Design Issues in Omics Studies



Why design matters in omics studies

® We still have little intuition about
in high dimensions.

@ So, if we are to use as
biomarkers, we need to know that the

o is to ensure the study is ;

that the , and
to

o comes a long way behind these.



Genome = DNA double helix

DNA makes RNA makes protein




Transcriptome | : coding RNA

MRNA




tRNA

Transcriptome Il : non-coding RNA

micro-RNA




Types of omics studies |

Most are comparative e.g, mutant vs wild-type,
tumour vs normal, drug-treated vs control cells, ....

If the assigned ‘treatments’ are under the control of the

investigator, the study is an ‘experiment’
e.g., response surface designs.

Most are observational i.e., the investigator determines

which units are studied and the observational process
e.g., match serrated (case) with conventional (control) polyps in
colon cancer study.

There is rarely a single objective or hypothesis. Often,
the study is a ‘screen’ where the aim is to identify genes
associated with a condition or outcome.




Types of omics studies |l

® (lassification: of samples into groups given
® Association: of gene expression with e.g. survival time.

® Exploratory: seeking sets of genes sharing observed
patterns, or sets of samples which cluster

All these studies have characteristics in common:
* lots of in wet lab.
* followed by the application of a piece of industrial-strength
biotechnology equipbment
* which produces lots of measurements.




Biotechnology |I: cDNA microarray assay for gene expression
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Biotechnology Il
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More characteristics of omics studies:

The notion of replicate can be subtle.
Biological replicates usually clear.

But technical replicates arise at a number of levels, depending on
how much of the process they share:

OlO0,
Extract
Cells RNA

Always: # replicates << # measurements




Common characteristics concluded:

Biological variability is reasonably well understood.

But after that, things get more complicated. There are
variability hierarchies, depending on context.

For example: variability between organisms/organs
>

variability between tissues
>

variability between cell samples
>

variability between single cells

. . €€ 2,)
So, in fitting models to your data, “+ O “” may be fantasy.




‘Design’ encompasses all the structural and
material aspects of a study or experiment.

The key design principles are:

® Randomisation

® Control (or blocking)
® Replication

® Blinding

Their purpose is to avoid bias and confounding, among
other things.

The SCALE of experimentation in bioinformatics is highlighting
the presence of batch effects.




Case Study |: Cancer subtypes

Researchers at MD Anderson Texas, conducted an
experiment on serum samples from patients with
or Acute lymphoblastic leukaemia.

SELDI-TOF-MS was applied for protein profiling of the serum
samples.

Aim: fo identify the protein peaks that uniquely defined a
given leukaemia subtype (CML or ALL).

The raw spectra were pre-processed using ‘in-house’
routines for , followed by normalisation to total ion
current.

Performed of all samples to evaluate
the ability of the peaks to discriminate between cancer
subtypes.

Surprisingly ...



Hierarchical clustering of samples
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Run date effects can be larger than biological effects




Case Study |: Cancer subtypes cont.

Spectra from QC material run concurrently showed the
same clustering pattern as the biological samples.

Attempts to apply simple additive shifts to align the QC
samples to fix the problem failed (Hu et al, 2005).

What to do ?

Avoid running samples ‘as they come in’.

Include some members from each contrasting
sample in each laboratory-run group.

If the run groups are large, randomise the run order.
Record all relevant and clinical information.




Case Study 2: Try to avoid disaster ...

MECHANISMS OF DISEASE

Mechanisms of disease Lancet, 359, 2002:572-7

& Use of proteomic patterns in serum to identify ovarian cancer

Emanuel F Petricoin lil, Ali M Ardekani, Ben A Hitt, Peter J Levine, Vincent A Fusaro, Seth M Steinberg, Gordon B Mills,
Charles Simone, David A Fishman, Elise C Kohn, Lance A Liotta

® 100 ovarian cancer patients; 100 normal controls; 16
patients with ‘benign’ disease.

Used 50 cancer and 50 normal spectra to train a classifier
and tested it on the rest.

Correctly classified 50/50 of the cancer cases; 46/50 of the
controls, and 16/16 of the benign disease as ‘other’.




Case Study 2: Almost immediately, various questions

about oddities in the data are raised by Keith Baggerly
and others...

® The results are not reproducible from the ‘same’
data.

® There was an apparent change of protocol near the
end of the dataset.

® No time-m/z calibration.

® No evidence that the order of processing was
randomised.

® Perfect classification of peaks is achieved in the
‘noise” region of the data (see next slide) ...




Case Study 2: Disaster unfolding
Another Bivariate Plot: M/Z = (2.79,245.2)
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Perfect Separation, using a completely different pair. Further,
look at the masses: this is the noise region.




Case Study 2: The abortive followup

® |n January 2004, three companies announced plans
to offer a “home brew” diagnostic assay called
Ovacheck.

® |n July 2004, Conrads et al* processed samples with
their original SELDI technology and also with a higher
resolution instrument called the QqTOF. They added
some QA/QC steps to remove bad spectra.

® They demonstrated 100% sensitivity and 100%
specificity for identifying cancer from normal, and
stated that this “emerging paradigm” is ready to go
to a full-scale clinical study.

What was going on?

* Endocrine Related Cancer || 163-178, 2004




Here is their Figure 6A

Record Count

Fecord Count, by Run Date. Problems on Day 3.

aF r -
iy iy &
iy
Fis
25l -
2B a8, _
iy
iy
241 a -
iy
peg B -
.y
2 | | | |
0 S0 100 150 200 250

Sample Murmnber

Day | Day 3




Fecard Counts of First 95 Samples (Controls) from Figure 7, Superimposed

Record Count
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Recard Counts of Last 121 Samples {Cancers) from Figure 7, Superimposed
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*All* of the controls were run before *all* of the

cers




Case Study 2: Concluded

® A better machine will not save you if the study
design is poor!

® QObviously, there is no way a woman should be
told she needs an oophorectomy based on this
test.

e |n June 2004, the US FDA blocked its use
‘“pending further validation” ...

e and we are still waiting for such.




Case Study 3: 1000 Genomes Project

OPINION

Tackling the widespread and
critical impact of batch effects
In high-throughput data

Jeffrey T. Leek, Robert B. Scharpf, Héctor Corrada Bravo, David Simcha,

Benjamin Langmead, W. Evan Johnson, Donald Geman, Keith Baggerly
and Rafael A. Irizarry

NATURE REVIEWS | GENETICS

Their definition of batch effects includes laboratory
conditions, reagent lots and personnel.

When these effects are correlated or (worse) confounded with
the biological outcome of interest, we get wrong answers.




Case Study 3: 1000 Genomes Project

We consider the analysis of second-generation
sequencing data from 131 individuals in 6 Hapmap
populations,

and a 3.5 Mb region from chromosome 16.

Chromosome 16 was binned into 10Kb regions and
total number of reads aligned to each bin for each
individual was the statistic (counts were then quantile
normalised).

Feature data were standardised across samples:
blue 3 s.d. <average and orange 3 s.d. > average.

Samples are ordered by processing date ...




Batch effects for second-generation sequencing data
Each row is a different individual, all from same processing group
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Nature Reviews | Genetics

The largest batch effect occurs between days 243 and 251




Case Study 3: Continued

* Further analysis showed that 32% of features were
associated with

 But up to 73% were associated with the second
Principal Component (ranked in order of variability
explained) - in a situation where the PCs cannot be

explained by the biology.

» This strongly suggests other (unknown) sources of
batch variability are present.

What to do?




Case Study 3: Concluded

» Use clinical trial design principles, including
distributing biological contrast groups equally across
centres in a multi-centre study; use identical protocols.

« Randomise run order within centres, etc, as before.
» Record all relevant information and clinical variables

so that potential confounding effects and unwanted

structure

can be checked by the statistician

(e.g., using PCA or clustering).
« Use statistical analysis solutions as well, and if

possible.




Stages of a study/experiment
|. Planning and preparation

The statistician should be involved from the outset to discuss:

® the aims or hypotheses (if you have any)

® the study population (people, organs, cadavers, cell

lines, ...) especially sources of variability, potential replication,
choice of control;

® the type of study (observational, time course,...)
e the choice of technology/platform

e important clinical and epidemiological variables
(e.g., age and tumour stage at diagnosis, date of death).




2. Samples and cells

* This stage is about obtaining the cell samples
without selection bias from the original organisms/organs.

* Depending on context, this involves choosing the
samples, the number of samples, extracting

tissue/blood/cell samples from these. Using
randomisation wherever possible.

* This may take days/weeks/months, so time may be an
issue (temporal trends, mode of storage, time spent in
storage, degradation of samples, ...).

* Records should be kept - dates, changes in lab. personnel,
how the lab. technician performs the extractions,
protocols, ....




3. Molecular samples

This stage is about starting with cells samples and
ending up with molecular samples for measuring.

That is: extraction, amplification, pooled vs
unpooled, probe labelling, etc.

And, deciding on the nature and amount of replication.

Amplification is a major source of variation, but there
are others, such as quality of RNA.

Record everything, including times, reagents and
equipment used, protocols, operators, ....




4. Assay design

® This stage is about assigning the
molecular samples to components of

the technology.

® [or example: pairing(dye-swaps) in two- Dav 0 3 6 9
channel microarrays (direct comparisons
versus reference design); allocating
samples to runs in single-channel .

(Affymetrix) microarrays.
® |ssues to watch out for: choice of
reference (esp.in common reference . . . ooo .

design) or control.

References: Kerr & Churchill, Glonek & Solomon, Mukherjee, and others




Case study 4: Cushing’s Disease

® |s arare disease of the pituitary gland which causes it
to release too much ATCH. Symptoms in adults include
obesity, ‘moon face’, and a large adrenal gland.

® Researchers in Adelaide approached the AMF to
conduct a microarray experiment on 3 brothers with
Cushing’s Disease; a Pedigree of the family was also
being established.

® Tissue samples from the brothers and 4 controls
were hybridised using Human GeneChip Arrays.

® Farly on, the choice of controls was an issue,
because ‘control tissue’ was scarce ...
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Case Study 4: Cushing’s Disease

* The 2 Clontech pooled control samples were from
male and female cadavers, 15-61 years old, with ?
tissues.

* Unlikely to help shed light on the genotype of
Cushing’s Disease.

» Controls like Bruce, matched on sex and age would
be better, if they could be obtained.

 PCA is a useful exploratory tool - we may know
structure in the data exists, but it can tell us how to

respond.




5. Assay execution

* In this crucial stage of the study, the (now prepared)
molecular samples are “run” on the equipment.

* This is probably the most important stage for the
statistician to be directly involved, but they usually
aren’t.




Case Study 5: Biostatistics vs Lab Research

Here’s how *not* to consult with your statistician ...







A few more recommendations ...

® Your data will become publicly available ...

® documentation is often poor - make sure yours
isn’t, and

® ensure your results are reproducible.

® You do not want your research to feature as

one of Keith Baggerly’s Case Studies in Forensic
Bioinformatics.
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Custom array for chromosome screening




