structured explicit* and *implicit* review.

- identified differences between high and low mortality rate outliers
- ***not*** confirmed for any condition where *explicit structured process* criteria were used.

Coincident with the Knaus *et al* paper, Dubois and co-workers reported a study '*Adjusted hospital death rates: a potential screen for quality of care*'⁸

- looked at quality of care components
- at the sampled case-record level
- using both *structured explicit* and *implicit* review.

- identified differences between high and low mortality rate outliers
- ***not*** confirmed for any condition where *explicit structured process* criteria were used.

⁸American Journal of Public Health 1987

Subsequent efforts to **locate a relationship** between mortality and 'quality of care' have been grounded in chart review and have been largely unsuccessful:

- in a surgical environment (Gibbs *et al* 2001)
- in a general medical setting (Best *et al* 1994, Thomas *et al* 1993, Park *et al* 1990)
- 'Prevalent care processes'
 - have **not** established a strong relationship.

Pitches et al on mortality and quality of care: Do hospitals with higher risk-adjusted mortality rates provide poorer quality care? ⁹

• the "notion that hospitals with higher risk-adjusted mortality rates have poorer quality care is neither consistent nor reliable".

Subsequent efforts to **locate a relationship** between mortality and 'quality of care' have been grounded in chart review and have been largely unsuccessful:

- in a surgical environment (Gibbs *et al* 2001)
- in a general medical setting (Best *et al* 1994, Thomas *et al* 1993, Park *et al* 1990)
- 'Prevalent care processes'
 - have **not** established a strong relationship.

Pitches et al on mortality and quality of care: Do hospitals with higher risk-adjusted mortality rates provide poorer quality care? ⁹

• the "notion that hospitals with higher risk-adjusted mortality rates have poorer quality care is neither consistent nor reliable".

Subsequent efforts to **locate a relationship** between mortality and 'quality of care' have been grounded in chart review and have been largely unsuccessful:

- in a surgical environment (Gibbs et al 2001)
- in a general medical setting (Best *et al* 1994, Thomas *et al* 1993, Park *et al* 1990)
- 'Prevalent care processes'
 - have **not** established a strong relationship.

Pitches et al on mortality and quality of care: Do hospitals with higher risk-adjusted mortality rates provide poorer quality care? ⁹

• the "notion that hospitals with higher risk-adjusted mortality rates have poorer quality care is neither consistent nor reliable".

Subsequent efforts to **locate a relationship** between mortality and 'quality of care' have been grounded in chart review and have been largely unsuccessful:

- in a surgical environment (Gibbs *et al* 2001)
- in a general medical setting (Best *et al* 1994, Thomas *et al* 1993, Park *et al* 1990)
- 'Prevalent care processes'
 - have **not** established a strong relationship.

Pitches et al on mortality and quality of care: Do hospitals with higher risk-adjusted mortality rates provide poorer quality care? ⁹

• the "notion that hospitals with higher risk-adjusted mortality rates have poorer quality care is neither consistent nor reliable".

Subsequent efforts to **locate a relationship** between mortality and 'quality of care' have been grounded in chart review and have been largely unsuccessful:

- in a surgical environment (Gibbs et al 2001)
- in a general medical setting (Best *et al* 1994, Thomas *et al* 1993, Park *et al* 1990)
- 'Prevalent care processes'
 - have **not** established a strong relationship.

Pitches et al on mortality and quality of care: Do hospitals with higher risk-adjusted mortality rates provide poorer quality care? ⁹

• the "notion that hospitals with higher risk-adjusted mortality rates have poorer quality care is neither consistent nor reliable".

Subsequent efforts to **locate a relationship** between mortality and 'quality of care' have been grounded in chart review and have been largely unsuccessful:

- in a surgical environment (Gibbs et al 2001)
- in a general medical setting (Best *et al* 1994, Thomas *et al* 1993, Park *et al* 1990)
- 'Prevalent care processes'
 - have **not** established a strong relationship.

Pitches *et al* on mortality and quality of care: *Do hospitals with higher risk-adjusted mortality rates provide poorer quality care?* ⁹

• the "notion that hospitals with higher risk-adjusted mortality rates have poorer quality care is neither consistent nor reliable".

Subsequent efforts to **locate a relationship** between mortality and 'quality of care' have been grounded in chart review and have been largely unsuccessful:

- in a surgical environment (Gibbs *et al* 2001)
- in a general medical setting (Best *et al* 1994, Thomas *et al* 1993, Park *et al* 1990)
- 'Prevalent care processes'
 - have **not** established a strong relationship.

Pitches *et al* on mortality and quality of care: *Do hospitals with higher risk-adjusted mortality rates provide poorer quality care*? ⁹

• the "notion that hospitals with higher risk-adjusted mortality rates have poorer quality care is neither consistent nor reliable".

This argument has been advanced because of the *large sample sizes* required to demonstrate small to modest changes in (mortality) outcome.

However, the felicity with which process may be measured is no guarantee that "*measuring* ... process and reporting performance will improve outcomes".¹⁰

There is a also certain circularity in these arguments ...

- reliance on *outcome measures* is criticised from the standpoint of *process-of-care*
- which finds its ultimate assessment in terms of its effect on precisely those *outcomes* which have been 'rejected' in the first place.

So what is to be done?

This argument has been advanced because of the *large sample sizes* required to demonstrate small to modest changes in (mortality) outcome.

However, the felicity with which process may be measured is no guarantee that "*measuring* ... process and reporting performance will improve outcomes".¹⁰

There is a also certain circularity in these arguments ...

- reliance on *outcome measures* is criticised from the standpoint of *process-of-care*
- which finds its ultimate assessment in terms of its effect on precisely those *outcomes* which have been 'rejected' in the first place.

So what is to be done?

This argument has been advanced because of the *large sample sizes* required to demonstrate small to modest changes in (mortality) outcome.

However, the felicity with which process may be measured is no guarantee that "*measuring* ... process and reporting performance will improve outcomes".¹⁰

There is a also certain circularity in these arguments ...

- reliance on *outcome measures* is criticised from the standpoint of *process-of-care*
- which finds its ultimate assessment in terms of its effect on precisely those *outcomes* which have been 'rejected' in the first place.

So what is to be done?

This argument has been advanced because of the *large sample sizes* required to demonstrate small to modest changes in (mortality) outcome.

However, the felicity with which process may be measured is no guarantee that "*measuring* ... process and reporting performance will improve outcomes".¹⁰

There is a also certain circularity in these arguments ...

- reliance on *outcome measures* is criticised from the standpoint of *process-of-care*
- which finds its ultimate assessment in terms of its effect on precisely those *outcomes* which have been 'rejected' in the first place.

So what is to be done?

This argument has been advanced because of the *large sample sizes* required to demonstrate small to modest changes in (mortality) outcome.

However, the felicity with which process may be measured is no guarantee that "*measuring* ... process and reporting performance will improve outcomes".¹⁰

There is a also certain circularity in these arguments ...

- reliance on *outcome measures* is criticised from the standpoint of *process-of-care*
- which finds its ultimate assessment in terms of its effect on precisely those *outcomes* which have been 'rejected' in the first place.

So what is to be done?

This argument has been advanced because of the *large sample sizes* required to demonstrate small to modest changes in (mortality) outcome.

However, the felicity with which process may be measured is no guarantee that "*measuring* ... process and reporting performance will improve outcomes".¹⁰

There is a also certain circularity in these arguments ...

- reliance on *outcome measures* is criticised from the standpoint of *process-of-care*
- which finds its ultimate assessment in terms of its effect on precisely those *outcomes* which have been 'rejected' in the first place.

So what is to be done?

This argument has been advanced because of the *large sample sizes* required to demonstrate small to modest changes in (mortality) outcome.

However, the felicity with which process may be measured is no guarantee that "*measuring* ... process and reporting performance will improve outcomes".¹⁰

There is a also certain circularity in these arguments ...

- reliance on *outcome measures* is criticised from the standpoint of *process-of-care*
- which finds its ultimate assessment in terms of its effect on precisely those *outcomes* which have been 'rejected' in the first place.

So what is to be done?

This argument has been advanced because of the *large sample sizes* required to demonstrate small to modest changes in (mortality) outcome.

However, the felicity with which process may be measured is no guarantee that "*measuring* ... process and reporting performance will improve outcomes".¹⁰

There is a also certain circularity in these arguments ...

- reliance on *outcome measures* is criticised from the standpoint of *process-of-care*
- which finds its ultimate assessment in terms of its effect on precisely those *outcomes* which have been 'rejected' in the first place.

So what is to be done?

Our strategy: patient efficiency

There would be advantage in establishing a quantitative index which would subsume the diversity of process-of-care.

Would enable *provider ranking* and *formalised comparison* with both indices of, and ranks based upon, mortality outcomes.

Idea: measure the patient's ability to maximise 'output'

- in particular, *length of stay*
- for a given set of physiological inputs, *e.g*, individual patient component variables in APACHE II.

Conceptual foundation: from econometrics

• productive efficiency.

Our strategy: patient efficiency

There would be advantage in establishing a *quantitative index* which would subsume the diversity of process-of-care.

Would enable *provider ranking* and *formalised comparison* with both indices of, and ranks based upon, mortality outcomes.

Idea: measure the patient's ability to maximise 'output'

- in particular, *length of stay*
- for a given set of physiological inputs, *e.g*, individual patient component variables in APACHE II.

Conceptual foundation: from econometrics

• productive efficiency.

Our strategy: patient efficiency

There would be advantage in establishing a *quantitative index* which would subsume the diversity of process-of-care.

Would enable *provider ranking* and *formalised comparison* with both indices of, and ranks based upon, mortality outcomes.

Idea: measure the patient's ability to maximise 'output'

- in particular, *length of stay*
- for a given set of physiological inputs, *e.g*, individual patient component variables in APACHE II.

Conceptual foundation: from econometrics

• productive efficiency.
There would be advantage in establishing a *quantitative index* which would subsume the diversity of process-of-care.

Would enable *provider ranking* and *formalised comparison* with both indices of, and ranks based upon, mortality outcomes.

Idea: measure the patient's ability to maximise 'output'

- in particular, *length of stay*
- for a given set of physiological inputs, *e.g*, individual patient component variables in APACHE II.

Conceptual foundation: from econometrics

There would be advantage in establishing a *quantitative index* which would subsume the diversity of process-of-care.

Would enable *provider ranking* and *formalised comparison* with both indices of, and ranks based upon, mortality outcomes.

Idea: measure the patient's ability to maximise 'output'

• in particular, *length of stay*

• for a given set of physiological inputs, *e.g*, individual patient component variables in APACHE II.

Conceptual foundation: from econometrics

There would be advantage in establishing a *quantitative index* which would subsume the diversity of process-of-care.

Would enable *provider ranking* and *formalised comparison* with both indices of, and ranks based upon, mortality outcomes.

Idea: measure the patient's ability to maximise 'output'

- in particular, *length of stay*
- for a given set of physiological inputs, *e.g*, individual patient component variables in APACHE II.

Conceptual foundation: from econometrics

There would be advantage in establishing a *quantitative index* which would subsume the diversity of process-of-care.

Would enable *provider ranking* and *formalised comparison* with both indices of, and ranks based upon, mortality outcomes.

Idea: measure the patient's ability to maximise 'output'

- in particular, *length of stay*
- for a given set of physiological inputs, *e.g*, individual patient component variables in APACHE II.

Conceptual foundation: from econometrics

There would be advantage in establishing a *quantitative index* which would subsume the diversity of process-of-care.

Would enable *provider ranking* and *formalised comparison* with both indices of, and ranks based upon, mortality outcomes.

Idea: measure the patient's ability to maximise 'output'

- in particular, *length of stay*
- for a given set of physiological inputs, *e.g*, individual patient component variables in APACHE II.

Conceptual foundation: from econometrics

The objective of producers can be as simple as seeking to avoid waste

- by obtaining maximum outputs from given inputs
- or, by *minimizing input use* in the production of given *outputs*¹¹.

The notion of *productive efficiency* corresponds to what we call *technical efficiency*.

- He showed how to decompose cost efficiency into its technical and allocative components, and
- provided an application to US agriculture.

¹¹Kumbhaker & Knox Lovell *Stochastic Frontier Analysis* CUP 2000

The objective of producers can be as simple as seeking to avoid waste

- by obtaining *maximum outputs* from given *inputs*
- or, by *minimizing input use* in the production of given *outputs*¹¹.

The notion of *productive efficiency* corresponds to what we call *technical efficiency*.

- He showed how to decompose cost efficiency into its technical and allocative components, and
- provided an application to US agriculture.

¹¹Kumbhaker & Knox Lovell *Stochastic Frontier Analysis* CUP 2000

The objective of producers can be as simple as seeking to avoid waste

- by obtaining maximum outputs from given inputs
- or, by *minimizing input use* in the production of given *outputs*¹¹.

The notion of *productive efficiency* corresponds to what we call *technical efficiency*.

- He showed how to decompose cost efficiency into its technical and allocative components, and
- provided an application to US agriculture.

¹¹Kumbhaker & Knox Lovell *Stochastic Frontier Analysis* CUP 2000

The objective of producers can be as simple as seeking to avoid waste

- by obtaining maximum outputs from given inputs
- or, by *minimizing input use* in the production of given *outputs*¹¹.

The notion of *productive efficiency* corresponds to what we call *technical efficiency*.

- He showed how to decompose cost efficiency into its technical and allocative components, and
- provided an application to US agriculture.

¹¹Kumbhaker & Knox Lovell Stochastic Frontier Analysis CUP 2000

The objective of producers can be as simple as seeking to avoid waste

- by obtaining maximum outputs from given inputs
- or, by *minimizing input use* in the production of given *outputs*¹¹.

The notion of *productive efficiency* corresponds to what we call *technical efficiency*.

- He showed how to decompose cost efficiency into its technical and allocative components, and
- provided an application to US agriculture.

¹¹Kumbhaker & Knox Lovell Stochastic Frontier Analysis CUP 2000

The objective of producers can be as simple as seeking to avoid waste

- by obtaining maximum outputs from given inputs
- or, by *minimizing input use* in the production of given *outputs*¹¹.

The notion of *productive efficiency* corresponds to what we call *technical efficiency*.

- He showed how to decompose cost efficiency into its technical and allocative components, and
- provided an application to US agriculture.

¹¹Kumbhaker & Knox Lovell Stochastic Frontier Analysis CUP 2000

The objective of producers can be as simple as seeking to avoid waste

- by obtaining maximum outputs from given inputs
- or, by *minimizing input use* in the production of given *outputs*¹¹.

The notion of *productive efficiency* corresponds to what we call *technical efficiency*.

- He showed how to decompose cost efficiency into its technical and allocative components, and
- provided an application to US agriculture.

¹¹Kumbhaker & Knox Lovell Stochastic Frontier Analysis CUP 2000

The objective of producers can be as simple as seeking to avoid waste

- by obtaining maximum outputs from given inputs
- or, by *minimizing input use* in the production of given *outputs*¹¹.

The notion of *productive efficiency* corresponds to what we call *technical efficiency*.

- He showed how to decompose cost efficiency into its technical and allocative components, and
- provided an application to US agriculture.

¹¹Kumbhaker & Knox Lovell Stochastic Frontier Analysis CUP 2000

Data envelope analysis (DEA)

In an innovative study of patients with severe head trauma

- Nathanson *et al*¹² used DEA to calculate individual patient 'efficiency' scores based upon the ability to *maximise cerebral perfusion pressure* (output)
 - for a given set of physiological inputs: temperature, MAP, serum osmolality, arterial *PaCO*₂;
 - patients with high efficiency scores had improved functional outcomes on ICU discharge.

Of greater significance for us:

¹² Health Care Management Science 2003

Data envelope analysis (DEA)

In an innovative study of patients with severe head trauma

- Nathanson *et al*¹² used DEA to calculate individual patient 'efficiency' scores based upon the ability to *maximise cerebral perfusion pressure* (output)
 - for a given set of physiological inputs: temperature, MAP, serum osmolality, arterial *PaCO*₂;
 - patients with high efficiency scores had improved functional outcomes on ICU discharge.

Of greater significance for us:

¹² Health Care Management Science 2003

Data envelope analysis (DEA)

In an innovative study of patients with severe head trauma

- Nathanson *et al*¹² used DEA to calculate individual patient 'efficiency' scores based upon the ability to *maximise cerebral perfusion pressure* (output)
 - for a given set of physiological inputs: temperature, MAP, serum osmolality, arterial *PaCO*₂;
 - patients with high efficiency scores had improved functional outcomes on ICU discharge.

Of greater significance for us:

¹² Health Care Management Science 2003

Data envelope analysis (DEA)

In an innovative study of patients with severe head trauma

- Nathanson *et al*¹² used DEA to calculate individual patient 'efficiency' scores based upon the ability to *maximise cerebral perfusion pressure* (output)
 - for a given set of physiological inputs: temperature, MAP, serum osmolality, arterial *PaCO*₂;
 - patients with high efficiency scores had improved functional outcomes on ICU discharge.

Of greater significance for us:

¹² Health Care Management Science 2003

Data envelope analysis (DEA)

In an innovative study of patients with severe head trauma

- Nathanson *et al*¹² used DEA to calculate individual patient 'efficiency' scores based upon the ability to *maximise cerebral perfusion pressure* (output)
 - for a given set of physiological inputs: temperature, MAP, serum osmolality, arterial *PaCO*₂;
 - patients with high efficiency scores had improved functional outcomes on ICU discharge.

Of greater significance for us:

¹² Health Care Management Science 2003

Data envelope analysis (DEA)

In an innovative study of patients with severe head trauma

- Nathanson *et al*¹² used DEA to calculate individual patient 'efficiency' scores based upon the ability to *maximise cerebral perfusion pressure* (output)
 - for a given set of physiological inputs: temperature, MAP, serum osmolality, arterial *PaCO*₂;
 - patients with high efficiency scores had improved functional outcomes on ICU discharge.

Of greater significance for us:

¹² Health Care Management Science 2003

Data envelope analysis (DEA)

In an innovative study of patients with severe head trauma

- Nathanson *et al*¹² used DEA to calculate individual patient 'efficiency' scores based upon the ability to *maximise cerebral perfusion pressure* (output)
 - for a given set of physiological inputs: temperature, MAP, serum osmolality, arterial *PaCO*₂;
 - patients with high efficiency scores had improved functional outcomes on ICU discharge.

Of greater significance for us:

¹² Health Care Management Science 2003

Data envelope analysis (DEA)

In an innovative study of patients with severe head trauma

- Nathanson *et al*¹² used DEA to calculate individual patient 'efficiency' scores based upon the ability to *maximise cerebral perfusion pressure* (output)
 - for a given set of physiological inputs: temperature, MAP, serum osmolality, arterial *PaCO*₂;
 - patients with high efficiency scores had improved functional outcomes on ICU discharge.

Of greater significance for us:

¹² Health Care Management Science 2003

A stochastic production frontier model:

 $y_i = f(x_i; \beta) \exp(v_i) TE_i$ i = 1, ..., I producers

 y_i is the scalar output of producer i, x_i is a vector of inputs used by producer i, and β is a vector of 'technology' parameters to be estimated;

 $TE_i = \frac{\gamma_i}{f(x_i; \beta) \exp(v_i)}$

- y_i achieves its maximum feasible value iff $TE_i = 1$
- $TE_i < 1$ measures the *shortfall of observed output* from the *maximum feasible output* in an environment characterised by $\exp(v_i)$, which can vary across producers.

A stochastic production frontier model:

 $y_i = f(x_i; \beta) \exp(v_i) TE_i$ i = 1, ..., I producers

 y_i is the scalar output of producer i, x_i is a vector of inputs used by producer i, and β is a vector of 'technology' parameters to be estimated;

 $TE_i = \frac{\gamma_i}{f(x_i; \beta) \exp(v_i)}$

- y_i achieves its maximum feasible value iff $TE_i = 1$
- $TE_i < 1$ measures the *shortfall of observed output* from the *maximum feasible output* in an environment characterised by $\exp(v_i)$, which can vary across producers.

A stochastic production frontier model:

 $y_i = f(x_i; \beta) \exp(v_i) TE_i$ i = 1, ..., I producers

 y_i is the scalar output of producer i, x_i is a vector of inputs used by producer i, and β is a vector of 'technology' parameters to be estimated;

 $TE_i = rac{\mathcal{Y}_i}{f(x_i; \beta) \exp(v_i)}$

- y_i achieves its maximum feasible value iff $TE_i = 1$
- $TE_i < 1$ measures the *shortfall of observed output* from the *maximum feasible output* in an environment characterised by $\exp(v_i)$, which can vary across producers.

A stochastic production frontier model:

 $y_i = f(x_i; \beta) \exp(v_i) TE_i$ i = 1, ..., I producers

 y_i is the scalar output of producer i, x_i is a vector of inputs used by producer i, and β is a vector of 'technology' parameters to be estimated;

 $TE_i = \frac{\mathcal{Y}_i}{f(\boldsymbol{x}_i; \boldsymbol{\beta}) \exp(\boldsymbol{v}_i)}$

- y_i achieves its maximum feasible value iff $TE_i = 1$
- $TE_i < 1$ measures the *shortfall of observed output* from the *maximum feasible output* in an environment characterised by $\exp(v_i)$, which can vary across producers.

A stochastic production frontier model:

 $y_i = f(x_i; \beta) \exp(v_i) TE_i$ i = 1, ..., I producers

 y_i is the scalar output of producer i, x_i is a vector of inputs used by producer i, and β is a vector of 'technology' parameters to be estimated;

 $TE_i = \frac{\mathcal{Y}_i}{f(\boldsymbol{x}_i; \boldsymbol{\beta}) \exp(\boldsymbol{v}_i)}$

• y_i achieves its maximum feasible value iff $TE_i = 1$

• $TE_i < 1$ measures the *shortfall of observed output* from the *maximum feasible output* in an environment characterised by $\exp(v_i)$, which can vary across producers.

A stochastic production frontier model:

 $y_i = f(x_i; \beta) \exp(v_i) TE_i$ i = 1, ..., I producers

 y_i is the scalar output of producer i, x_i is a vector of inputs used by producer i, and β is a vector of 'technology' parameters to be estimated;

$$TE_i = \frac{\gamma_i}{f(x_i;\beta)\exp(v_i)}$$

- y_i achieves its maximum feasible value iff $TE_i = 1$
- *TE_i* < 1 measures the *shortfall of observed output* from the *maximum feasible output* in an environment characterised by exp(*v_i*), which can vary across producers.

Stochastic production frontier model (log-linear f):¹³

$$\log \boldsymbol{y}_i = \beta_0 + \sum_{j=1}^k \beta_j \log \boldsymbol{x}_{ij} + \boldsymbol{v}_i - \boldsymbol{u}_i$$

where $TE_i = \exp(-u_i)$

- y_i is ICU/ hospital length of stay
- x_{ij} s are acute physiology score and chronic health evaluation variables
- $v_i \sim N(0, \sigma_v^2)$, $i = 1, \dots, 215515$ (can vary across locality/level)
- $u_i > 0$, here assumed exponentially distributed
 - and allowed to be a function of appropriate individual explanatory variables.
 - Patient efficiency scaled [0, 1].

Stochastic production frontier model (log-linear f):¹³

$$\log y_i = \beta_0 + \sum_{j=1}^k \beta_j \log x_{ij} + v_i - u_i$$

where $TE_i = \exp(-u_i)$

- y_i is ICU/ hospital length of stay
- x_{ij} s are acute physiology score and chronic health evaluation variables
- $v_i \sim N(0, \sigma_v^2)$, $i = 1, \dots, 215515$ (can vary across locality/level)
- $u_i > 0$, here assumed exponentially distributed
 - and allowed to be a function of appropriate individual explanatory variables.
 - Patient efficiency scaled [0,1].

Stochastic production frontier model (log-linear f):¹³

$$\log y_i = \beta_0 + \sum_{j=1}^k \beta_j \log x_{ij} + v_i - u_i$$

where $TE_i = \exp(-u_i)$

• y_i is ICU/ hospital length of stay

- x_{ij} s are acute physiology score and chronic health evaluation variables
- $v_i \sim N(0, \sigma_v^2)$, $i = 1, \dots, 215515$ (can vary across locality/level)
- $u_i > 0$, here assumed exponentially distributed
 - and allowed to be a function of appropriate individual explanatory variables.
 - Patient efficiency scaled [0,1].

Stochastic production frontier model (log-linear f):¹³

$$\log y_i = \beta_0 + \sum_{j=1}^k \beta_j \log x_{ij} + v_i - u_i$$

where $TE_i = \exp(-u_i)$

- y_i is ICU/ hospital length of stay
- x_{ij} s are acute physiology score and chronic health evaluation variables
- $v_i \sim N(0, \sigma_v^2)$, $i = 1, \dots, 215515$ (can vary across locality/level)
- $u_i > 0$, here assumed exponentially distributed
 - and allowed to be a function of appropriate individual explanatory variables.
 - Patient efficiency scaled [0,1].

Stochastic production frontier model (log-linear f):¹³

$$\log y_i = \beta_0 + \sum_{j=1}^k \beta_j \log x_{ij} + v_i - u_i$$

where $TE_i = \exp(-u_i)$

- y_i is ICU/ hospital length of stay
- *x*_{*ij*}s are acute physiology score and chronic health evaluation variables
- $v_i \sim N(0, \sigma_v^2)$, $i = 1, \dots, 215515$ (can vary across locality/level)
- $u_i > 0$, here assumed exponentially distributed
 - and allowed to be a function of appropriate individual explanatory variables.
 - Patient efficiency scaled [0,1].

Stochastic production frontier model (log-linear f):¹³

$$\log y_i = \beta_0 + \sum_{j=1}^k \beta_j \log x_{ij} + v_i - u_i$$

where $TE_i = \exp(-u_i)$

- y_i is ICU/ hospital length of stay
- x_{ij} s are acute physiology score and chronic health evaluation variables
- $v_i \sim N(0, \sigma_v^2)$, $i = 1, \dots, 215515$ (can vary across locality/level)
- $u_i > 0$, here assumed exponentially distributed
 - and allowed to be a function of appropriate individual explanatory variables.
 - Patient efficiency scaled [0, 1].

Patient efficiency for tertiary hospitals by locality

Patients alive at discharge

Patient efficiency for private hospitals by locality

Patient efficiency for rural hospitals by locality

Patient efficiency by hospital locality/level/size

ANZICS 1993-2003 (N=35)

ANZICS 1993-2003: biplot of median TE and SMR

TE of SA tertiary hospitals: real correlates with hospital policy

ICU LOS efficiency (mean) estimates: geographical location & yearly admission number

	Yearly admissions < 711					Yearly admissions > 711		
ICU geographical locality	Rural	Metropolitan	Tertiary	Private	Rural	Metropolitan	Tertiary	Private
Northern Territory	0.616	0.719						
New South Wales	0.625	0.683	0.729	0.754			0.723	
Australian Capital Territory		0.692					0.748	
South Australia			0.709				0.758	
Victoria	0.591	0.673		0.707			0.756	
New Zealand	0.683	0.723	0.724					
Queensland	0.644	0.644	0.647	0.721		0.685	0.741	
Tasmania	0.579	0.632	0.649					

Idea: time course of 'hazard of patient ICU/hospital discharge' reflects the (time course of) *process-of-care*.

- the *prolongation day* estimated by Hollander-Proschan statistics: 'new worse than used'.
- The longer the patient has been in hospital, the worse the prospects of discharge:
 - associated with complications and/or co-morbid medical conditions
 - measure of provider ability to manage complicated cases.
- "By studying CLOS, one can determine when the rate of hospital discharge begins to diminish - without the need to directly observe complications ... CLOS aids in the analysis of a hospital's management of complicated patients ..."

¹⁴Silber, Rosenbaum *et al* HSR 1999; 2003

Idea: time course of 'hazard of patient ICU/hospital discharge' reflects the (time course of) *process-of-care*.

- the *prolongation day* estimated by Hollander-Proschan statistics: 'new worse than used'.
- The longer the patient has been in hospital, the worse the prospects of discharge:
 - associated with complications and/or co-morbid medical conditions
 - measure of provider ability to manage complicated cases.
- "By studying CLOS, one can determine when the rate of hospital discharge begins to diminish - without the need to directly observe complications ... CLOS aids in the analysis of a hospital's management of complicated patients ..."

¹⁴Silber, Rosenbaum *et al* HSR 1999; 2003

Idea: time course of 'hazard of patient ICU/hospital discharge' reflects the (time course of) *process-of-care*.

Silber and co-workers $1999 - 2004^{14}$ defined CLOS as the length of stay after a stay is prolonged:

- the *prolongation day* estimated by Hollander-Proschan statistics: 'new worse than used'.
- The longer the patient has been in hospital, the worse the prospects of discharge:
 - associated with complications and/or co-morbid medical conditions
 - measure of provider ability to manage complicated cases.
- "By studying CLOS, one can determine when the rate of hospital discharge begins to diminish - without the need to directly observe complications ... CLOS aids in the analysis of a hospital's management of complicated patients ..."

¹⁴Silber, Rosenbaum et al HSR 1999; 2003

Idea: time course of 'hazard of patient ICU/hospital discharge' reflects the (time course of) *process-of-care*.

Silber and co-workers $1999 - 2004^{14}$ defined CLOS as *the length of stay after a stay is prolonged*:

- the *prolongation day* estimated by Hollander-Proschan statistics: 'new worse than used'.
- The longer the patient has been in hospital, the worse the prospects of discharge:
 - associated with complications and/or co-morbid medical conditions
 - measure of provider ability to manage complicated cases.
- "By studying CLOS, one can determine when the rate of hospital discharge begins to diminish - without the need to directly observe complications ... CLOS aids in the analysis of a hospital's management of complicated patients ..."

¹⁴Silber, Rosenbaum et al HSR 1999; 2003

Idea: time course of 'hazard of patient ICU/hospital discharge' reflects the (time course of) *process-of-care*.

- the *prolongation day* estimated by Hollander-Proschan statistics: 'new worse than used'.
- The longer the patient has been in hospital, the worse the prospects of discharge:
 - associated with complications and/or co-morbid medical conditions
 - measure of provider ability to manage complicated cases.
- "By studying CLOS, one can determine when the rate of hospital discharge begins to diminish - without the need to directly observe complications ... CLOS aids in the analysis of a hospital's management of complicated patients ..."

Idea: time course of 'hazard of patient ICU/hospital discharge' reflects the (time course of) *process-of-care*.

- the *prolongation day* estimated by Hollander-Proschan statistics: 'new worse than used'.
- The longer the patient has been in hospital, the worse the prospects of discharge:
 - associated with complications and/or co-morbid medical conditions
 - measure of provider ability to manage complicated cases.
- "By studying CLOS, one can determine when the rate of hospital discharge begins to diminish - without the need to directly observe complications ... CLOS aids in the analysis of a hospital's management of complicated patients ..."

¹⁴Silber, Rosenbaum et al HSR 1999; 2003

Idea: time course of 'hazard of patient ICU/hospital discharge' reflects the (time course of) *process-of-care*.

- the *prolongation day* estimated by Hollander-Proschan statistics: 'new worse than used'.
- The longer the patient has been in hospital, the worse the prospects of discharge:
 - associated with complications and/or co-morbid medical conditions
 - measure of provider ability to manage complicated cases.
- "By studying CLOS, one can determine when the rate of hospital discharge begins to diminish - without the need to directly observe complications ... CLOS aids in the analysis of a hospital's management of complicated patients ..."

¹⁴Silber, Rosenbaum et al HSR 1999; 2003

Idea: time course of 'hazard of patient ICU/hospital discharge' reflects the (time course of) *process-of-care*.

- the *prolongation day* estimated by Hollander-Proschan statistics: 'new worse than used'.
- The longer the patient has been in hospital, the worse the prospects of discharge:
 - associated with complications and/or co-morbid medical conditions
 - measure of provider ability to manage complicated cases.
- "By studying CLOS, one can determine when the rate of hospital discharge begins to diminish without the need to directly observe complications ... CLOS aids in the analysis of a hospital's management of complicated patients ..."

¹⁴Silber, Rosenbaum et al HSR 1999; 2003

Idea: time course of 'hazard of patient ICU/hospital discharge' reflects the (time course of) *process-of-care*.

- the *prolongation day* estimated by Hollander-Proschan statistics: 'new worse than used'.
- The longer the patient has been in hospital, the worse the prospects of discharge:
 - associated with complications and/or co-morbid medical conditions
 - measure of provider ability to manage complicated cases.
- "By studying CLOS, one can determine when the rate of hospital discharge begins to diminish without the need to directly observe complications ... CLOS aids in the analysis of a hospital's management of complicated patients ..."

¹⁴Silber, Rosenbaum et al HSR 1999; 2003

- *patients within providers*: for Australia, individual ICUs/hospitals by hospital level (rural, metropolitan, tertiary, private) and geographical locality (i.e., by state)
- Survivors
 - we define LOS of non-survivors as >> maximum LOS of alive discharges
 - *n* = 181, 100, no censoring
 - obtain hazard of hospital (or ICU) discharge via kernel density smoothing.
- Non-survivors
 - n = 34,415: LOS of survivors defined >> maximum LOS of deaths.

- *patients within providers*: for Australia, individual ICUs/hospitals by hospital level (rural, metropolitan, tertiary, private) and geographical locality (i.e., by state)
- Survivors
 - we define LOS of non-survivors as >> maximum LOS of alive discharges
 - *n* = 181, 100, no censoring
 - obtain hazard of hospital (or ICU) discharge via kernel density smoothing.
- Non-survivors
 - n = 34,415: LOS of survivors defined >> maximum LOS of deaths.

- *patients within providers*: for Australia, individual ICUs/hospitals by hospital level (rural, metropolitan, tertiary, private) and geographical locality (i.e., by state)
- Survivors
 - we define LOS of non-survivors as >> maximum LOS of alive discharges
 - *n* = 181, 100, no censoring
 - obtain hazard of hospital (or ICU) discharge via kernel density smoothing.
- Non-survivors
 - *n* = 34,415: LOS of survivors defined >> maximum LOS of deaths.

• Unit of analysis

• *patients within providers*: for Australia, individual ICUs/hospitals by hospital level (rural, metropolitan, tertiary, private) and geographical locality (i.e., by state)

Survivors

- we define LOS of non-survivors as >> maximum LOS of alive discharges
- *n* = 181, 100, no censoring
- obtain hazard of hospital (or ICU) discharge via kernel density smoothing.
- Non-survivors
 - n = 34,415: LOS of survivors defined >> maximum LOS of deaths.

- *patients within providers*: for Australia, individual ICUs/hospitals by hospital level (rural, metropolitan, tertiary, private) and geographical locality (i.e., by state)
- Survivors
 - we define LOS of non-survivors as >> maximum LOS of alive discharges
 - *n* = 181, 100, no censoring
 - obtain hazard of hospital (or ICU) discharge via kernel density smoothing.
- Non-survivors
 - n = 34,415: LOS of survivors defined >> maximum LOS of deaths.

- *patients within providers*: for Australia, individual ICUs/hospitals by hospital level (rural, metropolitan, tertiary, private) and geographical locality (i.e., by state)
- Survivors
 - we define LOS of non-survivors as >> maximum LOS of alive discharges
 - n = 181, 100, no censoring
 - obtain hazard of hospital (or ICU) discharge via kernel density smoothing.
- Non-survivors
 - n = 34,415: LOS of survivors defined >> maximum LOS of deaths.

- *patients within providers*: for Australia, individual ICUs/hospitals by hospital level (rural, metropolitan, tertiary, private) and geographical locality (i.e., by state)
- Survivors
 - we define LOS of non-survivors as >> maximum LOS of alive discharges
 - n = 181, 100, no censoring
 - obtain hazard of hospital (or ICU) discharge via kernel density smoothing.
- Non-survivors
 - n = 34,415: LOS of survivors defined >> maximum LOS of deaths.

- *patients within providers*: for Australia, individual ICUs/hospitals by hospital level (rural, metropolitan, tertiary, private) and geographical locality (i.e., by state)
- Survivors
 - we define LOS of non-survivors as >> maximum LOS of alive discharges
 - n = 181, 100, no censoring
 - obtain hazard of hospital (or ICU) discharge via kernel density smoothing.
- Non-survivors
 - n = 34,415: LOS of survivors defined >> maximum LOS of deaths.

- *patients within providers*: for Australia, individual ICUs/hospitals by hospital level (rural, metropolitan, tertiary, private) and geographical locality (i.e., by state)
- Survivors
 - we define LOS of non-survivors as >> maximum LOS of alive discharges
 - n = 181, 100, no censoring
 - obtain hazard of hospital (or ICU) discharge via kernel density smoothing.
- Non-survivors
 - n = 34,415: LOS of survivors defined >> maximum LOS of deaths.

ANZICS hazard of discharge by location

ANZICS hazard of discharge alive by hospital level

ANZICS hazard of death by hospital level

Aim: find parametric distribution or similar to fit the smoothed hazard profiles

• the associated parameter estimates will serve as *indices of performance* of various descriptor units.

Use simple survival measures:

- time to peak hazard, TMAX
- area under curve, AUC
- peak hazard, CMAX
- 'elimination rate', KE.

Aim: find parametric distribution or similar to fit the smoothed hazard profiles

• the associated parameter estimates will serve as *indices of performance* of various descriptor units.

Use simple survival measures:

- time to peak hazard, TMAX
- area under curve, AUC
- peak hazard, CMAX
- 'elimination rate', KE.

Aim: find parametric distribution or similar to fit the smoothed hazard profiles

• the associated parameter estimates will serve as *indices of performance* of various descriptor units.

Use simple survival measures:

- time to peak hazard, TMAX
- area under curve, AUC
- peak hazard, CMAX
- 'elimination rate', KE.

Aim: find parametric distribution or similar to fit the smoothed hazard profiles

• the associated parameter estimates will serve as *indices of performance* of various descriptor units.

Use simple survival measures:

- time to peak hazard, TMAX
- area under curve, AUC
- peak hazard, CMAX
- 'elimination rate', KE.

Aim: find parametric distribution or similar to fit the smoothed hazard profiles

• the associated parameter estimates will serve as *indices of performance* of various descriptor units.

Use simple survival measures:

- time to peak hazard, TMAX
- area under curve, AUC
- peak hazard, CMAX
- 'elimination rate', KE.

ANZICS survivors: SSfol

time

ANZICS survivors: mortality, TE and CLOS by hospital locality/level/size

TE of deaths for metropolitan hospitals by locality

Survivors and non-survivors: mortality, TE and CLOS by hospital locality/level/size

Now adding KE by hospital locality/level/size

The 'third revolution' in medical care¹⁵ dates back to Florence Nightingale in the mid-19th century in the UK and Ernest Codman in the early 1900s in the US¹⁶.

Disquiet has been generated by the past and current publishing of mortality outcome data.

The establishment of quantitative indices of patient *process-of-care* may be a valuable complement to *mortality outcome*, both at the administrative and clinical level.

- critically-ill patients within the ICU
- recognise patient groups in cardiac surgery, acute myocardial infarction, stroke, pneumonia and acute renal failure, where similar outcome endeavours have been established.

 ¹⁵Relman Assessment and Accountability *NEJM* 1988
¹⁶Spiegelhalter 1999; lezzoni 1996.

The 'third revolution' in medical care¹⁵ dates back to Florence Nightingale in the mid-19th century in the UK and Ernest Codman in the early 1900s in the US¹⁶.

Disquiet has been generated by the past and current publishing of mortality outcome data.

The establishment of quantitative indices of patient *process-of-care* may be a valuable complement to *mortality outcome*, both at the administrative and clinical level.

- critically-ill patients within the ICU
- recognise patient groups in cardiac surgery, acute myocardial infarction, stroke, pneumonia and acute renal failure, where similar outcome endeavours have been established.

¹⁵Relman Assessment and Accountability *NEJM* 1988 ¹⁶Spiegelhalter 1999; lezzoni 1996.

The 'third revolution' in medical care¹⁵ dates back to Florence Nightingale in the mid-19th century in the UK and Ernest Codman in the early 1900s in the US¹⁶.

Disquiet has been generated by the past and current publishing of mortality outcome data.

The establishment of quantitative indices of patient *process-of-care* may be a valuable complement to *mortality outcome*, both at the administrative and clinical level.

- critically-ill patients within the ICU
- recognise patient groups in cardiac surgery, acute myocardial infarction, stroke, pneumonia and acute renal failure, where similar outcome endeavours have been established.

¹⁵Relman Assessment and Accountability NEJM 1988 ¹⁶Spiegelhalter 1999; lezzoni 1996.

The 'third revolution' in medical care¹⁵ dates back to Florence Nightingale in the mid-19th century in the UK and Ernest Codman in the early 1900s in the US¹⁶.

Disquiet has been generated by the past and current publishing of mortality outcome data.

The establishment of quantitative indices of patient *process-of-care* may be a valuable complement to *mortality outcome*, both at the administrative and clinical level.

- critically-ill patients within the ICU
- recognise patient groups in cardiac surgery, acute myocardial infarction, stroke, pneumonia and acute renal failure, where similar outcome endeavours have been established.

¹⁵Relman Assessment and Accountability NEJM 1988 ¹⁶Spiegelhalter 1999; lezzoni 1996.

The 'third revolution' in medical care¹⁵ dates back to Florence Nightingale in the mid-19th century in the UK and Ernest Codman in the early 1900s in the US¹⁶.

Disquiet has been generated by the past and current publishing of mortality outcome data.

The establishment of quantitative indices of patient *process-of-care* may be a valuable complement to *mortality outcome*, both at the administrative and clinical level.

- critically-ill patients within the ICU
- recognise patient groups in cardiac surgery, acute myocardial infarction, stroke, pneumonia and acute renal failure, where similar outcome endeavours have been established.

¹⁵Relman Assessment and Accountability NEJM 1988 ¹⁶Spiegelhalter 1999; lezzoni 1996.

The 'third revolution' in medical care¹⁵ dates back to Florence Nightingale in the mid-19th century in the UK and Ernest Codman in the early 1900s in the US¹⁶.

Disquiet has been generated by the past and current publishing of mortality outcome data.

The establishment of quantitative indices of patient *process-of-care* may be a valuable complement to *mortality outcome*, both at the administrative and clinical level.

- critically-ill patients within the ICU
- recognise patient groups in cardiac surgery, acute myocardial infarction, stroke, pneumonia and acute renal failure, where similar outcome endeavours have been established.

¹⁵Relman Assessment and Accountability NEJM 1988 ¹⁶Spiegelhalter 1999; lezzoni 1996.