Work in progress on the Australian and New Zealand Intensive Care (ANZICS) Database

Patty Solomon1 John L. Moran2

1School of Mathematical Sciences
The University of Adelaide

2Department of Intensive Care Medicine
The Queen Elizabeth Hospital
Adelaide, South Australia

MRC Biostatistics Unit, Cambridge
12 November 2007
Dr John L. Moran
An outline of my talk today

1. The ANZICS adult patient database (APD)
2. ANZICS mortality and LOS outcomes 1993–2003
3. Quantitative indices reflecting provider ‘process-of-care’
4. Concluding comments
Overview

The ANZICS Adult Patient Database is the largest (bi-national) intensive care database in the world.

Currently contains > 700,000 intensive care submissions collected from 138 intensive care units (ICUs) in Australia and New Zealand since 1987.

Evolved from humble beginnings in recognition of the integral importance of high-quality databases to the practice, management, research and audit of clinical services.

Major advantage of a national database: ability to capture large amounts of data across a broad spectrum of diagnoses and interventions → especially important in critical care medicine.

Intensive care is expensive: consumes an estimated AUS$500m to AUS$1b per annum.

1 Black, Lancet 1999
Overview

The ANZICS Adult Patient Database is the largest (bi-national) intensive care database in the world.

Currently contains > 700,000 intensive care submissions collected from 138 intensive care units (ICUs) in Australia and New Zealand since 1987.

Evolved from humble beginnings in recognition of the integral importance of high-quality databases to the practice, management, research and audit of clinical services.¹

Major advantage of a national database: ability to capture large amounts of data across a broad spectrum of diagnoses and interventions → especially important in critical care medicine.

Intensive care is expensive: consumes an estimated AUS$500m to AUS$1b per annum.

¹Black, Lancet 1999
Overview

The ANZICS Adult Patient Database is the largest (bi-national) intensive care database in the world.

Currently contains > 700,000 intensive care submissions collected from 138 intensive care units (ICUs) in Australia and New Zealand since 1987.

Evolved from humble beginnings in recognition of the integral importance of high-quality databases to the practice, management, research and audit of clinical services.¹

Major advantage of a national database: ability to capture large amounts of data across a broad spectrum of diagnoses and interventions → especially important in critical care medicine.

Intensive care is expensive: consumes an estimated AUS$500m to AUS$1b per annum.

¹ Black, Lancet 1999
Overview

The ANZICS Adult Patient Database is the largest (bi-national) intensive care database in the world.

Currently contains > 700,000 intensive care submissions collected from 138 intensive care units (ICUs) in Australia and New Zealand since 1987.

Evolved from humble beginnings in recognition of the integral importance of high-quality databases to the practice, management, research and audit of clinical services.¹

Major advantage of a national database: ability to capture large amounts of data across a broad spectrum of diagnoses and interventions → especially important in critical care medicine.

Intensive care is expensive: consumes an estimated AUS$500m to AUS$1b per annum.

¹ Black, Lancet 1999
Overview

The ANZICS Adult Patient Database is the largest (bi-national) intensive care database in the world.

Currently contains > 700,000 intensive care submissions collected from 138 intensive care units (ICUs) in Australia and New Zealand since 1987.

Evolved from humble beginnings in recognition of the integral importance of high-quality databases to the practice, management, research and audit of clinical services.¹

Major advantage of a national database: ability to capture large amounts of data across a broad spectrum of diagnoses and interventions → especially important in critical care medicine.

Intensive care is expensive: consumes an estimated AUS$500m to AUS$1b per annum.

¹Black, Lancet 1999
Overview

The ANZICS Adult Patient Database is the largest (bi-national) intensive care database in the world.

Currently contains > 700,000 intensive care submissions collected from 138 intensive care units (ICUs) in Australia and New Zealand since 1987.

Evolved from humble beginnings in recognition of the integral importance of high-quality databases to the practice, management, research and audit of clinical services.¹

Major advantage of a national database: ability to capture large amounts of data across a broad spectrum of diagnoses and interventions → especially important in critical care medicine.

Intensive care is expensive: consumes an estimated AUS$500m to AUS$1b per annum.

¹ Black, Lancet 1999
Development and implementation of a high-quality clinical database: the Australian and New Zealand Intensive Care Society Adult Patient Database

Peter J. Stowa, Graeme K. Hartb,c, Tracey Higlettc,*, Carol Georgea, Robert Herkesd, David McWilliamd, Rinaldo Bellomoe

for the ANZICS Database Management Committee

aANZICS Adult Patient Database (APD), Melbourne, Victoria 3053, Australia
bANZICS Database Management Committee, Melbourne, Victoria 3053, Australia
cANZICS Research Centre for Critical Care Resources (ARCCCR), Melbourne, Victoria 3053, Australia
dIntensive Care Unit, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
eIntensive Care Research, Austin Hospital, Melbourne, Victoria 3084, Australia
Stow et al:

- origins of ANZICS APD up to December 2003
 - 444,147 case records
 - collect raw physiology data
 - 121/167 Australian and 10/27 New Zealand ICUs
 - data submissions from contributing ICUs are voluntary.

Database evaluated according to criteria of the Directory of Clinical Audit Databases (DoCDAT) and the Arts et al framework.\(^2\)

Overall: ANZICS APD is a high-quality database representative of the Australian population; it does have some weaknesses:

- completeness of recruitment $< 80\%$
- some queries about reliability of coding (lack of intra-rater and inter-rater reliability testing).

\(^2\)J Am Med Inform Assoc 2002
Stow et al:

- origins of ANZICS APD up to December 2003
- 444, 147 case records
 - collect raw physiology data
 - 121/167 Australian and 10/27 New Zealand ICUs
 - data submissions from contributing ICUs are voluntary.

Database evaluated according to criteria of the Directory of Clinical Audit Databases (DoCDAT) and the Arts et al framework. Overall: ANZICS APD is a high-quality database representative of the Australian population; it does have some weaknesses:

- completeness of recruitment < 80%
- some queries about reliability of coding (lack of intra-rater and inter-rater reliability testing).

2 J Am Med Inform Assoc 2002
Stow et al:

- origins of ANZICS APD up to December 2003
- 444,147 case records
- collect raw physiology data
- 121/167 Australian and 10/27 New Zealand ICUs
- data submissions from contributing ICUs are voluntary.

Database evaluated according to criteria of the Directory of Clinical Audit Databases (DoCDAT) and the Arts et al framework. Overall: ANZICS APD is a high-quality database representative of the Australian population; it does have some weaknesses:

- completeness of recruitment < 80%
- some queries about reliability of coding (lack of intra-rater and inter-rater reliability testing).

2 J Am Med Inform Assoc 2002
Stow et al:

- origins of ANZICS APD up to December 2003
- 444, 147 case records
- collect raw physiology data
- 121/167 Australian and 10/27 New Zealand ICUs
- data submissions from contributing ICUs are voluntary.

Database evaluated according to criteria of the Directory of Clinical Audit Databases (DoCDAT) and the Arts et al framework.²

Overall: ANZICS APD is a high-quality database representative of the Australian population; it does have some weaknesses:

- completeness of recruitment < 80%
- some queries about reliability of coding (lack of intra-rater and inter-rater reliability testing).

²J Am Med Inform Assoc 2002
Stow et al:

- origins of ANZICS APD up to December 2003
- 444, 147 case records
- collect raw physiology data
- 121/167 Australian and 10/27 New Zealand ICUs
- data submissions from contributing ICUs are voluntary.

Database evaluated according to criteria of the Directory of Clinical Audit Databases (DoCDAT) and the Arts et al framework.²

Overall: ANZICS APD is a high-quality database representative of the Australian population; it does have some weaknesses:

- completeness of recruitment < 80%
- some queries about reliability of coding (lack of intra-rater and inter-rater reliability testing).

²J Am Med Inform Assoc 2002
Stow et al:

- origins of ANZICS APD up to December 2003
- 444,147 case records
- collect raw physiology data
- 121/167 Australian and 10/27 New Zealand ICUs
- data submissions from contributing ICUs are voluntary.

Database evaluated according to criteria of the Directory of Clinical Audit Databases (DoCDAT) and the Arts et al framework.\(^2\)

Overall: ANZICS APD is a high-quality database representative of the Australian population; it does have some weaknesses:

- completeness of recruitment < 80%
- some queries about reliability of coding (lack of intra-rater and inter-rater reliability testing).

\(^2\)J Am Med Inform Assoc 2002
Stow et al:

- origins of ANZICS APD up to December 2003
- 444,147 case records
- collect raw physiology data
- 121/167 Australian and 10/27 New Zealand ICUs
- data submissions from contributing ICUs are voluntary.

Database evaluated according to criteria of the Directory of Clinical Audit Databases (DoCDAT) and the Arts et al framework.²

Overall: ANZICS APD is a high-quality database representative of the Australian population; it does have some weaknesses:

- completeness of recruitment < 80%
- some queries about reliability of coding (lack of intra-rater and inter-rater reliability testing).

²J Am Med Inform Assoc 2002
Stow et al:

- origins of ANZICS APD up to December 2003
- 444, 147 case records
- collect raw physiology data
- 121/167 Australian and 10/27 New Zealand ICUs
- data submissions from contributing ICUs are voluntary.

Database evaluated according to criteria of the Directory of Clinical Audit Databases (DoCDAT) and the Arts et al framework.²

Overall: ANZICS APD is a high-quality database representative of the Australian population; it does have some weaknesses:

- completeness of recruitment < 80%
- some queries about reliability of coding (lack of intra-rater and inter-rater reliability testing).

²J Am Med Inform Assoc 2002
Hospital level and locality

In Australia and New Zealand, critical care services may be provided in

- **tertiary, metropolitan, rural or private hospitals**;
- **distances** between centres are often **large**, and there may be geographical or other barriers to the transfer of patients between different levels of care.
- Private and public funding models may result in differences in clinical practice.
- In Australia, 50% of hospital care is private.
In Australia and New Zealand, critical care services may be provided in

- *tertiary, metropolitan, rural or private* hospitals;
- *distances* between centres are often *large*, and there may be geographical or other barriers to the transfer of patients between different levels of care.
- Private and public funding models may result in differences in clinical practice.
- In Australia, 50% of hospital care is private.
Hospital level and locality

In Australia and New Zealand, critical care services may be provided in

- *tertiary, metropolitan, rural* or *private* hospitals;
- *distances* between centres are often *large*, and there may be geographical or other barriers to the transfer of patients between different levels of care.
- Private and public funding models may result in differences in clinical practice.
- In Australia, 50% of hospital care is private.
Hospital level and locality

In Australia and New Zealand, critical care services may be provided in

- *tertiary, metropolitan, rural or private* hospitals;
- *distances* between centres are often *large*, and there may be geographical or other barriers to the transfer of patients between different levels of care.
- Private and public funding models may result in differences in clinical practice.
- In Australia, 50% of hospital care is private.
Hospital level and locality

In Australia and New Zealand, critical care services may be provided in

- *tertiary, metropolitan, rural or private* hospitals;
- *distances* between centres are often *large*, and there may be geographical or other barriers to the transfer of patients between different levels of care.
- Private and public funding models may result in differences in clinical practice.
- In Australia, 50% of hospital care is private.
Mortality and association with mechanical ventilation

\[n = 223,129, \text{ overall mortality 16.1\%, mean LOS 3.6 days. Hospital mortality decreased 4\% over 11 years.} \]
SMRs for individual ICUs

- Considerable uncertainty has been apportioned to estimates of mortality as reflected in the Standardised Mortality Ratio (SMR).\(^3\)

- Full ‘explanatory’ models are preferable to the limited purview of ‘algorithmic’ (APACHE, SAPS, MPM) models
 - Acute Physiology and Chronic Health Evaluation.

\(^3\) Moran & Solomon Mortality and other event rates: what do they tell us about performance? *Crit Care & Resus* 2003
SMRs for individual ICUs

- Considerable uncertainty has been apportioned to estimates of mortality as reflected in the Standardised Mortality Ratio (SMR).\(^3\)

- Full ‘explanatory’ models are preferable to the limited purview of ‘algorithmic’ (APACHE, SAPS, MPM) models
 - Acute Physiology and Chronic Health Evaluation.

\(^3\) Moran & Solomon Mortality and other event rates: what do they tell us about performance? *Crit Care & Resus* 2003
SMRs for individual ICUs

- Considerable uncertainty has been apportioned to estimates of mortality as reflected in the Standardised Mortality Ratio (SMR).\(^3\)

- Full ‘explanatory’ models are preferable to the limited purview of ‘algorithmic’ (APACHE, SAPS, MPM) models
 - Acute Physiology and Chronic Health Evaluation.

\(^3\) Moran & Solomon Mortality and other event rates: what do they tell us about performance? *Crit Care & Resus* 2003
SMRs for individual ICUs

- Considerable uncertainty has been apportioned to estimates of mortality as reflected in the Standardised Mortality Ratio (SMR).³

- Full ‘explanatory’ models are preferable to the limited purview of ‘algorithmic’ (APACHE, SAPS, MPM) models
 - Acute Physiology and Chronic Health Evaluation.

Bootstrapped CIs of ranks (1993 – 1997)

95% CIs of ICU SMR ranks
Rank SMR order for FE and RE models 1993 – 2003

Site numbers by descending SMR rank according to fixed or random effects

SMR: 95% CI; green, fixed effects; orange, random effects

Site id: FE, blue; RE, black
Rank SMR order for FE and RE models

Site numbers by descending SMR rank according to fixed or random effects

Site id: FE, blue; RE, black

SMR: 95% CI; green, fixed effects; orange, random effects
Rank SMR order for FE and RE models

Site numbers by descending SMR rank according to fixed or random effects

Site id: FE, blue; RE, black
The outcomes paradigm

Is now a **dominant influence** within medicine, and *critical care* is no exception.\(^4\)

In the USA

- *Cleveland Health Quality Choice*
- initially greeted with some enthusiasm
- but upon its demise, described as either *martyr* or *failure*.

In the UK

- the performance of the paediatric cardiac surgical service at the *Royal Bristol infirmary*.

In Australia

- ANZICS data-base initiative
- the inquiry into the *Bundaberg Base Hospital, Queensland*.\(^5\)

\(^4\) Davies & Crombie 1997; Sibbald *et al* 2001; Ridley 2002

\(^5\) Scott & Ward, *MJA* 2006
The outcomes paradigm

Is now a dominant influence within medicine, and critical care is no exception.4

In the USA

- Cleveland Health Quality Choice
- initially greeted with some enthusiasm
- but upon its demise, described as either martyr or failure.

In the UK

- the performance of the paediatric cardiac surgical service at the Royal Bristol infirmary.

In Australia

- ANZICS data-base initiative
- the inquiry into the Bundaberg Base Hospital, Queensland.5

4Davies & Crombie 1997; Sibbald et al 2001; Ridley 2002
5Scott & Ward, MJA 2006
The outcomes paradigm

Is now a **dominant influence** within medicine, and *critical care* is no exception.\(^4\)

In the USA

- *Cleveland Health Quality Choice*
- initially greeted with some enthusiasm
- but upon its demise, described as either *martyr* or *failure*.

In the UK

- the performance of the paediatric cardiac surgical service at the *Royal Bristol infirmary*.

In Australia

- ANZICS data-base initiative
- the inquiry into the *Bundaberg Base Hospital, Queensland*.\(^5\)

\(^4\)Davies & Crombie 1997; Sibbald *et al* 2001; Ridley 2002

\(^5\)Scott & Ward, *MJA* 2006
The outcomes paradigm

Is now a **dominant influence** within medicine, and **critical care** is no exception.\(^4\)

In the USA

- *Cleveland Health Quality Choice*
- initially greeted with some enthusiasm
- but upon its demise, described as either *martyr* or *failure*.

In the UK

- the performance of the paediatric cardiac surgical service at the *Royal Bristol infirmary*.

In Australia

- ANZICS data-base initiative
- the inquiry into the *Bundaberg Base Hospital, Queensland*.\(^5\)

\(^4\)Davies & Crombie 1997; Sibbald *et al* 2001; Ridley 2002

\(^5\)Scott & Ward, *MJA* 2006
The outcomes paradigm

Is now a **dominant influence** within medicine, and *critical care* is no exception. ⁴

In the USA

- *Cleveland Health Quality Choice*
- initially greeted with some enthusiasm
- but upon its demise, described as either *martyr* or *failure*.

In the UK

- the performance of the paediatric cardiac surgical service at the *Royal Bristol infirmary*.

In Australia

- ANZICS data-base initiative
- the inquiry into the *Bundaberg Base Hospital, Queensland*. ⁵

⁴ Davies & Crombie 1997; Sibbald *et al* 2001; Ridley 2002

⁵ Scott & Ward, *MJA* 2006
The outcomes paradigm

Is now a **dominant influence** within medicine, and *critical care* is no exception.\(^4\)

In the USA

- *Cleveland Health Quality Choice*
- initially greeted with some enthusiasm
- but upon its demise, described as either *martyr* or *failure*.

In the UK

- the performance of the paediatric cardiac surgical service at the **Royal Bristol infirmary**.

In Australia

- ANZICS data-base initiative
- the inquiry into the **Bundaberg Base Hospital, Queensland**.\(^5\)

\(^4\)Davies & Crombie 1997; Sibbald *et al* 2001; Ridley 2002
\(^5\)Scott & Ward, *MJA* 2006
The outcomes paradigm

Is now a **dominant influence** within medicine, and *critical care* is no exception.

In the USA

- *Cleveland Health Quality Choice*
- initially greeted with some enthusiasm
- but upon its demise, described as either *martyr* or *failure*.

In the UK

- the performance of the paediatric cardiac surgical service at the *Royal Bristol infirmary*.

In Australia

- ANZICS data-base initiative
- the inquiry into the *Bundaberg Base Hospital, Queensland*.

4 Davies & Crombie 1997; Sibbald *et al* 2001; Ridley 2002
5 Scott & Ward, *MJA* 2006
The outcomes paradigm

Is now a **dominant influence** within medicine, and *critical care* is no exception.\(^4\)

In the USA

- *Cleveland Health Quality Choice*
- initially greeted with some enthusiasm
- but upon its demise, described as either *martyr* or *failure*.

In the UK

- the performance of the paediatric cardiac surgical service at the *Royal Bristol infirmary*.

In Australia

- ANZICS data-base initiative
- the inquiry into the *Bundaberg Base Hospital, Queensland*.\(^5\)

\(^4\)Davies & Crombie 1997; Sibbald *et al* 2001; Ridley 2002

\(^5\)Scott & Ward, *MJA* 2006
The outcomes paradigm

Is now a **dominant influence** within medicine, and **critical care** is no exception.\(^4\)

In the USA

- *Cleveland Health Quality Choice*
- initially greeted with some enthusiasm
- but upon its demise, described as either *martyr* or *failure*.

In the UK

- the performance of the paediatric cardiac surgical service at the *Royal Bristol infirmary*.

In Australia

- ANZICS data-base initiative
- the inquiry into the *Bundaberg Base Hospital*, Queensland.\(^5\)

\(^4\)Davies & Crombie 1997; Sibbald *et al* 2001; Ridley 2002

\(^5\)Scott & Ward, *MJA* 2006
APACHE II and ‘provider’ comparisons

APACHE II6 and exploration of risk adjusted mortality in a cohort of 13 ICUs

- established the notion of ‘institutional’ or ‘provider’ comparisons within critical care, and
- introduced SMRs to the critical care literature.

From wherein has ensued a discordant debate regarding the relationship between the SMR and ICU performance or quality:

- SMR and its variability is problematic
- “mortality is unlikely to be a sufficient statistic for quality” (Spiegelhalter 1999)
- scoring systems at best describe ‘elements’ of performance.7

6Knaus, Draper \textit{et al} \textit{Ann Intern Med} 1986
7Linde-Zwirble & Angus 1998; Lilford \textit{et al} 2004
APACHE II and ‘provider’ comparisons

APACHE II6 and exploration of risk adjusted mortality in a cohort of 13 ICUs

- established the notion of ‘institutional’ or ‘provider’ comparisons within critical care, and
- introduced SMRs to the critical care literature.

From wherein has ensued a discordant debate regarding the relationship between the SMR and ICU performance or quality:

- SMR and its variability is problematic
- “mortality is unlikely to be a sufficient statistic for quality” \cite{spiegelhalter1999}
- scoring systems at best describe ‘elements’ of performance.7

6Knaus, Draper \textit{et al} \textit{Ann Intern Med} 1986
7Linde-Zwirble & Angus 1998; Lilford \textit{et al} 2004
APACHE II and ‘provider’ comparisons

APACHE II⁶ and exploration of risk adjusted mortality in a cohort of 13 ICUs

- established the notion of ‘institutional’ or ‘provider’ comparisons within critical care, and
- introduced SMRs to the critical care literature.

From wherein has ensued a discordant debate regarding the relationship between the SMR and ICU performance or quality:

- SMR and its variability is problematic
- “mortality is unlikely to be a sufficient statistic for quality” (Spiegelhalter 1999)
- scoring systems at best describe ‘elements’ of performance.⁷

⁶Knaus, Draper et al Ann Intern Med 1986
⁷Linde-Zwirble & Angus 1998; Lilford et al 2004
APACHE II and ‘provider’ comparisons

APACHE II6 and exploration of risk adjusted mortality in a cohort of 13 ICUs

- established the notion of ‘institutional’ or ‘provider’ comparisons within critical care, and
- introduced SMRs to the critical care literature.

From wherein has ensued a discordant debate regarding the relationship between the SMR and ICU performance or quality:

- SMR and its variability is problematic
- “mortality is unlikely to be a sufficient statistic for quality” (Spiegelhalter 1999)
- scoring systems at best describe ‘elements’ of performance.7

6Knaus, Draper \textit{et al Ann Intern Med} 1986
7Linde-Zwirble & Angus 1998; Lilford \textit{et al} 2004
APACHE II and ‘provider’ comparisons

APACHE II and exploration of risk adjusted mortality in a cohort of 13 ICUs

- established the notion of ‘institutional’ or ‘provider’ comparisons within critical care, and
- introduced SMRs to the critical care literature.

From wherein has ensued a discordant debate regarding the relationship between the SMR and ICU performance or quality:

- SMR and its variability is problematic
 - “mortality is unlikely to be a sufficient statistic for quality” (Spiegelhalter 1999)
- scoring systems at best describe ‘elements’ of performance.

6 Knaus, Draper et al Ann Intern Med 1986
7 Linde-Zwirble & Angus 1998; Lilford et al 2004
APACHE II and ‘provider’ comparisons

APACHE II and exploration of risk adjusted mortality in a cohort of 13 ICUs

- established the notion of ‘institutional’ or ‘provider’ comparisons within critical care, and
- introduced SMRs to the critical care literature.

From wherein has ensued a discordant debate regarding the relationship between the SMR and ICU performance or quality:

- SMR and its variability is problematic
- “mortality is unlikely to be a sufficient statistic for quality” (Spiegelhalter 1999)
- scoring systems at best describe ‘elements’ of performance.

7 Linde-Zwirble & Angus 1998; Lilford et al. 2004
APACHE II and ‘provider’ comparisons

APACHE II and exploration of risk adjusted mortality in a cohort of 13 ICUs

- established the notion of ‘institutional’ or ‘provider’ comparisons within critical care, and
- introduced SMRs to the critical care literature.

From wherein has ensued a discordant debate regarding the relationship between the SMR and ICU performance or quality:

- SMR and its variability is problematic
- “mortality is unlikely to be a sufficient statistic for quality” (Spiegelhalter 1999)
- scoring systems at best describe ‘elements’ of performance.

6 Knaus, Draper et al Ann Intern Med 1986
7 Linde-Zwirble & Angus 1998; Lilford et al 2004
Coincident with the Knaus et al paper, Dubois and co-workers reported a study ‘Adjusted hospital death rates: a potential screen for quality of care’\(^8\)

- looked at quality of care components
- at the sampled case-record level
- using both *structured explicit* and *implicit* review.

Although clinicians’ *subjective* assessment criteria

- identified differences between high and low mortality rate outliers
- *not* confirmed for any condition where *explicit structured process* criteria were used.

\(^8\)American Journal of Public Health 1987
Coincident with the Knaus *et al* paper, Dubois and co-workers reported a study ‘*Adjusted hospital death rates: a potential screen for quality of care*’

- looked at quality of care components
- at the sampled case-record level
- using both *structured explicit* and *implicit* review.

Although clinicians’ *subjective* assessment criteria

- identified differences between high and low mortality rate outliers
- *not* confirmed for any condition where *explicit structured process* criteria were used.

8 American Journal of Public Health 1987
Coincident with the Knaus et al paper, Dubois and co-workers reported a study ‘Adjusted hospital death rates: a potential screen for quality of care’.

- looked at quality of care components
- at the sampled case-record level
- using both *structured explicit* and *implicit* review.

Although clinicians’ *subjective* assessment criteria

- identified differences between high and low mortality rate outliers
- *not* confirmed for any condition where *explicit structured process* criteria were used.

American Journal of Public Health 1987
Coincident with the Knaus *et al* paper, Dubois and co-workers reported a study ‘*Adjusted hospital death rates: a potential screen for quality of care*’\(^8\)

- looked at quality of care components
- at the sampled case-record level
- using both *structured explicit* and *implicit* review.

Although clinicians’ *subjective* assessment criteria

- identified differences between high and low mortality rate outliers
- *not* confirmed for any condition where *explicit structured process* criteria were used.

\(^8\) *American Journal of Public Health* 1987
Process I

Coincident with the Knaus et al paper, Dubois and co-workers reported a study ‘Adjusted hospital death rates: a potential screen for quality of care’

- looked at quality of care components
- at the sampled case-record level
- using both structured explicit and implicit review.

Although clinicians’ subjective assessment criteria

- identified differences between high and low mortality rate outliers
- *not* confirmed for any condition where explicit structured process criteria were used.

8 American Journal of Public Health 1987
Process II

Subsequent efforts to locate a relationship between mortality and ‘quality of care’ have been grounded in chart review and have been largely unsuccessful:

- in a surgical environment (Gibbs et al 2001)
- in a general medical setting (Best et al 1994, Thomas et al 1993, Park et al 1990)

‘Prevalent care processes’

- have not established a strong relationship.

Pitches et al on mortality and quality of care: Do hospitals with higher risk-adjusted mortality rates provide poorer quality care?[^9]

- the “notion that hospitals with higher risk-adjusted mortality rates have poorer quality care is neither consistent nor reliable”.

[^9]: BMC HSR 2007
Subsequent efforts to locate a relationship between mortality and ‘quality of care’ have been grounded in chart review and have been largely unsuccessful:

- in a surgical environment (Gibbs et al 2001)
- in a general medical setting (Best et al 1994, Thomas et al 1993, Park et al 1990)

‘Prevalent care processes’

- have not established a strong relationship.

Pitches et al on mortality and quality of care: *Do hospitals with higher risk-adjusted mortality rates provide poorer quality care?* ⁹

- the “notion that hospitals with higher risk-adjusted mortality rates have poorer quality care is neither consistent nor reliable".

⁹BMC HSR 2007
Subsequent efforts to locate a relationship between mortality and ‘quality of care’ have been grounded in chart review and have been largely unsuccessful:

- in a surgical environment (Gibbs et al 2001)
- in a general medical setting (Best et al 1994, Thomas et al 1993, Park et al 1990)

‘Prevalent care processes’

- have not established a strong relationship.

Pitches et al on mortality and quality of care: Do hospitals with higher risk-adjusted mortality rates provide poorer quality care?

- the “notion that hospitals with higher risk-adjusted mortality rates have poorer quality care is neither consistent nor reliable”.

9 BMC HSR 2007
Subsequent efforts to locate a relationship between mortality and ‘quality of care’ have been grounded in chart review and have been largely unsuccessful:

- in a surgical environment (Gibbs et al 2001)
- in a general medical setting (Best et al 1994, Thomas et al 1993, Park et al 1990)

‘Prevalent care processes’

- have not established a strong relationship.

Pitches et al on mortality and quality of care: Do hospitals with higher risk-adjusted mortality rates provide poorer quality care? ⁹

- the “notion that hospitals with higher risk-adjusted mortality rates have poorer quality care is neither consistent nor reliable”.

⁹ BMC HSR 2007
Subsequent efforts to locate a relationship between mortality and ‘quality of care’ have been grounded in chart review and have been largely unsuccessful:

- in a surgical environment (Gibbs et al 2001)
- in a general medical setting (Best et al 1994, Thomas et al 1993, Park et al 1990)

‘Prevalent care processes’

- have not established a strong relationship.

Pitches et al on mortality and quality of care: Do hospitals with higher risk-adjusted mortality rates provide poorer quality care? ⁹

- the “notion that hospitals with higher risk-adjusted mortality rates have poorer quality care is neither consistent nor reliable”. ⁹

⁹BMC HSR 2007
Process II

Subsequent efforts to locate a relationship between mortality and ‘quality of care’ have been grounded in chart review and have been largely unsuccessful:

- in a surgical environment (Gibbs et al 2001)
- in a general medical setting (Best et al 1994, Thomas et al 1993, Park et al 1990)

‘Prevalent care processes’

- have not established a strong relationship.

Pitches et al on mortality and quality of care: Do hospitals with higher risk-adjusted mortality rates provide poorer quality care? 9

- the “notion that hospitals with higher risk-adjusted mortality rates have poorer quality care is neither consistent nor reliable”.

9 BMC HSR 2007
Process II

Subsequent efforts to locate a relationship between mortality and ‘quality of care’ have been grounded in chart review and have been largely unsuccessful:

- in a surgical environment (Gibbs et al 2001)
- in a general medical setting (Best et al 1994, Thomas et al 1993, Park et al 1990)

‘Prevalent care processes’

- have not established a strong relationship.

Pitches et al on mortality and quality of care: Do hospitals with higher risk-adjusted mortality rates provide poorer quality care? 9

- the “notion that hospitals with higher risk-adjusted mortality rates have poorer quality care is neither consistent nor reliable”.

9BMC HSR 2007
Increase the sensitivity of process measures?

This argument has been advanced because of the large sample sizes required to demonstrate small to modest changes in (mortality) outcome.

However, the felicity with which process may be measured is no guarantee that “measuring … process and reporting performance will improve outcomes”.¹⁰

There is also a certain circularity in these arguments …

- reliance on outcome measures is criticised from the standpoint of process-of-care
- which finds its ultimate assessment in terms of its effect on precisely those outcomes which have been ‘rejected’ in the first place.

So what is to be done?

¹⁰ Allison Med Care 2003
Increase the sensitivity of process measures?

This argument has been advanced because of the large sample sizes required to demonstrate small to modest changes in (mortality) outcome.

However, the felicity with which process may be measured is no guarantee that "measuring … process and reporting performance will improve outcomes".¹⁰

There is a also certain circularity in these arguments …

- reliance on outcome measures is criticised from the standpoint of process-of-care
- which finds its ultimate assessment in terms of its effect on precisely those outcomes which have been ‘rejected’ in the first place.

So what is to be done?

¹⁰ Allison Med Care 2003
Increase the sensitivity of process measures?

This argument has been advanced because of the *large sample sizes* required to demonstrate small to modest changes in (mortality) outcome.

However, the felicity with which process may be measured is no guarantee that "measuring … process and reporting performance will improve outcomes". ¹⁰

There is a also certain circularity in these arguments …

- reliance on *outcome measures* is criticised from the standpoint of *process-of-care*
- which finds its ultimate assessment in terms of its effect on precisely those *outcomes* which have been ‘rejected’ in the first place.

So what is to be done?

¹⁰ Allison *Med Care* 2003
Increase the sensitivity of process measures?

This argument has been advanced because of the *large sample sizes* required to demonstrate small to modest changes in (mortality) outcome.

However, the felicity with which process may be measured is no guarantee that "measuring … process and reporting performance will improve outcomes". ¹⁰

There is also certain circularity in these arguments …

- reliance on *outcome measures* is criticised from the standpoint of *process-of-care*
- which finds its ultimate assessment in terms of its effect on precisely those *outcomes* which have been ‘rejected’ in the first place.

So what is to be done?

¹⁰Allison *Med Care* 2003
Increase the sensitivity of process measures?

This argument has been advanced because of the **large sample sizes** required to demonstrate small to modest changes in (mortality) outcome.

However, the felicity with which process may be measured is no guarantee that “measuring … process and reporting performance will improve outcomes”. ¹⁰

There is also a certain circularity in these arguments …

- reliance on outcome measures is criticised from the standpoint of process-of-care
- which finds its ultimate assessment in terms of its effect on precisely those outcomes which have been ‘rejected’ in the first place.

So what is to be done?

¹⁰Allison Med Care 2003
Increase the sensitivity of process measures?

This argument has been advanced because of the large sample sizes required to demonstrate small to modest changes in (mortality) outcome.

However, the felicity with which process may be measured is no guarantee that “measuring … process and reporting performance will improve outcomes”. ¹⁰

There is a also certain circularity in these arguments …

- reliance on outcome measures is criticised from the standpoint of process-of-care
- which finds its ultimate assessment in terms of its effect on precisely those outcomes which have been ‘rejected’ in the first place.

So what is to be done?

¹⁰ Allison Med Care 2003
Increase the sensitivity of process measures?

This argument has been advanced because of the large sample sizes required to demonstrate small to modest changes in (mortality) outcome.

However, the felicity with which process may be measured is no guarantee that “measuring … process and reporting performance will improve outcomes”. ¹⁰

There is a also certain circularity in these arguments …

- reliance on outcome measures is criticised from the standpoint of process-of-care
- which finds its ultimate assessment in terms of its effect on precisely those outcomes which have been ‘rejected’ in the first place.

So what is to be done?

¹⁰Allison Med Care 2003
Increase the sensitivity of process measures?

This argument has been advanced because of the large sample sizes required to demonstrate small to modest changes in (mortality) outcome.

However, the felicity with which process may be measured is no guarantee that “measuring … process and reporting performance will improve outcomes”.

There is a also certain circularity in these arguments …

- reliance on outcome measures is criticised from the standpoint of process-of-care
- which finds its ultimate assessment in terms of its effect on precisely those outcomes which have been ‘rejected’ in the first place.

So what is to be done?

10 Allison Med Care 2003
Our strategy: patient efficiency

There would be advantage in establishing a quantitative index which would subsume the diversity of process-of-care.

Would enable provider ranking and formalised comparison with both indices of, and ranks based upon, mortality outcomes.

Idea: measure the patient’s ability to maximise ‘output’

- in particular, length of stay
- for a given set of physiological inputs, e.g., individual patient component variables in APACHE II.

Conceptual foundation: from econometrics

- productive efficiency.
Our strategy: patient efficiency

There would be advantage in establishing a **quantitative index** which would subsume the diversity of process-of-care.

Would enable **provider ranking** and **formalised comparison** with both indices of, and ranks based upon, mortality outcomes.

Idea: measure the patient’s ability to maximise ‘output’

- in particular, **length of stay**
- for a given set of physiological inputs, *e.g.*, individual patient component variables in APACHE II.

Conceptual foundation: from **econometrics**

- **productive efficiency**.
Our strategy: patient efficiency

There would be advantage in establishing a quantitative index which would subsume the diversity of process-of-care.

Would enable *provider ranking* and *formalised comparison* with both indices of, and ranks based upon, mortality outcomes.

Idea: measure the patient’s ability to maximise ‘output’

- in particular, *length of stay*
- for a given set of physiological inputs, *e.g.*, individual patient component variables in APACHE II.

Conceptual foundation: from *econometrics*

- productive efficiency.
Our strategy: patient efficiency

There would be advantage in establishing a quantitative index which would subsume the diversity of process-of-care.

Would enable provider ranking and formalised comparison with both indices of, and ranks based upon, mortality outcomes.

Idea: measure the patient’s ability to maximise ‘output’

- in particular, length of stay
- for a given set of physiological inputs, e.g., individual patient component variables in APACHE II.

Conceptual foundation: from econometrics

- productive efficiency.
Our strategy: patient efficiency

There would be advantage in establishing a quantitative index which would subsume the diversity of process-of-care.

Would enable provider ranking and formalised comparison with both indices of, and ranks based upon, mortality outcomes.

Idea: measure the patient’s ability to maximise ‘output’

- in particular, length of stay
- for a given set of physiological inputs, e.g., individual patient component variables in APACHE II.

Conceptual foundation: from econometrics

- productive efficiency.
Our strategy: patient efficiency

There would be advantage in establishing a **quantitative index** which would subsume the diversity of process-of-care.

Would enable **provider ranking** and **formalised comparison** with both indices of, and ranks based upon, mortality outcomes.

Idea: measure the patient’s ability to maximise ‘output’

- in particular, **length of stay**
- for a given set of physiological inputs, *e.g.*, individual patient component variables in APACHE II.

Conceptual foundation: from **econometrics**

- **productive efficiency.**
There would be advantage in establishing a quantitative index which would subsume the diversity of process-of-care. Would enable provider ranking and formalised comparison with both indices of, and ranks based upon, mortality outcomes.

Idea: measure the patient’s ability to maximise ‘output’

- in particular, length of stay
- for a given set of physiological inputs, e.g., individual patient component variables in APACHE II.

Conceptual foundation: from econometrics

- productive efficiency.
Our strategy: patient efficiency

There would be advantage in establishing a quantitative index which would subsume the diversity of process-of-care.

Would enable provider ranking and formalised comparison with both indices of, and ranks based upon, mortality outcomes.

Idea: measure the patient’s ability to maximise ‘output’

- in particular, length of stay
- for a given set of physiological inputs, e.g., individual patient component variables in APACHE II.

Conceptual foundation: from econometrics

- productive efficiency.
Technical efficiency

The objective of producers can be as simple as seeking to avoid waste

- by obtaining maximum outputs from given inputs
- or, by minimizing input use in the production of given outputs\(^\text{11}\).

The notion of productive efficiency corresponds to what we call technical efficiency.

M.J. Farrell (JRSS A 1957) was the first to measure productive efficiency empirically using linear programming techniques.

- He showed how to decompose cost efficiency into its technical and allocative components, and
- provided an application to US agriculture.

\(^{11}\)Kumbhaker & Knox Lovell *Stochastic Frontier Analysis* CUP 2000
Technical efficiency

The objective of producers can be as simple as seeking to avoid waste

- by obtaining maximum outputs from given inputs
- or, by minimizing input use in the production of given outputs\(^ {11} \).

The notion of productive efficiency corresponds to what we call technical efficiency.

M.J. Farrell (JRSS A 1957) was the first to measure productive efficiency empirically using linear programming techniques.

- He showed how to decompose cost efficiency into its technical and allocative components, and
- provided an application to US agriculture.

\(^ {11} \text{Kumbhaker & Knox Lovell Stochastic Frontier Analysis CUP 2000} \)
The objective of producers can be as simple as seeking to avoid waste

- by obtaining *maximum outputs* from given *inputs*
- or, by *minimizing input use* in the production of given *outputs*\(^{11}\).

The notion of *productive efficiency* corresponds to what we call *technical efficiency*.

M.J. Farrell (*JRSS A* 1957) was the first to measure *productive efficiency* empirically using linear programming techniques.

- He showed how to decompose *cost efficiency* into its technical and allocative components, and
- provided an application to US agriculture.

\(^{11}\)Kumbhaker & Knox Lovell *Stochastic Frontier Analysis* CUP 2000
Technical efficiency

The objective of producers can be as simple as seeking to avoid waste

- by obtaining *maximum outputs* from given *inputs*
- or, by *minimizing input use* in the production of given *outputs*\(^\text{11}\).

The notion of *productive efficiency* corresponds to what we call *technical efficiency*.

M.J. Farrell (*JRSS A* 1957) was the first to measure productive efficiency empirically using linear programming techniques.

- He showed how to decompose *cost efficiency* into its technical and allocative components, and
- provided an application to US agriculture.

\(^{11}\)Kumbhaker & Knox Lovell *Stochastic Frontier Analysis* CUP 2000
Technical efficiency

The objective of producers can be as simple as seeking to avoid waste

- by obtaining *maximum outputs* from given *inputs*
- or, by *minimizing input use* in the production of given *outputs*\(^\text{11}\).

The notion of *productive efficiency* corresponds to what we call **technical efficiency**.

M.J. Farrell (*JRSS A* 1957) was the first to measure productive efficiency empirically using linear programming techniques.

- He showed how to decompose *cost efficiency* into its technical and allocative components, and
- provided an application to US agriculture.

\(^{11}\) Kumbhaker & Knox Lovell *Stochastic Frontier Analysis* CUP 2000
Technical efficiency

The objective of producers can be as simple as seeking to avoid waste

- by obtaining *maximum outputs* from given *inputs*
- or, by *minimizing input use* in the production of given *outputs*\(^{11}\).

The notion of *productive efficiency* corresponds to what we call *technical efficiency*.

M.J. Farrell (*JRSS A* 1957) was the first to measure *productive efficiency* empirically using linear programming techniques.

- He showed how to decompose *cost efficiency* into its technical and allocative components, and
- provided an application to US agriculture.

\(^{11}\) Kumbhaker & Knox Lovell *Stochastic Frontier Analysis* CUP 2000
The objective of producers can be as simple as seeking to avoid waste

- by obtaining *maximum outputs* from given *inputs*
- or, by *minimizing input use* in the production of given *outputs*\(^\text{11}\).

The notion of *productive efficiency* corresponds to what we call *technical efficiency*.

M.J. Farrell (*JRSS A* 1957) was the first to measure *productive efficiency* empirically using linear programming techniques.

- He showed how to decompose *cost efficiency* into its technical and allocative components, and
- provided an application to US agriculture.

\(^{11}\text{Kumbhaker & Knox Lovell *Stochastic Frontier Analysis* CUP 2000}\)
The objective of producers can be as simple as seeking to avoid waste

- by obtaining *maximum outputs* from given *inputs*
- or, by *minimizing input use* in the production of given *outputs*\(^1\).

The notion of *productive efficiency* corresponds to what we call *technical efficiency*.

M.J. Farrell (*JRSS A* 1957) was the first to measure *productive efficiency* empirically using linear programming techniques.

- He showed how to decompose *cost efficiency* into its technical and allocative components, and
- provided an application to US agriculture.

\(^1\) Kumbhaker & Knox Lovell *Stochastic Frontier Analysis* CUP 2000
The influence of Farrell’s work

Data envelope analysis (DEA)

In an innovative study of patients with severe head trauma

- Nathanson *et al*\(^1\)\(^2\) used DEA to calculate individual patient ‘efficiency’ scores based upon the ability to *maximise cerebral perfusion pressure* (output)
 - for a given set of physiological inputs: temperature, MAP, serum osmolality, arterial \(PaCO_2\);
 - patients with high efficiency scores had improved functional outcomes on ICU discharge.

Of greater significance for us:

Stochastic frontier analysis (SFA).

\(^1\)\(^2\) *Health Care Management Science* 2003
The influence of Farrell’s work

Data envelope analysis (DEA)

In an innovative study of patients with severe head trauma

- Nathanson et al12 used DEA to calculate individual patient ‘efficiency’ scores based upon the ability to \textit{maximise cerebral perfusion pressure} (output)
 - for a given set of physiological inputs: temperature, MAP, serum osmolality, arterial $PaCO_2$;
 - patients with high efficiency scores had improved functional outcomes on ICU discharge.

Of greater significance for us:

Stochastic frontier analysis (SFA).

12Health Care Management Science 2003
The influence of Farrell’s work

Data envelope analysis (DEA)

In an innovative study of patients with severe head trauma

- Nathanson et al\(^\text{12}\) used DEA to calculate individual patient ‘efficiency’ scores based upon the ability to maximise cerebral perfusion pressure (output)
 - for a given set of physiological inputs: temperature, MAP, serum osmolality, arterial $PaCO_2$;
 - patients with high efficiency scores had improved functional outcomes on ICU discharge.

Of greater significance for us:

Stochastic frontier analysis (SFA).

\(^{12}\text{Health Care Management Science 2003}\)
The influence of Farrell’s work

Data envelope analysis (DEA)

In an innovative study of patients with severe head trauma

- Nathanson et al12 used DEA to calculate individual patient ‘efficiency’ scores based upon the ability to maximise cerebral perfusion pressure (output)
 - for a given set of physiological inputs: temperature, MAP, serum osmolality, arterial $PaCO_2$;
 - patients with high efficiency scores had improved functional outcomes on ICU discharge.

Of greater significance for us:

Stochastic frontier analysis (SFA).

12Health Care Management Science 2003
The influence of Farrell’s work

Data envelope analysis (DEA)

In an innovative study of patients with severe head trauma

- Nathanson et al12 used DEA to calculate individual patient ‘efficiency’ scores based upon the ability to maximise cerebral perfusion pressure (output)
 - for a given set of physiological inputs: temperature, MAP, serum osmolality, arterial $PaCO_2$;
 - patients with high efficiency scores had improved functional outcomes on ICU discharge.

Of greater significance for us:

Stochastic frontier analysis (SFA).

12Health Care Management Science 2003
The influence of Farrell’s work

Data envelope analysis (DEA)

In an innovative study of patients with severe head trauma

- Nathanson et al12 used DEA to calculate individual patient ‘efficiency’ scores based upon the ability to maximise cerebral perfusion pressure (output)
 - for a given set of physiological inputs: temperature, MAP, serum osmolality, arterial $PaCO_2$;
 - patients with high efficiency scores had improved functional outcomes on ICU discharge.

Of greater significance for us:

Stochastic frontier analysis (SFA).

12Health Care Management Science 2003
The influence of Farrell’s work

Data envelope analysis (DEA)

In an innovative study of patients with severe head trauma

- Nathanson et al\(^{12}\) used DEA to calculate individual patient ‘efficiency’ scores based upon the ability to maximise cerebral perfusion pressure (output)
 - for a given set of physiological inputs: temperature, MAP, serum osmolality, arterial PaCO_2;
 - patients with high efficiency scores had improved functional outcomes on ICU discharge.

Of greater significance for us:

Stochastic frontier analysis (SFA).

\(^{12}\)Health Care Management Science 2003
The influence of Farrell’s work

Data envelope analysis (DEA)

In an innovative study of patients with severe head trauma

- Nathanson et al.12 used DEA to calculate individual patient ‘efficiency’ scores based upon the ability to maximize cerebral perfusion pressure (output)
 - for a given set of physiological inputs: temperature, MAP, serum osmolality, arterial $PaCO_2$;
 - patients with high efficiency scores had improved functional outcomes on ICU discharge.

Of greater significance for us:

Stochastic frontier analysis (SFA).

12Health Care Management Science 2003
Production frontier models

A stochastic production frontier model:

\[y_i = f(x_i; \beta) \exp(v_i) TE_i \quad i = 1, \ldots, I \]

producers

\(y_i \) is the scalar output of producer \(i \), \(x_i \) is a vector of inputs used by producer \(i \), and \(\beta \) is a vector of ‘technology’ parameters to be estimated;

\[TE_i = \frac{y_i}{f(x_i; \beta) \exp(v_i)} \]

- \(y_i \) achieves its maximum feasible value iff \(TE_i = 1 \)
- \(TE_i < 1 \) measures the shortfall of observed output from the maximum feasible output in an environment characterised by \(\exp(v_i) \), which can vary across producers.
Production frontier models

A stochastic production frontier model:

\[y_i = f(x_i; \beta) \exp(v_i) \cdot TE_i \quad i = 1, \ldots, I \text{ producers} \]

\(y_i \) is the scalar output of producer \(i \), \(x_i \) is a vector of inputs used by producer \(i \), and \(\beta \) is a vector of ‘technology’ parameters to be estimated;

\[TE_i = \frac{y_i}{f(x_i; \beta) \exp(v_i)} \]

- \(y_i \) achieves its maximum feasible value iff \(TE_i = 1 \)
- \(TE_i < 1 \) measures the shortfall of observed output from the maximum feasible output in an environment characterised by \(\exp(v_i) \), which can vary across producers.
Production frontier models

A stochastic production frontier model:

\[y_i = f(x_i; \beta) \exp(v_i) TE_i \quad i = 1, \ldots, I \text{ producers} \]

\(y_i \) is the scalar output of producer \(i \), \(x_i \) is a vector of inputs used by producer \(i \), and \(\beta \) is a vector of ‘technology’ parameters to be estimated;

\[TE_i = \frac{y_i}{f(x_i; \beta) \exp(v_i)} \]

- \(y_i \) achieves its maximum feasible value iff \(TE_i = 1 \)
- \(TE_i < 1 \) measures the shortfall of observed output from the maximum feasible output in an environment characterised by \(\exp(v_i) \), which can vary across producers.
A stochastic production frontier model:

\[y_i = f(x_i; \beta) \exp(v_i) TE_i \quad i = 1, \ldots, I \]

produces

\[y_i \]

is the scalar output of producer \(i \), \(x_i \) is a vector of inputs used by producer \(i \), and \(\beta \) is a vector of ‘technology’ parameters to be estimated;

\[TE_i = \frac{y_i}{f(x_i; \beta) \exp(v_i)} \]

- \(y_i \) achieves its maximum feasible value iff \(TE_i = 1 \)
- \(TE_i < 1 \) measures the shortfall of observed output from the maximum feasible output in an environment characterised by \(\exp(v_i) \), which can vary across producers.
Production frontier models

A stochastic production frontier model:

\[y_i = f(x_i; \beta) \exp(v_i)TE_i \quad i = 1, \ldots, I \text{ producers} \]

\(y_i \) is the scalar output of producer \(i \), \(x_i \) is a vector of inputs used by producer \(i \), and \(\beta \) is a vector of ‘technology’ parameters to be estimated;

\[TE_i = \frac{y_i}{f(x_i; \beta) \exp(v_i)} \]

- \(y_i \) achieves its maximum feasible value iff \(TE_i = 1 \)
- \(TE_i < 1 \) measures the shortfall of observed output from the maximum feasible output in an environment characterised by \(\exp(v_i) \), which can vary across producers.
Production frontier models

A stochastic production frontier model:

\[y_i = f(x_i; \beta) \exp(v_i) TE_i \quad i = 1, \ldots, I \text{ producers} \]

\(y_i \) is the scalar output of producer \(i \), \(x_i \) is a vector of inputs used by producer \(i \), and \(\beta \) is a vector of ‘technology’ parameters to be estimated;

\[TE_i = \frac{y_i}{f(x_i; \beta) \exp(v_i)} \]

- \(y_i \) achieves its maximum feasible value iff \(TE_i = 1 \)
- \(TE_i < 1 \) measures the shortfall of observed output from the maximum feasible output in an environment characterised by \(\exp(\nu_i) \), which can vary across producers.
Technical efficiency for ANZICS patients

Stochastic production frontier model (log-linear f):13

$$\log y_i = \beta_0 + \sum_{j=1}^{k} \beta_j \log x_{ij} + v_i - u_i$$

where $TE_i = \exp(-u_i)$

- y_i is ICU/ hospital length of stay
- x_{ij}s are acute physiology score and chronic health evaluation variables
- $v_i \sim N(0, \sigma_v^2)$, $i = 1, \ldots, 215515$ (can vary across locality/level)
- $u_i > 0$, here assumed exponentially distributed
 - and allowed to be a function of appropriate individual explanatory variables.
 - Patient efficiency scaled $[0, 1]$.

13StataTM module \texttt{frontier}
Technical efficiency for ANZICS patients

Stochastic production frontier model (log-linear f):\(^{13}\)

$$\log y_i = \beta_0 + \sum_{j=1}^{k} \beta_j \log x_{ij} + v_i - u_i$$

where $TE_i = \exp(-u_i)$

- y_i is ICU/ hospital length of stay
- x_{ij}s are acute physiology score and chronic health evaluation variables
- $v_i \sim N(0, \sigma_v^2)$, $i = 1, \ldots, 215515$ (can vary across locality/level)
- $u_i > 0$, here assumed exponentially distributed
 - and allowed to be a function of appropriate individual explanatory variables.
- Patient efficiency scaled $[0, 1]$.

\(^{13}\text{Stata}\text{TM} \text{ module frontier}\)
Technical efficiency for ANZICS patients

Stochastic production frontier model (log-linear f):\(^{13}\)

$$\log y_i = \beta_0 + \sum_{j=1}^{k} \beta_j \log x_{ij} + v_i - u_i$$

where $TE_i = \exp(-u_i)$

- y_i is ICU/ hospital length of stay
- x_{ij}s are acute physiology score and chronic health evaluation variables
- $v_i \sim N(0, \sigma_v^2)$, $i = 1, \ldots, 215515$ (can vary across locality/level)
- $u_i > 0$, here assumed exponentially distributed
 - and allowed to be a function of appropriate individual explanatory variables.
 - Patient efficiency scaled $[0, 1]$.

\(^{13}\)StataTM module frontier
Technical efficiency for ANZICS patients

Stochastic production frontier model (log-linear f):

$$\log y_i = \beta_0 + \sum_{j=1}^{k} \beta_j \log x_{ij} + v_i - u_i$$

where $TE_i = \exp(-u_i)$

- y_i is ICU/ hospital length of stay
- x_{ij}s are acute physiology score and chronic health evaluation variables
- $v_i \sim N(0, \sigma_v^2)$, $i = 1, \ldots, 215515$ (can vary across locality/level)
- $u_i > 0$, here assumed exponentially distributed
 - and allowed to be a function of appropriate individual explanatory variables.
- Patient efficiency scaled $[0, 1]$.

\(^{13}\)Stata™ module frontier
Technical efficiency for ANZICS patients

Stochastic production frontier model (log-linear f):\(^{13}\)

$$\log y_i = \beta_0 + \sum_{j=1}^{k} \beta_j \log x_{ij} + v_i - u_i$$

where $TE_i = \exp(-u_i)$

- y_i is ICU/hospital length of stay
- x_{ij}s are acute physiology score and chronic health evaluation variables
- $v_i \sim N(0, \sigma^2_v)$, $i = 1, \ldots, 215515$ (can vary across locality/level)
- $u_i > 0$, here assumed exponentially distributed
 - and allowed to be a function of appropriate individual explanatory variables.
- Patient efficiency scaled $[0, 1]$.

\(^{13}\)StataTM module frontier
Technical efficiency for ANZICS patients

Stochastic production frontier model (log-linear f):\(^1_3\)

\[
\log y_i = \beta_0 + \sum_{j=1}^{k} \beta_j \log x_{ij} + v_i - u_i
\]

where $TE_i = \exp(-u_i)$

- y_i is ICU/ hospital length of stay
- x_{ij}s are acute physiology score and chronic health evaluation variables
- $v_i \sim N(0, \sigma_v^2), i = 1, \ldots, 215515$ (can vary across locality/level)
- $u_i > 0$, here assumed exponentially distributed
 - and allowed to be a function of appropriate individual explanatory variables.
 - Patient efficiency scaled $[0, 1]$.

\(^{13}\)Stata™ module frontier
Patient efficiency for tertiary hospitals by locality

Patients alive at discharge

[Graphs showing patient efficiency for different regions]
Patient efficiency for private hospitals by locality

Private NSW

Private SA

Private VIC

Private QLD

Private TAS

Kernel density estimate

Normal density
Patient efficiency for rural hospitals by locality

![Graphs showing patient efficiency for rural hospitals by locality.](image)
Patient efficiency by hospital locality/level/size
ANZICS 1993–2003 (N=35)

Pred.prob (green) T.effic (blue) S.mort ratio (magenta); 95%BCa CI
ANZICS 1993–2003: biplot of median TE and SMR

The ANZICS adult patient database (APD) ANZICS mortality and LOS outcomes 1993–2003 Quantitative indices reflecting provider ‘process of care’

Concluding comments
TE of SA tertiary hospitals: real correlates with hospital policy

ICU LOS efficiency (mean) estimates: geographical location & yearly admission number

<table>
<thead>
<tr>
<th>ICU geographical locality</th>
<th>Yearly admissions < 711</th>
<th>Yearly admissions > 711</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Territory</td>
<td>0.616 0.719</td>
<td></td>
</tr>
<tr>
<td>New South Wales</td>
<td>0.625 0.683 0.729 0.754</td>
<td>0.723</td>
</tr>
<tr>
<td>Australian Capital Territory</td>
<td>0.692</td>
<td>0.748</td>
</tr>
<tr>
<td>South Australia</td>
<td></td>
<td>0.709 0.758</td>
</tr>
<tr>
<td>Victoria</td>
<td>0.591 0.673 0.707</td>
<td>0.756</td>
</tr>
<tr>
<td>New Zealand</td>
<td>0.683 0.723 0.724</td>
<td></td>
</tr>
<tr>
<td>Queensland</td>
<td>0.644 0.644 0.647 0.721</td>
<td>0.685 0.741</td>
</tr>
<tr>
<td>Tasmania</td>
<td>0.579 0.632 0.649</td>
<td></td>
</tr>
</tbody>
</table>
Conditional length of stay (CLOS)

Idea: time course of ‘hazard of patient ICU/hospital discharge’ reflects the (time course of) *process-of-care*.

Silber and co-workers 1999 – 2004\(^{14}\) defined CLOS as *the length of stay after a stay is prolonged*:

- the *prolongation day* estimated by Hollander-Proshchan statistics: ‘new worse than used’.
- The longer the patient has been in hospital, the worse the prospects of discharge:
 - associated with complications and/or co-morbid medical conditions
 - measure of provider ability to manage complicated cases.
- “By studying CLOS, one can determine when the rate of hospital discharge begins to diminish - without the need to directly observe complications . . . CLOS aids in the analysis of a hospital’s management of complicated patients . . .”

\(^{14}\)Silber, Rosenbaum *et al* HSR 1999; 2003
Conditional length of stay (CLOS)

Idea: time course of ‘hazard of patient ICU/hospital discharge’ reflects the (time course of) process-of-care.

Silber and co-workers 1999 – 2004\(^{14}\) defined CLOS as the length of stay after a stay is prolonged:

- the prolongation day estimated by Hollander-Prosschan statistics: ‘new worse than used’.
- The longer the patient has been in hospital, the worse the prospects of discharge:
 - associated with complications and/or co-morbid medical conditions
 - measure of provider ability to manage complicated cases.
- “By studying CLOS, one can determine when the rate of hospital discharge begins to diminish - without the need to directly observe complications ... CLOS aids in the analysis of a hospital’s management of complicated patients ..."

\(^{14}\)Silber, Rosenbaum et al HSR 1999; 2003
Conditional length of stay (CLOS)

Idea: time course of ‘hazard of patient ICU/hospital discharge’ reflects the (time course of) *process-of-care*.

Silber and co-workers 1999 – 2004\(^{14}\) defined CLOS as *the length of stay after a stay is prolonged*:

- the *prolongation day* estimated by Hollander-Proschanan statistics: ‘new worse than used’.
- The longer the patient has been in hospital, the worse the prospects of discharge:
 - associated with complications and/or co-morbid medical conditions
 - measure of provider ability to manage complicated cases.
- “By studying CLOS, one can determine when the rate of hospital discharge begins to diminish - without the need to directly observe complications ... CLOS aids in the analysis of a hospital’s management of complicated patients ..."

\(^{14}\)Silber, Rosenbaum *et al* HSR 1999; 2003
Conditional length of stay (CLOS)

Idea: time course of ‘hazard of patient ICU/hospital discharge’ reflects the (time course of) process-of-care.

Silber and co-workers 1999 – 2004\(^\text{14}\) defined CLOS as the length of stay after a stay is prolonged:

- the prolongation day estimated by Hollander-Proshchan statistics: ‘new worse than used’.
- The longer the patient has been in hospital, the worse the prospects of discharge:
 - associated with complications and/or co-morbid medical conditions
 - measure of provider ability to manage complicated cases.

"By studying CLOS, one can determine when the rate of hospital discharge begins to diminish - without the need to directly observe complications ... CLOS aids in the analysis of a hospital’s management of complicated patients ...

\(^{14}\)Silber, Rosenbaum et al HSR 1999; 2003
Conditional length of stay (CLOS)

Idea: time course of ‘hazard of patient ICU/hospital discharge’ reflects the (time course of) *process-of-care.*

Silber and co-workers 1999 – 2004¹⁴ defined CLOS as *the length of stay after a stay is prolonged:*

- the *prolongation day* estimated by Hollander-Proshchan statistics: ‘new worse than used’.
- The longer the patient has been in hospital, the worse the prospects of discharge:
 - associated with complications and/or co-morbid medical conditions
 - measure of provider ability to manage complicated cases.
- “By studying CLOS, one can determine when the rate of hospital discharge begins to diminish - without the need to directly observe complications ... CLOS aids in the analysis of a hospital’s management of complicated patients ...”

¹⁴Silber, Rosenbaum et al HSR 1999; 2003
Conditional length of stay (CLOS)

Idea: time course of ‘hazard of patient ICU/hospital discharge’ reflects the (time course of) process-of-care.

Silber and co-workers 1999 – 2004\(^\text{14}\) defined CLOS as the length of stay after a stay is prolonged:

- the prolongation day estimated by Hollander-Proshchan statistics: ‘new worse than used’.
- The longer the patient has been in hospital, the worse the prospects of discharge:
 - associated with complications and/or co-morbid medical conditions
 - measure of provider ability to manage complicated cases.
- “By studying CLOS, one can determine when the rate of hospital discharge begins to diminish - without the need to directly observe complications ... CLOS aids in the analysis of a hospital’s management of complicated patients ..."

\(^\text{14}\) Silber, Rosenbaum et al HSR 1999; 2003
Conditional length of stay (CLOS)

Idea: time course of ‘hazard of patient ICU/hospital discharge’ reflects the (time course of) process-of-care.

Silber and co-workers 1999 – 200414 defined CLOS as the length of stay after a stay is prolonged:

- the prolongation day estimated by Hollander-Proshchan statistics: ‘new worse than used’.
- The longer the patient has been in hospital, the worse the prospects of discharge:
 - associated with complications and/or co-morbid medical conditions
 - measure of provider ability to manage complicated cases.
- “By studying CLOS, one can determine when the rate of hospital discharge begins to diminish - without the need to directly observe complications ... CLOS aids in the analysis of a hospital’s management of complicated patients ...”

14Silber, Rosenbaum \textit{et al} HSR 1999; 2003
Conditional length of stay (CLOS)

Idea: time course of ‘hazard of patient ICU/hospital discharge’ reflects the (time course of) *process-of-care*.

Silber and co-workers 1999 – 2004\(^{14}\) defined CLOS as *the length of stay after a stay is prolonged*:

- the *prolongation day* estimated by Hollander-Proschanan statistics: ‘new worse than used’.
- The longer the patient has been in hospital, the worse the prospects of discharge:
 - associated with complications and/or co-morbid medical conditions
 - measure of provider ability to manage complicated cases.
- “*By studying CLOS, one can determine when the rate of hospital discharge begins to diminish - without the need to directly observe complications ... CLOS aids in the analysis of a hospital’s management of complicated patients ...*”

\(^{14}\)Silber, Rosenbaum *et al* HSR 1999; 2003
Conditional length of stay (CLOS)

Idea: time course of ‘hazard of patient ICU/hospital discharge’ reflects the (time course of) **process-of-care**.

Silber and co-workers 1999 – 2004\(^{14}\) defined CLOS as **the length of stay after a stay is prolonged**:

- the *proloration day* estimated by Hollander-Proschan statistics: ‘new worse than used’.
- The longer the patient has been in hospital, the worse the prospects of discharge:
 - associated with complications and/or co-morbid medical conditions
 - measure of provider ability to manage complicated cases.
- “By studying CLOS, one can determine when the rate of hospital discharge begins to diminish - without the need to directly observe complications … CLOS aids in the analysis of a hospital’s management of complicated patients …"

\(^{14}\)Silber, Rosenbaum *et al* HSR 1999; 2003
CLOS of ANZICS APD patients 1993-2003

- **Unit of analysis**
 - *patients within providers*: for Australia, individual ICUs/hospitals by hospital level (rural, metropolitan, tertiary, private) and geographical locality (i.e., by state)

- **Survivors**
 - we define LOS of non-survivors as >> maximum LOS of alive discharges
 - \(n = 181,100 \), no censoring
 - obtain hazard of hospital (or ICU) discharge via kernel density smoothing.

- **Non-survivors**
 - \(n = 34,415 \): LOS of survivors defined >> maximum LOS of deaths.
Unit of analysis

- patients within providers: for Australia, individual ICUs/hospitals by hospital level (rural, metropolitan, tertiary, private) and geographical locality (i.e., by state).

Survivors

- we define LOS of non-survivors as >> maximum LOS of alive discharges
- \(n = 181,100 \), no censoring
- obtain hazard of hospital (or ICU) discharge via kernel density smoothing.

Non-survivors

- \(n = 34,415 \): LOS of survivors defined >> maximum LOS of deaths.
CLOS of ANZICS APD patients 1993-2003

- **Unit of analysis**
 - *patients within providers*: for Australia, individual ICUs/hospitals by hospital level (rural, metropolitan, tertiary, private) and geographical locality (i.e., by state)

- **Survivors**
 - We define LOS of non-survivors as >> maximum LOS of alive discharges
 - $n = 181,100$, no censoring
 - Obtain hazard of hospital (or ICU) discharge via kernel density smoothing.

- **Non-survivors**
 - $n = 34,415$: LOS of survivors defined >> maximum LOS of deaths.
CLOS of ANZICS APD patients 1993-2003

- **Unit of analysis**
 - *patients within providers*: for Australia, individual ICUs/hospitals by hospital level (rural, metropolitan, tertiary, private) and geographical locality (i.e., by state)

- **Survivors**
 - we define LOS of non-survivors as >>> maximum LOS of alive discharges
 - \(n = 181,100 \), no censoring
 - obtain hazard of hospital (or ICU) discharge via kernel density smoothing.

- **Non-survivors**
 - \(n = 34,415 \): LOS of survivors defined >>> maximum LOS of deaths.
CLOS of ANZICS APD patients 1993-2003

- **Unit of analysis**
 - *patients within providers*: for Australia, individual ICUs/hospitals by hospital level (rural, metropolitan, tertiary, private) and geographical locality (i.e., by state)

- **Survivors**
 - we define LOS of non-survivors as >> maximum LOS of alive discharges
 - $n = 181,100$, no censoring
 - obtain hazard of hospital (or ICU) discharge via kernel density smoothing.

- **Non-survivors**
 - $n = 34,415$: LOS of survivors defined >> maximum LOS of deaths.
Unit of analysis

patients within providers: for Australia, individual ICUs/hospitals by hospital level (rural, metropolitan, tertiary, private) and geographical locality (i.e., by state)

Survivors

- we define LOS of non-survivors as >> maximum LOS of alive discharges
- \(n = 181,100 \), no censoring
 - obtain hazard of hospital (or ICU) discharge via kernel density smoothing.

Non-survivors

- \(n = 34,415 \): LOS of survivors defined >> maximum LOS of deaths.
CLOS of ANZICS APD patients 1993-2003

Unit of analysis

- patients within providers: for Australia, individual ICUs/hospitals by hospital level (rural, metropolitan, tertiary, private) and geographical locality (i.e., by state)

1. Survivors
 - we define LOS of non-survivors as >> maximum LOS of alive discharges
 - \(n = 181,100 \), no censoring
 - obtain hazard of hospital (or ICU) discharge via kernel density smoothing.

2. Non-survivors
 - \(n = 34,415 \): LOS of survivors defined >> maximum LOS of deaths.
CLOS of ANZICS APD patients 1993-2003

- **Unit of analysis**
 - *patients within providers*: for Australia, individual ICUs/hospitals by hospital level (rural, metropolitan, tertiary, private) and geographical locality (i.e., by state)

- **Survivors**
 - we define LOS of non-survivors as \gg maximum LOS of alive discharges
 - $n = 181,100$, no censoring
 - obtain hazard of hospital (or ICU) discharge via kernel density smoothing.

- **Non-survivors**
 - $n = 34,415$: LOS of survivors defined \gg maximum LOS of deaths.
CLOS of ANZICS APD patients 1993-2003

- **Unit of analysis**
 - *patients within providers*: for Australia, individual ICUs/hospitals by hospital level (rural, metropolitan, tertiary, private) and geographical locality (i.e., by state)

- **Survivors**
 - we define LOS of non-survivors as >> maximum LOS of alive discharges
 - *n = 181,100*, no censoring
 - obtain hazard of hospital (or ICU) discharge via kernel density smoothing.

- **Non-survivors**
 - *n = 34,415*: LOS of survivors defined >> maximum LOS of deaths.
ANZICS hazard of discharge by location

Hazard of alive hospital discharge: covariate adjusted

Time to discharge: days

Hazard of hospital discharge

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

NT NSW ACT SA
VIC NZ QLD TAS

Hazard of discharge by location:
- NT
- NSW
- ACT
- SA
- VIC
- NZ
- QLD
- TAS
ANZICS hazard of discharge alive by hospital level

Hazard of alive rural hospital discharge

Hazard of alive metropolitan hospital discharge

Hazard of alive tertiary hospital discharge

Hazard of alive private hospital discharge

Quantitative indices reflecting provider ‘process of care’

Concluding comments
ANZICS hazard of death by hospital level

Hazard of rural hospital death

Hazard of metropolitan hospital death

Hazard of tertiary hospital death

Hazard of private hospital death
The ANZICS adult patient database (APD)
ANZICS mortality and LOS outcomes 1993–2003
Quantitative indices reflecting provider ‘process-of-care’
Concluding comments
Pharmacokinetic measures to summarize hazard curves

Aim: find parametric distribution or similar to fit the smoothed hazard profiles

- the associated parameter estimates will serve as *indices of performance* of various descriptor units.

Use simple survival measures:

- time to peak hazard, \(TMAX \)
- area under curve, \(AUC \)
- peak hazard, \(CMAX \)
- ‘elimination rate’, \(KE \).

Justification: a (random effects) first-order compartment model provides a reasonable fit to the data.
Pharmacokinetic measures to summarize hazard curves

Aim: find parametric distribution or similar to fit the smoothed hazard profiles

- the associated parameter estimates will serve as indices of performance of various descriptor units.

Use simple survival measures:

- time to peak hazard, \(TMAX \)
- area under curve, \(AUC \)
- peak hazard, \(CMAX \)
- ‘elimination rate’, \(KE \).

Justification: a (random effects) first-order compartment model provides a reasonable fit to the data.
Pharmacokinetic measures to summarize hazard curves

Aim: find parametric distribution or similar to fit the smoothed hazard profiles

- the associated parameter estimates will serve as *indices of performance* of various descriptor units.

Use simple survival measures:

- time to peak hazard, **TMAX**
- area under curve, **AUC**
- peak hazard, **CMAX**
- ‘elimination rate’, **KE**.

Justification: a (random effects) first-order compartment model provides a reasonable fit to the data.
Pharmacokinetic measures to summarize hazard curves

Aim: find parametric distribution or similar to fit the smoothed hazard profiles

- the associated parameter estimates will serve as *indices of performance* of various descriptor units.

Use simple survival measures:

- time to peak hazard, T_{MAX}
- area under curve, AUC
- peak hazard, C_{MAX}
- ‘elimination rate’, K_E.

Justification: a (random effects) first-order compartment model provides a reasonable fit to the data.
Pharmacokinetic measures to summarize hazard curves

Aim: find parametric distribution or similar to fit the smoothed hazard profiles

- the associated parameter estimates will serve as *indices of performance* of various descriptor units.

Use simple survival measures:

- time to peak hazard, **TMAX**
- area under curve, **AUC**
- peak hazard, **CMAX**
- ‘elimination rate’, **KE**

Justification: a (random effects) first-order compartment model provides a reasonable fit to the data.
ANZICS survivors: SSfol

Hospital-level:locality (20 levels)
ANZICS survivors: mortality, TE and CLOS by hospital locality/level/size
TE of deaths for metropolitan hospitals by locality

- Metropolitan NT
- Metropolitan NSW
- Metropolitan SA
- Metropolitan VIC
- Metropolitan NZ
- Metropolitan QLD
- Metropolitan TAS

Kernel density estimate vs Normal density
Survivors and non-survivors: mortality, TE and CLOS by hospital locality/level/size
Now adding KE by hospital locality/level/size
The future?

The ‘third revolution’ in medical care15 dates back to Florence Nightingale in the mid-19th century in the UK and Ernest Codman in the early 1900s in the US16.

Disquiet has been generated by the past and current publishing of mortality outcome data.

The establishment of quantitative indices of patient \textit{process-of-care} may be a valuable complement to \textit{mortality outcome}, both at the administrative and clinical level.

Our focus

- critically-ill patients within the ICU
- recognise patient groups in cardiac surgery, acute myocardial infarction, stroke, pneumonia and acute renal failure, where similar outcome endeavours have been established.

15Relman Assessment and Accountability \textit{NEJM} 1988
16Spiegelhalter 1999; Iezzoni 1996.
The future?

The ‘third revolution’ in medical care15 dates back to Florence Nightingale in the mid-19th century in the UK and Ernest Codman in the early 1900s in the US16.

Disquiet has been generated by the past and current publishing of mortality outcome data.

The establishment of quantitative indices of patient process-of-care may be a valuable complement to mortality outcome, both at the administrative and clinical level.

Our focus

- critically-ill patients within the ICU
- recognise patient groups in cardiac surgery, acute myocardial infarction, stroke, pneumonia and acute renal failure, where similar outcome endeavours have been established.

15Relman Assessment and Accountability *NEJM* 1988

16Spiegelhalter 1999; Iezzoni 1996.
The future?

The ‘third revolution’ in medical care15 dates back to Florence Nightingale in the mid-19th century in the UK and Ernest Codman in the early 1900s in the US16.

Disquiet has been generated by the past and current publishing of mortality outcome data.

The establishment of quantitative indices of patient \textit{process-of-care} may be a valuable complement to \textit{mortality outcome}, both at the administrative and clinical level.

Our focus

\begin{itemize}
 \item critically-ill patients within the ICU
 \item recognise patient groups in cardiac surgery, acute myocardial infarction, stroke, pneumonia and acute renal failure, where similar outcome endeavours have been established.
\end{itemize}

15 Relman Assessment and Accountability \textit{NEJM} 1988
16 Spiegelhalter 1999; Iezzoni 1996.
The future?

The ‘third revolution’ in medical care15 dates back to Florence Nightingale in the mid-19th century in the UK and Ernest Codman in the early 1900s in the US16.

Disquiet has been generated by the past and current publishing of mortality outcome data.

The establishment of quantitative indices of patient \textit{process-of-care} may be a valuable complement to \textit{mortality outcome}, both at the administrative and clinical level.

Our focus

\begin{itemize}
 \item critically-ill patients within the ICU
 \item recognise patient groups in cardiac surgery, acute myocardial infarction, stroke, pneumonia and acute renal failure, where similar outcome endeavours have been established.
\end{itemize}

15 Relman Assessment and Accountability \textit{NEJM} 1988
16 Spiegelhalter 1999; Iezzoni 1996.
The ‘third revolution’ in medical care15 dates back to Florence Nightingale in the mid-19th century in the UK and Ernest Codman in the early 1900s in the US16.

Disquiet has been generated by the past and current publishing of mortality outcome data.

The establishment of quantitative indices of patient \textit{process-of-care} may be a valuable complement to \textit{mortality outcome}, both at the administrative and clinical level.

Our focus

- critically-ill patients within the ICU
- recognise patient groups in cardiac surgery, acute myocardial infarction, stroke, pneumonia and acute renal failure, where similar outcome endeavours have been established.

15Relman Assessment and Accountability \textit{NEJM} 1988
16Spiegelhalter 1999; Iezzoni 1996.
The future?

The ‘third revolution’ in medical care15 dates back to Florence Nightingale in the mid-19th century in the UK and Ernest Codman in the early 1900s in the US16.

Disquiet has been generated by the past and current publishing of mortality outcome data.

The establishment of quantitative indices of patient \textit{process-of-care} may be a valuable complement to \textit{mortality outcome}, both at the administrative and clinical level.

Our focus

\begin{itemize}
 \item critically-ill patients within the ICU
 \item recognise patient groups in cardiac surgery, acute myocardial infarction, stroke, pneumonia and acute renal failure, where similar outcome endeavours have been established.
\end{itemize}

15Relman Assessment and Accountability \textit{NEJM} 1988
16Spiegelhalter 1999; Iezzoni 1996.