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Why design matters in omics studies

We still have little intuition about “what makes 
sense” in high dimensions.

So, if we are to use “genomic signatures” as 
biomarkers, we need to know that the underlying 
data and analyses are correct, and checkable.

The role of design is to ensure the study is feasible, 
that the questions of interest can be answered, and 
to avoid disaster.  

Statistical efficiency comes a long way behind these.



Genome = DNA double helix 

DNA makes RNA makes protein



mRNA

Transcriptome I : coding RNA



Transcriptome II : non-coding RNA

micro-RNA

tRNA rRNA



•  Most are comparative e.g., mutant vs wild-type, 
tumour vs normal, drug-treated vs control cells, ... . 

• If the assigned ‘treatments’ are under the control of the 
investigator, the study is an ‘experiment’                          
e.g., response surface designs.

• Most are observational i.e., the investigator determines 
which units are studied and the observational process      
e.g., match serrated (case) with conventional (control) polyps in 
colon cancer study.

• There is rarely a single objective or hypothesis. Often, 
the study is a ‘screen’ where the aim is to identify genes 
associated with a condition or outcome. 

Types of omics studies I



Types of omics studies II

• Classification: of samples into groups given a priori. 

• Association: of gene expression with e.g. survival time.

• Exploratory: seeking sets of genes sharing observed 
patterns, or sets of samples which cluster in a 
meaningful way.

All these studies have characteristics in common: 
* lots of complex measurement processes in wet lab. 

* followed by the application of a piece of industrial-strength 
biotechnology equipment

* which produces lots of measurements.
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Biotechnology II

• Proteomic mass 
spectrometry

Array 

Array 

Array 1/Array 

• Custom arrays, high-density 
oligonucleotide arrays, exon, 
tiling arrays, ...

PCR
(a single gene is copied)

PCR

Genes

• High-throughput PCR

Around 100’000’000 short fragments (200-300bp) are grafted
to a special plate. One can sequence the !rst 36 bases of each
fragment by incorporating bases with "uorophores.

Deep Sequencing
Laboratory for Quantitative Genomics
Department Biosystems Science and Engineering - ETH Zurich

Werner Van Belle, Ina Nissen, Christian Beisel

Genome Resequencing

Denovo Sequencing

Discovery of SNP

DNA Methylation
Analysis

Transcriptome
measurements

CHIP-SEQ

Discovery of copy
number variations

Discovery of chromosomal rearrangements 
(insertions, deletions, translocations)

A flowcell consists of 8 lanes. Each lane can contain
one biological sample. Lane 5 is always reserved for
a control sample (PhiX).

Each tile is imaged 4 times. 
Once for each fluorophore.

4 tile images. Topleft: normal size. Topright: 2x
Bottomleft: 50x. Bottomright 100x zoom. 
Each spot is a short fragment (cluster)

Each cluster has 36 intensities for A, C, G and T.  These intensities require further normalization because 
a) certain molecules will run ahead or lag behind (phasing and pre-phasing) and
b) there is crosstalk between the A, C, G and T channels.
Afterwards, the basecalling can be performed. This is done with Bustard.

Because the lightpath for each of the filters
is slightly different we must first align all images. 
Afterwards clusters are identified and listed. 
This is done with Firecrest.

After converting the alignment files to WIG files one can 
visualize them in the UCSC genome browser. 
Track 1) output from a CHIP-SEQ experiment. 
Track 2) output from an RNA experiment. Notice the sharp exon
boundaries aligning perfectly to the genome tracks.

Images: 100 Gb per lane - 800 Gb per flowcell
IPAR Output: 10.4 Gb/lane - 83.2 Gb/flowcell
Intensity files: 8.9 Gb/lane - 71.2 Gb/flowcell
Basecalls: 22 Gb/lane - 176 Gb/flowcell
SRF: 7.53 Gb/lane - 60.42 Gb/flowcell
Filtered Sequences: 1.6 Gb/lane - 12.8 Gb/flowcell
Alignment exports: 1.23 Gb/lane - 14.76 Gb/flowcell
Error reports: 6.47 Gb/lane - 51.76 Gb/flowcell
Minimal Dataset: 8.76 Gb/lane - 70 Gb/flowcell
Everything without images: 66.89 Gb/lane - 535 Gb/flowcell
Everything including images: 166.7 Gb/lane - 1.3 Tb/flowcell

Each lane has 100 imaging positions, 
called tiles, spaced in two columns

The imaging cycle is repeated 36 times. 
Between two imaging cycles we 
incorporate a new base.

2. Image Acquisition

3. Image Alignment 7. Reports4. Basecalling

6. Short Fragment Alignment

8. Genome Browsing 9. Expression Reports 10. Data Delivery

1. Sequencing By Synthesis

5. Data Filtering

a. 

b. 

By counting the number of bases matched at a certain genome position, we can accurately
report the expression level of each gene. This includes exon and intron expressions. The
correlation between two technical replicates is 0.9903, outperforming existing techniques.

The short fragments can be aligned to a reference genome (yellow). The first program (Eland) allows for at most 
two mismatches per fragment. The second program (PhageAlign) will find the best match for each fragment.

Further data filtering is based on the ratio between 
the highest intensity and the second highest
intensity. If the ratio C is smaller than 0.6 then 
the base can be considered unclean.

a. b. 

c. d. 

Gerald generates various error reports
a) % basecalls per base per cycle
b) average intensities for each base per cycle
c) statistics on base mismatches per cycle
d) % of read errors per base per cycle

36 x

• Deep-sequencing
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What Do the Data Look Like?



More characteristics of omics studies:

The notion of replicate can be subtle.

Biological replicates usually clear.

But technical replicates arise at a number of levels, depending on 
how much of the process they share: 

Always:  # replicates << # measurements

Extract 
RNA

6 

The cDNA and short oligo technologies: in brief!

6 

The cDNA and short oligo technologies: in brief!

Cells



Common characteristics concluded:

Biological variability is reasonably well understood.

But after that, things get more complicated.  There are 
variability hierarchies, depending on context.

variability between cell samples

variability between single cells

>

>

variability between organisms/organs 

variability between tissues
>

For example:

So, in fitting models to your data, “+     ” may be fantasy.σ
2



• Randomisation 

• Control (or blocking)

• Replication

• Blinding

‘Design’ encompasses all the structural and 
material aspects of a study or experiment.

The key design principles are:

The SCALE of experimentation in bioinformatics is highlighting 
the presence of batch effects.

Their purpose is to avoid bias and confounding, among 
other things.



Case Study 1: Cancer subtypes

• Researchers at MD Anderson Texas, conducted an 
experiment on serum samples from patients with Chronic 
myelogenous or Acute lymphoblastic leukaemia.

• SELDI-TOF-MS was applied for protein profiling of the serum 
samples.

• Aim: to identify the protein peaks that uniquely defined a 
given leukaemia subtype (CML or ALL).

• The raw spectra were pre-processed using ‘in-house’ 
routines for SPDBC, followed by normalisation to total ion 
current.

• Performed hierarchical clustering of all samples to evaluate 
the ability of the peaks to discriminate between cancer 
subtypes.

• Surprisingly ...



Run date effects can be larger than biological effects

Hierarchical clustering of samples 



Case Study 1: Cancer subtypes cont.

• Avoid running samples ‘as they come in’.
• Include some members from each contrasting 

sample in each laboratory-run group.
• If the run groups are large, randomise the run order. 
• Record all relevant and clinical information.

What to do ?

• Spectra from QC material run concurrently showed the 
same clustering pattern as the biological samples.

• Attempts to apply simple additive shifts to align the QC 
samples to fix the problem failed (Hu et al, 2005).
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•  100 ovarian cancer patients

•  100 normal controls

•  16 patients with “benign disease”

Method: Use 50 cancer and 50 normal spectra to train a
classifier and test the algorithm on the remaining samples.

Results

•  Correctly classified 50/50 of the ovarian cancer cases.

•  Correctly classified 46/50 of the normal cases.

•  Correctly classified 16/16 of the benign disease as “other”.

Lancet, 359, 2002:572-7

Case Study 2:  Try to avoid disaster ...

• 100 ovarian cancer patients; 100 normal controls; 16 
patients with ‘benign’ disease.

• Used 50 cancer and 50 normal spectra to train a classifier 
and tested it on the rest.

• Correctly classified 50/50 of the cancer cases; 46/50 of the 
controls, and 16/16 of the benign disease as ‘other’.



• The results are not reproducible from the ‘same’ 
data.

• There was an apparent change of protocol near the 
end of the dataset.

• No time-m/z calibration.

• No evidence that the order of processing was 
randomised.

• Perfect classification of peaks is achieved in the 
“noise” region of the data (see next slide) ...

Case Study 2:  Almost immediately, various questions 
about oddities in the data are raised by Keith Baggerly 

and others...
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Another Bivariate Plot: M/Z = (2.79,245.2)

Perfect Separation, using a completely different pair. Further,

look at the masses: this is the noise region.

Case Study 2: Disaster unfolding



Case Study 2: The abortive followup 

• In January 2004, three companies announced plans 
to offer a “home brew” diagnostic assay called 
Ovacheck.

• In July 2004, Conrads et al* processed samples with 
their original SELDI technology and also with a higher 
resolution instrument called the QqTOF. They added 
some QA/QC steps to remove bad spectra.

• They demonstrated 100% sensitivity and 100% 
specificity for identifying cancer from normal, and 
stated that this “emerging paradigm” is ready to go 
to a full-scale clinical study.

What was going on?
* Endocrine Related Cancer 11 163-178, 2004
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What’s Going On? Part I

Conrads et al, ERC (Jul ’04), Fig 6a

Here is their Figure 6A 

Day 1 Day 2 Day 3
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What’s Going On? Part III

Conrads et al, ERC (Jul ’04), Fig 6a & 7

*All* of the controls were run before *all* of the cancers



• In June 2004, the US  FDA blocked its use 
“pending further validation” ...

• and we are still waiting for such.

Case Study 2:  Concluded

• A better machine will not save you if the study 
design is poor!

• Obviously, there is no way a woman should be 
told she needs an oophorectomy based on this 
test.



Case Study 3: 1000 Genomes Project
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Tackling the widespread and  
critical impact of batch effects  
in high-throughput data
Jeffrey T. Leek, Robert B. Scharpf, Héctor Corrada Bravo, David Simcha, 
Benjamin Langmead, W. Evan Johnson, Donald Geman, Keith Baggerly  
and Rafael A. Irizarry

Many technologies used in biology — 
including high-throughput ones such as 
microarrays, bead chips, mass spectrom-
eters and second-generation sequencing 
— depend on a complicated set of reagents 

and hardware, along with highly trained per-
sonnel, to produce accurate measurements. 
When these conditions vary during the 
course of an experiment, many of the quan-
tities being measured will be simultaneously 

affected by both biological and non-biological 
factors. Here we focus on batch effects, a 
common and powerful source of variation  
in high-throughput experiments.

Batch effects are sub-groups of measure-
ments that have qualitatively different 
behaviour across conditions and are unre-
lated to the biological or scientific variables 
in a study. For example, batch effects may 
occur if a subset of experiments was run on 
Monday and another set on Tuesday, if two 
technicians were responsible for different 
subsets of the experiments or if two different 
lots of reagents, chips or instruments were 
used. These effects are not exclusive to high-
throughput biology and genomics research1, 
and batch effects also affect low-dimensional 
molecular measurements, such as northern 
blots and quantitative PCR. Although batch 
effects are difficult or impossible to detect 
in low-dimensional assays, high-throughput 
technologies provide enough data to detect 
and even remove them. However, if not 
properly dealt with, these effects can have 
a particularly strong and pervasive impact. 
Specific examples have been documented 
in published studies2,3 in which the biologi-
cal variables were extremely correlated with 
technical variables, which subsequently led 
to serious concerns about the validity of the 
biological conclusions4,5.
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When these effects are correlated or (worse) confounded with 
the biological outcome of interest, we get wrong answers.



Case Study 3: 1000 Genomes Project

• We consider the analysis of second-generation 
sequencing data from 131 individuals in 6 Hapmap 
populations,

• and a 3.5 Mb region from chromosome 16.

• Chromosome 16 was binned into 10Kb regions and   
total number of reads aligned to each bin for each  
individual was the statistic (counts were then quantile 
normalised).

• Feature data were standardised across samples:                         
blue  3 s.d. < average and orange  3 s.d. > average.

• Samples are ordered by processing date ...



Batch effects for second-generation sequencing data 

The largest batch effect occurs between days 243 and 251

Each row is a different individual, all from same processing group



Case Study 3: Continued

• Further analysis showed that 32% of features were 
associated with processing date.

• But up to 73% were associated with the second 
Principal Component (ranked in order of variability 
explained) - in a situation where the PCs cannot be 
explained by the biology.

• This strongly suggests other (unknown) sources of 
batch variability are present.  

What to do?



Case Study 3: Concluded

• Randomise run order within centres, etc, as before.
• Record all relevant information and clinical variables 

so that potential confounding effects and unwanted 
structure  can be checked by the statistician            
(e.g., using PCA or clustering).

• Use statistical analysis solutions as well, and if 
possible.

• Use clinical trial design principles, including 
distributing biological contrast groups equally across 
centres in a multi-centre study; use identical protocols.



 Stages of a study/experiment
1.  Planning and preparation

• the aims or hypotheses (if you have any)

• the study population (people, organs, cadavers, cell 
lines, ...) especially sources of variability, potential replication, 
choice of control;

• the type of study (observational, time course, ...)

• the choice of technology/platform

• important clinical and epidemiological variables 
(e.g., age and tumour stage at diagnosis, date of death).

The statistician should be involved from the outset to discuss:



2.  Samples and cells

• Depending on context, this involves choosing the 
samples, the number of samples, extracting 
tissue/blood/cell samples from these.  Using 
randomisation wherever possible.  And blinding.

• This may take days/weeks/months, so time may be an 
issue (temporal trends, mode of storage, time spent in 
storage, degradation of samples, ...).

• Records should be kept - dates, changes in lab. personnel, 
how the lab. technician performs the extractions, 
protocols, ... .

• This stage is about obtaining the cell samples 
without selection bias from the original organisms/organs.



3.  Molecular samples

• This stage is about starting with cells samples and 
ending up with molecular samples for measuring.

• That is: extraction, amplification, pooled vs 
unpooled, probe labelling, etc.

•  And, deciding on the nature and amount of replication.

• Amplification is a major source of variation, but there 
are others, such as quality of RNA.

• Record everything, including times, reagents and 
equipment used, protocols, operators, ... .



4.  Assay design

• This stage is about assigning the 
molecular samples to components of 
the technology.

14 NOTES

µ0 µ1 µ2 µ3

cα1
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1

Day 0         3 6 9

FIGURE 5.2. Design of the stem cell microarray time course experi-
ment. Each arrow represents two hybridizations of the same compari-
son of mRNA samples from two time points conducted as a dye-swap
pair; the arrow head points towards the mRNA sample labelled with Cy5
(red), and the arrow tail towards the sample labelled with Cy3 (green).
The parameter µj is the true mean gene expression level at day j =
0, 3, 6, 9.

an ‘omnibus experiment’ because the Rathjen team used this single, albeit complex, time
course microarray experiment to obtain a set of data which enabled them to address a num-
ber of scientific hypotheses of interest. The differing scientific claims on the experiment,
itself subject to resource constraints of time and money (only 20 slides were available for
hybridization), complicated its design, which is shown in Figure 5.2. Hybridizations were
performed for each of the pairwise comparisons between days 0, 3, 6 and 9, except for day
6 versus day 0. There was some uncertainty at the design stage whether cells had lost
pluripotency by day 6, and I was the only member of the team who urged that this compar-
ison should be included in the experiment (for obvious scientific and statistical efficiency
reasons) but ultimately it wasn’t! There were 16 mRNA samples taken, 4 samples of stems
cells harvested on each day, with the 4 replicate cultures obtained from different passages.
A passage is a cycle of growth and re-plating of cells isolated from the early embryo, and
for the purposes of this analysis we treated these as independent biological replicates. Each
arrow in Figure 5.2 represents two hybridizations, with the arrow head pointing towards
the mRNA sample labelled with Cy5 (red), and the arrow tail with Cy3 (green). Dye swaps
were balanced within each comparison and for each replicate culture. The parameters µ
represent the true absolute mean gene expression levels on each day. Although the de-
sign is a compromise between resource constraints and the demands of experimenters, it is
close to optimal according to recently developed optimality criteria [27]. The hybridiza-
tions were performed at the Adelaide Microarray Facility using the CompuGen Mouse 22K
Long Oligo Library (5 comparisons within each stem cell sample). Slides were scanned
using Spot, and subsequent analysis was performed in R utilizing the Bioconductor suite
of packages.

The hypothetical profile for stemness of interest in this study is shown in Figure 5.3.
As pluripotency is restricted to the early stem cells (day 3 or earlier) genes that have high
expression levels in cells up to day 3, but low or monotonically decreasing expression lev-
els thereafter, are likely to be associated with the biochemical pathways involved in the
pluripotency ability of these cells. An aspect of the analysis of especial interest was in
finding those genes in the data which satisfy the (hypothetical) expression criteria over

References:  Kerr & Churchill, Glonek & Solomon, Mukherjee, and others

• For example: pairing(dye-swaps) in two-
channel microarrays (direct comparisons 
versus reference design); allocating 
samples to runs in single-channel 
(Affymetrix) microarrays.

• Issues to watch out for: choice of 
reference (esp. in common reference 
design) or control. 



Case study 4: Cushing’s Disease

• Researchers in Adelaide approached the AMF to 
conduct a microarray experiment on 3 brothers with 
Cushing’s Disease; a Pedigree of the family was also 
being established.

• Tissue samples from the brothers and 4 controls 
were hybridised using Human GeneChip Arrays.

• Early on, the choice of controls was an issue, 
because ‘control tissue’ was scarce ...

• Is a rare disease of the pituitary gland which causes it 
to release too much ATCH.  Symptoms in adults include 
obesity,  ‘moon face’, and a large adrenal gland.



Cushing’s Disease and PCA



More Cushing’s Disease and PCA



Case Study 4: Cushing’s Disease

• Unlikely to help shed light on the genotype of 
Cushing’s Disease.

• Controls like Bruce, matched on sex and age would 
be better, if they could be obtained.

• PCA is a useful exploratory tool - we may know 
structure in the data exists, but it can tell us how to 
respond.

• The 2 Clontech pooled control samples were from 
male and female cadavers, 15-61 years old, with ? 
tissues.



5.  Assay execution

• In this crucial stage of the study, the (now prepared) 
molecular samples are “run” on the equipment.

• This is probably the most important stage for the 
statistician to be directly involved, but they usually 
aren’t.



Here’s how *not* to consult with your statistician ...

Case Study 5: Biostatistics vs Lab Research





A few more recommendations ...

• Your data will become publicly available ... 

• documentation is often poor - make sure yours 
isn’t, and

• ensure your results are reproducible.

• You do not want your research to feature as 
one of Keith Baggerly’s Case Studies in Forensic 
Bioinformatics.



Acknowledgements

Chris Bagley, Hospira

Greg Goodall

Keith Baggerly

Terry Speed



Custom array for chromosome screening
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